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INTRODUCT ION

In many applications of mathematics to practical problems, it is
necessary to determine the solution of a linear system of equations. One
basic approach toward solving this type problem is to convert the problem
to one of finding a fixed point of an equivalent system by some iterative
method.

A solution to a linear system, say Ax = b, where A 1is an nxn

non-singular matrix, wil]l be a fixed peoint of the equation
(1) X =X+ Ct(E - Ax) .
This latter equation can be made into the iterative scheme

(2) X, ., = X +ct(E-A§t),t>o,

which will converge to a fixed point of (1} and the solution of AX = b

if sufficient conditions are placed on the Ct“s, This paper will present
a discussion of a special type of such iterative methods called projective
iterative methods.

In Chapter I the definition of a projective iterative scheme 1s
given, examples of projective schemes are discussed. =znd the question of
when an iterative scheme is a projective method is aznswered. In Chapter
I1 the questions of equivalence of an iterative scheme to the original

system and convergence of the iterative scheme are discussed. Finally in

Chapter 1II properties of a particular class of projective iterative

schemes, known as norm reducing schemes, are investigated.




CHAPTER I

INTRODUCTION TO PROJECTIVE ITERATIVE SCHEMES

Here basic definitions and properties will be covered, examples of
projective iterative schemes will be given, and the question of what schemes

can be thought of as projective iterative schemes will be discussed.

Definition 1.1. The iterative scheme

(1.1) Xep] = (1 - CtA)xt +Cb, t>0,

is called a projective iterative method if, and only if, each Pt =1 - CtA9

for t > 0, 1is a projection.

Properties of Projections

Because many of the results established later in this paper require
the use of several basic properties of projections, it will facilitate
this study if these properties are established prior to the main develop-

ment of projective iterative methods.

a

| is a matrix

Theorem 1.1: If P 1is a projection, P # 0, and |
norm, then [[P|| > 1.
Proof: For a non-zero projection P, the spectral radius is

equal to one, I&(P) = 1, For a matrix norm,

1Pl 22y (0)




Theorem 1.2: The matrix P =1 - CA, where A 1is a non-singular matrix,
is a projection if, and only if, CAC = C.
Proof: First it is assumed that P 1is a projection. Then

PP = P, Therefore,
(I - CAY(I - CA) = (I - CA)
or
1 -CA-CA+CACA =1 -CA .
Hence,

CACA = CA

But A is non-singular, so CAC = C.

Now suppose CAC = C.

PP = {1 - CA)(I - CA) =1 - CA - CA + CACA

But CAC = C, so CACA

CA. Thus

PP -CA-CA+CA=1-CA=P,

1]
-t

Hence, P is a projection.

Theorem 1.3: L2t G be a positive definite nxp matrix and Y be a

nxk matrix, where k 1is a fixed integer satisfying 1 < k < n, and the

columns of Y are linearly independent. Then Y*GY is non-singular.
Proof: It suffices to show Y*GY is positive definite since

this implies ¥Y*GY 1is non-singular. Let X be a k-dimensional vector.




Then
x*(Y*GY)x = (Yx)*G(YX)
Since G 1is positive definite,
(Yx)*G{Yx) > O

with equality holding if, and only if, Yx = C. Now Yx is a linear

combination of the columns of Y and hence can be the zero vector if, and

only if, x = 0 since the columns of Y are linearly independent. Thus
% (Y*GY)x > 0

for all x with equality if, and only if, x = 0. Therefore Y*GY is

positive definite and hence non-singular.

Theorem 1.4: Let Y be an nxk matrix, 1 < k < n, with linearly

independent columns. Let G be a positive definite matrix. Then
P = (I - Y(Y*cY) lyxc)

is a projection.

Proof: From Theorem 1.3 (Y*GY)—l exists and hence P 1is well

defined,
PP = (I - Y(Y*GY) ty*G) (I - Y(Y*GY)'lY*G)
PP = 1 - 2Y(Y*GY)'1Y*G + Y(Y*GY)“lY*GY(Y*GY)'lY*G

Now (Y*GY)_IY*GY = I. Hence




PP = I - 2v(¥*GY) 1y*G + vI(v*oy) lyxc |
or
PP = I - Y(y*GY) ly*c = p .
Hence P 1is a projection.

Examples of Projective Iterative Schemes

In order for the reader to become better acquainted with the idea
of projective iterative methods, several examples of iterative schemes for

solving AXx = b which can be thought of in this manner are now cited.

I. Gauss-5eidel Iterative Scheme

Under this scheme the tth iteration is given by
(1.2) xg = %, +C (b - Ax )
where, for 1< t < n,
Ot-l: o ' 0
______ I S
) ]
bl
C = 0 [ | 0
t-1 E iy E 2
...... | IR [ v
] |
! :
o 1 0 ! On-t

0, denotes the kxk =zero matrix, and for t >n + 1,

Ct—l - C(t—l)mod n

( (t-1)mod n being used to denote the remainder when t-1 1is divided

by n).




Theorem 1.5: The Gauss-Seidel iterative scheme (1.2) is a projective

iterative scheme.

Proof: It need only be shown that I - CtA is a projection for
t > 0. From the fact that the Ct's are repeated and from Theorem 1.2,
it is sufficient to show that Ct—lACt—l = Ct-l for 1<t <n.
rO v 0 0 T ] i
t-11 : 811 *** ®In
------ R EELEE . .
oy . :
Ct—lA = 0 E i 0 ay) cer 3y
;o
______ O : :
: ' . .
_ o r 0} On-t'“ hanl cen anrl_
o~ 0 ’}
e oae |2t G
t-1" a a a
tt tt tt
N O -~
B 0 qAfo, ,+ o+ 0o
______________________ L0 F
a, ., a a 1 1
Cy ACy = atl . tt . “tn o E‘l"i 0
tt “tt Gt ot
_________________________ ..:____.1..__--__
. 0 J I 0 : 0 : On-t -
B B
0
a
tt
C. .AC = | 0¢++0 0...0 |=1¢
t-1""t-1 CIL t-1
S O —
Thus by Theorem 1.2, I - Ct-lA is a projection for 1 < t < n. Hence

Thus the Gauss-Seidel iterative

I - CtA

is a2 projection for all t > 0.




scheme 1s a projective iterative scheme,

II. Block Gauss-Seidel Iterative Scheme

For the system AX = b, let the matrix A be partitioned in

the form

where esach Aiip 1 <i<N, is a square non-singular matrix. Let ]

be the number of rows Ay has for each 1, 1< 1 <N, and let

i
P; = §: Vi oo
j=1

Then the (t+1)St iteration for the block Gauss-Seidel scheme is given

by

(1.3) X = x,_ + ct(B - A§t), t>0,

where for 0 < t < N-1,

[0+ ¢ 0 N
Py i
t ] ]
ot e - d e
1 i
C o 1 A7} | 0
(W) = .
t i t+1t+li ’
[ F T,
] 1
[} b
o' 0 Lo
- H t p‘t+l -

and for t 2> N,




Theorem 1.6: The block Gauss-Seidel iterztive scheme (1.3} is a projec-
tive iterative scheme.
Procfs It need cnly e shown that I - CtA is a projection for

each t > 0, From the fzct trat the C_ 's repeat and from Tneorem 1.2,

it need only be skown that

R TRl S5

1L TN

C, (A= o vt IR N

t-1 AL 0 ALy Ain
0 0 | 9 A, 0 A

L PR p g 45

T t “A‘ k‘ e

- -

© !

- r - - - !

~ _ -1 . =1 1

Cpah AciA APt Ay

. L . =

] 0 .

. 1 e .
£-1%%0 7 ttotl tret Peeten C e




[ 0
c, AC, . =| o0 ata .at o0 |=c
t-1 "t-1 tt titt t-1
— 0 -
Thus I - Ct-lA is a proiection for 1 € t < N, and since the Ct“s

repeat, the block Gauss-Seidel iterative scneme is & projective iterative

scheme,

III. Method of Steepest Descent

Here it is assumed that the matrix A 1s real, positive definite,
ard symmetric. Under these assumptions

_ o2
il = 5eA3)

defines a vector norm.

Now if one denotes tne soiuticn of the system Ax = b by u

and defines s = U-x where x 13 =0y vecstor, tne problem of finding

the solution of AX = b can be ccasidersd 23 the oroblem of finding the
vector x for which
= 2
glx) = || 3|
A
. s . ; . . =i 2 . . o
is minimized {This holds sinze |8l > 0 :7d egu "iv- hoids only when
A

e

s =0, i.e. when X = u

Now suppose Qp 1 i% a7 approx<imaticn to the minimum point of

g and hence the solution of AX = b. Ia tne meincd of steepest descent
the next aspproximation to tine solution 1s obtained by traveling along a

line through X pointing 1n tie airection In warsih g changes most

p-1




rapidly at ;p-l until a point is reached at which the distance from
the solution to the point on this line in terms of || =||A is a minimum.
This point is then taken as the next approximation to the solution.

From elementary calculus one has that g changes most rapidly
at a point in the direction of the gradient vector of g at that point.

This vector is given by

Now for each i, 1< i<n,

8g(x) _ _g&* , = = - = 3%
Aax, T3 (Cu-x) + (u-x)*al- ax, )
i § i
Note that
D AT~ = (u-xxan (T
i
but A = A% 5o
Rl 3) = (5 -5 ad
A% Alu-%) = {u XJ*A(BX.) \

Thus
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=

X,
Ol 1

69(;) - _2(257)*A(G S

Now %iw = e. where Ei has all zero elements except for the ith
i
element which is one. Therefore
89(X) _ 5% A(T-F) = -28* (AT - AX)
ax, i i
i
But Au = b, so
89(X) . g% (b - AX) = -28*7(X)
Ax, i i
i
.th

where T(x) = b - AX, the residual vector at x. Note that the i

row of the identity matrix, I, 1is given by €% so that
1

r~ “ —
-, e~
e} elr(x)w
(X} = I¥(%) = E: ri{x) = Ez;ﬁi)
* - Skl s
&% ] Aenr(x)_
Hence,
~ Anlw) ) e
g%ﬁil e*rix)
1
—_— Sl e -
Del g(x) = %%*ﬁl = -0 e;r(x) = -27(%)
i
. .(—
L?&ﬁ FE(R)
oxr"] - . 1 '
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Thus g changes most rapidly at x in the direction of xr{X). Hence to

get the next approximation to the solution after ?pmls one travels on

the line through X in the direction of T =B - Ax until the
p-1 p-1 p-1

distance, in terms of the norm, ”””A» to U is minimized. Hence, one

seeks the value of A for which g(§p~1 + A ;p-l) is minimized. Now

g(?p_1 + A ?p-l) will be put in a form which will make it easy to tell

which value of A minimizes it.

g(xp_l + A rp_l) = (u “%,.1 A rp‘l)*A(U-x ;= A rp¢l)
- - R =
(u-% l)*A(u xp l) krp_lA(u xp-l)
AT -% AT . +A% T AT
1 i =1 -1
— - _ 5
~ B 2 B 5 (r _IA(U - X _l))
X +AT U - P
$(3y g $15p) = 55,17 - [F, ]~
p-1"4
I I P AT ) (R AG-R )7
A L R R
A AN =l
p-1'4 p-1'4
- 42 - - 2
I e («* L AfT 2% . ))
- - 2 p-1"A *Tn.l Tl
a(X +AT ) = - X - .
Y TN,
pAlA
— S 2
_ 5 rpmlA(u =% )
+”rp‘l” - - o
A .l
p-1

Note that the only variable is A and the term inavolving it is non-negative.




12

Hence, g(§p_1-+k Ep-l) will be minimized if X 1is chosen to make the

term in which it appears zerc. This will be the case if A 1is chosen

to be
-x = _ -— % = _ A_
- rp_lA(u X l) _ rp_l(Au X 1)
- 2 - -
7,y I3 T AT
But T 1T b - AX 1< Au - Ax E Thus
;*alE -1
n e olpl
rp—lArp—l

Thus the next approximation to the sclution is given by

Hence the tth iterate in the method of steepest descent is given by

T T
- — t-1"t-1 -
.4 =
(1.4) Xy =% 3t S fopr t2 1,
t-1 "t-1
where rt-l = b - Axt—l°

Theorem 1.7: The method of steepest descent (1,4) is a projective jtera-

tive scheme.

Froof: For each t > 0,

. e
T AL R ACR U
25 U S S Ty t
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— e
- I - rtA - s rtb
t+1 tooeaz |t Tt T
TihTy £
T
Letting C, = ;t - gives
rtArt
Xeg] = (1 - CtA)xt + Ctb .

lLetting G = A and Y = Et in Theorem 1.4 gives, using the result of

that theorem, that I - CtA is a projection, for each t > C. Hence,

the method of steepest descent is a projective iterative scheme.

IV. Conjugate Direction Iterative Schcmes

Another group of iterative schemes which are projective iterative
schemes is the class of conjugate direction schemes. These have the property
that they terminate within n iterations with the exact solution of the
system AX = b.

Basically these methods fall into the following general scheme.
Matrices C and B are selected so that the matrix R = CAB is a posi-
tive definite matrix. Then a set of linearly independent vectors,

?l,a,,, ;n’ is chosen, either in advance or as the iterations are com-

puted, so that the vectors, ;i’ are R-orthogonal, 1.e. Viﬂvj =0

if i£3, 1 € i, j< n. An initial guess to the solution, say Xq
is chosen and succeeding iterates are chosen as follows. Assuming that
§k has been found, k < n, ;k+1 is found by proceeding along the line
through Ek in the direction of Vk+1 until the point is reached which
minimizes the distance to the true solution in the sense of the norm

generated by R. This peint is then taken as the next iterate. Since the
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Vi's are R-orthogonal, the new iterate also has the property that it

is the closest point in the R-norm sense to the actual solution on the

lines in the directions of the previously used Vi's passing through

that point. Because the Vi's span the space, the nth iterate, ;n’
gives the solution. In terms of an algebraic equation the (t+1)St

iterate is given by

Cr,Bv
_ _ +
(1.5) Xppy =% F T o¢tgn-1,
Rv

Vel Vetl

where T, = b - Ax, .
It is shown by Faddeev and Faddeeva [1] and for the case when

B = I by Hestenes and Stiefel [3] that x is indeed the solution of

Theorem 1.8: The iterative scheme (1.5) is a projective iterative scheme.

Proof: For 0< t<n-1, (1.5) can be written

- — - -
= Lz, BV 41Vp41C(0 - AX,)
t+l ot 7 RV )
t+1 Ve+l
— — -t —_
- Bvi4 t+1CA _ L BVieVen©P
x, . =|1 - =22y o4 Lt
t+1 7* t 7 RT
Vi1tV Vel Vel

Thus the above is a projective iterative scheme if

= =%
BVt+1"t+1CA
———

t+l +1

T -
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is a projection for each t, 0< t< n-1. Now by Theorem 1.2 this will

be true if
- - - =4 — i
BV Ven© A BvinVen®  BViaVes©
- - — . =% !
Ve ®Ven Ve+1RVe4) Vie1®Via

Recalling the fact that R = CAB, one has

- e —%
BV, 41 Va1 CABY 41 Ve C _ BV, 1) Va1 R0 Vey C
- - —df — i - --‘F —_
V1BV Verl®Ven Vit Ve Ve Vel

o
Bv Vil t+1C

Vi tVea
Thus (1.5) is a projective iterative scheme.

What Schemes are Projective Schemes?

The question now arises as to just exactly what iterative schemes
can be thought of in the context of projective iterative methods. The

following series of theorems provides the answer.

Lemma 1.1. Let m be a positive integer greater than 1. For each w,

1{w<m-1, define R, by

[ I 4 0 | 0 ]
w=11 H
] {
_____ | A
1 ]
PN
R = o 0 .
w f 0 11
[ ]
————— +--—----'------—--
\ f
0
L 0 : : Im-w-l J
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(The convention is made that when IO appears in the above representation,
the column and row in which that symbol appears are omitted from the

array.) Then

ool 0
Nl
R R _+e.R| = Nl
0 Nl
L 1

Proof: First, the following result is establiished using mathe-

matical induction. For k such that 2 < k < m-1,

[» 1 o o B
... '.‘ E E E O
o A 1! 0 !
1 L]
1 1
SR
___________ T
' ]
; i
— i 1
RyR, _++-R = 0 {110
___________ .'r_.-....-.l.-_...-__--
L
1 |
Lo HCEE S
Let k = 2.
— | - p— . 1 — ; _‘
0 0 1 o 10!
] i |
ox 1! o0 0 ol 0o ox 1! 0
] 1 ]
c 0 1! 0 0 1! 00 1!
I e ‘:‘ """"""""" ]L """ o i it '! """
] ] ]
] \ ]
i S °© i lns S Y
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Hence the statement holds for k = 2, Now assume the statement is true

for k € m-2 and censider the product Rk+1Rk"'R1‘ Using the induction

hypothesis,
— Tr 1,10 0! 7]
I, i 0 E 0 L. E A
« |
B e el | RN
_ R N _ Ayl O,
RenfiereeBy = | O S N il re-
1 0 1 1 0!
s o {1
i | r O 1
IR P20 [ [e— e O
1 ]
- 4] : 0 ! Im-k—2 N
- -
1 [}
’\.1.0;.9;
'-'.l::l 0
Mlirg oot
A1l o0
] 1
___________ L.
1 1
| 1
R R, ...R, = 0 ' 1 0
k+1 k 1 :01:
] ]
___________ I SR
: |
] ' 0 IIm-—k-Q _l

Hence if the statement holds for k < m - 2 it holds for k+1.
This completes the induction and the statement holds. Now taking

k =m-1,

Rm-lRm-2"' 1 0 x 1

Hence the lemma is established.

Lemma 1.2: For each i, 1<i<k, let K.l be an nxn matrix which can




be partitioned in the form

— -
© 10 ... O
----} --------------
= 1
K, 0 B o ,
]
i B
Do .
i o .
0 ! B,

where Bj is a tj xtj matrix given either by

J tj
or by
g "
Al 0
B, = A
J
0] A

The matrix Bi has the second of the above possible representations.

Let Ei be the matrix Ki with Bi changed to I Then Ki can

t,’
i

—

be written as a product of projections times Ki'

i-1 k
Proof: Let p = z: tj and q = Z: tj.

j=1 j=i+l
Case I. B, =[X]. Then t = 1.

Let

0101 A10
I B N T
P, = Pl L Lt D Sk
: o101 110
i [] 1
I
L o101 0, Iy-

18
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Let

Therefore is a projection.

Note that P%P?
i1i

0

0
eieint i A e

1

e

0

I
-
1 0

0

0

0

is a projection. Let

2
i

Therefore P,

Note that P?P?
i1

q---]
In-l
is a projection.

e —

0.
0

[_

Therefore

P>
i

= p3,
1

o v

Note that P‘z’P
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is a projection.
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Now suppose A 1is an nxn matrix for n 2> 2. There exists a non-
singular matrix D so that D1AD is the Jordan normal form of A

where

k
and J. 1is a t.xt. matrix, 0 < i <k, ;1 t. = ng
1 1 1 - - L. 1
i=0
-
O. 10 O
Jg = [0] or J, = o1 |3
Lo 0
_
: k) Loy
J. = [A or J, = Tt
1 [ 1 (S N |
A

where A 1is an eigenvalue of A.
Case I. Suppose J, = [0]. Then k > 0., Note that in this case

DmlAD is of the form of the matrix K, in Lemma 1.2. Hence applying

1
Lemma 1.2, therge exist projections Pi,oao,Pé 20 that

1

0 7

p*lap = m Pi "1 .
i.=1 "1 J

1 0 2u

- th

But now




[F¥]
b

1% a matrix of the form K, in Lewmma 1.2, whence applying the lemma

Z
. . . . 2 2 .
4Jaln. tnere exist projections Pl,,"nng so that
2
0 g} o
| 3 7
) ; b :
T 9] ! 2 . T
; 1J S Y1 o ;
; 2 1,51 12 I,
i o . 2
) Tk 0 I3
ka
Hence
AY ; O -]
_3 bj- pf b2 2 t_L 0
B CAD = m ko L 1P 1
1l:l 1, \2 571 2 T,
0 g
- JK

Uontinuing to apply Lemma 1.2 in this manner yields

0 i
| ko b 0
DYAD = 0 1 P ,
3=1 i.=1 T3 t,
o
ot‘ J
e |




1
[
3

WhiDg NOW P; are the appropriate projections for each j :zn
J
swoho inat 1< ij < bj and 1 < j < k. Now

0
I, O 0 i 0
1 = rr_m\--w;-_‘-xuz;‘—;:.;,
: )
0o .. 0 i1
_ Yy

si:ich 13 & projection. Denote it by P. Then

. K J oo
DAD = | n n el |lp
3=1\i =1 '3
J
A TR
//k b. A K D
3 -1 J J -1 -1
A =D I n P: FD = Ii I DP; D DPD
. . i, A i,
j=1 1j=l 3 J=1 1j=1 3

Hut gich of the terms of the product on the right is a proje.ticn

Liril® glven any projection M and non-singular matrix N, MMy

G150 & projection. Thus A can be expressad as a product of oorljed-

[aa

PECLEE-I

... Suppose

o
i
£

wrere  J is a tO xto matrix (tO > 2). First suppose k > 0.

i
sk
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- . 1

since Pipi = pi a3 Pi is & projection. Tous 5, 1s a prcjecticen.

Consider

I, 10
b b 0" !
I F, = 1 L TR
i=1i : i=1 Y
o ! P,
1
— " r‘ =
T i 0 I L0 0
b tord | ol :
I FD = [ .JL s = SRR | L e S
{=] - R :
* o [ n P 0o 0 0
Iof=l ST T P
- SN
] [
0 ¢ Q0 ; N
- o °J

Now consider the matrix

Define the matrices Rw; ) <w <t -1, by

5 N
] _ -

Then these are of the same form as Zne matrices defined in _emma 1.1
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with A = 0., Thus the conclusion of this lemma holds and

Note that Rwa = RW for 1 < w¢x to - 1. Thus each Rw is & projec-

tion. Now let R be defined by

I, 1 O
Mg |
R e el
‘
L o 0
Then R 1is a projection and
I 0 ¢ 1 0 1
tol E .! nc QGO . 0
RR, _yoeeBy = | = ‘?'““'”l 0o 1|° I P
O ! 0 0
o i 0o UL 1

Thus J., can be written as a product of projections. Let & for

0
1<wg ty-1 be defined by

R : 0 |
L
G = == G Lo
w !
0 I
) ' nqto_j
Then each Gw is a projection since GWGw =G Define G by
R !0 1
G = |wocmnduonncnnans } .
i
0 i I
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. t
0l ot 9 i
SPUL T T
0 1! O:
© o 1
. rmamo - - g
= o 0! 0
—————————— lﬂ:-n-:u._—l;k-g - e wD i W
i L
o
L 0 0 .
o J.
E 0 |
t -1\ 0 :
b A 0 !
\ fod \ J i‘ ‘l
I Fi ‘ (u)\ I1 ij = 1 i= D TAD .
i=1 7/ w=1l '
¢ T,

Therefore D—IAD can be written as a product of projections. Now

/ b /’to¢l ﬁ' "l
A = D( n F, G| 1 Gw} D
Vil NS Aw=l
orTr
t -1
_ b -1 =1y 0 |
A= 0 DER{DGD ") 1 DG D
- 1 ! W
i=1 w=] /
-1 i -1 -1 , . s
But DFiD s 1 £1<b, DG 7, DGWD ;L < w < t0a13 are projections

since Fig 1<1i<b, G, and Sy 1wy~ 1, areprojections.
Therefore A <can be written as a product of projections.
Now suppose p”laD = Jy- In the proof of the »riceding part it was

shown that JO can be written as a product of projections. Denote them

by Glgaoszr where
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Therefore

But DGiD_l, 1<1<r, areprojections since each Gi is a projec-

tion., Thus A can be written as a product of projections. This com=

pletes the proof.

Corollary 1.9.1. An iterative scheme,

X4 = (1 - CtA)xt tChb, t20,

can be written in the form of a projective iterative scheme if for each

t20, I -CA=1 or I-CA is singular.

Proof: Let t > O be given and consider the corresponding matrix

) . \ t
I- CtA. If this is singular, then by Theorem 1.9 projections Pé,ma,Pr

t
exist such that

Lot
I - CtA = I Pi
i=0
and thus Ct can be represented as
T
t -
c, =(1- 1 pr)at,
t . 1
i=0
Now let
=t t -t -1 =
= 4 ( -
Yigp =Py £ I -P)ATD




4]

. _,t —
< 3 . - - N
for O <1 S‘It: wnere v, X,
1t is pow shown that, for ! < i < rt-+l9
f't - -‘C 'E:r't f - t "1-'.'“’
7§ = P{ Pyt Pi_ se-PglA .

This is established by induction. The case for 3 =1 is obvious from
the definition. It i1s now assumed that the conclusion nolds for some

positive integsr j < rt-+1ﬂ Then for 1 +1 one has

Using the induction hypothesis gives

=t t, .t t -t p t ty, 1l : ty,~1 =
o = P{ - - # {1 -P. \
Yin Pj PJ~1 Po Vo (1 - P PO)A b) + PJ)A

Thus
-t t t =t t, ) = T L=l . ,=~1= t,-1—
“ = . . - P - T b o= .
Yiep = Pyre-Pu¥gt PAAT B PP A LAk

or

= t t =i

T . -
y o ! I_ PR ]

Sig 4 1 - pJ‘FM,JpO,A b

Hence, the induction 1s complete, and the c.zim evtakb .:shed. Taking

j = T, +1 gives

—t t t

v = PC L PETC o+ (i - PE LaaPS VAT

‘r +1 T O.}O
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Sk

- t _ T
I - CtA - prt‘..-po and yo - Xt .
Therefore
?t = (I -CA)% +(I-1I+C AATL B
rt+1 t t t
or
= (I -CAX +CB = X, .
rt+1 t t t t+1
If I~ CtA =1, CtA =0 so Ct =0 and Xepp = Xgo
Let 1, = 0 and vt =% = X
t Yrt+l t - %41t
Consider the scheme
-t _ ot-=t t, ., -1 = .
Yigp = Py ¥t (1 - P.JA b, 0Li<r, t20,
-t -t-1
where y. =Y .
] rt_1+l

Then this is a projective iterative scheme which agrees with the original

scheme for each i =r t > 0, that is,

.t!

-.—t _ ;

Yr +1 7 %41

t
Thus the original scheme can be written as a projective iterative
scheme,
Before one jumps to the conclusion that all iterative schemes can

be thought of as projective iterative schemes, it should be noted that

there are a great many which cannot, Indeed consider the schemes of

the form
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iv

_—_— i - T
X = (I CtA)xt +Cb, t20,

t+1

wnerg i - CtA is non-singular and I - CtA £ I. If this scheme were

gguivalert to a prejective iterative scheme, then each I - CtA would
be = proiection or else be expressible as a (finite) product of pro-
jections, Either of these cases requires that I - C.A be the identity

t

or singuler. Since these possibilities have been ruled out;, the abowve

schewe 15 not eguivalent to a projective scheme,
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CHAPTER II
EQUIVALENCE AND CONVERGENCE COF SCHEME

The question now arises as to just exactly what projective itera-
tive schemes actually give rise to solutions of the original system.
Here questions of equivalence of the iterative scheme tc the original

system and convergence will be considered.

Equivalence to Original System

Sufficient conditions must be placed on the Pt =1 - CtA’ t>0,
in iteration (1.1) so that a fixed point of (1.1) will be a solution of
the original system, Ax = b. The following theorem provides one such

set of conditions.

Theorem 2,1: If, given any integer k, there exists a positive integer

Ny such that one is not an eigenvalue of the matrix
pe e
= A
520 K

then a fixed point of (1.1) is the solution of AX = b,
Proof: Since one is not an eigenvalue of B, then if x is a

vector such that

then x = 0. From (1.1)




X, ., =P X, +C ..b.
k+nk.1 k+nk k.nk N k
Working backwards one gets
ne=l o oo, -
- "k - %1 K | T+ G
T T b Y S LT TR S L s
k | 3=0 J 520 i=3+1 k

Suppose y is a fixed point of (1 1), i.e.

§=Pty+ct5', t> 0.

45

Then substituting into the above expression and recalling the definition

of B gives

nknl r n -
y = By + Y I P Gt G B
=0 i=3+1 k

Now the seolution, E, of Ax=b 1is also a fixed point of {1.1) and

hence the above equation. Thus

n-1r N,
- | _ -
u = Bu C T Py CuaP T G B
3=0 i=7j+1 k

Hence subtracting the last two equations gives

= Bl(u-y) +0,

=
!
~< |

Therefore u -y =0 or wu=y since one is not &n eigenvalue of

Thus a fixed point of (1.1) is the solution of AX = b.

B.
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Convergence
Note that the above discussion does not deal with the question of
when an iterative scheme will converge, but only states that if an itera-
tive scheme satisfies certain conditions, then the fixed point is the
solution to the original system. Now the question of when a projective

jterative scheme will converge will be taken up.

Theorem 2.2: Let P t > 0, be the matrices associated with the

ts
iteration (1.1). Suppose there exists an M > | such that Hptﬂ < M

for all t > 0. Suppose further that there exist integers n and kO

such that

|. n:‘l -
] T P _.ll< ax<l
=0 ktj

for all k 2 kOD Then the iterative scneme (1.1) will converge to a

solution of the system AXx = b.

b. From (1.1) one has

Proofs Let u be the solutiosn of Ax

o

v ':DI O
Xeap = PiXe T oy

where P, =1 ~C,A, t> 0. Since u is the sclution of Ax = b,

u is a fixed point of (1.1) and hence

for all t > 0. Let s =u - x
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Thus

t+] tt
Working backwards one nas
- t —
5 = onr S, -
t+] j=0 3 0
Thus
s : e
sl <P sl
t+1 3=0 3j 0
It will now be shown that
: fl
| m P
j=o0

approaches zero as t tends to infinity. Taking t > ko, let w be

the largest integer so that k. + wn < t. Then one can write

0
: .
n . 0 N -
. r oy [ Tkgttarsdm-i ] [ kg 1
n P, = n el n 1l Pl mop_ Y.
=0 J j=ktwn Il m=0 i=kytmn Hilg=o 2]
Now
t 5 | -l kotloti)o-1 - k-1
Noe. < ’l P h ‘ I I ler “ n P “
j=0 J j=k +wn 7 4 p=o _ i=k tmn pl j=o0 1
But
t t tok-wntl
H L P “ < 1 Jefem © <M
j=k0+wn J J=Kytwn
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since M > 1 and k0-+wn <t <ky+ w(n+l). Also

0" 0 K
N il P,“gn J[p.llgMOﬂ
j=0 1 7 5=0 -
Thus
+ Ak wel k0+(n+1)m-1
”n Pkﬂgm O“n I Pl -
j=0 J m=0 i=k0+mn
Hence
t k) w-1 ko+(n+l)m~l
”n P, ”gM I I Pof
j=0 7 m=0 i=k +mn
Now, using the hypothesis,
+ -
k0+(n.l)m 1
“ II Pi <a<l
1=ko+mn
for all m > 0. Thus
t ntk
”npgﬂgm O 4.
3=0 °

As t tends to infinity, w tends to infinity, 2-d nence a

approaches zero. Thus

t ntk .
0< lim | 0 P.ll<1im M © V=0,

tseo 320 7 T toe
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Therefore
t
lim Jln Pl =0.
Hence
lim s, .| = 1im |l 11 P IIsAill = 0 .
fae BTN o 0
Thus
'Siﬁn st*l =0 ,
and hence
U= lim x, -
tHo t

Thus the iteration {1.1) converges to the solution of the equation

Ax = b. This completes the proof,

Note that Theorem 2.2 gives only a sufficient condition for con=-

vergence., The hypothesis can be modified to give other conditions under

which the iterative scheme (1.1) will converge. Fou. example, the condi-

oy

tion that there exist integers n and kO £ tno

n=1
ron e llhga<t, kak

j=0 ©

can be relaxed somewhat to the condition that there exist integers n

and ko so that
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n-l
hn p
j=0

k0+mn+j” Ca<l
for all integers m > 0. In fact this latter condition, which follows
from the first, was actually all that wss usea in the proof. Other con-
ditions can be given, but these only make matters seem more complicated
and hence are omitted here,

The following series of theorems will be used to find conditions of
the Pt which will indicate whether a particular iteration will con-
verge,

Before stating the next theorem, it is necessary to define what is

meant by an elliptic norm.

Definition 2.1. Let G be a positive definite Hermitian matrix. Then

the norm defined by

is a norm.)

is an elliptic norm. {It is easily verified ihat TGIG

Theorem 2.3: If P 1is a non-zero projection on Eﬂ_q then there
exists an elliptic norm such that ||F|l =1, 1.e., P is an orthogonal

projection relative to some inner product.

2¢ N ke oz null space of

var

Proof: Let M be the range of P

F. Let (.,.) be the normal inner product associsies with En’ i.e.,

if x, y are in E_s
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‘ , -t = ®
where x, 13 the 1tn component of x and 7y 1% the complex con-
jugate of the 310 component of y. Let ﬁlﬁfzgnuos?r be a basis for

--.v_ be & basis for the null space

the range of P, and let AETEERA M

of P if N 1is not the set containing only tihe zero vector. From

properties of projections the vector space Em can be written as the

direct sum of M and N. Trnus the vectors vlgguo,vn form a basis of

E - Now let ®x be an element of E. end let ¢ ,...,c be the coef-
FA

I [

ficiepts 1n its expansion in terms of the 013 i-e-,

n
%= z V. .
1 1

i=1

Similarly let y be an element of E and let ¢ ,...,d  be the coef-

ficients in its expansion in terms of the $i$ Define

*
where di denotes the complex conjugate of d.. It can be easily snown
x

that this is an inner product.

It will now be shown that the norm arising from this inner producst,

R, = (3%,

is an elliptic norm. Let Eig 1 <1<, ke tre izl basis for Eﬁ

consisting of the elementary unit vectors; i1-e.; &..i Ei has all zero

cth :
elements except the 1 wnicn 15 one. Now let

be the representation of ©. in terms of ths v 's. 1.e.,
L
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|
i
i~
<
.y
kA
(=
e
-

Let x be ap element 1o E_  with components ¥, 17 rerms of the Ei”sn
Then
n i in
— i . (M -l -
X = ) X, e = }J ‘Z X, A o P
- i 15100
i=] i=i j=1

Let A be the matrix (ajl)’ i.e.. the matrix whose columns are the

representations of the Ei“s 1 terms of the v.'s. Then in terms of

the vj"s a vector X in E_ is represeanted by Ax. iThus {.,.)

n P

gives rise to the elliptic norm defined by

o, p—— -, g 11
lixlip = T SRR 2,

It will now be shown “hit P 13 &n ¢Itaogoszi projecticon relative

R
s

to the inner product (,ﬁcjp, et X bz av slement of ch Now PX i3
;

in the range of P sc thst

where bi =0 for r+) <4i<n. Bit x - Px 18 i tne null space of

P so that

o]
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where Ci =0 for 1<i<r, Thus
n
(x - PX, PX)_ = Z c.b* = 0
! 171
i=1

since for all i, 1 < i< n, either Sy = 0 or bi = 0. Hence P 1is
an orthogonal projection with respect to this inner product.

It will now be shown that IIPHP =1, It is already known that
”P”P > 1, 30 it need only be shown that ”PHp < 1. Let x be an element

of Enu
IX{2 = (% + PX - PX, x+Px~- P%)
P ’ ’ g F
-2 - _ - — - - - - -
”X”P = (PXx, x - Px + Px)P + (x - Px, x - px-ppx)P

-2 _ o= = - - = = = .= I
”x”P = (PX, Px)p + (Px, X Px)P + {x - Px, Px)P + (x -Px, x Px)P
-2 - - -

= . -PX, x-
”x”P = (Px, PX), + (x-PX, x-Pxl,

The last equality follows from the fact that P 1is orthogonal with

respect to the inner product being used. Thus

-2 =2 . (= — 2 TR
iy = P2 = % - pX[2 > liPdiy
Hence

Py < il

for all x in E_. Thus llpllpg 1. Therefore “P||p= 1.
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Lemma 2.1l: Let P be an orthogonal projection with respect to a given
inner product and suppose X is a vector in E_ such that 1= = |[PX|
where ||°|| is the norm generated by the given inner product. Then X

X.

is in the range of P and Px

Proof:

®? = (X - PX + PX,% - PX+P%)

=12 = (PX,PR) + (PX,% -PX) + (% - P%,PR) + (X -PX,X - PX)
IF2 = (P%,P%) + (X - PR, X -PX) = |IPXI2 + ||% - PX||°

The last equality follows from the fact that P 1is an orthogonal projec-
tion with respect to the above inner product. From the hypothesis

X = IPxl, so that |x - Px|] = 0. Thus

and X 1is in the range of P,

Theorem 2.4: Suppose Plgpz,n,,an are orthogonal projections on En
with respect to a given inner product on E . Let R(Pi) denote the

range of Pig 1 <31 < n. Suppose further that

n
M R(p,) = {6},
i=1

Then

N
I o p <1
i=1
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where ””” is the norm generated by the given inner product.

Proof: Let be a non-zero vector in Enu Consider Pk.oaply,

Y
1<k<n. For k»?2

1P Py _qo PVl S PN NIP_jeeeP oYL

Also

ey ¥il < e il IVl
But each P, 1is an orthogonal projection so ”Pi” =1, 1<1i¢<n.
Thus

e .5l < IS
and for 2 < k £ n,

Hpkpkcl,oop1§n < Hpk_l.,,Pl§” .

Now suppose equality holds in all of the above. Applying Lemma 2.1 yields,

for 2 <k € ng

where Pk_louaP1§ plays the role of the x in tie lemma, and

Y

s

[
~
H

where y plays the role of X in the lemma. Putting all these equal-

ities together yields
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for all i, 1 <i<n. Thus y is in R(Pi) for all i and hence
n
7 is in () R(p.) .
2 1
i=1
But this holds only if y = 0 which is impossible since y was chosen

non-zerc. Thus the assumption is false and it must be the case that

e, ¥l < 1¥l

or

N R P
for some k, 2< k< n. This yields

n
I 1 ek < 1)

for all y in E_. In particular, for y such that |[[y]] = 1,

n
n —
I nopyll <1,
i=1
- n -
Now the function gy} =] I PiY” is a continuous function on E  and
i=1
the set {; s |IX]] = f} is a compact set in E_. Thus there exists an
;0 with norm one such that
-~
n _ f[n _ _ ;
I 1Py Ryl = sue {il 1R e I = 1p
i=1 foi=l J

n
Recalling the definition of || I Piﬂg one then has
i=l
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n n -

Theorem 2.5: Suppose the Pt's in a projective iterative scheme (1.1)
are such that there exists a positive integer m such that Pt+m = Pt for
all t > 0. Suppose also that for 0< t<{m-1, Pt is an orthogonal pro-

jection with respect to some fixed inner product and that
m-1 _
i=0

where R(Pi) denotes the range of Pi. Then the iterative scheme (1.1)
will converge to the solution of AX = D.
Proof: Since for each ¢, Pt is an orthogonal projection with

respect to a given inner product, then, using the norm generated by that

inner product; one has

Pl =1, t>0.

m-1
Now since P, =P  for all t> 0 and !j‘ R(Pi) = {0 },

1=

m-1

-
Nrp,) = {34,
i=0
where k 1is an integer greater than or equal to zero. Alsoc the Pi

are orthogonal projections with respect to a given iiiier product. Thus

Theorem 2.4 applies and one has

for k > 0. Define a as
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m-1
a = Max <|| n Pk+i” 0<k<m-1
i=0
Note that a < 1. Now since pt+m = Pt one has
m-1
Pt+i” <g <1

[
i=0
for all t > 0. Thus Theorem 2.2 applies and the iterative scheme (1.1)

CONvVerges.
The following two corollaries show how the last theorem can be

used to test for convergence of a projective iterative scheme.

Corollary 2.95.13 If A 1is a positive definite Hermitian matrix, then

the Pt associated with the Gauss-Seidel iterative scheme for solving
the system AX = b are A-orthogonal and the Gauss-Seidel iterative scheme
converges.

Proof: Recall from Example I, Chapter I, that the Pt associated

with the Gauss-Seidel scheme are given by Pt =1 - CtA where for

0<t<n-=-=1,

[ | ] D
Ot : 0 i o]
_____ e ———
H a
1 l :
c,=|© ' 3 L0
E t+lt+]l
_____ U
' '
o ;0 Ot
and for t 2> n,
C, =C

t t mod n’
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Now let t be such that 1<t < n.
It can be easily seen (recalling the expression for Ct-lA in Example I,

Chapter I) that for a vector X

n d, .
(2.1) P, %= -zﬂx.

Thus the range of P R(P consists of vectors of the form on

t-17 t-l)’

the right above,

It will now be shown that the above Py 1's» 1<t<n, are

A-orthogonal. This will be true if

- .
x} AP, X =0.

(x - t-1

Pt=1

It is easily seen using (2.1) that




Again using (2.1) it is easily seen that

— —

n N & .a
z i x - Z: At ]
1k'k a4 J
k=1 j=1
kAt jFt
:
*
n n CPPL NP
APy X = Z 4k kT Z 8, 3
k=1 j=1
kAt j#t
n no.o,
E: a . x - z: nttj
nk“k att J
k=1 j=1
| k#t i#t i
Note that the tth element of APt_l§ turns out to be zero. But all
of the elements of X - pt—l; are zero except the t''. Thus

- -y —
(% - Pt—lx) APt_lx = Q0.

Hence is A-orthogonal for 1< t<n., For t>n, P =P

Py-1 t = F;

for some j<n-1, so P, 1is A-orthogonal for all t > 0.

n = th
It will now be shown that (N R(P, ) = {o}n Note that the i
i=1

component of a vector in R(Pi-l) is of the form
n
a, .
_Z 41 . .
TR
j=1
JF

n
Now suppose that x is in {:& R(Pi-l)' Then x 1is in R(Pi—l) for

1<i<n, and hence

60
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Then for 1< i

I~
o]
-

or

n
E: a,.x, = 0 ,
1] ]

n
a.,.x, + E: a..x, =
ii’i I
j=1 j=1

S

But these are just the equations that make up the system

ol

Ax =

Therefore, since A 1is non-singular, x = 0. Thus one has that the

Pt are orthogonal projections with respect to the same inner product,

the one generated by A, and that
n-1 _
N r(p,) ={3}.
i=0

Also P, =P, for all t> 0. Thus by Theorem 2.5 the iterative

scheme (1,1), which in this case turns out to be the Gauss-Seidel itera-

tive scheme, converges to the solution of AX = b.
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Corollary 2,5.2: If A 1is a Hermitian positive definite matrix, then the

block Gauss-Seidel iterative scheme associated with the system AX = b
converges,

Proof: For this scheme the matrix A 1is partitioned in the form

where A, 1is square and non-singular for 1 < i < N. Recall from Example

II, Chapter I, that the projections P_t for this method are given by

P,=1-CA,

where for 0 t<N-1,

™ 1 1 A
0 ) 0 i 0
Py | :
..... L SR
b=l i
Cy = O 1AM O !
_____ LR S
1 1
o | 0 0
L ’ bRy

i
(pt = Z:v., where Vj is the number of rows in Ajj) and for t > N,

Ct = Ct mod N °

It will now be shown that P is A-orthogonal for all t,

t-1

1 <t<N. Let x be a vector in En° This vector is partitioned in

the form
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b |
1l
xl LN

where each ii has the same number of components as Aii has rows or

columns, It can easily be seen recalling the expression for Ct-lA in

Example 11, Chapter I, that

Xt -1
N
=_ | -1, -
(2.2) PoyX= |-) Agehy 5%
j=1
j#t
X4l
- XN -

In order to show that Pt—l is A-orthogonal, it must be shown that

It is easily seen using (2.2) that
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i 0
0
N
- - - -1 =
xX - Pt—lx = Xt + z AttAtJ 3
j=1
i#t
0
X : J

Again using (2.2) it is easily seen that

N N
Z A z lt tt t] 3
j:]_ =1
j#t iét
N N
- - i
AP, % = Z Ay T Z Artheehes™y
j=1 j=1
i#t It
N N
z AR, - z Ala
Nj%3 Nttt 373
j=1 j=1
3#t it .
Note that the tth block of APt_1§ turns out to be zero. But all
the blocks of X - Pt_1§ are zero except the £, Thus
(x-tlx)AP lx=0.
Hence Pi1 is A-orthogonal for 1 <t < N. Nowfor t 2N P, = Pj

for some j, 0< j<N-1, so Pt is A-orthogonal for all t > O.
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N
It will now be shown that () R(Pi_l) = {O‘}. Here R(Pi-l)
i=1

denotes the range of P,_,+ From (2.2) one has that the i th block of

the N-blocked partition of a vector x in the range of Pi—l is of the

form
N
Z ATla, %,
117137
j=1
3

where the ;% are the blocks of the N-blocked partition of X. Now

N
suppose x is in (M R(P.l_l). Then from the above

i=1
N
X o= - ) ALAR, 1<ig<N
i i171373 - =
j=1
JAL
Then for 1 < i <N,
N
— _l -— -
X, + Z AT:A. X, =0,
i 117137
j=1
JF

or

ol

N N
AR, + X A, X, = E A, X, =
ii’i ; iy j 11 ]
ji=1 j=1
AL

But these are just the blocks of equations that make up the system

Ax = D .
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Therefore, since A 1is non-singular, x = O.

Thus one sees that the Pt are orthogonal projections with respect

to the same inner product, the one generated by A, and that
N-1 _
N rep,) ={5}.
i=0

Also Pigw = Py for all t > 0. Thus by Theorem 2.5 the iterative

scheme (1.1), which in this case is the block Gauss-Seidel iterative

scheme, converges to the solution of AX = b,
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CHAPTER III
NORM REDUCING METHODS

In the general setting it is difficult to get anything more than
vague or general results concerning the behavior of projective iterative
schemes. However, by restricting discussion to a particular class of pro-
jective iterative schemes, considerable knowledge may be gained about the
behavior of these special methods. This concluding chapter deals with
one such class of projective iterative schemes, those which are norm
reducing schemes. The behavior of such schemes can be studied in greater

detail than that of projective schemes in general,

Definition 3.1: A norm reducing projective iterative scheme is a projec-

tive iterative method of the form (1.1) for solving the system Ax = b
such that the error vectors at each iteration, denoted by gt+l =u -§t+l

where u is the solution of the system, satisfy the relation

for some fixed norm.

The method of steepest descent and the conjugafe directions itera-
tive schemes, Examples III and IV in Chapter I, give examples of norm

reducing iterative schemes,

General Discussion

The discussion in this chapter deals with elliptic norms, i.e.,
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— —x%.—1/2
9, = 9/
where G is a positive definite Hermitian matrix. In addition to this
restriction the discussion will further be restricted to deal only with

those norm reducing schemes of the form of the general method given in

the following theorem.

Theorem 3.1: Let U be the solution of AXx = b and Yt be an nxkt

(1 < kg <n) matrix with k, linearly independent columns. Consider

the scheme

(3.1) x =X +Yt3 = x +Ct(E-A§

t+1 t t t )

t

where (i) ¥, = (Y:SYt)'lYESEt, where G is a positive definite

Hermitian matrix and Et =u - ;t

and  (1i) C, is a matrix which satisfies

Cylb - AX) = Yyv,
Then the scheme (3.1) is a norm reducing {with respect to the norm

generated by G) projective iterative scheme;

- 12 - 2 -» i ~l %=
Fsellg = Moyl = s,GY¥ (¥ GY) v, G5, 5

and

_ » =1.,*.,. -1
ct = Yt(YtGYt) YiGA

for all t > O.




Note

lets

Proof: Define the function f(y) for vectors y by
€3 = II5, - v,715 = (5, - v,9 (G, - v,9)
Y t tYlG t t LIRS A

£(0) = ”Etﬂé. Now one minimizes f(y). In order to do this one

- _ » 41 & -
y = (YtGYt) Ytht + W,

((\1'.1':'G\{t)_1 exists by Theorem 1.3). The following computations result
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from substituting the above expression for ¥ in f{(y) and simplifying,

using the fact that

# -1, % % %y =1 -1
({yiey,) )" = ((viGr,)") ™" = (Y:;GYt)

- o LI
= G and Yt = Yt’
—
) = T o THyde= TR = =k H -
£(y) 5,Gs, - Y*Y[GS, - S/GY. ¥ + Y YGY.y
T = TGS . SRRy ((vitay 1oLy Ry s mRomes
f(¥} stht stG Yt(‘YtJYt) ) v,G8, th:Gst
_ =k T I Py =k B, =
stGYt(YtGYt) v, Gs, sth:wt oW CRY W
ThoM (oo YLy RoEa pomne ) TR
+sG yt(wtuft) ) YGY LYFGY, ) s
+EGRY, (YY) THy My m +atviey (o) " ys
t tP Tttt Tttt 7 AN A t7 7t

- - Y =_* » ‘-qpl [ . F__ - — h*“._,,‘ mes
fy) 5405, tGYt(YtGYt) Y,G5, :Y:Gst-+w:Etthwt

- % -1l %= -y =
- s;GYt(YtGYt) Y*Gs, - AN

s R N o
e + sfakt(f uYt) Ytht

- . ¥ e — ® =1 Wi =
+ oF # " + W o
s QY (Y[ Y ) b quw W, Ay (Y GY ) V. GS
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(T) = TRT L TRyR~T —* = =m 3 -
£(y) = s,:c;st wWiYiGs, + wWYNGY W, s:GYt(Y:GYt) Y[GS,

- — - = —%, * . —
- stGtht + stGtht + ththt

(3.2) £(y) = %S, - 3 GYt(Y:GY

TS, - 5} ) vr%es, +wtvroy.w

t Tt Tttt

Now Y:GYt is a positive definite matrix, by Theorem 1.3, so

w:yzevtit > 0 with equality only when w = 0. But note that f(y)

depends only on ;t as everything else is fixed, Thus f(y) is mini-

mized by choosing w =0, i.e., for

- _ ) =1 % —
y = (YtGYt) Y,Gs, .

But this is the Vt defined in the hypothesis of the theorem. Therefore,

flv,) < £(y)

for all y including y = 0. But f£(0) = ”Etﬂga From (3.1)

»i
]

+ tht = u - (xt + tht) FUs X TS
Thus,
- 2 = - - (= SN Rege o= _ -
and

Feenlle = £, < £8) = 5,13 -

In fact, from (3.2), since w=0 for vy = Vir
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- 2 _ =y = 12 e =1 e
IS441lls = £(3,) = I8, llg - S{ov, (YGY,) "YGes,

or

2

=2 - _ = = -1 8. .=
“st“G - ”st+l“G = stGYt(YtGYt) Y GS, .

t 7t

Now ct(E - AX) =Y.V, by hypothesis and b = Au. Thus

Y.V, = Ct(Au - Axt) = CtA(u-xt) =C.As, .

Hence,

- -1 -
C,AS, = Yt(Y:GYt) Y:Gst .

But this must hold for all Et so that

_ ® -1l,%
C,A = Yt(YtGYt) Y6 .

Therefore,

- e =1.%.,-1
C, = Yt(ytgyt) thA .

Now from (3,1),

Xepp = % tC (b - A%) = (I - A +Cib.

Thus (3.1) is a projective iterative scheme if I - CFA is a projec-
tion. Note that

.

- . » =1%
I - CtA = I Yt(YtGYt) Ytq .

Thus by Theorem 1.4, I ~- CtA is a projection, and hence {3.1) defines
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a norm reducing projective iterative scheme, This completes the proof,
Note that the above method is feasible only if the Ct“s are
determinable without cemputing Awl, i.e., a matrix Vt can be easily

found to satisfy the relation

There are, however, several ways to make the scheme (3.1) usable, and
the remainder of this chapter explores these methods and the behavior of
the resulting iterative schemes. Basically all the methods used employ

a choice of G which makes it easy to compute Vt in terms of Yt or

else using a G where ™l s known, choosing the V,, and then com-

puting the Yt.

The following corollaries give schemes resulting from various

choices of G and restrictions on Y Later the choice G = A when

£

A is a positive definite Hermitian matrix will be considered.

Corollary 3.1l.1: The iterative scheme

(3.3) X

= - "* + LE -1**_
] (1 Yt(Y AY ) YEA )x Yt(YtA AYt) YtA b

is a norm reducing projective iterative scheme and

2 —% B H, L, e
= v \
Hs H -5 t+1||A Tt AAt(YtA AY, ) TYRATT
where ;t =b - Ait is the residual vector.
Proof: First note that ;t = AEt so that
*, = _ ¥ -1 I'*
rtAYt(YtA AY ) YtA r, = s *A AY, (Y A*ay ) Y Ast .
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Using this fact, the conclusion of this corollary is just that of Theorem

301 With G =

A*a,

Corollary 3.1.2: The iterative scheme

= * Raa® =1 = * i ¥
a = -
(3.4) X 1 (1-a vt(VtAA Vt) vEIX + A Vt(VtAA Vt

t+

_.]_ —
ER ) vib

is a norm reducing projective iterative scheme and

- 12 - 2 _ = P -1 ®.
IS 1% = sy y 1™ = TRV, (ViARMV ) VT, .
Proof: First, since ;t = AEtp note that
- %, % ~le _ owg LIV -1 8 —
rtVt(VtAA vt) ViT, = SJA Vt(VtAA vt) VeAs,

Using this fact, the conclusion of this corollary is just that of Theorem

3.1 with G =

I, and Y, = A"V,., [Note that with this scheme the V

t t t

are chosen and the Y, are determined from them.)

t

Corollary 3.1.3: The iterative scheme

(3.5)

= =% - =, =]
N P A I AT
xt"’l - - =R ot ;;;’*G.;}“

ytdyt Tl

is a norm reducing projective iterative scheme and

Proof:

3.1 with Yt

TheT TE~T
52 - I, I = “Eatee
© YtGYt

The conclusion of this corollary is just that of Theorem

= Yo




Corollary 3.1.4: The iterative scheme

V.V, A%A 7.7 A%
(3.6) N S A AL
3.6 xt+1 = {7 = ::;:;:—‘ xt ::;:;:—

Yift AY¢ Yeht My

is a norm reducing projective iterative scheme and

2 2 ;:A§t§:A*ft
s 5 =I5, T, = ——5—
t A*A t+1 A*A - F - ¥
ytA Ayt
where T, = b - Axt = Asta
Proof: Using the fact that ?t = As,, one has

=k, — =, # —p R = =N K~
rtAytytA Ty } stA AytytA As

B - —%, 8, —
Yeh AYy VA AV,

t

This equation shows that the conclusion of the corollary is just that of

Corollary 3.1.3 with G = A"A.

Corocllary 3.1.5: The iterative scheme

AT A TR

(3 7) % = | I = —tt X + et t
’ t+1 e TV t o ew A—
vtAA v, ¥OAATY,

o [ -

where T, = Agt = b - AX

74
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Proof: The conclusion of this corollary is just that of Corollary

3.1.2 with Vt = Vt’

Behavior of Schemes

Before proceeding further with the behavior of certain norm
reducing projective iterative schemes, it is first necessary to state some

inequalities which will be used in the succeeding theorems.

Theorem 3.2 (Inequality of Wielandt): Let k{A) = [{A[l “A‘IH be the con-

dition number of the matrix A and x and Vv be any pair of orthonormal

vectors, i.e., §*§ = 0. Define ' +to be an angle which satisfies
(a) = 1
kiA) kiA
cos ¥ = 1 )

Then the following relation nholds.

=, ¥ -l
| X*A"Ay ¢ o 2 8

T ATAx*ARAT
A proof of this can be found in Housenclser [&].

Theorem 3.3 (Generaiized Wielandt Inequality): TF ‘he vectors x and y

enclose an angle of not less than @, then far s rew-singular matrix A,
Ax and Ay enclose an angle g, setisfying
¢

cot é? < k{A} zot %%‘

where all the angles are taken in the first quadrant and k(A)} denotes

the condition number of A. The angle g satisfies the relation
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X*y
zos @p =

(X (7%)

Defining the angle ¥ by the relation

Noo 2_
cot —- = k{A)} cot 5
gives the inequality
[E*A*A§l2
XA Ak a*a7

2
< cos” ¥,

A proof of this can be found in Householder [7].

Theorem 3.4 (The Kantorovich Inequality):

et A be 2 non-singular

matrix and k{(A) be the condition number of A. Let X be a vector

and define 06 to satisfy

. ; 1

k(p) - -

cos A = ———EIgj; .
KLAj + LAY

Then
—p—t 2
- v
(%*%) 1 S sint i
X a%aze™(ATA) T X

A proof of this can be found in Housenordsz | -

Now the behavior of various norm reducing prolective iterative
P

schemes will be studied.
Theorem 3.5: Consider the iterative scheme 3.4} associated with the

system AX = b and recall that the Vt are nxxt (1 < k. < n) matrices
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such that the columns are linearly independent. Let k{A) be the condi-

tion number of the matrix A. Let o be the first quadrant angle which

satisfies

e ® -1, %=
v, v v ver i

17l

sin g =

Then (i) the iteration (3.4) reduces the norm of the error vector

§t =y - X s where U is the solution of Ax = b, and, in fact,

54yl < U5l cos ¥,

where cot 4~ = k(A) cot & ;

2 2
and (ii) 1if, further, ;t is centained in the space generated by the
ceclumns of Vt’ then
1
KA e
- - _;_____k!:
154yl < I, AL

k(A) + m

Proof: Let P, =1 - C,A; wnere from {3.4)

1 .
YRR

% # *
= {
C, = A"V (viaa™v ) CvF

t

It will now be shown that Pt is a self-adjnf . projection. It

is already known that Pt is a projection so it nezd only be shown that

it is self-adjoint.

L oAy fu¥aa® wl o #, . %
pt (I - A Vt,VtAA vt) VtA;




N S I LI VLR LT
P! I A (vt) ((VtAA vt) ) Vt(A )
p*¥ =1 - A*v ((V*AA v ) Ol ly#a

t Vi
PE = T - ARV (VE(AR)"AR(V)®) IV

® _ _ A% W B -1, =
Pt i-A Vt(vtAA vt) VtA Pt .

Thus P is self-adjoint.

LZt Wt = APt§t° It will be shown that

15,17 = Traamis,
154 17 = I8 - %, 07
15,4 /1% = 5 - (1 -c )%, -C Bl

Note that b =
I3y lI% = I8 - %, - C tAT - A% )
5y 11% = 15, -cpazi® = itz -0 anE )12
IZel® = Ip31° = SpPpeys, =50 5,
I5,,,1° = 5%p,5, = SXA%(A™)"taap 5,

Note that AS, =T,  and T} = S;A%. Therefore




2 _ —mpam-l, o= ome, -l
< = rt(AA ) AP3, = rt(AA ) W, .

15,4 t

It will now be shown that Wt is orthogonal to the columns of

This will be true if G:vt = 0,

Wty = stpfa*y. = ¥

»*
£Vt tPeh Yy Pt Vg

= = =% _ »* * » -1, % *
wtvt st(I A Vt(VtAA vt) VtA)A vy

THy o THa Ry THaE ®aay Yolymgan
wtvt = stA vy stA Vt(VtAA vt) VIAATV,

=% Y TR -0
tht StA Vt stA VtI 0

Thus Wt is orthogonal to the columns of Vta

It will now be shown that

—% P T #y=1—
rt(AA ) W, wt(AA ) W, .

since P, = P,P,. Note that P, = P, and Wt = AP+sta

I I Y I B I T <. T LA P #y-1=
stPt)A (A") "A AP.S, = (stA 5 FIA {(AAT) "W

ol
1l

——
wl
o X
1

t

But T = $*a¥ we = S*PIA%,
ut r_t stA and wt stPtA Therefore

ol
1l

P
H

-3 gy-1l= =y -1 —x #, -1—
wt)(AA ) W, = rt(AA ) W, wt(AA ) A

or

79
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—p wy=l—  _ —x L R
rt(AA ) w, = wt(AA ) W,

Now an expression will be developed for the ratio

- 2
-2
15,
- .= - _ -1-
Note that I, = Ast so that s, = A r, -
5.2 = 3%, = T H" T = a7
t tt t t t t
It was shown previously that
- 2 _ e, -l=
”st+l” = rt(AA ) W, -
Thus,
- 2 » wy-1- - B o~l. —p &y =1—
”5t+1” _ f&(AA ) w, i rt(AA ) w, wt(AA ) W,
Y T e D T
"st” rt(AA ) T, T, (AA%) T, wt(AA )W,

But i:(AA*)'IGt = E:(AA*)"lﬁt, Note that this implies that bath

quantities are real since the first one is. Hence,

— 2 - #y=1le .2
B I” (T2 )

< 112 s aaty-lo = g -1l=—
”st” rt(AA ) T, wt(AA ) W,

or

= 2 —% wy=la |2
IS _ |73 (AA%) "4 |

— 2 -3 » —1—— - * -1_ °
”st” rt(AA ) rtwt(AA ) wt




Applying the generalized Wielandt inequality, Theorem 3.3, if the angle

between ;t and Wt is at least o) then

5 4,1
++l— < cos ¥ ,
15,

where ¥ is a first quadrant angle such that

Y o_ e!
cot 3 k(A) cot 5 .

Now ;t is orthogonal to the space generated by the columns of ¥

t
and hence makes an angle of % with it. Let ¢, 0 < o9 < —’[2— , be
such that

v, (viv) TWIE |
. IS AR A 17t
sin @ = — .
I, I
Then 12- - @ 1is the angle between Ft and the space of Vt' Thus
since ﬁt makes an angle of %— with the space of Vt and ;t makes
an angle of % - 9o with that space, the angle between ;t and Gt

cannot be less than % - (% - ) = 9. Hence, taking o' = o,

where cot ]2{- = k{A) cot % . This proves (i).

Now suppose T, 1is contained in the space generated by V

t t*
Then the angle between ;t and the space of \It is zero. Hence,
P = % « Therefore,




cot l;_‘- = k(A) cot 3 = k().

Now

cos ¥ = cos212f— sin2¥= sin2\-2[ (c;o’c2.§2}f - 1) .

But cotQ.g = (k(A))2 and

G2 ¥ . 1 . L .
Toes® 3 1t f 1+ )’
Thus,
1
cos ¥V = (k(A))z -1 k(A) [k(A) - k_ﬁ)_:i
k(A2 + 1 k(A) {k(A) + HIKT]
or
k(A) - —A
COSW = _)JE—)_
k(A) + Hlﬂ
Therefore,

k(A) - —
5, Il < 15l ——K<CAL
k(A) + E(KT

This proves (ii).

Corollary 3.5.1: Consider the scheme (3.7) associated with the system

Ax = b where the Vt are chosen so that at the tth stage Vt is
that natural unit vector, Ei’ which maximizes the quantity ]?:Ei].

Then

82
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15, 012 < 5012 [1-—-—1 ]
t+1] t n(k(A))2

Proof: Since -éi is chosen so that l?:Ei[ is maximum,

—*_ =
=l = I, -

Now

1<i<n

nll?t”f, = n[ max [rilzj ,

where ri is the ith component of ;t' But

-t
n
i 2 i2 - 2
n max ]rl 2 |r| =||r|| .
[l<i<n t ] .Z t t
- - i=1
Therefore
— 12 - 12
olF, 2 > IIE
so that
(EA
n
since IF:e_i] = ||?t||m. Also,
e TV L. ¥— |12 # 2 = 12
But ||A%] = [|]All, and ”Eill = 1. Thus,

S¥AA"e. < |Iall® .
1 1
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But st = A Ty so that
- _ ua=le -1y —
I = AT < NATH g
or
(R
- t
izl > —
lA™" ]l
From Corollary 3.1.5 one has
- 2 - | 2
N S o
- 2 — 2—* P *
I3, 517 3an"s,
Thus, using the above results,
- 2
I, 12 15, 15,012
t+1 n t
N ATV T T T
I3, 15,12 fal alla™ 12 (15,17 1Al

Therefore, since k(A) = ”A-l” Al ,

T 1< 2[1-—1—]-
5y 1% < 115 o (k(A))2

Corollary 3.%5.2: Consider the scheme (3.7) associated with the system

AX = b, where Vt is chosen so that IVt] = e, where e 1is a vector

with all its elements one and
n

ver, = Izl = ) =il

where ri is the ith component of ;t‘ Then




5. 12 < _,,2[1__1_]_
[Seanll” < 15 L

(Gastinel [2]).

Proof:

one has

Using an elementary inequality along with the hypothesis,

n n
(W5,)° = I zlrl Yolrgh| 2 ) Ixpl?
i=1

i=1

or, recalling the definition of H?tu ,

A

Now &

Thus,

Also since

But

-1

(W5,)° > Z 312 = lI7, 012

rt so that

- -1y y=

I3,

ey —_
v.r, 2 Tl > —

1A ] = llall

—%, K %= N2 %12 = 2 _ 2 =12
Thaae, = A% 12 < [IARI2 1,017 = 2 1,

n

n
2= Y 1vl2= ) 12=n.

i=1 i=1
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i
U x| e
tTt 1t t
t
if r, #0, and
iio_ o1 _ .
Vtrt = 1rt Irtl
if 1. =0, foreach i, 1<i<n. Thus,
n
—%— i, _ =
Vtrt = Z |rt| ”rtnl .
i=]

Corollary 3.5.3: Consider the scheme (3.7) associated with the system

AX = b, where ;t is chosen equal to Et’ the residual vector. Then

at each stage

Hst+1” S Hst” cos 9 ?
where
k(A) - kEl
cos B = 1

k(A) + k—(xv’-

where k{A) 4is the condition number of the matrix A.

Proof: Note that Theorem 3.5 applies with V, =r,. Thus Ft

is contained in the space of Vt and from Theorem 3.5,

k{A) - Efii
k(A) + ﬂlﬂ'

15,00l < 115,

.

5 and

Let © be such that 0< 8 <




Then
"51._.,.1” _<_ "51:” cos 9 .

Corollary 3.5.4: Consider the scheme (3.7) associated with the system

is chosen equal to Ty the residual vector. Then

AX = b, where v,

IA

(1) 15,0l < IS0 cos® @ ,

(13)  [El < R(MIF,] cos'® = [Tl cot 3 cos'e

and (111) [Fy, I < IE,0 cot 0 ,

L

where © is such that 0<® <% and

Proof: (i) This result will be proved by induction. For t =1,

by Corellary 3.5.3,

1A

=5,

“EO" cos &

Now the result is assumed for t = k. For t = k+l, using Corollary

3.5.3,

[y pll < 15,1 cos @ -

Applying the induction hypothesis yields
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k+l 0

54,11 < M55l cos®® cos 8 = I3yl cos

Hence the induction is complete and conclusion (i) holds.

(ii) Note that T =D - Ax, = As,. Thus
A AL AR
Also from the above with t =0, 5, = A-l;o. Thus

(AR T A

s,
Therefore, using the result of (i),
T 0 < Half ST < Nafl sl cos'® < flall A7) = cos® 8,
But k(A) = [lA] A7, so that

";t" < R(A)";OH cost 8 .

Now

Simplifying gives

) [k(A) + i'{'(lif + k(A) - ]-‘-(1;)-} [k(A) +;-(11)-J
[k(A) + Hlﬁ] [k(A) + oy - k) +Hliﬁ
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or
cot® % = 2—%}51 = (k(A))? .
k(A)
Thus
a
cot 5 = k(A) .
Therefore,

—_ A
";t" < Hroﬂ cot 5 cost e .

(i1i) From (3.7) the scheme under consideration here is

L TR
4 T %t TTAATT
t t
r:rtAA*?t
AX = AX, +
t t
.
T, r AA'T
T = L F LAz . Yt t
Typ = b - Ax (b Axt) me——
r,AA'T
t t
-2 #—
_ ||I‘t|| AArt
T =y -
t+l t P—
rtAA T,
= (12 il - 2
15 % = 7% .5 e EITAAT)* T T [1AsT,
T =T .T =y, = T, e —
t+1 t+1T 4l t T omate ” t " Tae
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Y R - Sy,
”rt” rtAA T, ”rtH rtAA T,

— 2 -
IE, 17 = 75, - i
t+1 tt - L) —  p W=
rtAA T, rtAA rt
Ilitll“f:AA*AA*Et
* 2
-, R
rtAA rt)
— e 2_
w2 2 n= a2 e 2 o el THART) T,
IIrt"'l” = ”rt” = ”rt" = "rt” + _ — 12
(T*aA rt)
Therefore,
- 2 —*— k.3 2—
Irey 1™ TEr, TE(AAT)T
— 5 = -~ > -1,
”rt” (rtAA I‘t)

Applying the Kantorovich ineguality, Theorem 3.4, one has

(F*AA*?t)2 5
Ay > sin” 8 .
—£ t t(AA )
Therefore,
= 2
T4l
t+12 < 12 - 1=csc?B -1=cot28 .
H?t” sin”
Thus,
- 2 - 112 2
Ry I? < 15,12 cot? o
or

,Irt+lll S ”?1_” cot 6 N

This completes the proof.
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The Case, ."A Is Positive Definite,"

Now it is assumed that the matrix A, in the equation Ax = b, is
a positive definite Hermitian matrix, Then the natural choice for G 1is

G = A. With this choice the norm used is

=, = (*a0'/2.

The remaining theorems deal with the iterative schemes resulting from

this choice of G.

Theorem 3.6: Consider the system Ax = b, where the matrix A is

positive definite and Hermitian. Then the scheme

X =% +Y Y*Avt)'l Y:(B - A%

t+1 t t( t t)

is a norm reducing projective iterative method. (Recall Yt is an

nxk 0< kt < n, matrix whose columns are linearly independent. Also,

-t,
the system is norm reducing in the sense of H'HA.) Further

— 2 - — 2 . % » -l e
IIstIIA ”51;+1”A = TRy, (YfAY ) YT,

where Et is the residual wvector.

Proof: Note that A = A¥

and T, = Ast. Thus,

As, = Ty, (Y*ay, ) lvE

- # -1
sPAY, (Y®ay,) ~ v PE

#
A A A A t 7t t'tht Tt

Using this fact and applying Theorem 3.1 with G = A, one obtains the

conclusion of the theorem.
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Corollary 3.6.1: Consider the iterative scheme

_—— _* - —
N V. vs (B - AX,)

(3.8) 41 T % ey
Y¢Y¢
associated with the system Ax = B, where A is a positive definite
Hermitian matrix and Vt is chosen to be a natural unit vector Ei which
maximizes IE;EtI over the possible choices of 1. Then

B A
Fpnl? < 1502 10 - ey
t+14 = ¢l ) nk(A) |?

—

where k(A)} is the condition number of A.

Proof: Let ri denote the ith component of ?t.

n n
- 12 i1 2 iy 2 — |2
Iz, 1< = S lr:ZI < Z max lr:zl = n|eT, |
. ., 1<j<n
j=1 j=1 "==
Thus,
(A
lerT, ] 2 = .

Ry

Consider the functional f(X) defined by

From properties of linear functionals defined in this way,
el = lledt -

But llaill =1, so that J|f]] = 1. Now
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s, = 1eE)] ¢ el sl < IR = DA

Let P be a matrix such that A = P"P. (P exists since A is a positive

definite Hermitian matrix.) Then

1/2

- - —_ - 1/2 = - - —
IS I, = (EAS )™ “ = (5,p"P5,) lIes, Il
Si T = A"l
nce + = .‘I!'t 3
- — -1 -1_ I .
15,0, = IPsll = lIPA™"%, I = Ip(P*P) Tl = lpp (p*) Tl
or
- -1— -1y =
I M, = 1(p*) rtH < N1eH ™| xl -
But (P} = IP7})], so that
EA
— £l A
=l > —=- -
||

Now using Theorem 3.6, where in this case Yt = Ei’ one has

= =g —#— 12
N e S e L
tha t+1"A — - =, = :
e, AE, e Ae
i7Ti i
Therefore,
- 112 - 12
njlAll 21 e

2
But [Ip*pll < IIP*I Hipll = lIPI.  Thus




- 2 -2
52 s

alle 2pI2 a2’

= 12 - 2
”St"A = ”s't+1"A Z

where k(P) 4is the condition number of the matrix P. It will now be shown
that k{A) = (k(P))z. Let ro(A) denote the spectral radius of A and

rd(A-l) denote the spectral radjius of A"l Then, using properties of

1,

k(a) = Al a7 = r (a) x (a7Y) = r (e%)r ((p%)7)
or
k(a) = r (%) = (PPN = r (p%) 1 (TP .
Thus,
k() = Ie? e = (een? .
Therefore,

2 2 1
"Et+1"A < "Etun |l " n(k(A ]

This completes the proof.

Corollary 3.6.2: Consider the iterative scheme (3.8) associated with

the system AX = E, where A 1i5 positive definite and Hexmitian. The

e, where € is a vector with all its

?{ are chosen so that l?tl

elements equal to one, and
VE, = I, -

Then




- 2 - 2 1
"5t+l”A ..<... Hst"A [1 = nzszjj] ]
where k(A) is the condition number of the matrix A.
Proof: Let P be a matrix such that A = P*™P, (P exists since

A is positive definite and Hermitian.) From the proof of Corollary 3.6.1,

one has
s, < e~ I .
t"A - t
Now
n n
1/2 .
- 1,2 -
N =| ¥ 1=l S NEEAIES AR
i=l i=]
whe i . th -
re I, is the i component of Ty» Therefore
e, > el
e~

Consider the bounded linear functional
f(x) = ?:E.

From properties of linear functionals defined in this way,

Bl = wd -

But

[¥X
I b=
O gt
(=]
n
B
L ]

n 1/2
v =1 Y h2 -
i=1




Thus J|f]] =4/ . Now

ViAy, =[£Gy < Nl DAyl < /o (AR NIg ) = /oo llall /5.

Therefore,

VA7, < nllall .

Next, applying Theorem 3.6 with Y = ?t yields

o o T, IEN
”st"A - 'lst"'l"A = "*A— = _*A_ .
¥ Yy YeYe
Thus
L I3 = I3
s - Iis >
t"A t+1"A = Al = 1,2 = ~-in2
oA = Syeven) 1107242 = nlle®l fel e
Therefore,
2 —u2 i 1
W5, 12 < 15, 1----—-—-——-—-—~J.
t4+1"8 = -
' AL nlelPe

Now recall from the proof of Corpliary 3.6.1 that
el 212 = (k(P))? = k(a) .

Thus,
2 2 1
By, fly < Bl [1 T k(A ! :

Corollaxry 3.6.3: Consider the iterative scheme (3.8} associated with
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the system Ax = b, where A is positive definite and Hermitian.

¥, 1s chosen equal to ;t at each stage, then
5,00, < 15, cos ©

where © is such that 0< 8 < = , and

2
-1
cos 8 = -—-—%F ’
q+g

where q = (k(A))l/z.

Proof: From Theorem 3.6 with Y, ;t one has

f ——
2 = 12 TeTeTeTt
I, 12 = 52 |1 - it
s ,As, T AT
— tt Tttt -
using the definition of ";EHA' Let P be a matrix such that A =
< -1-
Then since Sy = A Ty s
T, TF IT5%, |2
£TtTt Ty Tt
N —, =] » -]l —%
tAst rtArt rt(A ) ¥AA trtArt
EAR

-'(p'p)'l- T, (P"P)T,

Now from the proof of Corollary 3.6.1, k(P) = (k(:’«))ll2 = q. Thus

applying the inequality of Kantorovich,

|Tor, 12
(p*p)‘l' THPP)T,

> sin® @',

If

P*p.
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where 0< 8' < % , and

1 1

k(P) - {fp7 9- g4
cos B' = klP = Cll
k(P)'l‘k—(Fv)- q+a

98

Note that cos 8 = cos 8* and both © and 6' lie in the first quadrant.

Thus € =8"', Therefore,

2

= - 2 ;2 - 2 .
"st‘l'l”A S "st”A (1 - Sln e) = "st”A cos“ O ’

or
||5t+1”A S "St"A cos e .

Corollary 3.6.4: Consider the iterative scheme (3.8) associated with

the system AX = b, where A is positive definite and Hermitian.

Choose ?t =1 and let O be defined as in Corollary 3.6.3. Then

t
(1) Bl < WSl cot & cost @
th = W% 2 8
(11) 51 < 5 cot & cost o ;
t" = 0 2 ’
and (i‘ii) "?t+l" S_ ";t" cos B .

Proof: (i) First it is necessary to establish that

= - t
nst"A S "SOHA cos e .

This will be done by induction. For t =1, applying Corollary 3.6.3

vields




syl < Mgl cos ®

Now the result is assumed for t = k. Then for t = k+1 one has,
applying Corollary 3.6.3,

- - — k k+l
nsk+1"A < "sk"A cos 8 < IlsollA cos 8 cos B = "EOHA cos 6.

This completes the induction and the result is established. Let P be

a matrix such that A = P*P. Then

151, = (55a5) /2 = (325 )2 = |Ipz,Jl < IIPIlIS,

and
5.0l = ﬂP'IPEtII < I~ ftes, I = "P_]'"("s':p'p;t)l/2
< I IEEEAs ) 2 = 17 R, -
Therefore,
% < M5yl < lisgll, cos'e < lIpll 5]l cos®e,
or

15,0 < el o~ H5yll cos® o

Now from the proof of Corellary 3.6.1,

k(p) = 2]l oY = (x(an)/? = q.
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1,..1 [ 1,
28 _ 1+ cos® [é + *a q] a*tad 2q _ 2
cot” = = = = = = q
2 1 - cos © + 1) 2
q [? +i.g a] g
-1 0
Pl 11572 = g = cot &
Therefore,
- - 0 t
Ilst“ S ”50” cot 2 cos 9 .
This proves (i).
(ii) Using the same P as in the proof of (i),
- - -1- “l, %y -l -1\ %=
I5gl, = IP51 = llea™ 51 = Ipp(e") 25 ) = f1(p™)) %5,
~1\#y = _ -] -
S U™ NImgll = NPTl II=l
and
izl = llas Il = [Ip*ps il < IP¥Il llps Nl = lIpll s,ll,
Thus,
I~ Il
t - - t =1y 1= t
TRr € W5 < 5l cos®e < 1PN liEgh coste,
or

IT,)l cot 2 cos®e.

< Pl M7 Il cos®e 2

This proves (ii).

(iii) From the definition of the iteration (3.8), one has for

t20,
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- - 1ttt
Xa) T % ¥ =
tt
Thus,
——— = —— -
T, =B - A%, =B - A% - btot g It
t+l t+1 t _'ﬁf t TMAT ’
t Tt tt
Now, since A is Hermitian,
T -
;* - ) E* ) rtrtrtA = . rtrtArt
41 t4l t “uy t =z
tt tt
e =R, — peppedibe PR g A= THT TRy
L rtrtrtArt ) T rt tA rt . rtrtrtrtrtA Art
tt b Pt R, H,T TR
rtA t rtArt rtArt rtArt
TH.TMT, (BTN
- ;I; L 17ttt + £t t t
t°t t°t - — —ga—
rtAIt (rtArt)
— e =%, 2=
N - 42
= (IF,) | == - 1| =M~ . H1°.
t°t —ma 2 t+1
(rthrt)

Let P be the same as in the proof of (i) and consider

g =y 2 - (2

] %

(rtArt) = (r:P Prt)

- - D —— = Poua *
TIT, T AT, rtrtrt(P'P) Ty

Applying the Kantorovich ineguality, Theorem 3.4, with x = P?t yields
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= = 2
rtArt)
=%, 2
TiTpTeA Ty

2 sin

H

Therefore,

ol < IRJ2 [y = 1] = IRJP (oo - 1) = R cor”

$1n
or

"rt+1" .<.. "rt" cot e *

This completes the proof.
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