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Abstract

Kinematic simulation involves finding simultaneous zeros for a set of functions

representing mechanical linkages which constrain the positions and orientations of a set

of bodies. Evaluation of these functions, and of their Jacobians with respect to the

positions and orientations of the bodies, is sufficient to allow the use of a

multidimensional Newton-Raphson procedure to solve the kinematic constraint

equations. An abstraction comprising such a function and its Jacobian may be

implemented as a virtual class in an object-oriented language, yielding a software

architecture embodying benefits of object-oriented design and implementation:

abstraction, encapsulation, extensibility and reusability. An implementation in Eiffel is

described.
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Introduction

Kinematics is the study of time-independent qualities of motion, i.e. the study of motion without regard to

velocities, forces or accelerations (Haug (1989)). Kinematics is the basis of the study of dynamics, which

has become central to most computer animation. This paper describes an object-oriented architecture for

the simulation of the kinematics of mechanical systems.

How kinematic simulation works

From the viewpoint of kinematics, a mechanical system is a set of rigid bodies whose motions are

constrained by the linkages among them. The state of the system is the concatenation of the states of all

the bodies; the state of a body is its position and orientation. In two dimensions the state of a body is

represented by three quantities, two (x and y) for its position and one (q) for its orientation. The state of the

system of n bodies is therefore given by 3n quantities.

Each linkage in the system is represented by a set of constraint functions, typically one or two, each of

which maps the system state to a scalar value. A collection of such constraint functions, considered as a

vector, is denoted by a boldface capital phi, F. These functions need have no meaning other than that

they are simultaneously zero iff the constraints are satisfied, i.e. iff the bodies whose motions are

constrained by a linkage are in positions and orientations allowed by that linkage, although usually the

functions do have some geometric significance. Each kind of linkage constrains some fixed number of

degrees of freedom of the system; the number of unconstrained degrees of freedom of the system is the

number of free variables, i.e. state components, whose values may be independently specified.

For example, in two dimensions a revolute joint constrains a point on one body to coincide with some

point on another body. Mechanically, this corresponds to a pin through both bodies, so that they are
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constrained to rotate about a common axis having no fixed position. Given this constraint, the six state

variables of the two bodies may no longer each be specified independently; once any four of these

variables have been specified, the values of the other two are determined by the constraint, assuming the

constraint can be satisfied. This constrains two degrees of freedom, and is represented by two scalar

constraint equations. If the two points are expressed in global coordinates as (x1, y1) and (x2, y2), these

equations are:

x1 - x2 = 0 and

y1 - y2 = 0.

If the global coordinates of these points are given by the vectors r1 and r2, these constraint equations

may be written as the single vector equation:

F = r1 - r2 = 0.

If these points, each in its own body-local coordinate system, are given by the vectors p1 and p2, and the

bodiesÕ local-to-global rotation matrices are R1 and R2, and their origins in global coordinates are O1 and

O2, these equations may also be written as:

F = O1 + R1 p1 - O2 + R2 p2 = 0.

The Eiffel code which implements this F function is:

phi: VECTOR is

   -- A revolute joint's phi vector.

   -- Contains one element for each constraint equation of the joint.

do
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   Result := b1.local_to_global (fp1) - b2.local_to_global (fp2)

end; -- phi

where b1 and b2 are the bodies constrained by this linkage, and fp1 and fp2 are the fixed points on those

bodies, in local coordinates, which are constrained to coincide in global coordinates.

Given a system of n degrees of freedom, the requirement that all the constraint functions be zero and that

all the free variables have specified values (driver constraints), may be considered a system of n equations

in n unknowns (the system state variables):

F (q) = 0

where F is a vector which is the aggregate of all the constraint functions, including the driver constraints,

and q is the system state vector. If all the constraint functions are continuously differentiable, a Newton-

Raphson procedure can be used to find values for all non-free variables which make the constraint

functions zero. This set of values is a system state which satisfies all the constraints, i.e. in which all bodies

are in positions and orientations given by the free variablesÕ values and allowed by the linkages.

An object-oriented architecture

For the purposes of kinematic simulation, any given mechanical linkage is sufficiently characterized by its

constraint equations. Routines which evaluate the corresponding constraint functions and their Jacobian

are sufficient to allow the constraint equations to be solved using a multidimensional Newton-Raphson

procedure. The principle of information hiding through abstraction may be satisfied by defining a class

(named e.g. JOINT) which exports two deferred (virtual) routines, intended to evaluate the constraint

functions, and their Jacobians, which define some mechanical linkage. A particular kind of mechanical
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linkage, e.g. a revolute joint, is implemented by defining a descendant class of JOINT with routines to

evaluate that linkageÕs constraint function and its Jacobian.

Given a list of objects whose types are descendants of the class JOINT, representing a set of mechanical

linkages, it is straightforward to implement the aggregate constraint function F for the entire mechanical

system comprising those linkages, and to solve the corresponding constraint equations, with no further

knowledge of the actual types of those objects.

Implementation in Eiffel

Three classes are central to the kinematic simulation software; they are MECHANISM, BODY and JOINT.

A MECHANISM is simply a list of BODYs and a list of JOINTs. It implements bookkeeping routines for

constructing the matrices and vectors to which the Newton-Raphson procedure is applied, from values of

the constraint functions and their Jacobian returned by the JOINTs it contains. Its central routine,

update_state, is one which does this construction and then calls the Newton-Raphson procedure. A

MECHANISM is initialized by adding to it some number of BODYs, and sufficient JOINTs (including drivers)

to constrain the corresponding number of degrees of freedom.

A BODY is simply a placeholder for the state vector of a particular body, i.e. for its position and orientation.

This class also implements utility routines, e.g. for transforming positions and vectors between global and

body-local coordinate systems. Any graphical entity may be attached to a BODY; a MECHANISM is draws

itself by drawing each of its component bodiesÕ graphics in that body's current position and orientation. A

BODY is initialized by specifying an initial state (position and orientation) and a graphical entity to be used

to draw the BODY.
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The class JOINT is a deferred (virtual) class which declares routines which calculate the constraint

functions and their derivatives. A mechanical linkage is represented by some descendant of JOINT, which

implements the actual constraint functions corresponding to that kind of linkage, and their Jacobian. The

partial derivatives may be calculated numerically or analytically. The latter is preferred as being

computationally less expensive and more numerically stable, although the analytical derivation is a

laborious and tedious, if conceptually simple, process. A JOINT is initialized by specifying the particular

BODY or BODYs whose states it constrains, plus other information specific to kind of linkage being

created.

deferred class JOINT

export

   num_constraints, num_bodies, bodies, phi, phi_q

inherit

   MECHANISM_CONSTANTS

feature

   num_constraints: INTEGER is deferred end;

         -- Number of degrees of freedom constrained.

   bodies: ARRAY [BODY];

         -- Bodies this joint constrains, 1 .. `num_bodies'.

num_bodies: INTEGER is

   -- Number of bodies in `bodies'.

do

Result := bodies.upper;

end; -- num_bodies
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phi: VECTOR is

   -- This joint's phi vector.

   -- Contains one element for each constraint equation of the joint.

deferred

end; -- phi

phi_q: MATRIX is

   -- This joint's Jacobian matrix.

   -- Contains one row for each constraint equation, and one column for

   -- each component of each constrained body.

deferred

end -- phi_q

end -- class JOINT

Examples of descendants of JOINT are the classes REVOLUTE, ABSOLUTE, SPHERICAL,

TRANSLATIONAL and GEAR, which evaluate the constraint functions for the suggested linkages. The

class DRIVER, another descendant of JOINT, is crucial; it allows a value to be specified at any time, for any

one state component of one BODY. A DRIVER corresponds to a free variable, i.e. a state component

whose value is not uniquely determined by the mechanical linkages, but is specified independently. The

current values of all the DRIVERs determine the values of the non-free state components.

Given this machinery, simulations of fairly complex mechanical systems have proven very easy to

implement, and can be implemented in a highly stylized manner. The general outline of every program that
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has been written using this system so far, is:

Create and initialize the BODYs

Create and initialize the JOINTs

Create and initialize the MECHANISM

Initialize the graphics display

loop

Specify current values for all DRIVERs, i.e. free variables

Call the Newton-Raphson procedure, to determine values for

non-free state variables

Call the draw routine to display the current state of the mechanism

 end loop

This is typically a hundred lines of straight-line initialization code, and a dozen lines of main loop.

Implementing a new kind of linkage with a new descendant of JOINT has also proved to be straightforward,

and highly stylized; it normally involves very little more than plugging expressions for the constraint

functions and their analytical partial derivatives into a generic template.

Benefits of the Object-Oriented Approach

This architecture has simplified the construction of graphical animations, due to the benefits of the object-

oriented paradigm: abstraction, encapsulation, extensibility and reusability.

The constraint functions which represent a mechanical linkage, and their Jacobians, are the essential

characteristics of the linkage, from the point of view of kinematic simulation. The essential characteristics of
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a thing constitute an abstraction (Booch (1990)). This abstraction, and its direct implementation in Eiffel as

the deferred class JOINT, have simplified the connection between the code which implements the

constraint functions and the code which uses

them to calculate the system state.

Conversely, the implementation of a subclass of JOINT representing some linkage requires no knowledge

of what code will call it, or in what circumstances; it simply evaluates a linkageÕs constraint functions, and

their Jacobians. The code which calls these routines can make no assumptions about how these routines

are implemented, beyond the interfaces specified in the class JOINT. This enforcement of information

hiding is encapsulation (Booch (1990), Micallef (1988)). This encapsulation simplifies the implementation

of new subclasses of JOINT by allowing them to be implemented in ignorance of the context in which they

will be used.

New linkages have been implemented very simply, by plugging expressions for the linkageÕs constraint

functions and the components of its Jacobian into a stock template. This easy addition of new features,

allowed by the object-oriented architecture and implementation, constitutes extensibility (Booch (1990),

Micallef (1988)).

Several new simulation programs have required the addition of special-purpose linkages. These were

added simply, with no modifications to the rest of the simulation libraries, allowing the rest of the libraries to

be used unmodified for the simulation of new mechanical systems. This reusability (Micallef (1988)) would

not have been possible without the object-oriented architecture and implementation.

Conclusions

The object-oriented architecture described in this paper results in a kinematic simulation system which
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embodies the virtues of the object-oriented design and implementation of software: abstraction,

encapsulation, extensibility and reusability. The implementation of such a system without an object-

oriented approach would have been considerably more complex and error-prone, involving (e.g.) tags and

case statements in the place of inheritance. It is expected that the same benefits will accrue to a dynamics

simulation system based on the same abstraction of a mechanical linkage.
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