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SUMMARY

Surveillance radars detect the presence of targets and estimate their locations. With

several measurements collected over time, tracking algorithms are used to compute track

state estimates and predict future locations. This dissertation re-examines some of the often

ignored practical considerations of radar tracking.

With the advent of digital computers, modern radars now use sampled versions of re-

ceived signals for processing. Sampling rates used in practice result in multiple adjacent

samples containing target energy, and those samples are statistically correlated. This is

often called range bin straddling and is ubiquitous in modern radar systems. Instead of

simply treating bin straddling as an undesired loss in signal power, as in traditional radar

processing, we provide new detection and estimation techniques that take advantage of the

observed correlation in radar signal samples. In this dissertation, the average loglikelihood

ratio test (ALLRT) is derived and shown to outperform traditional radar detectors. We fur-

ther show that the ALLRT rivals traditional detectors that use oversampled radar signals.

This work represents the first appearance of the ALLRT formalism in detection theory.

Using a maximum-likelihood approach that incorporates the observed correlation be-

tween samples, we develop a new method for the estimation of monopulse target direction-

of-arrival (DOA) and target range. We further derive new closed-form Cramér-Rao lower

bounds (CRLBs) on unbiased parameter estimates of target DOA and target range that

treat target strength, target DOA, and target range as unknown parameters. Using the

CRLB for target DOA, bin-straddling is shown as a direct loss in target SNR, and the

magnitude of the loss depends on the functional form of the transmitted waveform. The

new target DOA estimator outperforms an existing technique by a factor of up to two in

root mean square error. Since tracking algorithms require an error variance on monopulse

measurements, we propose using the generalized Cramér-Rao lower bound (GCRLB), which

is the CRLB evaluated at estimated parameters. The average normalized estimation error
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squared metric is used to analyze the statistical consistency and statistical efficiency of the

estimates. This work represents the first appearance of the GCRLB formalism in estimation

theory.

With the advent of agile-beam surveillance radars with programmable energy waveforms,

optimal scheduling of radar resources is a topic of interest. Reasonable approaches in the

literature suggest selecting waveform energy based upon a desired SNR level. However,

optimal use of radar resources for the tracking of highly maneuverable targets is not treated

in the literature. Tracking highly maneuverable targets is also of theoretical interest since

multiple kinematic models of differing state dimensions are often required, causing issues in

the model mixing step of the interacting multiple model filter. Here, we extend a recently

proposed unbiased mixing procedure from the case of two kinematic models to three, and

use this procedure in the comparison of two competing multiple model filtering methods.

Furthermore, we introduce the radar management operating curve (RMOC), which shows

the fundamental tradeoff in radar time and energy, to aid radar designers in the selection

of an operating SNR level. With a given set of hardware constraints and set of waveforms,

the RMOC can be used to select an optimal operating SNR level.

xii



CHAPTER I

INTRODUCTION

In order to track and report on targets, surveillance radars detect their presence and estimate

their locations. Since radar systems operate in the presence of random noise, concepts from

detection and estimation theory are often applied to effectively perform this task. Each

radar detection leads to location estimates in terms of range and angle. Detections and

corresponding measurements are associated to predicted target state estimates, and they

are further used in the tracking to estimate the kinematic state of the target for display

and other purposes. Through effective use of radar resources along with reliable state

predictions, a secondary task of surveillance radar systems is to maximize the number of

tracked objects.

Monopulse radars use a simultaneous lobing technique to provide accurate angle es-

timates of a target. Pulse compression techniques are used in radar systems to provide

voltage gain, and to refine estimates of the target location in range. In practice, in-phase

and quadrature voltage samples of the matched filter output are provided to signal pro-

cessing algorithms in radar software for detection, range estimation, and angle estimation.

Traditionally, each sample is treated individually, since target energy is assumed to be con-

tained in a single sample. However, in practice, samples rarely occur at the peak of the

matched filter response, and target energy is contained in mutliple adjacent samples, often

called range bin straddling. Range bin straddling is ubiquitous in surveillance radar sys-

tems, and it is important to account for its effects in the loss budget when assessing system

performance in terms of detection and estimation. Generally, rough generic estimates are

often quoted. Furthermore, bin-straddling effects on monopulse angle estimation have not

previously been well studied.

Detections and corresponding measurements reported from the signal processing algo-

rithms are clustered together to form tracks. State estimation techniques are typically used

1



on the clustered measurements to provide kinematic track states. The selection of a mea-

surement clustering algorithm along with a corresponding state estimation technique is an

issue of design, and it is typically dictated by the quality of the sensing environment and

expected types of targets. For maneuverable air targets, the interacting multiple model

(IMM) filter is a preferred tracking algorithm. Typically, a maneuver model is coupled

with a non-maneuver model, and observed measurement likelihoods dictate the dominance

of either mode in the overall kinematic track state estimate. Numerous maneuver models

appear in the literature. However, clear guidelines on the selection of one maneuver model

over the others has not been well studied. Since the state dimension of the non-maneuver

model is often less than the state dimension of the maneuver model, issues can arise during

the model mixing phase of the IMM filter. A typical approach of augmenting the missing

elements with zeros for purposes of mixing can result in estimator bias in the extra elements

of the state vector.

The fundamental radar resources are radar time and radar energy. Each radar dwell

(transmit and recieve sequence) consumes a certain amount of radar time that depends on

the number of pulses, range of receive window, and nominal processing time. Radar energy

is proportional to the amount of time that the radar transmitter is active. In practice,

radar energy is limited by duty cycle constraints, and violation can result in failure of

the antenna elements and internal electronics. Under the constraint of meeting system

performance requirements, agile beam radars with waveforms of varying energy have the

ability to optimize the use of radar resources. Reasonable approaches in the literature

suggest selecting waveform energy based upon a desired SNR level. Existing literature

has studied the case of non-maneuvering targets with single kinematic filtering methods.

However, impacts of the IMM filtering and maneuvering targets on the selection of desired

SNR levels has not been previously well studied.

A focus of this dissertation is the re-examination of detection and range and angle es-

timation, in light of the range bin straddling phenomenon. In particular, a more general

systematic treatment of matched filter sampling is used to overcome losses due to bin-

straddling. While oversampling of radar signals is an alternative approach to overcome

2



these losses, oversampling may not be cost effective or even possible with the advent of

high-bandwidth radar signals. Through a new systematic treatment of the sampling pro-

cess, losses due to sampling of radar signals are overcome through new processing techniques.

A focus is placed on providing simple detectors and estimators that can be implemented in

current practical radar systems. A new average loglikelihood ratio test (ALLRT) detector is

proposed in Chapter 3, which provides detection performance that rivals oversampled radar

signals. Derivation of the ALLRT is outlined in Appendix A This dissertation represents

the first appearance of the ALLRT formalism in the literature. In Chapter 4, issues associ-

ated with standard monopulse ratio estimation are discussed, and new joint-bin monopulse

processing techniques for estimation of target range and direction-of-arrival (DOA) are pro-

posed. For use in tracking algorithms, error variance estimates are required for parameter

estimates. We propose the generalized Cramér-Rao lower bound (GCRLB), which is the

Cramér-Rao lower bound evaluated at maximum-likelihood estimates, as a variance report

on the joint-bin monopulse estimates. Derivations of the new joint-bin monopulse process-

ing techniques and CRLBs are outlined in Appendix B. This work represents the first

appearance of the GCRLB formalism in the literature. The required number of pulses and

SNR levels for statistical efficiency and consistency of the proposed joint-bin monopulse

processing techniques are provided. Statistical efficiency is achieved when estimation er-

rors achieve the CRLB, and variance consistency is achieved when reported error variance

estimates reflect true estimation errors.

A second focus of this research is to study the tracking and energy management consid-

erations of tracking highly maneuverable targets. Two configurations of the IMM estimator

often found in the literature are investigated for tracking target maneuvers in three dimen-

sional space. A performance comparison is the two IMM estimators is provided. As part of

this research, unbiased mixing for the IMM estimator is extended to the three mode case as

outlined in Appendix C. In Chapter 5, an IMM estimator that includes a 3D coordinated

turn kinematic model is recommended as a state estimation algorithm for the tracking of

a highly maneuverable air targets. Furthermore, a new radar management operating curve

is proposed to illustrate the tradeoff between radar time and energy, as they relate to an

3



overall operating SNR level. Although operating SNR values have been studied in the

literature, the effects of highly maneuverable targets have not been considered.

Many of the contributions contained in this dissertation build upon existing literature

in monopulse radar tracking. The next chapter includes relevant prerequisite material from

the literature.
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CHAPTER II

BACKGROUND

Radar tracking with monopulse systems has been studied extensively in the literature. Rudy

Kalman introduced the Kalman filter in 1960, which is arguably one of the most important

contributions to applied mathematics in the last century [29]. Following Kalman, Athans

contributed the extended Kalman filter in 1968 [2], and Blom contributed the interacting

multiple model filter in 1988 [14], both of which are invaluable to modern radar tracking

algorithms. In terms of angle estimation in monopulse systems, the work of Mosca in 1969

[34] is considered foundational. Many authors have studied monopulse systems from a

parameter estimation point of view, with a good example being the work of Blair in 1998

[8]. This chapter provides a brief overview of monopulse processing and state estimation

techniques as they relate to the contributions of this dissertation.

2.1 Amplitude Comparison Monopulse

Amplitude comparison monopulse systems use a simultaneous lobing technique to determine

the angular position of a target [43]. A pulse is emitted to illuminate a target, and the

receiver forms sum and difference signals of the scattered target reflection with two squinted

sub-beams for each coordinate. An illustration of a monopulse radar with squinted sub-

beams is provided in Figure 1, and an example of sum and difference voltage patterns is

provided in Figure 2. The ratio of the (noiseless) difference pattern voltage to the (noiseless)

sum pattern voltage defines a unique off-axis angle within the main lobe of the sum pattern

beam. This ratio is called the monopulse ratio; an example is illustrated in Figure 3. The

ratio can be approximated as nearly linear within one-half of the main beamwidth of the

sum pattern. The slope of the linear region is often termed the monopulse error slope [43].

In practice, radar waveforms are transmitted at the operating frequency of the radar. For

example, X-Band radars are common in practice and operate around 9-10 GHz. Received

signals are demodulated onto baseband, resulting in in-phase and quadrature parts of the
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Figure 1: Illustration of an amplitude-comparison monopulse system.
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Figure 2: Examples of monopulse sum and difference voltage patterns.
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sum and difference channels. Some radar signal processing algorithms take advantage of

the return signal phase for detection purposes and Doppler processing [39]. This work does

not specifically deal with the return signal phase due to the assumption of Rayleigh targets,

as will be outlined shortly. Other aspects regarding operating frequencies of a radar are

beyond the scope of this work; readers are referred to [39] among many others.

At first glance, a monopulse radar system may appear as an array signal processing

system as described in [28] for the case of two array elements. However, this is not the case

since the antenna elements in [28] are omnidirectional, whereas the two squinted sub-beams

in a monopulse system typically have high directional gain. For a monopulse system the

beamforming “gains” described in [28] are formed in a somewhat ad-hoc way for a “focused”

region of interest (i.e., the region illuminated by the sum channel). From an angle-of-

arrival estimation perspective, monopulse systems are closely related to the beamforming

techniques of [28]; since out of the scope of this study, curious readers are referred to [36].

In practice, the measured sum and difference channels are corrupted by thermal noise.

Upon detecting the presence of a target using the measured voltage levels of the sum chan-

nel, a DOA must be estimated from the noisy signals. A straightforward approach to DOA

estimation is direct computation of the monopulse ratio using the measured voltages of the

sum and difference channels. Using the observed monopulse ratio provides reasonable esti-

mation performance for high SNR situations, especially if targets are located near boresight.

However, as reported in the literature, the observed monopulse ratio suffers from estimator

bias and high error variance for the case of low SNR targets, especially when the targets are

located off-boresight [34]. Furthermore, if multiple targets are present in the beam, then

the monopulse ratio can become highly corrupted. Much work has been devoted to optimal

estimation of target DOA (some examples are [34], [43], [47], [8], [9], [10], and [50]).

Assuming a single point target is illuminated in a radar beam, the voltage signals at the

output of the matched filters of a monopulse system can be expressed as

s̃c(t) = αGΣ(θ)GΣ(θ)ejφr(t− τ) + ñcs(t), (1)

d̃c(t) = αGΣ(θ)G∆(θ)ejφr(t− τ) + ñcd(t), (2)
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where

s̃c(t) = complex-valued sum channel signal,

d̃c(t) = complex-valued difference channel signal,

α = voltage signal amplitude of the target,

θ = target AOA,

GΣ(θ) = sum pattern voltage gain at θ,

G∆(θ) = difference pattern voltage gain at θ,

φ = return signal phase,

r(t) = autocorrelation function of the transmitted pulse,

ñcs(t) = zero-mean complex Gaussian noise process in sum channel,

ñcd(t) = zero-mean complex Gaussian noise process in difference channel,

τ = round-trip time delay from the target.

Note that the sum channel gain pattern arises in the difference channel signal because the

expression is a two-way gain, and the sum beam is used to illuminate the target. Also note

that complex notation is used for conciseness; in practice, the sum and difference signals

have corresponding in-phase (i.e., real) and quadrature (i.e., imaginary) channels. The

signal amplitude of the target can be expressed as

α =
√
κσrp0, (3)

where κ is a constant proportional to transmitted power and includes elements of the radar

range equation, σr is the radar cross section (RCS) of the target, and p0 is the matched filter

gain of the waveform.1 Under the Rayleigh target assumption,
√
σr is Rayleigh distributed,

and thus the voltage signal amplitude of the target is also Rayleigh distributed. Since

matched filter gain is explicitly modeled as p0, one may safely assume r(0) = 1 without any

1Matched filter gain is typically reported as the time-bandwidth product of the transmitted waveform,
where time is equal to the pulsewidth.
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loss of generality. Explicitly defining DOA for AOA θ as

η =
G∆(θ)

GΣ(θ)
, (4)

and defining

A = αGΣ(θ)2, (5)

the sum and difference channel signals can be rewritten in terms of η as

s̃c(t) = Aejφr(t− τ) + ñcs(t), (6)

d̃c(t) = Aηejφr(t− τ) + ñcd(t). (7)

Notice that since α is Rayleigh distributed, A is also Rayleigh distributed. At the output

of the matched filter, the I&Q signals are sampled with a sampling period ∆t. Thus (6)

and (7) become

sc(b) = s̃c(b∆t) = Aejφr(b∆t− τ) + ncs(b), (8)

dc(b) = d̃c(b∆t) = Aηejφr(b∆t− τ) + ncd(b), (9)

where b is an index to the samples, often called range bins. Under the Rayleigh target

assumption, φ is uniformly distributed over (−π, π]. Denoting the second moment of A as

2β2, Re{Aejφ} and Im{Aejφ} are independent zero-mean Gaussian random variables with a

variance of β2 [37]. Furthermore, assuming the in-phase noise (i.e., real part) is uncorrelated

with the quadrature noise (i.e. imaginary part), quadrature samples can be treated as extra

observations of the in-phase samples. Denoting x as Re{Aejφ} (or Im{Aejφ}, as quadrature

samples are treated as another observation of the in-phase samples), the signal model can

be expressed as

s(b) = xr(b∆t− τ) + ns(b∆t), (10)

d(b) = xηr(b∆t− τ) + nd(b∆t). (11)

Note that a single pulse corresponds to two independent and identically distributed (i.i.d.)

observations of both (10) and (11).
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The selection of a sample rate determines the magnitude of noise correlation across

adjacent samples, which arises from the matched filtering process as shown in [53]. The

Rayleigh range resolution (not to be confused with Rayleigh targets) of a waveform is

defined as the peak to first null of the matched filter response [39]. A radar waveform that

is sampled at Rayleigh resolution results in uncorrelated noise for adjacent matched filter

samples. However, sampling at a rate higher than the Rayleigh resolution will result in

correlated noise.

A Swerling 2 target corresponds to a Rayleigh target with pulse-to-pulse fluctuations in

target amplitude and phase.2 The target SNR for a Rayleigh target, a fundamental quantity

that is used to characterize detection and estimation performance, is defined as

Rr =
β2

σ2
s

, (12)

where σ2
s is the noise variance in the sum channel samples, and the total target SNR is

defined as

Rt = NRr, (13)

where N is the total number of pulses. Total target SNR is important since it represents the

total SNR of a constant energy waveform (i.e., total pulse width) regardless of the selection

of number of pulses. In this work, β2, η, and τ are assumed as unknown parameters, whereas

σ2
d and σ2

s are assumed as known parameters. Estimators for the unknown parameters η

and τ along with statistically consistent variance reports for each parameter estimate are

a major focus of this thesis. In this work, β2 is treated as a nuisance parameter and its

estimation is not studied in depth.

Traditional monopulse processing literature assumes the received energy is contained in a

single sample. This assumption greatly simplifies the estimation problem, since the effect of

r(b∆t−τ) in (10) and (11) is essentially multiplication by a constant and typically treated as

a loss in voltage. In practice, target energy is usually contained in multiple adjacent matched

filter samples, and clustering and centroiding procedures are used to arrive at estimates of

2In a radar system, pulse-to-pulse fluctuations are often the result of frequency diversity in the radar
waveform achieved through discrete frequency steps [19].
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τ and η. For the single-target case, Slocumb and Blair propose using traditional monopulse

processing for DOA estimates based on each individual sample, followed by standard fusion

equations on those estimates [45]. For range estimation, the authors propose using an

observed SNR-weighted centroid of matched filter samples to arrive at a range estimate.

However, these estimators are suboptimal since they do not consider correlation between

adjacent samples. By inspection of (10)-(11) correlated samples are the result of correlated

noise and the sampling of the matched filter response through r(b∆t − τ). Furthermore,

the observed correlation can be advantageous for detection and estimation purposes.

2.2 Radar Tracking

In this section, some relevant concepts of radar tracking are introduced. In particular, a

brief overview of state estimation is provided, and equations for the discrete Kalman filter

and IMM filter are provided explicitly. The role of motion models in the IMM estimator

is discussed. Relevant aspects of radar resource management, including the concept of a

nominal tracking SNR and adaptive track maintenance revisit times, are also introduced.

2.2.1 State Estimation

Monopulse processing, as described in Chapter 2.1, is a topic of parameter estimation,

whereas target tracking is considered a topic of state estimation. State estimation differs

from parameter estimation in that the target state of interest evolves in time according to

a stochastic process equation. By making explicit assumptions on the functional form of

target state dynamics, Bayesian estimation techniques may be applied, resulting in optimal

or nearly optimal target state estimators.

The workhorse for state estimation is the discrete Kalman filter. The Kalman filter se-

quentially estimates the target state as the minimum mean squared error estimate (MMSE)

of the posterior distribution, assuming linear and Gaussian dynamic and measurement mod-

els [29]. Derivations of the Kalman filter, along with the resulting equations, are widely

available [3]. The discrete Kalman filtering equations are as follows. Given a set of state
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dynamic and measurement equations

x(k) = F(k − 1)x(k − 1) + v(k − 1), (14)

z(k) = H(k)x(k) + w(k), (15)

where

x(k) = unknown state vector at time index k,

F(k) = known linear state update equations at time index k,

v(k) = zero-mean Gaussian random vector with known E[v(k)v(k)T ]=Q(k),

z(k) = measured data at time index k,

H(k) = known measurement equations,

w(k) = zero-mean Gaussian random vector with known E[w(k)w(k)T ]=R(k),

and initial conditions x̂(0|0) with E
[
x̂(0|0)x̂(0|0)T

]
=P(0|0), then the sequential Kalman

update equations can be expressed in terms of a prediction step followed by an update step.

The prediction step is given by3

x̂(k + 1|k) = F(k)x̂(k|k), (16)

P(k + 1|k) = F(k)P(k|k)F(k)T + Q(k), (17)

and the update step is given by

x̂(k + 1|k + 1) = x̂(k + 1|k) + W(k + 1) (z(k + 1)−H(k + 1)x̂(k + 1|k)) , (18)

P(k + 1|k + 1) = [I−W(k + 1)H(k + 1)] P(k + 1|k), (19)

where W(k + 1) is the Kalman gain matrix

W(k + 1) = P(k + 1|k)H(k + 1)T (S(k + 1))−1 , (20)

and S(k + 1) is the measurement residual covariance

S(k + 1) = H(k + 1)P(k + 1|k)H(k + 1)T + R(k + 1). (21)

3A control input can also be included in (14), which would result in slightly different Kalman prediction
and update equations. A common example is gravity, which can be seen as a nearly constant acceleration.
However, in this work no control inputs are used, so this is led out of the discussion.
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One of the main advantages of state estimation is the ability to estimate higher-order dy-

namic parameters that are not directly observable in the measurement space. For example,

radars typically cannot directly measure the acceleration of an object, yet state estimation

techniques provide a straightforward methodology to estimate it.

In practice, the H(k) and R(k) are predetermined by the sensor and its characterized

accuracy levels. However, the selection of state dynamic equations F(k) and process noise

covariance Q(k) are often challenging design choices that depend upon the expected types

of targets. The simplest state dynamic model in the literature is the nearly constant velocity

(NCV) model, which is given in continuous time as

ẍ(t) = w̃(t), (22)

where ẍ(t) denotes the scalar acceleration of a target, w̃(t) is zero-mean white noise with

E[w̃(t)w̃(τ)] = qδ(t− τ), (23)

and δ(t− τ) is the Dirac delta function. Using standard state-space discretization methods,

a discrete time representation of the NCV model becomes x(k)

ẋ(k)

 =

 1 ∆t

0 1


 x(k − 1)

ẋ(k − 1)

+ v(k − 1), (24)

where v(k − 1) is a zero mean Gaussian random vector with covariance matrix

Q(k − 1) = q

 ∆t3

3
∆t2

2

∆t2

2 ∆t

 . (25)

Any deviations in constant-velocity motion is captured by the power spectral density, q. As-

suming process noise as additive white noise as in (22) followed by state-space discretization

is referred to as the continuous white noise (CWN) acceleration model. Another approach

to model acceleration errors is the discrete white noise (DWN) acceleration model, where

v(k − 1) in (24) is a scalar-valued zero-mean white sequence v(k − 1) with

E[v(k)v(j)] = σ2
aδkj , (26)
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where δkj = 1 for k = j and zero elsewhere. In other words, the deviations from modeled

dynamics are unknown, but are assumed constant in magnitude throughout the sampling

interval and uncorrelated with the next sampling interval. Consequently, the selection of

σ2
a is only valid for the specific sampling interval. For (24), the zero-mean white sequence

has units of acceleration and the model can be rewritten as x(k)

ẋ(k)

 =

 1 ∆t

0 1


 x(k − 1)

ẋ(k − 1)

+

 ∆t2

2

∆t

 v(k − 1). (27)

As discussed in [3], the DWN process noise model is more appropriate for constant revisit

rate, but the CWN process noise model is more appropriate for a variable revisit rate.

In many practical applications of state estimation, the measurement and/or dynamical

equations are nonlinear and cannot be represented by simple matrices (i.e., H(k) and F(k)).

For example, many radar measure targets in range-angle space as described in Chapter 2.1,

but target state estimates are maintained in a coordinate system in which target state

dynamical models are derived (i.e., a Cartesian coordinates). Therefore, the transformation

from state space to measurement space is nonlinear and the standard Kalman filtering

equations do not apply. The remedy in [2] uses an nth-order approximation of the Taylor

series expansion of the nonlinear measurement or state dynamic equations. In practice, a

first-order approximation is common, in which the nonlinear measurement equations and/or

state dynamic equations are replaced by their Jacobians matrices in (17), (19), (20), and

(21).

2.2.2 Multiple Model Approaches

The motion of many practical targets can be characterized by a family of kinematic mod-

els, as illustrated in Figure 4. In the figure, the solid line represents straight and level

flight with constant velocity motion and the dotted line represents a turn. An appropriate

kinematic model for straight-and-level flight might be the nearly constant velocity (NCV)

model, whereas an appropriate model for a coordinated turn might be a horizontal nearly

coordinated turn (HNCT) model (described in detail in Chapter 5.2.1.2). Instead of mod-

eling target motion with a single kinematic model, target motion can be explicitly assumed
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Figure 4: Illustration of target motion. Solid line represents constant velocity motion and
dotted line represents turning motion. Matrices contain appropriate state update equations
for the respective kinematics.

as having a set of possible modes, and at each measurement update, the target dynamics

follow one of the modes. Under these assumptions, the dynamical equations of (14) can be

rewritten as

x(k) = F(k − 1, θ(k − 1))x(k − 1) + v(k − 1, θ(k − 1)), (28)

where θ(k − 1) is an index to one out of r possible modes. Furthermore, assume θ(k) is a

finite state Markov process with the probability of transitioning to mode j given the target

is in mode i denoted as

pij = Pr {θ(k) = j|θ(k − 1) = i} , i, j = 1, ...r. (29)

Under this framework, an optimal approach would consider every possible sequence of modes

from the initial measurement to the final measurement. This cannot be implemented in a

practical tracking system due to computational complexity. Therefore several suboptimal

approaches are suggested in the literature. The IMM estimator from [14] is generally ac-

cepted to be the superior tracking algorithm among all multiple model approaches when

computational aspects are considered [3]. The IMM algorithm results in a sequential state

estimation process using a parallel set of discrete Kalman filters that interact through a

15



process called “mixing.” An iteration through the IMM algorithm is as follows. Along with

initial conditions for the individual Kalman filters, assume initial set of mode probabilities

µi(0) for each mode i and a set of Markov transition probabilities. Denoting x̂j(k−1|k−1)

as the Kalman update of mode j at time (k − 1), the “mixed” means and covariances are

given as

x̂0j(k − 1|k − 1) =
r∑
i=1

µi|j(k − 1|k − 1)x̂i(k − 1|k − 1), (30)

P0j(k − 1|k − 1) =
r∑
i=1

µi|j(k − 1|k − 1)
[
Pi(k − 1|k − 1) + P̃i(k − 1|k − 1)

]
(31)

for j = 1, ..., r, where the mixing probabilities are computed as

µi|j(k − 1|k − 1) =
1

c̄j
pi,jµi(k − 1), i, j = 1, ....r, (32)

with normalizing constant

c̄j =
r∑
i=1

pijµi(k − 1) j = 1, ...., r, (33)

and µi(k− 1) is the probability that mode i is the correct mode at time index (k− 1). The

P̃i(k − 1|k − 1) in (31) is a “spread-of-the-means” term

P̃i(k − 1|k − 1) =
[
x̂i(k − 1|k − 1)− x̂0j(k − 1|k − 1)

]
×[

x̂i(k − 1|k − 1)− x̂0j(k − 1|k − 1)
]T
. (34)

The mixed states and covariances of (30) and (31) are used as the inputs to the Kalman

filtering prediction steps of (16)-(17) to provide x̂0j(k|k − 1) and P0j(k|k − 1), and further

used in the update steps of (18)-(19) to yield x̂j(k|k) and Pj(k|k). Measurement likelihoods,

computed as

Λj(k) = N
(
z(k); ẑj ,Sj

)
, (35)

where N (a; b,C) denotes the Gaussian distribution with mean b and covariance C eval-

uated at a, with

ẑj = H(k)x̂0j(k|k − 1) (36)

Sj = H(k + 1)P0j(k + 1|k)H(k + 1)T + R(k + 1), (37)
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are used to update the mode probabilities of the IMM filter,

µj(k) =
1

c
Λj(k)c̄j j = 1, ..., r, (38)

where c̄j is given by (33) and

c =
r∑
j=1

Λj(k)c̄j . (39)

Notice the fundamental quantities that determine mode probability updates are the Markov

transition probabilities and measurement likelihoods. Often in practice, measurement like-

lihoods dominate over the Markov transition probabilities, so the mode distinguishing ca-

pabilities of the IMM are driven through observed measurement likelihoods.

An often overlooked aspect of multiple model approaches is the implementation of a

set of models with differing state dimension. For example, a 2D NCV model will have a

state dimension of four, whereas a 2D HNCT model will typically have an extra dimension

for the unknown turn rate. Strong theoretical support for such a case is lacking, as briefly

mentioned in [41]. In fact, the derivation of the IMM estimator assumes the state dimension

of all modes are equal [3]. For the case of an IMM estimator with models of differing state

dimension, issues arise during the mixing phase. The standard approach of augmenting

extra elements with zeros introduces a bias in the mixed estimate [4]. Recently, an unbiased

mixing approach has been suggested for the case of an IMM estimator with two modes to

predict the impact point of ballistic missiles [55]. In Chapter 5, this is extended to three

modes.

2.2.3 Radar Resource Management

Traditional track-while-scan radars use mechanically rotated antennas, rotated at a con-

stant rate, to scan for new targets, while simultaneously performing track maintenance on

existing targets. As a consequence, most radar tracking literature assumes measurements

are provided to state estimation techniques at a near constant rate. With the advent of

phased array technology, agile beam radars can quickly switch the direction of a radar

beam without any mechanical steering. Therefore, with agile beam radars, track mainte-

nance dwells are not constrained to a near constant revisit period. Along with the advent of
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agile-beam tracking radars, the problem of optimal track maintenance scheduling appeared

in the literature beginning with the work of Van Keuk and Blackman in [48]. Typical ap-

proaches for the radar scheduling problem, as in [48], suggest scheduling track maintenance

dwells when a predicted track covariance (as in from (17) from the discrete Kalman filter)

grows to occupy a specified fraction of the main beam in angle space, as illustrated in Figure

5.

Figure 5: Illustration of adaptive revisit time calculations for an agile beam radar.

Along with agile beam systems, modern radars are able to select from multiple waveforms

such that waveform energy may be coordinated with the tracking algorithm. With a target

strength in hand, a reasonable criterion for selection of a radar waveform is a desired

return signal strength. In general, a higher energy waveform results in higher probability of

detection and higher measurement accuracy, thus more accurate state estimation and lower

total number of required track maintenance dwells. However, high energy waveforms cost

more energy. Therefore, a tradeoff exists between radar time and energy in the selection of

a radar waveform and overall operating SNR.

In [48], the authors show that an operating point of 16 dB is an optimal tracking

level minimizing radar load for an individual track. Radar load, as defined in [48], is

the multiplication of total energy times the total number of track maintenance dwells.

Blair proposed the tracking Benchmark problems described in [12] and [13] for addressing

the issue of optimal track maintenance scheduling algorithms. The Benchmark problem

included a Monte Carlo simulation that all algorithm developers could use as a means of

comparison. In [12], the goal of developers was to minimize the total number of track dwells
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while maintaining a maximum allowed track loss percentage. In [13], the primary measure

of tracking performance was a weighted sum of the average radar energy per second and

the average radar time per second. Although the Benchmark problems in [12] and [13]

considered maneuvering targets, a nominal tracking SNR was not part of the optimization

in published solutions. In fact, the impact of maneuvering targets on a nominal tracking

SNR has not been previously reported in the literature.
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CHAPTER III

TARGET DETECTION

Detection of the presence of one or more targets is one of the most fundamental purposes

of a surveillance radar. Improvements in detection performance, often the result of sensi-

tivity gains, are valued since they result in more reliable localization of targets. However,

sensitivity gains in the form of more powerful antennas, more bandwidth, or faster analog-

to-digital converters may not be cost effective or even possible. Processing gains that do

not require additional, possibly expensive, hardware are welcome additions to the design

of a surveillance radar system. In this chapter, improvement in detection performance is

pursued through alternative detection processing of near-Nyquist sampled signals.

Traditional radar detectors compare the observed signal-to-noise ratio (SNR) at samples

of the output of the matched filter to a threshold. Threshold values are typically set to

achieve a specified probability of false alarm, usually low in most radar applications, around

10−3 to 10−5 [39]. Since sample rates used in practice often result in two or more adjacent

samples in the main lobe of the matched filter response, traditional radar detection ignores

a key piece of information - the correlation between samples.

Since the location of a target in range is usually not known a-priori, matched filter

samples are not guaranteed to occur at the maximum of the matched filter response. In the

radar literature, this is called range bin straddling, bin splitting, or bin spacing loss and is

treated, like many other losses, as a loss in voltage or power. However, since probability

of detection is a nonlinear function of observed SNR, bin straddling loss should actually

be described in terms of the loss in probability of detection, as described by Cann in [17].

Using Swerling 0 and Swerling 1 target models, Cann shows that although the average loss

in power is around 2.5 dB, the average loss in terms of probability of detection can be

as high as 4 dB. When Cann moved from contiguous range bins to 50% overlapped range

bins, the loss was smaller and reliably predicted with the actual loss in power. Xie further

20



refines the work of [17] by proposing a more accurate predictor for probability of detection

assuming a Swerling 0 target, a single pulse, and 50% overlapped range bins [54]. Although

the authors in [17] and [54] use the correlation between range bins to refine a probability

of detection estimate for a traditional detection scheme, they do not propose using the

correlation between range bins in the actual detection process.

Using an explicit model of adjacent matched filter samples of the sum channel of a

monopulse system and the functional form of the matched filter response, the average

loglikelihood ratio test (ALLRT), which includes the correlation between matched filter

samples, is derived below. Key features relevant to the design of a detector are illustrated via

simulations. In particular, performance comparisons of the ALLRT detector with traditional

radar signal detectors using various sample rates is provided. Large portions of this Chapter

follow our work described in [25].

3.1 Signal and Target Modeling

Following the assumptions described in Section 2.1, samples of the sum channel signal can

be expressed as

s(b) = xr(b∆t− τ) + n(b), (40)

where x is a zero mean Gaussian random variable with variance equal to β2. Note that a

single pulse corresponds to two independent and identically distributed (i.i.d.) observations

of (40). Therefore, the total number of i.i.d. observations is equal to 2N , where N is the

total number of pulses. Denote the lth i.i.d. observation vector as

sl = [sl(1)...sl(B)] , 1 ≤ l ≤ 2N, (41)

where B is the total number of matched filter samples in the range window. Denoting σ2

as the variance of the noise in each matched filter sample, (41) forms a zero-mean Gaussian

random vector with correlation matrix K having elements

E[sl(i)sl(j)] = β2r(i∆t− τ)r(j∆t− τ) + σ2r((i− j)∆t), (42)

where E[.] denotes expected value.
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For the rest of this chapter, τ and β2 are treated as unknown parameters and σ2 is

treated as a known parameter. However, note that the exact value of σ2 is irrelevant;

detectors can be designed independent of the actual noise power since the test statistic is

often a signal-to-noise ratio. As discussed in Chapter 2.1, the selection of a sample rate

determines the magnitude of noise correlation across adjacent samples, which arises from

the matched filtering process.

As discussed in [17], signal-plus-noise fluctuations are almost entirely due to target

fluctuations for Swerling 1 and 2 targets, and are therefore highly correlated in adjacent

samples. The contribution of the second sample to total detection performance is small

(i.e. if a target is detected in the first sample, it is likely to also be detected in the second

sample) [17]. This correlation is written explicitly in (42), where a sample rate greater than

or equal to the Rayleigh resolution gives a correlation greater than or equal to zero that

increases with β2. Therefore, using the observed correlation between matched filter samples

may aid in the detection process, providing a motivating factor for this work.

3.1.1 Signal Model for Region Under Test

Traditional radar detection compares observed signal strength in a matched filter sample

under test to a threshold. Often a Neyman-Pearson approach is taken such that a detection

threshold achieves a desired Pfa for that sample, where Pfa denotes the probability of a

false alarm. If the threshold value for samples collected at Rayleigh resolution is used for

samples collected at a higher sample rate, then the Pfa across a given range window, or

region under test, is not generally equal. This is problematic for comparison of detection

tests over a specified window. For fair comparison of detection performance, Pfa for a

given region under test should be equal for detectors being analyzed. In this work, the

region under test is defined as Rayleigh resolution of the transmitted waveform, denoted as

∆tr. Furthermore, a detection test is the determination of target presence in this region

under test, where only matched filter samples (and possibly their correlations) in the region

under test are considered applicable for detection. For waveforms sampled at the Rayleigh

resolution, two matched filter samples are included in the region under test as shown in
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Figure 6a. Similarly, waveforms sampled at the Rayleigh resolution divided by two result

in three matched filter samples in the region under test (four samples with target energy),

as shown in Figure 6b.

τ

Δt=Δtr

cΔtr

t0

(a) Sample period equal
to Rayleigh resolution

τ

Δt=Δtr

cΔtr

t0

(b) Sample period equal
to half Rayleigh resolu-
tion

Figure 6: Sampling the output of the matched filter in the region under test. The region
under test has size equal to the Rayleigh resolution of transmitted waveform.

Defining the matched filter response with time axis normalized by the Rayleigh resolu-

tion as

q(x) = r(x∆tr), (43)

the location of the first sample in the region under test as t0, and the sub-Rayleigh resolution

location of the target in the region under test as

c =
τ − t0
∆tr

, (44)

allows for (40) to be expressed in a more useful form for the region under test. Note that

c ∈ [0, 1] and is also unknown since τ is treated as an unknown parameter. Assuming

U samples in the region under test, with exactly two samples on the edges, (40) can be

expressed as

s(u) = xq

(
c− u

U − 1

)
+ n(u), (45)

where u = [0, ..., U − 1]T . Then (45) forms a zero-mean U -dimensional Gaussian random

vector with correlation matrix K, with elements

E[sl(u)sl(v)] = β2q

(
c− u

U − 1

)
q

(
c− v

U − 1

)
+ σ2q

(
u− v
U − 1

)
, (46)
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where v = [0, ..., U − 1]T . Since the matched filter samples form a zero-mean Gaussian

random vector, (46) defines the distribution of observations under the hypothesis of target

presence. The distribution used for the hypothesis of no target present is simply (46) with

β2 = 0 (which implies x = 0 in (45)).

3.1.2 Special Case: Rectangular Waveform and Rayleigh Sampling

For a transmitted rectangular waveform, the time scaled matched filter response is the

triangle function

qT (x) =

 1− |x|, if |x| < 1

0 otherwise.
(47)

Although rectangular waveforms are not practical because of infinite bandwidth, using a

triangular matched filter response to model bin straddling has appeared several times in

recent literature (for examples see [15, 44, 45, 53, 56, 57]). With a sample rate equal to

∆tr, two samples are in the region under test and the signal model becomes

s(0) = xqT (c) + n(0), (48)

s(1) = xqT (c− 1) + n(1), (49)

with correlation matrix

K =

 β2qT (c)2 + σ2 β2qT (c)qT (c− 1)

β2qT (c)qT (c− 1) β2qT (c− 1)2 + σ2

 . (50)

Recalling c ∈ [0, 1], analytic evaluation of the triangle function gives

K =

 β2(1− c)2 + σ2 β2c(1− c)

β2c(1− c) β2c2 + σ2

 . (51)

As a reminder, c and β2 in (51) are treated as unknown parameters in this study.

3.2 Detection Analysis

In this section, test statistics for traditional detection and the newly proposed ALLRT

detector are provided, and performance comparisons are made using numerical simulations.
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The simulations used in this study generated in-phase and quadrature matched filter samples

in a region under test according to (8) and (9) for a given Rr, matched filter response,

number of pulses, and target location within the region under test. Recall that noise in (8)

and (9) can be correlated, with magnitude of correlation depending upon the matched filter

response along with sample rate. The simulations accounted for this correlation. In this

section, metrics computed by the simulation are discussed in detail, along with relevance to

practical systems. Finally, the optimal number of pulses given Rt is investigated.

3.2.1 Test Statistics

Traditional radar detection compares the observed SNR in a given range bin to a detection

threshold. In terms of the signal model described by (45) and (46), the average observed

SNR for matched filter sample u is defined as

Ro(u) =
1

2Nσ2

2N∑
l=1

sl(u)2, (52)

where N is the total number of pulses.1 Note that Ro is treated as a random variable,

whereas Rr and Rt are treated as unknown parameters. As discussed in Section 3.1.1, the

region under test is defined as the distance across adjacent matched filter samples of size

equal to the Rayleigh resolution of the transmitted waveform. Sampling at a rate higher

than the Rayleigh resolution corresponds to three or more matched filter samples in the

region under test. In traditional radar approaches, a detection is reported if any matched

filter sample in the region under test exceeds a detection threshold. This is equivalent to

comparing the maximum Ro in the region under test to a threshold

max ([Ro(0), ...,Ro(U − 1)])
H1

≷
H0

γ, (53)

where γ denotes the detection threshold and U is the total number of samples in the region

under test.

In Appendix A, the average loglikelihood ratio test (ALLRT) is derived for a sample rate

equal to the Rayleigh resolution of the transmitted waveform. The derivation shows that

1Ro is actually a signal-plus-noise-to-noise-ratio as described in [7], but it will be referred to as a signal-
to-noise-ratio to be consistent with previous literature.
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the test statistic in the loglikelihood ratio test (LLRT) involves the unknown c. To handle

the unknown c, a uniform distribution between zero and one is assumed and integrated

through the LLRT, thus providing the average loglikelihood ratio test. Defining the observed

correlation between matched filter samples as

Co =
1

2Nσ2

2N∑
l=1

sl(0)sl(1), (54)

the ALLRT detector can be expressed as

a1 (Ro(0) + Ro(1)) + a2Co
H1

≷
H0

γa, (55)

where a1 and a2 depend upon the matched filter response of the transmitted waveform,

and γa denotes the ALLRT threshold. As discussed in Appendix A, the ALLRT detector

incorporates the functional form of the matched filter response across multiple matched

filter samples. Thus, a new avenue of waveform design in terms of matched filter response

is discussed in Appendix A.

Assuming pulse-to-pulse fluctuations in target amplitude (i.e., a Swerling 2 target), de-

tection performance of three detectors is compared. First, the traditional detector is defined

as the threshold test given by (53), with a sample rate equal to the Rayleigh resolution given

as

max ([Ro(0), Ro(1)])
H1

≷
H0

γt. (56)

The second detector is the ALLRT detector given by (55) with a sample rate also equal

to the Rayleigh resolution. The third detector, denoted as the oversample detector, is the

threshold test given by (53) with U = 3, corresponding to double the sample rate of the

traditional and ALLRT detectors,

max ([Ro(0), Ro(1), Ro(2)])
H1

≷
H0

γo. (57)

These three detectors are compared using matched filter responses of a triangle function and

a sinc function. The triangle matched filter response is similar to the main lobe of a phase

coded waveform, and a sinc matched filter response is similar to that of an LFM waveform,

both of which are pulse compression waveforms commonly used in practice. The triangle
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matched filter response, qT (x), is given by (47), and the sinc matched filter response, qS(x),

is given by (153) in the Appendix. Since qS(x) > qT (x) for x ∈ [0, 1], detection performance

using the sinc matched filter response is expected to outperform the triangle matched filter

response.

In many radar tracking applications, Neyman-Pearson detectors are used for target de-

tection. These methods choose a detection threshold that achieves a Pfa deemed acceptable

to the radar system. The desired Pfa may even be coordinated with advanced data asso-

ciation and tracking algorithms for some surveillance radar systems [4]. Threshold values

can be found by analytic derivation of the cumulative density function of the test statistic

under the null hypothesis, or with numerical approaches.

Under the hypothesis of a target not present, (53) is the maximum of U Erlang dis-

tributed random variables that may have correlation between matched filter samples and

(55) is a distribution of quadratic forms. Detailed study of these density functions, which

become even more complicated for the hypothesis of target presence, will be left for future

research. Since the main interest is investigation of detection performance, Neyman-Pearson

detection thresholds for the three detectors were found using numerical simulations for Pfa

values of 10−3, 10−4, and 10−5, and the number of pulses ranging from one to ten. For each

Neyman-Pearson threshold calculation, 3000/Pfa random samples of (55), (56), and (57)

were generated under the hypothesis of no target present, and thresholds were found that

satisfy the desired Pfa.

Notice from (46) that under the hypothesis of a target not present, the correlation of

noise across samples depends upon the matched filter response of the transmitted waveform.

This means that in general, the Neyman-Pearson detector depends upon the functional form

of the transmitted waveform. However, sample rates equal to the Rayleigh resolution result

in q
(
u−v
U−1

)
= 0 in (46), which implies there is no correlation between adjacent noise samples

and that thresholds are independent of the transmitted waveform.
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3.2.2 Discussion of Metrics

Since the statistical distribution of matched filter samples under the hypothesis of target

presence depends upon the location of the target, Pd (probability of detection) also depends

upon the location of the target as illustrated in Figures 7, 8, and 9.
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Figure 7: Pd for various target locations in the region under test for a single pulse with
Pfa = 10−4 and Rt = 15 dB. For the traditional and ALLRT detectors, matched filter
samples occur at 0 and 1 in the region under test, and for the oversample detector, samples
occur at 0, 0.5, and 1.

Each figure provides an illustration of Pd for the three detectors discussed above for a

given location in the region under test using both triangle and sinc matched filter responses.

In each case, Pfa = 10−4. First notice that for the traditional detector, Pd is minimized
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Figure 8: Pd for various target locations in the region under test for five pulses with Pfa =
10−4 and Rt = 15 dB. For the traditional and ALLRT detectors, matched filter samples
occur at 0 and 1 in the region under test, and for the oversample detector, samples occur
at 0, 0.5, and 1.

when a target is centered between samples and maximized when a target is located directly

on a sample. For a single pulse, the difference between the maximum and minimum Pd

for the traditional detector using a triangle matched filter response is around 0.3 and gets

worse with increasing number of pulses to around 0.8 for ten pulses. Second, notice that the

difference in the maximum and minimum Pd is less distinctive for the sinc matched filter

response as compared to the triangle matched filter response. These general trends hold for

the ALLRT and oversample detectors, but appear less distinctive. However, notice that for
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Figure 9: Pd for various target locations in the region under test for ten pulses with Pfa =
10−4 and Rt = 15 dB. For the traditional and ALLRT detectors, matched filter samples
occur at 0 and 1 in the region under test, and for the oversample detector, samples occur
at 0, 0.5, and 1.

the ALLRT detector using a sinc matched filter response, Pd is maximized when a target

is centered between samples and minimized when a target is directly located on a sample,

opposite to the traditional and oversample detectors. Assuming the target location within

a region under test is not reliably known a priori, the following questions arise in the design

of a practical surveillance radar detector:

• What is the maximum loss in Pd due to range straddling?

• Given a target SNR estimate, how much increase in transmitted signal strength is
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Figure 10: Pd as a function of Rt using traditional detector with Pfa = 10−4, a single pulse,
and a triangular matched filter response. Top solid line represents maximum Pd, and the
bottom solid line represents minimum Pd. Dotted line represents detection performance on
average, assuming a target is uniformly distributed in the region under test.

needed to guarantee a specified Pd?

Detection metrics proposed in this chapter measure performance losses due to the unknown

location of a target, as illustrated in Figure 10. Pd loss is defined as the difference between

maximum Pd and minimum Pd for a given Rt as seen in Figure 10. The Pd loss metric is

relevant since it quantifies the worst case Pd loss due to unknown range bin straddling for

a given target SNR. Predicted Pd’s are used in sophisticated data association and tracking

algorithms, for example multiple hypothesis tracking [5] and the probabilistic data associa-

tion filter [4], emphasizing the importance of a reliably predicted Pd. Therefore, inconsistent

Pd estimates can have negative effects on overall tracking performance. Total SNR loss is

defined as the difference between Rt for the maximum Pd and minimum Pd. Total SNR

loss is relevant since it quantifies the increase in Rt needed to ensure a given Pd. Note

that Rt is related to waveform energy (proportional to pulse width) through matched filter

gain in (3). For a single pulse, a 3 dB increase in Rt is nearly equivalent to doubling the

pulsewidth (i.e., increasing waveform energy by a factor of two). Average SNR loss, defined

as the difference between target SNR for the maximum Pd and the average Pd (assuming a

target is uniformly distributed in the region under test), has appeared in recent literature

[17]. In [17], Cann emphasized that the SNR gain required to achieve a specified Pd was

more important than the actual loss in SNR that arises due to bin straddling, and thus

defined average SNR loss as in Figure 10. This metric is included to facilitate comparison
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Figure 11: Pd loss for three detectors with Pfa = 10−4 and a single pulse.

with the results of Cann’s paper.

3.2.3 Performance Comparison

The metrics discussed in Section 3.2.2 are calculated using numerical simulations. Pd loss

for the three detectors using a single pulse with triangle and sinc matched filter responses

are provided in Figure 11. Pd loss for five pulses and ten pulses are shown in Figures 12 and

13, respectively. As shown in Figure 11, Pd loss for the traditional detector using a triangle

matched filter response is maximized at around 0.4 near Rt = 12 dB. Notice that Pd loss

using the traditional detector becomes more distinguished with more pulses, increasing to

nearly 0.8 for ten pulses using the triangular matched filter response as shown in Figure
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Figure 12: Pd loss for three detectors with Pfa = 10−4 and five pulses.

13. Also, the location of maximum Pd loss in total target SNR appears to increase with

the number of pulses – 14 dB for five pulses and 15 dB for ten pulses. These general trends

hold for the sinc matched filter response, but are less severe. Furthermore, notice that the

ALLRT and oversample detectors appear less susceptible to Pd loss. ALLRT and oversample

Pd loss are nearly equal for the triangle matched filter response, but the oversample detector

slightly outperforms ALLRT for the sinc matched filter response. By inspection of Figures

11, 12, and 13, a region of concern appears to exist in terms of Pd loss at around 10 dB -

18 dB. Unfortunately, as discussed in [48], surveillance radars employing pulsewidth agile

waveforms should operate near 16 dB in order to minimize total radar time and energy
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Figure 13: Pd loss for three detectors with Pfa = 10−4 and ten pulses.

during track maintenance.

Notice that Pd loss is less dramatic for high and low SNR values. A high value of Pd loss

indicates an SNR value that lies in the transition region where Pd is maximally sensitive to

changes in SNR. Since the transition region of Pd becomes unboundedly steep as the number

of pulses increases for a Swerling 2 target (see [32] for an illustration of this phenomenon),

Pd loss becomes more dramatic. We expect different behavior for a Swerling 1 target, since

the transition region in Pd does not become unboundedly steep with increasing number

of pulses. Finally, note that Pd loss is not unique to range-bin straddling; it is merely a

reflection that any lossy phenomenon will have a greatly amplified effect when SNR falls
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Figure 14: Total SNR loss for three detectors with Pfa = 10−4 and a single pulse.

within the steep transition region of a detection curve.

To be consistent with the results of [17], total SNR loss and average SNR loss are shown

as a function of Pd. To make the calculation for total SNR loss, a maximum Pd for a given

Rt is found with numerical simulation. Then, Rt is slowly increased until the absolute

difference between the minimum Pd and the previously calculated maximum Pd is less than

0.001, and total SNR loss is taken as the amount of increase in Rt. As shown in Figure

14, for a single pulse using the triangle matched filter response, total SNR loss is nearly

5 dB for the traditional detector, around 1.5 dB for the oversample detector, and slightly

above 1 dB for the ALLRT detector. If the radar waveform selection algorithm incorrectly
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Figure 15: Total SNR loss for three detectors with Pfa = 10−4 and five pulses.

assumes a matched filter sample precisely at a target location, an increase of waveform

energy by a factor of around 105/10 ≈ 3.15 is required to guarantee a specified Pd when

using the traditional detector. For the ALLRT and oversample detectors, the total SNR

loss is near 1.5 dB, corresponding to an increase of waveform energy by a factor of around

101.5/10 ≈ 1.4 in order to achieve a specified Pd. Also, notice from Figure 14 that total SNR

loss is reduced by using a sinc matched filter response. By inspection of Figures 15 and 16,

total SNR loss only slightly increases with the number of pulses.

Interestingly, total SNR loss appears nearly independent of the number of pulses and Pd

for all detectors. For the traditional detector with the triangular matched filter response, a
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Figure 16: Total SNR loss for three detectors with Pfa = 10−4 and ten pulses.

rough back-of-the-envelope estimate gives a loss in observed power as -20log10

(
1
2

)
≈ 6 dB,

close to the loss of 5 dB shown in Figures 14, 15, and 16 for the traditional detector. For

the ALLRT and oversample detectors, we do not have an explanation for the independence

of total SNR loss with number of pulses and Pd. This is left for future study.

Average SNR loss for a single pulse is provided in Figure 17. The calculation is made

using numerical simulations in a similar manner to the total SNR loss calculation. As

shown, for a single pulse using a triangle matched filter response, the average SNR loss

of the traditional detector slightly increases with increasing Pd. As the number of pulses

increases, this behavior becomes more pronounced, as shown in Figures 18 and 19. With
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Figure 17: Average SNR loss for three detectors with Pfa = 10−4 and a single pulse.

ten pulses, the traditional detector has an average SNR loss of 2 dB at Pd = 0.2, and this

increases to nearly 3.5 dB at Pd = 0.97. While this behavior was seen in the results of Cann

in [17], the results are not exactly the same. This is because Cann investigated Swerling

0 and Swerling 1 targets, instead of Swerling 2 targets. Also notice from Figure 17 that

average SNR loss decreases with a sinc matched filter response as compared to a triangle

matched filter response. By inspection of Figures 17, 18, and 19, average SNR loss does

not increase nearly as much with Pd for the ALLRT and oversample detectors as compared

to the traditional detector. In fact, for the ALLRT and oversample detectors, average SNR

loss is never above 1 dB for the cases considered. Note that the results of the oversample
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Figure 18: Average SNR loss for three detectors with Pfa = 10−4 and five pulses.

detector for average SNR loss agrees with the results of [17].

In general, the ALLRT detector outperforms the traditional detector in terms of all the

loss metrics. Surprisingly, the ALLRT detector slightly outperforms the oversample detector

in terms of the loss metrics for the triangle matched filter response, but the oversample

detector performs slightly better for the sinc matched filter response. Since the oversample

detector has the clear advantage of more data, this result may be counterintuitive. Assuming

a target is uniformly distributed in the region under test, Pd as a function of Rt for a single

pulse is provided in Figure 20. As shown, the oversample detector provides the best on-

average detection performance in this case. Therefore, since the oversample detector has
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Figure 19: Average SNR loss for three detectors with Pfa = 10−4 and ten pulses.

more data, it has a higher average Pd. However, as shown in this section, the ALLRT

detector has similar robustness against the negative effects of straddling loss.

3.2.4 Optimal Number of Pulses

By careful inspection of Figures 7, 8, and 9, an optimal number of pulses that maximizes

Pd appears to exist. For a radar dwell providing a specified Rt, denote Nopt as the optimal

number of pulses that maximizes Pd. This optimization originally appeared in [7] assuming

a Swerling 2 target and energy contained in a single matched filter sample, and the results

from [7] are reproduced in Table 1a. In Table 1b, results are provided for the traditional

detector described in this chapter with a target located on a matched filter sample. As
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Figure 20: Average Pd, assuming target is uniformly distributed in the region under test.
Pfa = 10−4 and a single pulse is used.

shown, Nopt agrees with the results in [7]. However, the difference in Pd arises because the

traditional detector in our simulations considers two adjacent matched filter samples, which

means the detection threshold must be raised slightly in order to maintain a specified Pfa in

the region under test. In Table 1c, results are provided with a target uniformly distributed

in the region under test. As shown, Nopt is quite lower than suggested in previous literature

for this case. For Rt = 40 (reported on linear scale for consistency with [7]), Nopt is found

to be three pulses instead of nine as reported in [7]. The decrease in Nopt is the result of

range bin straddling that causes an average SNR loss of around 2-3 dB using the traditional

detector, as discussed in Section 3.2.3. Therefore, Table 1c should roughly match Table 1a
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if Rt is decreased by a half. In fact, using numerical simulations, we found Nopt = 6 for

Rt = 60 using the same setup as in Table 1c, which is the same Nopt = 6 with Rt = 30 in

Table 1a. Nopt for the various detectors described in this work are provided in Tables 3, 4,

and 2. In general, Nopt is slightly higher for a sinc matched filter response as compared to

the triangle matched filter response. Also, Nopt tends to be slightly higher for the ALLRT

and oversample detectors as compared to the traditional detector.

Pulses Rt

N 20 30 40

1 0.645 0.743 0.799

2 0.710 0.831 0.891

3 0.725 0.864 0.924

4 0.724 0.879 0.941

5 0.714 0.885 0.949

6 0.699 0.887 0.954

7 0.681 0.886 0.957

8 0.662 0.882 0.958

9 0.641 0.878 0.958

10 0.620 0.872 0.958

(a) Results from Blair [7]

Pulses Rt

N 20 30 40

1 0.623 0.727 0.785

2 0.686 0.816 0.880

3 0.699 0.849 0.915

4 0.693 0.862 0.931

5 0.681 0.868 0.941

6 0.664 0.869 0.946

7 0.645 0.867 0.948

8 0.622 0.862 0.949

9 0.602 0.857 0.950

10 0.577 0.850 0.949

(b) Traditional detector with target on a
matched filter sample

Pulses Rt

N 20 30 40

1 0.441 0.566 0.646

2 0.435 0.603 0.709

3 0.405 0.597 0.721

4 0.370 0.578 0.715

5 0.341 0.557 0.706

6 0.312 0.534 0.692

7 0.287 0.512 0.676

8 0.263 0.489 0.659

9 0.243 0.470 0.643

10 0.224 0.448 0.625

(c) Traditional detector with target uni-
formly distributed between samples and a
triangular matched filter response

Table 1: Pd for Rayleigh targets with Pfa = 10−4.
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Rt

Detector 20 (13 dB) 30 (14.77 dB) 40 (16 dB)

Traditional 1 2 3

ALLRT 1 2 3

Oversample 1 2 3

(a) Triangle matched filter response

Rt

Detector 20 (13 dB) 30 (14.77 dB) 40 (16 dB)

Traditional 2 3 5

ALLRT 2 3 5

Oversample 2 3 5

(b) Sinc matched filter response

Table 2: Optimal number of pulses with a Pfa = 10−5 and target uniformly distributed in
the region under test.

Rt

Detector 20 (13 dB) 30 (14.77 dB) 40 (16 dB)

Traditional 1 2 3

ALLRT 1 2 4

Oversample 1 2 4

(a) Triangle matched filter response

Rt

Detector 20 (13 dB) 30 (14.77 dB) 40 (16 dB)

Traditional 2 3 5

ALLRT 2 4 6

Oversample 2 4 6

(b) Sinc matched filter response

Table 3: Optimal number of pulses with Pfa = 10−4 and target uniformly distributed in
the region under test.

3.3 Concluding Remarks

Traditional radar detection compares the observed SNR in a given matched filter sample to

a specified threshold. However, target energy is typically spread across multiple adjacent

matched filter samples, and traditionally the correlation between matched filter samples is

ignored. Using a signal model that jointly considers adjacent matched filter samples, the

ALLRT detector that includes the correlation is proposed. The coefficients used in the

ALLRT detector are provided for the triangle matched filter response and the sinc matched

filter response. As discussed in Appendix A, the ALLRT detector includes knowledge of

43



Rt

Detector 20 (13 dB) 30 (14.77 dB) 40 (16 dB)

Traditional 2 3 4

ALLRT 2 3 4

Oversample 2 3 4

(a) Triangle matched filter response

Rt

Detector 20 (13 dB) 30 (14.77 dB) 40 (16 dB)

Traditional 3 4 6

ALLRT 3 5 7

Oversample 3 5 7

(b) Sinc matched filter response

Table 4: Optimal number of pulses with Pfa = 10−3 and target uniformly distributed in
the region under test.

the functional form of transmitted waveform for multiple adjacent matched filter samples.

Detection performance of the ALLRT detector was compared to traditional detection for

two types of matched filter outputs, and a Swerling 2 target model. Since the triangle

matched filter response is similar to the main lobe of a phase coded waveform and a sinc

matched filter response is similar to that of an LFM waveform, we expect similar behavior

for waveforms commonly used in practice. Performance metrics employed in this work

measure performance losses due to the unknown location of a target between matched filter

samples. Interesting findings include:

• Using traditional detection, Pd is minimized if a target is centered between matched

filter samples. Pd loss increases with the number of pulses, and for ten pulses the loss

can be near an alarming 80% for the traditional detector. This value is not entirely

surprising since the transition region of Pd for Swerling II targets becomes steeper as

the number of pulses increases.

• Pd loss, average SNR loss, and total SNR loss are less severe with a sinc matched filter

response when compared to a triangular matched filter response for the detectors used

in this study.

• Pd loss, average SNR loss, and total SNR loss are less severe with the ALLRT detector
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as compared to the traditional detector. The traditional and ALLRT detectors use

the same sample rate.

• Using a triangular matched filter response, ALLRT provides similar performance to

the oversample detector in terms of Pd loss, average SNR loss, and total SNR loss. The

oversample detector slightly outperforms ALLRT for a sinc matched filter response.

• A region of severity for Pd loss exists in Rt for all detectors, around 12-18 dB.

• An optimal number of pulses for a given Rt that maximizes Pd is less than previously

reported in the literature. For Rt = 16 dB, nine pulses was previously reported as

optimal. Using a triangular matched filter response, the optimal number of pulses

were found to be three for traditional detection and four with the ALLRT detector

for Rt = 16dB. For a sinc matched filter response, the optimal number of pulses

increases to five and six.

The proposed ALLRT detector can provide stability in terms of Pd that rivals traditional

detectors with oversampled matched filter outputs. The radar estimation problem of range

and angle is investigated by jointly considering adjacent matched filter samples in the next

chapter. Future research includes exploring radar waveform design in the ALLRT detector

framework.
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CHAPTER IV

RANGE AND DIRECTION-OF-ARRIVAL ESTIMATION

The topic of monopulse direction-of-arrival (DOA) estimation is prevalent in the radar

literature. In [34], Mosca found the maximum-likelihood (ML) solution for DOA. In [8],

Blair proposed a method-of-moments approach to alleviate the bias of the monopulse ratio

for off-boresight targets at the cost of inflated error variance. Although often not mentioned

in the monopulse literature, radar tracking of off-boresight objects is particularly important

when considering energy management considerations of a radar, as in [48], or when tracking

groups of objects closely located in angle, as briefly discussed in [52]. In nearly all of the

monopulse DOA literature, target energy is assumed to be contained in a single range bin.

As discussed in Section 2.1, radars using pulse compression techniques typically use a

sampled version of the matched filter output for detection and estimation purposes. In

practice, target energy is contained in multiple adjacent matched filter samples, resulting in

correlation between adjacent samples. In the radar literature, this is called range gate strad-

dling, gate-spitting, gate spacing loss, or bin-spreading; it is typically treated as a nuisance

and regarded as an undesired loss in signal energy. Practical “centroiding” techniques have

been proposed to “fuse” the DOA estimates from adjacent samples as in [45]. A sub-bin

range estimate is also provided in [45] by utilizing bin-straddling. However, the approaches

in [45] do not employ the correlation between samples, and are therefore suboptimal.

In recent publications, bin spreading has been shown useful for a variety of estimation

purposes. For example, resolving multiple unresolved targets was achieved by using the

observed correlation between adjacent sum and difference matched filter samples in [56].

Willett explored the CRLBs for target localization using a signal model that jointly considers

adjacent matched filter samples and showed that oversampling the output of the matched

filter allows for more targets to be resolved [53]. The bounds in [53] were found numerically;

they were not expressed in closed-form. In [56], Zhang showed that the observed correlation
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between matched filter samples can be used to resolve targets spaced closer than the classical

interpretation of radar resolution by using an ML approach. Numerical methods were used

to arrive at ML estimates of range and angle for multiple targets of type Swerling 2. Zhang

further compared estimation performance of the ML estimators to a “centroid” approach

similar to [45] and showed performance benefits for the case of two targets. However, in

[56], target strength is assumed to be a known parameter and reported variances for target

location estimates are not provided.

Data fusion algorithms usually require a reliable error/variance report in order to de-

termine the relative value of the estimate. In much of the classical radar literature, DOA

estimator variance is typically straightforward to compute. However, incorporating addi-

tional modeling complexities, such as matched filter sampling in the work of Zhang in [56],

often results in complex numerical techniques for a solution, in which case error variance

reporting is far from straightforward. A reasonable approach for the ML technique of [56]

is to use the CRLBs from [53] as an error variance report. However, CRLBs are often

functions of unknown parameters, as is the case in [53].

In this Chapter, we explicitly incorporate sampling into the statistical model for sum

and difference channel signal samples, and derive ML estimators. This work may be viewed

as an elaboration of [56] and [53] for the case of a single Rayleigh target, with emphasis

on obtaining simple expressions that might be used in a real-time system. Furthermore,

we derive closed-form CRLBs for the unknown localization parameters, and propose the

generalized Cramér-Rao lower bound (GCRLB), which is the CRLB evaluated at estimated

quantities (rather than true values), as an error variance report. Much of this chapter

follows our expositions in [26], [24], and [23].

4.1 Signal and Target Modeling

Following the assumptions in Section 2.1, the sum and difference channel samples of a

monopulse system can be expressed as

s(b) = xr(b∆t− τ) + ns(b∆t), (58)

d(b) = xηr(b∆t− τ) + nd(b∆t). (59)

47



Note that a single pulse corresponds to two (i.i.d.) observations of both (58) and (59).

In this chapter, a sample rate equal to the Rayleigh resolution is assumed, resulting

in a maximum of two adjacent samples in the main lobe of the matched filter response.1

Furthermore, denote the variance of sum and difference channel noise samples as σ2
s and

σ2
d, respectively. Denoting the sub-bin location of a target as

c =
τ − b∆t

∆t
, (60)

the two samples of the main lobe of the matched filter response can be expressed as

r1(c) = r(c∆t), (61)

r2(c) = r((c− 1)∆t). (62)

Note that c ∈ [0, 1]. The resulting signal vector for N pulses is written exfplicitly as

sl = [sl(0) sl(1) dl(0) dl(1)]T , 1 ≤ l ≤ 2N, (63)

with

sl(0) = xr1 + ns(0), (64)

sl(1) = xr2 + ns(1), (65)

dl(0) = xηr1 + nd(0), (66)

dl(1) = xηr2 + nd(1). (67)

Here, E [sl]=0, and resulting covariance matrix for (63) can be written as

K = E
[
sls

T
l

]
=



β2r2
1 + σ2

s β2r1r2 β2ηr2
1 β2ηr1r2

β2r1r2 β2r2
2 + σ2

s β2ηr1r2 β2ηr2
2

β2ηr2
1 β2ηr1r2 β2η2r2

1 + σ2
d β2η2r1r2

β2ηr1r2 β2ηr2
2 β2η2r1r2 β2η2r2

2 + σ2
d


. (68)

Estimators for the unknown parameters η and c (which appear in functions of the r1 and

r2 in (68)), along with statistically consistent variance reports for each parameter estimate,

1This assumption can be found extensively in the literature. For examples, see [45], [56], [15], [17].
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are the focus of this chapter. In this work, β2 is treated as a nuisance parameter, and its

estimation is not studied in depth. Monopulse processing proposed in this thesis requires

calculation of the sample covariance matrix. Imposing the zero-mean assumption on sl, the

sample covariance is written explicitly as

K̄ =
1

2N

2N∑
l=1

sls
T
l =



k11 k12 k13 k14

k12 k22 k23 k24

k13 k23 k33 k34

k14 k24 k34 k44


, (69)

where N is the total number of pulses.

4.2 Detection and Estimation

This section presents estimators for the unknown β2, c. Derivations of these estimators

are provided in the Appendix. The estimators for β2 and c use the sum channel samples,

whereas the estimator for η uses both the sum and difference channel samples. CRLBs

for each unknown parameter are also provided in closed form. The new estimators are

compared with the approaches of [56] and [45].

4.2.1 Detection of Target Presence

In Chapter 3, the average loglikelihood ratio test (ALLRT) was proposed as a detector. Al-

though not explicitly mentioned in [25], the ALLRT is derived using statistical descriptions

of only the sum channel of a monopulse system; the difference channel is ignored. In the

derivation of the ALLRT, the test statistic in the loglikelihood ratio test (LLRT) is shown

to involve the unknown parameter c. To handle the unknown c, a uniform distribution

between zero and one is assumed and integrated through the LLRT, thus providing the

average loglikelihood ratio test. In terms of the sample covariance of (69), the ALLRT

detector can be written as

d1

σ2
s

(k11 + k22) +
d2

σ2
s

k12

H1

≷
H0

γa. (70)

The coefficients d1 and d2 in (70) depend upon the matched filter response of the transmitted

waveform, and γa denotes the ALLRT threshold. For a triangle matched filter response,
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the coefficients are simple, d1 = d2 = 1, and extension to any matched filter response is

straightforward, as shown in Chapter 3. For a sinc matched filter response, the coefficients

are d1 ≈ 0.4514 and d2 ≈ 0.494. In Chapter 3, the ALLRT detector is shown to provide

benefits over traditional detection schemes that isolate detection to each individual sample.

In particular, the ALLRT can be seen as an alternative to oversampling the output of the

matched filter to alleviate bin-straddling detection issues.

Investigation into the use of the difference channel in the detection process is left for

future work. However, notice that for targets located on boresight (i.e., η = 0), the difference

channel samples contain only noise. Thus, we expect detection benefits with the use of the

difference channel only for off-boresight (i.e. |η| ≥ 0.5) targets.

4.2.2 Range and Target Strength Estimation

As shown in Appendix B, estimating c is equivalent to solving

k11 − k22

k12
=
r1(ĉ)2 − r2(ĉ)2

r1(ĉ)r2(ĉ)
, (71)

for ĉ, where r1 and r2 are given as (61) and (62), respectively, and k11, k22, and k12 are

elements of the sample covariance of (69). Clearly, ĉ depends upon the matched filter

response of the transmitted waveform. However, given a known matched filter response and

measured data, simple search strategies can be devised using (71). For example, several

candidate ĉ values can be generated, perhaps one-hundred values between zero and one, and

tested to determine where (71) is achieved. Assuming a triangle matched filter response, a

closed-form expression for ĉ is developed in Appendix B:

ĉ =
k11 − k22 + 2k12 −

√
(k11 − k22)2 + 4k2

12

2(k11 − k22)
. (72)

The CRLB for ĉ is shown to be equivalent to

CRLBĉ =
(r2

1 + r2
2) + 1

Rr

2Rt

(
r1
∂r2
∂c − r2

∂r1
∂c

)2 . (73)

Notice that the CRLB depends upon the transmitted waveform through the true values of

the samples and the partial derivative of the matched filter response with respect to the
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target location. Clearly, the selection of a transmitted waveform, along with the target

location, effects the CRLB for ĉ. In Appendix B, an estimate for β2 is shown to be

β̂2 =
k11r̂

2
1 + k22r̂

2
2 − (r̂2

1 + r̂2
2)σ2

s + 2k12r̂1r̂2

(r̂2
1 + r̂2

2)2
, (74)

with r̂1 = r1(ĉ) and r̂2 = r2(ĉ). Note that a ĉ is required for (74). To our knowledge, (74) is

the first appearance of a target strength estimator that jointly considers adjacent samples.

A common technique, in practice, for sub-bin range estimation is the centroid approach

of [45], in which the range estimate is an SNR weighted centroid of adjacent samples. In

terms of the sample covariance, the centroid estimator for c is

ĉcentroid =
k22

k11 + k22
. (75)

To compare performance of the ML and centroid range estimators, MSE is calculated for

various values of target SNR and number of pulses. For each case of target SNR and number

of pulses, 1,000,000 target locations are generated from a uniform distribution between two

range bins. MSE is calculated on trials that pass the ALLRT detection threshold for a given

probability of false alarm. The ratio of MSEs on the MLE and centroid range estimators

for Pfa=10−4 are shown in Table 5. In this table, a value less than one corresponds to a

case where centroiding performs better than the MLE. As shown, the MLE outperforms

centroiding for nearly every case considered. Centroiding only slightly outperforms the

MLE for a few very low SNR targets.

To see more detailed behavior of these estimators, the two components of MSE, bias and

variance, were investigated as c is swept from zero to one. The bias and standard deviation

(square root of variance) of the estimators for the case of Rr = 10 dB with 10 pulses are

shown in Figures 21 and 22. Centroiding displays strange bias behavior, which contributes

to the high MSE as compared to the MLE. Note that the MLE is biased near the edges

because the estimate is constrained to be between zero and one. Values outside zero and

one do not make sense under the hypothesis of target presence within the two samples.
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Table 5: Ratio of MSE (centroiding to MLE), Pfa = 10−4.

Rr (dB) Number of Pulses
1 2 3 4 5 6 7 8 9 10

5 1.01 0.94 0.98 1.05 1.14 1.21 1.27 1.34 1.42 1.47
6 1.06 0.99 0.99 1.04 1.09 1.14 1.19 1.24 1.28 1.33
7 1.12 1.02 1.01 1.04 1.07 1.10 1.14 1.16 1.19 1.21
8 1.18 1.07 1.06 1.05 1.08 1.10 1.11 1.14 1.16 1.17
9 1.25 1.15 1.12 1.12 1.13 1.14 1.16 1.18 1.20 1.22

10 1.33 1.24 1.21 1.21 1.23 1.26 1.28 1.31 1.35 1.39
11 1.42 1.34 1.34 1.36 1.40 1.45 1.51 1.58 1.65 1.73
12 1.53 1.47 1.50 1.56 1.66 1.77 1.89 2.02 2.16 2.30
13 1.64 1.64 1.73 1.87 2.04 2.24 2.47 2.70 2.93 3.18
14 1.76 1.83 2.01 2.27 2.59 2.92 3.28 3.66 4.05 4.43
15 1.89 2.07 2.39 2.84 3.33 3.88 4.43 5.02 5.58 6.18
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Figure 21: Standard deviation in ĉ for the range estimators using 10 pulses at Rr = 10 dB.

4.2.3 DOA Estimation

In Appendix B, estimating η is shown to be equivalent to solving

a1η̂
3 + a2η̂

2 + a3η̂ + a4 = 0 (76)

for η̂. The polynomial coefficients in (76) are rather complicated and can be found in

Appendix B. Note that in the derivation of η̂, the estimator is a ML solution with β2 and c

assumed as known parameters. However, replacing β2 and c with estimates β̂2 and ĉ from

Section 4.2.2 gives (76) as a generalized maximum-likelihood (GML) solution. Note that all

elements of the sample covariance appear in the polynomial coefficients of (76). Assuming
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Figure 22: Estimator bias in ĉ for the range estimators using 10 pulses at Rr = 10 dB.

c and β2 are unknown parameters, the CRLB for η̂ is given in Appendix B as

CRLBη =
(r2

1 + r2
2)
(
η2 +

σ2
d
σ2
s

)
+

σ2
d
β2

2Rt(r2
1 + r2

2)2
. (77)

Notice that the matched filter sampling process affects η estimation performance through

(r2
1 + r2

2), and for many waveforms, the CRLB is maximized when target energy is split

evenly across adjacent matched filter samples. For a specified matched filter response, (77)

can be used to determine the maximum amount of information about η that is “lost” in the

matched filter sampling process as shown below. Finally, notice that the CRLB increases

with increasing η2, thus off-boresight targets result in less accurate estimation.

Assuming σ2
d = σ2

s , followed by algebraic manipulation, of (77) gives

CRLBη =

(
η2 + 1

)
+ 1

Rr(r21+r22)

2NRr(r2
1 + r2

2)
, (78)

in which a critical observation is made: in terms of η estimation, bin-spreading can be seen

as a direct loss in target SNR through the term (r2
1 + r2

2). Assuming a triangle matched

filter response, worst-case loss results from target energy split evenly across two matched

filter samples. In this case, the loss is written explicitly as (r2
1 + r2

2) = 1/2. Note that for

suboptimal monopulse processing, the loss is guaranteed to be more than 1/2, in general.

In conventional monopulse radar systems, the in-phase part of the monopulse ratio is
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used as the angle of arrival estimate [43]. In view of (8)-(9), the in-phase part of the

monopulse ratio for matched filter sample b is expressed as,

yi(b) =
di(b)si(b) + dq(b)sq(b)

s2
i (b) + s2

q(b)
, (79)

where

si(b) = Re {sc(b)} , (80)

sq(b) = Im {sc(b)} , (81)

di(b) = Re {dc(b)} , (82)

dq(b) = Im {dc(b)} . (83)

For the case of multiple pulses, the monopulse ratio for matched filter sample b is an

SNR weighted average of the individual monopulse ratios using the observed SNR for each

matched filter sample [7]. It is well known for low and moderate SNR values, that (79) is

a notably biased estimate of η.

Conventional DOA estimation is compared to the ML estimator of (76) using the

Cramér-Rao normalized root mean square error (CNRMSE) and estimator bias. For each

specific selection of Rr, η, c, and number of pulses, 50/Pfa samples of (8)-(9) were gener-

ated, and the root mean square error (RMSE) of each estimator is computed. This RMSE

is further divided by the square root of the CRLB, giving the CNRMSE. The CNRMSE

provides a general idea of the efficiency of the estimator, along with a justification of a

reported CRLB to “cover” errors.

CNRMSE and estimator bias are provided in Figures 23 and 24 for the traditionally

assumed case of target energy contained in a single matched filter sample. As shown, the

centroid estimator that uses the in-phase part of the monopulse ratio displays bias behavior,

around 10% of the true value of η, whereas the ML estimator provided in this work has

nearly zero bias. The ML estimator is nearly efficient as shown in Figure 24 as the errors

are around 1.1 times the square root of the Cramér-Rao lower bound. Also notice that, as

expected from traditional DOA literature, the monopulse ratio is superior for -0.5≥ η ≥0.5.

CNRMSE and estimator bias are provided in Figures 25 and 24 for the case of target

energy contained equally among adjacent matched filter samples (i.e., c = 1/2). As shown,
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performance of the centroid estimator begins to drastically break down in this case, as the

estimator is notably biased and errors approach 2.5 times the CRLB, in terms of error

standard deviation. Regardless, even in this case, the monopulse ratio is difficult to beat

for targets close to boresight, -0.25≤ η ≤0.25. The ML estimator is the superior estimator

for targets off-boresight, as it has nearly zero bias and is reasonably close to the CRLB.
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Figure 23: Estimator bias in η̂ for Rr = 10 dB, eight pulses, triangle matched filter response,
and Pfa = 10−3. Target energy is contained in a single matched filter sample.
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Figure 24: CNRMSE in η̂ for Rr = 10 dB, eight pulses, triangle matched filter response,
and Pfa = 10−3. Target energy is contained in a single matched filter sample.
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Figure 25: Estimator bias in η̂ for Rr = 10 dB, eight pulses, triangle matched filter response,
and Pfa = 10−3. Target energy is distributed equally in adjacent matched filter samples.
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Figure 26: CNRMSE in η̂ for Rr = 10 dB, eight pulses, triangle matched filter response,
and Pfa = 10−3. Target energy is distributed equally in adjacent matched filter samples.

4.2.4 Comparison with Centroiding and Full ML Approaches

Since the derived c and β2 estimators use only the sum channel and η̂ is a GML solution, the

estimators are approximations to the full ML solution (i.e., jointly solving for the unknown

parameters using the full probability distribution). Performance losses due to approxima-

tions may be significant. Here, a comparison of the proposed estimators is made with a
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Figure 27: RMSE for η̂ using the GML and ML solutions. The values c=0.5, η=0, N=10,
σ2
s=σ

2
d=1, and Pfa=10−3 were used in all Monte Carlo trials. A triangle matched filter

response is used.

full ML solution. The estimators described in Sections 4.2.2 and 4.2.3 will be denoted as

GML solutions. A comparison with the c and η centroid estimators of [45], which uses the

in-phase part sof the monopulse ratios, is also provided.

For a given set of parameters, 40,000 samples of (8)-(9) were generated using a triangular

matched filter response, and the (RMSE) of the GML, ML, and centroid solutions for η̂ and

ĉ were calculated. Samples that did not pass the ALLRT threshold of Section 4.2.1 were

discarded. Newton’s method was used to solve for η̂ in the GML solution, with the initial

starting point as the centroid solution of [45]. A Gauss-Newton approach was used to solve

for the full ML solution, with a starting point as the GML solution. The full ML solution

here assumes β2 as an unknown parameter, which differs from the solution of [56] where

β2 is assumed to be a known parameter. RMSE for the η̂ and ĉ estimators is shown in

Figures 27 and 28 for a target located at η = 0 (i.e., on-boresight) and c = 0.5 (i.e. target

energy contained equally in adjacent samples). Notice that for the on-boresight target,

the full ML solution provides no performance gains over the GML solution. In fact, the

GML solution appears to slightly outperform the GML solution in this case. Also notice

that the centroid estimator provides the best η̂ performance for η=0; hence, the monopulse

ratio provides excellent DOA estimation for targets near boresight. This result agrees with

existing DOA estimation literature [8].
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Figure 28: RMSE for ĉ using the GML and ML solutions. The values c=0.5, η=0, N=10,
σ2
s=σ

2
d=1, and Pfa=10−3 were used in all Monte Carlo trials. A triangle matched filter

response is used.
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Figure 29: RMSE for η̂ using the GML and ML solutions. The values c=0.5, η=1.5, N=10,
σ2
s=σ

2
d=1, and Pfa=10−3 were used in all Monte Carlo trials. A triangle matched filter

response is used.

RMSE for the η̂ and ĉ estimators is shown in Figures 29 and 30 for a target located at

η = 1.5 (i.e., off-boresight) and c = 0.5. For a target located off-boresight, the ML solution

provides notable performance gains over the GML solution only for ĉ. This result shows

that target range information exists by jointly considering the sum and difference channel

for off-foresight targets. Also, notice that ĉ performance of the GML and centroid solutions

are independent of the target location in η. This is expected since the AML and centroid

estimator ĉ only use the sum channel for estimation. Finally, the centroid estimator provides

poor η̂ performance compared to the GML and ML solutions for off-boresight targets.
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Figure 30: RMSE for ĉ using the GML and ML solutions. The values c=0.5, η=1.5, N=10,
σ2
s=σ

2
d=1, and Pfa=10−3 were used in all Monte Carlo trials. A triangle matched filter

response is used.

The Gauss-Newton procedure used for the full ML solution had divergence problems

for off-boresight, low SNR cases. With Rt = 14 dB and η=1.5, a divergence rate of 14

percent was observed. At Rt = 20 dB, this divergence rate decreased to 1 percent and

continued decreasing with increasing Rt. For the on-boresight case, no divergence issues

were observed. Also, with c = 0,1, no divergence issues were observed. No divergence issues

were observed with the GML solution.

Recalling that c has a value between zero and one, a sub-bin ĉ can provide range esti-

mation accuracy of less than one-tenth of a range bin, as shown in Figure 28. The value

of this precision range estimation depends upon the application of such processing. For

instance, as shown in [46], overly precise range estimates can lead to complications with

the tracking algorithms. Since the main focus of monopulse systems is DOA estimation, we

proceed with the GML solution.

4.3 Variance Reporting

Estimators and their associated CRLBs are provided in Section 4.2. In this Section, the

generalized Cramér-Rao lower bound (GCRLB), which is the CRLB (i.e., (73) and (77))

evaluated at estimated parameters, is investigated as a variance report for the estimators

provided in Section 4.2. Error variance reporting is particularly important in order to

facilitate the use by data fusion algorithms such as the Kalman filter. In order to determine
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the usefulness of the GCRLB as a variance report, the average normalized estimation error

squared (ANEES) is defined as

ANEESθ̂ = E

[
(θ̂ − θ)2

σ2
θ

]
, (84)

where θ̂ is the estimator of interest. As discussed in [3], ANEES is used to study the variance

consistency and statistical efficiency of an estimator. Statistical efficiency of an unbiased

estimator is achieved when the actual errors achieve the CRLB. Variance consistency of a

parameter estimate θ̂ and variance report is achieved when the reported error variance of

an estimator accurately reflect the actual error variance. In terms of this work, variance

consistency is investigated using (84) with σ2
θ = GCRLB (CRLB evaluated at parameter

estimates), and statistical efficiency with σ2
θ = CRLB (evaluated at the true parameter

values). ANEES values near one are desired since they correspond to statistically efficient

and consistent estimators.

ANEES for the GML estimators of c and η were computed using Monte Carlo simu-

lations. For a given set of parameters, 100,000 samples of (8)-(9) were generated using a

triangular matched filter response, and the ANEES were were calculated using the CRLBs

given by (73) and (77). True parameter values were used to evaluate statistical efficiency

and estimated parameter values were used to evaluate variance consistency.2 Samples that

did not pass the ALLRT threshold of Section 4.2.1 were discarded. For all Monte Carlo

simulations, Pfa = 10−3 and σ2
s = σ2

d = 1.

ANEES for ĉ are provided in Figures 31 and 32 for c=0.5 and c=1, respectively. For

slightly easier interpretation, the square root of ANEES is shown to provide normalized

errors in a “standard deviation” scale instead of “variance” scale. Notice that the GCRLB

provides a good variance report for all values of Rt and c=0.5. However, for c=1, the

GCRLB requires Rt ≥ 15 dB to achieve variance consistency. For low Rt, the ĉ appears

to provide estimation errors lower than the CRLB. This is because the CRLB is derived

2For (73) to exist, ∂r1
∂c

and ∂r2
∂c

must also exist. For waveforms used in practice, these partials will always
exist otherwise the waveform is not physically realizable. However, for the triangular matched filter response
often used in the literature and in our analysis, ∂r1

∂c
and ∂r2

∂c
are undefined for c=0 and 1. This was also

noted in [56]. For simulation purposes in this work, the values ∂r1
∂c

=-1 and ∂r2
∂c

=1 are used with the triangle
matched filter response, regardless of the estimated or actual value of c.
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Figure 31: Square root of ANEES for ĉ. Solid lines represent ANEES calculated with the
GCRLB (for variance consistency) and dotted lines represent ANEES calculated with the
CRLB (for statistical efficiency). For the Monte Carlo trials, c = 0.5 and number of pulses
is equal to 1, 5, and 10.

using the full distribution of the observations, while the results shown in Figures 31 and

32 are conditioned on an ALLRT detection. The detection process changes the support of

the distribution function, which is significant in situations with low probability of detection

(i.e., low Rt). For a single pulse, the estimators do not approach efficiency with increasing

Rt. In fact, the ANEES appears go grow unboundedly with Rt. This is an expected result,

since many properties of ML estimation are asymptotic in nature. Interestingly, the GCRLB

approaches variance consistency for a single pulse. However, with five and ten pulses, the

statistical efficienty appears to “level off” with increasing Rt.

ANEES for η̂ are provided in Figures 33, 34, and 35 for η = 0, 1, and 1.5, respectively.

In each figure, target energy is contained equally across adjacent samples. For targets

located near η = 0, the GCRLB appears to be a consistent estimator. However, increasing

η results in a higher Rt required for consistency of the GCRLB. For η = 1, Rt ≈ 17 dB is

required for consistency, and for η = 1.5, Rt ≈ 20 dB is required. For off-boresight targets,

the consistency of the error report gets worse with a higher number of pulses and low Rt.

Similar to ĉ, η̂ does not appear to approach statistical efficiency for a single pulse; the

ANEES grows unboundedly in this case. However, for five and ten pulses the ANEES for η̂

appears to “level off” around Rt = 20 dB, and approach efficiency as the number of pulses
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Figure 32: Square root of ANEES for ĉ. Solid lines represent ANEES calculated with the
GCLRB (for variance consistency) and dotted lines represent ANEES calculated with the
CRLB (for statistical efficiency). For the Monte Carlo trials, c = 1 and number of pulses is
equal to 1, 5, and 10.

increases.

Figure 36 provides ANEES for η = 1.5, with target energy completely contained in a

single sample. As shown, with target energy contained in a single matched filter sample

the required Rt for a consistent estimator is decreased to 16 dB as opposed to 20 dB. With

target energy contained in a single sample, the variance consistency and efficiency of η̂

becomes more desirable.
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Figure 33: Square root of ANEES for η̂. Solid lines represent ANEES calculated with the
GCRLB (for variance consistency) and dotted lines represent ANEES calculated with the
CRLB (for statistical efficiency). For the Monte Carlo trials, c = 0.5, η=0, and number of
pulses is equal to 1, 5, and 10.
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Figure 34: Square root of ANEES for η̂. Solid lines represent ANEES calculated with the
GCRLB (for variance consistency) and dotted lines represent ANEES calculated with the
CRLB (for statistical efficiency). For the Monte Carlo trials, c = 0.5, η=1, and number of
pulses is equal to 1, 5, and 10.
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Figure 35: Square root of ANEES for η̂. Solid lines represent ANEES calculated with the
GCRLB (for variance consistency) and dotted lines represent ANEES calculated with the
CRLB (for statistical efficiency). For the Monte Carlo trials, c = 0.5, η=1.5, and number
of pulses is equal to 1, 5, and 10.

Of practical importance is the accuracy benefit of the processing described in this work

as it relates to existing approaches. By inspection of Figure 35, with ten pulses, Rt = 20

dB, and c = 0.5, the proposed η̂ is near statistical efficiency and consistency. By inspection

of Figure 27, near Rt=20 dB the estimators described in this chapter outperform the cen-

troiding technique of [45] by a factor close to two in RMSE of η̂. Although the analysis in
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Figure 36: Square root of ANEES for η̂. Solid lines represent ANEES calculated with the
GCRLB (for variance consistency) and dotted lines represent ANEES calculated with the
CRLB (for statistical efficiency). For the Monte Carlo trials, c = 1, η=1.5, and number of
pulses is equal to 1, 5, and 10.

Figure 27 for c=0,1 is not provided in the manuscript, a performance increase of 25 percent

was found for this case.

The same Monte Carlo simulations were performed using a sinc matched filter response

instead of a triangle matched filter response. Similar results were found for the sinc matched

filter response, but are not provided in the manuscript.

4.4 Concluding Remarks

Amplitude comparison monopulse systems use a simultaneous lobing technique to provide

sub beam-width localization of a target. In practice, sampled versions of monopulse signals

are used for processing, and bin-straddling is an unavoidable consequence. Traditional radar

literature treats bin-straddling as an undesired loss in SNR, and treats each sample indi-

vidually. However, sample rates often used in practice result in multiple adjacent samples

with target energy. Those samples are correlated and, by treating each sample individually,

traditional monopulse processing ignores the correlation.

Here, we systematically incorporated sampling into the monopulse signal model, and

derived GML estimates of target range and DOA. Since data fusion algorithms, such as

the Kalman filter, require an estimated error variance on parameter estimates, we proposed

the GCRLB, CRLB evaluated at parameter estimates, as an error report. CRLBs for

64



the unknown target localization parameters were provided in closed form. The statistical

efficiency and consistency of the estimators were shown through Monte Carlo simulations,

and required target SNR levels were provided. Interesting findings include:

• The proposed estimators require knowledge of the transmitted waveform. Given an

estimate for target range, target strength estimation is a closed-form expression. For a

triangular matched filter response, a closed-form expression for range estimation was

provided. For more complex waveforms, numerical approaches are likely needed to

arrive at range estimates. Given target range and strength estimates, DOA estimation

is equivalent to solving a third order polynomial.

• A new closed-form CRLB for target DOA, which assumes target strength and target

range as unknown parameters, was provided. Using the CRLB for target DOA, bin-

spreading was shown to result in a direct loss in Rr. For a triangle matched filter

response, worst case loss is 0.5.

• The proposed estimators are an approximation to a full ML solution. A comparison

was made with the full ML solution, and no performance losses were found for target

DOA estimation. However, target range estimation can be improved with the full ML

solution. Using a Gauss-Newton approach, the full ML solution had divergence issues

in some situations.

• ANEES was used to evaluate variance consistency and efficiency of the estimators.

In general, statistical efficiency and consistency of the estimators improved with an

increasing number of pulses and increasing Rt. Considering all the cases described in

this work, variance consistency of the estimators are guaranteed for Rt greater than

19 dB. For some easy situations, lower values of Rt are required. The estimators

approach statistical efficency with an increasing number of pulses, and Rt ≥ 20 dB.

• For off-boresight targets, the proposed target DOA estimator improves upon the ap-

proach of [45] by up to a factor of two in RMSE.

Future work includes extension to joint estimation of both horizontal and azimuth DOAs.
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Such work may prove fruitful since, as discussed in [52], horizontal and vertical DOA es-

timates can be correlated. In-depth studies into the properties of β̂2 and the statistical

efficiency/consistency of the estimator are left for future work. Of practical interest is the

amount of performance degradation in the presence of unmodeled disturbances. Examples

of unmodeled disturbances include multiple targets in the same resolution cell, and clutter.

Investigation into these potential performance degradations is left for future work. Finally,

a formal study of the GCRLB, in which parameter estimates are used in the functional form

of the CRLB, is left for future work.
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CHAPTER V

RADAR TRACKING OF MANEUVERING TARGETS

The problem of tracking maneuvering targets has been studied extensively. The interacting

multiple model (IMM) algorithm is considered to be a best in-class technique for tracking

maneuvering targets, when computational aspects are considered [4]. The IMM estimator

assumes that target motion follows one of a finite set of motion models, and that the tran-

sitioning between models behaves as a Markov process. These models interact in the IMM

estimator through a process called “mixing,” which is governed by the mode probabilities

and the mode switching probabilities. However, in order to have reliable tracking, motion

models that accurately represent target maneuvers must be used [40]. Furthermore, an

appropriate set of motion models is needed to prevent unneccessary “competition” among

models [31].

Using track state estimates, agile beam radars are able to adaptively schedule track

revisits once positional uncertainty reaches a specified fraction of the main beam. It is well

accepted that the use of adaptive revisit calculations along with an IMM estimator achieves

significant reductions in total radar time, while maintaining a maximum allowed track loss

([6, 11]). An IMM estimator that includes adaptive revisit calculations is able to achieve

longer average revisit periods through kinematic modeling represenative of target motion,

thus reducing radar time and energy. A reduction in radar time and energy for each track

is valuable since more objects can be tracked, and more resources are available for search

and acquisition modes.

In practice, radars choose from multiple waveforms so that the waveform energy can

be coordinated with the tracking algorithm. With a target strength estimate in hand, a

reasonable criterion for selection of a waveform is a desired signal-to-noise (SNR) level;

this is referred to as the nominal tracking SNR. Typically, a radar will transmit at peak

power for a certain pulsewidth and number of pulses. Therefore, higher energy waveforms
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equate to longer pulsewidths or more pulses. In general, a higher energy waveform will have

higher detection probability and more accurate measurements, facilitating more accurate

estimation and longer revisit times. However, these higher energy waveforms cost more

energy, potentially impacting duty cycle considerations. Therefore, a tradeoff exists between

radar time and radar energy in the selection of a radar waveform and an overall nominal

tracking SNR level.

The first and second Benchmark tracking problems developed by Blair et. al. ([12, 13])

provided a standard problem for comparing radar tracker and scheduler algorithms for

typical ship defense applications. Nearly all solutions used adaptive waveform selection,

adaptive revisit calculations, and multiple model filtering methods ([6, 30]). Many solutions

to the second Benchmark problem choose to operate at an arbitrary SNR level, usually

around 14.5-16 dB, with little attention devoted to the question of an optimal tracking

SNR level [6, 30]. The authors in [48] investigated optimal tracking SNR levels using a

simple phased array radar model. The authors claim that minimizing an optimization

function called “radar load” maximizes the total number of possible maintained tracks, and

they found an optimal tracking SNR level of 16 dB. However, the authors of [48] use a single

kinematic model Kalman filter; the effect of an IMM estimator on optimal tracking SNR

was not investigated. Furthermore, their algorithms were not implemented for the first or

second Benchmark tracking problems.

In this chapter, optimal SNR levels for tracking with an IMM estimator are investi-

gated using a high-fidelity radar tracking simulation similar to that of the first and second

Benchmark problems, and those results are compared to results in existing literature. Upon

selection of an IMM for tracking highly maneuverable targets, tradeoffs in the nominal track-

ing SNR levels are studied in more depth than in the existing literature In this chapter,

the radar management operating curve (RMOC) is developed and can be used to charac-

terize the fundamental tradeoff of radar time and energy, as it relates to the selection of an

operating SNR. Some of this chapter follows our expositions in [21] and [22].
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5.1 Target and Radar Models

Before the discussion of IMM estimators, a description of the testing environment is pro-

vided. Testing was performed using the MIMO Radar Benchmark [18]. The simulation soft-

ware includes a 1 MW maximum power, 4 GHz phased array (i.e., agile beam) radar using

amplitude comparison monopulse. Radar detection and signal processing is performed on

simulation-generated I&Q voltages in the sum, azimuth difference, and elevation difference

channels, corrupted by white Gaussian noise errors. The radar model of the simulation

program accepts time, range, angles, pulsewidth, and a detection threshold on observed

SNR for a scheduled radar track dwell. Pulsewidths available to the sceduling algorithm

are arranged in 3 dB steps with a total dynamic range of 54 dB. The largest pulsewidth is

1 ms and the smallest pulsewidth is 7 ns.1 A probability of a false alarm equal to 10−5 in a

bin (range resolution cell) was used to set the detection threshold for all waveforms in this

study.

Upon detection of target presence using conventional single-bin detection processing,

range and sine space angles (r-u-v coordinates) are reported for each range bin detection

r =
√
x2 + y2 + z2, (85)

u =
x

r
, (86)

v =
y

r
, (87)

where DOA is computed with conventional monopulse processing (i.e., the in-phase part of

the monopulse ratio), and then converted into u and v space through the monopulse error

slope. In practice, the reported error variances for sine space estimates at each detected

range bin are functions of observed SNR and the monopulse error slope

σ2
û =

θ2
B

k2
x

1

2Ro

[
σ2
du

σ2
s

+ y2
Iu

]
, (88)

σ2
v̂ =

θ2
B

k2
y

1

2Ro

[
σ2
dv

σ2
s

+ y2
Iv

]
, (89)

1Pulse widths in the range of nanoseconds are probably not feasible in a real radar system. However, for
the purposes of this study, we needed a large dynamic range to ensure a desired SNR level can be achieved.
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where kx and ky are the monopulse error slopes for azimuth and vertical, respectively, Ro

is the observed signal-to-noise ratio, θB is the 3 dB beamwidth of the main beam, σ2
s is the

noise power in the sum channel, σ2
du and σ2

dv are noise powers in the difference channels, and

yIu and yIv are the in-phase parts of the observed monopulse ratios. The main beam in the

radar model has a 3 dB beamwidth of 1.9 degrees at broadside of the array face. Finally,

in the simulation, range bin straddling is modeled as being across a maximum of two range

bins per target. For detections in two adjacent range bins, centroid processing as in [45]

was used to create a single measurement. The reported sub-bin range is an observed-SNR

weighted centroid of two adjacent range bins, and the reported variance is given by

σ2
r̂ =

(∆r)2

2Rom
, (90)

where Rom is the maximum SNR of the two adjacent range bins and ∆r is the range

resolution of the transmitted waveform. If a single range bin exceeds a threshold, then the

reported range variance is the variance of a uniform distribution corresponding to the size

of a range bin. All track waveforms available to the radar have a range resolution of 15

meters, and a range window of 3000 meters. For detections in two adjacent range bins, the

reported angle measurement is also an observed SNR weighted centroid of the two adjacent

angle measurements. Notice that reported variances of the range and angle measurements

decrease with increasing observed SNR.

The target trajectory is depicted in Figure 37. The trajectory is shown in the East-

North-Up coordinate frame relative to the sensor. The target depicted in Figure 37 makes

three coordinated turns at a constant speed of 250 m/s: two 2g (i.e., two times gravity)

turns and one 4g turn. After the turns, the target throttles to a speed of 400 m/s and

performs a 6g vertical maneuver to reach an altitude of 9188 meters (about 30000 ft). The

vertical maneuvers were generated using high fidelity trajectory generation software for

manned aircraft.

5.2 Selection of an IMM Estimator

Nearly coordinated turn (NCT) models are commonly used in the tracking of air targets.

These models assume a target is moving with nearly constant speed, and a constant turn
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Figure 37: Target trajectory.

rate. A specific type of NCT model is the horizontal nearly coordinated turn model, which

assumes that targets perform coordinated turns in the x-y horizontal plane. Typically,

in conjunction with NCT, motion in the z-axis is decoupled from this horizontal motion

and modeled with nearly constant velocity, resulting in a seven element state vector. This

kinematic model has been successfully utilized in an IMM estimator for the application

of civilian air traffic surveillance [49]. As an alternative, 3D turn models can be used.
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These models relax the assumption that coordinated turns are constrained to the horizontal

plane. Using a 3D turn model, the turn rate vector is typically assumed to be orthogonal

to the velocity vector. As a result, the acceleration vector is also orthogonal to the velocity

vector, which defines the “turn plane” of the maneuver. This model has been sucessfully

used in an IMM estimator for the Benchmark problem of tracking agile targets [11]. This

model has also been used with a kinematic constraint as a pseudomeasurement to enhance

tracking performance during coordinated turns [51, 1]. Although the authors in [51] compare

performance of the 3D turn model with the horizontal maneuver model of [20], a comparson

with the NCT model of [49] is not provided.

Many useful kinematic models that describe target motion have state vectors of differing

dimension. A conventional approach addressing the state vectors of differing dimension in

the mixing is augmenting extra elements with zeros and perform the standard mixing.

However, this approach introduces a bias in the mixed estimate [4]. Recently, an unbiased

mixing procedure was developed for the case of two modes [55], which was used in an IMM

estimator to predict the impact point of ballistic missiles. For the case of an IMM estimator

with NCT and NCV models, the unbiased mixing procedure can be useful since the turn rate

is an extra element in the state vector of the NCT model. However, for this investigation

three models are used in the IMM estimator.

In this section, two IMM filters with three kinematic models for tracking maneuvering

air targets are designed and their performances compared. One IMM estimator includes a

horizontal coordinated turn model similar to [49], and the other IMM estimator includes a

3D coordinated turn mode [51]. An extension of the unbiased mixing procedure described

in [55] is used for the case of a three model IMM. The MIMO Radar Benchmark [18] was

used to compare the performance of these filters. This section closely follows our description

in [21].
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5.2.1 Kinematic Modeling

As discussed in Section 2.2.1, the discrete Kalman filtering equations require state dynamic

equations in the form of (14). This section discusses kinematic models to be used in candi-

date IMM estimators. To describe the kinematic models, the discrete time state dynamic

equations are presented along with process noise parameters. For each of these descriptions,

let ∆t denote the time between observations, and k denote the time index.

5.2.1.1 Nearly Constant Velocity Model

The Nearly Constant Velocity (NCV) model uses a six-dimensional state vector with posi-

tion and velocity elements. The discrete time state equations for the NCV model can be

written as

x(k + 1) = F(k)x(k) + w(k), (91)

where

x(k) =

[
x(k) ẋ(k) y(k) ẏ(k) z(k) ż(k)

]T
, (92)

F(k) =



1 ∆t(k) 0 0 0 0

0 1 0 0 0 0

0 0 1 ∆t(k) 0 0

0 0 0 1 0 0

0 0 0 0 1 ∆t(k)

0 0 0 0 0 1


, (93)

w(k) ∼ N

0,G(k)


σ2
ax 0 0

0 σ2
ay 0

0 0 σ2
az

G(k)T

 , (94)
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with

G(k) =



0.5∆t(k)2 0 0

∆t(k) 0 0

0 0.5∆t(k)2 0

0 ∆t(k) 0

0 0 0.5∆t(k)2

0 0 ∆t(k)


. (95)

The σax , σay , and σaz are design parameters, which have the units of acceleration. Notice

that the DWN process noise model, as described in Section 2.2.1, is used.

5.2.1.2 Horizontal Nearly Coordinated Turn Model

The Horizontal Nearly Coordinated Turn (HNCT) model uses a seven dimensional state

vector with position elements, velocity elements, and an element for turn rate, Ω. An

additive DWN process noise model is assumed. The nonlinear state equations for the

HNCT model can be written as

x(k + 1) = f [x(k)] + w(k), (96)

or, with the terms written out explicitly for sampling interval ∆tk,

x(k) =

[
x(k) ẋ(k) y(k) ẏ(k) z(k) ż(k) Ω(k)

]T
, (97)

f [x(k)] =



A(k) 0

0

1 ∆t(k) 0

0 1 0

0 0 1


x(k), (98)

with

A(k) =



1 sin(Ω(k)∆t(k))
Ω(k) 0 −1−cos(Ω(k)∆t(k))

Ω(k)

0 cos(Ω(k)∆t(k)) 0 − sin(Ω(k)∆t(k))

0 1−cos(Ω(k)∆t(k))
Ω(k) 1 sin(Ω(k)∆t(k))

Ω(k)

0 sin(Ω(k)∆t(k)) 0 cos(Ω(k)∆t(k)),


(99)
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where w(k) is a seven-dimensional zero mean Gaussian random variable

w(k) ∼ N


0,G(k)



σ2
ax 0 0 0

0 σ2
ay 0 0

0 0 σ2
az 0

0 0 0 σ2
Ω


G(k)T


, (100)

with

G(k) =



∆t(k)2

2 0 0 0

∆t(k) 0 0 0

0 ∆t(k)2

2 0 0

0 ∆t(k) 0 0

0 0 ∆t(k)2

2 0

0 0 ∆t(k) 0

0 0 0 ∆t(k)



. (101)

The σax , σay , and σaz are design parameters, which have units of acceleration. The process

noise standard deviation for Ω, σΩ, is also a design parameter and has units of rad/s2.

Notice that the coordinated turn is expected to occur in the x-y plane.1

5.2.1.3 3D Nearly Coordinated Turn Model

The 3D Nearly Coordinated Turn (3DNCT) model uses a nine-dimensional state vector

with position, velocity, and acceleration elements [51, 40]. An additive discrete-time white

process noise model is assumed in the position and velocity components. The state equations

for the 3DNCT model can be written as

x(k + 1) = F(k)x(k) + w(k), (102)

1According to [35] even high performance fighters execute maneuvers that are NCT in the horizontal
plane and these can be decoupled from their vertical maneuvers.
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or, with the terms written out explicitly for sampling interval ∆t(k),

x(k) = [x(k) ẋ(k) ẍ(k) y(k) ẏ(k) ÿ(k) z(k) ż(k) z̈(k)]T , (103)

F(k) =


B(k) 0 0

0 B(k) 0

0 0 B(k)

 , (104)

with

B(k) =


1 sin(ω(k)∆t(k))

ω(k)
1−cos(ω(k)∆t(k))

ω(k)2

0 cos(ω(k)∆t(k)) sin(ω(k)∆t(k))
ω(k)

0 − sin(ω(k)∆t(k))
ω(k) cos(ω(k)∆t(k))

 , (105)

where ω(k) is the magnitude of the turn rate assumed to be given by

ω(k) =

√
ẍ(k)2 + ÿ(k)2 + z̈(k)2√
ẋ(k)2 + ẏ(k)2 + ż(k)2

. (106)

The process noise, w(k) is a nine-dimensional zero mean Gaussian random vector

w(k) ∼ N

0,G(k)


σ2
jx

0 0

0 σ2
jy

0

0 0 σ2
jz

G(k)T

 , (107)

with

G(k) =



∆t(k)3

6 0 0

∆t(k)2

2 0 0

∆t(k) 0 0

0 ∆t(k)3

6 0

0 ∆t(k)2

2 0

0 ∆t(k) 0

0 0 ∆t(k)3

6

0 0 ∆t(k)2

2

0 0 ∆t(k)



, (108)

where σjx , σjy , and σjz are design parameters, which have units of jerk, m/s3.
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5.2.1.4 Kinematic Constraint for Constant Speed Targets

During a coordinated turn, aircraft speed can be modeled as nearly constant, since the

acceleration vector is almost orthogonal to the velocity vector. As a result, a kinematic

constraint (KC) for constant speed maneuvers can be utilized as additional information to

reduce the estimation errors due to time-varying accelerations [51, 1]. If the tracking filter

has velocity and acceleration estimates, the KC can be incorporated as a pseudomeasure-

ment. The pseudomeasurement equation can be written as

vTa

||v||2
+ µ(k) = 0, (109)

where

v =

[
ˆ̇x ˆ̇y ˆ̇z

]T
and a =

[
ˆ̈x ˆ̈y ˆ̈z

]T
, (110)

and µ(k) ∼ N (0, r(k)) is a pseudomeasurement noise term to account for uncertainty in

both the velocity estimate and the KC. Since initial velocity estimates may be poor, the

variance for the pseudomeasurement noise term is chosen to have the form

r(k) = r1(δ)k + r0, (111)

where 0<δ<1, r1 is chosen large for initialization, and r0 is chosen for steady state condi-

tions. Given a state vector estimate of the form

x̂ =

[
x̂ ˆ̇x ˆ̈x ŷ ˆ̇y ˆ̈y ẑ ˆ̇z ˆ̈z

]T
, (112)

with an associated error covariance matrix, P, then the filtering equations employing the

KC are given by [51]

x̂c = [I− kcT ]x̂ and Pc = [I− kcT ]P, (113)

where

k = Pc[cTPc + r]−1, (114)

c =
1

||v||2

[
0 0 ˆ̇x 0 0 ˆ̇y 0 0 ˆ̇z

]T
. (115)
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IMM-CVCV

πij =

[
0.75 0.25
0.25 0.75

]
µj(0) =

[
0.9 0.1

]T
CV1 CV2

σx = 3 m/s2 σx = 30 m/s2

σy = 3 m/s2 σy = 30 m/s2

σz = 3 m/s2 σz = 30 m/s2

Table 6: Design parameters for IMM-CVCV.

5.2.2 Candidate IMM Filters

In this section, three candidate IMM filters are designed using the kinematic models de-

scribed in the previous section. For the IMM design parameters, recall from Section 2.2

that pij are the Markov transition probabilities from (29), and µ0 are the initial mode prob-

abilities. In some IMM filters, the unbiased mixing procedure described in [55] is needed.

The approach of [55] was extended from a two mode IMM to a three mode IMM, and the

description is provided in Appendix C.

5.2.2.1 IMM-CVCV

This section describes an IMM estimator that is used as a performance “baseline” since it

does not include a coordinated turn model. Unmodeled dynamics are instead included in

process noise. This IMM estimator includes two models: two CV models (actually NCV

but the N is dropped for the sake of shorter acronyms). The first CV model, CV1, has

small process noise and should accurately estimate the target state when the target is not

maneuvering. The second CV model, CV2, has large process noise and should accurately

estimate the target state at the onset/termination of maneuvers. Design parameters for

this IMM estimator are provided in Table 6.

5.2.2.2 IMM-CVCVHCT

The second IMM filter is similar to the IMM used in [49]. This IMM is designed with three

models: two CV models and an HCT model. The first CV model, CV1, will have small

process noise and should be able to accurately estimate the target state when the target is
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not maneuvering. The second CV model, CV2, has large process noise and should accurately

estimate the target state at the onset/termination of a horizontal turn and during a vertical

maneuver. The HCT model has low process noise and should accurately estimate the

target state during a horizontal turn. The HCT model assumes that coordinated turns are

performed in the horizontal plane relative to the target. Therefore, the state extrapolation

and update equations in (16) and (17) are performed in a local East-North-Up (ENU) frame

relative to the previous track state.

The state equations for the HCT model are nonlinear (see Section 5.2.1.2) because

elements in the state transition matrix include Ω. These nonlinearities are handled by

approximating the state equations via a first-order Taylor expansion, as discussed in Section

2.2.1. The Jacobian of the state equation is given by

F̃ =



1 sin(Ω(k)∆t(k))
Ω(k) 0 −1−cos(Ω(k)∆t(k))

Ω(k) 0 0 fΩ,1(k)

0 cos(Ω(k)∆t(k)) 0 − sin(Ω(k)∆t(k)) 0 0 fΩ,2(k)

0 1−cos(Ω(k)∆t(k))
Ω(k) 1 sin(Ω(k)∆t(k))

Ω(k) 0 0 fΩ,3(k)

0 sin(Ω(k)∆t(k)) 0 cos(Ω(k)∆t(k)) 0 0 fΩ,4(k)

0 0 0 0 1 ∆t(k) 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



, (116)

with

fΩ,1(k) =
cos(Ω(k)∆t(k))∆t(k)ẋ(k)

Ω(k)
− sin(Ω(k)∆t(k))ẋ(k)

Ω(k)2

− sin(Ω(k)∆t(k))∆t(k)ẏ(k)

Ω(k)
− (−1 + cos(Ω(k)∆t(k))) ẏ(k)

Ω(k)2
, (117)

fΩ,2(k) = − sin(Ω(k)∆t(k))∆t(k)ẋ(k)− cos(Ω(k)∆t(k))∆t(k)ẏ(k), (118)

fΩ,3(k) =
sin(Ω(k)∆t(k))∆t(k)ẋ(k)

Ω(k)
− (1− cos(Ω(k)∆t(k))) ẋ(k)

Ω(k)2

+
cos(Ω(k)∆t(k))∆t(k)ẏ(k)

Ω(k)
− sin(Ω(k)∆t(k))ẏ(k)

Ω(k)2
, (119)

fΩ,4(k) = cos(Ω(k)∆t(k))∆t(k)ẋ(k)− sin(Ω(k)∆t(k))∆t(k)ẏ(k). (120)

Since the HCT model includes an extra dimension for Ω, the unbiased mixing procedure

described in Appendix C will be used during the mixing stage. Notice that when Ω is close
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IMM-CVCVHCT

Π =

 0.92 0.05 0.03
0.10 0.70 0.20
0.15 0.03 0.82


µ0 =

[
0.8 0.1 0.1

]T
CV1 CV2 HCT

σax = 3 m/s2 σax = 40 m/s2 σax = 3 m/s2

σay = 3 m/s2 σay = 40 m/s2 σay = 3 m/s2

σaz = 3 m/s2 σaz = 40 m/s2 σaz = 3 m/s2

. . σΩ = 0.016 rads/s2

Table 7: Design parameters for IMM-CVCVHCT.

to zero, the limiting form of the state equations is

F̃|Ω=0 =



1 ∆t(k) 0 0 0 0 −1
2∆t2kẏk

0 1 0 0 0 0 −∆tkẏk

0 0 1 ∆tk 0 0 1
2∆t2kẋk

0 0 0 1 0 0 ∆tkẋk

0 0 0 0 1 ∆tk 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



, (121)

which should be used to prevent numerical issues. This will be used when the estimate of

Ω is less than Ωmin = 0.03 rad/s. Design parameters for this estimator are given in Table

7.

5.2.2.3 IMM-CVCV3DCT

The third IMM is similar to the estimator used in [51]. The IMM estimator includes three

models: two CV models and a 3DCT (the N is dropped for sake of shorter acronyms) model.

The first CV model, CV1, has small process noise and should accurately estimate the target

state when the target is not maneuvering. The second CV model, CV2, has high process

noise and should accurately estimate the target state when the target is at the onset and

termination of CT maneuvers. The 3DCT model is used to estimate the target state when

the target is performing a coordinated turn in any 3D “turn plane.”

The 3DCT model described in Section 5.2.1.3 assumes knowledge of the turn rate ω.
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IMM-CVCV3DCT

Π =

 0.92 0.05 0.03
0.10 0.70 0.20
0.15 0.03 0.82


µ0

[
0.8 0.1 0.1

]
CV1 CV2 3DCT

σax = 3 m/s2 σax = 30 m/s2 σjx = 8 m/s3

σay = 3 m/s2 σay = 30 m/s2 σjy = 8 m/s3

σaz = 3 m/s2 σaz = 30 m/s2 σjz = 8 m/s3

. . r0 = 500

. . r1 = 100
64∆t2k

. . δ = 0.9

. . ωmin = 0.03 rad/s

Table 8: Design parameters for IMM-CVCV3DCT.

Since this parameter is not known, it is computed using the state estimate x̂(k) [40, 51]

ω̂(k) =

√
ˆ̈x(k)2 + ˆ̈y(k)2 + ˆ̈z(k)2√
ˆ̇x(k)2 + ˆ̇y(k)2 + ˆ̇z(k)2

(122)

which is the magnitude of the acceleration divided by the speed. Since the 3DCT model

has extra states for accelerations, the unbiased mixing procedure described in Appendix

C is used during the mixing stage of this IMM estimator. The application of the KC as

described in Section 5.2.1.4 is applied after the mixing process and after the measurement

update.

The acceleration elements of the 3DCT state estimate are modified before and after the

mixing process to enforce a minimum turn rate, ωmin, as in [11]. The acceleration estimates

are constrained to be othogonal to the velocity estimates by removing the portion of the

acceleration parallel to velocity. The remaining acceleration is scaled to yield the minimum

turn rate. Design parameters for this estimator are given in Table 8.

5.2.3 Results

100 Monte Carlo trials the scenario were performed using the MIMO Radar Benchmark

[18]. The nominal tracking SNR, which is investigated in depth below, was set to 25 dB.

The metrics used in performance evaluation are Root Sum Square Mean (RSSM), Root

81



CVCV CVCVHCT CVCV3DCT

Pos. RSSM (m) 10.64 9.79 9.24

Pos. RSSV (m) 51.72 51.07 53.87

Vel. RSSM (m/s) 4.48 3.66 3.78

Vel. RSSV (m/s) 8.27 8.64 10.96

Pos. RMS (m) 54.74 53.86 56.04

Vel. RMS (m/s) 10.66 10.38 12.45

Table 9: Tracking Metrics using 100 Monte Carlo Trials averaged over the scenario.

Sum Square Variance (RSSV), and Root Mean Square (RMS). These metrics are defined as

RSSMk =

∑
i

(
1

N

∑
n

(xk,n(i)− yk(i))

)2
 1

2

. (123)

RSSVk =

[∑
i

(
1

N

∑
n

(xk,n(i)− yk(i))
2

−

(
1

N

∑
n

(xk,n(i)− yk(i))

)2
2

1
2

. (124)

RMSk =

[∑
i

(
1

N

∑
n

(xk,n(i)− yk(i))
2

)] 1
2

. (125)

where N is the number of Monte Carlo trials, k is a time index, n is a Monte Carlo trial

index, i is an index to a state vector dimension, x is the state estimate, and y is the truth

state.

To analyze the tracking algorithms, these metrics are averaged over certain time frames.

Position and velocity are scored separately using the metrics defined above. Table 9 shows

these metrics averaged over all time for all scenarios. This table displays mixed results,

without any tracking algorithm showing noticeable benefits. Table 10 shows the metrics

averaged over the times of horizontal maneuvers. For the case of horizontal turns, the IMM-

CVCVHCT appears to be the superior tracking algorithm, with the IMM-CVCV3DCT

performing better than the IMM-CVCV. Table 11 shows the metrics averaged over the

times of vertical maneuvers. For this case, the IMM-CVCV3DCT appears to be the superior

tracking algorithm, with the IMM-CVCVHCT providing the worst performance.

The results depicted in Tables 9 through 11 suggest that for highly maneuverable targets
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CVCV CVCVHCT CVCV3DCT

Pos. RSSM (m) 42.71 12.90 18.18

Pos. RSSV (m) 67.38 53.42 61.22

Vel. RSSM (m/s) 38.16 13.12 14.43

Vel. RSSV (m/s) 24.18 16.19 22.57

Pos. RMS (m) 83.86 55.52 65.84

Vel. RMS (m/s) 46.94 21.53 29.01

Table 10: Tracking Metrics during horizontal turns.

CVCV CVCVHCT CVCV3DCT

Pos. RSSM (m) 66.93 70.70 57.07

Pos. RSSV (m) 69.81 75.15 72.55

Vel. RSSM (m/s) 36.50 36.65 29.16

Vel. RSSV (m/s) 19.94 24.81 23.98

Pos. RMS (m) 100.46 106.18 96.54

Vel. RMS (m/s) 42.51 45.39 40.01

Table 11: Tracking Metrics during vertical maneuvers.

peforming a mixture of horizontal and vertical maneuvers, the IMM-CVCV3DCT estima-

tor may be the estimator of choice. However, for targets that only perform maneuvers

in the horizontal plane, the IMM-CVCVHCT is the superior estimator. This is not en-

tirely surprising, since the HCT model assumes that targets perform coordinated turns in

the horizontal plane. To examine the behavior of the estimators more closely, Figure 38

shows the mode probabilities and turn rate estimates for the IMM-CVCVHCT and IMM-

CVCV3DCT during the vertical maneuver. As shown, the IMM-CVCVHCT has mode

probability spread somewhat evenly throughout the vertical maneuver. The models have

excessive “comptetition” since none of the models can accurately predict the target motion.

In general, this is considered undesirable behavior, as discussed in [31], since no kinematic

model can appropriately “explain” the kinematics for an exended period of time. How-

ever, since the IMM-CVCV3DCT is not constrained to turns in the horizontal plane, the

IMM-CVCV3DCT reports a coordinated turn for a portion of the vertical maneuver, which

may explain the performance enhancement during vertical maneuvers. Since the IMM-

CVCV3DCT has the ability to distinguish vertical maneuvers effectively, it is considered

the superior estimator for the following work in this chapter.

In the following sections, the assumed constant revisit rate is relaxed to an adaptive
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Figure 38: Estimator results during vertical maneuver.

revisit rate. Thus, as discussed in Section 2.2.1, a CWN process noise model should be

used. For the NCV kinematic model, the process noise given by (94) is replaced by

w(k) ∼ N

0,


qaxG(k) 0 0

0 qayG(k) 0

0 0 qazG(k)


 , (126)

where

G(k) =

 ∆t(k)3

3
∆t(k)2

2

∆t(k)2

2 ∆t(k)

 , (127)

where qax , qay , and qaz are design parameters. For the 3DCT kinematic model, the process

noise given by (107) is replaced by

w(k) ∼ N

0,


qjxG(k) 0 0

0 qjyG(k) 0

0 0 qjzG(k)


 (128)

84



where G(k) is a 3x3 matrix whose individual elements are given by,

G(k)1,1 =
6ω(k)∆t(k)− 8 sinω(k)∆t(k) + sin 2ω(k)∆t

4ω(k)5

G(k)1,2 =
2 sin4(ω(k)∆t(k)/2)

ω(k)4

G(k)1,3 =
−2ω(k)∆t(k) + 4 sinω(k)∆t(k)− sin 2ω(k)∆t(k)

4ω(k)3

G(k)2,1 =
2 sin4(ω(k)∆t(k)/2)

ω(k)4

G(k)2,2 =
wω(k)∆t(k)− sin 2ω(k)∆t(k)

4ω(k)3

G(k)2,3 =
sin2 ω(k)∆t(k)

2ω(k)2

G(k)3,1 =
−2ω(k)∆t(k) + 4 sinω(k)∆t(k)− sin 2ω(k)∆t(k)

4ω(k)3

G(k)3,2 =
sin2 ω(k)∆t(k)

2ω(k)2

G(k)3,3 =
2ω(k)∆t(k) + sin 2ω(k)∆t(k)

4ω(k)
. (129)

The qjx , qjy , and qjz are design parameters. To our knowledge, this is the first appearance

of a CWN process noise model for the 3DCT kinematic model being used in a tracking

algorithm.

To account for an adaptive revisit rate, Markov transition probabilities used in the

mixing and mode probability update equations of the IMM estimator are based on two

nominal sets of Markov transition probabilties. One set is designed for a revisit period of

0 seconds, which is simply the identity matrix, and the second set is designed for a revisit

period of 5 seconds. For a specified revisit time, the Markov transition probabilities are an

elementwise linear interpolation of the two matrices based on the revisit time. If a revisit

period is greater than 5 seconds, then the Markov transition probabilities for a 5 second

period is used. New design parameters for the IMM-CVCV3DCT are provided in Table 12.

5.3 Selection of Nominal Tracking SNR

In the previous section, the IMM-CVCV3DCT was shown to be the superior estimator for

tracking a highly maneuvering target, using a nominal tracking SNR level of 25 dB. In

85



Table 12: Design parameters for IMM-CVCV3DCT using CWN.

IMM-CVCV3DCT

pij,0 =

 1 0 0
0 1 0
0 0 1

 pij,5 =

 0.92 0.05 0.03
0.10 0.70 0.20
0.15 0.03 0.82


µj(0) =

[
0.1 0.8 0.1

]
CV1 CV2 3DCT

qax = 9 m2/s3 qax = 2500 m2/s3 qjx = 64 m2/s3

qay = 9 m2/s3 qay = 2500 m2/s3 qjy = 64 m2/s3

qaz = 9 m2/s3 qaz = 2500 m2/s3 qjz = 64 m2/s3

. . ρ0 = 500

. . ρ1 = 100
64∆t2k

. . δ = 0.9

. . ωmin = 0.03 rad/s

this section, impacts of the nominal tracking SNR on expended radar time and energy is

further studied. To illustrate how accurate track predictions positively impact radar energy

management, radar time and energy expended using a simple Kalman estimator equivalent

to CV2 in the IMM-CVCV3DCT is compared with the IMM-CVCV3DCT.

5.3.1 Revisit Time Calculations

Upon the selection of the IMM-CVCV3DCT as the superior estimator for tracking ma-

neuvering air targets, investigation into radar energy management can proceed, beginning

with a proposed methodology for computing track revisit rates. Revisit time calculations

are based on the extrapolated covariance of the track state and a specified fraction, f , of

the main beam size. Let C(ti) be the major axis of an extrapolated positional covariance

projected to the 2D plane parallel to the array face at time ti, and let V represent the 3

dB beamwidth of the main beam in Cartesian coordinates at the extrapolated track state.

The size of V depends only upon the range of the extrapolated track state. In Cartesian

coordinates, a longer range corresponds to a larger cross-range size of the main beam. Since

C(ti) increases with time, a revisit is scheduled when

C(tr) = fV, (130)

where tr is the scheduled revisit time. Extrapolation of the IMM track state, x̂ti , and

covariance, Pti , consists of standard state extrapolation of each individual mode, followed
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by a linear combination of the positional elements of each mode based on extrapolated mode

probabilities from the last revisit time, denoted as t0:

µti|t0 = Πti−t0µt0 , (131)

x̂ti = x̂1
tiµti|t0(1) + x̂2

tiµti|t0(2) + x̂2
tiµti|t0(3), (132)

Pti =
(
P1
ti + P̃1

)
µti|t0(1)

+
(
P2
ti + P̃2

)
µti|t0(2)

+
(
P3
ti + P̃3

)
µti|t0(3), (133)

where

P̃1 = (x̂ti − x̂1
ti)(x̂ti − x̂1

ti)
T , (134)

P̃2 = (x̂ti − x̂2
ti)(x̂ti − x̂2

ti)
T , (135)

P̃3 = (x̂ti − x̂3
ti)(x̂ti − x̂3

ti)
T , (136)

and superscripts indicate mode. The use of extrapolated mode probabilities is not described

in the literature, but they should be used if variable Markov transition probabilities are used.

Since C(tr) is very difficult to express in closed form for the IMM estimator, an array of

candidate times are evaluated and the longest revisit period satisfying C(tr) ≤ fV is chosen.

In the proposed scheduler, candidate times range from 0.1 to 10 seconds in increments of 0.1

seconds. The location of the scheduled beam is at the extrapolated target state estimate

x̂tr . For a simple Kalman CV estimator, extrapolated track states and covariances are

straightforwardly given by (16) and (17).

Since highly agile targets can maneuver at any moment, a maximum allowed revisit time

is needed to prevent a maneuver that is outside of the predicted beam point. Recalling that

V represents the size of the main beam in Cartesian coordinates, and assuming a target

can accelerate with am in any given direction, the maximum allowed revisit calculation is

given by

tm =

√
V

am
, (137)

Since V increases with increasing range, tm also increases with range.
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5.3.2 Pulsewidth Scheduling

Once a track revisit time calculation is complete, a waveform pulsewidth must be selected.

For each track, a history of N previous observed SNR levels with corresponding pulsewidth

lengths are stored in memory. Then, the median of these SNR levels is found with its

corresponding pulsewidth size. By calculating the number of 3 dB steps needed in order

to achieve the nominal tracking SNR from the median observed SNR, and recalling from

Section 5.1 that pulsewidths are arranged in 3 dB steps, the next pulsewidth can be easily

found. Note that the nominal tracking SNR is the key parameter we wish to optimize, as

it directly effects the total radar time and energy expended for sufficient tracking. Since

practical targets fluctuate in RCS, the median filter provides robustness against outliers.

For the tracker, the history window is chosen to be N = 5.

5.3.3 Missed Detections and Track Loss

Since practical target RCS values can fluctuate drastically with aspect angle and transmitted

frequency, missed detections are almost certain to occur and must be handled. For each track

in memory, the tracker stores a history of consecutive missed detections. Upon a missed

detection, the revisit time calculations from Section 5.3.1 are overwritten by a predefined

set of possible revisit times, given by

∆trm = [0.1 0.1 0.2 0.2 0.5 1 1 1 1], (138)

where the ith element corresponds to an ith consecutive missed detection. For each missed

detection, an observed SNR of 3 dB below the detection threshold is inserted into the

observed SNR window described in the previous section. Therefore, with a window size of

N = 5, an increase in waveform strength is certain upon 3 consecutive missed detections.

If a detection is received on a track dwell, the missed detection counter will be reset and

standard revisit calculations from Section 5.3.1 will proceed. However, if the number of

consecutive missed detections reaches 10, the track is removed from memory. If a track is

dropped, the target may be re-acquired during the search fence that is scheduled to occur

every 10 seconds in the MIMO Benchmark.
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Figure 39: Results from 100 Monte Carlo Trials for each nominal tracking SNR with an
IMM estimator and Kalman filter. Circles indicate Kalman filter results, while solid dots
denote results for IMM Estimator. Numbers on the symbols of the top chart indicate total
number of tracks lost at each SNR level. Numbers on symbols of the bottom chart indicate
the nominal SNR level set for tracking.

5.4 Results

Several nominal tracking SNR levels were evaluated using Monte Carlo simulations in the

MIMO Benchmark with four metrics: total energy, total radar time, radar load, and track

loss. Total radar energy is the total energy of all scheduled track waveforms (i.e., transmit

power times pulsewidth) divided by the number of Monte Carlo trials. Radar time for a

single radar dwell is the round-trip travel time to the maximum range of the range window

plus a nominal signal processing time of 1 ms. Total radar time is the total time of all

scheduled track dwells divided by the number of Monte Carlo trials. Track loss corresponds
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to the number of dropped tracks, as described in Section 5.3.3, divided by the total number

of tracks initiated during a Monte Carlo simulation. The radar load metric from [48] is

calculated as total radar energy times total radar time.

Results are shown in Figure 39. From the radar load metric, the Kalman filter is

optimized when the observed SNR is in the range of 16 db to 20 dB, which somewhat

agrees with the optimal result of 16 dB reported in [48]. The results appear to suggest an

optimal level of 18 dB for the Kalman estimator. Furthermore, an optimal nominal tracking

SNR for an IMM estimator is quite close to the optimal level for a Kalman estimator. The

radar load metric appears to suggest an optimal tracking SNR level of 17 dB for the IMM

estimator, just a single decibel lower than the Kalman estimator. Also, track loss does not

appear to be a concern for most of the tracking SNR levels. The IMM estimator operating

at 13 dB tends to have issues with missed detections, which increased the number of lost

tracks. The track loss of 5 for the Kalman estimator at 17 dB appears to be a statistical

outlier. Finally, using the radar load metric, the IMM estimator more than doubles the

efficiency of a radar for tracking maneuvering targets regardless of the choice of tracking

SNR, verifying the results of the first and second Benchmark problems.

The bottom chart of Figure 39 includes a graph of radar time versus radar energy for

all tracking SNR levels. This graph is referred to as the radar management operating curve

(RMOC); it portrays the fundamental tradeoff between radar time and energy for the radar

tracking system. In general, a desirable RMOC will be “pushed” as far down and to the

left as possible, which for a given radar system can be achieved with better tracking and

scheduling. Recall that the authors in [48] claim that the radar load metric maximizes the

total number of maintainable tracks. However, this is not necessarily true. In practice,

radars are generally limited by duty (transmitted energy per second) or occupancy (radar

time), which are sensor and situation specific. The y-axis of the RMOC can be scaled to

a percent duty per target and the x-axis to a percent occupancy per target, from which a

maximum number of maintained tracks can be established for a given radar.

As shown in the RMOC, tracking SNR levels below 16 dB for the IMM estimator tend

to waste total radar time while receiving little reduction in radar energy, and a tracking
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SNR level above 22 dB tends to waste radar energy with little reduction in radar time.

Using this chart, “valid” nominal tracking SNR levels in practice should be around 16-22

dB. Tracking SNR levels above 22 dB with an IMM estimator tend to be limited by the

maximum maneuver of the target, thus limiting the possible reduction in total radar time.

To illustrate this concept, average revisit periods for several tracking SNR levels during the

second maneuver are provided in Figure 40. For tracking SNRs of 12 and 19 dB, the revisit

Figure 40: Revisit calculations for the IMM estimator.

periods decrease during the second coordinated turn and increase after the termination

of the maneuver. However, revisit periods with a nominal tracking SNR level of 25 dB

appears flat after the maneuver, since the CV1 mode dominates and the revisit calculations

are limited on nearly all Monte Carlo trials by the assumed maximum maneuver of the

target.2 Thus, from an energy management perspective, a maximum assumed maneuver

sets an upper limit on the desirable tracking SNR level.

Thus far, a Pfa of 10−5 has been used for all of the results. This is a critical design

parameter in a radar tracking system; it can impact the RMOC with higher detection

probabilities at lower SNR levels through a lower detection threshold. However, a lower

detection threshold induces the cost of more false alarms, which consume resources in and

of themselves. If not associated to an existing track, false alarms receive confirmation dwells

(or deconfirmation, depending upon perspective), further providing a tradeoff in energy

management. Monte Carlo simulations were conducted for the IMM tracker at all the SNR

2Without the maximum maneuver criterion, track loss occurred regularly during the 6g vertical maneuver.
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levels in Figure 39 with Pfa = 10−4. The results for track loss as a function of tracking

SNR and Pfa are provided in Table 13. The misassociation of false alarms to the track state

Table 13: Lost tracks versus nominal tracking SNR and Pfa

SNR (dB)

Pfa 12 14 16 19 22 25

10−5 6 2 1 3 0 2
10−4 23 14 11 3 6 4

result in the higher rates of track loss, especially at lower tracking SNR levels. For revisit

periods in the range of 5 seconds, the IMM estimator sees false alarms as “maneuvers” when

the true target is not detected. These tracks diverge from the truth and are eventually lost.

Therefore, to facilitate the use of lower detection thresholds for the tracking of maneuvering

targets, more sophisticated data association or scheduling algorithms must be used.

5.5 Concluding Remarks

Using the GTRI/ONR MIMO Benchmark, the problem of tracking maneuvering targets

with an agile beam radar was revisited. Using implementations of reasonable tracking and

scheduling algorithms, some portions of previous literature were verified, in that the IMM

doubles the efficiency of an agile beam radar for tracking maneuverable targets as compared

to simple Kalman estimators. The IMM estimator can double the efficiency of an agile beam

radar for the tracking of maneuvering targets, and desirable levels for nominal tracking SNR

are in the range of 15 - 22 dB. We showed that desirable tracking SNR levels for a Kalman

estimator and an IMM estimator are nearly the same. Finally, we introduced the radar

management operating curve (RMOC) and its relevance to the design of radar tracking

algorithms was justified by illustrating the fundamental tradeoff between radar time and

energy in the selection of a radar waveform and overall nominal tracking SNR levels. Future

research will include more sophisticated data association algorithms so that the effects of a

lower detection threshold on the RMOC can be characterized. Also, further investigation

into the RMOC for other radar systems and target types is needed.
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

This dissertation advanced several aspects of radar detection, monopulse processing, and

radar target tracking. Here, an overview of the contributions and interesting observations

contained in this dissertation is provided, along with suggestions for future avenues of

research. Detailed descriptions of the contributions can be found at the end of Chapters 3,

4, and 5.

Conventional monopulse processing treats radar signal samples individually. However, in

practice, typical sampling rates result in multiple adjacent radar signal samples containing

target energy, resulting in correlated samples. Since conventional monopulse processing

ignores this correlation it is suboptimal. In this disseration, the radar sampling process was

treated in a systematic way, resulting in a joint-bin approach to radar signal processing.

The ALLRT detector was derived in Appendix A and shown to be a weighted sum

of observed SNRs and observed correlation between radar signal samples. The ALLRT

coefficients depend upon the functional form of the transmitted waveform, and are straight-

forward to compute. For the triangle matched filter response, the coefficients are equal

(i.e., SNR and correlation weighted equally), whereas for a sinc matched filter response, the

correlation is weighted slightly more than observed SNR. This dissertation represents the

first appearance of the ALLRT formalism in detection theory; an in depth study from a the-

oretical perspective is needed. In Chapter 3, flaws in traditional radar detectors were illus-

trated in terms of detection performance losses, particularly for a high number of pulses, and

ALLRT was shown to overcome these shortcomings. Furthermore, the proposed ALLRT

detector was shown to be a viable alternative to using traditional radar detectors with

oversampled matched filter outputs, while adding little computational complexity. While

oversampling of radar signals is a reasonable approach to overcome these losses, oversam-

pling may not be cost effective or even possible with the advent of high-bandwidth radar
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signals.

A new joint-bin approach to monopulse parameter estimation was derived in Appendix

B. Using an ML approach, estimators for target range, target strength, and target DOA

were provided. A simple expression for target range estimation was given, and shown

to depend upon the matched filter response of the transmitted waveform. Assuming a

triangular matched filter reponse results in a closed-form expression for target range, as

provided in Appendix B. Finding closed-form expressions for target range using more

complicated waveforms is left for future work. Given a target range estimate, the target

strength estimate is a closed-form expression. Given estimates for target range and target

strength, DOA estimation is equivalent to solving a third-order polynomial. Derivations of

closed-form CRLBs were also provided in Appendix B.

In Chapter 4, bin straddling was shown to result in a direct loss of target SNR in terms

of DOA estimation, and the loss depends upon the transmitted waveform. Also, in Chapter

4, the joint-bin approaches were shown to outperform existing techniques that ignore the

correlation between radar signal samples, particularly for the case of low SNR, off-boresight

targets. In practical surveillance radar systems, the use of target localization estimates in

the tracking requires corresponding error variance reports. In Chapter 4, the GCRLB, which

is the CRLB evaluated at parameter estimates, is proposed as an error variance report.

This dissertation represents the first appearance of the GCRLB formalism in estimation

theory; an in-depth study from a theoretical perspective may provide valuable insights in

terms of error variance reporting. Using the ANEES metric, the statistical efficiency and

variance consistency of the parameter estimates and associated error variance estimates

were analyzed. For off-boresight targets with worst case bin straddling, around 20 dB of

total target SNR was shown as a requirement for variance consistency. This total SNR

requirement decreases as targets move closer to boresight or if target energy is contained in

a single sample.

A second portion of this dissertation re-examined the radar tracking of highly maneuver-

ing targets, with a focus on radar resource management. In Chapter 5, an IMM filter that

incorporates a 3D turn model was shown to outperform an IMM filter that incorporates a
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horizontal turn model. As part of this study, the unbiased mixing procedure seen in recent

literature was extended from two modes to three as outlined in Appendix C. Using the

IMM filter that incorporates a 3D turn model, an optimal tracking SNR level of 17 dB was

found. Also in Chapter 5, we proposed the radar management operating curve (RMOC),

which illustrates the fundamental tradeoff between radar time and energy. For a specific

radar in a specific operational scenario, the radar management operating curve can be used

to select an operating SNR level that will maximize the total number of targets tracked.

Several avenues of research are left for future work:

• Implementation of the proposed detection and estimation techniques of Chapters 3 and

4 into high fidelity radar simulation software is left for future work. A practical issue

that needs treatment is the adjacent detection issue, outlined as follows. Although

the ALLRT detector described in Chapter 3 alleviates detection losses that result

from bin straddling, a high SNR target may result in adjacent ALLRT detections.

Thus, a decision must be made as to whether single or multple objects exist in those

detections. Furthermore, the impacts of the processing in Chapters 3 and 4 on the

RMOC curve needs investigation. Given that observed monopulse ratios are very good

for near-boresight targets, the proposed estimation techniques described in Chapter 4

are most useful for tracking groups of resolvable objects separated in a DOA magnitude

of η ≥1.

• The detection and estimation techniques described herein rely on knowledge of the

matched filter response of the transmitted radar waveform. Future work includes

investigating waveform design considerations using the joint-bin approaches proposed

in this work.

• Although only briefly discussed in Section 2.1, radar tracking of unresolved objects

is an important, and still open, research topic. Since our fundamental addition to

conventional monopulse processing is the use of observed correlations between radar

signal samples, perhaps the observed correlation could be useful in the detection of the

presence of unresolved objects. Many authors that treat the monopulse detection of
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unresolved targets ignore the observed correlation between samples. Furthermore, the

effects of unresolved objects on the range and DOA estimators provided in Chapter 4

need exploration. In particular, the signal levels at which unresolved objects corrupt

the joint-bin DOA estimate need investigation.

• In Chapter 4, properties of the target amplitude estimator, β̂2, and its GCRLB vari-

ance report were not studied in depth. Future work includes a study of this estimator

in terms of statistical efficiency and consistency. The statistical variance of target

amplitudes is often used in target recognition algorithms. In particular, some types

of targets may appear as pure Rayleigh targets and some as fixed amplitude targets.

Using the signal models provided in this dissertation, studying the impacts of the bin

straddling phenomenon on target recognition algorithms may be a promising avenue

of research.

• The effects of other relevant radar tracking parameters should be studied in terms

of their effect on the RMOC. One example is the probability of a false alarm. By

lowering the detection threshold, a higher probability of detection comes at the cost

of more false alarms. With the use of sophisticated data association track filters and

candidate false alarm probabilities, perhaps the radar time and energy required for

tracking can be minimized. Furthermore, the impacts of false alarm probability should

be studied in terms of an optimal operating SNR.
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APPENDIX A

ALLRT DETECTOR

In this section, we derive the average loglikelihood ratio test (ALLRT). Assuming a sam-

ple rate equivalent to the Rayleigh resolution of the transmitted waveform, the lth i.i.d.

observation vector includes two adjacent matched filter samples in the region under test

sl =

 sl(0)

sl(1)

 . (139)

Probability density functions for the hypothesis of a target present, denoted as H1, and a

target not present, denoted as H0, can be expressed as

H1 : sl ∼ N (0,K1) , (140)

H0 : sl ∼ N (0,K0) , (141)

where N (a,C) denotes the multivariate normal distribution with mean a and covariance

C, and

K1 =

 β2q(c)2 + σ2 β2q(c)q(c− 1)

β2q(c)q(c− 1) β2q(c− 1)2 + σ2

 , (142)

K0 =

 σ2 0

0 σ2

 . (143)

The q(c) is the time-normalized matched filter response from (43), and c ∈ [0, 1] is related

to the location of the target in the region under test from (44). Denoting 2N as the total

number of i.i.d. observations, the loglikelihood ratio test (LLRT) can be expressed as

1

2N

2N∑
l=1

sTl
(
K−1

0 −K−1
1

)
sl

H1

≷
H0

2 ln

(
|2πK1|
|2πK0|

)
. (144)

Analytic evaluation of the matrix inverse and algebraic simplifications give

K−1
0 −K−1

1 =
β2

σ2(β2q(c)2 − β2q(1− c)2 + σ2)

 q(c)2 q(c)q(1− c)

q(c)q(1− c) q(1− c)2

 . (145)
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The LLRT can now be expressed as

1

2Mσ2

2N∑
l=1

sTl

 q(c)2 q(c)q(1− c)

q(c)q(1− c) q(1− c)2

 sl
H1

≷
H0

2σ2(β2q(c)2 − β2q(1− c)2 + σ2)

β2
ln

(
|2πK1|
|2πK0|

)
. (146)

For simplicity, denoting the right side of (146) as γ
(
q(c), σ2, β2

)
gives

1

2Nσ2

2N∑
l=1

sTl

 q(c)2 q(c)q(1− c)

q(c)q(1− c) q(1− c)2

 sl
H1

≷
H0

γ
(
q(c), σ2, β2

)
. (147)

A few observations about the LLRT are worth discussion. First, the test statistic involves

the functional form of the matched filter response at matched filter samples. This po-

tentially opens a new avenue for radar waveform design from the perspective of detection

performance. Second, rewriting the left side of (147) into an alternate form

1

2Nσ2

2N∑
l=1

sTl

 q(c)2 q(c)q(1− c)

q(c)q(1− c) q(1− c)2

 sl =
1

2Nσ2

2N∑
l=1

(q(c)sl(0) + q(1− c)sl(1))2 ,

(148)

leads to an interesting observation: the LLRT can be seen as a weighted coherent sum across

adjacent samples, and noncoherent sum across i.i.d. observations (i.e., pulses).

In this work, the parameters c and β2 are treated as unknowns. A reasonable approach

for this issue is to assume a distribution over the unknown parameters and calculate the

expected value of the LRT. This has been called the average likelihood ratio test (ALRT)

in the literature [42]. Unfortunately, the ALRT for the detection situation described in

this section results in an intractable integral involving β2 and c. Since the test statistic for

the LLRT does not involve β2, the average loglikelihood ratio test (ALLRT) is proposed,

resulting in a simple closed-form expression. To our knowledge, this is the first appearance of

the ALLRT formalism in detection theory. Although the ALLRT does not have any specific

optimality properties, it has been shown to perform reasonably well. A comparative study

of the ALLRT and ALRT detectors is left for future study.
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A uniform distribution on the interval of zero to one for the unknown parameter c gives

the ALLRT as ∫ 1

0

1

2Nσ2

2N∑
l=1

sTl

 q(c)2 q(c)q(1− c)

q(c)q(1− c) q(1− c)2

 sldc

H1

≷
H0

∫ 1

0
γ
(
q(c), σ2, β2

)
dc = γ′

(
σ2, β2

)
,

1

2Nσ2

2N∑
l=1

sTl

∫ 1

0

 q(c)2 q(c)q(1− c)

q(c)q(1− c) q(1− c)2

 dc
 sl

H1

≷
H0

γ′
(
σ2, β2

)
. (149)

Under the Rayleigh sampling assumption,
∫ 1

0 q(c)
2dc =

∫ 1
0 q(1 − c)

2dc. Defining ALLRT

coefficients as

a1 =

∫ 1

0
q(c)2dc, (150)

a2 = 2

∫ 1

0
q(c)q(1− c)dc, (151)

the ALLRT can be expressed as

1

2Nσ2

2N∑
l=1

sTl

 a1 a2/2

a2/2 a1

 sl
H1

≷
H0

γ′,

1

2Nσ2

2N∑
l=1

(a1sl(0)2 + a1sl(1)2 + a2sl(0)sl(1))
H1

≷
H0

γ′. (152)

Under the hypothesis of no target present, the pdf of the ALLRT test statistic is called a

distribution of quadratic forms [27]. For a rectangular waveform, the matched filter response

is a triangle function as defined in (47), resulting in easy computation of ALLRT coefficients:

a1 = 1/3 and a2 = 1/3. Assuming a sinc function matched filter response, defined as

qS(c) =
sin(πc)

πc
, (153)

results in a1 ≈ .4514 and a2 ≈ 0.494. Note that an ALLRT approach could be taken

for sample rates above the Rayleigh resolution. However, correlated noise that arises due

to oversampling will make such a derivation more challenging than assuming a sample

rate equal to the Rayleigh resolution. Derivation of the ALLRT detector for oversampled

matched filter outputs is left for future study.
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APPENDIX B

DERIVATION OF β2, C, AND η ESTIMATORS

In this section, estimators for the unknown β2, c, and η are derived along with their corre-

sponding CRLBs. These derivations focus on finding simple expressions for these estimators,

even if approximations to a full ML solution must be made. In many steps of the derivation,

symbolic mathematical software was used to simplify overly complex algebraic expressions.

The solutions to certain algebraic equations, along with their underlying assumptions, are

provided. First, a few relevant expressions from the structured covariance estimation liter-

tature that are used in the derivation are reviewed. Then, ML estimates of β2 and c are

derived using only samples of the sum channel. Those estimates are further used in a

generalized maximum likelihood (GML) solution for estimation of η.

B.1 Basic Relationships of Structured Covariance Estimation

Following the assumptions described in Section 3.1, the observation vector is distributed as

the zero-mean multivariate Gaussian distribution

f (s1, ..., s2N |Θ) =

1

|2πK (Θ)|N
exp

(
−
∑2N

l=1 sTl (K (Θ))−1sl
2

)
, (154)

where N is the total number of pulses and Θ is the unknown parameter set that resides in

the covariance matrix. Given a set of measured data, the likelihood function of an estimate

Θ̂ is defined as

L
(

Θ̂|s1, ..., s2N

)
= f

(
s1, ..., s2N |Θ̂

)
, (155)

and the ML estimator maximizes this function. As shown in [16], finding the ML estimator

for Θ is equivalent to jointly solving

tr

(
(K−1K̄K−1 −K−1)

∂K

∂Θi

)
= 0, (156)
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for each of the unknown parameters in Θ, denoted as Θi, where K̄ is the sample covariance

of the measured data, computed as

K̄ =
1

2N

2N∑
l=1

sls
T
l

=



k11 k12 k13 k14

k12 k22 k23 k24

k13 k23 k33 k34

k14 k24 k34 k44


. (157)

Furthermore, from [38] the individual elements of the Fisher information matrix for the

estimator Θ̂ can be expressed as

Jm,n = Ntr

(
∂K

∂Θm
K−1 ∂K

∂Θn
K−1

)
, (158)

and the CRLB matrix is defined as the inverse the the Fisher information matrix. Diagonal

elements of the CRLB matrix correspond to the CRLB for each individual parameter.

B.2 β2 and c Estimation

Estimators for β2 and c are found using samples of the sum channel. The distribution for

sum channel samples is given by (154) with

Ks =

 β2r2
1 + σ2

s β2r1r2

β2r1r2 β2r2
2 + σ2

s

 , (159)

where r1 and r2 are samples of the main lobe of the matched filter response from (61)-(62).

Note that r1 and r2 are functions of the unknown c. Finding MLEs for β2 and c is equivalent

to jointly solving (156) for Θ1 = β2 and Θ2 = c. The matrix inverse and variations of K
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with respect to β2 and c can be expressed as

K−1
s =

1

(β2r2
1 + σ2

s)(β
2r2

2 + σ2
s)− β4r2

1r
2
2

×

·

 β2r2
2 + σ2 −β2r1r2

−β2r1r2 β2r2
1 + σ2

 , (160)

∂Ks

∂β2
=

 r2
1 r1r2

r1r2 r2
2

 , (161)

∂Ks

∂c
= β2

 2r1
∂r1
∂c r1

∂r2
∂c + r2

∂r1
∂c

r1
∂r2
∂c + r2

∂r1
∂c 2r2

∂r2
∂c

 . (162)

Evaluation of (156) for Θi = β2 gives a linear equation in terms of β̂2 which can be solved

as

β̂2 =
k11r̂

2
1 + k22r̂

2
2 − (r̂2

1 + r̂2
2)σ2

s + 2k12r̂1r̂2

(r̂2
1 + r̂2

2)2
, (163)

where k11, k12, and k22 correspond to elements of the sample covariance and

r̂1 = r1(ĉ), (164)

r̂2 = r2(ĉ), (165)

correspond to the two samples of the matched filter response of the transmitted waveform

evaluated at the estimated ĉ. Substituting (163) into (162) and (160), and further evaluating

(156) for ĉ gives the following expression:

0 =
(
k12r̂

2
2 − k12r̂

2
1 + k11r̂1r̂2 − k22r̂1r̂2

)
×(

k11r̂
2
1 + k22r̂

2
2 − r̂2

1σ
2
s − r̂2

2σ
2
s + 2k12r̂1r̂2

)
, (166)

which interestingly does not include the partial derivatives ∂r1
∂c and ∂r2

∂c .1 Assuming the

sample covariance approaches Ks and ĉ approaches c in the limit, evaluation of the limiting

form of (166) gives 0 = (0)
(
β2(r2

1 + r2
2)2
)
. Thus, the second term is not considered useful

1Actually, evaluation of (156) does result in a function of the partials. However, they completely factor
out into an expression that does not include the sample covariance, and can thus be eliminated since we
desire the solution of (156) equal to zero.
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in finding a MLE for ĉ since its limiting form does not approach zero. Rewriting the first

term of (166) as

k11 − k22

k12
=
r̂2

1 − r̂2
2

r̂1r̂2
, (167)

gives an interesting expression for the MLE of c, in which the left side is a quantity involving

only measured data and the right side is a quantity that involves the matched filter response

of the transmitted waveform as a function of ĉ. Depending upon the functional form of the

matched filter response, (167) may or may not be easy to solve in closed form. Regardless,

assuming c ∈ [0, 1], simple search strategies can be devised with (167) using a known

functional form of the matched filter response.2 Once a ĉ is found, it can be further used

in (163) to compute β̂2 if desired.

Substituting (160)-(162) in (158) and computing the matrix inverse gives the CRLB for

c as

CRLBĉ =
(r2

1 + r2
2) + 1

Rr

2Rt

(
r1
∂r2
∂c − r2

∂r1
∂c

)2 , (168)

with Rr as in (12) and Rt as in (13). This lower bound on the variance of unbiased estimates

of ĉ suggests better estimates arise from a higher SNR and a larger number of independent

observations. In terms of the target location in range, estimation performance depends upon

the selection of the transmitted waveform. One can show that for a triangular matched filter

response, the CRB is minimized when a target is centered between matched filter samples.

A simple matched filter output is the triangle function.3 Under this assumption, the

matched filter samples correspond to

r1 = (1− c), (169)

r2 = c, (170)

which reduces (167) to

(k11 − k22)ĉ2 + (k22 − k11 − 2k12)ĉ+ k12 = 0, (171)

2The limiting form of k12 is a number greater than or equal to zero; however, for a finite number of
observations, no guarantees can be made. A negative k12 can result in erroneous results, thus ad-hoc
approaches must be taken in practice to handle this case.

3This assumption can be found extensively in the literature. For examples, see [45], [56], [15], [17].
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which has two solutions

ĉ =
k11 − k22 + 2k12 ±

√
(k11 − k22)2 + 4k2

12

2(k11 − k22)
. (172)

Assuming K̄s equals Ks in the limit, the limiting form can be written as

ĉN→∞ =

(
c,
c− 1

2c− 1

)
, (173)

where the first solution corresponds to the (−) sign and the second solution corresponds to

the (+) sign in (172). An additional assumption imposed in (173) is β2 > 0, since
√

(β2)2

is involved in the computation. The second solution can be eliminated, thus ĉ is given as

(172) using the (-) sign.4 By rationalizing the numerator, an alternative form of (172) can

be found for the numerically unstable case of k11 ≈ k22.

B.3 η Estimation

An estimator for η is found using samples of both the sum and difference channel. For

the full distribution, K−1 is quite difficult to compute and simplify algebraically with the

standard matrix inverse equations for a four-by-four matrix. However, if K is expressed as

the sum of two matrices, a convenient theorem may be used. Defining

R =

 r2
1 r1r2

r1r2 r2
2

 , (174)

K can be expressed as the sum of two matrices

K = B + A, (175)

where

B = β2

 R ηR

ηR η2R

 , (176)

A =

 σ2
sI 0

0 σ2
dI

 . (177)

4If β2 is assumed less than zero, then the two solutions would switch. Therefore, the solution with the
(+) sign in (172) corresponds to β̂2 < 0, which is outside of our desired solution domain.
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Notice that the second column of B is equal to the first column multiplied by η, and the

second column of R is equal to the first column multiplied by r1/r0. Thus, B is a rank one

matrix. Since B is a rank one matrix, using the result of [33] gives

K−1 = (A + B)−1 = A−1 +
1

a
A−1BA−1, (178)

where

a = tr(BA−1) + 1. (179)

A−1 is easy to compute since it is a diagonal matrix. Analytic evaluation of (178), followed

by algebraic manipulations, gives

K−1 =
1

d

 dI−β2σ2
dR

σ2
s

−β2ηR

−β2ηR dI−β2σ2
sη

2R
σ2
d

 , (180)

where

d = β2(r2
1 + r2

2)(σ2
d + η2σ2

s) + σ2
sσ

2
d. (181)

Furthermore, the variation of K with respect to η can be expressed as

∂K

∂η
=

 0 β2R

β2R 2β2ηR

 . (182)

Using (182) and (180) in (156) results in a third order polynomial in η̂:

a1η̂
3 + a2η̂

2 + a3η̂ + a4 = 0, (183)

with

a1 = β2r4
1σ

4
s + 2β2r2

1r
2
2σ

4
s+

β2r4
2σ

4
s , (184)

a2 = β2k13r
4
1σ

2
s + β2k24r

4
2σ

2
s+

β2k14r1r
3
2σ

2
s + β2k14r

3
1r2σ

2
s+

β2k23r1r
3
2σ

2
s + β2k23r

3
1r2σ

2
s+

β2k13r
2
1r

2
2σ

2
s + β2k24r

2
1r

2
2σ

2
s , (185)
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a3 = r2
1σ

2
dσ

4
s − k44r

2
2σ

4
s−

k33r
2
1σ

4
s + r2

2σ
2
dσ

4
s+

β2k11r
4
1σ

2
d + β2k22r

4
2σ

2
d−

β2k33r
4
1σ

2
s − β2k44r

4
2σ

2
s−

2k34r1r2σ
4
s + β2r4

1σ
2
dσ

2
s+

β2r4
2σ

2
dσ

2
s + 2β2r2

1r
2
2σ

2
dσ

2
s+

2β2k12r1r
3
2σ

2
d + 2β2k12r

3
1r2σ

2
d−

2β2k34r1r
3
2σ

2
s − 2β2k34r

3
1r2σ

2
s+

β2k11r
2
1r

2
2σ

2
d + β2k22r

2
1r

2
2σ

2
d−

β2k33r
2
1r

2
2σ

2
s − β2k44r

2
1r

2
2σ

2
s , (186)

a4 = −(β2k13r
4
1σ

2
d + β2k24r

4
2σ

2
d+

k13r
2
1σ

2
dσ

2
s + k24r

2
2σ

2
dσ

2
s+

k14r1r2σ
2
dσ

2
s + k23r1r2σ

2
dσ

2
s+

β2k14r1r
3
2σ

2
d + β2k14r

3
1r2σ

2
d+

β2k23r1r
3
2σ

2
d + β2k23r

3
1r2σ

2
d+

β2k13r
2
1r

2
2σ

2
d + β2k24r

2
1r

2
2σ

2
d). (187)

Note that the MLE described by (183) assumes β2 and c are known parameters. We propose

using the generalized maximum-likelihood (GML) estimator for η̂, which involves solving

(183) using the β̂2 and ĉ from (163) and (167).

The CRLB for η is computed under the assumption that β2 and c are unknown param-

eters. The variation of K with respect to β2 and c can be expressed as

∂K

∂β2
=

 R ηR

ηR η2R

 , (188)

∂K

∂c
= β2

 ∂Ks
∂c η ∂Ks

∂c

η ∂Ks
∂c η2 ∂Ks

∂c

 , (189)
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where ∂Ks
∂c is given by (162). Using (182), (188), (189), and (180) in (158) followed by a

matrix inversion gives

CRLBη =
(r2

1 + r2
2)
(
η2 +

σ2
d
σ2
s

)
+

σ2
d
β2

2Rt(r2
1 + r2

2)2
. (190)

Note that η estimation performance should degrade when a target is centered between

matched filter samples, and when a target is located off-boresight (i.e. large η). As expected,

estimation performance increases with a higher target SNR and larger number of pulses.
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APPENDIX C

UNBIASED MIXING OF STATE ESTIMATES

Unbiased mixing addresses bias issues with the IMM estimator when the state vectors of the

assumed kinematic models have different dimension. The mixing step of the IMM algorithm

was provided in Chapter 2.2. The unbiased mixing procedure described in this section is

an extension of previous work [55] to the case of three modes.

Assume that we have an IMM estimator with three modes. For simplicity, the time

index k as seen in Chapter 2.2 is dropped. For mode 1, the state vector estimate and

covariance can be written as

x̂1 =

 x̂1
c

x̂1
e

 and P1 =

 P1
c P1

ce

P1
ec P1

e

 , (191)

where x̂1
c and P1

c correspond to state elements that are common among the three modes,

and x̂1
e and P1

e correspond to state elements that are “extra” in the first mode. For modes

2 and 3, the state estimate and covariance can be written as

x̂2 =
[
x̂2
c

]
and P2 = [P2

c ], (192)

x̂3 =
[
x̂3
c

]
and P3 = [P3

c ], (193)

which are elements that are common with the first mode.

C.1 Mixing for Mode 1

Issues arise when computing the mixed estimate for the first mode because of the extra

terms in the state vector. The conventional approach would mix x̂1
e, with the (default)

values of x̂2
e = 0 and x̂3

e = 0, which will bias the extra state estimate towards zero [4]. The

unbiased mixing procedure will augment the second and third state vector with the extra
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terms from the first state vector, namely,

x̂2 =

 x̂2
c

x̂1
e

 and P2 =

 P2
c 0

0 P1
e

 , (194)

x̂3 =

 x̂3
c

x̂1
e

 and P3 =

 P3
c 0

0 P1
e

 . (195)

Using this modification, the unbiased mixing procedure for mode 1 will be [55],

x̂01 = x̂1µ1|1 + x̂2µ2|1 + x̂3µ3|1

=

 x̂1
cµ1|1 + x̂2

cµ2|1 + x̂3
cµ3|1

x̂1
e

 , (196)

P01 =


 P1

c P1
ce

P1
ec P1

e

+

 P̃
1|1
c P̃

1|1
ce

P̃
1|1
ec P̃

1|1
e


µ1|1

+


 P2

c 0

0 P2
e

+

 P̃
2|1
c P̃

2|1
ce

P̃
2|1
ec P̃

2|1
e


µ2|1

+


 P3

c 0

0 P3
m

+

 P̃
3|1
c P̃

3|1
ce

P̃
3|1
ec P̃

3|1
e


µ3|1, (197)

where

P̃m|1
c = (x̂mc − x̂01

c )(x̂mc − x̂01
c )T , (198)

P̃m|1
ce = (x̂mc − x̂01

c )(x̂me − x̂01
e )T , (199)

P̃m|1
ec = (x̂me − x̂01

e )(x̂mc − x̂01
c )T , (200)

P̃m|1
e = (x̂me − x̂01

e )(x̂me − x̂01
e )T . (201)

Note that in view of (194), (195), and (196), we have P̃
2|1
ce = P̃

2|1
ec = P̃

2|1
e = P̃

3|1
ce = P̃

3|1
ec =

P̃
3|1
e = 0.
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C.2 Mixing for Mode 2

The mixed estimate for the second mode, x̂02, is obtained in the standard manner using x̂1
c ,

x̂2
c , x̂3

c , P1
c , P2

c , P3
c , and the mixing probabilities µ1|2, µ2|2, and µ3|2,

x̂02 = x̂1
cµ1|2 + x̂2

cµ2|2 + x̂2
cµ3|2, (202)

P03 =
(
P1
c + P̃1|3

c

)
µ1|2

+
(
P2
c + P̃2|2

c

)
µ2|2

+
(
P3
c + P̃3|2

c

)
µ3|2, (203)

where

P̃1|2
c = (x̂1

c − x̂02
c )(x̂1

c − x̂02
c )T , (204)

P̃2|2
c = (x̂2

c − x̂02
c )(x̂2

c − x̂02
c )T , (205)

P̃3|2
c = (x̂3

c − x̂02
c )(x̂3

c − x̂02
c )T . (206)

C.3 Mixing for Mode 3

The mixed estimate for the third mode, x̂03, is obtained in the standard manner using x̂1
c ,

x̂2
c , x̂3

c , P1
c , P2

c , P3
c , and the mixing probabilities µ1|3, µ2|3, and µ3|3.

x̂03 = x̂1
cµ1|3 + x̂2

cµ2|3 + x̂2
cµ3|3, (207)

P03 =
(
P1
c + P̃1|3

c

)
µ1|3

+
(
P2
c + P̃2|3

c

)
µ2|3

+
(
P3
c + P̃3|3

c

)
µ2|3, (208)

where

P̃1|3
c = (x̂1

c − x̂03
c )(x̂1

c − x̂03
c )T , (209)

P̃2|3
c = (x̂2

c − x̂03
c )(x̂2

c − x̂03
c )T , (210)

P̃3|3
c = (x̂3

c − x̂03
c )(x̂3

c − x̂03
c )T . (211)
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