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Abstract 

 Quasi Periodic Patterns (QPPs) are recurring patterns of brain activity found in brain 

imaging data that last approximately 20 seconds and occur at no regular interval. In this 

experiment, researchers aim to establish a link between the level of mental arousal and the 

strength and frequency of QPPs. It was thought that increased levels of arousal would result in an 

increase in the strength and frequency of QPPs. To test this, subjects from three different 

contrasting experimental groups conducted tasks while in a functional magnetic resonance 

imaging (fMRI) scanner: (1) young subjects vs. old subjects, (2) task-engaged vs. resting-state, 

and (3) sleep disorder vs. no disorder. QPPs were regressed from the fMRI scans using an 

extensive processing and analysis pipeline. It was generally found that increased arousal levels 

led to an increase in the incidence and strength of QPPs. Increased arousal is present in young 

subjects, task-engaged subjects, and subjects without sleeping disorders. These results open the 

door for future experiments to quantify the link between arousal and QPPs. Establishing a link 

between these two can be vital to future research involving therapeutic devices, diagnostic tools, 

and even human-computer interfaces.  

 

Introduction 

 Everyday there is a bombardment of information to our senses that we selectively attend 

to so that we can determine the most important information. We are often required to switch 

between different types of tasks as we go throughout the day. For example, at work we may need 

to remember the names of our coworkers, which would utilize long term memory. On the other 

hand, we may need to quickly switch to understanding the requests and wants of a customer at 
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work, which would involve working memory. These switches between tasks manifest themselves 

as actual switches of activity between different regions of interest in the brain. Since arousal 

affects how we attend to immediate stimuli, it is reasonable to think that different levels of 

arousal would affect the strength and frequency of these switches in the brain, which can be seen 

in fluctuations of classic measures of brain activity.  

Throughout a day we are subject to many different levels of arousal. We may be 

exceptionally slow and tired right after we wake up and it may take some time to reach a higher 

level of arousal. On the other hand, in the early afternoon we may be at our most alert and best 

prepared to respond to stimuli. On top of the known effects of consciousness on arousal, brain 

matter is known to decrease with age (Morrison 1997), so it is reasonable to assume that age 

affects arousal, and therefore the power of task switches. When a switching of tasks occurs, the 

brain switches activity from the Default Mode Network (DMN), a network known to be active 

when the subject is at rest and not engaged with the external environment, to the Task Positive 

Network (TPN) (Abbas 2018), a network known to be active when the subject is aroused and 

actively engaged in some task. The neural circuitry underlying this task-switching control 

mechanism was unknown until recent research revealed the dynamics behind it (Majeed 2009).  

 In 2009, Majeed used an anesthetized rat model to show the spatiotemporal dynamics that 

underlie task switches. The researchers found that there was a specific recurring pattern of brain 

activity that occurred along with the task switch seen in the blood oxygen level dependent 

(BOLD) signal, a classic measure of neural activation. The patterns in activation occurred in both 

the normal awake rats and the anesthetized rats. The pattern was not consistently detectable and 

occurred at inconsistent intervals. This led them to name these patterns Quasi Periodic Patterns 

(QPP) because of their lack of a consistent period. The introduction of QPPs was a big step 
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because it challenged researchers to understand the reason that these patterns occurred. These 

patterns were very similar to other functional networks within the rat, leading researchers to 

believe that QPPs must be connected to some known neural processes. In 2011, Majeed 

continued their research and expanded their findings to humans. The same protocol and pattern 

finding algorithm that was used on the mice was adapted to humans to prove that QPPs exist in 

humans as well. While this data was useful in confirming the existence of QPPs in humans, it did 

not look any further or distinguish the differences between QPPs in resting state or task-engaged 

individuals.  

 To build on Majeed’s research and QPP discovery, researchers investigated the 

differences in QPPs between resting state and task performing subjects (Abbas 2018). Abbas and 

researchers used a 20-second window to look for QPPs, as it was experimentally found that 

QPPs last approximately 20 seconds (Abbas 2018). They found that the QPPs occurred with both 

greater strength and frequency in the task performing scans compared to the resting state scans. 

This was a substantial finding because it firmly linked task engagement with QPP modulation. 

These findings opened the door for other QPP experiments to more generally test what else may 

modulate these patterns. While these findings were important, there were still some more issues 

to address in regards to experimental design. 

The study by Abbas et al. in 2018 used both short and long term memory paradigms to 

engage the subject in a task but failed to distinguish between the two in terms of their QPPs. 

Researchers used both a 0-back and 2-back task to create a different setting than the resting state 

scan. A 0-back task is a basic task designed to utilize the subject’s long term memory. The 

subject is presented with a target image before a block of stimuli and must indicate whenever the 

target image appears during the experimental block. A 2-back task is a task that is slightly more 



 Humm 6 

complicated task that is designed to utilize the subject’s working memory. Instead of a target 

image, the subject is supposed to indicate whether the current image is a match to the image that 

was presented two stimuli ago. This requires the subject to continuously update the image to 

match in their working memory. It is necessary to elaborate on this research to see whether or not 

QPPs are affected by the presence or type of memory task, or arousal in general.  

 This work aims to study the effects of varying states of arousal on the strength and 

frequency of QPPs of brain activity. There will be three ways that arousal is modified: through 

varying working and short term memory tasks, through sleep status, and through age. The 

memory tasks will consist of a 0-back task, a 2-back task, and a flanker task. The flanker task 

relies less on memory than the 0-back and 2-back tasks but requires the subject to indicate the 

direction the middle arrow in a set of five arrows is pointing. These tasks are different enough in 

nature that they may elicit different patterns from one another. The sleep status will be changed 

according to whether or not the subject takes a 2-hour nap immediately preceding the scan. All 

subjects participated in two separate scans, one after no nap has taken place, and another on a 

separate day immediately following a nap in a controlled setting. The age factor split the subjects 

into two population groups: young and old. The young group consists of college-age students 

around the age of 21, whereas the old group consists people over the age of 60. It is hypothesized 

that the QPPs will occur with greater strength and frequency in the conditions that represent 

elevated arousal. 

The conditions that would theoretically represent elevated arousal would occur in the 

working memory task in the first group because of the increased demands of working memory 

on attention. The no-nap group in the second group would have higher arousal because of the 

known effects of immediately exiting sleep on arousal. The young group in the third group 
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would have higher arousal because of the effects of aging on cognition and general arousal. 

These three groups can be used to more broadly describe the link between arousal and 

spatiotemporal patterns of brain activity. If a link between arousal and QPPs can be established, 

then QPPs can be used to detect changes in arousal or neural function before one is even aware 

of these changes.  

 QPPs and their effects on cognition have potential to be a useful tool to the world outside 

of the cognitive neuroscience community. How we think about and process information is 

important because it can be used to design better products, software, and therapeutics. The goal 

of these devices should be to integrate information taken from QPPs and the subject to make 

everything not only more efficient but also more user friendly. Theoretically, if we could sync up 

the patterns of brain activation with patterns of stimuli from devices then we could expand this 

design to other areas of life, so everything is in sync with us. The information from QPPs can be 

vital to future human-computer interfaces and can expand the current uses of such robotics. 

Further down the road, QPPs could also be used as a diagnostic tool that can quantify levels of 

arousal that simple behavioral measures can’t. The use of QPPs in the medical field is not far off 

and only requires further research to get a simple quantification of the signal for diagnostic use.  

 

Literature Review 

 As technology improves and the number of devices we constantly attend to increases, so 

do the demands on our brain and the neural networks underlying attention. Attending to multiple 

things at once, or multitasking, is an essential part of day to day life. Multitasking requires us to 

switch back and forth between multiple stimuli and is therefore highly dependent on our level of 

arousal. It is important that we understand the mechanisms behind this task switching in the brain 
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and what affects this so we can better multitask in the future. The default mode network-task 

positive network switch is a vital neural mechanism underlying task switching. The current 

research aims to establish a link between patterns of brain activity, QPPs, and arousal via three 

separate modulations of arousal.  

 Majeed et al. examined the spatiotemporal dynamics of low frequency fluctuations in 

brain activity in the rat brain using the detection of functional networks via functional Magnetic 

Resonance Imaging (fMRI) (Majeed 2009). fMRI is an important tool in the field because its’ 

constant perturbation and recording of brain responses allows for a measurable blood oxygen 

level dependent (BOLD) signal (Mitra 1997). The BOLD signal is indicative of brain activation 

because brain areas that are more metabolically active will require more oxygen and this effect 

can be seen using the BOLD signal. Researchers found that low frequency fluctuations (LFF) in 

the BOLD signal in areas known to be strongly anatomically connected were correlated even in 

the absence of any task or stimulus. These fluctuations came from the same areas that the task-

related responses came from leading researchers to believe that the correlated fluctuations 

actually reflect deeper correlations in neural activity. Previous research has also established that 

attention modulates the BOLD signal fluctuations in the visual cortex (Watanabe 2011). The 

BOLD signal is classically used as an indicator of brain activation due to its correlation with 

mental processes like attention. 

The link between attention and arousal is well established so the interactions between the 

BOLD signal fluctuations, arousal, and brain activity are important to look into. Researchers 

proposed that these fluctuations reflect the functional connectivity of the brain, which is the idea 

that certain brain regions are anatomically connected because of their similar function (Cordes 

2000). These fluctuations lasted approximately 25 seconds in Majeed’s experiments but did not 
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occur with regular frequency, leading to their naming as Quasi Periodic Patterns (QPPs). The 

discovery of these patterns in the rat brain was important because they were never before 

observed and continue to puzzle researchers today. More research needed to be done based on 

these experiments to see if QPPs exist in the human brain.  

 In 2011, Majeed returned with more research on QPPs but this time with human subjects. 

Majeed was looking to replicate the findings of the rat study, that there is a clear coordination 

between these patterns and known functional networks. Researchers found an alternation of 

activity between the “default-mode network” (DMN) and the “task-positive network” (TPN) in 

humans (Majeed 2011). The default mode network was discovered several years earlier and 

found to be active when individuals are out of focus from their external environment, or when 

they are just at rest (Buckner 2008). Previous research has also shown that the DMN and TPN 

networks are anti-correlated in normal resting state human fMRI data. Majeed looked further into 

these networks and used knowledge of QPPs in rats to run his experiments to find them in 

humans. These experiments by Majeed were very important because they were the first ones to 

explore QPPs in humans and associate BOLD signals with these patterns. While QPPs were 

found to also exist in humans, it was not known what causes them to occur or what could affect 

their activity. 

 To expand on Majeed’s research earlier in the decade, Abbas et al. investigated what 

modulates these QPPs in humans. The researchers aimed to explore the links between one’s state 

of activity and the corresponding responses in QPPs or lack thereof. Abbas et al. did this by 

comparing the QPPs that were found in both resting state and task-performing scans (Abbas 

2018). The subject performed both 0-back and 2-back memory tasks to simulate the task positive 

condition. The researchers found that there was a difference within the same subject between 
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their resting state and task performing scans. The QPPs in the task performing scans were 

stronger and occurred with greater frequency than the resting state QPPs. These findings were 

significant because they showed the coordination of the QPPs with the DMN-TPN network. The 

anti-correlation between these networks seen as the QPP occurs has become a standard visual 

illustration for the QPP. While QPPs may be modulated by memory tasks, my current research 

aims to more broadly establish a link between arousal levels and QPPs. 

 

Methodology 

Participants in my experiment will undergo a series of memory recall tasks when in the 

presence of a functional magnetic resonance imaging (fMRI) scanner. fMRI perturbs hydrogen 

ions found in water throughout the brain and measures their responses to get the blood oxygen 

level dependent (BOLD) signal. Unlike a traditional magnetic resonance imaging (MRI) 

machine, the fMRI machine has the capability to detect changes over time, making it a perfect 

tool to measure the BOLD signal. Participants will be in the scanner for approximately 90 

minutes as they complete a series of memory tasks. The subjects will have two 4-button boxes to 

make responses while they are in the scanner. The participants will participate in a resting state 

scan, a flanker task scan, and two variations of n-back memory tasks. There are two blocks of 

each task, and one block for the resting state scan meaning the experiment lasts a total of 7 

blocks. The flanker task is one that requires the subject to indicate the direction of the middle 

arrow of a set of five arrows. The arrows outside of the middle one may be pointing in opposite 

directions so it is important for the subject to only focus on the middle arrow and indicate its 

direction. The two variations of the n-back memory tasks are the 0-back and 2-back tasks. In the 

0-back task the subject will be presented with a target image at the beginning of each task block 
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and they are instructed to make a positive response whenever the target image appears. The 2-

back task requires the subject to indicate whether the stimulus image 2 positions back matches 

the current image. The 2-back image will change every time the subject advances to the next 

image so the subject will need to remember 3 total images: the current one, the previous one, and 

the 2-back image. During the resting state blocks, participants are instructed to stare at a fixation 

cross in the middle of the display screen and stay as still and relaxed as possible; there are no 

stimuli to pay attention to, just the fixation cross. Examples of the three types of memory tasks 

the participants will be asked to do are shown at the end of this section. Stimuli are presented by 

and the experiment is run via E-Prime 3.0 software and the data is collected using Siemen’s 3T 

trio MR software.  

Analysis of the data requires several pre-processing and processing steps before brain 

activation can be determined from the data. The pre-processing pipeline used to prepare the data 

for processing was the Configurable Pipeline for Analysis of Connectomes (C-PAC), an open-

source pre-processing pipeline used for the analysis of resting-state fMRI data using elements of 

both the FMRIB Software Library (FSL) and the Analysis of Functional NeuroImages (AFNI) 

toolkit. (Remove listing of 14 steps) We must first begin by pre-processing the anatomical brain 

scans, or T1 scans. This step would entail first organizing the data so that it is accepted by the C-

PAC pipeline. The steps vital to the pre-processing of anatomical scans are N4 bias field 

correction, skull stripping, and registration to the Montreal Neurological Institute (MNI) brain 

atlas using both linear and non-linear registration methods from FSL (FLIRT and FNIRT). The 

anatomical images must first be cropped, re-sized, and re-oriented so that they are all the same 

size and can be handled by the pipeline. Once all scans are the same size they are segmented into 

white matter, grey matter, and CSF and other non-brain structures. Once the skull is stripped 
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away the functional scan is then registered using FSL's FLIRT (for linear transformation) and 

FNIRT (non-linear transformation) to the Montreal Neurological Institute (MNI) brain atlas.  

Next, it is imperative to pre-process the functional scans and these steps would entail 

slice time correction, distortion correction, functional masking, motion correction, nuisance 

signal regression, temporal filtering, and global signal regression. Due to the time that it takes for 

one full image of the brain to be taken (~2 seconds), the scans must be lined up in a process 

called slice time correction. Subjects also generally move around throughout the course of the 

scan, so motion correction needs to be done to ensure alignment of the entire 4D time series. The 

next step would be to functionally register the data the pre-processed T1 scans so the functional 

data can be stretched to fit the standard atlas. The global signal is always present and has the 

potential to affect results and data, so it is best practice to regress out the global signal. Temporal 

filtering is done as well to ensure that there are no extreme frequencies in either direction 

affecting the overall spread of the data. Lastly, the data is z-scored so that all scans can be 

compared accurately across the same axes.  

The conjunction of the anatomical and functional registration steps in the C-PAC pipeline 

will extract the average time-course over the ROI mask that was applied via the brainnetome 

atlas. Once all data has been appropriately pre-processed via the C-PAC pipeline, it is ready for 

further processing and the extraction of the actual QPP. The QPPs are regressed using a pre-

established algorithm described in further detail in Majeed et. al., 2011. The QPP-finding 

algorithm was run on each timeseries a total of 60 times with a randomly generated starting 

point. The QPP-finding algorithm produces two important outputs: (1) The representative QPP, 

and (2) The correlation vector for when that QPP appeared in the scan. The representative QPP 

was selected as the one with the maximum correlation to the average QPP. The resulting QPP 
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strengths and frequencies were obtained by examining the peaks of each scan, peaks are defined 

as any local maxima with a correlation of 0.2. The QPP frequencies were calculated by 

estimating the number of peaks per second. Once QPP strengths and frequencies were calculated, 

descriptive statistics were obtained, namely mean and standard deviation for each experimental 

group. Mean and standard deviation are appropriate statistical descriptors as the temporal 

filtering step of pre-processing removed any noise that may be considered an outlier and skew 

the mean to one direction. Additionally, histograms of the normalized correlation vectors were 

obtained for each experimental group and compared within the experimental condition group. 

 

 

 

 

 

Flanker Task Example: 
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0-Back Task Example:

 

 

 

2-Back Task Example: 
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Results 

 The QPP strength, defined earlier as the average heigh of peaks in the correlation vector, 

was compared across the three different sleep conditions (HC vs IH vs NC). The results of the 

paired t-test between the no-nap groups showed that the HC group (0.248 +/- 0.049) did in fact 

have a significantly lower strength than the IH (0.308 +/- 0.016) and NC groups (0.320). On the 

other hand, when examining the nap groups, the HC (0.281 +/- 0.014) and IH (0.284 +/- 0.067) 

groups were comparable, but both were significantly less than the NC group (0.405 +/- 0.061). 

When comparing the means within experimental groups (nap vs no-nap) no significant 

differences were found between the conditions. 

Average QPP Strength 

Condition No-Nap Nap 

Healthy Control 0.248 +/- 0.049 0.281 +/- 0.014 

Idiopathic Hypersomnia 0.308 +/- 0.016 0.284 +/- 0.067 

Narcolepsy 0.320* 0.405 +/- 0.061 

 

QPP frequencies were then calculated using the methods described above and compared 

within group using a paired t-test. The HC no-nap group (0.074) showed nearly double the 

frequency of the nap group (0.037), but the t-test showed these groups to not be significantly 

different. On the other hand, the IH nap group (0.048) had nearly double the frequency of the no-

nap group (0.024) but again these two groups were not found to be statistically different. The 

trend continues to the NC group, showing nearly double the peaks in the NC nap group (0.037) 

when compared to the NO no-nap group (0.019), but across all subjects these differences were 

not found to be statistically significant. While there are no statistically significant differences, it 
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is still useful to acknowledge the trend in the data. In both the IH and NC nap groups there is 

greater frequency, contrasted against the HC group where the effect is the opposite.  

Average QPP Frequency 

Condition No-Nap Nap 

Healthy Control 0.074 0.037 

Idiopathic Hypersomnia 0.024 0.048 

Narcolepsy 0.019 0.037 

 

 

Discussion 

Due to time constraints and unforeseen circumstances surrounding the analysis of this 

data over the past 2 semesters, completed analysis on the data could not be fully performed as 

was originally desired. Additionally, there were several unforeseen roadblocks when pre-

processing the data that required a complete change in the selection of the pre-processing 

pipeline. The data is initially evaluated using statistical comparisons of means, but further 

analyses were intended for this project. Despite the hiccups in pre-processing and along the way, 

initial analyses based on the means and visual comparisons of the QPP correlation distributions 

can give some information on the sleep subjects data. Unfortunately, further analyses were not 

performed on the task-based data or age-stratified data, however we expect these results to 

continue trends set forth by Abbas et. al. in 2018 - an increase in both the strength and 

frequencies of QPPs in the task-engaged groups when compared with the resting state groups. 

We also expect this trend to continue with analysis of the data concerning the groups divided into 

old (60 years+) and young subjects (college-age). We expect the young group of patients to 

represent those with elevated arousal, so we expect to see higher QPP strengths and frequencies 
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when looking at the correlations to the ideal QPP in this group when compared with the more 

elderly subjects. This effect should also continue in the long-task data, with the task-engaged 

individuals showing both greater QPP strength and frequency when compared with resting state. 

Furthermore, we anticipate the 2-back task to show the highest number of QPPs among the tasks 

due to its more complex nature when compared with the other tasks. 

These results should lead the way for further experiments that solidify the link between 

QPPs and arousal. While these are promising results, more research needs to be done to replicate 

these experiments and other possible variations. An established link between QPPs and arousal is 

important, yet little is still known about QPPs. The future direction of this research should 

include a way to use the QPP to quantify arousal, and even explore other possibilities of mental 

processes linked to QPPs. The quantification of arousal can lead to its use as a diagnostic tool for 

a wide array of neurological disorders dealing with arousal. The establishment of this link means 

that QPPs can be used to quantify arousal when it is a symptom and not a cause in disorders like 

major depressive disorder, schizophrenia, bipolar disorder, and others. Quantification of arousal 

can also make future work with human-computer interfaces easier. The hope is that we can 

determine when people are best primed to respond to stimuli and use this information to better 

design software and interfaces for human use. To summarize, the link between QPPs and arousal 

found in this experiment serves as a solid base and should be used as a base for future research 

quantifying this link to expand into other fields. 



 Humm 18 

Figures

 

Figure 1. Healthy Control Normalized QPP Correlation Histograms. Shown above is a 

histogram of the QPP correlations for the no-nap and nap conditions for the healthy control 

experimental condition. The data is aggregated across all ROIs and correlated to the ideal QPP, 

as discussed earlier. The QPPs were first normalized so that they can be compared and correlated 

more easily across ROIs and experimental conditions. 

 

Figure 2. Idiopathic Hypersomnia Normalized QPP Correlation Histograms. Shown above 

is a histogram of the QPP correlations for the no-nap and nap conditions for the idiopathic 
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hypersomnia experimental condition. The data is aggregated across all ROIs and correlated to the 

ideal QPP, as discussed earlier.  The QPPs were first normalized so that they can be compared 

and correlated more easily across ROIs and experimental conditions. 

 

Figure 3. Narcolepsy Normalized QPP Correlation Histograms. Shown above is a histogram 

of the QPP correlations for the no-nap and nap conditions for the narcolepsy experimental 

condition. The data is aggregated across all ROIs and correlated to the ideal QPP, as discussed 

earlier. The QPPs were first normalized so that they can be compared and correlated more easily 

across ROIs and experimental conditions. 
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