
Utilization of FBRM in the Control of CSD 

 in a Batch Cooled Crystallizer 

 

 

 

 

A thesis 
Presented to 

The academic faculty 
 

By 

 

Stéphanie Barthe 

 

 

 

In partial fulfillment 
Of the Requirements for the Degree 

Master of Science in Chemical Engineering 
 

 

 

 

Georgia Institute of Technology 
May, 2006 

 



UTILIZATION OF FBRM IN THE CONTROL OF CSD IN A BATCH COOLED 
CRYSTALLIZER 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      Approved by:    
 
 
            Dr. Ronald W. Rousseau, Advisor 

School of Chemical & Biomolecular Engineering 
  Georgia Institute of Technology 

 
 

      Dr. Amyn Teja 
School of Chemical & Biomolecular Engineering 

      Georgia Institute of Technology 
 
 

      Dr. Martha Gallivan 
School of Chemical & Biomolecular Engineering 

      Georgia Institute of Technology 
 
 
 
 

Date Approved: May, 2006



 iii

ACKNOWLEDGEMENTS 
 
 
 
  

I first would like to acknowledge the importance of the funds provided through the 

Cecil J. "Pete" Silas Endowed Chair that allowed the completion of this research. I wish 

also to give my sincere thanks to my thesis advisor, Dr Ronald W. Rousseau, for his 

knowledge, his helpful advice and time he offered throughout this project. I am grateful 

to the committee members for all the useful suggestions and remarks made: Dr Amyn 

Teja, and Dr Martha Gallivan. 

I also want to thank past and present members of this research group for their 

precious help, friendship and support: Hatem Alsyoury, Karsten Bartling, Cosmas 

Bayuadri, Krystle Chavez, George Dumont, Young-Soo Kim, Jennifer Luk, Jose Mendez 

del Rio, Laurent Nassif, Quinta Nwanosike and Apichit “Ov” Svang-Aryaskul. 

I give my thanks to all the professors and staff I met at Georgia Tech for being so 

willingly helpful and sharing part of their knowledge with me. 

And last but not least, I would like to express my thankfulness to all my friends 

and my family for their kindness and support. They shaped the person I am today. 

 
 
 
 
 
 
 
 
 



 iv

TABLE OF CONTENTS 
 
 
 
 

ACKNOWLEDGEMENTS…..…………………………………………………………………iii 

LIST OF TABLES…...……………..………………………….………………………………vii 

LIST OF FIGURES….……...……….……………………………………………………..….viii 

NOMENCLATURE….……...…………………………………………………………..……...xii 

SUMMARY….....…………………………………………………………………..…..…..….xvii 

 

CHAPTERS 
I. INTRODUCTION……………………….…………….…………………………..….…1 
 

1.1 Introduction……………………………………………………………………...1 
1.2 Objectives……………………………………………………………………….2 

 
 
II. BACKGROUND…………………………………………..……………………………4 
 

2.1 Crystallization………………………………………………………………...…4 
2.2 Supersaturation and Metastable State….……………………...……………6 

2.2.1 Supersaturation………………………………………………………...6 
2.2.2 Metastable Zone……………………………………………………….7 
2.2.3 Formation and Growth………………………………………………...8 

2.3 Nucleation and growth kinetics………………………………………………..9 
2.3.1 Nucleation………………………………………………………………9 

2.3.1.1 Primary Nucleation…………………………………………..10 
2.3.1.2 Secondary Nucleation……………………………………….11 

2.3.2 Growth kinetics……………………………………………………….12 
2.4 Technique of Measurement: FBRM…………………………………………13 

2.4.1 Principle……………………………………………………………….13 
2.4.2 Data collected: CLD………………………………………………….14 
2.4.3 Relationship between CSD and CLD……………………………....14 

2.5 Fines Removal………………………………………………………………...15 
2.6 Chemicals used: Paracetamol/Ethanol……………………………………..16 



 v

2.7 Population balance……………………………………………………………18 
2.8 Solubility data………………………………………………………………….19 

 
 
III. METHODOLOGY…………………………………..………………………….…..….21 
 

3.1 Experimental design…………………………………………….……………21 
3.2 Procedures………………………………………………………………….…25 

3.2.1 FBRM experiments…………………………………………………..25 
3.2.2 Washing & drying of paracetamol crystals………………………...26 
3.2.3 Sieving…………………………………………………………………27 
3.2.4 Observation of the crystals………………………………………….28 

3.3 Solution used………………………………………………………………….29 
3.4 Conversion of CLD to CSD…………………………………………………..29 

 
 
IV. MODEL……..………………………………………………………………….…….…31 
  
 4.1 Relationship between CLD and CSD……………………………………….31 
  4.1.1. General description of the procedure………………………………32 
  4.1.2. Step by step description of the process……………………………37 
 4.2 Restoration of the CSD……………………………………………………….55 
 
V. RESULTS ………………….………………………………………………..…………60 
 

5.1 No fines removal…………...……………………………...………………………60 
5.1.1 Cooling Rate -0.100C/min……...……………………………………48 
5.1.2 Cooling Rate -0.200C/min ……………..………………………..…..55 
5.1.3 Cooling Rate -0.350C/min………..………………………………….62 
5.1.4 Cooling Rate -0.500C/min…………………..……………………….69 

5.2 Fines removal……………………………………………………………………...77 
5.2.1 Cooling Rate - 0.10 0C/min………………………………………….77 
5.2.2 Cooling Rate - 0.20 0C/min………………………………………….81 
5.2.3 Cooling Rate - 0.35 0C/min………………………………………….85 
5.2.4 Cooling Rate - 0.50 0C/min………………………………………….89 

5.3 Analysis of the product………………………………………………...………….93 
 
 
VI. DISCUSSION…………………………………………………………………….......101 
 
VII. CONCLUSION ………………………………………..…………………..…………106 
 
 
 



 vi

 
APPENDICES 
 
A. CALIBRATION CURVE OF THE MINI PERISTALTIC METERING PUMP….108 
B. IMPLEMENTATION OF THE FINES REMOVAL SYSTEM …………………..109 
C. PROGRAM USED TO RESTORE THE CSD……………..……….…………….111 
 
 
REFERENCES……………………………………………………………………………….116 
 
 

 

 

 

 

 

 



 vii

LIST OF TABLES 
 

 

 
Table 3.1  Experiments realized…………………………………………………………25 
 
Table 5.1  Sieving results from runs with a cooling rate of – 0.10 0C/min without fines 

removal ………………………………………………….…………………….62 
 
Table 5.2 Sieving results from runs with a cooling rate of – 0.20 0C/min without fines 

removal…………………………………………………………………………67 
 
Table 5.2  Sieving results from runs with a cooling rate of – 0.35 0C/min without fines 

removal ………………………………………………………………………..71 
 
Table 5.3  Sieving results from runs with a cooling rate of – 0.50 0C/min without fines 

removal ………………………………………………………………………..75 
 
Table 5.4 Sieving results from runs with a cooling rate of – 0.10 0C/min with fines 

removal ………………………………….…………………………………….79 
 
Table 5.6 Sieving results from runs with a cooling rate of – 0.20 0C/min with fines 

removal…………………………………………………………………………83 
 
Table 5.7 Sieving results from runs with a cooling rate of – 0.35 0C/min with fines 

removal…………………………………………………………………………87 
 
Table 5.8 Sieving results from runs with a cooling rate of – 0.50 0C/min with fines 

removal…………………………………………………………………………91 
 
Table 6.1  Summary of the results……………………………………………………….84 
 

 

 

 

 

 



 viii

LIST OF FIGURES 
 

 

Figure 2.1 Different Type of Faces ………………………………………………………6 
 
Figure 2.2 Example of a possible evolution of the crystallization, 
   X-axis: Temperature; Y-axis: Concentration………..……………………....8 
 
Figure 2.3  Free Energy & Nucleation ………………………………………………...…11 
 
Figure 2.4 Tip of the Lasentec probe and schematic drawing of the chords scanned. 

.………………………………………………………………………………….13 
 
Figure 2.5  Orthorhombic lattice………………………………………………………..…17 
 
Figure 2.6  Monoclinic lattice……………………………………………………………..17 
 
Figure 2.7  Solubility of Paracetamol in Ethanol (prediction of the model)…………..20 
 
Figure 3.1  Schematic diagram of the experimental apparatus ………………………22 
 
Figure 3.2  Chord Length Distribution, Paracetamol-Ethanol, Cooling rate –0.10 

ºC/min (end of the run) .....…………………………………………………...24 
 
Figure 3.3 Filtration of the Solution ……………………………………………………..26 

 
Figure 3.4  Ro-Tap …………………………………………………………………………27 

 
Figure 3.5 Picture of a Crystal of Paracetamol − Octahedral Shape ………………..29 
 
Figure 3.6  Scheme of the computation of the matrix ………………………………….29 
 
Figure 4.1  Masking and Shadowing effect……………………………………………...34 
 
Figure 4.2 Discretization of the population density…………………………………….36 
 
Figure 4.3  Representation of an octahedron in 3D space …………….……………...38 
 
Figure 4.4  Rotation of an object by an angle α and around the x-axis .……………..40 
 
Figure 4.5  Chord length measured by FBRM …….. …………………………………..43 
 



 ix

Figure 4.6  On the left, various possible orientations of the particle -- On the right, 
what is measured by the FBRM (orthogonal 2D-projection of the particles 
located on the left). The laser beam is normal to the plane constituted by 
the paper. ……………………………………………………………………..43 

 
Figure 4.7  Projection of a 2D shape onto the x-y plane from a 3D object in a specific 

orientation……………………..……………………………………………….44 
 
Figure 4.8  Projection on the x-z plane ………………………………………………….45 
 
Figure 4.9  Computation of the CLD for a random orientation projected on the plane 

…………………………………………………………………………………..47 
 
Figure 4.10 Influence of the size of the particle………………………………………….48 
 
Figure 4.11  Height of particle for different orientations………………………………….49 
 
Figure 4.12  Probable CLD -qp,d(s,L=630)- for an octahedron such as L=630 μm ..…50 
 
Figure 4.13. Chord length distribution qp,d( s, L) for a sphere of diameter L=200 μm..51 
 
Figure 4.14 Population considered in the example, nd(L)……………………………... 52 
 
Figure 4.15 qp,d(s,L) for a single particle of dimension 10 μm and of dimension 100 μm 

…………………………………………………………………………………..53 
 
Figure 4.16 CLD - qd(s) - for the population of octahedron considered in the example 

…………………………………………………………………………………..54 
 
Figure 4.17 Comparison, initial population and CSD, nd(L) restored according to the 

procedure described in this chapter ………………………………………..58 
 
Figure 4.18 Comparison between recalculated CLD and initial CLD………………… 59 
 
Figure 5.2  Evolution of the chord counts and the temperature for a cooling rate of  

– 0.10 °C/min without fines removal ………………………………………..61 
Figure 5.2  Sieving data from runs 1.1, 1.2 and 1.3 for a cooling rate of – 0.10 °C/min, 

without fines removal…………………………………………………………63 
 
Figure 5.3 Restored and Experimental distribution for a cooling rate – 0.10 °C/min, 

without fines removal ………………………………………………………...64 
 
Figure 5.4 Experimental and restored normalized chord length distributions for a 

cooling rate of – 0.10 ºC/min, without fines removal ……………………..65 



 x

 
Figure 5.5 Evolution of the chord counts and the temperature for a cooling rate of  

– 0.20 °C/min without fines removal ………………………………………..66 
 
Figure 5.6 Sieving data from runs 2.1, 2.2 and 2.3 for a cooling rate of – 0.20 °C/min, 

without fines removal ………………………………………………………..68 
 
Figure 5.7 Restored and Experimental distribution for a cooling rate – 0.20 °C/min, 

without fines removal ………………………………………………………...69 
 
Figure 5.8 Evolution of the chord counts and the temperature for a cooling rate of  

– 0.35 °C/min without fines removal ………………………………………..70 
 
Figure 5.9 Sieving data from runs 3.1, 3.2 and 3.3 for a cooling rate of – 0.35 °C/min, 

without fines removal ………………………………………………………...72 
 
Figure 5.10 Restored and Experimental distribution for a cooling rate – 0.35 °C/min, 

without fines removal ………………………………………………………...73 
 
Figure 5.11 Evolution of the chord counts and the temperature for a cooling rate of  

– 0.50 °C/min without fines removal ………………………………………..74 
 
Figure 5.12 Sieving data from runs 4.1, 4.2 and 4.3 for a cooling rate of – 0.50 °C/min, 

without fines removal ………………………………………………………..76 
 
Figure 5.13 Restored and Experimental distribution for a cooling rate – 0.50 °C/min, 

without fines removal ……………………………………………………….77 
 
Figure 5.14 Evolution of the chord counts and the temperature for a cooling rate of  

– 0.10 °C/min with fines removal …………………………………………...78 
 
Figure 5.15 Sieving data from runs 1.4, 1.5 and 1.6 for a cooling rate of – 0.10 °C/min, 

with fines removal …………………………………………………………….80 
 
Figure 5.16 Restored and Experimental distribution for a cooling rate – 0.10 °C/min, 

with fines removal …………………………………………………………….81 
 
Figure 5.17 Evolution of the chord counts and the temperature for a cooling rate of  

– 0.20 °C/min with fines removal …………………………………………...82 
 
Figure 5.18 Sieving data from runs 2.4, 2.5 and 2.6 for a cooling rate of – 0.20 °C/min, 

with fines removal …………………………………………………………….84 
 



 xi

Figure 5.19 Restored and Experimental distribution for a cooling rate – 0.20 °C/min, 
with fines removal …………………………………………………………….85 

 
Figure 5.20 Evolution of the chord counts and the temperature for a cooling rate of  

– 0.35 °C/min with fines removal …………………………………………...86 
 
Figure 5.21 Sieving data from runs 3.4, 3.5 and 3.6 for a cooling rate of – 0.35 °C/min, 

with fines removal …………………………………………………………….88 
 
Figure 5.22 Restored and Experimental distribution for a cooling rate – 0.35 °C/min, 

with fines removal …………………………………………………………….89 
 
Figure 5.23 Evolution of the chord counts and the temperature for a cooling rate of  

– 0.50 °C/min with fines removal …………………………………………...90 
 
Figure 5.24 Sieving data from runs 4.4, 4.5 and 4.6 for a cooling rate of – 0.50 °C/min, 

with fines removal …………………………………………………………….92 
 
Figure 5.25 Restored and Experimental distribution for a cooling rate – 0.50 °C/min, 

with fines removal …………………………………………………………….93 
 
Figure 5.26 X-ray diffraction, experimental result ……………………………………….94 
 
Figure 5.27 Powder diffraction pattern obtained for paracetamol trihydrate (upper plot) 

compared with the one of monoclinic paracetamol (lower plot) (Journal of 
pharmaceutical sciences, vol 91, no 5, may 2002) ……………………….95 

 
Figure 5.28 IR spectroscopy, experimental spectrum, KBr disc ………………………97 

Figure 5.29 IR spectroscopy, theoretical spectrum, KBr disc (NIST Webbook) ……..98 
 
Figure 5.30 Microscope pictures of paracetamol crystals (*4) ………………………...99 
 
Figure 5.31 Zoom on a paracetamol crystal (*10) ……………………………………..100 
 
Figure 6.1  Sieve analyses of product size distributions at two cooling rates and no 

fines removal …………………..…………………………………………….102 
Figure 6.2  Evolution of the mean and the width in function of the condition of 

operations……………………………………………….…………………...104 
 
Figure A.1 Calibration curve of the mini peristaltic pump ……………………………108 
 
Figure B.1 Modelization of the trap …………………………………………………….109 
 



 xii

NOMENCLATURE 
 
 
 

A  crystalline area [m2] 

A  conversion matrix 

a, b, c  lengths of the unit cell [m] 

ai  activity coefficient 

B  matrix 

Bo  secondary nucleation [crystals/m3] 

C  concentration [mol/L] 

C*  concentration at saturation [mol/L] 

CLD  chord length distribution 

CLSM  constrained least square minimization 

CSD  crystal size distribution 

DDO  double draw off crystallizer 

Di  diameter of the impeller [m] 

E  energy [J/mol] 

Ea  activation energy [J/mol] 

F  flat face 

FBRM  focused beam reflectance measurement 

g  order of the growth kinetic 
 
G  growth rate [m.s-1] 

G0  growth kinetic constant [m.s-1] 



 xiii

G12, G21 coefficients NRTL model 

Gf   Gibbs energy [J/mol] 

h  height [m] 

J  frequency of nucleation [m-3.s-1] 

Jn  rate of nucleation [kg.s-1] 

k  coefficient  

K  kinked face 

kg  growth kinetic constant 

kn  nucleation kinetic constant 

kv  volumetric shape factor 

Lave  average length [m] 

Lf  limit size of fines removal [m] 

L  crystal size [m] 

M  inverse of rotation matrix R 

MC  Monte-Carlo Simulation 

mj  jth moment of the distribution 

Mi  mass of compound i [g] 

N  number of iteration 

no  nuclei population density 

n(L)  population density 

nd(L)  discrete normalized counts per bin 

NRe  Reynolds number 

Ns  speed of impeller [rpm] 



 xiv

Q(L)  flow rate of the fine removal [m3.s-1] 

q(s)  chord length density 

qd(s,L)  normalized discrete chord counts per bin for a single particle of size L 

qd(s)  normalized discrete chord counts per bin 

R  gas constant 

rc  critical nuclei size [m] 

Rg  massic growth rate [kg.m-2.s-1] 

Rx,y,z  Rotation matrix 

S   entropy [J.mol-1. 0C-1] 

Sf  stepped face 

Su  supersaturation ratio 

T  temperature [0C] 

t  time [s] 

Tm  melting point [0C] 

Vs  volume of the slurry [L] 

w  weight fraction 

x  molar fraction 

x, y, z  coordinates 

X, Y, Z  rotation matrices  

x’, y’, z’ coordinates after rotation  

ΔCmax  maximum ΔC measured for a given T 

Δg12, Δg21 NRTL constants 

ΔGc  critical free enthalpy [J/mol] 



 xv

ΔL  variation in size [m] 

ΔM  mass of crystal retained by each sieve [g] 

Δmh  heat of fusion [J/mol] 

 

Greek symbols 
 
α, β, γ  Rotation angles [rad] 

α0  coefficient 

αv  volumetric shape factor 

βs  surface shape factor 

γ0  coefficient 

γc  interfacial energy crystal-solution [J/mol] 

Δχ = χs - χc difference in chemical potential 

χ0  standard potential 

χc  chemical potential in the crystal 

χs  chemical potential in solution 

µ  viscosity [P] 

Φ  driving force 

φ, ψ, θ  Euler’s angle [rad] 

αn  constant NRTL 

λ  parameter 

ρ  density [g.cm3] 



 xvi

σ⎯  Width of the distribution [m] 

σs   Relative supersaturation 

τ12, τ21 Constant for NRTL model 

Superscripts 

Ave  average 

Nuc  nucleation 

*, Sat  saturation 

 

 

 

 

 

 



 xvii

SUMMARY 
 
 
 
 

Controlling crystal size distribution (CSD) is important to downstream processing 

and to product quality. It is well-recognized that selective removal of segments of the 

crystal population can be used to influence CSD, for example by manufacturing a 

product with a larger dominant size or narrower distribution. Early work on the use of 

feedback control to manipulate the residence time distribution functions of fines in a 

continuous crystallizer demonstrated the utility of such an approach in handling process 

upsets or in reducing cycling that resulted from system instabilities. These efforts were 

extended to batch crystallization, although there remained significant difficulty 

associated with on-line analysis of the size distribution. 

The development of new technologies, such as Focused Beam Reflectance 

Measurement (FBRM), provides a methodology for on-line monitoring of a 

representation of the CSD in either batch or continuous systems. Properly installed, the 

FBRM allows on-line determination of the chord length distribution (CLD), which is 

statistically related to the CSD and depends on the geometry of the crystal. 

In the present work, we develop a statistical relationship between chord-length 

measurements and CSDs. The approach has been implemented for the batch cooling 

crystallization of paracetamol from solutions in ethanol. In supporting experiments, the 

FBRM has been used to monitor the evolution of CLDs, which were then used to 

estimate the CSDs of the corresponding crystal populations. The results demonstrate 

how the selective dissolution of fine particles and how the variation of the cooling rates 



 xviii

influences the size distribution of the crystalline products and they lay the foundation for 

implementation of methodologies that moves the CSD in preferred directions. 

 



 1

CHAPTER I 

INTRODUCTION  

 

 

 

1.1 Introduction 

Crystallization is used widely in the production of pharmaceutical and many other 

specialty chemicals where it is often a key step in product recovery and / or purification. 

Control of this operation is essential as it determines the purity, crystal size distribution 

(CSD), morphology, and yield of the product.  The CSD is a key factor in the design and 

operating conditions of downstream processes, and it also has a large influence on 

product characteristics and quality (Fachaux 1995).  

 It is well recognized that selective removal functions can be used to influence 

CSD, for example by producing a product with a larger dominant size or narrower 

distribution.  Early work on the use of feedback control to manipulate the residence time 

distribution functions of fines in a continuous crystallizer demonstrated the utility of such 

an approach in handling process upsets and cycling that resulted from system instability 

(Rousseau & Howell 1982).  These efforts were extended to batch crystallization, 

although there remained significant difficulty associated with on-line analysis of the size 

distribution (Cerreta 2000). 

 

The development of new Process Analytical Technologies (PAT), such as 

Focused Beam Reflectance Measurement (FBRM), provides a methodology for on-line 

monitoring of a representation of the crystal population in either batch or continuous 

crystallization systems (Verbraeken 2001, Wood-Kaczmar 2001).  The FBRM 
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technology is based on laser light scattering; properly installed, it allows on-line 

determination of the chord length distribution (CLD), which is statistically related to the 

CSD and also depends on the geometry of the crystal (Ruf 2000, Shi 2002, Li 2005).  

Several publications deal with the relationship between CSD and CLD, more particularly 

the recovery of the CSD from the CLD (Ruf 2000, Li 2005, and Shi 2002).  For the 

FBRM technology to be used quantitatively, the geometry of the crystal must be well 

known and a 3D model of the crystal needs to be established in order to implement the 

time-consuming calculations. 

The purpose of the present study was to use FBRM to monitor the evolution of 

CSD characteristics produced in a cooling batch crystallizer.  Cooling batch 

crystallization of paracetamol from ethanol solutions was chosen as the model system.  

The work showed how fines removal and varying cooling rates provided reliable and 

practical control of the crystal size distribution. 

 

1.2 Objectives 

The control of batch cooling crystallization is not trouble-free, and models of such 

a process can be complex when compared to the models applied to plug flow reactors 

and seeded crystallizations. The quality of the product generated by crystallization is 

linked to cost, flow, and downstream processes (Fachaux 1995). The point is to observe 

how some key and easily reachable factors, such as the cooling rate and the presence 

of a fines removal system, influence the characteristics of the crystalline matter 

produced. Such knowledge would facilitate a better control of the CSD, and in particular 

the mean size, and the width of the distribution. The main goal is to describe how simply 

by acting in a precise and pre-determined manner on the cooling rate and/or the fine 

removal flow one can directly affect these characteristics, thus manipulating the CSD at 

will. 
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Knowledge of the crystal population density function is especially useful as it is 

easily related to the mass density function, which gives direct and valuable information 

on the product. It is this distribution that is most often taken as a measure of crystal 

quality for industrial products. Thus this knowledge is precious when it comes to the 

control of the crystallization process. 

 

In the present work, the evolution of the crystal population is monitored with an 

FBRM probe carefully positioned in the slurry. The main data recorded is the evolution of 

the CLD over time. This distribution results from the measurement of thousands of chord 

lengths per second. Considering that the CSD is more commonly used and, as 

described above gives direct information on crystal quality, it is essential to build up an 

efficient model for the restoration of the CSD from the CLD. The model presented by M. 

Mazzotti provides a valuable guideline but few details on this method are available in the 

literature (Ruf 2000). Most of the available publications (Li 2005, Worlitschek 2003, Shi 

2002, Ruf 2000 and Jones 1984) focus on the restoration of the CSD for particles 

possessing a sphere like geometry, leaving the process obscure for systems possessing 

different and more complex geometric shapes. The present study proposes a similar and 

fully described general model to explain and illustrate the process of the computation of 

the CSD from the CLD. Due to the statistical nature of the relationship between the CSD 

and the CLD, a Monte-Carlo method is used as the simulation algorithm. 
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CHAPTER II 
 

BACKGROUND 
 
 
 

Useful information about the major concepts and theories associated with this 

research, such as crystallization principles and FBRM measurements, are developed in 

this chapter.  

 

2.1 Crystallization 

Crystallization is one of the oldest and most important solid-liquid separation 

techniques. It is the process of formation of crystalline matter from a homogeneous 

solution, for example crystallization of salt from evaporation of seawater. Crystallization 

processes are widely used in industry as a purification or a separation technique.  This 

operation constitutes a fundamental step in the production of a wide range of chemicals 

as it often relates to the quality of the product, and also influences all the subsequent 

processes. Therefore, there are great potential benefits to controlling this crucial 

operation.  

Crystallization occurs via diverse mechanisms; those most common in industry are 

cooling, evaporation, ‘drowning out’ (addition of an anti-solvent), chemical reaction 

(generation of solute), vacuum (cooling, flashing evaporation), crystallization from melts, 

vapors or solutions. This research principally focuses on cooling batch crystallization 

from clear solutions. 

 

There are two main approaches to crystallization: 

1- Physical: the physicochemical transformation of a pure compound whose 

state (gas  liquid  solid) is modified until there is formation of a crystalline 
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solid. For example, the solidification of gold (liquid at 20000C, solidifies by 

cooling around 1064.20C). The initial state can be solid (rearrangement of the 

atoms/molecules), liquid (solidification) or gas. 

2- Chemical: dissolution of a solute, modification of the condition until 

sursaturation is reached and provocation of the nucleation/growth 

(crystallization of salt from sea water). The super-saturation and the 

metastable zone width are essential to this type of crystallization. These 

concepts will be detailed further in this chapter.  

Cooling crystallization of paracetamol from ethanol solutions is used as the 

model system in the present study. The cooling process of such a solution, which is not 

a pure compound, is thus considered to be a chemical crystallization. 

In general, crystal growth is based on both physicals principles that allow 

crystallization, and physicochemical conditions, for example the temperature, that 

determine the development of the crystals. The growth of the crystal is a physical 

process; the molecules are arranged according to one of the classic Bravais Lattices. 

They are defined as the arrangement of the atoms in the whole space of a crystalline 

structure; there are 5 distinct Bravais lattices in 2D, while there are 14 in 3D (Artioli et al. 

2002, and McPherson 2002). 

The key repeating constituent in a crystal is the unit cell, which determines all the 

properties of a crystal. The unit cells repeat themselves in the three dimensions of space 

to form the crystal lattice, which is a regular arrangement of the atoms or molecules 

within a crystal.  

There are three different types of face for a crystal: F (flat face), Sf (stepped face) and K 

(kinked face). The mechanism and the rate of growth depend on the face in which it 

occurs (Growth rate on face K > rate on face Sf > rate on face F). The morphology of a 

growing crystal is determined by the slowest growing crystallographic surfaces. 
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Figure 2.1. Different Type of Faces 

 
 
 

We will here focus on the cooling crystallization of saturated solution. This kind of 

crystallization as we previously saw is based on the supersaturation and the metastable 

zone width. 

 

2.2 Supersaturation and Metastable State 

2.2.1. Supersaturation  

When the amount of solute dissolved in solution exceeds the amount that the 

solvent is capable of sustaining, the solution is said to be supersaturated. Crystallization 

kinetic is a function of the supersaturation of the solution. The absolute supersaturation 

Su (also called the supersaturation ratio) is linked to the driving force φ of the process.  It 

is a function of the concentration C of the compound of interest in the solution, as well as 

its concentration at equilibrium C* which depends on temperature (Mullin 2001). 

ΔC = C − C*     (2.1) 

Su = C / C*     (2.2) 
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The fundamental driving force φ is the difference between chemical potentials of the 

given substance in solution χs and in the crystal χc and can be expressed in terms of 

relative supersaturation σ (Mullin 2001): 

cs χχχ −=Δ     (2.3) 

1S* u −=Δ= C
C

sσ            (2.4) 

The chemical potential is expressed as a function of the activity ai and of the standard 

potential χ0. 

( )iaRT ln0 += χχ      (2.5) 

so for non-electrolyte solutions (no ions formed in solution) we have: 

( )sRT
σχ

+==
Δ 1lnSln u      (2.6) 

Forming a supersaturated solution is a preliminary step to nucleation and growth of 

crystals.  

 

2.2.2. Metastable Zone 

Crystal growth is based on the existence of a metastable region when the 

supersaturation is reached and where spontaneous formation of nuclei is impossible, 

thus only growth takes place. This zone can be experimentally determined. It is a 

function of the nucleation temperature, the concentration of the solution and the cooling 

rate. The width of the metastable zone is basically the difference between the saturation 

and the nucleation temperature (see Figure 2.2). The FBRM allows a reliable on-line 

measure of both the metastable zone width and the solubility for a given solution (Liotta 

2001). 

The metastable zone width increases as the cooling rate increases and so solute 

concentration decreases. The interdependence of the metastable zone width and the 
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cooling rate, among other factors, was investigated by Nývlt (Nývlt 1971). Models have 

been established to predict the evolution of the width with temperature for example 

Kashchiev developed a relationship between the critical supersaturation ratio and the 

temperature of the solution (Kashchiev 2000). 

 

2.2.3.  Formation and Growth 

  

 

 
Figure 2.2. Example of a possible evolution of the crystallization, 

 X-axis: Temperature; Y-axis: Concentration 
 
 

 

Figure 2.2 shows an example of a solubility curve and a metastable zone. An 

unsaturated solution A, via cooling, goes through the solubility limit to become a 

supersaturated solution B. This solution is within the metastable zone, thus no primary 

nucleation is occurring. If the solution is cooled past the metastable zone limit, at C, 

nucleation occurs. After nucleation, the concentration is lowered by crystal growth, 

width 
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perhaps to point D. Since this point is within the metastable zone, growth of the nuclei 

formed will occur until the solubility curve is reached at point E and equilibrium is 

reached. 

If the cooling rate is high, the solution A is taken very fast to C, which is located past its 

metastable limit, and, in this case, an uncontrolled crystallization will occur, thus favoring 

the generation of fines, which are in many cases, undesired in the final product. A 

constant supersaturation generates a narrower size distribution, which is often looked 

for. Seeding within the metastable zone is commonly done in order to insure a constant 

supersaturation and a better-controlled crystallization. 

The experimental conditions of the crystallization thus influence the population 

distribution. The Crystal Size Distribution (CSD) characterizes the amount of crystals of 

a given size at a given time; it gives precise and useful information of the crystal 

population. Knowledge of the CSD is a major tool in the characterization of a 

crystallization product, and this distribution has a major influence on most of downstream 

processes, as well as the quality of the final product. 

 

2.3 Nucleation and Growth Kinetics 

2.3.1 Nucleation 

Crystallization can be divided into primary and secondary nucleation. Simply defined, 

primary nucleation is the formation of a new crystal without the involvement of existing 

crystals. Secondary nucleation requires existing crystals to participate in the nucleation 

mechanism. It often dominates primary nucleation in continuous crystallizers and seeded 

batch crystallization. 

Nucleation is the main topic of several publications (Georgevia 2003 and Gerstlauer 

2002). The condition of supersaturation alone is not enough to cause the system to 
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crystallize. Nucleation might occur spontaneously or it can also be induced artificially. 

Many parameters influence the system behavior, such as agitation, mechanical shock, 

friction or pressure. Industrially, nucleation usually occurs by a mechanism of secondary 

nucleation or heterogeneous primary nucleation. 

Seeded crystallization is also widely used in industry. It offers easier modeling and better 

control. In such systems, nucleation may be neglected and only the growth of the seeds 

taken into account. 

 

2.3.1.1 Primary Nucleation  

Primary nucleation is defined as occurring from a clear solution, which means that the 

system does not contain crystalline matter before the event. This type of nucleation can 

be classified as homogeneous (crystallization occurs spontaneously) or as 

heterogeneous (crystallization is induced by foreign particles or impurities already 

present or introduced in the system).  

Nucleation lowers the Gibbs energy (Gf) and the entropy (S), where the solid is an 

ordered state of matter (lowest S). As shown in the Figure 2.3, the free energy is 

decreasing after nucleation; the crystallized compound has lower energy than the solute 

in solution. Information on the nucleation can be obtained by calculating either the 

frequency of nucleation (equation 2.7) or the rate of nucleation (equation 2.8). The main 

difference being the variables used to express J or Jn (Temperature or Supersaturation) 

and the units in which they are stated. 

Frequency of nucleation (m-3.s-1) ⎟
⎠
⎞

⎜
⎝
⎛ Δ
−=

RT
G

kJ c
n exp     (2.7) 

Rate of nucleation (kg.s-1) 
n

nn Ck
dt

dMJ maxΔ==     (2.8) 
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Figure 2.3. Free Energy and Nucleation  

 
 
 
 
The value ΔGcritical can be expressed as (Mullin 2001): 

2

3
4

cccritical rG γπ=Δ      (2.9) 

 
Once the critical nuclei size rc is reached, nucleation occurs, thus the Gibbs energy 

decreases as the crystal grows. The nuclei becomes stable at rc 

 

2.3.1.2 Secondary Nucleation  

Nucleation can be induced by the presence of other crystals in the system; nuclei 

are often generated in the vicinity of crystals present in a supersaturated system. 

Usually, this kind of behavior is hard to model as it involves various factors difficult to 

incorporate in the model (Gerstlauer 2002, and Leubner 2002) and is thus often 

neglected in the calculations. 

 

ΔGc 
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2.3.2. Growth Kinetics  

Growth kinetic is essential to establish and solve the population balances (Mullin 1971, 

Randolph 1971, Randolph 1988, Nývlt 1985, and Žekić 2003). Growth rate may be 

defined in terms of a characteristic crystal dimension: 

   
dt
dLRG g

v

s ==
ρα

β
3

     (2.10) 

 

It can also be defined in term of crystal mass: 

    ( ) g
g

c
g CRT

Ek
dt

dw
A

R Δ−== exp1
0,    (2.11) 

 

The growth rate is a function of temperature and supersaturation, thus the cooling rate of 

the crystallization has a major influence on the growth of the crystals. When incorporated 

into a population balance, the growth rate usually is assumed independent of crystal size 

or to follow a simple expression such as 

 G=G0 (1+α0L)γ
0    (2.12) 

where the parameters G0, α0 and γ0 are experimentally determined. 

 

In order to have a better knowledge of the evolution of CSD many techniques have been 

developed, among them the new Process Analytical Technology (PAT). In this present 

study, we will use the recently developed technique: the FBRM. 

 

 

2.4 Technique of Measurement: FBRM 

2.4.1 Principle 
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Monitoring the evolution of population distribution has always been an issue. Recently, 

useful techniques have been developed. They are generally known under the name of 

Process Analytical Technologies (PAT) (Greenberg 2002; www.fda.gov), and these 

measurement techniques are spreading in laboratory and industrial applications where 

they provide reliable, in-situ, on-line information about the evolution of a reaction. 

 

 
Figure 2.4. Tip of the Lasentec probe and schematic drawing of the chords scanned. 

 
 

The FBRM used in this study is one of those newly developed techniques. It consists of 

a focused laser beam rotating at a constant velocity that scans the particles located in 

front of the probe’s sapphire window. When the light emitted by the laser hits a crystal, 

and the sensors included in the probe record and analyze the backscattered signal. The 

collected data can be defined, as shown in the Figure 2.3, as the distance between two 

edges of the particle; the FBRM calculates this distance by multiplying the rotating speed 

of the laser by the time of the corresponding backscattering signal. The instrument can 

acquire thousands of chord lengths per second. The counts of the chords are organized 

in channels and expressed as a distribution, referred to as the chord length distribution 

(CLD). The data collected by the Lasentec® software are available for direct observation 
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on the computer screen and can be saved for further exploitation, the software is 

designed such as allowing the transfer of the data to an excel folder. 

 

2.4.2 Data Collected: CLD 

The distribution given by the FBRM measurement is an indication of the real population. 

The CLD is statistically related to the CSD but is not identical or even proportional to the 

CSD. A crystal of maximum size L cannot generate a chord length longer than this 

value, but it does generate chord lengths lower than this maximum dimension. However, 

the CSD is the description of the crystal population that allows meaningful 

characterization of a crystal product. Thus, it would be highly useful to be able to restore 

the CSD from a measured CLD. 

 

2.4.3 Relationship between CSD and CLD 

The calculation of the CSD from CLD data has been the subject of many publications 

(Ruf 2000, Worlitchek 2003, Shi 2002, Li 2005). This restoration calls upon probability 

functions where Monte-Carlo simulations are a useful tool as the relationship between 

the two distributions is mainly based on probabilities. A simple program to evaluate a 

conversion matrix A, key component to a simple relation between the CLD and the CSD, 

is proposed in Appendix C, a detailed explanation of the method is exposed in  

Chapter IV. 

Being able to obtain the desired CSD has many advantages and leads to easier 

modelization and/or operation of downstream processes. In the case of pharmaceuticals 

a narrow CSD is desired usually to allow a more uniform dissolution rate of the drug. 

When a smaller mean size is desired, additional downstream processes, such as milling, 

are used to reduce it, but this adds to the time and money spent on the process. 
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2.5 Fines Removal 

Fines removal has been shown to have a large influence on the population distribution 

(Sutradhar 1993, Jones 1984 and Zipp 1989). In order to realize this removal, a fines 

trap can be used (Saeman 1961). It has been shown that the number of small crystals 

rapidly decreases, thus increasing the mean size of the population (Jones 1984). 

Several analyses of this effect of trapping the particles smaller than a pre-defined 

dimension have been published (Saeman 1961, Sutradhar 1993). 

Classified product removal, (Randolph 1971) is another mean of utilizing selective 

removal of crystals. The CSD resulting from this generation has a narrower distribution 

and a reduced mean size. Févotte (Févotte 2002) also proposes slight heating of the 

slurry by a few degrees after nucleation, thus dissolving the smaller crystals and 

increasing the mean size. Modeling fines removal has been proposed in the literature 

(Kind 1995), as well as for the use of a classifier (West 2000). Destruction of the fines 

was described by Zipp (Zipp 1989). Crystallizers have been specifically designed in 

order to realize this operation such as the double draw off (DDO) crystallizers (White 

1989). 

All of those studies demonstrate that removing and dissolving the fines has a major 

influence on the population distribution. In this study, such a system was used to 

manipulate the population distribution. The dimension of the fines removed can be 

determined via simple equations (see Appendix B). 

 

 

 

2.6 Chemicals Used: Paracetamol / Ethanol 

Many studies related to the use of paracetamol have been done. Parameters for the 

crystallization of paracetamol are thus easily accessible in the literature (Worlitchek 
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2003, MSDS, Al-Zoubi 2003, Beyer 2001 and Braun 2004). Both seeded and cooled 

crystallization can be realized. It has been shown that for high enough mean size, the 

crystal size distribution is bi-modal (Worlitchek 2003), a seeding or the use of a fine 

removal system can prevent it. 

Paracetamol exists under 3 polymorphic forms (Beyer 2001), meaning that different solid 

state structures exist for this compound. There is a stable form: form I, a metastable one: 

form II and a less stable one: form III. The lattice describing the structure for form I is 

called monoclinic, while the structure for form II is described by an orthorhombic lattice 

as shown on the Figure 2.5.  

The orthorhombic lattice is defined such that the three axes have different length (a ≠ b ≠ 

c) and the three angles are equals to 90° (α = β = γ = 90°). Figure 2.5 illustrates this 

arrangement. 

Only form II is used to make tablets, as it is easier to compress and more stable under 

this form. The physical properties allow better dissolution and absorption in the body. 

 
Figure 2.5. Orthorhombic lattice 

 

 

a 

b 

c 

α 

β 

γ 
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The monoclinic lattice is defined such that the three axes have different lengths (a ≠ b ≠ 

c), and only 2 angles are equal to 90° (γ = β = 90° ≠ α). Figure 2.6 illustrates this 

particular disposition of the molecules. 

 

Figure 2.6. Monoclinic lattice 

 

 

 

2.7 Population Balance 

Growth kinetics can be expressed as a function of the supersaturation and the 

temperature according to equation 2.14. 

g
ag CRTEkG Δ= )/exp(     (2.14) 

In his work, Worlitschek proposes values for the constants thus determining fully the 

expression of the growth rate for crystallization of paracetamol in ethanol solutions 

(Worlitschek 2003). 

For batch cooling crystallization (no fines removal), the population balance is given by:  

( )
L

nG
t
n

∂
∂

=
∂
∂

     (2.15) 

a

b 

c 

γ 

α 

β 
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Randolph and Larson (Randolph & Larson 1988) developed a method to solve this 

equation by using the moments of the distribution. Assuming constant growth rate G0, 

the equation then becomes:  

∫
∞

=
0

dLLnm j
j     (2.16) 

( ) 10
0.0 −−== j

jj mjGBtL
dt

dm
   (2.17) 

Initial condition:  ∫
∞

==
0

0 1dLnm              (2.18) 

 Thus the system is fully defined and the moments can be calculated step-by-step 

assuming the growth rate and the nucleation rate Bº are known. Simple methods 

described by Randolph and Larson allow the reconstitution of the population distribution. 

When fines removal system is added, another term appear in the previous equation: 

( )
V

nLQ
L

nG
t
n )(

−
∂

∂
−=

∂
∂

    (2.19) 

Where Q(L) = Qf  if L<Lf and    Q(L) = 0   if  L>Lf 

Lf is set by the flow rate of the peristaltic pump in the fines removal system. 

 

2.8 Solubility Data 

Solubility of the considered solute in the considered solvent constitute a key information 

in the crystallization process as it gives information on the relative proportions needed to 

generate saturation of the solution. Knowing that the nucleation occurs when the solution 

is supersaturated, it is useful to know the metastable limit and the solubility curve. 

This information can be obtained experimentally or it can also be calculated. 

Schroeder-Van Laar equation: ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Δ
=

TTR
Th

xa
m

mm
i

11ln    (2.20) 
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 Where x mole fraction, ai activity coefficient 

In order to calculate the activity we use a NRTL model due to the nature of the alcoholic 

solution (paracetamol + ethanol). 

( ) ( ) ( ) ( )( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

−= 2
12

1212

2

21

21
21

2

11
1ln

xGx
G

Gxx
G

xai
τ

τ     (2.21) 

( )1212 exp τα nG −=  and ( )2121 exp τα nG −=      (2.22) 

RT
g12

12
Δ=τ   and RT

g 21
21

Δ=τ       (2.23) 

Three independent parameters to characterize the behavior of the binary solution 

paracetamol-ethanol: αn = 22.3, Δg12 = - 427, Δg21 = 2291 (Worlitschek 2003) 

Tm = 169.4°C 

Δmh = 26030 J/mol 
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Figure 2.7. Solubility of Paracetamol in Ethanol ( Prediction of the Model) 

 

 

Figure 2.7 shows the evolution of the solubility of paracetamol in ethanol solutions as the 

temperature decreases so does the amount of paracetamol soluble in this alcoholic 

solvent. The solubility varies greatly with the temperature thus justifying the use of a 

cooling crystallization, if the variation of the solubility with the temperature was minimum, 

another type of crystallization would have been more suitable, such as evaporative 

crystallization.  
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CHAPTER III 

METHODOLOGY 

 
 

Batch crystallization is widely used in the industry and its control constitutes a 

major concern. In order to better understand and implement a control scheme of the 

batch crystallization studied here, an experimental apparatus was designed. The 

experimental protocol used is developed further in this chapter. 

 

3.1 Experimental Design 

A schematic diagram of the crystallization system used in the present study is 

shown in Figure 3.1. The primary unit was a 500-mL jacketed batch crystallizer. Mixing 

was provided by a 4-blade impeller rotating at a speed of 400 rpm; 3 baffles and the 

FBRM probe served to enhance the mixing. The Reynolds number for mixing (NRE = 

Di
2Nsρ/μ) was estimated to be 8,900, which was combined with visual observations to 

indicate good mixing.  Insertion of a thermocouple into the slurry measured the 

temperature of the system, which was recorded through an Omega Daq 56 data 

acquisition system with a precision between 0.10 and 0.20 °C. A condenser on top of the 

crystallizer condensed any vapors of ethanol generated in the process, thereby 

eliminating solvent loss.  

 A Lasentec Focused Beam Reflectance Measurement (FBRM) D600 provided 

on-line monitoring of the evolution of the crystal population. The FBRM probe emits an 

infrared laser beam that is rotating at high velocities; when the laser beam hits a crystal, 

the light is backscattered to the probe, and the instrument software analyzes the signal 

and provides a chord length estimated from the time interval over which the signal was 
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received and the rotational velocity of the beam. The chord-length distribution (CLD) in 

the present work was obtained by averaging the set of such signals received over 

successive 10-s increments and was expressed in the form of counts/s vs. chord length.   

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

In those experiments where preferential fines removal was implemented, the 

equipment that selectively removed small crystals from the well-mixed region of the 

crystallizer was an important part of the apparatus. Included were a clear tube with an 

inside diameter of ¼ in. (6.4 mm), a peristaltic pump, and heating and cooling baths. The 

peristaltic pump drew a fines-rich stream upwards so that larger crystals, whose terminal 

velocity was greater than the upward liquid velocity, fell back into the well-mixed region 

of the crystallizer. The rate of removal of fines from the crystallizer was determined by 

the speed of the pump. The slurry, whose solids were dominated by fines, was pumped 

through a heating bath whose temperature was maintained at approximately 60 °C, 

which caused dissolution of the crystals. The resulting solution was then cooled to a 

temperature slightly above saturation before it is returned to the crystallizer. 

Jacketed 
batch 
crystallizer 
500 mL 

Peristaltic 

pump

Heating bath 
Dissolution of the 

fines 

Cooling bath 

Figure 3.1. Schematic diagram of the experimental apparatus 

 FBRM 

  T T 
T 
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In a typical run, the solute and the solvent (34 wt% paracetamol, 66 wt% ethanol) 

were added to the crystallizer, and the resulting solution was heated to 73 ºC, which 

insured complete dissolution of the crystals. The system was then cooled and the data 

acquisition was started. The system was cooled at a pre-determined linear rate from  

73 ºC to 13 ºC, at which it was held until equilibrium between the solution and the 

generated crystals was reached (for paracetamol, this was approximately 11 h). In those 

runs in which fines destruction was implemented, fines were pumped out of the slurry in 

the crystallizer, dissolved as described previously, and the resulting solution fed back to 

the crystallizer. 

 The rate of removal of fines from the crystallizer was determined by the speed of 

the pump that was set at 20 mL/min when the system was activated (see calibration 

curve Appendix A). As the fines stream was drawn upwards through a vertical line, 

larger crystals fell back into the crystallizer because their settling velocity was greater 

than that of the upward fines flow (see calculations Appendix B). 

 

The CLD was determined by the FBRM, analyzed, and translated into a CSD 

(see program Appendix C). The FBRM probe uses an infrared laser beam rotating at 

high velocities. When the laser hits a crystal, the light is backscattered to the probe and 

software analyzes the signal and provides a chord-length distribution in the form of 

counts/s vs. chord length at the time of measurement. A typical histogram is shown in 

Figure 3.2.; the data were obtained at a given time for a run in which the cooling rate 

was – 0.10 ºC/min, the feed was a mixture of paracetamol in ethanol, and there was no 

fines removal.  
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Figure 3.2. Chord Length Distribution, Paracetamol-Ethanol,  
Cooling rate – 0.10 ºC/min (end of the run) 

 

    

The experiments presented in this study have been performed using paracetamol in 

ethanol solutions. The batch cooling crystallizations were done for cooling rates ranging 

from − 0.50 ºC/min to − 0.10 ºC/min. The flow rate of the fines removal stream was set 

either at 20 mL/min or 0 ml/min. This is summarized in Table 3.1. 
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Table 3.1 Experiments realized 

 

Cooling 
rate 

°C/min 

Flow rate 
fine 

removal 
1 -0.10 0 mL/min 
2 -0.10 20 mL/min 
3 -0.20 0 mL/min 
4 -0.20 20 mL/min 
5 -0.35 0 mL/min 
6 -0.35 20 mL/min 
7 -0.50 0 mL/min 
8 -0.50 20 mL/min 

 

Three runs were done at each set of conditions to insure that the results were 

reproducible. An arithmetic average was then realized on the three sets of data. In 

Figure 3.2 the CLD corresponding to a run where the cooling rate was -0.10°C/min is 

shown. We can see that the system is dilute (relatively low counts) and that the 

distribution is bi-modal. This bi-modality is expected due to previous observations on this 

system’s behavior (Worlitschek 2003) and disappears when a fines removal system is 

used.  

 

3.2 Procedures 

3.2.1 FBRM Experiments 

An FBRM probe was inserted in the crystallizer to monitor on-line the evolution of 

the crystal population. The principles on which this technique works can be found in 

Chapter II. 
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3.2.2 Washing & Drying of Paracetamol Crystals 

 

 
Figure 3.3. Filtration of the Solution 

 
 
 
The final slurry of crystals in mother liquor was removed from the crystallizer, and the 

crystals were recovered by filtration using a Buckner funnel as shown in Figure 3.3. The 

recovered crystals were introduced into a beaker filled with distilled water at 0°C 

(Paracetamol is almost insoluble in water at this temperature) and stirred with a 

magnetic Teflon stirrer. Once thoroughly washed, the crystals were again recovered by 

filtration. They were then dried at ambient temperature in order to limit the agglomeration 

of the particles. 
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3.2.3 Sieving 

 

 
Figure 3.4 Ro-Tap 

 

 

A Ro-Tap® was used to do the sieving. A stack of sieves was placed in the 

equipment, with the coarsest sieve opening on top, and the crystals were placed onto 

the top sieve. The Ro-Tap® run time was set to 45 min, and the rotation and shaking 

caused the crystals to distribute throughout the sieve stack. The stack was constituted of 

3-in. diameter sieves, brass cloth and stainless steel mesh; the sieve openings were as 

follows: 850 μm, 600 μm, 425 μm, 300 μm, 212 μm, 150 μm, 106 μm, 75 μm, 53 μm, 38 

μm, corresponding to a decrease in mesh size by √2 for two consecutive sieve 

dimensions. The sieves were chosen in consideration of the fact that a limit of 1000 μm 

is measurable by the FBRM. No crystals larger then 850 μm were recovered after the 

sieving, and there were no chords detected by the FBRM in the larger bins, thus this 

limitation has little to no influence on our process. 

The maximum amount of crystals allowed with such sieves is 27 g for 3-in. 

diameter sieves (limit: 6 kg/m2). The samples tested were weighed before classification 

in order to make sure that this limitation was respected. 
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Once the sizing of the population was complete, the particle size was analyzed. 

The material retained by each sieve was weighed, and the masses recorded. The 

population density was calculated as follows (Mullin 2001):   

( )
LLkV

MLn
avevs

ave Δ
Δ

= 3ρ
              (3.1)    

Where Lave is the arithmetic mean of 2 consecutive sieve sizes and kv is a volumetric 

shape factor (for paracetamol kv = 0.866 – Worlitschek 2003). 

The population was then normalized (sum equals to 1), plotted and compared to 

the distribution given by the restoration of the CSD from the CLD determined by the 

FBRM. 

 

3.2.4 Observation of the Crystals 

The crystals were observed with an optical microscope, as shown in Figure 3.5, 

in order to confirm the expected octahedral shape (Worlitschek 2003, Beyer 2001). The 

crystals recovered from the sieving were deposited on a thin microscope slide thus 

allowing the observation, the magnification 4x, and 10x were used. The picture shown 

below was obtained from an experiment with a cooling rate of -0.100C/min, no fines 

removal. The magnification lens used was 10x. This picture is an example of the 

crystals’ shape observed after each experiment. 
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Figure 3.5. Picture of a Crystal of paracetamol − Octahedral Shape 

 
 
 

3.3 Solution Used 

The feed mixture was formed by dissolving 89.31 g of paracetamol into 262.5 g 

of pure ethanol. This gave a feed volume of about 400 mL. 

 

3.4 Conversion of CLD to CSD 

 

Figure 3.6. Scheme of the computation of the matrix 

 

 

A Monte-Carlo Simulation was used to implement the model (Shi 2002). This 

method involves the generation and use of a set of random numbers, allowing the 

calculation of probabilities used to solve a given problem. The computer helps to make 

predictions that mimic real life. The model used is called deterministic, meaning that for 

a large enough number of inputs, the output will be the same no matter how many times 

 
Model  

A  matrix 

Free random 
rotation of the 

crystal 

 
Probability 

matrix 
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the probabilities are recalculated. The elaboration of the model will be further detailed in 

Chapter IV. 

Once the CSD obtained, the mean size and the width of the distribution are calculated 

according to the following equations. 

( )∫
∞

=
0

dLLLfL cmean     (3.2) 

 

( ) ( )∫ ∫
∞ ∞

⎟⎟
⎠

⎞
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0

2

0

22 dLLLfdLLfL ccσ    (3.3) 

 

The experimental values are then compared to the ones issued by the simulation. 
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CHAPTER IV 

MODEL 

 

 

In order to implement an efficient control scheme, it is essential to model the system, 

to be able to convert the raw data given by the FBRM (the Chord Length Distribution, 

CLD), to the Crystal Size Distribution (CSD). The relationship between the two 

distributions is complex and requires the use of distribution functions. A model taking 

into account this statistical relationship and allowing such a transformation is fully 

described in this chapter. 

 

4.1  Relationship between CLD and CSD 

Batch crystallization is used widely in the production of pharmaceutical and many 

other specialty chemicals where it is often a key step in product recovery or purification. 

This operation is essential as it determines the purity, the CSD, the morphology, and the 

yield of the product.  

Although still a significant challenge, the in-situ measurement of CSD no longer 

constitutes a major limitation. The development of new efficient techniques, such as the 

FBRM, provides a methodology for on-line monitoring of a representation of the crystal 

population in either batch or continuous crystallization systems. The FBRM technology is 

based on laser light scattering; properly installed, it allows on-line determination of the 

CLD (chord counts / bin), which is statistically related to the CSD and strongly depends 

on the geometry of the crystal. Several publications deal with the relationship between 

CSD and CLD, more particularly the estimation of the CSD from the CLD. For the FBRM 

technology, the geometry of the crystal must be well known and a 3D model needs to be 

established in order to implement the time-consuming calculations (Worlitschek 2003, 
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Wynn 2003, Ruf 2000, Li 2005 and Shi 2002). The restoration of the CSD from spherical 

particles has already been widely detailed in the literature. Modeling non-spherical 

particles is more complicated because the chords measured for a particular particle also 

depend on its orientation in space. The focus of this chapter is the restoration of the 

CSD from the measured CLD. A. Ruf and M. Mazzotti (Ruf 2000) address the issue of 

non-spherical particles; this publication was used as a starting point for the development 

of our model. A methodology using many aspects of their work is fully described in the 

following discussion. 

 

4.1.1 General Description of the Procedure 

The CSD and the CLD are statistically related as follows: (Ruf 2000, Shi 2002)  

     CLD = A * CSD            (4-1) 

This relationship is qualitative and needs to be specified further in order to obtain 

a quantitative relationship; this correlation will be investigated later in this chapter 

(Section 4.2). 

We will first focus on the computation of the conversion matrix A and then 

explore a way to restore the CSD from a measured CLD. To begin the evaluation of A, a 

description of the shape of the crystal in space is needed. The crystal can rotate freely in 

the slurry so, once the crystal geometry is described, all the possible orientations 

potentially scanned by the FBRM must be taken into account. In order to do so, a Monte-

Carlo simulation has been implemented. The random movement of the particle in space 

will be described according to the Euler theorem and Euler angles. The FBRM measures 

the chord length of a randomly oriented particle. For each orientation, the 3D object 

representing the crystal is projected onto a 2D-plane and the corresponding CLD is 

calculated for that specified configuration. Physically, this means that all light is reflected 

directly back at the sensor, independent of the orientation of the crystal face. For each 



 33

pre-defined dimension of the particle, the CLD will be computed, thus constructing the 

probability matrix A in a step-by-step manner. The method used to restore the CSD from 

the CLD is the CLSM (Constrained Least Squares Minimization) (Worlitschek 2003). A 

build-in function of the software Matlab has been used to perform the minimization. 

 In order to model the system, we make several assumptions about the 

measurements. First, we have to make sure that the distance from the probe window to 

the particle does not influence the CLD measured, so the assumptions are made that the 

laser beam is focused into a point and that there is no attenuation of the signal during its 

propagation through the solution. Then, in order to justify a 2D projection of the 3D 

model, we assume that for any considered orientation of the crystal, the light is reflected 

back to the probe along the same incoming direction. We also assume that the flow has 

no influence on the measurement; i.e., the particle does not move during the 

measurement and that a straight line between 2 edges of the object represents the 

chord length. To capture the effect that larger crystals are measured more often by the 

probe, we assume that the probability that the beam crosses a particle having a specific 

3D orientation is proportional to the vertical length (height) occupied by the 

corresponding 2D projection of the object. We also neglect the effect of mixing, 

suspension density, shadowing and masking. 
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Figure 4.1. Masking and Shadow effect 
 

 

As shown in Figure 4.1, if A is larger than B, and is located behind B, then the 

beam will not detect the particle that is masked by A. If B is located partially in front of a 

larger particle A, then the probe will only consider the particle as one. These two effects 

are called masking and shadowing effects, and they are neglected here. These 

assumptions are made so a simpler model can be implemented. 

 

As shown in Figure 4.2, the CSD, as defined by the normalized population 

density n(L), is discretized into nd(L). The interval (1 to 1000 μm) is divided into 90 size 

ranges, also called channels or bins (for example 100 to 107.978 μm). These intervals 

 Laser 

Laser 

B 

 
 

A 

B 

 
 

A 
 
 

A 

 
 

A 

B 

Masking 
Effect 

Shadowing 
Effect 



 35

are pre-defined by the FBRM, so that the logarithm of the ratio (Li+1/Li) is a constant 

(about 0.0767).  

The probable resulting CLD for a single particle of characteristic size L is 

represented mathematically as qp(s, L), where s is the representative value of chord 

length for a particle of size L. This distribution is computed using an algorithm defined 

later in this chapter, and then weighted to account for preferential sampling of large 

particles. Then all the weighted CLDs (one for each random orientation considered of 

the particle of size L) obtained are added and the resulting distribution is normalized in 

order to provide the probable CLD - q(s) - corresponding to the initial distribution n(L). 

By assuming a known CSD, n(L), and calculating the corresponding CLD, q(s), a 

relationship between CLD and CSD was derived. This correlation can then be used to 

compute the CLD from the CSD and vice versa (see Section 4.2). 
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Figure 4.2. Discretization of the population density  
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First, we calculate the CLD, qp(s,L) corresponding to a single particle of a known 

size L and geometry. Then we will generalize the process to a larger population of 

crystals with various sizes but the same known geometry, thus calculating q(s). 

 

4.1.2 Step by Step Description of the Process 

Computation of the Matrix 

Step 1- Definition of the crystal shape in the 3D space  

In order to implement the simulation, the geometry of the particle must be well known.  

The shape of the particle is simply defined in 3D space by an ellipsoid equation 

(Equation 4.2):  

1=++
kkk

c
z

b
y

a
x

        (4.2)  

The parameters a, b, c, and k are determined by the shape of the crystal; a, b, c 

represent the semi-axis of the crystal, i.e. the distance along the x, y and z axis (as 

shown in Figure 4.2), and k is a shape factor as illustrated below (Ruf 2000). 

Here are some examples:  

 

  

     

 

Cube:  a = b = c and k = 10 

10101010 azyx =++     (4.3) 

where a is the semi axis corresponding to half of the face 

diagonal 

Octahedron: a = b = c and k = 1 

azyx =++     (4.4) 

where a is half the height of the octahedron 
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To implement this step, it is assumed that the shape of the crystal is well known. 

Paracetamol crystals, for example, have an octahedral shape, which means the 

parameters are, a = b = c and k = 1: 

      azyx =++      (4.4) 

 

 

 
Figure 4.3. Representation of an octahedron in 3D space 

 
 
Figure 4.3 represents the octahedron in 3D space as defined by Equation (4.4) 

 

Step 2- Monte-Carlo Simulations: the angle of rotation is a random variable  

The general expression "Monte Carlo method" relates to a wide variety of 

procedures. Monte Carlo (MC) methods are based on the use of random numbers and 

probability statistics to simulate very complex systems. For example, solving equations 

Sphere: a = b = c and k = 2 

2222 azyx =++      (4.5) 

where a is the radius of the sphere 



 39

that describe the interactions between two atoms is fairly simple; solving the same 

equations for hundreds or thousands of atoms is almost impossible. With MC methods, a 

large system can be modeled by a number of random configurations, that can be used to 

describe the system as a whole, and the problem can be solved using the resulting 

probabilities.  

MC simulations refer to an analytical method meant to mimic a real-life system, and 

they are used when other analyses are too mathematically complex or too difficult to 

implement. A simulation automatically analyzes the effect of varying inputs on the output 

of the modeled system. Monte Carlo simulations involve the repetitive random 

generation of values for uncertain variables in order to simulate a specific model. 

Simulations are comprised of hundreds or even thousands of trials. The accuracy of the 

result depends on this number (the higher, the better) and can also depend on the 

quality of the random-number generator.  

A wide variety of software can be used to generate random values. The problem 

is that computer-generated numbers aren't truly random, since computers are 

deterministic. But, given an initial value — generally called a random-number seed —

several mathematical operations can be done on the seed so as to generate unrelated 

(pseudorandom) numbers. One remaining disadvantage is that if the same seed is used 

more than once, the same random numbers will be generated for every run. Considering 

that there are multiple trials, the use of different random-number seeds is crucial. 

Commercial programs usually pull a random seed from somewhere within the system, 

sometimes the time, so the seed is unlikely to be the same for two different trials. 
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This is the method that was used here to compute the conversion matrix A. The 

random numbers generated are linked to the random orientation of the particle in space. 

The software used to produce this set of numbers uses time as the seed.  

 

Step 3-  Generation of random rotations 

A crystal in a slurry moves freely and randomly under the effect of the agitation. 

According to Euler’s theorem, “an arbitrary rotation may be described by only three 

parameters”. Several conventions exist for the Euler angles (φ, θ, ψ), the most commonly 

used are: the ‘x-convention’, the ‘y-convention’ and the ‘x, y, z - convention’. For each 

convention, a matrix has been developed to express the coordinates in the new basis 

(after a random rotation) as a function of the coordinates in the first basis. Figure 4.4 

shows a rotation around the x-axis by an angle α. 

 

 

 

 

   

 

 

 

 

 

The rotation matrix is obtained by multiplying the matrices of the individual 

transformations. Positive rotations in the mathematical sense are counterclockwise: 

Figure 4.4. Rotation of an object by an angle α and around the x-axis. 
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Rotation by α about the z-axis:  
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⎟
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Rotation by β about the x-axis: 
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 Rotation by γ about the y-axis:   
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For the ‘x, y, z’ convention also known as the ‘pitch-roll-yaw’ convention (In an 

airplane or similar craft, the three axes are called roll, pitch, and yaw: θ is pitch, ψ is roll, 

and φ is yaw). The first rotation is along the z-axis by φ ∈ [0, 2π], then the second is 

around the new y-axis by θ ∈ [0, π] and the third is along the new x-axis by ψ ∈ [0, 2π], 

the matrix representing this transformation is: 

)(*)(*)(,, φθψ ZYXR zyx =          (4.9) 
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θφθφθ

coscoscossinsinsincossinsincossincos
sincoscoscossinsinsinsincoscossinsin

sinsincoscoscos

,, zyxR   (4.10) 

 

The ‘x, y, z’ convention will be used in this study. Considering that any one of the three 

conventions would give the same results at the end of the simulation, it is in fact just a 

matter of preference. For this range of angles, and with a totally random definition of the 

angles, all the crystals orientations are equally likely. 
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Step 4- Exportation of the model in the new random basis 

The model is defined in a given basis by a relationship between the coordinates such 

as f(x, y, z) = 0, this relationship is expressed in Equation (4.2). In order to export the 

model in the new basis, the new coordinates must be re-evaluated. The following 

equation links the old coordinates to the new ones: 

⎟
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,,      (4.11) 

Inverting the matrix Rx,y,z leads to the expression of the former coordinates x, y, z in 

function of the new ones x’, y’, z’ 
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 Thus the model Equation (4.1) describing the particle shape becomes 

( ) ( ) ( ) 1''''''''' 333231232221131211 =
++

+
++

+
++ kkk

c
zMyMxM

b
zMyMxM

a
zMyMxM

(4.13) 

For paracetamol, this equation can be simplified into: 

( ) ( ) ( ) azMyMxMzMyMxMzMyMxM =++++++++ ''''''''' 333231232221131211  (4.14) 

 

Step 5- Orthogonal projection onto the x’,y’-plane,  

Computation of the chord length s 
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Figure 4.5. Chord length measured by FBRM  

 

Now that the particle shape is fully defined in the new basis, it is necessary to 

describe what the FBRM actually measures, which is revealed in Figure 4.6. Considering 

the properties of the FBRM, the 3D shape needs to be orthogonally projected into a 2D 

plane in order to describe correctly the shape observed by the probe.  

 

 

 
Figure 4.6. On the left, various possible orientations of the particle -- On the right, what is 
measured by the FBRM (orthogonal 2D-projection of the particles located on the left). The 

laser beam is normal to the plane constituted by the paper. 
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The FBRM laser is assumed to have a 0o aperture; the projection on the 2D 

plane is an orthogonal one, also known as orthographic projection. The 2D graphic 

representation of a 3D object projected onto a plane is formed by the perpendicular 

intersection of lines drawn from all the points on the 3D object to the plane of projection. 

The 2D projection, as shown in Figure 4.7, of the particle with a specific 

orientation can thus be calculated. In order to realize this projection, the particle was first 

defined in 3D space. Considering the maximum length L, a matrix describing the y’ and 

z’-coordinates containing equally spaced values for y’ and z’ was constituted and the 

equation determining the shape was transformed to fit the new system of coordinates. 

This equation was then solved for the corresponding x’-coordinate.  

 

 

 

 
Figure 4.7. Projection of a 2D shape onto the x-y plane  

from a 3D object in a specific orientation 
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Considering that the maximum dimension is L and that the point of origin O (0,0) 

always is located at the center of the crystal, the maximum absolute value possible for 

the coordinates is L/2. Thus we could define a coordinate matrix with y’- coordinates 

ranging from –L/2 up to L/2 with those values calculated by taking either a predefined 

step Δy or a predefined number of points pmax. The model was described by Equation 

(4.4) where a = L/2. Knowing the conversion matrix to transform from one basis to 

another, Equation (4.4) was then modified in order to obtain Equation (4.14) as shown 

previously. 

 

 

 
Figure 4.8. Projection onto the x-z plane 
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Considering that we are doing a projection onto the x-y plane, the largest distance s 

(z’ varies) along the x-axis for a given y’ is going to be projected on the plane as shown 

by the Figure 4.8.  

Then we define a z’-coordinate matrix the same way as we defined the y’-coordinate 

matrix, ranging from L/2 to –L/2 with a predefined step size Δz or a predefined number of 

points nmax. For each y’-coordinate considered, Equation (4.14) was solved for the 

unknown x’-coordinate, with all the z’-coordinates taken into consideration. This equation 

had either no solution, 1 (very unlikely, but still a possibility) or 2 solutions depending on 

the orientation of the crystal. When there were 1 or 2 solutions, they were recorded as 

x1’ and x2’. The maximum and the minimum solutions x’ found were recorded and used 

to calculate the projection and thus doing, the chord length s corresponding to each y’, 

as shown in Figure 4.8: 

 s = ⎜x’max-x’min⎜    (4-15) 

The chord lengths measured by the FBRM corresponded to the largest lengths along 

the x-axis measurable for a given y’ (for all z’). 

 

To summarize, the object was divided into slices along the y–axis. The slices were 

projected onto the x-y plane, and the corresponding chord was calculated as being the 

length of the straight line between 2 edges of the 2D object, as illustrated in Figure 4.9. 

Then all the chords (for all the slices) were regrouped, according to the pre-specified 

bins for chord length, to implement the calculation of the discretized CLD for a single 

particle qp,d( s, L). The chord length distribution qp,d( s, L) contains the normalized 

number of chords expected for each channel of s, generated by a particle of size L. 
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Figure 4.9. Computation of the CLD for a random orientation projected on the plane 

 
 
 
The calculated chord lengths s were defined as shown in Figure 4.9. The CLD (chord 

counts / bin) for a particular orientation of a particle of a given characteristic size could 

thus be calculated. 

 

Step 6- Computation of the CLD for a single particle of size L, qp,d( s, L) 

The CLD is realized by computing the number of chord lengths in a specific channel. 

Once the bins are defined, the distribution can be calculated (number of chord lengths / 

predefined bin). The CLD is obtained by calculating how many calculated chords s are 

located inside each bin. The resulting CLD is then normalized to obtain qp,d( s, L) (Ruf, 

2000). 
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It was assumed that the probability of the laser from the FBRM striking a particle with 

a particular orientation is proportional to the height of the particle h. Thus each of the 
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CLDs (one for each random orientation) was weighted by the height of the 2D image in 

the new projection (Ruf 2000).  

 
 
 

 

Figure 4.10.  Influence of the size of the particle 

 
 

 
Figure 4.10 illustrates this point by showing how a larger particle A of height hA is more 

likely to be struck by the FBRM laser than a particle B of height hB. Therefore, since the 

step-size in computing the CLD is constant regardless of h, the CLD of A has a larger 

impact on the overall CLD than the CLD of B. We account for this by weighting each 

calculated CLD by the height of the particle. 
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As illustrated in Figure 4.11, the height h was calculated by projecting the 6 vertices 

of the octahedron onto a 2D-plane and searching for the maximum absolute value ymax 

for the y-coordinate (ymax ≤ L). Considering that the system is highly symmetric, h was 

calculated according to the following formula: 

  h = 2 * ymax     (4-18) 

 

 
A 

B hA hB 
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Figure 4.11. Height of particle for different orientations 

 
  
 
Step 7- Probable CLD qp,d(s, L) for a particle of the specified size L 

Steps 1 through 6 were repeated for over 5000 different random orientations, thus 

implementing a Monte-Carlo Simulation. The chord length distributions obtained for each 

orientation were weighted by the projected height of the crystal with the specified 

orientation. They were then summed up and the total was normalized. This results in the 

computation of a constant probable CLD for a single crystal of a given size L: qp,d( s, L). 

This simulation was realized to take into account the random orientations possible of the 

particle. 
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Figure 4.12. Probable CLD - qp,d( s, L=630) - for an octahedron such as L=630 μm 

 

 

Figure 4.12 illustrates the distribution qp,d( s, L) for L=630 μm for an octahedron of shape 

defined by a = b = c and k = 1. There is a sharp maximum for L/√2= 445.5 μm (size 

range: 429.866 to 464.159 μm), which corresponds to the length of the edges of the 

octahedral (see Figure 4.7), thus making it most likely to be detected. The distributions 

corresponding to other common shapes have been published elsewhere (Ruf 2000, Shi 

2000 and Shi 2002). In contrast, the sphere geometry generates the exponentially 

shaped curve shown in Figure 4.13. 
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Figure 4.13. Chord length distribution qp,d( s, L) for a sphere of diameter L=200 μm 

 
 
 

Thus the CLD, qp(s,L), for a single particle of known shape and size L is 

computed. In an attempt to clarify the process and generalize the procedure for a larger 

number of crystals of different sizes, but identical geometry, a simple example is 

presented. 

  

We assume a discretized population distribution nd(L) that has 1 paracetamol 

crystal of size 10 μm and 1 paracetamol crystal of size 100 μm. The paracetamol crystal 

has an octahedral shape. Thus the corresponding CSD, expressed as nd(L), is displayed 

in Figure 4.14. 
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Figure 4.14. Population considered in the example, nd(L) 

 
 
 

There is one crystal in the size range 9.261 to 10 μm and another one in the size 

range 92.612-100 μm. The computed CLD qp,d( s, L) for the two crystals is shown in 

Figure 4.15. Both distributions were obtained according to the process described 

previously, and are averaged over 5000 different orientations of the particle. 
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Figure 4.15. qp,d( s, L) for a single particle of dimension 10 μm and of dimension 100 μm 

 
 
 

Figure 4.15 shows the CLDs for two crystals, qp,d( s, L), one of size 10 μm and 

another of size 100 μm. According to the same principle illustrated in Figure 4.10, the 

larger crystal has a larger cross-section, and therefore has a larger influence on the 

resulting distribution q(s). Thus both CLDs are weighted by L before being added and 

normalized to form the CLD - q(s) - corresponding to the population previously described 

(Ruf 2000, Worlitschek 2005). 
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The resulting discretized chord length distribution, qd(s) (chord counts / bin) 

corresponding to the continuous distribution q(s), for the population is shown in Figure 

4.16. 

 
 
 

 
Figure 4.16. CLD - qd(s) - for the population of octahedron considered in the example 

 
 
 

The same procedure was used to generalize the process to a population of X 

crystals of different sizes. The crystal sizes L were discretized into the same bins as the 

chord length s so 90 representative sizes were considered. The CLDs (qp,d( s, L)) 

corresponding to a single particle were computed for each representative crystal sizes L. 

These CLDs were arranged to form a 90*90 superior triangular conversion matrix A. This 

matrix was then used to restore the CSD -nd(L) - from the CLD - qd(s). 
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4.2 Restoration of the CSD 

It has been shown that the CSD, n(L), and the CLD, q(s), are statistically related. 

The conversion matrix A described earlier is the link between the two distributions. The 

qualitative relationship usually shown is expressed as follows: CLD = A * CSD (4.1). (Ruf 

2000, and Shi 2002), 

 eAxb +=      (4-21) 

Where b, A, x are defined such as (Ruf 2000, Worlitschek 2005): 
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The conversion matrix A was not computed using Equation (4-23) since the 

continuous distribution qp( s, L) is not know analytically, but was determined instead 

using Monte Carlo Simulations, as explained in the previous paragraphs and is a 

triangular one. Considering that the particle size is defined as being the larger dimension 
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of the crystal, it is not possible to measure a chord length s longer than the actual 

particle size L. In few cases (e.g. spherical particles), it seems easy to invert the 

conversion matrix in order to restore the CSD nd(L). Unfortunately, for most crystals 

geometry, A is ill-posed. The solution to the above equation is: 

( ) bAAAx TT 1−
=      (4-25) 

For example, the matrix can be inverted for spherical particles. But, quite often the 

matrix cannot be inverted or the precision on the inverse is poor, and the problem is thus 

said to be ill-conditioned. This is the case for octahedron (condition number of A = 

2*1018). Thus we will explore further an alternate method used elsewhere (Worlitschek 

2003) to restore the CSD, n(L): the utilization of the CLSM (Constrained Least Squares 

Minimization). With this method, additional constraints are added so that a unique CSD, 

nd(L) can be computed from the CLD qd(s).  

The following minimization problem is considered: 

( )22 ˆˆmin xBbxA λ+−     (4.26) 

Where the Euclidian norm is used, λ is an apositive adjustable regularization parameter, 

and B is a matrix operator defining the a priori constraint. 

Thus for a chosen B and λ, the solution to (4.18) is unique and is given by: 

( ) bABBAAx TTT 1ˆ −
+= λ     (4.27) 

The matrix B and the parameter λ are introducing additional constraints into the system 

so that a unique solution to the equation exists. There are 2 common choices for B 

depending on the constraint one wants to impose to the system. First, B=I is said to be 

the ‘lowest energy’ solution ( x̂  small is requested). The second possibility is to look for 

a solution with low curvature, in this case we use: 
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We use the matrix B in Equation (4.28) since we expect the distribution to be 

smooth. To obtain the parameter λ assuming a lack of information on the error, a plot 

( )2ˆln BxA −  versus ( )2ˆln xB  was generated. This curve has the shape like an L, the 

value of λ was determined according to the L-curve criterion, the location of the kink of 

the L-curve happened for the optimum value of  λ (Worlitschek 2003). The optimum 

value of λ is, for our system, 1.6. 

Once  λ was determined, the CSD ( x̂ ) was then easily calculated. 

( ) TTT ABBAAC

Cbx
1

ˆ
−

+=

=

λ
    (4.29) 

Another easier way to restore the CSD, reside in the utilization of the “lsqlin” function in 

Matlab. This is the function we will use. It solves the minimization problem:  

⎟
⎠
⎞

⎜
⎝
⎛ − 2

2
*

2
1min bxA

x
     (4.30) 

The following conditions are implemented:  

• 0)(1 ≥∀ iLni  

• 1)(1 ≤∀ iLni  

• 1)(1 =∑
i

iLn  

The restored CSD is then normalized and then compared to the results given by the 

sieving experiments (see chapter V.) 
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For the example described previously in this chapter, the global CLD, qd(s), was 

considered in order to check if the restored CSD, nd(L), matched the actual population; 

the results are displayed in Figure 4.17.  We can see 2 peaks located at 10 and 100 μm, 

the restored distribution overlaps with the initial one. 

 
 
 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 20 40 60 80 100 120 140

size (um)

nd(L) initial population
restored CSD

 
Figure 4.17. Comparison, initial population and CSD, nd(L) restored according to the 

procedure described in this chapter 

 
 
 
 

The CLD qd(s) was then computed from the calculated CSD nd(L) (according to 

equation 4.1) in order to provide another checkpoint of the model. Figure 4.18 shows the 

results, the two distributions overlap. 
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Figure 4.18. Comparison between recalculated CLD and initial CLD 

 
 
 
This simple example illustrates the procedure that will be used to restore the population 

distribution nd(L) from the discretized chord length distribution given by the FBRM qd(s). 
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CHAPTER V 

RESULTS  

 

 

The results obtained in the series of experiments described in Chapter III are 

presented here. The influence of the cooling rate and the fines removal system are 

explored. The population density obtained for each experiment is computed in two 

different ways. First, an experimental distribution is obtained via a sieving and weighting 

of the crystals; and second, the population density is restored from the CLD raw data 

according to the model detailed in Chapter IV.  

 

5.1 No Fines Removal 

Several cooling rates were used to determine the evolution of the population as a 

function of the cooling rate. Each experiment was run three times in order to insure 

reproducibility of the results. The collected data were averaged over the three runs for 

each set of experimental conditions (1–3 and 4–6). 

 

5.1.1 Cooling Rate – 0.10 ºC/min 

Acetaminophen, also known as paracetamol, was crystallized from solutions in 

ethanol at a cooling rate of – 0.10 ºC/min without fines removal. Figure 5.1 shows the 

evolution of the chord counts during the run as measured by the FBRM. The evolution of 

the temperature is also displayed on the graph. The onset of nucleation is clearly 

identified as occurring after about 7 hours of run time: i.e., when the temperature 

reached approximately 32 ºC. Note that the chord counts increased steeply for all size 

ranges, although slightly more slowly for the larger sizes than for the smaller ones. 
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There was some decrease in the counts of small crystals as the run progressed, 

although the chord counts became nearly constant for all sizes after about 8.5 hours.  
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Figure 5.3. Evolution of the chord counts and the temperature for a  

cooling rate of – 0.10 °C/min without fines removal  

 
 
 
After each run, the crystals were washed with water at 0 ºC, and then dried at 

ambient temperature. Table 5.1 shows the results of sieve analysis performed on each 

crystal product. From the sieve analyses, the population distribution was determined 

according to the procedure explained in Chapter III. Figure 5.2 illustrate the results.  
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Table 5.1. Sieving results from runs with a cooling rate of – 0.10 0C/min without fines 
removal 

L [μm] Lmean[μm] Run1.1 
ΔM [g] 

Run1.2 
ΔM [g] 

Run1.3 
ΔM [g] 

1000         
850 925 0.12 0.38 0 
600 725 1.60 2.18 2.18 
425 512.5 5.82 6.73 4.23 
300 362.5 9.93 11.33 8.16 
212 256 10.97 11.65 11.29 
150 181 1.24 1.48 1.66 
106 128 0.39 0.35 0.35 
75 90.5 0.08 0.07 0.08 
53 64 0.01 0.01 0.01 
38 45.5 0.01 0.01 0 
0 19 0 0 0 

 
 
 
Figure 5.2 shows a fit of the normalized population density to the sieve data from 

Runs 1.1, 1.2, and 1.3. The runs were operated with a cooling rate of – 0.10 °C/min, but 

without fines removal. The data from the three runs generally are clustered close 

together, showing good run-to-run reproducibility. The means and spreads of the 

distributions were 232.5 ± 3.71 μm and 103.3 ± 0.26 μm, respectively. The fit and the 

data points from each run indicate that the size distribution was bimodal. 
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Figure 5.2. Sieving data from runs 1.1, 1.2 and 1.3 for a cooling rate of – 0.10 °C/min, 

without fines removal 

 
 
 
The final normalized chord length distributions for the three runs in this set were 

averaged and used in conjunction with the method outlined in Chapter IV to recover the 

crystal size distribution, as quantified in normalized population density. A comparison 

between the recovered population density and the experimental values for the three runs 

is shown in Figure 5.3. Although somewhat noisy over smaller size ranges, agreement is 

reasonably good. 
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Figure 5.3. Restored and Experimental distribution for a cooling rate – 0.10 °C/min, without 

fines removal 

 
 
 

Due to the method of recovery of the crystals (collection from the slurry, washing 

and drying), it is possible that some smaller particles were lost during the procedures 

and some bigger particles might have been broken during the sieving process. Those 

experimental conditions might explain the observed difference. 
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Figure 5.4. Experimental and restored normalized chord length distributions for a  

cooling rate of – 0.10 ºC/min, without fines removal 

 
 
 

Figure 5.4 shows the CLD restored from the calculated CSD according to the 

formula CLD = A * CSD. The two curves are comparable, this shows that going from 

CLD to CSD and then from CSD back to CLD does not introduce a significant variation.  

 

5.1.2 Cooling Rate – 0.20 ºC/min 

Acetaminophen was crystallized from ethanol this time at a higher cooling rate of 

– 0.20 ºC/min without fines removal. Figure 5.5 shows the evolution of the chords 

counts, as well as the evolution of the temperature during the run as monitored by the 

FBRM and the thermo-sensors. Nucleation clearly occurred after about 5.2 hours of run 

time; the temperature at this time was approximately 19 ºC. The nucleation event 
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resulted in a sudden and steep rise in the chord counts for all size ranges. This increase 

was slightly less marked for the larger sizes compared to the smaller ones. The chord 

counts became nearly steady for all size ranges after about 6 hours.  
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Figure 5.5.  Evolution of the chord counts and the temperature for a  

cooling rate of – 0.20 °C/min without fines removal 

 
 
 
After each experiment, the crystals were washed with cold water (0 0C), dried at 

ambient temperature and classified according to their size by using a Ro-Tap sieve 

shaker. Table 5.2 display the results of the sieve analyses carried out after each 

experiment. Each sieve was then weighted and the population density was established 

according to the procedure described in Chapter III, and are displayed in Figure 5.6.  
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Table 5.2. Sieving results from runs with a cooling rate of – 0.20 0C/min without fines 
removal 

L [μm] Lmean[μm] Run2.1 
ΔM [g] 

Run2.2 
ΔM [g] 

Run2.3 
ΔM [g] 

1000         
850 925 0 0 0 
600 725 1.26 1.54 1.62 
425 512.5 2.15 2.64 2.77 
300 362.5 4.82 5.58 2.75 
212 256 7.09 7.87 6.55 
150 181 4.42 6.13 6.85 
106 128 1.20 1.52 1.70 
75 90.5 0.25 0.28 0.35 
53 64 0.02 0.04 0.03 
38 45.5 0.01 0.01 0.01 
0 19 0 0 0 

  
 
 
Figure 5.6 shows a fit of the normalized population density to the sieve data from 

Runs 2.1, 2.2, and 2.3. The runs were operated with a cooling rate of – 0.20 °C/min, 

without fines removal. The data from the three runs generally show good reproducibility. 

The means and spreads of the distributions were 180.7 ± 2.74 μm and 82.5 ± 0.71 μm, 

respectively.  

In the distribution in Figure 5.6, we can see that the mean size is shifted to lower 

values compared to the results obtained with the previous cooling rates. The mean size 

and the spread of the distribution are decreasing with the cooling rate. 

. 
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Figure 5.6. Sieving data from runs 2.1, 2.2 and 2.3 for a cooling rate of – 0.20 °C/min, 

without fines removal 

 
 
 

The final normalized chord length distributions for the three runs in this second 

set were averaged and used to implement the method described in Chapter IV in order 

to recover the crystal size distribution, as quantified in normalized population density. A 

comparison between the recovered population density and the experimental values for 

the three runs is shown in Figure 5.7. Although slightly noisy over smaller size ranges, 

agreement is reasonably good. 

A small difference is noticed and might be due to both the model employed to 

compute the CSD and the experimental method of recovery for the crystals. 
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Figure 5.7.  Restored and Experimental distribution for a cooling rate – 0.20 °C/min, 

without fines removal 

 
 
 
5.1.3 Cooling Rate – 0.35 ºC/min 

The same compound was crystallized from the alcohol, this time at a cooling rate 

of – 0.35 ºC/min, once again without fines removal. Figure 5.8 illustrates the variation of 

the chord counts during the run as recorded by the FBRM, the recorded evolution of the 

temperature is also shown. Nucleation is clearly noted as occurring after about 4.4 hours 

of run time, the temperature measured is approximately 13 ºC. Note that the chord 

counts increased steeply for all size ranges, except for the larger sizes whose number is 

weakening as the cooling rate increases. Steady state was achieved after about 6 hours.  
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Figure 5.8. Evolution of the chord counts and the temperature for a  

cooling rate of – 0.35 °C/min without fines removal 

 
 
 
This time again, after each run, the crystals were washed, then dried and 

classified according to their sizes, this was done following the procedure described 

earlier. Table 5.3 regroups the results of the size analysis realized an each crystal 

product. From this analysis, the population distribution was calculated according to the 

formulas detailed in Chapter III. The resulting population distribution is illustrated by 

Figure 5.9. 
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Table 5.3. Sieving results from runs with a cooling rate of – 0.35 0C/min without fines 
removal 

L [μm] Lmean[μm] Run3.1 
ΔM [g] 

Run3.2 
ΔM [g] 

Run3.3 
ΔM [g] 

1000         
850 925 0 0 0 
600 725 0 0 0 
425 512.5 0 0.41 0 
300 362.5 4.28 9.55 7.01 
212 256 13.53 10.24 11.99 
150 181 7.09 5.42 6.74 
106 128 2.03 1.53 2.08 
75 90.5 0.47 0.35 0.45 
53 64 0.09 0.06 0.05 
38 45.5 0.02 0.02 0.01 
0 19 0 0.00 0 

 
 
 
 

Figure 5.9 shows a fit of the normalized population density to the sieve data from 

Runs 3.1, 3.2, and 3.3. The runs were realized with a cooling rate of – 0.35 °C/min, and 

without fines removal. The experimental data collected from the three runs are close, 

thus showing a good reproducibility of the system. The means and spreads of the 

distributions were 153.27 ± 2.08 μm and 64.1 ± 0.54 μm, respectively.  

Figure 5.9 confirms the trend that both the mean size and the spread of the 

distribution are decreasing with the cooling rate. 
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Figure 5.9. Sieving data from runs 3.1, 3.2 and 3.3 for a cooling rate of – 0.35 °C/min, 

without fines removal 
 
 
 
 

The final normalized chord length distributions for the three runs in this third set 

were averaged. The resulting distribution was used to implement the model outlined in 

Chapter IV to recover the crystal size distribution, as quantified in normalized population 

density. A comparison between the recovered population density and the experimental 

values for the three runs is shown in Figure 5.10. Although somewhat noisy, agreement 

is reasonably good.  
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Figure 5.10. Restored and Experimental distribution for a cooling rate – 0.35 °C/min, 

without fines removal 

 
 
 
 

5.1.4 Cooling Rate – 0.50 ºC/min 

The crystallization is now done at a cooling rate of – 0.50 ºC/min, without fines 

removal. Figure 5.11 shows the evolution of the counts and the temperature versus time. 

Nucleation occurs this time about 5 hours; then the temperature probe read 13 ºC. As in 

the other runs, the chord counts increased abruptly for all size ranges, the counts for 

large chords are still lower. A constant is reached for all size ranges after 5 hours. 



 74

0

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10 12time (h)

chord counts / sec

0

10

20

30

40

50

60

70

80T (C)

100-1000 um
1-10 um
10-25 um
25 -100 um
temperature

 
Figure 5.11. Evolution of the chord counts and the temperature for a  

cooling rate of – 0.50 °C/min without fines removal 

 
 
 
As usual, the crystals obtained were washed, dried and classified. Table 5.4 

shows the results of the sieve analysis performed after each experiment. The population 

density was then determined according to the formula explained in Chapter III, the 

corresponding distribution is shown in Figure 5.12. Once again, the three data sets are 

close, indicating that the runs are consistent. 
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Table 5.4. Sieving results from runs with a cooling rate of – 0.50 0C/min without fines 
removal 

L [μm] Lmean[μm] Run4.1 
ΔM [g] 

Run4.2 
ΔM [g] 

Run4.3 
ΔM [g] 

1000         
850 925 0 0 0 
600 725 0 0 0 
425 512.5 0 16.24 0 
300 362.5 8.07 5.56 14.35 
212 256 13.62 8.69 13.35 
150 181 9.00 4.85 8.29 
106 128 2.82 1.37 2.28 
75 90.5 0.55 0.27 0.43 
53 64 0.08 0.04 0.07 
38 45.5 0.02 0.01 0.02 
0 19 0 0 0 

 
 
 
 

Figure 5.12 shows a comparison of the normalized population density to the 

sieve data from Runs 4.1, 4.2, and 4.3. The runs were operated with a cooling rate of  

– 0.50 °C/min, without fines removal. As the three data sets are giving similar results, 

reproducibility is insured. The means and spreads of the distributions were 141.5 ± 2.57 

μm and 58.42 ± 0.61 μm, respectively.  
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Figure 5.12. Sieving data from runs 4.1, 4.2 and 4.3 for a cooling rate of – 0.50 °C/min, 

without fines removal 
 
 
 
The final normalized chord length distribution for the three runs in this set were 

averaged and used in accordance with the method detailed in Chapter IV to recover the 

crystal size distribution, as quantified in normalized population density. A comparison 

between the recovered and the experimental population density for the three runs is 

shown in Figure 5.13. Although slightly noisy over smaller size ranges, agreement is 

fairly good. 
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Figure 5.13. Restored and Experimental distribution for a cooling rate – 0.50 °C/min, 

without fines removal 

 
 
 

5.2      Fines removal 

The experiments described in Section 5.1 were repeated, but with the 

implementation of classified fines removal. As before, each experiment was repeated 

three times in order to insure reproducibility of the results. The collected data were 

averaged over the three runs for each set of experimental conditions. 

 

5.2.1 Cooling Rate – 0.10 ºC/min 

Acetaminophen was crystallized from solutions in ethanol at a cooling rate of  

– 0.10 ºC/min, this time with fines removal. The evolution of chord counts in Figure 5.14 

contrasts in several key ways with that for the system without fine removal shown in 
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Figure 5.10. Again, the onset of nucleation is denoted by a rapid increase in chord 

counts, but only after about 8.5 hours of run time. At that point the system temperature 

had decreased to approximately 22 ºC, which is 10 ºC lower than was necessary for 

operation without fines removal. After increasing rapidly, the chord counts for the smaller 

sizes reached a maximum and then steadily diminished in the ensuing two hours. 

Clearly, the small crystals were being dissolved and the larger ones were growing. 
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Figure 5.14. Evolution of the chord counts and the temperature for a  

cooling rate of – 0.10 °C/min with fines removal 

 
 
 

The crystals were washed and dried as described. Table 5.5 shows the results of 

sieve analysis performed on each crystal product. From the sieve analyses, the 

population density was determined according to the procedure explained in Chapter III 

and is plotted in Figures 5.15. 
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Table 5.5. Sieving results from runs with a cooling rate of – 0.10 0C/min with fines removal 

L [μm] Lmean[μm] Run1.4 
ΔM [g] 

Run1.5 
ΔM [g] 

Run1.6 
ΔM [g] 

1000         
850 925 17.53 8.37 3.58 
600 725 12.73 14.68 11.07 
425 512.5 2.99 5.15 9.51 
300 362.5 1.09 8.48 7.79 
212 256 0.59 1.97 1.81 
150 181 0.18 0.33 0.32 
106 128 0.06 0.04 0.04 
75 90.5 0.03 0.03 0.01 
53 64 0.02 0.01 0 
38 45.5 0.01 0 0 
0 19 0 0 0 

 
 
 
Figure 5.15 shows a fit of the normalized population density to the sieve data 

from Runs 1.4, 1.5, and 1.6. The runs were operated with a cooling rate of  

– 0.10 °C/min, with fines removal. The data from the three runs in this set generally are 

clustered close together, showing good run-to-run reproducibility. The means and 

spreads of the distributions were 414.7 ±12 μm and 285.5 ± 1.43 μm, respectively. We 

can note an increase in the mean size by a factor 1.78 but unfortunately, the width of the 

distribution also rises by a factor 2.76 when compared to the run without fines removal. 

The distribution in Figure 5.15 does not show the same bimodality as that 

exhibited in runs without fines removal. Presumably, this is because the fines removal 

system reduced the fraction of fine particles that cause the bimodality. While two of the 

data sets obtained were comparable, the third one was quite dissimilar and doesn’t 

appear in the exploitation of the results.  
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Figure 5.15. Sieving data from runs 1.4, 1.5 and 1.6 for a cooling rate of – 0.10 °C/min, with 

fines removal 

 
 
 
The final normalized chord length distribution for the two remaining runs were 

averaged and used in conjunction with the method outlined in Chapter IV to recover the 

crystal size distribution, as quantified in normalized population density. A comparison 

between the recovered population density and the experimental values for the three runs 

is shown in Figure 5.16.  

We can observe that the restored CSD is really noisy; this is due to the fact that 

the CLD raw data given by the FBRM for this data set were somewhat noisy. The 

restoration process increases that noise. The restored population density is in 

agreement with the sieving experiments, but the noise “shadows” this agreement. 
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Figure 5.16. Restored and Experimental distribution for a cooling rate – 0.10 °C/min, with 

fines removal 

 
 
 
5.2.2 Cooling rate – 0.20 ºC/min 

The crystallization was realized this time at a cooling rate of – 0.20 ºC/min with 

fines removal. The evolution of chord counts in Figure 5.17 is to be put in parallel with 

that for the system without fine removal shown in Figure 5.5. Again, a rapid increase in 

chord counts distinctively marked the onset of nucleation after about 6.1 hours of run 

time. The slurry temperature had then decreased to approximately 13 ºC, which is lower 

than the value the temperature reached when the set-up was operated without fines 

removal. The FBRM only detects particles greater than 1 μm, and the presence of the 

fines removal system apparently delayed their detection by dissolving small crystals. 

After rising sharply, the chord counts for the smaller particles reached a maximum and 
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then steadily decreased in the following hours. Again, the small crystals were being 

dissolved and the larger ones were growing. 
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Figure 5.17. Evolution of the chord counts and the temperature for a  

cooling rate of – 0.20 °C/min with fines removal 

 
 
 
The crystals were washed and dried as previously described. Table 5.6 display 

the results of the sieve analyses carried out after each experiment. Each sieve was then 

weighted and the population density was established according to the procedure 

described in Chapter III and is plotted in Figure 5.18. 

 

 



 83

Table 5.6. Sieving results from runs with a cooling rate of – 0.20 0C/min with fines removal 

L [μm] Lmean[μm] Run2.4 
ΔM [g] 

Run2.5 
ΔM [g] 

Run2.6 
ΔM [g] 

1000         
850 925 1.76 1.59 1.55 
600 725 0.88 6.85 3.13 
425 512.5 10.91 7.71 7.50 
300 362.5 8.90 7.61 7.90 
212 256 2.36 1.87 1.95 
150 181 0.33 0.32 0.31 
106 128 0.13 0.04 0.03 
75 90.5 0.06 0.02 0.01 
53 64 0.02 0.01 0 
38 45.5 0 0 0 
0 19 0 0 0 

  
 
 
 

Figure 5.18 shows a fit of the normalized population density to the sieve data 

from Runs 2.4, 2.5, and 2.6. The runs were operated with a cooling rate of  

– 0.20 °C/min, but this time with fines removal. The data from the three runs are in 

agreement with each other, showing a good reproducibility of the experimental 

measurements. The means and spreads of the distributions were 312.6 ± 3.98 μm and 

136.2 ± 0.86 μm, respectively. When compared to runs without fines removal, the mean 

size increased by a factor of 1.73, in parallel, the width of the distribution also increased 

by a factor of 1.65. 
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Figure 5.18. Sieving data from runs 2.4, 2.5 and 2.6 for a cooling rate of – 0.20 °C/min, with 

fines removal 

 
 
 
The final normalized chord length distribution for the three runs in this set were 

averaged and used to implement the model previously described in Chapter IV to 

recover the crystal size distribution, as quantified in normalized population density. A 

comparison between the recovered and the experimental normalized population density 

for the three runs is shown in Figure 5.19. Although somewhat noisy over smaller size 

ranges (smaller bin sizes), agreement is reasonably good. 
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Figure 5.19. Restored and Experimental distribution for a cooling rate – 0.20 °C/min, with 

fines removal 
 
 
 
5.2.3 Cooling Rate – 0.35 ºC/min 

The crystallization of paracetamol from ethanol solution was realized with a 

cooling rate of – 0.35 ºC/min, with fine removal. The evolution of chord counts in  

Figure 5.20 offers a contrast in several key ways with that for the system without fines 

removal shown in Figure 5.8. Once more, the onset of nucleation is indicated by a fast 

augmentation in chord counts after about 4.9 hours of run time. At that point the system 

temperature had reached 13 ºC. After increasing rapidly, the counts for the smaller sizes 

attained a maximum before steadily decreasing and finally reaching a constant value. 

The small particles were being dissolved and the larger ones were growing. 
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Figure 5.20. Evolution of the chord counts and the temperature for a  

cooling rate of – 0.35 °C/min with fines removal 
 
 
 
This time again, the crystals were washed and dried according to the procedure 

previously described. Table 5.7 regroups the results of the size analysis realized on 

each crystal product. From this analysis, the population distribution was calculated 

according to the formulas detailed in Chapter III. The resulting population distribution is 

shown in Figure 5.21.  
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Table 5.7. Sieving results from runs with a cooling rate of – 0.35 0C/min with fines removal 

L [μm] Lmean[μm] Run3.4 
ΔM [g] 

Run3.5 
ΔM [g] 

Run3.6 
ΔM [g] 

1000         
850 925 2.28 3.06 2.37 
600 725 5.16 4.32 3.73 
425 512.5 11.56 4.76 4.11 
300 362.5 12.73 10.75 10.28 
212 256 3.21 11.33 11.08 
150 181 1.19 2.12 3.04 
106 128 0.25 0.93 0.11 
75 90.5 0.04 0.06 0.05 
53 64 0.01 0.02 0.01 
38 45.5 0 0.01 0 
0 19 0 0 0 

 
 
 
 

Figure 5.21 shows a fit of the normalized population density to the sieve data 

from Runs 3.4, 3.5, and 3.6. The runs were operated with a cooling rate of  

– 0.35 °C/min, with fines removal. The data are reproducible. The means and spreads of 

the distributions were 253.6 ± 3.26 μm and 111.8 ± 0.96 μm, respectively. The mean 

size rose by a factor of 1.65 and the width of the distribution also increased by a factor of 

1.74 when the results are contrasted with the runs without fines removal. 

In the distribution in Figure 5.21, a small disturbance is observed for the small 

size most likely due to the breakage of some big particles. 
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Figure 5.21. Sieving data from runs 3.4, 3.5 and 3.6 for a cooling rate of – 0.35 °C/min, with 

fines removal 
 
 
 
The final normalized chord length distribution for the three runs in this set were 

averaged and used according to the method outlined in Chapter IV to recover the crystal 

size distribution, as quantified in normalized population density. A comparison between 

the recovered population density and the experimental values for the three runs is 

shown in Figure 5.22.  

Once again, we are faced with a noisy restored CSD, this is due to the fact that 

the experimental CLD raw data is not “smooth”. The model increases that noise when 

implementing the calculation for the computation of the restored CSD.  

The agreement with the sieving experiments is not as good as in the previous 

runs. This might have several causes. It might be due to the method of recovery of the 

crystals (collection from the slurry, washing and drying), which can affect the 

experimental distribution; it might be also due to the recovery method which introduces 
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noise in the recovered distribution, thus weakening the accuracy of the restored 

distribution. 
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Figure 5.22. Restored and Experimental distribution for a cooling rate – 0.35 °C/min, with 

fines removal 

 
 
 
5.2.4 Cooling Rate – 0.50 ºC/min 

The crystallization was realized here for a cooling rate of – 0.50 ºC/min, with fine 

removal. This evolution of the chord counts in Figure 5.23 is to be contrasted by the 

evolution of the system without fines removal shown on Figure 5.11. The onset of 

nucleation is still noticeable by a sharp increase in the counts; the temperature read is 

13 ºC. The same behavior is observed in all the runs with fines removal, the counts for 
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small particles increased then decreased thus allowing bigger particles to grow. A little 

after 8 hours run time, steady state is completed. 
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Figure 5.23. Evolution of the chord counts and the temperature for a  

cooling rate of – 0.50 °C/min with fines removal 

 
 
 
As usual, the crystals obtained were washed and dried before being classified by 

a sieving process. Table 5.8 shows the results of the sieve analysis performed after 

each experiment. The population was then determined according to the formula 

explained in Chapter III and is shown in Figure 5.24. Once again the three populations 

are clustered together, showing reproducibility of the system. 
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Table 5.8. Sieving results from runs with a cooling rate of – 0.50 0C/min with fines removal 

L [μm] Lmean[μm] Run5.4 
ΔM [g] 

Run5.5 
ΔM [g] 

Run5.6 
ΔM [g] 

1000         
850 925 1.72 0 0 
600 725 6.42 6.44 9.05 
425 512.5 7.22 7.01 7.33 
300 362.5 8.03 11.03 7.53 
212 256 7.35 8.72 8.61 
150 181 3.89 3.35 3.56 
106 128 1.36 0.38 0.67 
75 90.5 0.34 0.04 0.03 
53 64 0.09 0.02 0.01 
38 45.5 0.01 0 0 
0 19 0 0 0 

 
 
 
 

Figure 5.24 shows a fit of the normalized population density to the sieve data 

from Runs 4.4, 4.5, and 4.6. The runs were operated with a cooling rate of  

– 0.50 °C/min, but with fines removal. The experimental data from the three runs are 

concurring, thus showing good reproducible measurements. The means and spreads of 

the distributions were 227.1 ± 3.48 μm and 105.8 ± 0.78 μm, respectively. The mean 

size increased by a factor of 1.60 but as in the other runs, the width of the distribution 

also rose by a factor of 1.81 when the results for the runs with and without fines removal 

are put in parallel. 
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Figure 5.24. Sieving data from runs 4.4, 4.5 and 4.6 for a cooling rate of – 0.50 °C/min, with 

fines removal 
 
 
 
The final normalized chord length distribution for the three runs in this set were 

averaged and used in conjunction with the method outlined in Chapter IV to recover the 

crystal size distribution, as quantified in normalized population density. A comparison 

between the recovered population density and the experimental values for the three runs 

is shown in Figure 5.25. Although somewhat noisy over smaller size ranges, agreement 

is reasonably good. 

It is interesting to note that the experimental CLD obtained when the fines 

removal system is implemented are noisier than when this system is inactivated.  
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Figure 5.25. Restored and Experimental distribution for a cooling rate – 0.50 °C/min, with 

fines removal 

 
 
 

5.3     Analysis of the Product 

The purity of the paracetamol crystallized was checked using IR and X-ray 

diffraction. The results are shown below in Figures 5.26 and 5.27 for X-ray diffraction 

and Figures 5.28 and 5.29 for IR spectroscopy. 
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Figure 5.27. Powder diffraction pattern obtained for paracetamol trihydrate (upper plot) 

compared with the one of monoclinic paracetamol (lower plot) (Journal of pharmaceutical 
sciences, vol 91, no 5, may 2002) 
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X-ray diffraction is a technique widely used to obtain information on the lattice of 

a given crystal. By comparing the experimental XRD spectrum to the spectrum found in 

the literature, respectively displayed in Figures 5.26 and 5.27, we can see that the 

paracetamol crystallized is pure and crystallizes in the monoclinic lattice, the peaks are 

overlapping. 
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Figure 5.29. IR spectroscopy, theoretical spectrum, KBr disc (NIST Webbook) 

 
 
 

IR Spectroscopy is a spectroscopic technique that gives information on the structure of 

the molecule and can also be used to identify the functional groups of a molecule. The 

peaks giving information on the structure of the compounds are: 

3100 cm-1 OH H-bond linked stretch 

1173, 1373 cm-1: OH bending 

3300 cm-1: NH stretch  

1667 cm-1: NH bending 

3030 cm-1: CH stretch 

2000-1667 cm-1 Overtones or band pattern indicative of para-substituted aromatic  

1611-1587-1516-1444 cm-1 : benzene ring, stretch C=C aromatic 

858 cm-1 : aromatic CH bend para-substituted ring 

1624 cm-1: C=O stretch conjugated 
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1329 cm-1: CN stretch 

Conjugation in the molecule causes some bonds to vibrate at a lower frequency 

than expected for so peaks and with an increased intensity. By contrasting the 

experimental spectrum and the one given in the literature, those spectrum are 

respectively shown in Figure 5.28 and 5.29, we can see that the characteristics peaks 

are presents in both spectrum and that the paracetamol crystallized is pure. The peak 

appearing around 3100 cm-1 would be broader if ethanol was present in the crystal. 

 

A picture of the crystals was also taken under the microscope in order to make 

sure of the octahedral shape. It is clearly seen on Figures 5.30 and 5.31 that the 

assumption of an octahedral shape was realistic, thus the geometric shape on which the 

model detailed in Chapter III was justified. 

 
 
 

 
Figure 5.30. Microscope pictures of paracetamol crystals (*4) 
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Figure 5.31. Zoom on a paracetamol crystal (*10) 
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CHAPTER VI 

DISCUSSION 

 

 

The spectroscopic study of the crystals obtained confirmed the crystallization of a 

pure compound in a monoclinic lattice. The microscope confirms the octahedral 

shape on which the modelization is based. 

Three runs were performed at each set of conditions; i.e., at several cooling rates 

and with or without fines removal. The mean sizes from runs at a set of conditions 

varied less than 2%, while the spread of the distribution (σ) varied less than 1%. 

Such results show that the runs were repeated with good reproducibility. Averaged 

results for all runs are given in Table 6.1. 

 Comparison of the sieve analyses from three experiments, as exposed by Figure 

6.1., at a cooling rate of -0.10°C/min show the impact of fines removal; with fines 

removal, the mean size was 414.5 μm and the standard deviation, σ, was 202.1 μm, 

while corresponding values without fines removal were 232.5 μm and 103.3 μm. In 

other words, the mean size increased by nearly a factor of two, although this positive 

result was partially offset by the numerically larger spread in the distribution. Similar 

observations are drawn from experiments at different cooling rates and with or 

without fines removal. 



 102

0

10

20

30

40

50

0 200 400 600 800 1000

n (−0.10 oC/min)
n (−0.35 oC/min)
n (−0.10 oC/min, FR)
n (−0.35 oC/min, FR)

no
rm

al
iz

ed
 p

op
ul

at
io

n 
de

ns
ity

L (μm)  
Figure 6.1. Sieve analyses of product size distributions at two cooling rates and no fines 

removal. 
 

 
In addition to providing the average size and the spread of the size distribution, 

Table 6.1 also gives the conditions at which nucleation was indicated by the sudden 

increase in chord-length counts. The implementation of fines removal increased the time 

between the observation of nucleation and the time at which the system reached 

saturation.  
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Table 6.5. Summary of the results 

Cooling rate Fines  tsat  Tsat  tnuc  Tnuc  trun  Lavg  σ 

 (ºC/min) 
 

removal  (min) (ºC) (min)  (ºC) (h) (μm) (μm) 
– 0.10 Yes 259.5 50.05 482 28 11 414.5 202.1 
– 0.10 No 259.5 50.05 391 38 11 232.5 103.3 
− 0.20 Yes 144.8 50.05 366 13  11 312.6 136.2 
− 0.20 No 144.8 50.05 309 18 11 180.8 82.6 
– 0.35 Yes 95.6 50.05 333 13 11 253.7 111.8 
– 0.35 No 95.6 50.05 221 13 11 155.5 71.2 
− 0.50 Yes 75.9 50.05  261 13 11 227.1 105.8 
− 0.50 No 75.9 50.05 240 13 11 141.5 58.4 

 
 
 
Figure 6.1 shows normalized population densities for runs in which the system 

was operated with and without fines removal and at two different cooling. It is interesting 

to note that without fines removal the size distribution was bimodal when the cooling rate 

was – 0.10 ºC/min, but unimodal and exhibiting a smaller mean for a cooling rate of  

– 0.35 ºC/min. The figure also shows that implementation of fines removal led to larger 

crystal sizes but significantly wider distributions. The bimodal character of the population 

density was diminished as the cooling rate was increased. This behavior was 

accompanied by a continued decrease in mean size.  
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Figure 6.2. Evolution of the mean and the width in function of the condition of operations 

 

 

Figure 6.2 illustrates how the mean size and the width of the distribution varied 

with the cooling rate used in a run. The behaviors were similar, irrespective of whether or 

not the system was operated with fines removal. Clearly, the cooling rate had a 

significant influence on both mean size and spread of the distribution; as the cooling rate 

decreased, the mean size increased, but unfortunately the width of the distribution 

increased as well. Although the same dependence on cooling rate was observed with or 

without fines removal, the use of fines removal increased the mean size, but again with a 

greater spread in the distribution.  
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The model seems to give overall a pretty good approximation of the real 

population but due to the noise of the CLD raw data, the recovered distributions are 

noisy. We can note that the model increases this character.  Nonetheless, the results 

from the sieving experiments are in agreement with the restored CSD. 

 Errors might have been introduced in the system during the experiments or 

during the restoration of the CSD. Considering the fact that the crystals were 

manipulated several times before the actual sieving, the population might have been 

altered, for example, some fine crystals might have been lost, some bigger ones might 

have been broken. Another source of mistake can come from the restoration method, as 

the matrix cannot be accurately inverted; we use a technique that minimizes the norm of 

the matrix A. 
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CHAPTER VI 

CONCLUSION 

 

 

The FBRM is a useful tool in monitoring the progression of crystal size distributions 

in batch crystallization via the display and the monitoring of the evolution of the 

chord-length distribution. The results from the experiments in the present study show 

how the measured CLD evolves during a run, and they illustrate the impacts of 

preferential fines removal on the product crystal size distribution, which is to increase 

the mean size and unfortunately also the spread of distribution. It is also noticed that 

the cooling rate has a large influence on the population distribution; this parameter 

can be easily used to manipulate at will the mean size of the distribution. By 

increasing this rate, we observe a diminishing mean size and spread, nucleation 

occurs earlier. The onset of nucleation is clearly identified by the sudden increase in 

chord counts for all size ranges measured by the FBRM, but further work is required 

to convert this information to crystal size distributions which is conveniently 

convertible into commonly used mass distribution. It is possible to determine the 

nucleation rate by using the Lasentec technology but complete success would result 

in an ability to quantify as well crystal growth, thus allowing an easier modelization of 

the crystallization process via the use of population balances. Most importantly, the 

methodology has great potential to be the basis for the development of a control 

scheme that manipulates the crystal size distribution produced from a batch 

crystallizer based on the information provided in real time by the laser probe.    
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The use of FBRM can be undermined by the fact that it does not directly provide 

the crystal size distribution; the CLD monitored does not give a direct information on the 

CSD as there is no direct link between them. The methodology demonstrated here offers 

a fairly good but noisy restoration of the CSD. This model can be applied to a wide range 

of particles and is mostly a function of their geometry. Nonetheless the simulations 

needed to implement such model are time consuming thus making its application to 

more complex geometry a long and complex process. A possible development for Metter 

Toledo, that distributes the FBRM would be to establish a database regrouping the 

conversions matrices for the basic crystals shape or even better to add to their software 

a program which directly converts the CLD onto the CSD. 
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APPENDIX A 
 

CALIBRATION CURVE FOR THE MINI PERISTALTIC METERING PUMP 
 
 
 
 

 
 

 

These small pumps are used for low-flow, low-pressure applications such as 

liquid chromatography, circulating fluids, and moving corrosive material. The flow varies 

with the speed control and by using tubing with different Internal Diameters. The pump 

was used with silicone tubes of 3/16” ID, fittings and nipples are polypropylene.  
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Figure A.1. Calibration curve of the mini peristaltic pump 
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APPENDIX B 
 

IMPLEMENTATION OF THE FINES REMOVAL SYSTEM 
 
 
 
 

 
Figure B.1. Modelization of the trap 

 
 

The flow rate Q is 20 ml/min, the internal diameter is 3/16”, the density of the solution is 

998.2kg/m3, and the density of the particle is 1730kg/m3. The viscosity of the solution is 

estimated to be 1.2 cP (200C), the acceleration due to gravity is 9.81 m2/s. 
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Thus the speed of settlement Vt is estimated. 
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Then the value of dp for which Vt-U0=0 is determined. The resulting calculated 

value is Lf=126 μm.  

Some approximations were made regarding the data (average values over the 

temperature range for example), thus this is just an estimation of the dimension of the 

particles removed. Due to breakage, and slight dissolution of bigger particle, we still 

observe some smaller crystals but this amount is limited. 
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APPENDIX C 
 

PROGRAM TO RESTORE THE CSD (FORTRAN) 
 
C************************************************************************** 
C* DRIVER PGM, SIMULATION OF CLD FOR A CRYSTAL OF A KNOWN SIZE LMAX    
C************************************************************************** 
C*INPUT VARIABLES: LMAX SIZE OF CRYSTAL, PMAX, NMAX STEP SIZE, N NUMBER    
C*OF ITERATION FOR THE MONTE CARLO SIMULATION                               
C*COMPUTED VARIABLES: ALPHA, BETA, GAMMA1 ROTATION ANGLES, B ROTATION      
C*MATRICE AND C ITS INVERSE, HEIGHT, WEIGHTEDCLD, TOTH                     
C*OUTPUT: PROBA CLD CORRESPONDING TO A POPULATION OF SIZE LMAX             
C************************************************************************** 
 
C DEFINITION OF VARIABLES, PARAMETERS, INITIALIZATION 
 
      DOUBLE PRECISION LMAX, PI, PHI1, PHI2, PSI1, PSI2, THETA1 
      DOUBLE PRECISION TOTH, KK, S, HEIGHT, A0, THETA2, MM, NN 
      INTEGER N,PMAX, NMAX, K, I, J, M, R, UPMAX, UP 
      PARAMETER (PMAX=20,NMAX=20,N=5000) 
      PARAMETER (LMAX=1.166,PI=3.141593) 
      DOUBLE PRECISION  PROBA(91) 
      DOUBLE PRECISION COUNTS(91) 
      DOUBLE PRECISION LSOL(1000) 
      DOUBLE PRECISION U1(5000)  
      DOUBLE PRECISION U2(5000) 
      DOUBLE PRECISION U3(5000) 
      DOUBLE PRECISION C(3,3) 
      DOUBLE PRECISION WEIGHTEDCLD (5000,91) 
      DOUBLE PRECISION Z(NMAX) 
      DOUBLE PRECISION Y(PMAX) 
      DOUBLE PRECISION CHANNEL(91) 
      DATA CHANNEL/1,1.08,1.166,1.259,1.359,1.468,1.585,1.711,1.848, 
     *1.995,2.154,2.326,2.512,2.712,2.929,3.162,3.415,3.687,3.981, 
     *4.299,4.642,5.012,5.412,5.843,6.31,6.813,7.356,7.943,8.577,9.261, 
     *10,10.798,11.659,12.589,13.594,14.678,15.849,17.113,18.478, 
     *19.953,21.544,23.263,25.119,27.123,29.286,31.623,34.145,36. 
     *869,39.811,42.987,46.416,50.119,54.117,58.434,63.096,68.129,73. 
     *564,79.433,85.77,92.612,100,107.978,116.591,125.893,135.936, 
     *146.78,158.489,171.133,184.785,199.526,215.443,232.631,251.189, 
     *271.227,292.864, 
     *316.228,341.455,368.695,398.107,429.866,464.159,501.187,541.17 
     *,584.341,630.957,681.292,735.642,794.328,857.696,926.119,1000/ 
      DOUBLE PRECISION ALPHA(5000) 
      DATA ALPHA/5000*0/  
      DOUBLE PRECISION BETA(5000) 
      DATA BETA/5000*0/ 
      DOUBLE PRECISION GAMMA1(5000) 
      DATA GAMMA1/5000*0/ 
      DOUBLE PRECISION B(3,3) 
      DATA B/9*0/ 
      DOUBLE PRECISION X(2) 
 
 



 112

C OPEN FILE FOR THE RESULTS 
      OPEN(7,FILE='RESULTS.TXT') 
 
CDEFINITION OF Y AND Z ACCORDING TO THE STEP SIZE 
      A0=LMAX/2 
 
      DO I=1,PMAX 
      Y(I)=-LMAX/2+(I-1)*LMAX/PMAX 
      ENDDO 
 
      DO I=1,NMAX 
      Z(I)=-LMAX/2+(I-1)*LMAX/NMAX 
      ENDDO 
 
C     DEF RANDOM ANGLE ROTATION 
      DO I=1,N 
      U1(I)=GRND() 
      ALPHA(I)=2*PI*U1(I) 
      ENDDO 
      DO I=1,N 
      U2(I)=GRND() 
      BETA(I)=PI*U2(I) 
      ENDDO 
      DO I=1,N 
      U3(I)=GRND() 
      GAMMA1(I)=2*PI*U3(I) 
      ENDDO 
 
C DEF MATRICE ROTATION ET RESOLUTION EQUATION,START OF MONTE CARLO 
SIMULATION 
      TOTH=0 
      DO I=1,N 
      PSI1=COS(GAMMA1(I)) 
      PSI2=SIN(GAMMA1(I)) 
      THETA1=COS(BETA(I)) 
      THETA2=SIN(BETA(I)) 
      PHI1=COS(ALPHA(I)) 
      PHI2=SIN(ALPHA(I)) 
      B(1,1)=THETA1*PSI1 
      B(1,2)=-PSI2*PHI1+PSI1*PHI2*THETA2 
      B(1,3)=PSI2*PHI2+PSI1*PHI1*THETA2 
      B(2,1)=THETA1*PSI2 
      B(2,2)=PSI1*PHI1+PSI2*PHI2*THETA2 
      B(2,3)=-PSI1*PHI2+PSI2*PHI1*THETA2 
      B(3,1)=-THETA2 
      B(3,2)=PHI2*THETA1 
      B(3,3)=PHI1*THETA1 
      CALL INVERSEM(B,C) 
 
C CALCUL OF THE PROJECTED HEIGHT OF THE CRYSTAL 
      HEIGHT=2*A0*MAX(ABS(B(2,3)),ABS(B(2,1)),ABS(B(2,2))) 
      UP=0 
      DO M=1,PMAX 
C INITIALIZATION 
      X(1)=3000 
      X(2)=3000 
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      MM=-LMAX 
      NN=LMAX 
 
C RESOLUTION EQUATION, CALCUL OF CHORD LENGTH 
      DO R=1,NMAX 
      CALL SOLVEEQ(LMAX,PMAX,NMAX,C,Y,M,R,Z,X) 
      MM=MAX(X(1),X(2),MM) 
      NN=MIN(X(1),X(2),NN) 
      ENDDO 
      IF (ABS(MM)<=(A0+1E-7).AND.ABS(NN)<=(A0+1E-7)) THEN       
      UP=UP+1 
      LSOL(UP)=ABS(MM-NN) 
      ENDIF 
      ENDDO 
      UPMAX=UP 
 
C CLASSIFICATION OF CHORD LENGTHS INTO BINS 
      DO J=1,91 
      KK=0 
      DO P=1,UPMAX 
      IF (CHANNEL(J)<LSOL(P) .AND. LSOL(P)<=CHANNEL(J+1))THEN 
      KK=KK+1 
      ENDIF 
      ENDDO 
      COUNTS(J)=KK 
      ENDDO 
 
C WEIGHTING OF THE CLDS CALCULATED 
C AVERAGE OVER THE 5000 ORIENTATIONS 
      DO K=1,91 
      WEIGHTEDCLD(I,K)=(COUNTS(K)/UPMAX)*HEIGHT 
      ENDDO 
      TOTH=TOTH+HEIGHT 
      ENDDO 
      DO I=1,91 
      S=0 
      DO J=1,N 
      S=S+WEIGHTEDCLD(J,I) 
      ENDDO 
      PROBA(I)=S/TOTH 
      ENDDO 
C NORMALIZATION OF THE RESULTING CLD 
      S=0 
      DO I=1,91 
      S=S+PROBA(I) 
      ENDDO 
      DO I=1,91 
      PROBA(I)=PROBA(I)/S 
C WRITE THE RESULT IN FILE 
      WRITE(7,701) PROBA(I) 
      ENDDO 
  701 FORMAT(F12.10)     
C PRINT RESULT ON SCREEN 
      PRINT *,PROBA 
      STOP 
      END 
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C******************************************************************** 
C* SUBROUTINE INVERSEM           
C******************************************************************** 
C* INPUT ROTATION MATRIX B                                           
C*OUTPUT INVERSE C                                                   
C******************************************************************** 
      SUBROUTINE INVERSEM (B,C) 
C     DEF VARIABLE 
      INTEGER I,J 
      DOUBLE PRECISION B(3,3) 
      DOUBLE PRECISION I1(3,3) 
      DOUBLE PRECISION I2(3,3) 
      DOUBLE PRECISION C(3,3) 
      DOUBLE PRECISION DET 
C CALCUL DETERMINANT OF MATRIX 
      DET=B(1,1)*(B(2,2)*B(3,3)-B(2,3)*B(3,2))-B(1,2)*(B(2,1)*B(3,3) 
     *-B(2,3)*B(3,1))+B(1,3)*(B(2,1)*B(3,2)-B(2,2)*B(3,1)) 
C CALCUL INVERSE 
      C(1,1)=(B(2,2)*B(3,3)-B(2,3)*B(3,2))/(DET) 
      C(1,2)=(B(1,3)*B(3,2)-B(3,3)*B(1,2))/(DET) 
      C(1,3)=(B(1,2)*B(2,3)-B(2,2)*B(1,3))/(DET) 
      C(2,1)=(B(2,3)*B(3,1)-B(3,3)*B(2,1))/(DET) 
      C(2,2)=(B(1,1)*B(3,3)-B(3,1)*B(1,3))/(DET) 
      C(2,3)=(B(1,3)*B(2,1)-B(2,3)*B(1,1))/(DET) 
      C(3,1)=(B(2,1)*B(3,2)-B(3,1)*B(2,2))/(DET) 
      C(3,2)=(B(1,2)*B(3,1)-B(3,2)*B(1,1))/(DET) 
      C(3,3)=(B(1,1)*B(2,2)-B(1,2)*B(2,1))/(DET) 
      RETURN 
      END 
 
C************************************************************************ 
C* SUBROUTINE SOLVEEQ       
C*********************************************************************** 
C* INPUT Y,Z,LMAX,C COEFFICIENTS OF THE EQUATION                         
C* COMPUTED A1,A2,A3,A0,SOL                                              
C* OUTPUT SOLUTION X                                                     
C************************************************************************ 
      SUBROUTINE SOLVEEQ(LMAX, PMAX, NMAX, C, Y, M, R, Z, X, J) 
C* DEF VARIABLES 
      INTEGER J, I, M, R, PMAX, NMAX 
      DOUBLE PRECISION C(3,3) 
      DOUBLE PRECISION LMAX, A1, A2, A3, A0 
      DOUBLE PRECISION Y(PMAX) 
      DOUBLE PRECISION Z(NMAX) 
      DOUBLE PRECISION X(2) 
      DOUBLE PRECISION SOL(8) 
      DATA SOL/8*0/ 
 
C CALCUL CONSTANT 
      A0=LMAX/2 
      A1=-(C(1,2)*Y(M)+C(1,3)*Z(R))/C(1,1) 
      A2=-(C(2,2)*Y(M)+C(2,3)*Z(R))/C(2,1) 
      A3=-(C(3,2)*Y(M)+C(3,3)*Z(R))/C(3,1) 
 
C CALCUL OF ALL POSSIBLE SOLUTIONS (EQUATION WITHOUT ABS VALUE) 



 115

      SOL(1)=(A0+(ABS(C(1,1))*A1+ABS(C(2,1))*A2+ABS(C(3,1))*A3))/(ABS( 
     *C(1,1))+ABS(C(2,1))+ABS(C(3,1))) 
      SOL(2)=(A0+(ABS(C(1,1))*A1+ABS(C(2,1))*A2-ABS(C(3,1))*A3))/(ABS( 
     *C(1,1))+ABS(C(2,1))-ABS(C(3,1))) 
      SOL(3)=(A0+(ABS(C(1,1))*A1-ABS(C(2,1))*A2-ABS(C(3,1))*A3))/(ABS( 
     *C(1,1))-ABS(C(2,1))-ABS(C(3,1))) 
      SOL(4)=(A0+(ABS(C(1,1))*A1-ABS(C(2,1))*A2+ABS(C(3,1))*A3))/(ABS( 
     *C(1,1))-ABS(C(2,1))+ABS(C(3,1))) 
      SOL(5)=(A0+(-ABS(C(1,1))*A1+ABS(C(2,1))*A2-ABS(C(3,1))*A3))/(-AB 
     *S(C(1,1))+ABS(C(2,1))-ABS(C(3,1))) 
      SOL(6)=(A0+(-ABS(C(1,1))*A1+ABS(C(2,1))*A2+ABS(C(3,1))*A3))/(-AB 
     *S(C(1,1))+ABS(C(2,1))+ABS(C(3,1))) 
      SOL(7)=(A0+(-ABS(C(1,1))*A1-ABS(C(2,1))*A2-ABS(C(3,1))*A3))/(-AB 
     *S(C(1,1))-ABS(C(2,1))-ABS(C(3,1))) 
      SOL(8)=(A0+(-ABS(C(1,1))*A1-ABS(C(2,1))*A2+ABS(C(3,1))*A3))/(-AB 
     *S(C(1,1))-ABS(C(2,1))+ABS(C(3,1))) 
 
C NARROW THE SOLUTIONS TO 0-1-2 DEPENDING ON INTERVAL 
      J=0 
      IF (SOL(1)>=(MAX(-A0,A1,A2,A3)-1E-7).AND.SOL(1)<=(A0+1E-7)) THEN 
      J=J+1 
      X(J)=SOL(1) 
      ENDIF 
      IF (SOL(2)>=(MAX(-A0,A1,A2)-1E-7).AND.SOL(2)<=(MIN(A0,A3)+1E-7)) THEN 
      J=J+1 
      X(J)=SOL(2) 
      ENDIF 
      IF (SOL(3)>=(MAX(-A0,A1)-1E-7).AND.SOL(3)<=(MIN(A0,A2,A3)+1E-7)) THEN 
      J=J+1 
      X(J)=SOL(3) 
      ENDIF 
      IF (SOL(4)>=(MAX(-A0,A1,A3)-1E-7).AND.SOL(4)<=(MIN(A0,A2)+1E-7)) THEN 
      J=J+1 
      X(J)=SOL(4) 
      ENDIF 
      IF (SOL(5)>=(MAX(-A0,A2)-1E-7).AND.SOL(5)<=(MIN(A0,A1,A3)+1E-7)) THEN 
      J=J+1 
      X(J)=SOL(5) 
      ENDIF 
      IF (SOL(6)>=(MAX(-A0,A2,A3)-1E-7).AND.SOL(6)<=(MIN(A0,A1)+1E-7)) THEN 
      J=J+1 
      X(J)=SOL(6) 
      ENDIF 
      IF (SOL(7)>=(-A0-1E-7).AND.SOL(7)<=(MIN(A0,A1,A2,A3)+1E-7)) THEN 
      J=J+1 
      X(J)=SOL(7) 
      ENDIF 
      IF (SOL(8)>=(MAX(-A0,A3)-1E-7).AND.SOL(8)<=(MIN(A0,A1,A2)+1E-7)) THEN 
      J=J+1       
      X(J)=SOL(8) 
      ENDIF 
 
      RETURN 
END 
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