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SUMMARY

Understanding the evolution and behavior of materials exposed to plasma is critical for

the design of future electric propulsion devices. As ions are ejected from the device gen-

erating thrust, they also impact the ceramic walls. This induces wall erosion, ultimately

exposing the magnetic circuit leading to malfunction and failure of the device. This prob-

lem is only going to be amplified as the field moves towards high power density devices.

There are several models that try to predict this effect by accounting for material sputter-

ing. However, they cannot predict the millimeter-scale surface features that develop after

prolonged exposure. In this work, we address this issue by introducing a plasma-material

interaction model able to capture the evolution of surface features at the macroscopic scale

on materials exposed to plasma over a long period of time. The model is based on (i)

data from plasma dynamics simulations, (ii) a probability model of erosion, (iii) geometric

effects to account for shadowing effects and feature size and (iv) a continuum finite ele-

ment model for the thermo-mechanical response of the dielectric walls that uses machine

learning to account for the complex response of the material.

Results show that the model is able to reproduce not only the mean erosion rate but also

the macroscopic anomalous ridges that appear after prolonged exposure. Furthermore, it

highlights the need to account for complex thermo-mechanical material behavior to be able

to explain such features.

xv



CHAPTER 1

INTRODUCTION

1.1 Hall effect thrusters

The Hall effect thrusters (HET) consist of a cylindrical ceramic channel with an anode, a

magnetic circuit that generates a magnetic field, and a cathode (usually located outside the

channel). An external power produces an electric field. The interaction between the mag-

netic and electric field forces provoke the electrons emitted from the cathode to collide with

a neutral propellant (in general xenon) which is fed through the anode. This process pro-

duces ions which are then accelerated through the channel by the electric field, as shown

schematically in Figure 1.1 [1, 2]. The insulating walls, as illustrated in Figure 1.1, are

manufactured from dielectric materials such as boron nitride (BN), or borosil (BN-SiO2).

These materials are usually chosen because of the low sputtering yield (susceptibility of

erosion), high strength, thermal properties, and low secondary electron emission to guar-

antee proper functioning of the thruster [1, 3].
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Figure 1.1: Hall effect thruster schematics. The electrons (yellow) emitted from the cathode
collide with the neutrons (white) due to the magnetic field (B) and form ions (blue) that are
accelerated and expelled from the discharge chamber by the electric field (E) generating
thrust [1, 2].

Understanding the evolution and behavior of materials exposed to plasma is critical for

the design of future electric propulsion devices. As the ions are ejected from the device

generating thrust, they also impact the ceramic walls. This induces wall erosion, ultimately

exposing the magnetic circuit leading to malfunction and failure of the device. This phe-

nomenon has been the limiting factor in the HET lifetime. Up to date, the only reliable

assessment to quantify the lifetime of the devices is to submit a fully operational thruster

to qualification tests [4, 5, 6, 7] which represents high costs during the development of new

devices. Hence, it is necessary to have fundamental models with predicting capabilities in

order to reduce developing iterations and costs.

1.2 Motivation and State-of-the-Art

Throughout the years, many models have been developed to account for the erosion of ma-

terial under ion bombardment. The sputtering yield is the main characteristic to understand

this process [8, 9]. These models motivated many experiments that have been conducted

to understand the nature of these mechanisms [10]. Up to date, the erosion of material

2



is usually measured by several means. For example, mass loss measurements, collection

of sputtered material using a quartz crystal microbalance (QCM), or empirically using a

stationary plasma thruster (SPT)-type laboratory HET where the erosion rate is studied

for different materials exposed to plasma [11, 12, 13], to name a few. The material used

in these measurements includes boron nitride (BN), quartz, Kapton among others, since

they are widely used in HET. On the other hand, numerical simulations using HPHall-2

[14] have been conducted to estimate the erosion process of the SPT-100 Hall thruster [15]

using the same sputtering mechanisms. These methods provide a good estimate of the

overall average erosion. However, certain features that develop after very long periods of

life testing are still not well understood. Probably the most important is the appearance of

grooves (peaks and valleys) that form during qualification tests, as observed in the Rus-

sian SPT-100, the BPT-4000, and PPS-1350G devices [4, 5, 6, 7]. It is usually defined as

“anomalous erosion” which is characterized by periodic patterns [16]. Figure 1.2 shows

schematically the erosion ridges that form after plasma exposure on a HET thruster.

Ceramic walls

Erosion ridges

Eroded wall

Plasma 
exposure

Beginning 
of Life

After exposure

Figure 1.2: Erosion ridges in the ceramic walls after being exposed to plasma for long
periods of time.

On a different line of investigation, several research efforts have been conducted to

3



demonstrate that the incident ion power density to the wall (heat flux) is proportional to the

local erosion rate [17]. Hence, different efforts have been made to measure or quantify the

energy flux from the discharge plasma to the walls. For instance, the use of thermal imaging

and empirical thermal models to characterize the evolution of the wall temperature where

the power lost to walls was found to be between 0.1 and 2 W/cm2 in different devices using

boron nitride and quartz (BN-SiO2) [18]. Martinez et al. [19] conducted an experimental

investigation on a 4.5-kW T-140 HET by using thermocouples to understand the influence

of global parameters (such as discharge power, voltage, current, and mass flow) upon the

wall temperatures, power lost to walls, and radiation to the environment. They concluded

that up to 13% of the discharge power was lost to the walls. In this case, the wall material

is M26-grade boron nitride.

In order to isolate the effect of different factors that are involved in the erosion process,

recent research tends to create controlled experiments. One factor is the material compo-

sition or microstructure. Burton et al. [20] studied how the different constituents of the

microstructure affect the sputtering and control the erosion process. The authors analyzed

the microstructure of the wall material (M26 grade of BN) of the U.S. AirForce Research

Laboratory/University of Michigan (AFRL/UM) P5 thruster after being operated for about

2,000 hours. They found three main regions depending on the erosion pattern. Each region

was analyzed, and several striations and microcracks were found in the high and middle

eroded areas. Through a Finite Element (FE) model, the authors concluded that the cre-

ation of microcracks was due to anisotropic thermal expansion of the constituents of the

ceramic that generated stress concentration. Also, they suggested that these microcracks

could favor BN grain detachment exposing silica (quartz) which has a different sputtering

rate, thus, explaining the erosion patterns. Following this work, Schinder et al. [21] incor-

porated shadowing effects, a heterogeneous material model, and a 3D domain to compare

with the experimental results of the P5 thruster. The authors found that atomic sputtering

does not predict well in highly eroded regions due to limitations regarding (a) the lack of
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material model, (b) the amount of data in the low discharge voltages, and (c) the 2D ax-

isymmetric space. They concluded that the ejection of material is a plausible mechanism

to explain the overall creation of surface features such as ridges. As a continuation of the

work in [20], Brown et al. [22] studied the role of the microcracks in wall erosion. They

created a thermal cycle similar to what the ceramic walls are exposed to and compared the

erosion rate and patterns of these specimens against control (no thermal cycling) samples,

but they did not find a clear connection with the erosion process. In addition, Schinder et al.

[23] studied the erosion process under mechanical stress using a simplified thermal model

based on the work by Martinez et al. [19] that accounts for thermal stresses in the wall

materials given the high temperatures attained during operation. They conducted a series

of experiments with different specimens under mechanical compressive stress to find a cor-

relation between the abnormal ridges found after several hours of operation. The study was

based on the analysis of surface-roughness due to stress during chemical etching, where

it had been found a correlation between the strain energy density of the surface and the

formation of patterns [24].

Considering that the state-of-the-art numerical methodologies developed to capture the

erosion ridges are computationally expensive, several simplifications are made [21]. For

example, only a single ion bombardment incident angle can be simulated at a time, the

specimen under study is limited to a surface of a few hundreds of microns and the sim-

ulation for only a few hours time span. Thus, erosion depth of only some hundreds of

microns is attained. On the other hand, experimentally based research conducted to find

the relation between mechanical stresses is also restricted to a few hours considering the

limitations of the laboratory setup [23]. Therefore, the formation and development of the

anomalous ridges and their relation to material behavior such as stresses or microcracks,

as pointed in [20], cannot be captured as they are found after long exposures. Moreover,

the mathematical models that investigate the evolution of periodic patterns are focused on

the etching process by ion bombardment. Thus, only covering the nano or micro-scales
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and for small perturbations [9, 25, 26]. A comprehensive review work by Brown et al. [2]

presents the efforts in understanding the erosion process in HET as well as several concepts

to reduce it. In addition, the review work by Chan et al. provides a thorough description of

the mathematical models in the nanoscale [27].

1.3 Scope and Organization

The goal of this work is to contribute to a better understanding of the erosion process at the

macro-scale and for long time exposure by focusing on creating a plasma-wall interaction

model enhanced by microstructure mechanical behavior that leverages the state-of-the-art

sputtering models to date and material modeling. Based on previous studies, the formation

of erosion ridges cannot be reproduced with the sputtering models alone. Hence, the hy-

pothesis of this work is that the formation of features is related to an instability the happens

in the material and it is related to the strain energy of the surface.

The plasma-wall interaction model is presented in chapter 2 where the key concepts and

analytical formulations are described. The proposed model comprises data from plasma

dynamics simulations and a detailed finite element (FE) model of a ceramic microstruc-

ture. The interaction between the ion energy deposited and the wall material is based on

(i) data from plasma dynamics simulations, (ii) the probability of wall surface to erosion,

(iii) geometric effects to account for shadowing effects and feature size, and (iv) a contin-

uum FE model of the dielectric walls. The interaction model is described in section 2.2

and thermoelastic continuum model is discussed in section 2.3. The motivation to use a

probabilistic approach relies on the fact that the ion energy (thus the power) to the wall is

stochastic. Therefore, the general trends of the results are shown by analyzing the statistics

from several simulations.

The need to understand the microstructure behavior and the capability to reproduce it

with surrogate models opens the door for the homogenization of a microstructure behavior.

Homogenizing the constitutive response of materials with nonlinear and history-dependent
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behavior at the microscale is particularly challenging. In this case, the only option is gen-

erally to homogenize numerically via concurrent multiscale models (CMMs), as pointed

out in [28]. Unfortunately, these methods are not practical as their computational cost

becomes prohibitive for engineering-scale applications. In chapter 3, an alternative for-

mulation to CMMs that leverage state-of-the-art micromechanical modeling and advanced

machine learning (ML) techniques is presented. The resulting homogenized constitutive

law with this methodology is named Smart Constitutive Laws (SCLs).

The results of the plasma-wall interaction model are presented in chapter 4 with a case

study for boron nitride in section 4.1 where a simple elastic and inelastic material behavior

are considered. Then, in the second part of the chapter (section 4.2), a fused silica mi-

crostructure is homogenized using the technique developed in chapter 3 and the resulting

material behavior is implemented in the plasma-wall interaction model.

Finally, in chapter 5 we summarize the main findings and provide concluding remarks.

Throughout the manuscript, we use the indicial notation (unless otherwise noted for sim-

plicity) where the summation is performed over repeated indices.
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CHAPTER 2

PLASMA-WALL INTERACTION MODEL

2.1 Overview of the probability-based model

Consider a material exposed to ionized gas, i.e., plasma, for which the erosion rate and evo-

lution of surface patterns need to be estimated. The model presented in this work predicts

this evolution by combining data obtained from a high fidelity plasma dynamics simulation

with a Finite Element (FE) model of the ceramic walls that accounts for the material behav-

ior and an erosion probability distribution for each point of the surface of the material. For

a given state of the exposed wall surface, the procedure to estimate its evolution involves

three main stages: the preprocessing, the FE simulation and surface update. The overall

flowchart of the plasma-wall interaction model is depicted in Figure 2.1.
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UPDATE SURFACE

Power to wall

damage

Probability of removal

Figure 2.1: Overview and flowchart of the plasma-wall interaction model

In the preprocessing stage, an analysis of the surface features, e.g. dominant wavelength

and shadowing effects, is performed with the aid of two novel parameters, namely the

visibility and size factors, respectively.

These parameters are combined with the ion energy distribution from a high fidelity

plasma simulation [29] to define a point-wise ion energy interpolation function as schemat-

ically shown in the right-hand side of Figure 2.1. From this function, the power to wall the

Pwall can be calculated from the ions impacting the material. These geometric parameters

are described in subsection 2.2.2.

In the FE simulation stage, the heat transfer problem is solved using the heat flux from

the ions (Pwall) and radiation boundary conditions. Secondly, the mechanical problem is
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solved for the stresses and strain energy density considering the thermal strains obtained

from the heat transfer analysis as depicted in the left-hand side of Figure 2.1. The models

for the thermal and mechanical FE simulations are described in detail in section 2.3.

In the surface update stage, the strain energy is combined with the power from the

ions at each point of the surface, and a probability of removal J(P,D) is calculated as

explained in subsection 2.2.4. This probability is used to determine the likelihood of each

element on the surface to be removed, which is then used to “update the surface” as shown

in Figure 2.1.

2.2 Plasma-surface interaction

Ideally, one would couple a full plasma-dynamics model with the FE of the ceramic wall. In

this way, the surface of the wall would be the boundary condition for the plasma simulation,

for which the ion energy distribution would be obtained. The ion energy would then be

transformed into heat flux to solve the thermo-mechanical model of the ceramic wall. After

the wall is eroded, (considering the heat flux and its current strain energy), it would change

the boundary conditions for the plasma simulation leading to a complete new ion energy

deposition. However, performing this multi-physics analysis is computationally expensive.

Therefore, one of the goals of the method is to be able to interpolate known ion energy data

from certain boundary conditions to each surface point as it evolves in time. In this section,

we develop all the parameters that we use to perform this task.

2.2.1 Data from Plasma full simulation

In the plasma side, the power to the wall due to ions, Pwall, is calculated as the product of

the ions current jion and energy distribution Eion,

Pwall = jionEion (2.1)
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As pointed out in the introduction, recent studies showed that the ion energy distribution

on the wall is higher in the valleys of the evolving eroded surface than the values at the

peaks when these features are in the same order of magnitude as the Debye length [29].

A similar concept had been studied in the early 80s, where it had been found that valleys

would erode faster given the amount of energy deposition in contrast to peaks [9, 25].

However, it was applied to small perturbations in the nano-scale. In work by Schweigert

et al. [29], the authors observed the energy distribution and current density of the ions at a

simplified surface topology consisting of a regular pattern of step-like functions as shown

in Figure 2.2.
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(a) Grooved specimen
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(b) Ion energy distribution

Figure 2.2: Ions current density and Energy Distribution Function obtained at the trenches
and peaks [29]

As it can be seen from the figure, there is more energy deposited at the grooves of the

specimen than at the front line of it. This, naturally produces more heat flux to these zones

leading to a greater temperature gradient and ultimately, stress concentrations.

Two considerations are worth noticing here. First, as it can be seen from Equation 2.1,

the power is a random variable that depends on the random ion energy Eion. Second, this

equation is applied point-wise at each integration point on the surface. In other words, the

power distribution at a given erosion step varies at each point of the surface.
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2.2.2 Geometric parameters

The information of the ion energy distribution is used to create different regimes consid-

ering the surface topology as it evolves during the erosion process with two parameters:

(1) the visibility factor, and (2) the size factor. The former accounts for shadowing ef-

fects that determine how much energy each point of the surface receives, and the latter

is a non-dimensional parameter that compares how the overall features, e.g., the domi-

nant wavelength and amplitude of the surface’s profile, compare to the Debye length of the

plasma. Thus, at each stage of the erosion process, the model estimates how much energy is

exerted at each surface point, considering an interpolation scheme of the ion energies from

Figure 2.2. In this section, the two parameters and the interpolation scheme are discussed

in more detail.

Visibility factor

At a given stage in the erosion process, let us define the normal vector to the surface at

point Si as n, and the ray vector between the j-th ion point, Ij, and Si as n1, as shown in

Figure 2.3(a). Firstly, n is projected onto n1,

P (θ) = n · n1 = n · Ij − Si

‖Ij − Si‖2

= n · (cos θe1 + sin θe2) (2.2)

where P (θ) represents the projection of the j-th ion source, Ij, onto the i-th surface point,

Si.
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(a)

(b)

Figure 2.3: Visibility factor definition (a) surface and ion beam normal vectors, (b) orien-
tation of impacting ions.

The visibility factor not only accounts for the shadowing with other features (by inte-

grating Equation 2.2 from θ1 to θ2) but also the relative orientation of the incoming ions.

In this work, it is assumed that ions impacting a flat surface with angles close to π/2 will

produce a greater energy deposition and, therefore, this scenario is more susceptible to

erosion than ions impacting with a shallow angle (close to 0) as in Figure 2.3(b) based on

[21]. Nevertheless, this does not represent a restriction, and this assumption can be adjusted

upon newer data. Thus, Equation 2.2 is modified to account for this behavior by adding a

weighting parameter w = w(θ):

P (θ) = n · w(cos θe1 + sin θe2) (2.3)

where w is maximizing the effect of the visibility factor when the ions have a normal

direction to the horizontal line, θ = π/2; and minimizes it when they have a parallel
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direction to the horizontal line θ = 0. Mathematically speaking,


θ = π/2 → w = 1

θ = 0 → w = 0

(2.4)

From all possible functions that can be used to define w, a sine function is a smooth

function that meets the requirements expressed by Equation 2.4:

w(θ) = sin θ (2.5)

Replacing Equation 2.5 in Equation 2.3,

P (θ) = n · (cos θ sin θe1 + sin2 θe2) (2.6)

To obtain the contribution over the entire range θ1 ≤ θ ≤ θ2 (see Figure 2.3), Equation 2.6

is integrated and normalized with respect to the maximum value it can take, considering

that n does not depend on the angle of the ions and that the maximum value is when a

horizontal flat surface (n = e2) and the full range of view (0 ≤ θ ≤ π) are considered,

vi =
n ·
∫ θ2
θ1

Pw(θ) dθ

e2 ·
∫ π

0
Pw dθ

=
n ·
∫ θ2
θ1

Pw(θ) dθ

π/2
=

2

π
n ·
∫ θ2

θ1

Pw dθ (2.7)

where Pw = (cos θe1 + sin θe2).

Size factor

The size factor relates the characteristic dimensions of the current surface’s features such

as dominant wavelength L, and corresponding amplitude A, with the Debye length of the

plasma λD, by obtaining a ratio of areas defined as,
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Figure 2.4: Size factor parameters, Debye length λD, wavelength L, and amplitude A.

AS = (2A)(L/2) = AL

AλD = πλ2
D

(2.8)

where AS represents the rectangular area produced by the dominant wavelength L and

amplitude A of a square signal and AλD represents a circular area of the Debye length of

the plasma. An equivalent Debye length λ̄D is defined such that it has the same area as the

fictitious area AS as shown in Figure 2.4,

λ̄D =

(
LA

π

) 1
2

Finally, the size factor h is defined as the ratio of the equivalent Debye length for the

current surface profile to the Debye length of the plasma,

h = hs
λ̄D
λD

= hs

(
LA
π

) 1
2

λD
(2.9)

where hs is a proportionality constant that compensates the fact that the square signal de-

composes in several frequencies (as opposed to a sine wave), and it will be used to calibrate

the size factor with the experiments in subsubsection 2.2.2. The upper bound of this pa-

rameter h = 1 is chosen when the equivalent Debye length obtained from the features of

the surface resembles the Debye length of the plasma.

As it can be seen from Equation 2.9, as the surface evolves due to the erosion process, so

do the dominant length and amplitude, leading to a progressive variation of the size factor
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in each step. For this purpose, a Fast Fourier Transformation (FFT) is used to obtain these

features. Before processing the FFT, a spline interpolation from the Python module Scipy

[30] is used to smoothen the raw surface profile from the FE mesh in order to capture the

main features as depicted in Figure 2.5(a) and its inset. Once the profile is smoothened, the

dominant wavelength and amplitude are obtained from the FFT, as shown in Figure 2.5(b)

with an “x” marker. Finally, the size factor is then calculated using Equation 2.9.
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(b) FFT of smoothed profile

Figure 2.5: Filtering of the surface profile from FE mesh for FFT to obtain the dominant
wavelength L and amplitudeA per each erosion step.(a) The transition of the surface profile
from the raw FE mesh to a smoother curve for FFT processing, (b) FFT and criteria to define
the dominant length L and amplitude A from the moving averaging.

The size factor h controls the transition between a Flat regime and a Rippled regime

defined as follows:

Flat regime. For h→ 0, the surface features are not well-developed and they “look” flat

for the ions.

Rippled regime. For h ≥ 1, the surface features are comparable with the Debye Length.

This is important since, according to [29], once the features’ size is of the order of O(λD)

the concentration of electrons is such that it allows greater energy deposition at the grooves

than at the peaks of the surfaces.
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Transition regime. For values of the size factor 0 < h < 1, interpolation is carried out

as detailed in subsubsection 2.2.2.

Interpolation functions and Regimes

At the beginning of the erosion process, the Debye length is compared against a “flat”

surface. However, as the erosion process takes place, the Debye length is compared with a

“rippled” surface leading to a completely different energy deposition to the wall. Thereby,

with this interpolation scheme, there is a smooth transition between these regimes driven

by the plasma-wall interaction, as shown in Table 2.1. The limiting values of the energy

can be readily obtained from Figure 2.7(b). As mentioned in the previous section, EF and

EG provide the reference values to interpolate the ion energy as a function of the visibility

and size factor as described by Equation 2.10.

Table 2.1: Regimes definition as a function of the size factor h.

Regime Case Maximum Minimum

Flat h→ 0 EF 0

Rippled h ≥ 1 EG EF

Transition 0 < h < 1 Interpolation

Then, the ion energy at a given erosion step is Eion = E(v, h)EG where E(v, h) is the

point-wise normalized ion energy with respect to the energy measured at the “groove” EG

given by,

E(v, h) =


E0(v) = EF

EG
v h ' 0

Eh(v, h) = (1− h)E0(v) + hE1(v) 0 < h < 1

E1(v) = a1v + a2 ≥ 1

(2.10)

where v is the point-wise visibility factor, h is the global size factor as a function of the
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current dominant wavelength L and amplitude A of the surface and EF ,EG are the point-

wise ion energy references at the “front” and “groove” surfaces, respectively. The variables

a1 and a2 are used to calibrate the interpolating function with the experiments, as it will be

discussed in subsubsection 2.2.2. Equation 2.10 establishes that when h = 0 the energy

deposited is governed by the visibility factor and reaches its maximum of EF as v → 1,

i.e., at this regime, the energy is purely driven by shadowing effects. On the other hand,

once the scale of the features is in the same order of magnitude as λD, i.e., as h→ 1, places

with less visibility (according to Equation 2.7) to the ions (such as grooves), will actually

receive more energy and reaching its reference valueEG as the visibility approaches a value

v∗ obtained from the calibration, as it is discussed in subsubsection 2.2.2. Figure 2.6 shows

a graphical representation of Equation 2.10.

Figure 2.6: Interpolation surface

Before continuing to the calibration section, it should be noted that Equation 2.10 is

applied at each integration point of the surface (Si as defined in Figure 2.3). In addition,

because the ions impact the surface with a certain probability density function as il-

lustrated in Figure 2.2, the surface points Si do not have the same reference bounds
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EF and EG for the interpolation scheme. The reference bounds EF , EG from the ion en-

ergy probability distributions at the “front” and “groove” respectively for surface point Si,

are obtained using the inverse transformation method [31] since these distributions do not

resemble any well-known probability functions. Figure 2.7(a) shows this process schemat-

ically. A representative sample with the desired probability is attained as follows. First,

the cumulative distributions of each region (front and groove) are obtained as shown in red

dashed lines in the picture; then, a uniformly distributed sampling is mapped to the cumu-

lative distribution and retrieved the value of the ion energy associated to it. Figure 2.7(b)

shows the obtained distribution after performing this process over 200 times. It can be seen

that the reference ion energies EF and EG gathered through this process is in good agree-

ment with the input distribution. Thereby, the interpolation functions are also stochastic

provided that the ratios EF/EG, a1, and a2 are random variables and change from one

surface point to another.
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Figure 2.7: Sampling of ion energy EF and EG for the references bounds at the “front” and
“groove”, respectively; (a) sampling from an ion energy probability distribution from its
cumulative distribution, (b) the recovered ion energy distribution after sampling 200 times.

Calibration of geometric parameters

This section shows how the size factor and the interpolating scheme are calibrated based

on the ion energy data from Figure 2.7.
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The size factor h is a geometrical parameter that only depends on the dominant wave-

length of the current surface stage, and the Debye length that is assumed constant. The

geometry of the surface is a regular pattern of grooves of 5 mm depth and width, as shown

in Figure 2.8(a). The profile dominant wavelength L and amplitude A are obtained with

the FFT as discussed in subsubsection 2.2.2. Considering Equation 2.9, and that h = 1 for

the geometry features from [29], the scaling factor hs is

hs =
λD

(AL/π)(1/2)
≈ 2.1 (2.11)
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Figure 2.8: Calibration of the size factor. Geometry and fitted curve in the upper subfigure
and FFT of the fitted curve in the lower subfigure.

As previously discussed in subsubsection 2.2.2, the random variables a1 and a2 are used

to calibrate the interpolating scheme in the rippled regime, h ≥ 1, i.e., when the surface

has the same equivalent features like the geometry shown in Figure 2.8(a). It is worth

noticing here that the visibility factor calculated at the central point of one of the grooves

is approximately v∗ = 0.5, as shown in the inset of Figure 2.9(a). Therefore, the first

condition is that (a) the normalized ion energy is 1 when v = v∗, E(v∗, h ≥ 1) = 1. The

second condition is given by the assumption that (b) at the front, i.e., when the visibility is

v = 1, the ion energy is EF , thus, the normalized ion energy is E(v = 1, h ≥ 1) = EF

EG
.

20



Lastly, in this work, a linear function is chosen since it is the simplest function that can

meet the criteria (a) and (b) among all possible functions, as shown in Figure 2.9(a). It

should be noted that this does not represent any restriction if a more complex function is

selected as new data becomes available. Given these conditions, the variables a1 and a2

are:

a1 =
1− EF

EG

v∗ − 1
(2.12)

a2 =

EF

EG
v∗ − 1

v∗ − 1
(2.13)
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Figure 2.9: Calibration of random variables a1 and a2. (a) The visibility factor is evaluated
at the center point of the groove, v∗, and the possible functions and fitting parameters to
determine the variables. (b) The corresponding ion energy distributions obtained with the
calibrated interpolating function of Equation 2.10.

As shown in Figure 2.9(b), the reference’s ion energy distributions (at the groove and

front) obtained with this sampling method are close to the desired energy distributions once

Equation 2.10 is calibrated.
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2.2.3 Mesh independent erosion rate

The erosion rate is a measure to estimate of how fast the walls are being eroded from the

operation of the device and thus, is valuable information for the design engineers to define

or predict the lifetime of the thrusters. Because the model in this work is based on element-

removal, i.e., the erosion is simulated by actively removing elements of the surface profile

at each step rather than modifying the position of the nodes, the erosion rate is defined as

follows. First, the discretization is through square elements with height ye and width xe. A

local erosion rate for each element is then defined as,

ẏe =
ye
∆t

(2.14)

where ∆t is the time increment for the erosion step. Let us also define an equivalent erosion

rate given by,

¯̇y =

∑k
e=1 ẏe
N

(2.15)

In this work, all elements have the same height ye, thus the same local erosion rate ẏe

and the summation in the numerator is
∑k

e=1 = ẏe = kẏe. Plugging Equation 2.14 in

Equation 2.15, it can be re-written as

¯̇y =
kẏe
N

=
kye
N∆t

(2.16)

where k is the number of elements removed in the current iteration, and N is the total

number of elements in the frontier. This erosion rate produces a recession of ȳ for the

current iteration, as shown in Figure 2.10. It can be easily verified that when all elements

of the frontier are removed, k = N , the equivalent erosion rate is equal to ẏe, which

corresponds to a recession of ȳ = ye.
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removed elements

Figure 2.10: Schematics for the erosion rate estimation.

In light of Equation 2.16, this methodology is mesh dependent because the mean ero-

sion rate is proportional to the ratio of removed and frontier elements, k/N , i.e., if the

element size ye changes, k/N should also change accordingly. In order to attain this, the

mean erosion rate ¯̇y (Equation 2.16, at any time during the simulation) should be constant.

Therefore, the following relation should hold:

¯̇y =
k(1)y

(1)
e

N (1)∆t
=
k(2)y

(2)
e

N (2)∆t
= · · · = k(n)y

(n)
e

N (n)∆t
(2.17)

where the superscript indicates a different mesh. Neglecting the time increment since it

does not depend on the mesh, and considering that the total number of elements for mesh

j in the x direction is N (j) = L/x
(j)
e as shown in Figure 2.10,

Lc =
k(j)y

(j)
e

N (j)
=
k(j)y

(j)
e x

(j)
e

L
(2.18)

where Lc is an invariant characteristic length that is defined in the following section.

Therefore, once Lc is obtained, the number of removed elements (in average) is defined

for a given mesh size x(j)
e , y

(j)
e . For example, if mesh 1 (M1) has element size x1, y1 and

mesh 2 (M2) has element size x2 = 2x1, y2 = 2x2; the number of elements to be removed

in mesh 1 is obtained from Equation 2.18,

k1 =
LcL

x1y1
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and the number of elements to be removed in mesh 2:

k2 =
LcL

x2y2

=
LcL

2x12y1

=
LcL

4x1y1

=
k1

4

Which agrees with the fact that coarser meshes should (in average) remove fewer elements

in order to produce the same mean erosion rate as finer meshes.

2.2.4 Element removal criterion

Finally, the criteria to decide whether an element of the frontier is removed or not is deter-

mined by a function that depends on the current power to the wall at the given element (as

a heat flux) and its current strain energy as calculated from the material model discussed

in subsection 2.3.2. Figure 2.11 shows that for a given value of power P and strain energy

ratio D for the element, the probability J(P,D) for that element to be removed is obtained

from the surface that results from an interpolation of two functions. The first corresponds

to J0(P ) that depends only on the power when the strain energy ratio is D0 = 0, and the

second corresponds to the upper limit of J1(P ) when the material reaches its maximum

strain energy ratio (D = 1). Naturally, there is no erosion if the power to wall is zero

P = 0, J(P = 0, D) = 0. The surface of Figure 2.11 can be represented as,

J(P,D) =


J0(P ) D = D0

J1(P ) D ≥ 1

f (J0(P ), J1(P ), D) D0 < D < 1

(2.19)

24



Figure 2.11: Schematics for the joint probability function definition. J0(P ) and J1(P )
are the bounds of the joint probability function when the strain energy ratio is D = 0 and
D = 1. For a given value of strain energy ratioD and power to wall P , the joint probability
distribution J(P,D) is obtained from an exponential interpolation.

The erosion process is as follows. During the step in which the surface is updated based

on the power to the wall and the strain energy ratio of the frontier elements, a random

number drawn from a uniform distribution r ∈ U(0, 1) is compared with the probability

obtained from Equation 2.19. If the sampled random number is smaller than the probability

for a given element, that element is removed, and the process continues until all elements

in the surface are considered. This process is schematically shown in algorithm 1. The
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definitions of J0(P ) and J1(P ) are discussed in the following subsections.
Algorithm 1: Remove elements based on the probability function.

for element ∈ frontier elements do

Get the power applied to element, Pwall ;

Get the current strain energy ratio D ;

Calculate the probability of being removed from Equation 2.19 ;

Sample a random number r with uniform distribution, r ∈ U(0, 1) ;

if r ≤ J(P,D) then

remove this element ;

end

end

Definition of J0(P ) - Purely sputtering model

As it was mentioned in the previous paragraph, the J0(P ) bound depends on the power

only; thus, it does not account for any material properties. Therefore, it is chosen such that

the equivalent erosion rate ¯̇y is equal to the erosion rate achieved by the state-of-the-art

models. In this work, Yamamura’s sputtering yield model [10] is employed as a function

of the ion energy Eion and the ions’ incident angle θ given by:

Y (Eion, θ) = k(B0 +B1θ +B2θ
2 +B3θ

3)
√
Eion

(
1−

√
Eth
Eion

)2.5

(2.20)

where the coefficients are obtained from [21] as shown in Table 2.2.
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Table 2.2: Sputtering yield constants used in this chapter, [21].

Parameter Value

Eth, eV 18.3

B0 1.18

B1 1.94E-02

B2 1.22E-04

B3 -2.22E-06

k 2.28E-03

The erosion rate from the sputtering yield is simply ẏsy = Y (Eion)jion where jion is the

ion current density to the wall. Thus, the equivalent erosion rate from the model is1,

¯̇y = ẏsy = Y (Eion)jion (2.21)

and using the definition of Equation 2.15,

∑k
e=1 ẏe
N

= ẏsy (2.22)

Since all elements have the same height ye, the above expression becomes,

kẏe
N

= ẏsy (2.23)

Finally, the number k of elements to be removed to preserve the equality is obtained,

k =
N

ẏe
ẏsy (2.24)

1sputtering yield dependency with the angle is dropped to simplify the notation. However, it still varies
according to the ions’ incidence.
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where Y is the sputtering Yield in mm3/C, jion is the current density in A/mm2, thus

the erosion rate ẏsy is in mm/s. In this case, the invariant characteristic length Lc can be

obtained considering Equation 2.18 and Equation 2.24,

L(sy)
c = ẏsy∆t (2.25)

which corresponds to the average erosion depth due a pure sputtering model and is inde-

pendent of the mesh.

Equation 2.24 indicates that in order to preserve an erosion rate equivalent to the one

obtained by purely sputtering yield (when the strain energy ratio is D0), k elements should

(in average) be removed from the frontier. The process of removing k elements out of N

with certain probability p can be described by the Binomial distribution, P (X = k) =(
N
k

)
pk(1 − p)N−k, with k = 0, 1, · · · , N . The value of this probability can be estimated

using Maximum Likelihood Estimation (MLE) as [32]

p ≈ k

N
(2.26)

In this work, the probability depends on the power p = J0(P ), and in light of Equation 2.18,

Equation 2.26 can be rewritten as

J0(P ) =
Lc
ye

=
ẏsy(P )∆t

ye
(2.27)

It should be noted here that since the sputtering yield is a function of the ion energy, so

is the number of elements to be removed k. Thus, the curve J0(P ) is obtained as described

in algorithm 2 considering that the power is defined with Equation 2.1 as the product of

the ion current and ion energy. Figure 2.12 shows the values of J0(P ) for three different

element sizes (M1, M2 and M4), wherein each case, the element size is doubled from its

predecessor. There are multiple observations that can be made from the figure. First, it
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can be seen that coarser meshes have a smaller probability of element removal to maintain

the same erosion rate in each case. Second, there is a limiting element size in which the

probability is one. Finally, there is a range of the normalized power to wall up to around

≈ 0.15, in which the probability is zero. This corresponds to the ion energy threshold Eth

(18.3 eV from Table 2.2) for which the sputtering yield is also zero (thus no erosion is

expected for energies below that value).

Algorithm 2: Process to determine the function f0(P ) at strain energy ratio D0.

for Eion in range(Emin, Emax) do

Calculate the power P = Eionjion;

Calculate the sputtering yield Y (Eion) with Equation 2.20;

Calculate the erosion rate due sputtering with ẏsy = Y (Eion)jion;

Calculate the probability J0(P ) with Equation 2.26;

end

0.0 0.2 0.4 0.6 0.8 1.0
P

Pmax

0.0
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J
0
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M1

Figure 2.12: Probability function when strain energy ratio is D0, J0(P ) normalized with
the element size as a function of the power from the ions P against the wall.
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Definition of J1(P ) - Damaged material

The J1(P ) bound depends on material failure criteria. For simplicity, this work uses simple

failure criteria for ceramics based on the maximum normal stress criterion in which the

material is considered to have failed when any of the principal stresses reaches either the

tensile σU or compressive σC strength of the material,

σ1,2,3 ≥ σU tension

|σ1,2,3| ≥ σC compression
(2.28)

The strain energy ratio parameterD is represented by the ratio of the current point-wise

strain energy density at each surface point w with the maximum strain energy density wmax

given by

D = w/wmax (2.29)

where wmax depends on the failure criteria and boundary conditions of the problem.

Because a failure criterion is defined for J1(P ) bound, it is assumed that the material

integration point fails if the RVE (Representative Volume Element) of the microstructure

meets the failure criteria. Therefore, the characteristic length is considered equal to the size

of RVE,

Lc = yRVE (2.30)

Recalling Equation 2.18 and Equation 2.26 the maximum probability given at point a in

Figure 2.11 is

Ja =
Lc
ye

=
yRVE

ye
(2.31)

Finally, the J1(P ) is obtained using a simple linear function, as shown in Figure 2.11,

J1(P ) =
P

Pmax
Ja =

P

Pmax

yRVE

ye
(2.32)

As stated in Equation 2.19 once the J0(P ), J1(P ) bounds are defined, the interpola-
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tion for any given value of the strain energy ratio D and power P is calculated with an

exponential function of the form

f(P,D) = A(P )B(P )D (2.33)

where A(P ) and B(P ) are obtained using the following constraints:

f(P, 0) = A(P ) = J0(P )

f(P, 1) = A(P )B(P ) = J1(P )
(2.34)

Hence Equation 2.33 becomes,

f(P,D) = J0

(
J1

J0

)D
(2.35)

Plugging Equation 2.27 and Equation 2.32 into Equation 2.35 the interpolation function

becomes,

f(P,D) =

(
ẏsy(P )∆t

ye

)1−D (
P

Pmax

yRVE

ye

)D
(2.36)

Figure 2.13(a) shows the joint probability distribution for three meshes (M1, M2, M4)

and a fixed time increment, and Figure 2.13(b) shows the joint probability distribution for

mesh M1 and three time increments given by ∆t1, ∆t2 = 2∆t1 and ∆t3 = 3∆t3.
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Figure 2.13: (a) Joint probability distribution for three different meshes, M1, M2, and M4.
(b) Joint probability distribution for M1 and three different time increments.

In this way, the joint probability distribution provides the same rates of erosion regard-

less of mesh or time increment selection.

2.3 Finite Element Model

2.3.1 Thermal model

Consider a body Ω with boundary ∂S subjected to heat transfer as shown in Figure 2.14.

In addition, consider that the material follows the Fourier law of heat conduction2,

q = −D · ∇T or qi = −Di
∂T

∂xi
(2.37)

where q is the heat flux, T is the temperature field, and D is the thermal conductivity

tensor. The heat transfer problem consists of finding the temperatures T to satisfy the heat

2No summation over i
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flow equilibrium in the body,

∇ (D · ∇T ) = −
(
ρCP

∂T

∂t

)
(2.38)

subject to the boundary conditions,

Dn
∂T

∂n
= −Pwall on ∂Sq (2.39a)

Dn
∂T

∂n
= 0 on ∂Sleft ∪ ∂Sright (2.39b)

Dn
∂T

∂n
= qR on ∂Sbottom (2.39c)

where ρ is the material density, Cp is the heat capacity, and n indicates the normal vector of

the surface where the heat flux is applied. The radiation boundary conditions qR is defined

as,

qR = σψ
(
T 4
ref − T 4

S

)
which when factorized, becomes,

qR = κ (Tref − TS) (2.40)

with

κ = σψ(T 2
ref + T 2

S)(Tref + TS)
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Pwall(x) 

Figure 2.14: Diagram for the Finite Element Model of the thermo-mechanical problem.

The domain Ω is subdivided into elements Ωe so that the union of all elements comprises

the total domain, Ω = ∪Ωe. For each element, the interpolation of the position x and the

temperatures T is performed with the same isoparametric interpolation functions, hi(r, s)

evaluated at the nodes, i = 1, ..., 4 using natural coordinates r, s [33], as shown in the inset

of Figure 2.14 with,

xI = hix̂
i
I (2.41)

and

T = hiT̂i = HT̂ (2.42)

and their derivatives as,
∂T

∂xj
=
∂hi
∂xj

T̂i = BjiT̂i = BT̂ (2.43)

where H and B are a rectangular matrix with thermal interpolation functions and their

derivatives, respectively, and T̂i is the nodal temperatures in the element at the i-th node.

Applying the discretization of the temperatures and their derivatives, Equation 2.38 can be

written as [33],

CṪ + (K + KR)T = QS + QR (2.44)
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with,

K =
∑

el K
el Kel =

∫
Ωel B

TkB dΩel

KR =
∑

el KR
el KR

el =
∫
Sel
R

HS
TκHS dS

el

C =
∑

el C
el Cel =

∫
Ωel H

TρCpH dΩel

QS =
∑

el QS
el QS

el =
∫
Sel
q

HS
TP el

wall dS
el

QR =
∑

el QR
el QR

el =
∫
Sel
R

HS
TκTref dS

el

(2.45)

Here,
∑

el[•] indicates ensemble over the elements of the elemental matrix [•] and HS

means that the interpolation functions H are evaluated at the boundary S.

Equation 2.44 is integrated using a α-method and central difference for the derivatives

[33],
t+∆tṪ ≈ t+∆tT−tT

∆t

t+α∆tT ≈ αt+∆tT + (1− α)tT
(2.46)

Plugging Equation 2.46 into Equation 2.44, we obtain,

[
1

∆t
C + α (K + KR)

]
t+∆tT − αt+∆t (QS + QR) =[

1

∆t
C + (1− α) (K + KR)

]
tT + (1− α)t (QS + QR)

(2.47)

A full Newton-Raphson scheme is used to solve Equation 2.47 due to nonlinear radia-

tion terms, KR(T ) and QR(T ) with an Implicit solver, α = 1, leading to a compact form

of Equation 2.47,

[
1

∆t
C + (K + KR)

]
t+∆tT = t+∆t (QS + QR) +

1

∆t
CtT (2.48)

2.3.2 Mechanical model

Equilibrium equations

Similarly, as in the thermal model, consider the same body Ω with boundary ∂Ω as depicted

in Figure 2.14. In this case, the mechanical boundary value problem consists of finding the
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displacements ui, the strains εij , and the stresses σij to satisfy the governing equations:

∂σij
∂xj

= 0 in Ω (2.49)

σij = σ (εmkl, η) in Ω (2.50)

εmkl =
1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
in Ω (2.51)

subjected to the boundary conditions,

u1 = 0 on ∂Sleft ∪ ∂Sright (2.52a)

u2 = 0 on ∂Sbottom (2.52b)

σijnj = 0 on ∂Sq (2.52c)

where, σij is the Cauchy stress tensor, σ (εmkl, η) indicates that it depends on the mechanical

part of the infinitesimal strain tensor εmkl, and the internal state of the material η, and u1,

u2 are the horizontal and vertical components of the displacement vector u, respectively. It

should be noted here that since the stress waves travel much faster than the overall erosion

process, the dynamic effects are neglected in Equation 2.49. Equation 2.49 - Equation 2.52

are discretized with the same discretization of finite elements Ωe as in the thermal model

[33] (but in this case, with displacement Degree of Freedom (DOF)) and re-written in the

following general form

KU = R (2.53)

K =
∑

el K
el Kel =

∫
Ωel B

TCB dΩel

R =
∑

el R
el Rel =

∫
∂Ωel

t
HS

T t∗ d∂Ωel
(2.54)

where, K is the stiffness matrix, C is the constitutive tensor, and t∗, is the surface traction

vector. The displacements and their derivatives are interpolated with the same isoparamet-
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ric functions used in the thermal model,

uk = hiû
k
i = Hû (2.55)

and,
∂uk
∂xj

=
∂(hiû

k
i )

∂xj
=
∂hi
∂xj

ûki = Bjiû
k
i = Bû (2.56)

It is worth noticing here that for the mechanical problem, there are two DOF per node:

displacement in x and y direction; represented as the k index in Equation 2.55 and Equa-

tion 2.56. Hence, the interpolation matrices H,B for the material model are slightly differ-

ent that the ones derived for the thermal model.

One of the key ingredients to obtain the stress state of the material, σij in Equation 2.50,

is the constitutive law, C that is used to calculate the stiffness matrix Kel. Many models

developed to account for the plasma-wall interaction assume a linear elastic behavior of

the material as in [21]. In this work, a more realistic constitutive model is considered. It

accounts for the micro-cracks developed as the process evolves as explained in the follow-

ing section. Because of the nonlinearities in the constitutive law, a full Newton-Raphson

scheme to solve Equation 2.53.

2.3.3 Power deposition - Heat flux to the wall

This section shows how the power to the wall is applied to the elements’ edges (since

our model is 2D) to be accounted for in the FE simulation. Consider a portion of the

mesh with power density P (x) (power per unit length) to the frontier elements as shown in

Figure 2.15(a). The total power applied to any element is calculated as the area under the

curve within the limiting points a and b as,

P
(el)
total =

∫ b

a

P (x)dx (2.57)
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Equation 2.57 can be approximated numerically using the trapezoid rule, Simpson, Gaus-

sian quadrature, etc. In this work, the Gaussian quadrature rule is used. For this method, the

function is evaluated at sampling points P (xi) with weights wi where xi are obtained using

natural coordinates that map the domain x ∈ [a, b] to x′ ∈ [−1, 1] from a local coordinate

system as illustrated in Figure 2.15(b) [33],

xi =
b− a

2
x′i +

a+ b

2
(2.58)

and due to this change of variables, dx = (b− a)/2dx′. By using Equation 2.58 and noting

that Le = b−a is the element’s width (see Figure 2.15(b)), Equation 2.57 can be re-written

as,

P
(el)
total =

∫ b

a

P (x)dx =
b− a

2

∫ 1

−1

P

(
b− a

2
x′ +

a+ b

2

)
dx′ ≈ Le

2

n∑
i

wiP (xi) (2.59)

Finally, recall that Equation 2.59 provides the total power exerted on the element el in

mW. Consequently, the equivalent power density (power per unit length) to be applied in

the FE model in Equation 2.45 is obtained as,

P el
wall = Peq =

P
(el)
total

Le
=

1

2

n∑
i

wiP (xi) (2.60)

as it can be seen with the shaded area in Figure 2.15(c). Lastly, Table 2.3 shows the position

and weights of the n = 2 sampling points used in this work.

Table 2.3: Integration points for Gaussian quadrature rule in power density calculation.

Sampling points weights

x′1 = − 1√
3

w1 = 1

x′2 = 1√
3

w2 = 1
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(a) (b) (c)

-1 1

Figure 2.15: Power deposition on frontier elements for FE analysis.

2.3.4 Coupling of the Thermo-elastic model

The models described in subsection 2.3.1 and subsection 2.3.2 are solved as shown Fig-

ure 2.16.

Apply thermal BC

Solve thermal problem

Update strains

Apply mechanical BC

Solve mechanical problem

Figure 2.16: Flowchart of the quasi-static analysis for thermo-mechanical problems.

At any time of the simulation t, the temperature field given by T is calculated from the

thermal problem as described in subsection 2.3.1. Due to this field, the body will tend to

expand equally in all directions generating thermal strains εtkl = αT∆T where αT is the
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coefficient of thermal expansion. Recalling that the total strain tensor is given by,

εkl = εmkl + εtkl (2.61)

we calculate the mechanical part of the elastic strains εmkl, and we apply the mechanical

boundary conditions given by Equation 2.52. Finally, we solve the mechanical problem

described in subsection 2.3.2 to obtain the stresses in Equation 2.50.
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CHAPTER 3

MATERIAL MODELS

3.1 Introduction

This chapter presents the material models used to solve the mechanical problem of the

plasma-wall interaction model. In other words, these models are used to compute the

stresses given by Equation 2.50 after the thermal problem is solved for the temperature

field.

In section 3.2 we present a simple elastic material model that is governed by Hooke’s

Law of linear elasticity. This is followed by a Deshpande-Evans (DE) material behavior

that is derived from the micromechanical behavior of ceramics in section 3.3. Next, the

limitations of using an elastic or DE material behavior are presented by comparing the

results with respect to a full FE model of a microstructure. Finally, section 3.5 presents a

novel method to homogenize inelastic and history-dependent microstructures via Machine

Learning (ML) that overcomes these limitations. We call the resulting material behavior

the Smart Constitutive Law (SCL). In this formulation, there are no assumptions neither

about the effective constitutive response of the microstructure nor the type of deformation

it will be subjected to. This makes the integration of the SCLs into any standard FE solver

identical to that of any traditional constitutive model. The details of the formulation are

described in section 3.5.

3.2 Elastic material model

In this section, we assume an isotropic linear elastic material. Following Hooke’s Law, the

constitutive behavior is characterized by two constants, (i) the Young’s modulus E and (ii)
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the Poisson’s ratio ν. In this case the stress from Equation 2.50 becomes,

σij = λεkkδij + 2Gεmij (3.1)

with λ = Eν
(1+ν)(1−2ν)

and G = E
2(1+ν)

, where εkk is the volumetric strain and δij , the Kro-

necker delta. Finally, the strain energy density is given by Equation 3.2,

w = w0 =
1

2
σijε

m
ij (3.2)

3.3 Deshpande-Evans damage material model

In this section, we present a constitutive model derived to account for the inelastic deforma-

tion and micro-crack developing of ceramics that incorporates the microstructure behavior.

The model was derived by Deshpande and Evans, and the complete and thorough derivation

can be found in [34] since it is out of the scope of this work. Nevertheless, this section pro-

vides a summary of the approach. The model is based on an earlier approach to characterize

the deformation of rocks [35]. Later enhancements include lattice plasticity to address the

behavior post-failure of the specimen and the extension for a more general stress state and

new crack growth law [36, 37]. For this case, the stresses from Equation 2.50 are calculated

as

σij = Cijklε
m
kl (3.3)

where Cijkl is the fourth-order elasticity tensor and is calculated based on different regimes

that depend on the interaction between the microcracks in the solid, as shown in Figure 3.1.

A damage scalar parameter D is defined to account for the crack sizes and orientation as

D =
4

3
π(l + αa)3f (3.4)
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where l is the current crack size, f the crack density per volume, α = cos(ψ) and ψ

the orientation of the cracks. The model was derived assuming the most damaging crack

orientation. Henceforth, the crack orientation is ψ = 45◦. The stress intensity factor KI is

obtained based on the local triaxiality of the stresses [34]. The triaxiality is defined as,

Ψ =
σm
σe

(3.5)

where σm = σii/3 is the hydrostatic stress, σe =
√

3
2
σ̂ijσ̂ij is the von Mises stress as a

function of the deviatoric stress tensor σ̂ij = σij − σmδij .

Figure 3.1: Wing microcracks distribution in a cracked solid [34].

As the solid is damaged, the size of the crack evolves with a crack growth law as a

function of the KI and how rapid the load is applied. The crack growth rate is given by,

l̇ = min

[
l̇0

(
KI

KIC

)m
,

√
G

ρ0

]
(3.6)
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and the evolution of the crack size is

l(t+ ∆t) = l(t) + l̇∆t (3.7)

where KIC is the mode I fracture toughness; l̇0 is a reference crack growth rate at KI =

KIC ; m is a rate sensitivity exponent and ∆t, the time increment. The shear wave speed√
G
ρ0

provides an upper bound of how fast the crack can grow, where G and ρ0 are the

shear modulus and density of the uncracked solid. Finally, the effective elasticity tensor is

calculated following an energy-based approach [38, 39], where the elastic strains ε(e)ij and

the stresses σij are related through the strain energy density w as

ε
(e)
ij =

∂w

∂σij
= T1δij + T2σij (3.8)

and the compliance tensor with

Mijkl =
∂2w

∂σij∂σkl
(3.9)

where T1 and T2 are constants that depend on the damage and the regime. Hence, the

elasticity tensor is calculated as the inverse of the compliance tensor Mijkl,

Cijkl = M−1
ijkl (3.10)

Although the model also accounts for plastic deformation, this work focuses on a simplified

version in which the plasticity model is not used.

As mentioned above, the behavior is divided into three regimes as a function of the
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triaxiality (Equation 3.5) according to the following conditions,

Ψ < −B
A

Regime I (3.11a)

−B
A
≤Ψ <

AB

C2 − F 2
Regime II (3.11b)

AB

C2 − F 2
≤Ψ Regime III (3.11c)

where A, B, C and F are nonlinear functions of damage and friction defined in Ap-

pendix B.

Regime I. In this regime, there the cracks are closed. Hence, the stress intensity factor is

KI = 0, and the crack no longer propagates. Thus, the material exhibits elastic behavior.

In this case, the strain energy is,

w = w0 =
1

2κ
σ2
m +

1

6G
σ2
e (3.12)

and the elastic strains are well known as,

ε
(e)
ij = − 3ν

2G(1 + ν)
σmδij +

1

2G
σij (3.13)

in which,

T1 = T
(1)
0 = − 3ν

2G(1 + ν)
σm

T2 = T
(2)
0 =

1

2G

(3.14)

The elasticity tensor is,

Cijkl =
2Gν

1− 2ν
δijδkl + 2Gδikδjl (3.15)

Note that plugging Equation 3.15 in Equation 3.3 gives the same results as the elastic
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behavior of Equation 3.1.

Regime II. In this regime, the cracks are closed, and the loading is sufficient to cause

relative sliding of the crack faces. Thus, the stress intensity factor is defined as

KI = (Aσm +Bσe)
√
πa (3.16)

where a is the initial crack size (See Figure 3.1). The strain energy density is:

w = w0 +
πD0

4α3G(1 + ν)
(Aσm +Bσe)

2 (3.17)

where D0 = 4/3π(αa)3f is the initial damage parameter assumed for the material. The

first term corresponds to the strain energy as if the cracks were sealed, Equation 3.12, and

the second term changes in strain energy density due to the cracks. Following Equation 3.8

the derivatives of the strain energy density defined in Equation 3.17 to obtain the elastic

strains are,

ε
(e)
ij =

∂w

∂σij
= T1δij + T2σij

where the nonlinear constants are obtained as

T1 = T
(1)
0 + T

(1)
II (3.18)

T2 = T
(2)
0 + T

(2)
II (3.19)

with

T
(1)
II =

πD0

4α3G(1 + ν)

[
2

3
A2σm − 3B2σm +

2AB

3
σe − 3AB

σ2
m

σe

]
(3.20)

T
(2)
II =

πD0

4α3G(1 + ν)

[
3B2 + 3AB

σm
σe

]
(3.21)
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and T (1)
0 and T (2)

0 are given by Equation 3.14. In the same fashion, the second derivative of

w with respect to the stresses provides the compliance tensor (Equation 3.9),

Mijkl = − ν

2(1 + ν)G
δijδkl +

[
1

2G
+ 3η

(
B2 + AB

σm
σe

)]
δkiδlj

+ η

[(
2

9
A2 −B2

)
δij + AB

σ̂ij
σe
− AB

σ2
e

(
2σmσeδij −

9

2

σ̂ij
σe
σ2
m

)]
δkl

+ η
AB

σ2
e

(
σeδij −

9

2

σ̂ij
σe
σm

)
σkl

(3.22)

where

η =
πD0

4α3G(1 + ν)

Finally, the elasticity tensor is obtained as the inverse of the compliance tensor (Equa-

tion 3.10),

Cijkl = M−1
ijkl

Regime III. In this regime, there is a loss of contact between the crack surfaces; thus, the

stress intensity factor is

KI = (C2σ2
m + F 2σ2

e)
1/2
√
πa (3.23)

The strain energy density is given by

w = w0 +
πD0

4α3G(1 + ν)
(C2σ2

m + F 2σ2
e) (3.24)

and the elastic strains are

ε
(e)
ij =

∂w

∂σij
= T1δij + T2σij

where for regime 3, the nonlinear constants are obtained as

T1 = T
(1)
0 + T

(1)
III (3.25)

T2 = T
(2)
0 + T

(2)
III (3.26)
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with

T
(1)
III =

πD0

4α3G(1 + ν)

[
2

3
C2 − 3E2

]
σm (3.27)

T
(2)
III = 3

πD0

4α3G(1 + ν)
F 2 (3.28)

and T (1)
0 and T (2)

0 are given by Equation 3.14 and the compliance tensor (Equation 3.9) is,

Mijkl =

[
− ν

2(1 + ν)G
+ η

(
2

9
C2 − F 2

)]
δijδkl +

[
1

2G
+ 3ηF 2

]
δkiδlj (3.29)

Finally, the elasticity tensor is obtained as the inverse of the compliance tensor (Equa-

tion 3.10),

Cijkl = M−1
ijkl

To summarize, the strain energy density for the DE material model (from now on,

inelastic model) is given by Equation 3.12, Equation 3.17 and Equation 3.24 depending

on the material’s behavior regime as discussed in section 3.3,

w =


w0 Regime I, Equation 3.12

w0 + πD0

4α3G(1+ν)
(Aσm +Bσe)

2 Regime II, Equation 3.17

w0 + πD0

4α3G(1+ν)
(C2σ2

m + F 2σ2
e) Regime III, Equation 3.24

3.4 Discussion - Scope and limitations of the elastic and DE constitutive models

Although the inelastic model defined in section 3.3 provides an enhancement with respect

to the elastic model since it accounts for the non-linear behavior of the microstructure upon

failure, it has some limitations because of the assumptions made to derive it. One of those

assumptions is that the microstructure undergoes a stress state in which σ3 > σ2 > σ1,

and that σ2 = (σ1 + σ3)/2. The first important observation here is that the model does
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Table 3.1: Alumina properties.

Parameter Description value
E Young’s Modulus 350.4 GPa [34]
ν Poisson’s ratio 0.2 [34]
ρ Density 3700 kg/m3 [34]
KIc Fracture Toughness 3 MPa m1/2 [34]
σc Fracture strength 477 MPa
Gc Fracture energy 0.0247 mJ/mm2

δmax Maximum crack opening 1.034×10−4 mm
Enn traction-displ. tangent 2.5×108 MPa/mm

not include shear stresses σ12 in its derivation. Furthermore, the initial cracks are oriented

to a preferred direction that makes the microstructure more compliant to some loading

directions than others.

With several numerical experiments, we demonstrate that the inelastic model is not able

to reproduce the behavior of a Representative Volume Element (RVE) of a microstructure

that exhibits the same characteristics in terms of crack orientation, crack density, etc.

Representative Volume Element of the microstructure

The microstructure corresponds to Alumina ceramic, where its properties are tabulated in

Table 3.1. This material is chosen such that we can use it as a benchmark to compare

the behavior of a RVE of the microstructure obtained from a FE analysis and the inelastic

constitutive model.

The size of the RVE is selected in order to preserve the crack density (f = 1000 1/mm3)

for the material. For the 2D case analyzed in this work, the crack density per unit area is

Na = 100 1/mm2. Therefore, for the RVE size of 376 µm, as shown in Figure 3.2, 14 cracks

of 38 µm are randomly placed at ±45◦ where the size d of the cracks and their orientation

are defined as in [34]. In order to simplify the calculations, we allow the cracks to growth

following the path of cohesive zones shown in Figure 3.2. That is, each crack tip can grow

at 0◦,±45◦,±90◦,±135◦, 180◦. The mesh is generated using MicroStructPy [40].
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Cohesive paths FE mesh

cracks

d

Figure 3.2: RVE of the microstructure with the cohesive element path for crack growth, the
cracks location and the FE mesh.

Cohesive zone modeling for crack evolution

For the given fracture toughness KIc, the value of the cohesive strength σc is chosen so that

the cohesive zone length lc is resolved by the mesh [41]. Therefore, σc =
√
K2
Ic(1− ν2)/lc

where ν is the Poisson’s ratio. In this work, we use a cohesive-zone length in the order of

the crack size lc = d = 38µm. The element discretization of the cohesive path is such that

it allows more than 20 elements per cohesive length le < ld/20.

The cohesive path shown in Figure 3.2 is defined using the built-in cohesive elements

from the Abaqus library [42]. We use an intrinsic cohesive zone model in which the cohe-

sive elements are embedded before the simulation begins [43]. Thus, an initial (artificial)

elastic range is required for the constitutive relationship, as shown in Figure 3.3. The un-

loading condition is assumed linear to the origin upon reaching an opening δ > δc. The

maximum opening δmax is obtained considering the fracture energy given by the area un-

der the TSL curve, δmax = 2Gc

σc
where Gc is related to the fracture toughness through

Gc = K2
Ic(1− ν2)/E for a plane strain case [41].
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Figure 3.3: Bi-linear traction separation law.

Finally, the critical opening is defined such that the slope Enn = σc/δc → ∞ without

adding numerical instabilities. In practice, we use Enn = 10σc/δ
∗
c where δ∗c is obtained

from a typical power law as δ∗c = Gc/(eσc) [41, 44]. The adopted values of σc, Gc, δmax,

and Enn are tabulated in Table 3.1.

Comparison with the inelastic model

The RVE of the microstructure is subjected to a series of loading cases in order to charac-

terize its behavior and to assess the capabilities of the inelastic constitutive model (defined

in section 3.3). The first case considers a uniaxial stress (σ22 6= 0, σij = 0) that closely

resembles the assumptions of the inelastic model [34]. As a result, it can be seen in Fig-

ure 3.4(a) that the inelastic model is able to capture really well the average (or effective)

behavior of the microstructure, reaching the same maximum stress before full damage. In

Figure 3.4(b), a uniaxial compressive strain (ε22 6= 0, εij = 0) is applied, and due to the high

confining pressure given by the boundary conditions, there is no damage whatsoever to the

microstructure, which is perfectly captured by the inelastic model, and they are both equal

to an elastic case. However, under a pure shear case (ε12 6= 0, εij = 0); the microstructure

exhibits several stages of damage (as seen by the jagged curve of Figure 3.4(c)) but it still

has some load bearing capacity, whereas the inelastic model, not only shows a premature

failure point, but also it lacks any load bearing capacity upon failure. The elastic model
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overestimates the real behavior of the microstructure as it is expected.
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(c) Pure shear

Figure 3.4: Comparison of equivalent stresses from numerical homogenization of the RVE
and the inelastic ceramic constitutive law defined in section 3.3 for (a) uniaxial stress case,
(b) uniaxial strain case and (c) pure shear case.

A more interesting case is the use of a random load scenario to which the microstruc-

ture can be exposed to. In Figure 3.5 we show the behavior of the RVE, an elastic case, and

the inelastic model, under one random macro-strain history. We generate a strain history

with and without the shear component, as shown in Figure 3.5(a) in order to show how

the inelastic model deviates from the behavior of the microstructure when shear strains are

present. At the beginning of the loading scenario, all three models reproduce the same

behavior (since the microstructure is still under elastic regime), as can be seen from Fig-
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ure 3.5(b). As the load increment progresses, the inelastic model resembles the behavior of

the RVE for the case without shear, although it is still not accurate. This result is worsened

if the shear strain is considered (Figure 3.5(b,right)) since the inelastic model is unable to

carry more load upon failure. This represents a significant limitation given that the shear

strains cannot be neglected in the general case.
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Figure 3.5: (a) Macro-strains for a Gaussian Process. The figure to the left shows a case
without shear strain (ε12 = 0), whereas the full strain history is shown to the right. (b)
Effective equivalent stress as a function of the load increment for the no shear case (left)
and full history (right). The three models are (1) an elastic material model, (2) the FE of
the RVE of the microstructure, and (3) the inelastic constitutive law from section 3.3.
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3.5 Data-driven material model

This section focuses on the homogenization of inelastic and history-dependent microstruc-

tures via machine learning. In this work we extend recently introduced machine-learning

enabled smart finite elements [45] and formulate smart constitutive laws (SCLs) for the

homogenization of inelastic microstructures.

Numerical homogenization has gained attention throughout the years as the numerical

power of computers greatly increased. In particular, the use of machine learning (ML)

to obtain the effective behavior of microstructures is becoming very popular, as described

in [28]. In this case, we propose to obtain the effective stresses from Equation 2.50 via

machine learning. In this section, the stress tensor given by Equation 2.50 is a nonlinear

and history dependent function of the mechanical strains εmkl and the internal state variables

of the microstructure η rather than just a function of the strains through the elasticity tensor

Cijkl as for the elastic or inelastic material models in section 3.2 and section 3.3. The

internal state variables η are associated with dissipative phenomena, e.g., equivalent plastic

strain εP or damage d.

Because the stiffness matrix K cannot be formed as in subsection 2.3.2 (since Cijkl is

not defined), the equation of conservation of linear momentum results

fext
I
i − fintIi = 0 or fext − fint = 0 (3.30)

with internal forces and external forces given by,

fint
I
i =

∫
Ω

∂hI
∂xj

σijdΩ (3.31)

fext
I
i =

∫
Ω

hIρbidΩ +

∫
∂Ωt

hIt
∗
i d∂Ωt (3.32)

It is clear from the previous discrete equations that a key aspect needed to solve the

stress analysis problem is to find an accurate representation of stresses σij , which is usually
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referred to as the constitutive model. There are plenty of well-established constitutive mod-

els for a large variety of material behaviors, e.g., Hooke’s Law (as described in section 3.2),

J2 plasticity theory [46], porous plasticity [47], microcracks in ceramics [34] (as described

in section 3.3) to name a few. However, as mentioned in the introduction, it is very challeng-

ing to find efficient and accurate homogenization schemes able to provide such constitutive

models for materials with microstructures that result in inelastic responses at this scale.

The following section described an approach to homogenize arbitrary microstructures and

obtain the corresponding nonlinear and history-dependent constitutive response.

3.5.1 Homogenizing inelastic behavior via Machine Learning

First, consider the problem of homogenizing an RVE to obtain its effective constitutive law,

represented by Equation 2.50, σij = σ (εmkm, η), in the previous chapter. Let us assume that

the microstructure of the RVE is such that it might result in an effective inelastic response.

The simplest explanation of this approach is that, given an adequate number of experiments

(numerical in this work, but the approach is not restricted to this case only) for which the

deformation history applied to the RVE and the corresponding stress history are given, a

ML technique can be utilized to generate a surrogate model representing the constitutive

law, see Figure 3.6. This also requires a new strategy to tackle history-dependent prob-

lems. When the RVE is considered, for any given macro strain, the stress distribution in

the fine-scale model will depend on the complete history of the deformation, and for any

given input strain, multiple equivalent stresses are possible. The solution proposed in this

work consists on adopting sequence-to-sequence ML models so that all the immediately

available information can be contemplated, which in a mechanical problem is the deforma-

tion history. The ML model is then responsible for defining what part of that information

is relevant. Note that in this approach, only the strain and stress histories are required,

but no other quantities implying a specific material behavior are needed for the input, e.g,

plastic strain, damage, etc. This surrogate ML-based model is named a smart constitutive
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law (SCL).

More specifically, the SCL is built through a process involving two main stages: the

first one generates various strain and stress histories for the RVE, as depicted in the upper

portion of Figure 3.6. This collection of strain-stress histories represents the training set.

Each element of the training set consists of two sequences: one containing the strain history

and the other one containing the stress history for the RVE. In the second stage, the training

set is utilized for training the SCL, as depicted in the lower portion of Figure 3.6. Since

the elements of the training set are pairs of strain-stress histories, the ML method of choice

must be able to relate sequences and not just individual values.

The first stage involves the following operations:

1. Generation of a full strain history, given by the evolution of the strain tensor εij with

time.

2. Finite Element analysis of the RVE under the prescribed strain history generated

in the previous point to obtain the full history for the stress tensor σij and other

quantities of interest, e.g., localized indicators of failure at lower scales such as the

maximum equivalent plastic strain over the RVE. Note that these quantities of interest

are not part of the input, so they do not influence the prediction of stress.

By following the previous points, only generates one data point of the training set, that

is, one strain sequence and its corresponding stress sequence. Note that each entry in the

input (strain) and output (stress) sequences are full tensors. This process must be repeated

as many times as necessary to build a training set that corresponds to the inputs (strains)

and outputs (stresses plus localized information) that will be used to train the model.

The second stage involves the following operations:

1. Definition of the SCL model architecture, which in this work case consists of a RNN

with time-history prediction capability. RNNs are chosen because of their ability to

relate sequences.
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2. Training the RNN to finally produce the SCL.

In this work, the model is trained using the Keras module for Python [48], by combin-

ing the training set and the SCL model architecture. Training involves an iterative process

in which the internal parameters of the network are adjusted or trained to minimize a loss

function, which represents, for a given input sequence, the error between the output se-

quence generated by the RNN and the true output sequence in the training set. It is key in

this stage to find the best set of internal parameters of the RNN, which can be achieved via

different optimization techniques. In general, the process is repeated over several iterations

(epochs), to reduce the loss function until after an acceptable value is obtained, as shown

in the “training statistics” of Figure 3.6.

In the next section, we provide more details about the generation of training cases and

the process to define and train the SCL, respectively.

Generation of input strain sequences via Gaussian Processes

The input space consists of strain sequences representing loading histories applied to the

RVE. One approach prevalent in the literature is to utilize selected canonical loading scenar-

ios, e.g., uniaxial strain, pure shear, volumetric deformation, etc. However, this approach

requires a priori knowledge about the material response, e.g., assuming that any loading

path outside the training set will be an interpolation of those canonical cases. This defeats

the purpose of the application, since the goal is to be able to generate an SCL in the most

systematic manner without making any assumptions about the material response.

This approach uses the fact that every possible loading scenario applied to the RVE can

be described in terms of the invariants of the strain tensor. Hence, the principal strains

ε1, ε2 and the orientation corresponding to the largest principal strain θ are used as a

basis of three independent quantities to create the input sequences of the training cases

(ε1(t), ε2(t), θ(t)) = {(ε1, ε2) ∈ R2, θ ∈ R | εmin < ε1, ε2 < εmax, θmin < θ < θmax}.

Moreover, because in a physical loading scenario the sequence of strains should be contin-
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Figure 3.6: Overview of the proposed approach to build a generic data-driven material
model.
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uous and smooth, Gaussian Processes(GP) are employed to generate them [49]. Gaussian

Processes are a collection of random variables, with a joint Gaussian distribution[50] that

can be specified by their mean function, m(z), and covariance function kernel, κ(z, z′)

f(z) ∼ GP (m(z), κ(z, z′))

Thus, the smoothness of the generated sequence can be controlled by specifying the mean

and kernel. The mean is defined as zero, and also it is assumed that the specimen has no

residual stresses or strains at the beginning of the process, i.e., εij = 0 at t = 0. Next, the

kernel needs to be specified. For this purpose, the requirement that the process is continuous

and differentiable at each point (smooth) is enforced. For the problem considered here, the

Radial Basis Function (RBF) described by Equation 3.33 is used. For this function, two

data points of variable z, zk and zl, are correlated only through the distance that separates

them in the sequence [50],

k(zk, zl) = s2exp
(
−|zk − zl|

2

2l2s

)
(3.33)

where ls corresponds to the characteristic length of the process and s is the overall variance

or amplitude. The covariance matrix is then defined as

Σkl = k(zk, zl) (3.34)

Then the sequences are generated for each variable of interest from a random multivariate

Gaussian distributionN (0,Σ) using this covariance matrix with a defined sequence length

[50]. More precisely, we use the kernel to create the three independent variables of the

training set: the principal strains ε1, ε2, and the orientation with respect to the Cartesian

axis, θ. This work contemplates (1) the amplitude for principal strains within 0 < sε < sεM ,

(2) the angle range for principal directions within 0 < sθ < sθM , (3) the characteristic
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length within T/10 < t < T/2 with T being the length of the loading sequence, and (4)

the initial principal direction within −π < θ0 < π.

As a result, sequences of principal strains ε1(t), ε2(t), and the orientation angle θ(t) are

generated. Figure 3.7(a) shows two sequences of principal strains ε1(t) and ε2(t), which

evolve following a Gaussian Process. Figure 3.7(b) shows the same sequences but is now

in the plane of principal strains. Here we can visualize the loading path in such a plane.

Note that this path represents just one realization (one entry in the training set) where

each pair of principal strains at time t corresponds to one point in the plane of principal

strains. It is worth noting that, even though we call t time, it just represents a counter of

the loading process. As it can be seen from the figure, the generated variables are random

with different characteristic lengths and amplitudes yet smooth as one would expect on

an arbitrary loading scenario. Figure 3.7(c) depicts ten realizations of such evolution of

principal strains ε1 and ε2. Finally, Figure 3.7(d) shows the evolution of the corresponding

orientation angle θ for each realization.

For this work, 10,000 loading sequences are generated [28]. The distribution of princi-

pal strains for all sequences combined can be seen in Figure 3.8. In this plot, the histogram

shows how many times the pairs (ε1, ε2) are included in the dataset from all the gener-

ated sequences, giving us an idea of how well the invariant space is covered. As it can

be seen, the joint distribution covers the plane of principal strains with the desired interval

ε1, ε2 ∈ (−0.03, 0.03), slightly favoring cases for which |εmax/εmin| > 1. In other words,

our sampling is slightly biased towards deviatoric cases rather than volumetric ones (where

|εmax/εmin| → 1).

Since the outputs of the training cases (stresses and localized information) are obtained

with the FE analysis of the RVE, the strain components need to be rewritten in the Cartesian

coordinate system. The transformation is performed by a rotation from the strains in the

principal directions to the Cartesian components, ε11, ε22, ε12 using Equation 3.35,
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Figure 3.7: Generation of strain histories (sequences) for the training set.
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Figure 3.8: Joint distribution for principal strains, as in [28].

ε11 = (ε1 − ε2) cos2 θ + ε2

ε22 = (ε2 − ε1) cos2 θ + ε1 (3.35)

ε12 = (ε1 − ε2) sin θ cos θ

Generation of output variables from the homogenized response of the RVE

For each of these input sequences (strain histories), the corresponding output of sequence

y(t) is obtained by solving the boundary value problem for the microstructure and extract-

ing the average stresses over the domain and any other quantity of interest, e.g., localized

information.

To obtain the output variables needed for the training set, a FE simulation on the RVE

of the microstructure is performed for a total of n = 10, 000 observations of strains inputs

εij(t) generated with Gaussian Processes as explained in subsubsection 3.5.1. That is, the

inputs of our training set consist of 10,000 sequences of strains, each sequence having 200

loading steps. The strains are used to impose affine displacement boundary conditions in
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∂Ωu following Equation 3.36,

uJi =

ε11(t) ε12(t)

ε12(t) ε22(t)


xJ1
xJ2

 (3.36)

where xJi corresponds to the i-th coordinate component of the J-th node of the boundary.

A total of 10,000 FE simulations are performed in order to solve the boundary value

problem of the microstructure for each of the 10,000 strain sequences. This consists of

solving the same equations defined in subsection 2.3.2 for the RVE, assigning each subdo-

main of the microstructure the corresponding constitutive law, for example, if the RVE is

composed of different material behaviors. From each simulation, the full field solution is

recovered. From this, the average stress of the microstructure can be extracted as,

σ̄ij(t) =
1∑N

(RVE)
e

e detJ (e)

N
(RVE)
e∑
e

σ
(e)
ij (t)detJ (e) (3.37)

where e indicates the element, detJ (e) the Jacobian of each element of the microstructure;

σ̄ij(t) the average of each stress component. Also, σ(e)
ij (t) represent the stress components

of each element on the microstructure.

In summary, at this point, we have a training set D of n observations,

D = (ε(t)i,y(t)i) i = 1, 2, ..., n (3.38)

where

ε(t) = {ε11(t), ε22(t), ε12(t)}

denotes the input vector of strains as a function of loading step t and

y(t) = {σ̄11(t), σ̄22(t), σ̄12(t)}
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denotes the output vector of averaged stresses as a function of loading obtained from the

detailed FE analysis of the RVE. For the purposes of this work, a training set consisting of

10,000 input-output pairs is created, each of which contains information pertaining to 200

loading steps.

3.5.2 Training the machine learning model

To be able to address any possible path-dependency, RNN is used as shown schematically

in Figure 3.9. In particular, this work focuses on one of the many possible variations of the

RNN called Long Short-Term Memory (LSTM) developed to handle sequence-to-sequence

data and to address the vanishing gradient effect present in long sequences [51]. LSTM

networks have a dedicated memory cell whose information is controlled by a number of

gates. Those gates have weights that allow the model to learn how to control the flow

of information in and out of the memory. Training an RNN is similar to feed-forward

neural networks, except that each sample consists of a sequence of vectors for the input and

output. In this particular configuration, the information at previous times of the sequence

tn, n = 0, 1, . . . , j−1 is retained to be weighted for the inputs at time tj . This work uses the

version of the model implemented in the Python module Keras [48], and a mean squared

error to define the loss function EMSE of the model during training,

EMSE =
1

n

∑
d∈D

(ŷ∗d − y∗d)
2 (3.39)

where ŷ∗d and y∗d correspond to the predicted value of the network and the targeted output of

the current training case d, respectively and n is the total amount of training cases. It should

be noted here that, before being utilized for training, each feature of the data is normalized
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INPUT LSTM LSTM OUTPUT

Figure 3.9: Machine learning model schematics. The input layer corresponds to three
nodes, one for each strain component, ε11, ε22, ε12; the hidden layers are LSTM layers, and
the output layer has three units, one for each stress output, σ11, σ22, σ12.

with the corresponding standard deviation (inputs ε(t), and outputs y) as follows1,

ε∗k(t) =
εk(t)

s
(inputs)
k

(3.40)

y∗i (t) =
yi(t)

s
(outputs)
i

(3.41)

where εk(t), yi(t) are the input and output sets respectively, and s(inputs)
k , s(outputs)

i the cor-

responding standard deviation per feature of inputs (k = ε11, ε22, ε12) and outputs (i =

σ11, σ22, σ12, ε
∗
p, σ

∗
vm). The initialization of the RNN parameters is set as default. The loss

EMSE is minimized with the back-propagation algorithm through time (BPTT) [52] to mod-

ify the internal parameters of the network which produce the mapping function that best

fit the given normalized data. The BPTT algorithm relies on the unrolling of the network,

in which a copy is generated for each time increment allowing to the use of a traditional

back-propagation algorithm on the unrolled network.

During training, the generated cases are split in two: one portion, called training split,

1No summation performed here
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is used to train the model, while the other portion, called validation split, is used to validate

the current state of the net. In this work, 80% of the cases are used to train and 20%

to validate. The number of training cases as well as the architecture are obtained with a

sensitivity analysis as discussed in [28].

In order to reduce oscillations while predicting the stress tensor, we use a transfer learn-

ing approach that is widely used in other fields such as text comprehension and translation,

image classification, health screening, among many others [53, 54, 55]. In this approach,

(1) we first train all the hyperparameters linking the Input, LSTMs, and Output layers of

the SCL using the regular mean squared error,

MSE =
1

Ns

Ns∑
s

[
1

N

N∑
i

(ŷsi − ysi )2

]
(3.42)

where Ns is the number of samples (10,000), N total number of load increment (200),

and ŷsi , y
s
i are the predicted and true value of the output at increment i of sample s2 as

depicted in Figure 3.10(a). After the first training process concludes, (2) we define a new

loss function that accounts for the tangent stiffness of the system to reduce the oscillations

of the predictions in order to make the solution more stable,

KMSE =
1

Ns

Ns∑
s

 1

N

N∑
i

∣∣∣∣∣∣∣∣(∆σ̂jk
∆εlm

− ∆σjk
∆εlm

)∣∣∣∣∣∣∣∣
2︸ ︷︷ ︸

||∆K||2

 (3.43)

with

||∆K||2 =

[∑
p

∑
q

(
K̂pq −Kpq

)2
] 1

2

(3.44)

2As before, ŷsi and ysi are the normalized output using Equation 3.41.
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and

Kpq =
∆σjk
∆εlm

=



∆σ11

ε11

∆σ11

ε22

∆σ11

ε12

∆σ11

ε21

∆σ22

ε11

∆σ22

ε22

∆σ22

ε12

∆σ22

ε21

∆σ12

ε11

∆σ12

ε22

∆σ12

ε12

∆σ12

ε21

∆σ21

ε11

∆σ21

ε22

∆σ21

ε12

∆σ21

ε21


(3.45)

where Equation 3.45 is calculated for both the predicted K̂pq and the real values Kpq in

Equation 3.44. Equation 3.43 is then applied to only the hyperparameters that link the last

LSTM with the output as shown in Figure 3.10(b) using a weighted loss,

η = αMSE + (1− α)KMSE (3.46)

where typical values of the weighting parameter α lie within the range 0.9 < α < 0.9999.

true

predicted

𝒚"!

𝒚!

(a)

Trainable weights (2)

LSTM OLSTMI

Trainable	weights (1)

LSTM

(b)

Figure 3.10: Transfer learning concept. (a) Schematics for the MSE calculation, (b) Train-
able parameters (1) using only MSE, (2) using the combined loss.

The error on predicting new strain histories (not used during training), as it will be used
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in a FE solver, is less than 2% for the stress tensor and less than 9% for the localized data

as shown in [28].

3.5.3 SCL implementation into a FE solver

The SCL is implemented considering that there is an essential difference between how

the ML model is trained to produce the SCL and how it predicts while performing the FE

simulations. In the former, the model receives the entire strain history as input and provides

the entire stress history as output. In the latter, this is not the case. At any given point in

the simulation, only the strain history up to that point is known. In other words, at the

point where the SCL is ready to advance to the next loading step, it only has available

the information of the previous steps. That is, the current solution should be calculated

considering (1) the current strains and (2) the history of the loading path. For this reason,

the SCL is stateful, which means it stores the current state St, and then uses this information

for the new prediction, in a way very similar to the role of state variables in traditional

constitutive laws. This becomes particularly challenging when using iterative solvers since

after each trial, the SCL automatically updates its state. The following paragraph explains

how this obstacle is addressed.

Let us assume that the solution has converged to point a, and the solver attempts to

obtain the new equilibrium position. As the conjugate gradient solver iterates, it might

produce several intermediate solutions, e.g., b and c, until it reaches an equilibrium point d

in which the solution is converged as shown schematically in Figure 3.11. For each iteration

k, e.g., from previous solution point a to b, a naı̈ve implementation of the SCL model would

update its state (given by the solution at b), St ← S(k), which would now be used to predict

a new point c. This would be erroneous because b does not correspond to the equilibrium

point of the loading path. Thus, this behavior would find a solution corresponding to a

different (fictitious) loading path which would consider the trial solution as part of the

previous history.
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Figure 3.11: SCL implementation in a quasi-static boundary value problem. (a) diagram of
possible solutions during the iterative process, (b) flowchart of the overall solution scheme
with SCL implementation.
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To overcome this problem, the state of the SCL to the previously converged point a is

reseted, at the beginning of each iteration of the conjugate gradient, St ← reset, as depicted

with the flowchart of Figure 3.11b. In this way, it is ensured that during the iterations, the

SCL state corresponds to that of the previous converged solution a and it is not updated at

the trial points b and c. Only after the equilibrium solution is found, d, the state St ← S(k)

is updated. This is equivalent to elastic-predictor plastic-corrector in the radial return

algorithm for plasticity [46] where the state of the material (described by the accumulated

plastic strain) is not updated until the algorithm converges.

3.5.4 Summary of the homogenization technique with ML

In this work, we showed that the SCL not only can homogenize the behavior microstructure,

but also can capture the aforementioned localized measures, e.g., maximum damage and

von Mises stress at the lower scale. A thorough analysis of the performance and validation

of the method can be found in [28] where we show a comparison between the solution

of an engineering-scale problem using the SCL as a material behavior and a concurrent

multiscale analysis.
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CHAPTER 4

RESULTS

The primary goal of the model is to predict the anomalous erosion ridges and how are they

affected by different heat fluxes (power to the wall from the ions). Several parameters are

included in this chapter in order to demonstrate how the erosion ridges develop throughout

the simulation.

Firstly, section 4.1 provides a validation of the method using boron nitride since it is

widely used in HET devices, and therefore, there are several publications with estimated

erosion rates, temperatures, and power deposited to the walls. In this case, three model

behaviors are analyzed, (i) using a pure sputtering model and no material contribution,

(ii) sputtering model and elastic material behavior, and (iii) sputtering model and inelastic

material behavior (which accounts for microcracks). For these three models, we first show

how the erosion profiles evolve with time, second, we show how the erosion rates and

surface parameters (such as roughness and peak to peak values) evolve with time, and

finally, we present a statistical study on how these quantities vary with the input power.

Secondly, in section 4.2, the plasma-wall interaction model is applied to fused silica.

In this case, we use a sputtering model and data-driven material behavior obtained using

the approach defined in section 3.5 since the elastic and inelastic material models have

limitations (section 3.4). The results are presented for several power depositions.

4.1 Application to boron nitride

This section shows a preliminary case study, the results, and the conclusions that can be

obtained from it.
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4.1.1 Setup

Consider a rectangular specimen of width 50 mm and a height of 7 mm. Figure 4.11 shows

schematically the specimen as well as the boundary conditions for both the thermal and

mechanical models used in this work. On the one hand, the thermal boundary conditions

correspond to the heat flux exerted by the ions defined in section 2.2, and the radiation to the

environment by defining a reference temperature, Tref . On the other hand, the mechanical

boundary conditions correspond to displacement constraints in the horizontal axis for the

sides of the specimen and the vertical axis for the bottom of the specimen. The parameters

used in this work for the erosion process simulations are tabulated in Table 4.1.

Pwall(x) 

Figure 4.1: Schematics for the thermal and mechanical boundary conditions of the thermo-
elastic model.

Material failure criteria

As mentioned in the previous section, the material state is defined as w/wmax = 1, where

wmax is the strain energy density when the material meets the failure criteria defined by

1This is Figure 2.14 reproduced here for clarification.
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Table 4.1: General parameters for the erosion process simulation.

Parameter Description value
E Young’s Modulus 40000 MPa [23, 56]
ν Poisson’s ratio 0.2
ρ Density 2×10−9 Tn/mm3 [56]
K Thermal conductivity 29 mW/mm K [19]
ε Emissivity 0.9 [19, 57]
Cp Specific Heat 0.81×109 mJ/Tn K [56]
Tref Reference temp. for radiation 298 K

α Thermal expansion coeff.

Temp K value
298 0.6×10−6

673 1.1×10−6

1073 1.5×10−6

1473 2.8×10−6

[56]

Equation 2.28 and for the boundary conditions shown in Figure 4.1,

wmax =
λ+ 2µ

2µ (3λ+ 2µ)
σ2
C (4.1)

where λ and µ are the Lame constants obtained from the elastic constants shown in Ta-

ble 4.1. The derivation of Equation 4.1 can be found in Appendix A.

Element size

The main features of interest are the spatial period of the anomalous ridges that are of the

order of l = 1 mm (spatial frequency f = 1 1/mm) [16]. Consequently, according to the

Nyquist sampling theorem, the sampling frequency should be fs ≥ 2f = 2 1/mm or the

sampling interval xs ≤ 0.5 mm. Thus, an element size of 0.5 mm or smaller would suffice

to capture the ridges. On the other hand, for BN and BN-SiO2 the microcracks formed in

the microstructure are in the order of 1.5 or less µm [22], and the grain size of silica is

around 20 µm [21]. Thus, an element size of > 50 µm (0.05 mm) is deemed enough to

represent the RVE of the microstructure. Therefore, the element size should be within 0.05

and 0.5 mm. In order to capture not only the anomalous ridges but the features of the order

of up to 10 1/mm found in [23], an element size of 62.5 µm (0.0625 mm) is chosen in this
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work.

The total mesh is composed of 89600 square coupled temperature-displacement plane

strain elements from the Abaqus library, and the material model defined in section 3.3 is

implemented with UMAT user material subroutine from Abaqus [42].

Ion energy distribution

Figure 4.2 shows the ion energy distribution for the simulation to represent typical values

of mean energy of around 130 eV at the frontEF (original flat surface) of a laboratory setup

[23]. In order to simulate different operation conditions, the ion current density jion varies

from 0.05 to 0.25 mA/mm2 (5 to 25 mA/cm2). A representative value for a laboratory setup

is approximately 0.1 mA/mm2 (10 mA/cm2) [23], and it is accounted. According to the

minimum and maximum values of ion energy, ≈ 100 to ≈ 225 eV, respectively, as shown

in Figure 4.2, the expected power to wall Pwall will be within 5 to 57 mW/mm2 (5000 to

57000 W/m2). This range of heat flux lies within characteristic values for a thruster [19].

100 150 200 250
ion energy [eV]

0.00

0.01

0.02

0.03

0.04

0.05

IE
D

F

E(v, h = 1) @ front

E(v, h = 1) @ groove

Figure 4.2: Ion energy distribution EF and EG for reference bounds to use in the erosion
process simulation.
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Time increment and number of simulations

The time increment bounds are determined considering the maximum and minimum prob-

abilities that could be attained, according to Equation 2.26. The minimum probability is

given when (in average) only one element is removed from the surface k = 1, thus, Equa-

tion 2.26 becomes, J0(P ) = 1
N

and combining with Equation 2.27, it leads to

∆tmin(P ) =
ye

ẏsy(P )N
(4.2)

and the maximum probability is obtained when all elements are removed from the surface

k = N , which leads to

∆tmax(P ) =
ye

ẏsy(P )
(4.3)

As it can be seen, the time increment bounds also depend on the heat flux range, as shown

in Figure 4.3.
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r

∆tmax
∆tmin

Figure 4.3: Time increment bounds for the probabilistic approach.

In this case study, the time increment is selected as ∆t = 2 h as it can be seen from the

figure with dashed lines. This selection is chosen such that it can be maintained constant
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throughout the simulation. Nevertheless, the implementation of the solver allows choosing

a different time increment that is automatically adjusted upon reaching the thresholds.

For each operation condition, 10 simulations are performed in order to obtain statistical

values of certain parameters.

Finally, Figure 4.4 shows the resulting joint probability distribution J(P,D) to be used

in the analysis from the aforementioned simulation conditions.
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Figure 4.4: Joint probability distribution for the case study.

4.1.2 Results of the erosion process simulations

For the problem described in subsection 4.1.1 three models are used and compared. The

first model corresponds to a simulation in which only sputtering yield is accounted for the

erosion process (sputtering model), the second model corresponds to a model that considers

a combination of sputtering and elastic behavior (elastic model), and the third one, corre-

sponds to the model that considers a combination of sputtering and the DE material model

behavior (microstructure cracks and damage, inelastic model). For each model, seven dif-
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ferent power levels were applied in the range described in subsubsection 4.1.1 and for each

level, ten simulations were performed. In total, 70 simulations are analyzed per model.

Figure 4.5 qualitatively shows the evolution of the surface for the three models considered

in this work at three different power levels. In each subfigure, the sputtering model is in

the top, the elastic model in the middle and the inelastic one in the bottom. Several obser-

vations can be made from the figures. First, in each case, the (mean) erosion rate is similar

(as discussed in the next subsection) in all three models since the recession of the wall is

similar at times shown in the figure. Secondly, as the power to wall increases in (b) and (c);

the formation of features becomes more evident in the elastic and inelastic models whereas

they do not form in the sputtering model.
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Figure 4.5: Surface evolution for the sputtering (top), the elastic (center) and the inelastic
(bottom) models at (a) approx. 20 mW/mm2, (b) 35 mW/mm2 and (c) 50 mW/mm2
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Figure 4.6 shows the variables that can be used to quantify the evolution of the surface

features for one randomly selected realization at the same three different power levels. As

it can be seen, in the first case, (a) ion current at 0.1 mA/mm2, the wavelength remains ap-

proximately constant throughout the simulation regardless of the model; the same applies to

the roughness and peak-to-valley. However, as the power level increases (subfigures b and

c), there is a remarkable difference in how the elastic and inelastic models can reproduce

the features in contrast to the sputtering model. Firstly, it can be seen how the wavelength

decreases in the material-based models. This suggests that the models in which the mate-

rial is considered, the features can be captured whereas the state-of-the-art sputtering model

cannot. In addition, the roughness and peak-to-peak increase through time as well. This

is in agreement with previous research in which it has been shown that sputtering-based

models cannot capture the anomalous ridges.
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Figure 4.6: Wavelength, roughness and peak-to-peak at (a) approx. 20 mW/mm2, (b) 35
mW/mm2 and (c) 50 mW/mm2

In the following section, a comprehensive statistical analysis is provided in order to

further characterize and compare the different models.
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Statistics of erosion process for a range of powers for boron nitride

This section shows the statistical analysis of the results. In each case, the values of the

parameters are taken at the end of the simulation, i.e., when the erosion recession cannot

go further than the height of the specimen (see subsection 4.1.1) unless otherwise noticed.

In each plot, the dots represent the mean values and the bars the standard deviations in each

axis for each of the operation conditions.

Figure 4.7 shows the relationship between the erosion rate and the power applied to

the wall for the sputtering (blue circles), the elastic (orange triangles), and the inelastic

(green squares) models. Although not enough data is reported about the erosion rates in

experiments, the typical range of erosion rate is 2.5 to 9 µm/h [15, 58, 59] depending on

the operation conditions and device. For the power to the wall, the range goes from 1000

W/m2 up to 60,000 W/m2 (1 - 60 mW/mm2) [60, 19] considering the operation condition

for which typical erosion rates are reported. The uncertainty of data is shown with the

shaded areas in the figure. As it can be seen, the calculated values of erosion rates from the

simulations lie within the measured values. Figure 4.8 shows the stress and temperatures

as a function of the power to the wall. These relations are of great interest for engineers

since it can help to determine which material is suitable for given operation conditions

considering that the power to the wall is associated to the discharge power of the thruster

[19]. As it can be seen from the figure, the stresses from the inelastic model (green squares)

are lower than the ones from the elastic and sputtering models. This could indicate a stress

release mechanisms upon material damage.

The materials used in HET, such as boron nitride, have very high melting points [61,

62], and the temperatures in a HET can range from 600 to 1000 K depending on operation

conditions, geometry, and location [19, 59, 63]. Figure 4.8(b) shows that for the particu-

lar case of the specimen analyzed in this work, the temperatures are within a reasonable

range. However, the comparison with a model of a HET channel is not straightforward

because of the differences in boundary conditions and geometry, i.e. in a HET channel, the
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temperatures are distributed along the entire thruster, and the heat flux is applied only to

a portion of it [19], whereas in our case, the specimen is entirely exposed to the heat flux

with a geometry that does not favor heat dissipation. Nevertheless, the verification of the

heat transfer solver is done considering the geometry and operation conditions as in [19].

In order to quantify the surface features, Figure 4.9(a) and (b) shows the roughness of

obtained from each model and the peak-to-valley values also as a function of the power to

the wall, respectively. As discussed in the previous section, even though the erosion rate is

fairly similar in the three cases, the difference in the roughness and peak-to-valley suggests

that the elastic and inelastic models can capture the creation of anomalous ridges, whereas

the sputtering model cannot. This is the first time, to our best knowledge, that a wall erosion

model can reproduce the erosion ridges in this length-scale (recall that several models can

reproduce some ridges in the nanoscale in etching process by ion bombardment, [9, 25, 26,

27]).
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Figure 4.7: Estimated erosion rate for boron nitride as a function of the heat flow to the
wall at each power level.
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Figure 4.8: Estimated (a) stresses and (b) temperatures as a function of the heat flow to the
wall at each power level.
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Figure 4.9: (a) Roughness and (b) peak to valley values, as a function of the resulting mean
stress of the specimen σ for the sputtering (blue circles), the elastic (orange triangles), and
inelastic (green squares) models.

As it can be seen, at the same power level, the stress obtained in the inelastic model is

lower than the sputtering and elastic ones. This is because the inelastic model accounts for

crack growth, and therefore, stress is relieved, leading to lower stress levels.

It is also of interest to find a relationship between the features’ wavelength and the

stress of the specimen. The hypothesis is that the anomalous erosion ridges are a result

of an instability driven by the release of mechanical strain energy in the material [63].
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In his work, the author found that the wavelength of the ridges was in the order of the

mechanical stress l ≈ O(σ−2). However, experimental results did not back up such a

relationship, presumably because the experiments were conducted for a very short period

of time and in a very small domain (a few hundreds of microns). Figure 4.10 shows the

result of the erosion ridges at the end of erosion recession. The power-law indicates that the

wavelength can be related to the stress with approximately a power of -2 in the elastic and

inelastic models. Again, the sputtering model is unable to capture the erosion ridges as the

wavelength appears insensitive to the stress to the wall. Furthermore, the inelastic models

predict higher spatial frequencies (or lower wavelengths) at the same stress level indicating

that the addition of inelastic behavior due to crack release energy could potentially help

explain the formation of such ridges.
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Figure 4.10: Surface features as a function of the mean stress of the specimen, σ.

4.2 Application to fused silica

In this section, we use the SCL in the plasma-wall interaction model to simulate the erosion

process of a material that exhibits softening behavior and brittle fracture, such as fused

silica.
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4.2.1 Setup

The SCL model described in subsubsection 4.2.1 is implemented into the Plasma-Wall

interaction model defined in chapter 2 to obtain the erosion of the material exposed to ion

bombardment.

Consider a rectangular section of 100 mm width and 15 mm of height with the thermo-

mechanical boundary conditions depicted in Figure 4.1 and described in subsection 4.1.1.

For this section, we use fused silica in order to define a benchmark to be used for com-

parison with test data obtained from ion bombardment experiments on this material. The

thermo-elastic parameters for fused silica and the constants for the sputtering model given

by Equation 2.20 are tabulated in Table 4.3 and Table 4.2, respectively. In this section,

we use the same material failure criteria as the one derived in subsubsection 4.1.1 and the

element size is chosen to be equal to the size of the RVE of the fused silica microstructure,

le = 170µm. The ion energy distribution for the simulation is shown in Figure 4.2 and the

time increment is ∆t = 2 hours as defined in Figure 4.3.

Table 4.2: Sputtering yield constants used for fused silica in this chapter, [21, 12].

Parameter Value

Eth, eV 18.3

B0 9.14E-01

B1 5.34E-02

B2 -6.98E-04

B3 3.33E-06

k 3.5E-03

Representative Volume Element of the fused silica microstructure

Fused silica ceramic has been previously used to understand the erosion mechanism in

electric propulsion devices under mechanical stresses [23]. The material properties are
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Table 4.3: Fused silica properties [65, 66].

Parameter Description value
E Young’s Modulus 74000 MPa
ν Poisson’s ratio 0.16
ρ Density 2.2×10−9 Tn/mm3

KIc Fracture Toughness 0.66 MPa m1/2

σc Fracture strength 170 MPa
Gc Fracture energy 0.006 mJ/mm2

δmax Maximum crack opening 6.8×10−5 mm
Enn Traction-displ. tangent 1.35×108 MPa/mm
K Thermal conductivity 1.4 mW/mm K
Cp Specific Heat 670×106 mJ/Tn K
Tref Reference temp. for radiation 298 K
α Thermal expansion coeff. 5×10−7

summarized in Table 4.3. In this chapter, the crack length is assumed to be d = 15µm

according to typical values of finishes and subsurface damage correlation [64, 23]. The

crack density is obtained as [34],

f ≈
[

1

3d

]3

(4.4)

and the 2-dimensional density as,

Na = f 2/3 (4.5)

The size of the RVE of the microstructure is 170 µm and the crack density leads to a total

of 14 cracks that are randomly placed at 0◦,±45◦, 90◦ to provide a more realistic crack

distribution as depicted in Figure 4.11. As it is defined in subsubsection 3.4, the cracks can

grow following the cohesive path shown in the figure. The fracture strength σc, maximum

crack opening δmax, fracture energy Gc and critical opening δc are defined following the

guidelines of subsubsection 3.4 and are tabulated in Table 4.3.
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d

Figure 4.11: RVE of the fused silica microstructure with the cohesive element path for
crack growth, the cracks location and the FE mesh.

SCL and training

For the microstructure shown in Figure 4.11, we use sεM = 0.01 and sθM = π/6 to obtain

the kernel function provided in Equation 3.33. Also, a loading sequence length T = 200

is adopted. The overall (joint) distribution of principal strains is depicted in Figure 4.12.

Using the same approach defined in subsubsection 3.5.1, we expose the RVE shown in

Figure 4.11 to 10,000 input strain cases to obtain the average stresses (Equation 3.37) that

will be used as the output of the SCL.
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Figure 4.12: Distribution of principal strains for the fused silica RVE.
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Figure 4.13 shows the evaluation with test (unseen) cases for three different architec-

tures (1,2, and 3 LSTMs layers) with 100 units each. As it can be seen from the figure,

the error in the stresses is less than 0.25% in all cases. Following the results, we select the

architecture with three layers and 100 units per layer RNN considering that it provides the

best performance (< 0.2% error) among the tested architectures with a parameter α = 0.99

for the combined loss.

Figure 4.13: Evaluation of several architectures with unseen cases.

From Figure 4.14 through Figure 4.17 we show a comparison of the predicted softening

behavior using the SCL (orange) with the real behavior obtained from the FE analysis of

the RVE (blue) for four randomly selected strain histories. In each case, we show to the left

the initial cracks in black and the crack propagation in red, and to the right, the equivalent

stress vs. equivalent strain where the black dots indicate the current stress value. As it

can be seen from the results, the SCL is able to capture the softening behavior of the

microstructure for completely different loading scenarios without imposing any kind of

assumptions of constraints. The sub-figures depict the load increments at 25% (a, b), 50%

(c, d), 75% (e, f), and 100% (g, h).

87



(a)

0 1 2 3 4
εeq ×10−3

0

50

100

150

200

σ
v
m

M
P

a

seed 1030

rve

scl

(b)

(c)

0 1 2 3 4
εeq ×10−3

0

50

100

150

200

σ
v
m

M
P

a

seed 1030

rve

scl

(d)

(e)

0 1 2 3 4
εeq ×10−3

0

50

100

150

200

σ
v
m

M
P

a

seed 1030

rve

scl

(f)

(g)

0 1 2 3 4
εeq ×10−3

0

50

100

150

200

σ
v
m

M
P

a

seed 1030

rve

scl

(h)

Figure 4.14: Comparison between real (blue) and predicted (orange) behavior of the mi-
crostructure for test (unseen) cases for strain history labeled 1030.
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Figure 4.15: Comparison between real (blue) and predicted (orange) behavior of the mi-
crostructure for test (unseen) cases for strain history labeled 1079.
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Figure 4.16: Comparison between real (blue) and predicted (orange) behavior of the mi-
crostructure for test (unseen) cases for strain history labeled 1102.
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Figure 4.17: Comparison between real (blue) and predicted (orange) behavior of the mi-
crostructure for test (unseen) cases for strain history labeled 1103
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4.2.2 Results of the erosion process simulations

In this section we show the results of the plasma-wall interaction model for fused silica

using the sputtering and material model with SCL described in section 4.2. The first part

shows the temperatures and stress fields at several snapshots for different power inputs.

Secondly, a range of heat fluxes is analyzed to provide a statistical measure of several

parameters of interest such as typical erosion rates, roughness, peak-to-valley values, and

the relationships to the applied heat. These statistics are also compared against other model

behavior such as (i) pure sputtering, and (ii) sputtering with elastic material behavior. The

goal is to show the capabilities of predicting the anomalous erosion ridges by combining

the sputtering yield and a homogenized material behavior at different input power levels.

Figure 4.18 through Figure 4.202 depict the solution at three different power levels

ranging from approximately 36 mW/mm2 to 90 mW/mm2 (36 kW/m2 - 90 kW/m2), re-

spectively. It can be seen in all three cases, that the erosion process begins homogeneous

throughout the length of the specimen. However, the erosion ridges start forming at earlier

times for higher powers. It is worth noticing that the stress distribution forms a periodic

distribution of lobes around the points where erosion valleys begin to develop, for example

at around 1300 hr. in Figure 4.18(b), at 370 hr. in Figure 4.19 and 168 hr. in Figure 4.20.

These lobes have a wavelength between 2 and 6 mm, which are in the order of the Debye

length of the plasma. The stress distribution indicates concentration points that ultimately

lead to a developing of more prominent valleys observed as time evolves.

Statistics of erosion process for a range of powers for fused silica

A set of heat fluxes are applied to the specimen in order to find relations with several

parameters of interest. Ten simulations are performed for each power level ranging from 20

to around 80 mW/mm2 (20-80 kW/m2). The case with power levels of around 90 kW/m2

2It should be noted that in this case, the simulation is terminated earlier due to some points exceeding the
temperature of softening point for fused silica, 1900 K [65].
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Figure 4.18: Temperature (K) and stress (S, MPa) fields for the erosion process at approxi-
mately 36 mW/mm2.
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Figure 4.19: Temperature (K) and stress (S, MPa) fields for the erosion process at approxi-
mately 50 mW/mm2.
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Figure 4.20: Temperature (K) and stress (S, MPa) fields for the erosion process at approxi-
mately 90 mW/mm2.
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are not included in this analysis because some surface points exceed the softening point

temperature, and the simulations were terminated earlier. As with the case of boron nitride,

we also show the comparison with two models, (i) the pure sputtering model and (ii) the

sputtering with elastic material behavior.

Figure 4.21 shows the erosion rates for this range of heat flux which are in agreement

with typical erosion rates for this material [23]. In this plot, we provide a linear fit model

to show the trend of how the erosion rate is affected by the input power. Figure 4.22 shows

typical values of stresses and temperature that are attained for this particular boundary

value problem. However, as these variables depend on the geometry and boundary con-

ditions (among others), they only provide an estimate of how the power to wall affects

them. Finally, Figure 4.23 provides an assessment of how the surface features, character-

ized here in terms of the surface roughness and peak to valley values, are affected by the

input power. It is worth noting that even though the behavior of the material seems to play

a little role in the overall temperature trends and erosion rates, as shown in Figure 4.21 and

Figure 4.22, it is clear that it plays a significant part in the development of features as seen

that the data-driven model is bounded by the results of pure sputtering (blue) and elastic

material (orange). It is then inferred that the elastic material tends to overestimate provided

that there is no limiting stress values, whereas the sputtering model tends to underestimate

considering the lack of material behavior. By using a homogenized material behavior with

the SCL in the data-driven model (green) we are capturing the softening behavior of the

material upon brittle fracture.
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Figure 4.21: Erosion rate for fused silica as a function of applied power.
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Figure 4.22: Estimated (a) stresses and (b) temperatures as a function of the heat flow to
the wall at each power level for fused silica.
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Figure 4.23: (a) Roughness and (b) peak-to-valley values, as a function of the heat flow to
the wall at each power level for fused silica.

Discussion

Figure 4.24 shows the evolution of the roughness (a) and strain energy density (b) for

qualitatively low, medium, and high power using the three different behaviors: (i) pure

sputtering in blue, (ii) elastic material in orange and (iii) data-driven material in green. For

each power level, ten simulations are performed (considering the probabilistic approach).

Therefore, we show the statistic mean value at each time represented with solid lines and

the standard deviation shown with the shaded area. It should be noted here that the elastic

and data-driven material model also includes the sputtering model. From the picture, it

can be inferred that when there is not enough power to the wall (ion energy) to produce

significant strain energy density in the surface, the addition of a material behavior does

not provide any advantage to reproduce the anomalous ridges as it can be seen in the first

column of the picture. However, when the power to the wall is enough to produce higher

strain energies, an unstable process is triggered. This process could be explained as fol-

lows. First, the power to the wall is enough to produce higher strain energies at some points

of the surface, which become more susceptible to erosion. Once these points are eroded,

generating a deeper valley, it increases the size factor (since it depends on the surface fea-
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tures), which in turn, it will increase the ion energy deposition to the wall; in other words, it

will induce more heat flux to the wall in those areas. Naturally, this increase in the heat flux

generates higher temperature gradient, thus, higher induced thermal stresses that ultimately

leads to higher strain energy densities. At this point, the process becomes “unstable”, and

valleys would erode faster, which can be quantified by an increase in the roughness of the

surface (or equivalently from the peak-to-valley) as depicted in Figure 4.25. It can also be

seen that for the data-driven model, the evolution of the roughness is bounded between the

sputtering model and the elastic one, where the former tends to underestimate the formation

of ridges and the latter tends to overestimate their formation. This is presumably because

the data-driven model is able to capture the non-linear softening behavior of the fused silica

microstructure upon brittle cracking.

4.3 Summary of results

As expressed in this chapter, the addition of an inelastic constitutive model that includes

ceramic behavior helps explain the creation and development of surface instabilities like the

anomalous ridges for long exposure operations. However, the inelastic model presented in

section 3.3 has several limitations. For example, the orientation of cracks is unique and

constant, and it does not account for shear behavior, to name a few. Because of these

limitations, the DE model (inelastic model) fails to provide accurate representation of the

microstructure under several load scenarios as it is demonstrated in section 3.4. More

importantly, it restricts the predicting capabilities when there are several phenomena that

happen in the microstructure level, such as ion diffusion or implantation, as it has been

shown to affect the mechanical behavior, for example in other materials [41].

Therefore, in the second part of the chapter, we present a new methodology that lever-

ages state-of-the-art machine learning techniques to homogenize the non-linear behavior of

fused silica. Using the homogenized material, called Smart Constitutive Law (SCL), pro-

vides the capabilities to account for the physics that govern the microstructural behavior in
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Figure 4.24: Roughness and strain energy density evolution for the sputtering, elastic, and
data-driven model for three power levels.
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Figure 4.25: Schematics of the unstable erosion process.

a macroscopic model without losing generality. It is shown how the SCL is implemented

into a plasma-wall interaction model and how its behavior affects the formation of anoma-

lous erosion ridges.

We have shown in this chapter that the material model becomes more relevant as the

power incident to the wall increases. This implies that this type of plasma-materials inter-

actions (in particular the effect on the material damage) will become critical for predicting

the life of upcoming high-density electric propulsion devices. In particular, the capability

to reproduce the formation and evolution of erosion ridges is relevant since the lifetime of

devices is limited by the maximum recession where these valleys form, and not necessarily

by the mean erosion rate as shown in Figure 4.26 for the case reproducing the mean erosion

rate (sputtering model, blue) and where a microstructure-based material is accounted for

(orange). As it can be seen, the effect of the erosion ridges is more important for higher

power deposition to wall.
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Figure 4.26: Evolution and comparison of the recession of the wall for the sputtering case
(blue) and the microstructure-based material (orange) where the erosion ridges would limit
the lifetime of a device for (a) low, (b) medium, and (c) high powers.
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CHAPTER 5

CONCLUSIONS

5.1 Summary and conclusions

This work establishes a model to better understand the erosion process of materials due

to ion bombardment at the macro-scale and for a long time exposure. In chapter 2, an

original interaction model between the ionized gas and the material behavior is presented.

The proposed model comprises data from plasma dynamics simulations and FE analysis of

the material. The coupling between the two phenomena is carried out by the definition of

four novel parameters and functions: (1) a visibility factor that accounts for ion orientation

and shadowing effects, (2) a size factor that accounts for the relative shape and size of

the surface features with respect to a plasma parameter and a reference geometry, (3) an

energy interpolation function to define the point-wise ion energy deposited to the walls and

(4) a probability erosion function to quantify the susceptibility of each surface point to be

eroded based on the energy deposited and the material state (damage). Furthermore, the

state-of-the-art sputtering yield model is also incorporated in the calculation of erosion.

In chapter 3 we provide a description of several material models that are used in the

plasma-wall interaction model. In particular, we present a novel method of homogeniza-

tion using machine learning (ML) with the objective to develop a general framework able to

reproduce the effective nonlinear and history-dependent behavior of complex microstruc-

tures. The method only needs strain and stress histories on an RVE to create a surrogate

constitutive law named Smart Constitutive Law (SCL) without any extra assumptions re-

garding the underlying or emergent material response at the microstructure or homogenized

scales, respectively. These material models are then used to calculate the stresses in the

thermo-mechanical part of the plasma-wall interaction.
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The plasma-wall interaction model is then evaluated for two different ceramics. In

the first part of chapter 4 we provide the results of the erosion process for boron nitride.

In order to demonstrate how the material behavior affects the erosion process, we study

three different cases. The first one only uses sputtering yield to calculate the erosion (sput-

tering model). The second one combines the sputtering model with an elastic material

(elastic model) and the third one, in which the material model is enhanced to account for

microstructure mechanics (DE material model or inelastic model). It is shown that in the

models in which the material is accounted for (elastic and inelastic models) the overall

solution can reproduce the anomalous ridges that appear after long exposure, whereas the

model of pure sputtering only provides a good estimation of the mean erosion. This rep-

resents a great improvement in the erosion process calculation capabilities. In addition, a

statistical analysis of several simulations at different input power levels suggests that the

material behavior plays a fundamental role in the formation and evolution of such unstable

features.

In the second part of chapter 4 we use the SCL derived in section 3.5 to analyze the

behavior of fused silica since it can represent the effective softening behavior of the mi-

crostructure upon brittle fracture and since it enables the addition of physics phenomena

that developed in the microscale. As in boron nitride, we demonstrate how the SCL is able

to reproduce erosion ridges which ultimately would help in the prediction capabilities of

future devices. Based on the results, we observe that when the power deposition to the

wall is sufficient to produce high strain energies at some points on the surface, these points

become more susceptible to erosion. Upon being eroded, deeper valleys can form, which

increases the size factor, which in turn increases the ion energy deposition to the wall. In

other words, it will induce more heat flux in those areas. This higher heat flux increases the

local temperature and therefore, the thermal stresses and strain energies. This process be-

comes “unstable”, and valleys would erode faster leading to the development of anomalous

erosion. Therefore, we conclude that the formation and development of anomalous erosion
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ridges is driven primarily by the material behavior. This represents a very important con-

tribution since this is the first time to our knowledge that a model is able to reproduce this

erosion mechanism.

We also conclude that the material model becomes more relevant as the power inci-

dent to the wall increases. This implies that this type of plasma-materials interactions (in

particular the effect on the material damage) will become critical for predicting the life of

upcoming high-density electric propulsion devices.

5.2 Contributions

The research presented in this work provides the following contributions to the state of the

art.

1. A novel plasma-wall interaction model that predicts the erosion features at the macro-

scale that appear in the material after long exposure to plasma environments. This

has not been addressed by any model up to date and represents an improvement in

the erosion process predicting capabilities. The model comprises several original

characteristics:

• A visibility factor, accounts for shadowing effects and ion orientation (described

in subsection 2.2.2).

• A size factor, that accounts for the relationship between the surface features and

geometric and plasma parameters (described in subsection 2.2.2).

• The ion energy interpolation scheme to determine the ion energy deposition at

each point of the surface considering data from a plasma dynamics simulation

(described in subsection 2.2.2).

• The probabilistic model of erosion presented in subsection 2.2.4 combines the

sputtering model and the material behavior to determine the susceptibility of

each surface point of being eroded and,
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• A continuum thermo-elastic model is described in section 2.3.

2. Considering the underlying physics that develop at the microscale, this work also de-

velops a novel methodology to obtain the effective properties of complex microstruc-

tures that exhibit non-linear and path-dependent behavior through machine learning

as presented in chapter 3. This new technique is shown to be very efficient without

losing accuracy in comparison with concurrent multiscale modeling. This contribu-

tion also includes,

• Development of an in-house FE solver that is able to solve static and dynamic

problems.

• Implementation of the SCL into the FE solver.

3. A mechanism that helps explain the formation of anomalous ridges and how the ma-

terial behavior plays a fundamental role in the formation of such erosion patterns.

More importantly, it demonstrates how the lifetime is limited by the maximum re-

cession at the points where these erosion ridges form, and not necessarily by the

mean erosion rate.

5.3 Future work

There are several lines of future work that could enhance the erosion process prediction

capabilities. From the numerical point of view, the study of the ion beam orientation with

respect to the specimen could lead to approximating the solution of the erosion process

and patterns that form in an operating HET. Once this is investigated, the model could be

adjusted to a 2D geometry of a HET channel to predict the lifetime. Furthermore, another

enhancement could be obtained by coupling a “real-time” plasma dynamics, therefore,

reducing the need for tuning geometric parameters. Secondly, an extension to 3D domain

is a very interesting line of research since in this work, we focused on a 2D plane strain
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problem due to the limitations of computer capabilities. The addition of a third dimension

would allow us to investigate the preferred orientation of ripples as seen in HETs.

From the material homogenization point of view, a natural extension of this work is the

study of the effect of considering ion implantation and diffusion in the microstructure since

that will affect the overall non-linear behavior of the homogenized material. In this same

line of investigation, another study could be carried out to account for how the distribution

of microcracks, as well as their density, affects the overall behavior of the microstructure.

Moreover, a different damage parameter (other than the strain energy density) could be

investigated that could reflect the local state of the microstructure, for example, a damage

parameter indicating the degradation of the cohesive response.

From the experimental point of view, it would be beneficial to contrast the plasma-wall

interaction model with the SCL material used for fused silica with experimental data for

samples exposed to plasma for long periods of time. This will enable a fine tune of the

parameters that govern the erosion process.
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APPENDIX A

STRAIN ENERGY DENSITY AT FAILURE

The strain energy at failure wmax, defined in subsubsection 4.1.1 using the boundary condi-

tions Figure 4.1 is obtained as follows.

Pwall (heat flux)

Figure A.1: Schematics for the thermal and mechanical boundary conditions of the thermo-
elastic model.

First consider the thermal strains given by,

εtij = α∆T (A.1)

where ∆T = T − Tref is the difference between the specimen temperature and a reference

temperature and α a thermal expansion coefficient. The mechanical strains then follow,

εmij = εij − εtij (A.2)

Given the boundary conditions as illustrated in Figure 4.1, ε11 = ε33 = 0. The component

ε11 due to the boundary conditions, and ε33 = 0 due the plane strain condition of the
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problem. The mechanical strain tensor is then,

εm11 = −α∆T

εm22 = ε22 − α∆T (A.3)

εm33 = −α∆T

and the volumetric strain is

εmvol = εm11 + εm22 + εm33 = ε22 − 3α∆T (A.4)

The stress tensor in linear elasticity is given by,

σij = λεmvolδij + 2µεmij (A.5)

where λ and µ are the Lame constants, and δij is the Kronecker delta operator. Thus, the

stress tensor is

σ11 = λεmvol + 2µεm11

σ22 = λεmvol + 2µεm22 (A.6)

σ33 = λεmvol + 2µεm33

and the shear components are all zero, σ12 = σ23 = σ31 = 0 (and their corresponding sym-

metric parts). Equation A.6 can be re-written by plugging Equation A.3 and Equation A.4,

σ11 = λεm22 − (3λ+ 2µ)α∆T

σ22 = (λ+ 2µ)εm22 − (3λ+ 2µ)α∆T (A.7)

σ33 = λεm22 − (3λ+ 2µ)α∆T
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As it can be seen from the figure, the specimen can freely expand in the vertical direction,

thus σ22 = 0, using this condition, the mechanical strain in the vertical direction can be

found from Equation A.7,

ε22 =
3λ+ 2µ

λ+ 2µ
α∆T (A.8)

Replacing Equation A.8 into Equation A.7 we obtain the components on the horizontal axis

σ11 and out of plane σ33, which are equal,

σ11 = σ33 = − 2µ

λ+ 2µ
(3λ+ 2µ)α∆T (A.9)

= εThα∆T

where εTh = − 2µ
λ+2µ

(3λ + 2µ) for simplicity. Therefore, the change in temperature to

produce failure due to the maximum stress failure criteria σ11 = σC (note that σ11 is com-

pressive and σC is the compressive strength of the material). For simplicity,

∆T =
σC
αεTh

(A.10)

The strain energy density is1,

w =
1

2
σijεij =

1

2
(σ11ε

m
11 + σ22ε

m
22 + σ33ε

m
33)

= σ11ε
m
11 (A.11)

Finally, the strain energy density when the material reaches the failure criteria is ob-

1Note: we follow Einstein notation in which repeated indices represent a summation
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tained by using Equation A.9 and Equation A.10 in Equation A.11.

wmax = εThα∆T (−α∆T )

=
σ2
C

−εTh
=

λ+ 2µ

2µ (3λ+ 2µ)
σ2
C (A.12)
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APPENDIX B

MICROCRACKS COEFFICIENTS

The nonlinear functions of the damage D and friction µ used in section 3.3 are;

A = c1(c2A3 − c2A1 + c3) (B.1)

B =
c1√

3
(c2A3 + c2A1 + c3) (B.2)

C = A+ γ

√
α

(
D

D0

)1/3

(B.3)

F =

√(
B2C2

C2 − A2

)
(B.4)

with

c1 =
1

π2α3/2
[
(D/D0)1/3 − 1 + (β/α)

]3/2
(B.5)

c2 = 1 + 2

[(
D

D0

)1/3

− 1

]2(
D

2/3
0

1−D2/3

)
(B.6)

c3 = 2α2π2

[(
D

D0

)1/3

− 1

]2

(B.7)

and

A1 = π

√
β

3

[
(1 + µ2)1/2 − µ

]
(B.8)

A3 = A1

[
(1 + µ2)1/2 + µ

(1 + µ2)1/2 − µ

]
(B.9)

where β = 0.1 is a parameter to convert the two-dimensional solution into a three-
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dimensional employed in [35, 34, 36], and γ is used to match the tensile data.
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