
UNDERSTANDING A LARGE-SCALE IPTV NETWORK
VIA SYSTEM LOGS

A Thesis
Presented to

The Academic Faculty

by

Tongqing Qiu

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
August 2011

UNDERSTANDING A LARGE-SCALE IPTV NETWORK
VIA SYSTEM LOGS

Approved by:

Prof. Jun (Jim) Xu, Adviser
School of Computer Science
Georgia Institute of Technology

Prof. Xiaoli Ma
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Prof. Mostafa H. Ammar
School of Computer Science
Georgia Institute of Technology

Dr. Jia Wang
Network Measurement and
Engineering Research Department
AT&T-Lab Research

Prof. Nick Feamster
School of Computer Science
Georgia Institute of Technology

Date Approved: August 2011

To Ivy.

iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my adviser Jun (Jim) Xu, who encouraged me

to take up Ph.D. study in Georgia Tech, and provided kind guidance and consistent

support throughout my entire study.

I would like to thank Jia Wang, together with Zihui Ge, Dan Pei, who directed

and helped my research on fork and join networks during my internship at AT&T

research, and during the years afterwards to see it through. I want to thank Nan Hua

who practically helped me starting from my first paper. I would like to thank all my

co-authors, whose participation are invaluable for the many projects I was involved

in, and from whom I have learned a lot. I would like to thank my thesis committee,

who showed interest in my work and offered valuable suggestions.

My special thanks to my loving wife, Ivy, who steadfastly supported my study

and shouldered majority of the burden of the family.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

SUMMARY . xii

I INTRODUCTION . 1

1.1 Our Contributions . 3

1.1.1 Router Syslog Mining . 3

1.1.2 Set-top Box Logs Study . 3

1.1.3 Remarks . 4

1.2 Related Studies Overview . 5

1.2.1 IPTV Measurement Study 5

1.2.2 System Log Study . 5

1.3 Organization of Dissertation . 6

II BACKGROUND . 8

2.1 Overview of IPTV Architecture . 8

2.2 Router Syslog . 10

2.3 STB logs . 13

III ROUTER SYSLOG MINING . 14

3.1 Introduction . 14

3.2 System Design Overview . 17

3.2.1 Offline Domain Knowledge Learning 19

3.2.2 Online SyslogDigest System 22

3.3 Syslog Mining Methodologies . 24

3.3.1 Offline Learning Methodologies 24

v

3.3.2 Online System Methodologies 33

3.4 Evaluation . 36

3.4.1 Evaluation Methodology . 37

3.4.2 Components Effectiveness . 38

3.4.3 Performance of SyslogDigest 43

3.5 Applications . 46

3.5.1 Complex network troubleshooting 46

3.5.2 Network health monitoring and visualization 48

3.6 Related Work . 50

3.7 Summary and Future Work . 51

IV MODELING IPTV CHANNEL POPULARITY 52

4.1 Introduction . 52

4.2 Measurement Results of Channel Popularity 54

4.2.1 Distribution of Channel Popularity 56

4.2.2 Correlation between Channel Accesses and Channel Dwell Time 57

4.2.3 Temporal Dynamics of Channel Popularity 58

4.2.4 Multi-scale Property of Channel Popularity Similarity 61

4.3 Modeling Channel Popularity . 63

4.3.1 Zipf-like Model . 63

4.3.2 Mean Reversion Model . 63

4.3.3 Forecasting Channel Popularity 65

4.4 Multi-class Popularity Modeling . 66

4.4.1 Grouping STBs . 67

4.4.2 Measuring Difference in Channel Preferences of STB Groups 71

4.4.3 Identifying Best Grouping Methods 73

4.4.4 Explaining Channel Popularity Dynamics 75

4.4.5 Modeling and Simulation . 78

4.5 Related Work . 79

vi

4.6 Summary and Future Work . 80

V MODELING IPTV USER BEHAVIOR 82

5.1 Introduction . 82

5.2 Analyzing User Activities . 85

5.2.1 Turning STBs On and Off 85

5.2.2 Switching Channels . 88

5.2.3 Channel Popularity . 89

5.3 Modeling User Activities . 92

5.3.1 Modeling Session Length . 92

5.3.2 Modeling Time-Varying Rates 95

5.3.3 Modeling Channel Popularity Distribution 97

5.3.4 Modeling Channel Popularity Dynamics 98

5.4 SimulWatch: A Workload Generator 100

5.4.1 SimulWatch Design . 100

5.4.2 Evaluation . 102

5.5 Related Work . 110

5.6 Summary and Future Work . 111

VI CONCLUSION . 113

REFERENCES . 115

VITA . 121

vii

LIST OF TABLES

1 Syslog messages example . 10

2 Syslog messages example (cont.) . 10

3 Toy Example. Router r1’s interface Serial1/0.10/10:0 is connected to
r2’s inteface Serial1/0.20/20:0. 18

4 The messages belong to the same message type (BGP-5-ADJCHANGE) 26

5 Sub message types of BGP-5-ADJCHANGE 26

6 Sensitivity of minimal support SPmin value 38

7 Parameter setting in SyslogDigest . 43

8 Effectiveness (compression ratio) of three digest methodologies. T:
temporal based, R: rule based, C: cross router 44

9 Classification of top 150 IPTV channels 71

10 Channel preferences of STB groups based on pref. 71

11 Symmetric uncertainty between pref and different grouping methods 74

12 Stability of different grouping methods 74

13 Channel preferences of STB groups based on wt-d. 75

14 Model parameters for session length distributions 93

15 Modeling parameters for event rates 95

16 Goodness-of-fit scores for session length and channel popularity distri-
butions . 105

17 RMSE when modeling the time-varying rate 105

viii

LIST OF FIGURES

1 IPTV Architecture . 9

2 SyslogDigest Architecture. 20

3 Sub type tree construction example. 25

4 Location hierarchy . 29

5 Controller up/down example. 31

6 TCP bad authentication example . 31

7 The impact of parameter SPmin and Confmin, in dataset A. 40

8 The impact of parameter W , when Confmin = 0.8 and SPmin = 0.0005. 40

9 The number of rules over 12 weeks, dataset A. 41

10 The number of rules over 12 weeks, dataset B. 41

11 The impact of varying value of α on the compression ratio (β = 2). . 42

12 The impact of varying value of β on the compression ratio (α = 0.05
for dataset A and α = 0.075 for dataset B). 43

13 Number of event digests and active rules per day for dataset A. . . . 44

14 The digest result per router of dataset A. 45

15 Visualization based on SyslogDigest output. 48

16 Visualization based on raw syslog data. 49

17 The number of online STBs for each hour during a week. 55

18 The number of channel switches for each hour during a week. 55

19 CDF of channel popularity. 55

20 Channel popularity distribution (varying time period). 56

21 Channel popularity distribution (varying start time). 56

22 The correlation between channel access frequency and dwell time. . . 58

23 The dynamics of channel popularity of kids channel K, 1 point every
15 minutes . 59

24 The dynamics of channel popularity of news channel N , 1 point every
15 minutes . 60

25 The distribution of CoV . 60

ix

26 The distribution of the slope in ACF 61

27 The average cosine similarity for different aggregation time scales . . 62

28 Channel popularity distribution. 63

29 Cosine similarity using a simulated trace based on the mean reversion
process. 65

30 Dissimilarity vs. K when we use TV watching time as grouping feature. 69

31 Time-of-day dynamics for news channels, comparing wt-d with all
watchers . 76

32 Time-of-day dynamics for kids channels, comparing wt-d with all
watchers . 76

33 Population mix for each group based on wt-d 77

34 The cosine similarity function when varying lag. The solid line repre-
sents the real trace, the dash line represents the model. Top: single-
class, bottom: multi-class. 78

35 CCDF of the length for on-, off-, and channel-sessions 86

36 Number of on-line STBs . 87

37 The normalized switching-on, switching-off, and channel switching events
(one-minute granularity) . 87

38 CDF of channels popularity . 90

39 Ratio of change in popular channels, as seen over hours in a single day. 91

40 Channel popularity distribution change (hourly) 91

41 QQ plots comparing models and real traces 92

42 The time-varying rates in frequency domain 94

43 Modeling aggregate event rate . 94

44 Find the optimal number of spikes . 96

45 Fitting the channel popularity distribution 97

46 ON-OFF model . 100

47 Comparison of the session-length distribution. CCDFs for the real
trace and generated workload closely match in all cases. 103

48 Comparison of the aggregate event rate. The real-trace results are on
the top, and the workload results are on the bottom. 103

x

49 Channel popularity distributions for the real trace and the generated
workload. 106

50 Number of on-line STBs over time. The results from real trace and
workload closely match. 106

51 Multi-class population model captures the change of channel popularity
over time (hourly) . 107

52 Time-of-day dynamics for a popular kids channel, based on multi-class
synthetic trace . 108

53 Population mix for each group, based on multi-class synthetic trace . 109

54 Case study. The results from real trace and workload closely match. 109

xi

SUMMARY

Recently, there has been a global trend among the telecommunication industry

on the rapid deployment of IPTV (Internet Protocol Television) infrastructure and

services. While the industry rushes into the IPTV era, the comprehensive under-

standing of the status and dynamics of IPTV network lags behind. Filling this gap

requires in-depth analysis of large amounts of measurement data across the IPTV

network. One type of the data of particular interest is device or system log, which

has not been systematically studied before. In this dissertation, we will explore the

possibility of utilizing system logs to serve a wide range of IPTV network management

purposes including health monitoring, troubleshooting and performance evaluation,

etc. In particular, we develop a tool to convert raw router syslogs to meaningful

network events. In addition, by analyzing set-top box (STB) logs, we propose a series

of models to capture both channel popularity and dynamics, and users’ activity on

the IPTV network.

xii

CHAPTER I

INTRODUCTION

In the past several years, there has been a global trend among telecommunication

companies on the rapid deployment of IPTV (Internet Protocol Television) infras-

tructure and services, in which live TV streams are encoded as a series of IP packets

and delivered to users through the residential broadband access network and set-top

boxes (STB). These IPTV services include commercial grade multicasting TV, video

on demand (VoD), triple play, voice over IP (VoIP), and Web/email access, well

beyond traditional cable television services [51].

Large-scale IPTV networks are designed with the goal of providing high availabil-

ity and Quality of Service (QoS) while keeping the operational complexity and cost

low. Meeting this goal requires the detailed knowledge of network status and dynam-

ics. While the industry rushes into the IPTV era, what lags behind is a comprehensive

understanding of the IPTV networks. We believe that the understanding includes at

least two parts: (1) to understand the network itself (e.g., network monitoring and

troubleshooting); (2) to understand the end-users’ activity (e.g., channel switching)

and impact (e.g., bandwidth consumption).

To understand both aspects in a large-scale network (not limited to IPTV) in gen-

eral, an Internet Service Provider (ISP) usually collects a large amount of measure-

ment data across the network, including device log files, traps and alarms on different

network layers, active or passive service performance measures, etc. In this thesis, we

focus primarily on one data source – logs, which are emitted by network devices, op-

erating systems, applications and various other types of intelligent or programmable

devices. Although these logs are usually created by the software developers to aid in

1

the debugging of the operation of these applications, they can be used by the network

service providers for various management tasks.

In an IPTV network, there are two important types of system logs: (1) router

syslogs that a router passively generates to describe a wide range of events observed

by it. (2) STB logs that describe the end-users’ activities like turning on or off the

STB. These two logs, however, have not been effectively used from network opera-

tors’ perspective. For instance, detailed router syslog messages are typically examined

manually or through inflexible tools only when required by an on-going troubleshoot-

ing investigation or when given a narrow time range and a specific router under

suspicion. Similarly, STB logs are used only by Cha et al. before to take the initial

user behaviors study without comprehensive modeling [12].

Extracting useful information from raw logs is far from a trivial task. The first

challenge lies in the complexity and variety of each log. The syntax and semantics

of data within log messages (e.g., router syslogs) are usually application or vendor-

specific. Log message format or content may not always be fully documented. The

second challenge is the subtle patterns buried in multiple logs. The pattern can be

the implicit association between any two logs, or the underlying model that all logs

follow.

The goal of this dissertation is to explore the possibility of utilizing previously un-

derutilized logs in the IPTV network by discovering the embedded patterns to serve

network management tasks such as health monitoring, troubleshooting, and perfor-

mance evaluation. In particular, we analyze router syslogs and STB logs to unveil

IPTV network status and dynamics from both network and end-user’s perspectives.

We explain our contributions in details as follows.

2

1.1 Our Contributions

1.1.1 Router Syslog Mining

IPTV router syslog messages are essentially free-form text with only a minimal struc-

ture, and their formats vary among different vendors and router OSes. Furthermore,

since router syslogs are aimed for tracking and debugging router software/hardware

problems, they are often too low-level from network service management perspectives.

Due to their sheer volume, detailed router syslog messages are typically examined only

when required by an on-going troubleshooting investigation or when given a narrow

time range and a specific router under suspicion. We design a SyslogDigest system

that can automatically transform and compress such low-level minimally-structured

syslog messages into meaningful and prioritized high-level network events, using pow-

erful machine learning techniques tailored to our problem domain. These events are

three orders of magnitude fewer in number and have much better usability than raw

syslog messages. We demonstrate that they provide critical input to IPTV network

troubleshooting, and health monitoring and visualization.

1.1.2 Set-top Box Logs Study

Different from router syslogs, STB logs are well formatted to record all users activities

with respect to turning on and off STBs, and switching channels. The challenging

part is therefore no longer the variety of logs syntax but the subtle model underlying

the logs. We first model one primary aspect of IPTV system – channel popularity

and then model all user activities.

1.1.2.1 Channel Popularity Modeling

Understanding the channel popularity or content popularity is an important step

in the workload characterization for modern information distribution systems such

as World Wide Web, P2P file- sharing systems, IPTV networks, video-on-demand

(VOD) systems, content distribution networks, publish/subscribe systems, and RSS

3

feeds distribution systems. We focus on analyzing the channel popularity in the con-

text of IPTV. In particular, we aim at capturing two important aspects of channel

popularity the distribution and temporal dynamics of the channel popularity. We

conduct an in-depth analysis on channel popularity on a large collection of user chan-

nel access data from a nation-wide commercial IPTV network. Based on the findings

in our analysis, we identify a stochastic model that finds good matches in all at-

tributes of interest with respect to the channel popularity. Furthermore, we propose

a method to identify subsets of user population with inherently different channel in-

terests. By tracking the changes of population mixtures among different user classes,

we extend our model to a multi-class population model, which enables us to capture

the moderate diurnal popularity patterns exhibited by some channels.

1.1.2.2 User Activity Modeling

We perform an in-depth study on several intrinsic characteristics of IPTV user activ-

ities by analyzing STB logs collected from an operational nation-wide IPTV system.

We further generalize the findings and develop a series of models to capture both

the probability distribution and time-dynamics of user activities. We then combine

theses models to design an IPTV user activity workload generation tool called SIMUL-

WATCH, which formalizes and quantizes user activities as state transitions. It takes

a small number of input parameters to generate synthetic workload traces that mimic

a set of real users watching IPTV. We validate all the models and the prototype of

SIMULWATCH using the real traces. In particular, we show that SIMULWATCH

can model both unicast and multicast traffic accurately, establishing itself as a useful

tool in driving the performance study in IPTV systems.

1.1.3 Remarks

Although our studies focus on IPTV network, the methodologies we applied and the

tools we developed can be extended to other applications. For instance, SyslogDigest,

4

the vendor/network independent tool, can be directly used in other networks (e.g.,

general purpose backbone). The stochastic model we designed for channel popularity

may also be applied to other applications with respect to content popularity.

1.2 Related Studies Overview

1.2.1 IPTV Measurement Study

Since IPTV is a relatively new application in the Internet, very few measurement and

management researches have been done in this domain. From end-users’ perspective,

Cha et al. [12] present the first large-scale study of user behaviors in an IPTV system.

They characterize user behaviors such as channel popularity and dynamics, viewing

sessions, geographic locality and channel surfing probabilities. Our research takes a

step further: modeling the user activities based on the measurement study and de-

signing a workload generator, which can be used to evaluate various aspects of IPTV

system design and performance with respect to realistic user workload. Whereas our

work focuses on IPTV services running on top of a provider backbone, there are a num-

ber of peer-to-peer (P2P) based IPTV systems [63, 32] and the measurement study

that focuses on P2P IPTV systems [23, 43]. From a network perspective, Mahimkar

et al. [35] focuses on characterizing performance impairments and faults in a large-

scale IPTV system. While our system (i.e. SyslogDigest) is not specifically designed

for troubleshooting, it can benefit complex troubleshooting tasks significantly.

1.2.2 System Log Study

Different learning techniques are proposed to extract knowledge from logs to serve

other applications (besides IPTV). Here we provide an overview of these researches

from both application and methodology angles.

Applications The most widely applied domain of log learning is World Wide

Web. Web log mining deals with the extraction of knowledge from server log files

consisting of the (textual) logs that are collected when users access Web servers and

5

might be represented in standard formats [19]. Typical applications of web log mining

are Web personalization [18, 64], adaptive Web sites [40], and user modeling [49, 62,

57]. Besides Web, there are also several studies on failure or anomaly detection based

on logs of general purpose servers [39, 54, 53, 33]. In contrast, we are the first to

apply learning methods to logs in an IPTV network environment. Moreover, our

log study is network-wide, which involves multiple distributed locations instead of a

single central server.

Methodology A number of detailed techniques are proposed to extract the de-

sired knowledge of system logs. We discuss two popular types of methods here. The

first one is association rule mining, a method to discover interesting relationships

between different logs. This method is widely used in web usage mining [19]. For

example, Yang et al. apply classic association rule mining to discovering web access

patterns for WWW caching and prefetching design [57]. While our method also dis-

covers the association rules among different types of syslogs, it, however, considers

both temporal and spatial constraint. The second technique is stochastic modeling,

which formalizes the generation of a set of (sequential) logs as the stochastic process.

A well-known ON-OFF model is proposed to model LAN traffic [49] and BGP up-

dates [65]. Our model of IPTV user activity is also based on the ON-OFF mode, but

it is more sophisticated, in terms of states and transition choices.

1.3 Organization of Dissertation

The rest of the thesis is organized as follows: Chapter 2 presents a background of

IPTV network infrastructure and logs we studied. Chapter 3 presents the design of

SyslogDigest tool for converting the level-low syslog messages to high-level network

events. Chapter 4 presents our study and model of channel popularity and dynamics

based on STB logs. Chapter 5 presents our design of workload generator based on

modeling user activities in IPTV network. Finally, Chapter 6 concludes the thesis

6

with a summary of contributions.

7

CHAPTER II

BACKGROUND

In this chapter we will present the basic architecture of an IPTV system and data

sets that will be used in the rest of this dissertation.

2.1 Overview of IPTV Architecture

Figure 1 shows a typical IPTV service system [42]. The SHO (Super Hub Office),

the primary source of television content, digitally encodes video streams received

externally (e.g., via satellite) and transmits them to multiple VHOs (Video Hub

Offices) through a high-speed IP backbone network. The VHOs, each responsible for a

metropolitan area, in turn acquire additional local contents (e.g., local news), perform

some further processing (e.g., advertisement insertion) and transmit the processed

TV streams to end users upon request through access network1. Inside a residential

home, RG (Residential Gateway) connects to a modem and one or more STBs (Set-

Top Boxes) with coaxial cable, receiving and forwarding all data, including live TV

streams, STB control traffic, VoIP and Internet data traffic, into and out of the

subscriber’s home. Finally behind an STB, there connects a TV.

In order to leverage the one-to-many nature of IPTV traffic and ease the band-

width requirement, video streams are typically delivered using IP multicast in both

backbone and access networks. Depending on the TV channel and the codec used, the

bit rate of each video stream varies widely from around 1.5Mbps (SDTV with H.264)

to around 15Mbps (HDTV with MPEG2). The latency of channel switch is due to

1Typically a VHO connects to RGs through a protected optical network using fiber-to-the-node
(FTTN) or fiber-to-the-premises (FTTP) technologies. We omit showing the network elements in
between as they are not the focus of our work.

8

VHO 2

VHO 1

SHO

VHO 4

VHO 3

National Channels
Acquisition

Local Channels
Acquisition

IP Backbone

Residential
Gateway

STB TV

RG STB TV

PCPhone

Subscriber Home

Figure 1: IPTV Architecture

both the multicast group management using IGMP and the video decoding depen-

dency (e.g., waiting for a next I-frame). They could add up to a few seconds, which

might make the audience chafe at the bit. This limitation is likely to motivate IPTV

users to perform more targeted channel switches than random or sequential channel

scans compared to users from conventional TV systems. To address/alleviate this

problem2, some IPTV providers have adopted a fast-channel-switch mechanism in

which a server in the VHO sends the STB a unicast video stream (often at a rate

higher than multicast rate to avoid long decoding latency) while the STB catches up

with the multicast TV stream [44].

Similar to conventional TV users, IPTV users use a vendor/provider customized

remote controller to control the STB. For example, one may use Up/Down buttons

to sequentially switch channels, use Return button to jump back to the channel pre-

viously watched, or enter a channel number to jump directly to a specific channel.

On the other hand, IPTV providers often support additional features, some of which

are not offered in conventional TV services. For example, many IPTV providers add

the capability for a small number of user-defined favorite channel list, so that one can

easily switch between or scan through the favorite channels. Furthermore, most STBs

support the DVR (Digital Video Recording) feature, in which with the help of a local

2How to reduce this delay is an active research area.

9

Table 1: Syslog messages example

Message Vendor Message timestamp Router Message-type/error-code
m1 V1 2010-01-10 00:00:15 r1 LINEPROTO-5-UPDOWN
m2 V1 2010-01-10 00:00:15 r5 LINK-3-UPDOWN
m3 V1 2010-01-10 00:00:15 r8 SYS-1-CPURISINGTHRESHOLD
m3 V1 2010-01-10 00:00:26 r8 SYS-1-CPUFALLINGTHRESHOLD
m4 V2 2010-01-10 00:00:23 ra SNMP-WARNING-linkDown
m5 V2 2010-01-10 00:00:24 rb SVCMGR-MAJOR-sapPortStateChangeProcessed
m6 V2 2010-01-10 00:00:26 ra SNMP-WARNING-linkup

Table 2: Syslog messages example (cont.)

Message Detailed message
m1 Line protocol on Interface Serial13/0.10/ 20:0, changed state to down
m2 Interface Serial2/0.10/2:0, changed state to down
m3 Threshold: Total CPU Utilization(Total/Intr): 95%/1%, Top 3 processes (Pid/Util): 2/71%, 8/6%, 7/3%
m3 Threshold: Total CPU Utilization(Total/Intr) 30%/1%.
m4 Interface 0/0/1 is not operational
m5 The status of all affected SAPs on port 1/1/1 has been updated.
m6 Interface 0/1/0 is operational

hard drive, a user can pause, rewind, fast forward (up to live play), and record the

TV program being played. Some IPTV providers support one channel being recorded

to DVR while another channel being played live on TV. Also depending on the IPTV

provider, IPTV users can enjoy many advanced features such as Picture-In-Picture

(PIP), on-line gaming and chatting, and personalized web services on their TVs.

2.2 Router Syslog

In this section, we provide an overview of the syntax and semantics of router syslog

messages. Similar to syslogs on computer servers, router syslogs are the messages that

routers generate to record the hardware and software conditions observed by them,

such as link and protocol-related state changes (e.g., down or up), alarming envi-

ronmental measurements (e.g., high voltage or temperature), and warning messages

(e.g., triggered when BGP neighbors send more routes than the router is configured to

allow). Although syslog messages are intended primarily for tracking and debugging

router software and hardware problems, they can be extremely valuable to network

10

operators in managing networked services and troubleshooting network incidents. For

this reason syslogs are usually collected on all routers inside a network, especially an

ISP network, and a syslog (transmission) protocol [20] is standardized and widely

supported by router vendors to transmit syslog messages from routers to one or more

syslog collector(s).

While the syslog protocol – for transmitting syslog messages – is standardized, the

syslog messages themselves are not. They are essentially free-form texts, the syntax

and semantics of which vary among router vendors and router operating systems.

Table 1 and 2shows a few examples of syslog messages from two router vendors. We

can observe only a minimal structure in a syslog message: (1) a timestamp indicating

when the message is generated, (2) the identifier of the router that generates the

message (called originating router), (3) message type, also known as the error code,

indicating the nature of the problem, and (4) detailed message information generated

by the router OS. In order to correlate syslog messages across routers, the clocks (for

generating the timestamps) on these routers need to be synchronized often through

the Network Time Protocol (NTP), which is the case in our studies.

The detailed message information (aforementioned field (4)) in router syslogs

is quite ad hoc in nature. They are simply free-form texts “printf”-ed by router

operating systems with detailed information such as the location, state/status, or

measurement readings of a alarming condition embedded in them. For example,

in the first message (m1), (Line protocol on Interface Serial13/0.10/20:0,

changed state to down), the Serial13/0.10/20:0 part indicates the network in-

terface at which the layer-2 line protocol (PPP) has been impacted and the down

part indicates the status/state of the line protocol. The rest of it, Line protocol

on Interface ..., changed state to ..., can be viewed as the sub type for this

type of syslog message. It is worth noting that there are often multiple sub types

associated with the same syslog type (error code). The combination of syslog type

11

and this sub type can be used as a template to uniquely identify the class of network

conditions that the syslog message describes.

In some syslog versions, the error code field contains severity information. For

example, in the first four lines (vendor V1 syslogs) of Table 1, the number between

two “-” symbols is the severity level of the messages – the smaller the number is, the

more important the message is perceived by the originating router. It is important to

note, however, that the severity level of a syslog message is assigned by the equipment

vendor based on the perceived impact of the observed event on the performance and

proper functioning of the local network elements. It does not in general translate

into the severity of the impact that this event will have on the performance and

proper functioning of the overall network and therefore cannot be directly used for to

rank/order the importance of events for network service management purposes. For

example, syslog messages concerning router CPU utilization rising above or falling

below a given threshold (lines 3 and 4 in Table 2) have been considered more important

(smaller in severity number) than those concerning an adjacent link changing its state

to “down” (line 2 in Table 2) in some router OS. Network operators would certainly

disagree in this case.

Router configuration tools usually allow network operators to specify a threshold

such that potential syslog messages with severity levels above or equal to it will be

recorded. In this study, we collect syslogs at such “informational” level (usually the

default setting). Depending on the network conditions, the amount of router syslog

messages in an operational network varies. In the large-scale ISP network (hundreds

to thousands routers) that we study in the dissertation, there are typically hundreds

of thousands to millions of messages per day.

12

2.3 STB logs

In IPTV networks, the set-top box is a small computer providing two-way communi-

cations on an IP network and decoding the video streaming media. IP set-top boxes

have a built in home network interface which can be Ethernet or one of the existing

wire home networking technologies such as HomePNA or the ITU-T G.hn standard,

which provides a way to create a high-speed (up to 1 Gigabit/s) Local area network

using existing home wiring (power lines, phone lines, and coaxial cables).

The software running on STB keeps logging the events like STB power on/off,

channel switching, system crashing, etc. We particularly focus on the logs that are

directly related to users activities. The STB logs we use in this dissertation are

collected from a large scale IPTV provider in the United States, which has over

one million subscribers and over two million STBs spread throughout four different

time zones. As a privacy protection, only anonymous data was used in this study; no

information that could be used to directly or indirectly identify individual subscribers

was included. By collecting data from the anonymous STB logs, we were able to

model activities such as turning on/off STBs, switching channels, and playing live

or recorded TV program. In particular, we associate each activity recorded in the

anonymous STB logs with its origin STB and a timestamp (which is at the precision

of one second). To account for different time zones, we map the STBs to their

metropolitan area and convert the associated timestamps into their local time.

13

CHAPTER III

ROUTER SYSLOG MINING

3.1 Introduction

Router syslogs are messages that a router logs to describe a wide range of events

observed by it. Although router syslogs are primarily designed and intended for

router vendors to track and debug router software/hardware problems, they are also

widely used by the network service providers as one of the most valuable data sources

in monitoring network health and in troubleshooting network faults and performance

anomalies. However, working with raw syslog messages is not easy from network

service management prospectives. First, router syslog messages are essentially free-

form text with only a minimal structure. The type of information that is logged

and its formats vary among different vendors and router operating systems. Second,

router syslog messages are often too low-level. They do not directly translate into

what actually happened in the network (i.e., network events) without meaningful

abstraction and aggregation. Third, not every router syslog message is an indication

of an occurrence of an incident that could potentially impact network services. For

example, some router syslog messages are generated purely for debugging purposes

and have no implications on network services.

Although large ISP network, consisting of thousands of routers, is expected to

observe millions of information-rich syslog messages per day, the lack of sentence

structures in log messages and relational structures across messages prevents router

syslogs from being utilized to its fullest extent in various network management appli-

cations. Network monitoring systems typically rely on the input of domain knowledge

14

to be able to focus on a rather small (yet deemed important) subset of syslog mes-

sages. For example, commercial network management tools such as Lonix [1] and

NetCool [2] focus on a small set of messages concerning network faults. The syntax

and the relations of these syslog messages are explicitly captured to allow for au-

tomated parsing and understanding. When certain patterns of syslog messages are

observed in the network, alarms are triggered and operation tickets are issued. The

parsers and the message relationship models therein need to be constantly updated

to keep up with network changes. For example, routers upgraded to a new operating

system may introduce new syslog message formats and hence require a new parser.

Network issues can also fly under the radar if they do not match syslog patterns

already programmed. Meanwhile, when troubleshooting a network event, network

operators have to focus on a narrow time-window and a specific router in examining

the raw syslog messages in detail, in order to avoid being overwhelmed by the number

of syslog messages. It is a very time-consuming and inefficient process when a com-

plicated network incident involves a large number of messages. Moreover, by limiting

to a small scope, operators lose the sight of “big picture”, such as the information re-

garding the frequency or the scope of the kind of network events under investigation.

Finally, network auditing and trend analysis systems have to rely on rather simple

frequency statistics when it comes to router syslogs. For example, MERCURY [37]

detects network behavior changes due to network upgrades by tracking the level-shift

of message frequencies of individual syslogs. Knowing the relationship across syslog

messages would make the result much more meaningful.

In this work, we focus on proactively mining network events from router sys-

logs. In particular, we design an automated system (called SyslogDigest) that trans-

forms and compresses massive low-level minimally-structured syslog messages into a

small number of meaningful and prioritized high-level network events. SyslogDigest

is vendor/network independent and does not require domain knowledge on expected

15

network behaviors. It automatically identifies signatures of different types of syslog

messages in terms of both their syntax and temporal patterns (e.g., interarrival time

of each type of syslog messages). In addition, SyslogDigest learns association rules

between different types of syslog messages both on the same router and across routers.

The combination of the signatures and association rules of syslog messages enables us

to group them into meaningful network events. Furthermore, SyslogDigest prioritizes

network events using a number of severity/importance measures. This allows network

operators to quickly identify and focus on important network events. More impor-

tantly, this enables complex network troubleshooting, in which thousands to tens of

thousands of syslog messages on multiple routers may be related to a single network

event and may need to be identified out of millions of syslog messages for examina-

tion. SyslogDigest systematically classifies and groups these syslog messages into a

single meaningful event, making obsolete the long and error-prone manual grouping

process in the current practice. This automated grouping capability not only enables

monitoring overall network health and tracking the appearance and evolvement of

network events, but also allows for much better network visualization, since visual-

izing such network events provides a much clearer and more accurate big picture of

what happened in the network than visualizing raw syslog messages.

We apply SyslogDigest to router syslog messages collected from operational IP

networks like IPTV backbone network. We show that SyslogDigest outputs prioritized

network events that are over three orders of magnitude fewer in number and have

much better usability than raw syslog messages. Using real applications, we further

demonstrate that they provide critical input to not only network troubleshooting but

also network health monitoring and visualization.

To summarize, we make four major contributions in this work.

1. We designed an automated tool SyslogDigest that transforms massive volume

of router syslog messages into a much smaller number of meaningful network

16

events.

2. We developed effective techniques tailored to our problem domain to systemati-

cally identify signatures of syslog messages, learn association rules that capture

network behaviors over time, group relevant raw syslog messages across multi-

ple routers into network events, and label and prioritize network events based

on their nature and severities.

3. We conducted large-scale experiments on real router syslog data collected from

two large operational IP networks and demonstrated that SyslogDigest is able

to transform millions of syslog messages into network events that are over three

orders of magnitude fewer in number and smaller in size.

The remainder of this chapter is organized as follows. Section 3.2 presents an

overview of SyslogDigest system and Section 3.3 describes the detailed methodolo-

gies it uses. Section 3.4 presents the evaluation results based on router syslog data

collected from two large operational IP networks. We present some applications of

SyslogDigest in Section 3.5 and related work in Section 3.6. Finally, Section 3.7

concludes the chapter.

3.2 System Design Overview

The goal of SyslogDigest is to automatically transform and compress low-level minimally-

structured syslog messages into meaningful and prioritized high-level network events.

Our key observation is that one single (sometimes intermittent) condition on a net-

work element, such as an network interface, router hardware, and router software,

can often trigger a large number of different messages across time, protocol layers,

and routers. For example, messages m1 to m16 in Table 3 are all triggered by the

same network condition: the link between routers r1 and r2 flapped a couple of times.

Based on this observation, our basic idea is to automatically construct a network event

17

T
a
b

le
3
:

T
oy

E
x
am

p
le

.
R

ou
te

r
r1

’s
in

te
rf

ac
e

S
er

ia
l1

/0
.1

0/
10

:0
is

co
n
n
ec

te
d

to
r2

’s
in

te
fa

ce
S
er

ia
l1

/0
.2

0/
20

:0
.

in
d

ex
ti

m
es

ta
m

p
ro

u
te

r
m

es
sa

g
e-

ty
p

e/
er

ro
r-

co
d

e
d

et
a
il
ed

m
es

sa
g
e

m
1

0
0
:0

0
:0

0
r1

L
IN

K
-3

-U
P

D
O

W
N

In
te

rf
a
ce

S
er

ia
l1

/
0
.1

0
/
1
0
:0

,
ch

a
n

g
ed

st
a
te

to
d

o
w

n
m

2
0
0
:0

0
:0

0
r2

L
IN

K
-3

-U
P

D
O

W
N

In
te

rf
a
ce

S
er

ia
l1

/
0
.2

0
/
2
0
:0

,
ch

a
n

g
ed

st
a
te

to
d

o
w

n
m

3
0
0
:0

0
:0

1
r1

L
IN

E
P

R
O

T
O

-5
-U

P
D

O
W

N
L

in
e

p
ro

to
co

l
o
n

In
te

rf
a
ce

S
er

ia
l1

/
0
.1

0
/
1
0
:0

,
ch

a
n

g
ed

st
a
te

to
d

o
w

n
m

4
0
0
:0

0
:0

1
r2

L
IN

E
P

R
O

T
O

-5
-U

P
D

O
W

N
L

in
e

p
ro

to
co

l
o
n

In
te

rf
a
ce

S
er

ia
l2

/
0
.2

0
/
2
0
:0

,
ch

a
n

g
ed

st
a
te

to
d

o
w

n
m

5
0
0
:0

0
:1

0
r1

L
IN

K
-3

-U
P

D
O

W
N

In
te

rf
a
ce

S
er

ia
l1

/
0
.1

0
/
1
0
:0

,
ch

a
n

g
ed

st
a
te

to
u

p
m

6
0
0
:0

0
:1

0
r2

L
IN

K
-3

-U
P

D
O

W
N

In
te

rf
a
ce

S
er

ia
l1

/
0
.2

0
/
2
0
:0

,
ch

a
n

g
ed

st
a
te

to
u

p
m

7
0
0
:0

0
:1

1
r1

L
IN

E
P

R
O

T
O

-5
-U

P
D

O
W

N
L

in
e

p
ro

to
co

l
o
n

In
te

rf
a
ce

S
er

ia
l1

/
0
.1

0
/
1
0
:0

,
ch

a
n

g
ed

st
a
te

to
u

p
m

8
0
0
:0

0
:1

1
r2

L
IN

E
P

R
O

T
O

-5
-U

P
D

O
W

N
L

in
e

p
ro

to
co

l
o
n

In
te

rf
a
ce

S
er

ia
l2

/
0
.2

0
/
2
0
:0

,
ch

a
n

g
ed

st
a
te

to
u

p
m

9
0
0
:0

0
:2

0
r1

L
IN

K
-3

-U
P

D
O

W
N

In
te

rf
a
ce

S
er

ia
l1

/
0
.1

0
/
1
0
:0

,
ch

a
n

g
ed

st
a
te

to
d

o
w

n
m

1
0

0
0
:0

0
:2

0
r2

L
IN

K
-3

-U
P

D
O

W
N

In
te

rf
a
ce

S
er

ia
l1

/
0
.2

0
/
2
0
:0

,
ch

a
n

g
ed

st
a
te

to
d

o
w

n
m

1
1

0
0
:0

0
:2

1
r1

L
IN

E
P

R
O

T
O

-5
-U

P
D

O
W

N
L

in
e

p
ro

to
co

l
o
n

In
te

rf
a
ce

S
er

ia
l1

/
0
.1

0
/
1
0
:0

,
ch

a
n

g
ed

st
a
te

to
d

o
w

n
m

1
2

0
0
:0

0
:2

1
r2

L
IN

E
P

R
O

T
O

-5
-U

P
D

O
W

N
L

in
e

p
ro

to
co

l
o
n

In
te

rf
a
ce

S
er

ia
l2

/
0
.2

0
/
2
0
:0

,
ch

a
n

g
ed

st
a
te

to
d

o
w

n
m

1
3

0
0
:0

0
:3

0
r1

L
IN

K
-3

-U
P

D
O

W
N

In
te

rf
a
ce

S
er

ia
l1

/
0
.1

0
/
1
0
:0

,
ch

a
n

g
ed

st
a
te

to
u

p
m

1
4

0
0
:0

0
:3

0
r2

L
IN

K
-3

-U
P

D
O

W
N

In
te

rf
a
ce

S
er

ia
l1

/
0
.2

0
/
2
0
:0

,
ch

a
n

g
ed

st
a
te

to
u

p
m

1
5

0
0
:0

0
:3

1
r1

L
IN

E
P

R
O

T
O

-5
-U

P
D

O
W

N
L

in
e

p
ro

to
co

l
o
n

In
te

rf
a
ce

S
er

ia
l1

/
0
.1

0
/
1
0
:0

,
ch

a
n

g
ed

st
a
te

to
u

p
m

1
6

0
0
:0

0
:3

1
r2

L
IN

E
P

R
O

T
O

-5
-U

P
D

O
W

N
L

in
e

p
ro

to
co

l
o
n

In
te

rf
a
ce

S
er

ia
l2

/
0
.2

0
/
2
0
:0

,
ch

a
n

g
ed

st
a
te

to
u

p

18

by grouping together related messages, i.e., those triggered by the same network con-

dition, and then prioritize network events using a number of severity/importance

measures. The related messages usually exhibits certain temporal or spatial pattern.

The challenge is how to automatically determine such patterns or the lack of them

among syslog messages without relying on domain knowledge being manually input

and updated (by network operators). SyslogDigest accomplishes this goal through

a two-step process. In this first step, an offline domain knowledge learning compo-

nent automatically extracts relevant domain knowledge from raw syslog data. In the

second step, an online processing component will rely on such acquired domain knowl-

edge and other available information (e.g., temporal closeness of messages) to finally

group related messages into high-level events and present the prioritized results. In

the rest of this section, we will provide a high-level overview of SyslogDigest’s ar-

chitecture, shown in Figure 2, and the functionalities of its components, by working

out a running example shown in Table 3, where 16 syslog messages are eventually

grouped into 1 high-level network event.

3.2.1 Offline Domain Knowledge Learning

The offline domain knowledge learning component automatically acquires domain

knowledge such as the syntax/semantics of syslog messages, the relationships among

various message templates, and the detailed location information obtained from raw

syslog data. The offline domain knowledge learning proceeds as follows.

First, it automatically extract message templates from the historical syslog mes-

sages. To deal with the challenge posed by minimally-structured messages from

different vendors and/or different OS versions that adopt different template syn-

tax/semantics systems, we develop an effective signature identification technique in

which messages are decomposed into whitespace-separated words and a frequent word

19

Real-Time
Syslogs

Signature
Matching

Location
Parsing

Real-Time
Syslog+

Temporal
Grouping

Rule based
Grouping

Cross Router
Grouping

Prioritization

Peresentation

Syslog Digest

Message
Tempaltes

Location
Dictionary

Temporal
Patterns

Rule Sets

Historical Syslogs

Router Config

Location
Extraction

Signature
Identifcaitoin

Signature
Matching

Location
Parsing

Historical syslog+
data

Rule Mining

Temporal
Mining

Domain
Knowledge

Bases

Offline Domain
Knowledge
Learning

Online
Processing

Figure 2: SyslogDigest Architecture.

20

(excluding those words denoting specific information like locations) sequence is consid-

ered as a template. For example, without going into the details of the signature iden-

tification technique, it is intuitive to see the following template can be extracted: t1:

LINK-3-UPDOWN Interface ..., changed state to down, t2: LINEPROTO-5-UPDOWN

Line protocol on Interface ..., changed state to down, t3: LINK-3-UPDOWN

Interface ..., changed state to up, and t4: LINEPROTO-5-UPDOWN Line protocol

on Interface ..., changed state to up.

Second, in order to parse the location information embedded and hidden in sys-

log messages, SyslogDigest learns and builds a “dictionary” for the locations in each

router’s syslog messages based on its configuration files (i.e., router configs). One

might be tempted to parse the location information purely based on the vendor man-

ual description for each message. This can however be overly expensive due to the high

diversity of message formats and large number of messages. Our solution is based on

one key observation: a router almost always writes to syslog messages only the loca-

tion information it knows, i.e, those configured in the router. Our solution is therefore

to parse router configs (much better formatted and documented than syslog messages)

to build a dictionary of its locations offline. With router configs, we also build the

mapping between different locations, e.g., from an interface name to its IP address,

and the hierarchical location relationship between interfaces, ports and linecards, and

network topology such as the interfaces connecting two routers. These mappings en-

able us to group syslog messages with related locations. In the example shown in

Table 3, the location dictionary will contain interfaces r1,Serial1/0.10/10:0 and

r2,Serial1/0.20/20:0 and also the information that these two interfaces are con-

nected to each other.

Third, to learn the relationship among different templates, we first augment each

historical syslog message with additional information, including message template

21

and its location information, by matching it with the templates and locations previ-

ously learned. In our example, m1 is augmented as m1|t1|r1,Serial1/0.10/10:0

(with template t1 and location r1,Serial1/0.10/10:0 appended), and m4 is aug-

mented as m4|t2|r2,Serial1/0.20/20:0, and so on. The resulting messages are

called Syslog+ messages in our system. We then apply association rule mining

techniques to Syslog+ messages to learn the relationships (i.e., associations) among

different messages with different templates. A rule of thumb is that if two messages

frequently occur close enough in time and at related locations (postpone the details

to Section 3.3), they are considered associated and should be grouped together. For

example, if syslog messages in templates t1 and t2 often happen close together, the

association t1, t2 will be declared.

Finally, SyslogDigest learns the temporal patterns of each template from Syslog+

message. The intuition is that messages with same template can appear periodically

(e.g., due to various network timers), and if so, these events can be grouped together.

Such kind of periodicity can be learned offline through measurements of corresponding

interarrival times and predictions based on their linear regression.

The above domain knowledge learning process will be periodically run (offline)

to incorporate the latest changes to router hardware and software configurations,

and the acquired domain knowledge will be used as input to the online SyslogDigest

System.

3.2.2 Online SyslogDigest System

The online system takes the real-time syslog message stream as well as the previ-

ously learned domain knowledge as input, and output meaningful prioritized network

22

events, in a two-step process. The first step is to augment the real-time syslog mes-

sages with template and location information just like in the aforementioned offline

process, and output the (augmented) Syslog+ messages in an online fashion.

The second step is to group related Syslog+ messages together to construct mean-

ingful network events. We propose three grouping methods: temporal grouping,

rule-based grouping and cross-router grouping. Temporal grouping targets

at messages with the same template on the same router. It groups together mes-

sages that have the same template and happen periodically, where such periodicity

(temporal patterns) is already detected during the offline temporal mining. In our ex-

ample, it is intuitive to see that after the temporal grouping, m1,m5,m9,m13 (with

common template t1 and common location r1,Serial1/0.10/10:0) are grouped to-

gether. So are (m2,m6,m10,m14), (m3,m7,m11,m15), and (m4,m8,m12,m16).

Rule-based grouping targets the messages with different templates on the same

router. Based on the association rules learned by the offline learning component and

saved in a domain knowledge base, this method groups messages that have differ-

ent templates, but happen close together in time. In our example, after the rule-

based grouping, messages m1,m3,m5,m9,m11,m13,m15 are grouped together due

to association rule {t1, t2} with common location r1,Serial1/0.10/10:0. Messages

m2,m4,m6,m8,m10,m12,m14,m16 are grouped together due to association rule

{t3, t4} and common location r2,Serial1/0.20/20:0. Finally, the cross-router

grouping method will group together messages with locations that are on different

routers yet closely connected (e.g., two ends of one link, two ends of one BGP session),

determined by the location dictionary in the domain knowledge base. They will be

applied to the Syslog+ messages in this order (justifications explained later). After

these three grouping methods are applied in the order that they are described above

to the online syslog message stream, we obtain groups of messages, each of which is

considered a single network event, which are much smaller in number compared to

23

the raw syslog messages. In our example, m1 to m16 are eventually grouped together

into a single network event.

The final step is to prioritize and present the network events based on their per-

ceived importance to network operators. Various factors are considered together to

determine the (relative) importance of an event, including the number of messages

the event (group) contains, the frequency of this event type in the history and the

perceived impact of this event on network health. Each event is presented as a well-

formatted text line, with multiple fields summarizing the information contained in

the raw syslog messages that are grouped into this event, including the start/end

timestamps of this event, an location field that records where the event happens, an

event type field that is more informative than its counterpart in individual raw syslog

messages, and an index field that allows us to retrieve these raw syslog messages if

necessary.

The presentation of Table 3 could be 2010-01-10 00:00:00|2010-01-10 00:00:31|r1

Interface Serial1/0.10/10:0 r2 Interface Serial1/0.20/20:0|link flap, line

protocol flap.

3.3 Syslog Mining Methodologies

In this section, we present the detailed methodologies used in both the offline learning

and the online digesting systems.

3.3.1 Offline Learning Methodologies

There are several basic aspects that we need to learn from syslog messages: mes-

sage templates, location information, temporal patterns of message templates and

template relationship.

24

Figure 3: Sub type tree construction example.

3.3.1.1 Message Template Learning

As mentioned earlier, raw syslog messages have little structure. Although there is

a message type field to describe the characteristics of messages, for each message

type there can be multiple sub types. For example in Table 4, while all messages

belong to the same type ”BGP-5-ADJCHANGE” and correspond to BGP adjacency

change in MPLS VPN, the details of these messages (and hence their sub types) can

be different. At issue is how to automatically construct such sub types and combine

them with the message type to form the template without intervention from domain

experts. In our example, the neighboring IP addresses and the VRF1 IDs (e.g., VRF

1000:1001 in m1) differ from one message to another, but when these two fields are

masked (i.e., replaced by the same symbol, say asterisk, as shown in Table 5), there

are only five distinct “structure” types, or sub types as we call them. In practice,

however, it is not easy to manually find all masked parts without domain knowledge,

because not all needed-masked parts have obvious pattern like IP address or VRF

ID.

1VRF stands for Virtual Routing and Forwarding. It is a technology that allows multiple instances
of a routing table to co-exist within the same router at the same time. VRF is a common technique
used in VPN environment. The VRF ID XXX:XXXX is a simple conceptional name.

25

Table 4: The messages belong to the same message type (BGP-5-ADJCHANGE)

m1 neighbor 192.168.32.42 vpn vrf 1000:1001 Up
m2 neighbor 192.168.100.194 vpn vrf 1000:1002 Up
m3 neighbor 192.168.15.78 vpn vrf 1000:1003 Up
m4 neighbor 192.168.108.38 vpn vrf 1000:1004 Up
m5 neighbor 192.168.0.26 vpn vrf 1000:1004 Down Interface flap
m6 neighbor 192.168.7.6 vpn vrf 1000:1001 Down Interface flap
m7 neighbor 192.168.0.238 vpn vrf 1000:1003 Down Interface flap
m8 neighbor 192.168.2.114 vpn vrf 1000:1002 Down Interface flap
m9 neighbor 192.168.183.250 vpn vrf 1000:1002 Down BGP Notification sent
m10 neighbor 192.168.114.178 vpn vrf 1000:1003 Down BGP Notification sent
m11 neighbor 192.168.131.218 vpn vrf 1000:1001 Down BGP Notification sent
m12 neighbor 192.168.55.138 vpn vrf 1000:1000 Down BGP Notification sent
m13 neighbor 192.168.1.13 vpn vrf 1000:1000 Down BGP Notification received
m14 neighbor 192.168.12.241 vpn vrf 1000:1002 Down BGP Notification received
m15 neighbor 192.168.155.66 vpn vrf 1000:1003 Down BGP Notification received
m16 neighbor 192.168.254.29 vpn vrf 1000:1004 Down BGP Notification received
m17 neighbor 192.168.35.230 vpn vrf 1000:1004 Down Peer closed the session
m19 neighbor 192.168.171.166 vpn vrf 1000:1001 Down Peer closed the session
m19 neighbor 192.168.2.237 vpn vrf 1000:1002 Down Peer closed the session
m20 neighbor 192.168.0.154 vpn vrf 1000:1003 Down Peer closed the session

Table 5: Sub message types of BGP-5-ADJCHANGE

M1 neighbor * vpn vrf * Up
M2 neighbor * vpn vrf * Down Interface flap
M3 neighbor * vpn vrf * Down BGP Notification sent
M4 neighbor * vpn vrf * Down BGP Notification received
M5 neighbor * vpn vrf * Down Peer closed the session

26

Our template learning approach is inspired by the signature abstraction used in

spam detection [52]. The high level idea is that a signature, which corresponds to an

aforementioned sub type node, is a combination of words with high frequency. We

decompose messages into words separated by whitespace. For each type of message,

we construct a tree structure to express the template (sub type) hierarchy based

on the input messages (e.g., m1,m2, . . . ,m20), shown in Figure 3. We say that a

word associates with a message when the word appears in the message. The detailed

construction algorithm follows breath-first search tree traversal. We first use the

message type (e.g., BGP-5-ADJCHANGE) as the root of the tree. All messages are

associated with this message type. Then given the parent node, we look for the

most frequent combination of words which can associate with most messages that

the parent node can associate with, and make this combination as a child node.

We repeat this process to create child nodes based on remaining messages, until all

messages have been associated. We then recursively proceed to the child nodes and

repeat the process. Finally we prune the tree until it has the desired degree properties

as follows. If a parent node has more than k children, we will discard all children to

make the parent a leaf itself. Now each path from root to the each leaf become one

template (type + sub type). The intuition of this pruning is that on the one hand,

there are only a few sub types for each message type, on the other hand, usually there

would be many more messages associated with each sub type. For example, there

should be many IPs and VRF addresses associated with each sub type given enough

data. In practice, We choose k = 10 based on our experience that no message type

has more than 10 sub types.

Our template inference approach is quite generic because it is based on the words

frequency as opposed to text semantic. However, we use an implicit assumption that

the variable part of the syslog messages would appear as many distinct values given

enough historical data. This assumption is surely not always true. For example, if

27

certain protocol are enabled only on one type of network interface, say GigabitEth-

ernet, then the “GigabitEthernet” part of the message may be falsely included in the

syslog template of the protocol messages. However, this would have negligible impact

on the final outcome of the grouping result, since the “GigabitEthernet” in this case

contains as much information as the syslog sub type and hence there is no need to

exclude it.

3.3.1.2 Location Information Learning

In a typical syslog message, we only have a router id field as the basic location

information, but this is clearly not enough. For example, some events occur on a

particular physical port while some other events occur on multiple logical links (e.g.,

IP links). Such detailed location information is essential for understanding what is

going on in the network.

Figure 4 shows the generic location hierarchical structure. We classify the ba-

sic components here into physical ones and logical ones. The physical ones have a

clear hierarchical structure from top to bottom. The arrow here illustrates a “one-to-

many” relationship. For example, one router have multiple slots, each slot can have

multiple ports and etc. Besides physical hierarchy, there are some logical configura-

tions, but they will eventually map to some physical component. For example, one

multilink/bundlelink can be mapped to multiple physical interfaces. Based on router

configuration data, we can extract offline the hierarchy in Figure 4 specific to each

router, cross-router location relationships such as neighbor links, etc.

The key question here is how to automatically exploit such kind of location in-

formation from each message. First, we know the particular format of these location

information embedded into the messages. For example, the IP address has the format

XXX.XXX.XXX.XXX, the port has the format X/X/X , etc. Compared with various

parts of message we need to mask during template learning, the number of location

28

Path

Router

Slot/Line card

Multilink/Bundlelink

Logical L3 Interface

Port

Interface

Physical L3 Interface

Physical hierarchy

One to many

Logical configuration

Figure 4: Location hierarchy

format patterns are limited, which is manageable for extraction using predefined pat-

terns. However, the naive pattern matching is not sufficient to extract needed location

addresses, mainly because more than one location pattern (no matter whether they

are all needed) can be found in each message. For example, multiple IP addresses can

be found in one message. One could belong to the router itself, one could belong the

neighbor router, and it is also possible there are some remote (e.g., remote session

connection) or invalid IPs (e.g., scanning attacks). To understand the exact meaning

of multiple location patterns, especially the belongings, we correlate these locations

with router configuration data. For example we can verify if this IP belongs to the

router or its neighbors. Note that the acquired location information and location

hierarchy will be used during the offline rule mining and online grouping.

3.3.1.3 Learning Temporal Patterns of Templates

Once we identified the message templates, we learn the temporal patterns of the

message templates, i.e, the interarrival patterns. This learned knowledge will be used

29

in the online temporal grouping component.

We observe that if a particular template of message occurs periodically, the cor-

responding messages naturally form a number of clusters in the time series. For

example, Figure 5 shows that one controller goes up down many times within a short

interval because controller is unstable during the interval. Another example in Fig-

ure 6 shows that TCP bad authentication message has periodic occurrences, likely

due to the underling timer configuration, or outside impact, e.g., scanning patterns.

In order to learn such temporal patterns, i.e. , the interarrival time within each

cluster, we make a basic assumption, that is the impact of current message on the

further message with the same template will exponentially decay. Such assumption

is widely used for time series analysis and system measurement purpose [10, 59]. Our

learning method is based on the interarrival sequence S1, S2, . . . for each message tem-

plate. We compute the (predicted) exponential weighted moving average (EWMA)

of interarrival time t, Ŝt.

Ŝt = α · St−1 + (1− α) · Ŝt−1

where α ∈ (0, 1) is the weighting factor. A higher α discounts older observations

faster. Intuitively, if the messages belong to the same cluster, in other words, there

is a periodic pattern within the group, then the predicted value Ŝt should not be far

away from the real one St. Consequently, we assume that if St ≤ β·Ŝt where (β >= 1),

which means the real interarrival time is no much larger than predicted one, we view

that the message belongs to the same group. Otherwise, there is another new group.

Here parameter β defines a threshold for grouping. Larger β means tolerating larger

intervals in the group.

The offline learning component uses long-term historical data to infer the proper

value of parameters α and β and can be updated periodically. The actually values of

these parameters will be discussed in Section 3.4. These parameters are used in the

online temporal grouping component.

30

00:00 01:00 02:00 03:00 04:00 05:00 06:00

E
v
e

n
t

O
c
c
u

rr
e

n
c
e

Time series (GMT)

Figure 5: Controller up/down example.

00:00 01:00 02:00 03:00 04:00 05:00 06:00

e
v
e

n
t

c
o

u
n

t

Time series (GMT)

Figure 6: TCP bad authentication example

3.3.1.4 Template Relationship (Rule) Learning

In order to group different messages together to extract network events, one natural

thinking is to discover some implicit rules among different templates. Some rules are

very intuitive. For example, layer-1 link failures (LINK-3-UPDOWN) often trigger

layer-2 failures (LINEPROTO-5-UPDOWN). Some others are much more subtle. As

we explained before, we cannot rely on domain experts to compile and update a

31

complete rule set given the large number of templates. We need a systematic way to

identify such rules. This turns out to be a typical association rule mining problem.

Association rules describe items that occur frequently together in a dataset and are

widely-used for market basket analysis. Following the original definition by Agrawal

et al. [5] the problem of association rule mining is defined as: Let I = {i1, i2, . . . , in}

be a set of n binary attributes called items. Let D = {t1, t2, . . . , tm} be a set of

transactions called the database. Each transaction in D has a unique transaction ID

and contains a subset of the items in I. A rule is defined as an implication of the form

X ⇒ Y where X, Y ∈ I and X ∩ Y = ∅. To select interesting rules from the set of

all possible rules, constraints on various measures of significance and interest can be

used. The best-known constraints are minimum thresholds on support and confidence.

Support supp(X) of an itemset X is defined as the proportion of transactions in the

data set which contain the itemset. The confidence of a rule is defined as

conf(X ⇒ Y) =
supp(X ∩ Y)

supp(X)

In our problem setting, each message template is one item. In order to construct

the transactions, we use a sliding window W . It starts with the first message, and

slides message by message (sorted messages on the time series). Each time there is

one transaction. In one such transaction, the message templates in the window W

are considered as the items showing up.

Note that we only consider pair wise association, or |X| = |Y | = 1. In other

words, each rule only contains two templates. The reason is, first, the computation

complexity is low, and second, it is relatively easy to verify the generated rule sets.

Domain experts only need to verify the relationship of two templates per rule. The

disadvantage of pair wise is that based on these rules we cannot group more than

two templates each time, but since we assume the transition property during rule-

based grouping discuss later in Section 4.2.2), the final digest will combine multiple

templates together.

32

Until now, we assume that the rules are generated based on static dataset. But

ideally we want to learn the rules continuously. In order to adaptively adjust the

rules, we use the following conservative way. First, we training the a period of data

to generate the basic rule sets. Then we keep change the rules periodically (e.g., each

week). The new rules X ⇒ Y should be added when supp(X) and conf(X ⇒ Y) are

above the threshold. Old rules X ⇒ Y should be deleted when updated conf(X ⇒

Y) is below the threshold, no matter what supp(X) is. Such conservative deletion

approach ensures that we do not delete the rules because X are not common in this

updating period (it is quite possible X become common again soon).

3.3.2 Online System Methodologies

The online system takes the real-time Syslog+ data (with message template and loca-

tion information) and the offline-learned domain knowledge as input, groups related

messages together and construct prioritized event. Roughly speaking, if two messages

occur close in time and locations, they are related with high probability. While the

temporal closeness between two messages can simply the characterized by the close-

ness of their timestamps, the characterization of spatial closeness is more subtle. We

model various location types in the location hierarchy shown in Figure 4. We say the

two locations are spatially matched when they can be mapped to same location in

the hierarchy. For example, suppose one message happens on slot 2 and another one

message on the same router happens on interface series 2/0/0:1. They are consid-

ered spatially matched because the later message’s location (2/0/0:1) can be mapped

upwards in Figure 4 to slot 2 (the first digit before the backslash interface series of

2/0/0:1).

33

3.3.2.1 Temporal Grouping

Online temporal grouping uses the same methodology as offline temporal patterns

learning, presented in Section 3.3.1.3. Similar to Section 3.3.1.3 , if the real inter-

arrival time St ≤ β · Ŝt, then the messages belong to the same group, otherwise there

is separate group.

We also introduce two thresholds Smin and Smax. Smin is the minimal interarrival

time, and Smax is the maximum. The reason of introducing Smax is that the our

algorithm cannot guarantee convergence. Each time we only guarantee that the St is

not too large. But when Ŝt increase, St can grow exponentially. If the real interarrival

time is smaller than Smin, then we consider the messages belong to the same group.

If the real interarrival time is larger than the Smax, then we believe there is a separate

group. We set Smin to be 1 second (this is the finest time granularity available in the

syslog data we used) and Smax to be 3 hours (this is based on domain knowledge).

3.3.2.2 Rule based Grouping

In the temporal grouping part, we only consider grouping messages with the same

template together. Now we try to discover the connections among messages with dif-

ferent message templates. The offline-learned rules using association mining contain

pair-wise message templates that occur frequently together. The rule based grouping

component groups the messages which happen on the spatially matched locations

and happen close enough in time (within the window W discussed in rule-learning

part). Note that our rule based grouping does not consider the direction of rule since

our system is not a troubleshooting system thus does not rely on causality inference.

It is possible that we have A → B and A → C in the rule set, but we ignore the

direction and can group A,B,C together, assuming temporal and spatial constraints

are satisfied. This is because it is very likely they are triggered by the same network

condition thus should be considered as one event, even though we ignore the detailed

34

causal relationship among the messages.

3.3.2.3 Cross Router Grouping

The first two grouping methods all focus on a single router. A network event, how-

ever, can affect multiple routers. For instance, a link down event should involve

two adjacent routers’ links. To group such messages, our solution is a conservative

one. Our offline location learning component already provides a dictionary for cross-

router location relationship such as links, sessions, tunnels (a path) between different

routers. Assuming that the propagation along the connects are fast enough, we group

messages with the same template which happened on the same link, session, or path

at almost the same time (e.g no larger than 1 second difference).

We perform three grouping methods in the order they are described. If any two

messages in two different groups have been grouped together, then these two groups

will be merged. Thus the changes of orders of these three parts have no impact on

the final grouping results. We use this order because it is more natural to describe:

from one signature to multiple ones, from single router to multiples ones.

3.3.2.4 Prioritization and Presentation

We now have a number of messages in each group. We first prioritize the mes-

sages so that the most important events will appear at the top of the digest. Recall

from Section 2.2 that the severity level of a message provided by syslog shall not be

trusted/used. Instead, we use a combination of the following three metrics. The first

metric is the occurrence frequency of message signature on each router, say fm for

message m. The intuition is that we care more about rare events. We also consider

the impact of the events. The event happened on the higher level of the hierarchy is

more important. For example, an event happened on the router is more important

than the one happened on the interface. Let lm denote the location metric of message

m, and we can assume that the value of lm higher level is several (e.g., 10) times of

35

lower level. Finally, we consider the number of messages in the grouped event, which

in some sense reflects severity of the event. The group with more messages should

be relatively important. Based on these three metrics, there is a score we assign for

each event:

Score =
M∑
m=1

lm/log(fm)

where the event contains M messages. The reason for taking logarithm here is to

prevent rare events with tiny fm values from dominating the top of the ranked list.

Note that our scoring method provides a baseline for ranking. The network operators

can adjust the weights for each type of messages, based on their experience.

We rank all events based on the score in a decreasing order. After ranking, we

(actually the SyslogDigest system) are ready to present the final result. There are

many ways to display the event, and we choose the most concise way. First, we

present the beginning and ending time of the event, which map to the time range of

all messages in the group. Second, we present the location information of the event.

For each router, we present the most common highest level location on hierarchy.

For example, if the event contains two messages, one on the router level while the

other on the interface level, we only show the router. Third, we present the type of

event. One direct way is to present the combinations of message signatures within

the group. Domain experts can certainly assign a name for each type of event. For

example, we can assign a name ”link flap” to a event which contains ”LINK-DOWN”

and ”LINK-UP” messages.

3.4 Evaluation

We evaluate SyslogDigest using real syslog data from two large operational networks.

We first validate several design choices we made in the offline domain knowledge

learning component. Then we report the results of the entire SyslogDigest system.

36

3.4.1 Evaluation Methodology

Although our dissertation focuses on the IPTV network, our SyslogDigest can apply

to any operational IP networks, since our methodology is router-vendor independent

and network independent. For evaluation, we use syslog data collected from two

large operational IP networks in North America: a tier-1 ISP backbone network and

a nation-wide commercial IPTV backbone network. Each of these two networks has

around a couple of thousands of routers and records millions of syslog messages per

day. We refer to these two syslog data as Dataset A and Dataset B, respectively.

Note that these two networks use routers from different vendors and have different

network design and protocol configurations for supporting different network appli-

cations/services – the ISP backbone network is for general/traditional IP/Internet

service and the IPTV backbone is for commercial TV service. Both the types of mes-

sages and their signatures are very different in these two dataset. In our evaluation,

we use three months of data collected from September to November 2009 for offline

domain knowledge learning and two weeks’ of data collected December 1-14, 2009 for

online processing and reporting event digests.

We evaluate the effectiveness of SyslogDigest in the following two aspects. First,

we use the metrics compression ratio to measure the ability of SyslogDigest to reduce

the amount of information that operators need to receive and examine in order to

know what happened in the network for each incident. We define the the compression

ratio to be the number of events (compressed information size) divided by the total

number of raw messages (uncompressed information size). Second, we validate the

event digests output by SyslogDigest to see whether any unrelevant messages are

collected into one network event. This validation process done manually by people

who have rich network experiences and domain knowledge on these two operational

networks.

37

Table 6: Sensitivity of minimal support SPmin value

SPmin Top % (A) Coverage (A) Top % (B) Coverage (B)

0.001 13.4% 98.72% 14.2% 89.34%

0.0005 27.5% 99.92% 32.3% 99.95%

0.0001 42.5% 99.98% 54.3% 99.99%

3.4.2 Components Effectiveness

We first evaluate our design choices in message template identification, association

rule mining and temporal mining components shown in Figure 2.

3.4.2.1 Message Template Identification

SyslogDigest automatically abstracts the template of each type of syslog messages.

We validate our template abstraction method presented in Section 3.3.1 by comparing

the syslog message templates identified by SyslogDigest with the “ground truth” tem-

plates obtained from hard-coding comprehensive domain knowledge on syslog. The

domain knowledge we used here are very specific to certain router vendors. Hard-

coding domain knowledge is clearly not scalable, and hence we use it only for valida-

tion purpose. Note that such kind of methods require the knowledge of all message

format in advance, which is not practical specially when there are many messages

types and facing different syslog data sources. We observe that 94% of message tem-

plates matches. It indicates our learning approach can extract the template fairly

well.

3.4.2.2 Association Rule Mining

In order to generated rules, we use three months (Sep 2009 to Nov 2009) for mining

for both datasets.

There are three parameters used by SyslogDigest in mining association rules be-

tween syslog messages: Window size W , the threshold of minimal support SPmin,

and the minimal confidence Confmin. We evaluate the sensitivity of these parameter

38

setting on learning associations between syslog message. In particular, we vary W

from 5 to 300 seconds and Confmin from 0.5 to 0.9. We also set SPmin at values 0.001,

0.0005, 0.0001. The implication of these settings of SPmin in our context is shown in

Table 6. For example, when SPmin = 0.005, the top 27.5% types of messages will be

used in rule mining and these types of messages cover over 99.9% of all messages in

dataset A.

Figure 7 shows the number of association rules learned from dataset with fixing

the value of W to be 1 minute and varying the values of SPmin and Confmin. As we

expected, the number of rules decreases as the value of Confmin increases. In addition,

the higher the value of SPmin is, the fewer rules learned from the dataset. Similar

observations hold different values of W . In our experiments, we set Confmin = 0.8

and SPmin = 0.0005. With this setting, Figure 8 shows the number of generated

rules by varying the value of W . We observe that the number of rules increases

as W increases. However, the increase in the number rules diminishes at W = 120

seconds for dataset A and W = 40 second for dataset B. That is, the number of

rules learned by SyslogDigest is less sensitive to the value of W when W is large. A

detailed analysis on the rules reveals that the newly added rules by increasing W often

captures implicit timing relationship between two types of messages. For example, in

dataset A, we observe that when W changes from 10 to 30 seconds, there are several

new rules added to the knowledge base. These rules associate the controller flap, link

flap andline protocol flap messages, indicating that these types of messages usually

occur together between 10-30 apart. Similarly, in dataset B we find that ftp login

failure and ssh login failure messages are associated together when W is set to 30 -

40 seconds. Next, we present results on association rule mining with using W = 120

seconds for dataset A and W = 40 seconds for dataset B.

The association rule mining is performed weekly by SyslogDigest to (i) add new

rules to the knowledge base, and (ii) identify invalid rules in the knowledge base and

39

 100

 200

 300

 400

 500

 600

 700

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

T
h
e
 n

u
m

b
e
r

o
f
ru

le
s

Confmin

Suppmin = 0.001
Suppmin = 0.0005
Suppmin = 0.0001

Figure 7: The impact of parameter SPmin and Confmin, in dataset A.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 60 120 180 240 300

T
h
e
 n

u
m

b
e
r

o
f
ru

le
s

Window size (seconds)

Dataset A
Dataset B

Figure 8: The impact of parameter W , when Confmin = 0.8 and SPmin = 0.0005.

remove them using the method presented in Section 3.3.1.4. Figure 9 and Figure 10

show the total number of rules in the knowledge base as well as added/deleted rules

for each week from week 2 to week 12. The number of rules in the knowledge base

becomes stable after week 6 for dataset A and after week 8 for dataset B. This is

because the number of added and deleted rules are close to zero after few weeks for

both datasets.

We further validated the rule sets obtained at the end of week 12 with expert

40

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 2 4 6 8 10 12

T
h
e
 n

u
m

b
e
r

o
f
ru

le
s

The number of weeks

Total rules

Deleted rules

Added rules

Figure 9: The number of rules over 12 weeks, dataset A.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2 4 6 8 10 12

T
h
e
 n

u
m

b
e
r

o
f
ru

le
s

The number of weeks

Total rules

Deleted rules

Added rules

Figure 10: The number of rules over 12 weeks, dataset B.

domain knowledge and vendor documentations. We found that almost all the rules

are consistent with either the domain knowledge or the expected behaviors specified

in vendor documentations. Thus, we believe that SyslogDigest successfully captures

network behaviors using automatically learned rules. However, we did report a few

“unexpected” rules (3 rules for dataset A and 16 rules for dataset B), which means the

potential false positive rate is less than 0.05 during rule mining. These unexpected

rules are currently under investigation.

41

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 0.1 0.2 0.3 0.4 0.5 0.6

T
h
e
 c

o
m

p
re

s
s
 r

a
te

Parameter α

Dataset A
Dataset B

Figure 11: The impact of varying value of α on the compression ratio (β = 2).

3.4.2.3 Temporal Pattern Mining

The goal of temporal pattern mining is essentially to find the proper parameter α

and β, such that the underlying interarrival model can present the temporal patterns

very well. In other words, we want to find α and β such that we can group messages

appropriately (i.e. compression ratio would be optimal). Figure 11 shows the com-

pression ratio of temporal grouping with α varying from 0 to 0.6 and β = 2 (i.e., if

a new message arrives at an interval that is at least twice of the predicted interval,

the message is put in a separate group). We observe that in both datasets, the larger

the value of α is the higher the compression ratio is, except for very small value of α

(e.g., α < 0.05). The lowest (i.e., best) compression ratio is achieved when α = 0.05

for dataset A and α = 0.075 for dataset B. They will be used as the default value for

α in the remaining experiments.

Figure 12 shows the impact of varying value of β (from 2 to 7) on the compression

ratio with α being set at the default values. We observe that the compression ratio

first decreases as we increase the value of β. This is consist to our intuition because a

larger β value means larger intervals are used in temporal grouping of messages and

hence fewer number of groups are output. We also observe that the improvement of

42

 0.008

 0.009

 0.01

 0.011

 0.012

 0.013

 0.014

 0.015

 0.016

 0.017

 0.018

 0.019

 2 3 4 5 6 7

T
h
e
 c

o
m

p
re

s
s
 r

a
te

Parameter β

Dataset A
Dataset B

Figure 12: The impact of varying value of β on the compression ratio (α = 0.05 for
dataset A and α = 0.075 for dataset B).

Table 7: Parameter setting in SyslogDigest

Dataset α β W (Dataset A/B) SPmin Confmin
A 0.05 5 120 0.0005 0.8

B 0.075 5 40 0.0005 0.8

compression diminishes when β increases. Thus, we set β = 5 for both datasets.

In summary, Table 7 shows the parameter settings in SyslogDigest. The rules of

thumb are of choosing parameters are (1) to ensure the stability of rule sets and (2)

to ensure the stability of the compress ratio, as we discussed through Section 5.2.

These values in Table 7 will be used in the rest of our experiments presented in this

paper.

3.4.3 Performance of SyslogDigest

Using the domain knowledge base built by applying offline learning on three months of

syslog data, we run SyslogDigest in online mode and generate event digests for 2 weeks

of syslog data to evaluate the effectiveness of the entire system. Note that it generally

takes less than one hour to digest one day’s syslog. Table 8 shows compression ratios

of different message grouping methodologies for both datasets. We found that the

43

Table 8: Effectiveness (compression ratio) of three digest methodologies. T: temporal
based, R: rule based, C: cross router

Methodology Ratio (Dataset A) Ratio (Dataset B)

T 1.63× 10−2 9.08× 10−3

T+R 5.15× 10−3 2.26× 10−3

T+R+C 3.27× 10−3 0.91× 10−3

 0.0001

 0.001

 0.01

 0.1

 1

 0 2 4 6 8 10 12 14 16

N
o
rm

a
liz

e
d
 c

o
u
n
ts

 (
lo

g
 s

c
a
le

)

Days

messages
events

active rules

Figure 13: Number of event digests and active rules per day for dataset A.

compression ratio varies by grouping method by dataset. Overall, the number of

event digests is over three orders of magnitude smaller than the number of raw syslog

messages. This is fairly substantial information compression/reduction.

Figure 13 shows the number of events and number of messages per day during

these two weeks for dataset A (the numbers are normalized by a fixed factor due to

proprietary information). Again, we obverse the three orders of magnitude compres-

sion. In addition, the number of events per day is relatively stable across days for

both datasets. In addition to the events digest, SyslogDigest also tracks the asso-

ciation rules that are used in message grouping (we call them “active rules”). The

number of active rules is also stable: 100 ∼ 200 per day. The observations on dataset

B is similar and omitted due to space limit.

Figure 14 show normalized number of raw messages and number of events on each

44

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

T
h
e
 n

u
m

b
e
r

o
f
m

e
s
s
a
g
e
s
/e

v
e
n
ts

Router

Number of messages
Number of events

Figure 14: The digest result per router of dataset A.

individual router for datasets A2. We observe that the distribution of events across

routers are less skew than that of raw syslog messages. In addition, routers that have

more syslog messages usually have a better compression ratio. The best compression

ratio is achieved on the router which has the largest number of raw message.

In order to verify that SyslogDigest system does not miss important network events

during extraction, we compare the event digests output by SyslogDigest with known

network events obtained from the trouble tickets. We obtained trouble tickets for both

dataset A and dataset B, each of which is associated with a unique case identifier,

timestamp of which the ticket is created and/or updated, and type and location of

the event. While an extensive and systematic evaluation is undergoing, we show our

preliminary results in this paper. In our preliminary evaluation, we rank the tickets

based on the number of times a ticket is investigated and the corresponding record is

updated. The intuition is that the more times that a ticket is investigated, the more

likely the corresponding event is more important (and/or complicated). Hence, we

use the number of times a ticket is investigated and updated as an approximation

of the important of an event. We select the top 30 tickets regarding dataset B and

2Due to page limitation, very similar result for dataset B is not shown here

45

correlate them with event digests output by SyslogDigest. We say there is match

between a trouble ticket and an event digest if (i) the duration of the event digest

covers the creation time of the trouble ticket and (ii) the event location of specified

in the event digest is consistent with that described in the trouble ticket (at the state

level, e.g.,TX, GA, etc.). We found that all 30 tickets match with event digests that

are ranked as top 5% or even higher by SyslogDigest. This initial evaluation shows

that SyslogDigest does not miss important incidents.

3.5 Applications

In this section, we demonstrate that SyslogDigest can be used an essential building

block for many critical applications in network operations, such as troubleshooting

and network health monitoring and visualization.

3.5.1 Complex network troubleshooting

Router syslog is one of the most important data source for network troubleshooting,

and SyslogDigest provides network operators the gist of the syslogs – high-level net-

work events. This is very important especially for diagnosing complex events that

involve protocol interactions across multiple network layers and locations.

We next examine a real-world example on PIM neighbor loss event in the IPTV

network – an event that was identified by SyslogDigest and is intriguingly complex.

In the commercial IPTV network, live TV streams are delivered using native IP

multicast (i.e., PIM in this example). A change or loss of PIM neighbor session (e.g.,

caused by link failures) can disrupt delivery of IPTV data streams. Hence, there are

several mechanisms implemented in the layer 2 and layer 3 network to enhance the

service reliability. Particularly, two static layer 2 paths are configured between each

pair of routers on the multicast tree – the primary path is the single-hop one directly

connecting these two routers and the secondary path is a multi-hop path through

routers in different VHOs. When there is a physical link failure on the primary

46

path, the secondary path will be used to deliver IPTV data streams through the

MPLS tunnels. The fast re-route (FRR) is done in layer 2 so that layer 3 routing

(i.e., OSPF) is oblivious of this fail-over event, avoiding lengthy route-reconvergence

impacting the PIM neighbor session. In this design, PIM neighbor session should

only be impacted when there are dual failures on both primary path and secondary

path. Such dual failures are extremely rare in operational networks.

In a troubleshooting task, operators investigated a PIM neighbor session flap event

between a pair of nodes in two VHOs. The event was somewhat unexpected because

the PIM neighbor session loss appeared to be triggered by a single link failure on the

primary path between two routers. In theory, the PIM neighbor session should not be

impacted. The event signature output by SyslogDigest revealed that the secondary

path had not been set up successfully and was undergoing connection retries every five

minutes. Consequently, the PIM neighbor session was immediately interrupted when

the primary path failed. In the event signature, hundreds of syslog messages recorded

on a dozen of routers in multiple VHOs are associated to this SyslogDigest event.

These syslog messages are of 15 distinct error codes involving 6 network protocols

across three network layers.

If without SyslogDigest, it would easily take operators hours to manually identify

these messages among tens of thousands of syslogs recorded at these routers and close

in time to the PIM loss event. As a matter of fact, it is not clear what time duration

should the network operators focus on in searching for related syslogs, simply because

different protocols operate (or react to network changes) at different time granularities

(ranging from sub-seconds to minutes or longer). In this particular event, the syslog

messages that indicates a failure in setting up the secondary path, i.e., the connection

retries, are several minutes apart from the link failure. Without knowing the exact

protocols and timer involved, it is difficult to find the right time window to focus on –

a short window (e.g., ±60 seconds) would risk missing the failure information of the

47

Figure 15: Visualization based on SyslogDigest output.

secondary path, while a long window (e.g., ±3600 seconds) would certainly increase

the amount of syslogs to be analyzed, slowing down operators’ investigation.

By contrast, SyslogDigest was able to uncover the complete stream of this complex

event. This is because SyslogDigest “learns” both the types and the co-occurrence

time patterns of related syslog messages, and consequently associate such syslogs

together when they do co-occur.

Furthermore, even with other automated troubleshooting systems (e.g., [27]) in

place, working with pre-processed high-level events can greatly improve the efficiency

compared to working with large numbers of raw syslog events.

3.5.2 Network health monitoring and visualization

It is imperative for network operators to keep track of “what happened in my net-

work?”. Visualization is often an effective way to achieve this as operators are able

to “see” what happened in the network and how things evolve over time. The digest

events from SyslogDigest can greatly improve network health visualization.

Figures 15 and 16 show the snapshots of network status map at 2009/12/5

16:00:00 (in 10 minute updating window) using SyslogDigest and using raw syslog

48

Figure 16: Visualization based on raw syslog data.

messages, respectively. Network topology and link load status are removed from the

graph to protect proprietary information. The circles in the map indicate events (or

messages) observed at these routers with larger circles indicating more events (or

messages) observed. We observe that only a small number of events took place in the

network then, while the corresponding syslog messages range from dozens to a couple

of hundreds on each of these routers. Making sense of the raw syslogs visualization

requires decoding plenty of supplement information (e.g., the pie chart shown in Fig-

ure 16 reporting the mixture of syslog types and counts for all events on the router).

It is worth noting that high syslog message counts do not necessarily imply more

network events or “bigger trouble” – the big circle in Figure 16 was one moderate

level event compare to others in Figure 15. Visualization the raw syslog messages can

potentially mislead operators to focus on routers with more messages and delay their

investigation on more sever issues.

49

3.6 Related Work

Commercial softwares, like NetCool [2] Lonix [1], that are capable of parsing and

making log data. These tools, however, require intensive domain knowledge to de-

scribe the format of logs. Xu et al. propose a general methodology to mine the

console logs and to automatically detect system running time problem [55]. But they

assume that they have the access to source code which generate the logs. It is not a

practical assumption in the environment of router syslogs.

Troubleshooting network problems is one of the most important management

tasks. Many approaches have been proposed recent years [31, 30, 46, 25, 36, 35, 29].

The general idea is to apply advanced statistical methodologies to multiple raw data

sources. Our system is not specifically designed for troubleshooting, but as illustrated

in Section 3.5, it can benefit complex troubleshooting task significantly.

Rule learning has been widely applied in acquiring insight on different network

problems. Kandula et al. [28] mine the rules in edge networks based on the network

traffic data. Brauckhoff et al. [9] use association rule mining techniques to extract

anomaly in backbone network. Their data sources, detailed mining methodologies

and utilities of final mining results are different from our system. Yamanishi et

al. [56] provides a dynamic syslog mining technique on server syslogs. They focus

on generating predicative alarm for system failures. Our goal is more broad – to

represent the network events. Moreover, their syslog data are essentially logs on the

end host devices, rather than router syslogs.

The idea of extracting high level information from raw data has been used in net-

work traffic analysis. A few tools aggregate traffic volumes and visualize the resulting

aggregates. For example, FlowScan [41] analyzes and reports on Internet Protocol

(IP) flow data exported by routers, based on the application, the IP prefix, or the AS

identifier. eXpose [28] identifies temporally correlated clusters of flows. NICE [36]

is a correlation tool focusing on the chronic network conditions. In comparison, our

50

system is the first one used for extracting network events from logs.

3.7 Summary and Future Work

In this chapter, we develop a system called SyslogDigest that groups massive volume

of syslog messages into small number of meaningful network events using data min-

ing techniques. SyslogDigest systematically identifies signatures of syslog messages,

learns association rules that capture network behaviors over time, groups related raw

syslog messages across multiple routers into network events, and labels and prioritizes

network events appropriately. We evaluated SyslogDigest using real syslog data col-

lected from two large operational networks and demonstrated how SyslogDigest can

be applied on complex network troubleshooting and network health monitoring and

visualization. Though we focused on syslog data, our techniques can also be applied

on other passive measurement data. We believe SyslogDigest will be an essential

building block for many network management tools. Applying SyslogDigest on other

data and integrating it into various network management tools are among our future

work.

51

CHAPTER IV

MODELING IPTV CHANNEL POPULARITY

4.1 Introduction

Understanding the channel popularity or content popularity is an important step

in the workload characterization for modern information distribution systems such

as World Wide Web, P2P file-sharing systems, IPTV networks, video-on-demand

(VOD) systems, content distribution networks, publish/subscribe systems, and RSS

feeds distribution systems. The proper modeling of the distribution of user’s interest

in various contents and media in the system is a key building block for system design

and performance analysis. For example, it has been well known that web site pop-

ularity is highly skewed and can be characterized by a Zipf-like distribution [38], a

factor that carries important implication in evaluating different DNS caching policies.

Similar popularity skewness has also been observed in other systems including P2P

file-sharing [15], VOD [60], web servers [6], and IPTV [12].

Another important aspect of the content or channel popularity is its temporal

dynamics, which captures the popularity changes over time. Examples of such dy-

namics are the shift of users’ search and download interest among files in a P2P

file-sharing system, the change of subscriber numbers among different topics in a

publish/subscribe system, and the growth/shrink of community groups in a social

network. The popularity dynamics can be either attributed to the stochastic nature

of users’ interest at the time, or attributed to the change of active users’ population at

the time, or a combination of both. Understanding the process of popularity dynam-

ics can provide important insight into service design and optimization. For example,

properties on TV channel popularity dynamics are an essential piece of information

52

for evaluating the proposal of using peer-assisted TV stream distribution (e.g., [24])

in an IPTV system.

In this chapter, we focus on analyzing the channel popularity in the context of

Internet Protocol Television (IPTV). Our goal is to construct mathematical models

to capture the distribution and the time dynamics of channel popularity. This is

motivated by recent booming growth among telecommunication companies around

the world in the rapid deployment of the IPTV infrastructure and service expan-

sion, and hence the increasing demand in the workload characterization and perfor-

mance evaluation of the IPTV system. However, we believe that the basic principle

and methodology used herein are applicable to other domains (e.g., RSS feeds, news

groups).

Our analysis is based on a large collection of user channel access data from a

nation-wide commercial IPTV network1. We conduct an in-depth analysis of the user

channel switch activities and study the channel popularity for different channels, at

different time and different aggregation scales (ranging from minutes to days). Then,

we identify a stochastic model that matches well in all attributes of interest with

respect to the channel popularity. We also explore subsets of user population and

investigate whether they intrinsically have different channel preferences from others.

We then construct multi-class population models that capture the non-stationary

behavior of channel popularity exhibited by its diurnal patterns, which has been

reported in previous measurement study [12].

Our contributions can be summarized as follows:

• We observe that channel popularity is highly skewed and can be well captured by

a Zipf-like distribution. This holds true at different times of day and at various

aggregation scales. We find that the popularity of each individual channel

1To protect the identity of the IPTV network subscribers, individual set top boxes were assigned
a non-identifiable ID number for purposes of this research. The authors did not have access to
subscriber’s identity or address of individual set top boxes.

53

has an exponentially decaying autocorrelation function, a common behavior

across different channels. We also examine the change of two channel popularity

vectors at adjacent time bins while varying the aggregation step. We find that

the cosine similarity between channel popularity vectors exhibits an interesting

multi-scale behavior, forming a V-shape when the aggregation scale increases

from minutes to days.

• We model channel popularity dynamics as an Ornstein-Uhlenbeck process and

find that it matches remarkably well with respect to the above properties. The

success in capturing the underlying channel popularity dynamics enables our

model to produce a satisfying result for channel popularity prediction.

• We develop a method to identify subsets of user population with inherently dif-

ferent channel interests. We apply the K-means clustering algorithm on various

features of users, and use a symmetric uncertainty measure and hypothesis test

to evaluate the significance of channel popularity difference. By tracking the

change of population mixtures among different user classes, we extend our model

to a multi-class population model, which enables us to capture the moderate

diurnal popularity patterns exhibited in some channels.

4.2 Measurement Results of Channel Popularity

Channel popularity needs to be precisely defined before we can present our analysis

result. There are two common used metrics to measure the channel popularity. The

first is based on channel access frequency which is defined as the number of channel

switching requests to the channel. The other is based on channel dwell time defined

as the amount of time STBs stay tuned in the channel. They measure two different

aspects of channel popularity: weighted by visit frequency vs. weighted by watching

time.

Figure 17 and Figure 18 show the time series of the number of online STBs and

54

0 1 2 3 4 5 6 7 8
2

2.5

3

3.5

4

4.5
x 10

5

Days

T
h

e
n

u
m

b
er

 o
f

si
m

u
lt

an
eo

u
s

S
T

B
s

Figure 17: The number of online STBs for each hour during a week.

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5
x 10

6

Days

T
h

e
n

u
m

b
er

 o
f

ch
an

n
el

 s
w

it
ch

es

Figure 18: The number of channel switches for each hour during a week.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Channel index (sorted by channel popularity)

P
ro

p
o

rt
io

n
 (

C
D

F
)

Top 10%

Acceess frequency

Channel dwell time

Figure 19: CDF of channel popularity.

the total number of channel switches respectively. As expected, we find both of them

highly variable, exhibiting strong diurnal patterns. To account for the variation due

to the change in the number of active users, we focus on the probability distribution

(i.e., normalized among all channels) instead of the absolute value of the channel

popularity measure.

55

4.2.1 Distribution of Channel Popularity

We first examine the long term distribution of channel popularity of all channels using

both metrics. Figure 19 shows the cumulative distribution function (CDF) of channel

popularity ranked by access frequency and dwell time. We observe a close match

between the CDF curves of the two different popularity metrics. Both distribution

functions exhibit high skewness – the top 10% of channels account for more than 90%

of channel access.

10
0

10
1

10
2

10
3

10
−8

10
−6

10
−4

10
−2

10
0

Channel index sorted by popularity (log scale)

N
o

rm
al

iz
ed

 C
h

an
n

el
 A

cc
es

s
(l

o
g

)

15 minutes

1 hour

12 hours

(a) Based on channel access frequency

10
0

10
1

10
2

10
3

10
−8

10
−6

10
−4

10
−2

10
0

Channel index sorted by popularity (log scale)

N
o

rm
al

iz
ed

 d
w

el
l

ti
m

e
(l

o
g

 s
ca

le
)

15 minutes

1 hour

12 hours

(b) Based on dwell time

Figure 20: Channel popularity distribution (varying time period).

10
0

10
1

10
2

10
3

10
−8

10
−6

10
−4

10
−2

10
0

Channel index sorted by popularity (log scale)

N
o

rm
al

iz
ed

 C
h

an
n

el
 A

cc
es

s
(l

o
g

)

0AM

8AM

8PM

(a) Based on channel access frequency

10
0

10
1

10
2

10
3

10
−8

10
−6

10
−4

10
−2

10
0

Channel index sorted by popularity (log scale)

N
o

rm
al

iz
ed

 d
w

el
l

ti
m

e
(l

o
g

 s
ca

le
)

0 AM

8 AM

8 PM

(b) Based on dwell time

Figure 21: Channel popularity distribution (varying start time).

We next focus on the short term distribution of channel popularity with respect

to the two metrics. We examine this property at different time scales and at different

points in time. Interestingly, we find the channel popularity distribution is nearly in-

variant across a large range of measurement time scales or over different time periods.

56

For example, in Figure 20, we show the average popularity probabilities (i.e., normal-

ized channel access ratio and normalized channel dwell time ratio) measured during

15-minutes, 1-hour, and 12-hour periods starting from 0 AM. We sort the channels in

a decreasing order of popularity and plot their rank in x-axis. We find that the three

curves almost overlap on top of each other. In Figure 21, we also show the channel

popularity probabilities of the same day using 4-hour aggregation granularity (0 AM

to 4 AM, 8 AM to 12 PM, and 8 PM to 12 AM). Again, we find the curves very close

to each other. We emphasize that the nearly invariant distribution function does not

necessarily imply the channel popularity itself being invariant — the rank order of

the channels is actually different from time to time and from one scale to another.

We will turn to the temporal dynamics of channel popularity in Section 4.2.3.

The log-log scale curves in Figure 20 and Figure 21 also suggest that channel

popularity is highly skewed in all cases. To simplify computation, in the rest of the

chapter, we focus only on the top 150 channels which account for over 98% of the

channel accesses. We acknowledge that modeling the tail part may be important

for some applications. However, this simplification should have little impact on the

analysis of overall time dynamics of channel popularity, which is the main focus of

our study.

4.2.2 Correlation between Channel Accesses and Channel Dwell Time

We have observed in the previous subsection that channel popularity based on access

frequency and based on dwell time produces a very similar result. This may be

an indication for a strong correlation between these two popularity measures, which

turns out to be true as illustrated in Figure 22, based on the entire period of trace.

Figure 22(a) shows the scatter plot of the ranks of the channels in which the popularity

rank according to channel access frequency is shown on the x-axis and the rank

according to channel dwell time on the y-axis. Figure 22(b) shows the similar scatter

57

plot of the actual probability value by the two metrics instead of the corresponding

ranks. In both figures, we find that the points are spread well along the diagonal line

— their Spearman rank correlation value equals to 0.98 and their Peterson correlation

coefficient equals to 0.97 – demonstrating the strong correlation between the two

popularity metrics. We believe that the relatively long delay during channel switches

and the convenient TV guide and favorite-channel-list features are both contributing

factors to this high correlation, as people are more likely to switch directly to the

channel that they intend to watch.

In the rest of this chapter, we use the channel access frequency as the metric for

channel popularity when illustrating our findings.

0 100 200 300 400 500
0

100

200

300

400

500

Ranking based on channel access frequency

R
an

k
in

g
 b

as
ed

 o
n

 c
h

an
n

el
 d

w
el

l
ti

m
e

(a) Based on ranking

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

Probability based on access frequency

P
ro

b
ab

il
it

y
 b

as
ed

 o
n

 d
w

el
l

ti
m

e

(b) Based on probability

Figure 22: The correlation between channel access frequency and dwell time.

4.2.3 Temporal Dynamics of Channel Popularity

We now turn our attention to the time dynamics of popularity for individual chan-

nels. We start by looking at the time series of the channel popularity. (We refer to

channel popularity measured by channel access frequency simply as channel popular-

ity). Figures 23 and 24 show the time series of 9 days for a kids channel K and a

news channel N respectively. In contrast to the time-invariant behavior reported in

Section 4.2.1, both time series exhibit strong fluctuations over time. We next follow

classic time series analysis processes to analyze these channel popularity series. In

particular, we examine their stationarity, their first-order and second-order statistics,

58

Sun Mon Tue Wed Thu Fri Sta Sun Mon Tue
0

0.01

0.02

0.03

0.04

0.05

0.06

Tme

P
ro

b
ab

il
ti

y

Kids Channel K

Figure 23: The dynamics of channel popularity of kids channel K, 1 point every 15
minutes

and their autocorrelation structure.

To test the stationarity of the channel popularity series, we apply the nonpara-

metric runs test [8]. Given a time series X(t), the runs test works as follows: (i)

divide the series into equal-length time intervals and compute a mean value X̄i for

each bin, (ii) compute the median value of X̄i over all bins and mark the ones below

the median as “−” and the rest as “+”, (iii) consider a consecutive sequence of “+”

or a consecutive sequence of “−” as a run and count the total number of runs, and

(iv) compare the number of runs against known run-count-distribution for stationary

random data.

At the 95-th percentile confidence interval, we find that 92% of the channels pass

the stationarity test when aggregated at 15-minute intervals. A small number of

channels that fail the runs test exhibit non-trivial daily pattern, to which we will

offer explanation in Section 4.4. .

We also calculate the coefficient of variation (CoV) for the channel popularity

series. Figure 25 shows the distribution of CoV’s of the channels. Despite the wide

difference in their mean value (shown in Figure 19), we find that the CoV’s of channel

popularity series are narrowly centered around 0.6. For example, the CoV for the

series of the kids channel K (in Figure 23) is 0.57 and that for the news channel

N (in Figure 24) is 0.68. We will see how the empirical CoV help in our model in

Section 4.3.

59

Sun Mon Tue Wed Thu Frid Sat Sun Mon Tue
0

0.002

0.004

0.006

0.008

0.01

0.012

Time

P
ro

b
ab

il
it

y

News Channel N

Figure 24: The dynamics of channel popularity of news channel N , 1 point every 15
minutes

0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

5

10

15

20

25

The CoV value

T
h

e
 n

u
m

b
e
r

o
f

c
h

a
n

n
e
ls

Figure 25: The distribution of CoV

We further study the autocorrelation structure of the channel popularity series,

defined by their autocorrelation function (ACF):

R(τ) =
E[(Xt − µ)(Xt+τ − µ)]

σ2

We compute the ACF for each channel, when the lag ranges from 15 minutes to

8 days. The autocorrelation value decays exponentially as the time lag increases (al-

though some increases at the daily boundary). It is a typical behavior often observed

in auto-regression processes. We further observe that the slope of the decreasing

curves, which is the exponent of the exponentially decreasing ACF, are close among

all channels. Using least square fitting, we obtain the best estimate of the exponent

for each channel and plot their distribution in Figure 26. We find that their values

concentrate at around −0.12.

60

−0.126 −0.124 −0.122 −0.12 −0.118 −0.116 −0.114
0

5

10

15

20

25

The exponent of the exponentially descresing ACF

T
h

e
n

u
m

b
er

 o
f

ch
an

n
el

s

Figure 26: The distribution of the slope in ACF

4.2.4 Multi-scale Property of Channel Popularity Similarity

We have examined the autocorrelation structure of the popularity measure of each

individual channel. To quantify the similarity (or dissimilarity) of the channel popu-

larity collectively among all channels, we adopt the metric named cosine similarity.

Cosine similarity measures the similarity between two vectors by finding the cosine

value of the angle between them. For a pair of vectors A and B, the cosine similarity

is given by:

similarity(A,B) =
A ·B
||A|| ||B||

Its value ranges from −1 to 1, with value closer to 1 indicating higher similarity

between A and B. Cosine similarity has been widely used in high-dimensional data

analysis such as applications in text mining [58].

In the context of IPTV, we expect the channel popularity to be relatively stable

over time. This is indeed true—the average cosine similarity between adjacent 15-

minute time bins is around 0.97, indicating the distribution of the channel popularity

is quite stable in a short time frame. We further investigate whether the similarity

becomes more pronounced with different time scales and perform the following multi-

scale analysis.

We discretize our data traces by fixed-interval time bins, with interval lengths

ranging from 15 minutes to 3 days. At each interval, we calculate the channel access

probability of different channels for each time bin. Then, for each pair of adjacent

61

0 1 2 3
0.85

0.9

0.95

1

Time scale (days)

S
im

il
ar

it
y

Figure 27: The average cosine similarity for different aggregation time scales

time bins, we compute the cosine similarity of channel popularity vectors. Based on

these values, we calculate the average for each aggregation interval. Figure 27 shows

the result where x-axis is the aggregation time scale (interval length) and y-axis is

the average similarity.

In Figure 27, we observe that the curve forms a V-shape as we increase the aggre-

gation level. Specifically, the similarity value first decreases as the aggregation times

increases, reaching its minimum at around 3-4 hour aggregation scale. After that, we

observe an increasing trend as we increase the aggregation time scale. This is because

when the time scale is short, the similarity/dissimilarity of the channel popularity is

determined by the TV program (shows) of the time. On the other hand, when the

time scale is long, the similarity/dissimilarity is determined by the overall type of TV

program on the channels. Both the viewer base of individual TV shows and the long

term user affinity to the type of program are relatively more stable, which makes the

time scale in between the weakest in term of channel popularity stability. We can

also gain some intuition from the perspective of process analysis. Specifically, expo-

nentially decaying autocorrelation function of channel popularity (note the log-scale

on y-axis) causes the fast decreasing stability in short time scales. As the aggregation

level becomes sufficiently large, the short term disturbances are smoothed out, con-

verging to long term average, and hence improving the stability. We next present our

model and demonstrate that our proposed model can closely match this behavior.

62

10
0

10
1

10
2

10
3

10
0

10
2

10
4

10
6

Channel index sorted by popularity (log scale)

A
cc

es
s

fr
eq

u
en

cy
 (

lo
g

 s
ca

le
)

Real trace

Our model

Figure 28: Channel popularity distribution.

4.3 Modeling Channel Popularity

We now present our model for channel popularity. We will use Zipf-like model to

capture the long term channel popularity distribution among different channels and

mean reversion model to capture the stochastic process of popularity fluctuation for

individual channels.

4.3.1 Zipf-like Model

The Zipf-like distribution has been proved successful in capturing the skewness in

content popularity such as Web [6] and VOD [45]. In the Zipf-like distribution, an

object of the rank i has the access probability of C/i1−α, where C is a normalization

constant and α is the distribution skew parameter. In Section 4.2, we have observed

that the channel popularity is also highly skewed. We naturally model it using Zipf-

like distribution.

Figure 45 shows the access frequencies of all channels in the order of decreasing

popularity from the real trace and the fitted Zipf-like distribution (the dashed line

with α = 0.55). We observe a very good match up to around 150 channels, which

account for over 98% of the channel-switches (see Figure 19).

4.3.2 Mean Reversion Model

Modeling the temporal dynamics of channel popularity is more challenging. Based

on our analysis in Section 4.2, we choose a class of stocastic models, namely mean

63

reversion model for this purpose. Mean reversion model has been widely used in

financial data analysis. The basic idea is that the price of a stock or a commodity

may fluctuate but will revert to its long-term equilibrium level. Ornstein-Uhlenbeck

(OU) process {Xt : t > 0} is the most widely used mean reverting stochastic process

in financial modeling [47]. It is stationary, Gaussian, Markovian, and continuous in

probability. The Ornstein-Uhlenbeck process is characterized by the following linear

stochastic differential equation (SDE) [17]:

dXt = λ(µ−Xt) dt+ σ dWt, (1)

where λ > 0 is the mean reversion rate, µ the long-term mean, and σ the volatility. Wt

denotes a Wiener process (also known as Brownian motion), which is characterized

by: (i) W0 = 0, (ii) Wt is almost surely (i.e., with probability one) continuous, and

(iii) Wt has independent increments with distribution Wt − Ws ∼ N (0, t − s) for

0 ≤ s < t.

To understand the OU process, we can view the RHS of Eq (1) as summation of

a deterministic term (the first term in RHS) and a stochastic term (the second term

in RHS). When Xt > µ, the deterministic term λ(µ − Xt) is negative, resulting in

pulling back down toward the equilibrium level (i.e., µ); if Xt < µ, the deterministic

term is positive, pushing Xt back up to the equilibrium level. As a result, every time

the stochastic term makes Xt deviate from the equilibrium, the deterministic term

will act in such a way that Xt will head back to the equilibrium µ.

For an OU process, we have the moments:

E(X) = µ (2)

Cov(Xs, Xt) =
σ2

2λ
e−λ|s−t| (3)

This implies that the autocorrelation function of an OU process decays exponentially

as the lag |s−t| increases, which would match well with the empirical ACF of channel

popularity series.

64

0 1 2 3
0.85

0.9

0.95

1

Time scale (days)

S
im

il
ar

it
y

Our model

Real trace

Figure 29: Cosine similarity using a simulated trace based on the mean reversion
process.

We now determine the model parameters from the analysis result in the previous

section. It is straightforward to see that the long term equilibrium µ can be derived

from Eq (2), which we further model by the Zipf-like distribution. From Eq (3),

we find that the autocorrelation decreases with lag at the rate e−λ. Use the value

extracted from in Figure 26, we set λ = 0.12. Finally, to determine σ, we use the

coefficient of variation (CoV). Using Eq (3), we can derive σ as follows:

σ = µ×
√

2λ× CoV

Using fixed time steps of 1, we can obtain a discrete version of the OU process and

derive a first-order autoregressive sequence of Xt:

Xi+1 = Xie
−λ + µ(1− e−λ) + σ

√
1− e−2λ

2λ
N0,1 (4)

where N0,1 is a standard Gaussian random variable. This can be used to drive simu-

lation of IPTV channel popularity.

We validate our model against measurement data. Recall that we observed multi-

scale property as shown in Figure 27. Figure 29 shows that our model faithfully

reproduce the V -shape behavior in the cosine similarity of channel popularity vectors.

4.3.3 Forecasting Channel Popularity

We have shown that with properly chosen parameters, the OU process can nicely

capture various properties on the channel popularity. We now explore whether we

65

can use it as the underlying process to perform forecasting. More specifically, given

the historical states from X0 to Xi for a channel, how accurately can we predict Xi+1?

This can be viewed as a linear regression problem due to the AR(1) model of the

sequence of Xi in Eq (4). To facilitate the regression analysis, we rewrite Eq (4) as:

Xi+1 = aXi + b+ ε (5)

The first objective of linear regression analysis is to best-fit the data by estimating

the parameters of the model. Of the different criteria that can be used to define what

constitutes a best fit, the least squares criterion is a very powerful one. Using the

least squares criterion, we obtain the model parameters as follows.

a =
nXxy −XxXy

nXxx −X2
x

b =
Xy − aXx

n

sd(ε) =

√
nXyy −X2

y − a (nXxy −XxXy)

n(n− 2)

where

Xx =
n∑
i=1

Xi−1, Xy =
n∑
i=1

Xi,

Xxx =
n∑
i=1

X2
i−1, Xxy =

n∑
i=1

Xi−1Xi, Xyy =
n∑
i=1

X2
i

We take the trace of a news channel to evaluate the performance of our forecasting

model. We find that a small resulting mean squared error (MSE) (= 8 × 10−8) is

obtained compared to its mean value 0.0014 and variance 9.3×10−7. This means our

forecasting model predicts the dynamics of channel popularity reasonably well. We

have performed the prediction on various channels and observed the similar results.

4.4 Multi-class Popularity Modeling

So far we have presented our analysis on the dynamics of channel popularity and

developed a mean reversion process to model them.

66

In this section, to enhance our model, we investigate whether we can identify

sub-groups of STBs that have distinct channel preference, compared to the overall

pattern and dynamics of channel popularity. We first explore various features that

we can use to group STBs (Section 4.4.1), and then analyze properties of different

groupings to identify a desirable grouping that we can use for our multi-class modeling

(Section 4.4.2 and 4.4.3). This grouping method actually provides an interesting

insight behind the dynamics of channel popularity (Section 4.4.4), and we employ this

finding to develop a multi-class popularity model that better captures the channel

popularity dynamics (Section 4.4.5).

4.4.1 Grouping STBs

Given the data set we have, we have a number of different ways to group the appearing

STBs. Here we choose the following attributes which can best characterize a STB for

grouping:

TV watching time: For each STB, we consider various aspects of TV watching

time, such as daily average, hourly average, and average nightly watching time.

Channel change frequency: We consider the daily average and hourly average of

channel changes to group STBs.

Dwell time per channel change: For each channel change, we determine how

long a STB stays on the channel. This dwell time can be reported long when a user

does not watch the channel, but leaves the STB on. To minimize such effect in our

analysis, we investigate both the median value and the average value of dwell time

per channel change.

Location: We use the network location of a STB to group STBs.

We use the first 15 days of the logs to calculate the attributes for each STB. In

other words, we use the data in these days as the training set. As described later in

67

this section, we use the remaining data to evaluate the properties of grouping. We

next describe different grouping strategies that we use to identify various groupings of

STBs, which can be classified into two categories. One is threshold-based grouping.

The other is clustering algorithm-based group.

4.4.1.1 Threshold-based

In this grouping, we select a grouping attribute and a set of corresponding thresholds

to group STBs. These thresholds are chosen by the common sense of viewers instead

of some specific computer algorithm.

Daily watching time (wt-d): We consider the daily average TV watching time for

each STB. Specifically, we call a STB a heavy-watcher if the STB spends more than

12 hours on average, and a light-watcher if it spends less than 1 hour. We call the

remaining STBs medium-watchers. In our data, 28% of STBs are heavy-watchers,

and 36% of them are light-watchers. In the rest of this section, we call this grouping

outcome wt-d.

Daytime vs. Nighttime (dn-d): We define a STB as a daytime-watcher if the

average TV watching time during the day (from 6am to 6pm) is more than twice the

time during the night (from 6pm to 6am). We define a nighttime-watcher similarly.

We call the remaining STBs all-time-watchers. We observe 31% of STBs are daytime-

watchers, and 39% of them are nighttime-watchers.

Daily channel change count (chg-d): We use the average channel change count

per day. We define the STBs that switch channels more than 200 times on average

as frequent-switchers (24% of STBs), and the STBs that switch the channel less than

10 times as infrequent-switchers (12% of all). We call the remaining 64% of STBs

moderate-switchers.

Median dwell time (dwl): For each STB, we use the log of 15 days and find the

median value for the dwell time per channel change. Then we use 10, 20, and 30

68

2 3 4 5 6 7 8
0

100

200

300

400

500

600

Number of Clusters

D
is

si
m

ia
rl

ty
 W

k

Figure 30: Dissimilarity vs. K when we use TV watching time as grouping feature.

minutes as thresholds to divide them into four groups.

Location (lc): We use the metropolitan area as the granularity of grouping STBs

based on the location.

4.4.1.2 Clustering Algorithm-based

In this category, we employ unsupervised clustering algorithms to group STBs. While

we have explored multiple clustering algorithms, we focus on the results based on the

well-known K-mean algorithm [34], which is effective for large data sets. In this

algorithm, we need to provide the number groups K as input parameter. While there

are several ways to find the optimal K, we use the intra-cluster dissimilarity WK as

the measure:

WK =
K∑
k=1

∑
C(i)=k

||xi − x̂k||2,

where xi is the data item, and x̂k is the center of items in k-th cluster. We vary

K ∈ {1, 2, . . . , Kmax} and obtain a separate grouping result and the corresponding

WK for each K. Then, we consider the trade-off between dissimilarity and the number

of clusters when we choose the optimal K. We present a concrete example below when

we use the following set of attributes as input feature to the clustering algorithm.

Different from the threshold-based category, they are all feature vectors.

Hourly TV watching time (wt-h): We assign a 24-element tuple to each STB,

where each value corresponds to the average TV watching time per hour in a day.

69

Then we perform the K-mean algorithm to cluster the STBs. In a sense, wt-h

simultaneously considers the two features used in wt-d and dn-d. In Figure 30, we

plot WK as a function of K. We can observe that as small a value as K = 3 provides

a good grouping result. These three clusters cover 60%, 27%, and 13% of STBs,

respectively.

Hourly channel change (chg-h): Similar to wt-h, we collect the number of

channel changes for each hour in a day and assign a 24-element vector to each STB.

In this grouping, K = 4 leads to the optimal grouping result, where the clusters have

47%, 25%, 21%, and 7% of STBs, respectively.

Hourly dwell time (dwl-h): For each hour, we calculate the average dwell time per

channel change. Then, we assign 24-element vector to each STB, to obtain four groups

with 37%, 31%, 24%, and 8% of STBs from the K-mean algorithm, respectively.

Hourly median dwell time (mdwl-h): Unlike dwl-h, we use 1-hour intervals

and calculate the median dwell time value for each 1-hour bin and input them into

the K-mean algorithm. From this grouping, we obtain four groups with 41%, 20%,

10%, and 29% of STBs, respectively.

Channel preference (pref): For each STB, we calculate the access probability

to each of top 150 channels (which covers 98% of channel popularity as shown in

Figure 19). Then, using Table 92, we classify these channels based on their program

contents and obtain aggregate access probabilities for 8 types, which we use as the

grouping attribute. We use K = 8 after the number of types.

In the rest of this section, we investigate whether we observe any correlation among

the features and corresponding groupings and we can explain underlying channel

popularity dynamics based on the identified sub-groups.

2In this classification, both educational channels and documentary channels belong to “science.”
The category “others” includes channels that offer diverse programs (e.g., news, TV series, shows,
etc.) as well as less known channels that are not easy to classify.

70

Table 9: Classification of top 150 IPTV channels
Type Examples # channels
News CNN, NBC News 13
Kids Disney, Cartoon Network 15
Sports ESPN, Star games, NBA TV 20
Movies HBO, Cinemax 15
Science Discovery channel, Animal planet 20
Music MCM, MTV 21
Foreign TF1, BFM, Al jazeera, CCTV 18
Others TBN, EWTN 28

Table 10: Channel preferences of STB groups based on pref.
News Kids Sports Movies Science Music Foreign Others Group size (%)

All STBs (%) 52.3 14.4 5.2 3.1 1.8 0.3 0.4 22.4 100
Group1 (%) 67.8 9.7 3.5 2.1 1.2 0.2 0.3 15.2 45
Group2 (%) 49.5 19.0 4.9 2.9 1.7 0.3 0.4 21.2 12
Group3 (%) 50.2 13.8 9.0 3.0 1.7 0.3 0.4 21.5 5
Group4 (%) 50.7 14.0 5.1 6.0 1.8 0.3 0.4 21.8 6
Group5 (%) 50.6 13.9 5.0 3.9 5.1 0.3 0.4 21.7 3
Group6 (%) 51.0 14.8 5.1 3.0 1.8 3.0 0.4 21.8 2
Group7 (%) 51.6 14.2 5.1 3.0 1.9 0.3 1.8 22.1 2
Group8 (%) 48.9 13.5 4.9 2.9 1.7 0.3 0.4 27.5 27

4.4.2 Measuring Difference in Channel Preferences of STB Groups

In this part, we examine whether STBs in different groups exhibit different chan-

nel preferences. We use mutual information in measuring the difference of channel

preferences of STBs belonging to different groups.

In probability theory and information theory, the mutual information of two ran-

dom variables quantitatively measures their mutual dependence. Formally, the mu-

tual information of two discrete random variables X and Y can be defined as:

I(X;Y) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p1(x) p2(y)

)
(6)

where p(x, y) is the joint probability distribution function of X and Y , and p1(x) and

p2(y) are the marginal probability distribution functions of X and Y respectively.

The smaller the mutual information value is, the larger the difference between X and

Y is.

We conduct significance testing to determine whether the channel preference of a

given STB group G is significantly different from that of all STBs S. For this, we

71

first compute the mutual information IG between channel preference vector of G and

that of S using Equation (6). Here, X and Y are two variables describing channel

preferences. In particular, p1(x = X) is the probability to choose a type X channel

for group G. Similarly, p2(y = Y) is a probability to choose a type Y channel for S.

p(x = X, y = Y) is the probability of choosing type X channel in G and choosing

type Y channel in S.

Then we randomly select a subset Si of S, which has the same size as group G.

Similarly, we compute the mutual information ISi
. After taking a large number of

random selections of Si, we can get the empirical distribution of ISi
. According to the

Central Limit Theorem, ĪSi
is approximately normally distributed with mean µ̂ and

deviation δ̂. Here, our null hypothesis H0 is: group G is not significantly different

from S in terms of channel preferences. For the sampled distribution, we compute

the p-value Pr[X̄ ≤ IG|(µ̂, δ̂)]. If the p-value is very small, e.g., < 0.005, we shall

reject H0. Using this method, we can verify if a group G has a significant difference

in the channel preference compared with all STBs S. We can also apply the same

method on a given type of channels to determine if G has a significant difference in

preference for that type of channels.

Table 10 shows channel preferences of all STBs as well as STB groups based

on pref. There are eight STB groups, each of which corresponds to one type of

channels. The size of STB groups varies from 45% of all STBs to 2% of all STBs.

The STB group preferring news channels is the largest, and STB groups preferring

music and foreign channels are the smallest. We highlight the identified significant

difference in channel preference in bold. Compared to all STBs, we observe that

each group clearly exhibits distinct preference for the corresponding type of channels.

For example, group1 shows significant preference for news channels. These results

indicate the potential benefit of modeling different groups separately, which we focus

on later in Section 4.4.5.

72

4.4.3 Identifying Best Grouping Methods

Now we propose a generic method for selecting the best grouping methods. In our

case, a “good” grouping should achieve the following two goals. First, the method

should yield STB groups that well represent the channel preferences. Second, the

resulting STB groups should be stable over time.

To identify grouping methods that yield good representation of channel preferences

of STBs, we compute mutual information between STB groups based on pref and

those based on each of other grouping methods (denoted as M) using Equation (6).

Here, we consider each STB group as a random variable. p1(x = X) is the probability

that a STB belongs to group X according to pref. p2(y = Y) is the probability that

a STB belongs to group Y according to a given grouping method M . The joint

distribution p(x = X, y = Y) is the probability that a STB belongs to group X based

on pref and belongs to group Y based on M .

It is likely that different grouping methods yield different number of groupings.

For example, the location based grouping will yield over 150 clusters while other

grouping methods usually yield a handful of groups. In such a case, the mutual

information I(X;Y) defined in Equation (6) can be misleading. In order to perform

a fair comparison on different grouping methods, we adopt a normalized metric called

symmetric uncertainty, which is defined as:

U(X, Y) = 2
I(X;Y)

H(X) +H(Y)
(7)

where I(X;Y) is the mutual information defined in Equation (6) and H is the entropy:

H(X) = −
n∑
i=1

p(xi) log p(xi), (8)

WhenX and Y are independent, U(X, Y) = 0. WhenX is a function of Y , U(X, Y) =

1.

Table 11 shows the symmetric uncertainty between the channel preferences (i.e.,

73

Table 11: Symmetric uncertainty between pref and different grouping methods
wt-d dn-d chg-d dwl lc wt-h chg-h dwl-h mdwl-h

pref 0.314 0.305 0.254 0.309 0.179 0.123 0.206 0.430 0.513

Table 12: Stability of different grouping methods
pref wt-d dn-d chg-d dwl lc wt-h chg-h dwl-h mdwl-h
67.1% 83.5 % 79.4% 77.6% 74.3% 100% 70.4% 72.3% 66.5% 69.4 %

pref) and different grouping methods described in Section 4.4.1. We find that clus-

tering algorithm-based on hourly median dwell time (mdwl-h) and on hourly TV

watching time (wt-h) yield the highest and lowest symmetric uncertainty values

(0.513 and 0.123) among all the grouping methods. Intuitively, this can be explained

as follows. Users who watch TV at the same time during a day does not necessarily

watch the same set of channels (i.e., they do not necessarily have a clear mutual

interest in channels). However, users who switch channels at the same time during

a day may have a strong preference for the type of channels they watch. This is

because most of the channel change behaviors are impacted by the start/end times

and commercial breaks of the TV program. The symmetric uncertainty values for

threshold-based grouping methods range from 0.179 to 0.314, with the grouping based

on the daily watching time wt-d having the highest value and grouping based on the

location lc having the lowest value.

We also prefer a grouping method that yields STB groups that are stable over

time. We perform a stability test on our grouping results in the following way. We

use the percentage of STBs that stay in the same group over a certain time period

(e.g., 15 days) as the metrics to measure the stability of STB groups. In our analysis,

we divided our data traces into two parts, where each part lasts 15 days. We compute

STB groups on each 15-day trace separately and examine the stability of STB groups.

Note that for clustering algorithm based grouping methods, because the group centers

are determined non-deterministically, we group the second 15-day trace by using the

74

Table 13: Channel preferences of STB groups based on wt-d.
News Kids Sports Movies Science Music Foreign Others Group size (%)

all watchers (%) 52.3 14.4 5.2 3.1 1.8 0.3 0.4 22.4 100
heavy-watchers (%) 62.6 9.7 4.9 2.3 2.0 0.4 0.3 19.6 28
light-watchers (%) 47.4 17.5 5.4 2.3 1.7 0.4 0.4 25.3 36

medium watchers (%) 53.3 13.9 4.7 3.0 1.9 0.3 0.3 22.5 36

same group centers as those that are identified in the first 15-day trace. Then, for

each STB, we compute the distance between attribute vector obtained from the second

15-day trace and each group center identified in the first 15-day trace. The STB is

assigned to the group of which the center is closest.

Table 12 shows the stability of different grouping methods. We have four key

observations. First, the grouping based on channel preference pref is not stable

over time. This indicates that pref may not be a good grouping method to be used

in our model even though Table 10 shows pref clearly represents distinct channel

preferences in each STB group. Second, we find that all the grouping methods based

on hourly features (i.e., wt-h, chg-h, dwl-h, and mdwl-h) have low stability over

time. Hence, they are not considered good grouping methods to be used in the model.

Third, we observe that grouping based on location lc yields perfect stability of STB

groups. This is expected because STBs location is less likely to change over time.

However, since lc has a low symmetric certainty value as shown in Table 11, it is not

considered a good choice either. Finally, we observe that the grouping based on daily

TV watching time wt-d has the highest stability among all grouping methods other

than lc. In addition, wt-d also has a relative high value in symmetric uncertainty

as shown in Table 11 (it is the highest among the threshold based grouping methods).

Thus, we identify wt-d to be the best grouping method based on our data trace.

4.4.4 Explaining Channel Popularity Dynamics

In Section 4.2, we have observed diurnal patterns in channel access popularity (Fig-

ures 23 and 24). In this subsection, we examine whether some of these groups exhibit

different channel access preference. Based on the result in the previous subsection,

75

0 4 8 12 16 20 24
0.4

0.5

0.6

0.7

0.8

Time (hours)

C
h

an
n

el
 P

re
fe

re
n

ce
 (

p
ro

b
ab

il
it

y
)

All Heavy Light Medium

Figure 31: Time-of-day dynamics for news channels, comparing wt-d with all watch-
ers

0 4 8 12 16 20 24
0.05

0.1

0.15

0.2

0.25

Time (hours)

C
h

an
n

el
 P

re
fe

re
n

ce
 (

p
ro

b
ab

il
it

y
)

All Heavy Light Medium

Figure 32: Time-of-day dynamics for kids channels, comparing wt-d with all watch-
ers

we focus on the grouping result by wt-d, because it has the highest stability (except

for lc) as well as a reasonably high symmetric uncertainty measure against pref.

Table 13 compares the channel preference of each group based on wt-d with that of

all STBs. Based on our significance testing, we find that heavy-watchers group and

light-watchers group have distinct preferences to news and kids channels, which are

marked in bold. In this subsection, we focus on the preference for these two channel

types. Although we do not present here, we also investigated other groupings and

observed a similar result in many cases.

In Figures 31 and 32, we show the access probability of news channels and kids

channels (as defined in Table 9), respectively. We display one line for each group in

wt-d as well as an additional line for the all-STBs case (denoted by “all-watchers”).

We observe that while the line for all-watchers shows a clear diurnal access pattern

(e.g., with peaks around 7am and 8pm for news channels), the channel preference

76

4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

Time (hours)

P
o

p
u

la
ti

o
n

 P
ro

p
o

rt
io

n

Light−watchers

Heavy−watchers

Medium−watchers

Figure 33: Population mix for each group based on wt-d

within a group is more stable throughout the day, except for heavy-watchers’ in-

creased preference during the morning time. Specifically, in Figure 31, at least 60%

of channel changes by heavy-watchers are for news channels throughout the day, which

is significantly higher than the overall average 52.3%. While the average preference of

medium-watchers for news channels (53.3%) is similar to the daily average, this group

also exhibits a more stable access pattern, compared to all-watchers. In Figure 32,

while the group-level access probabilities for kids channels fluctuate more than for

news channels, the values are still more stable than that of all-watchers. These re-

sults illustrate that we can identify sub-groups that have distinct channel preference,

and although the channel popularity within the groups may vary over time, some

groups often have fairly constant channel preference for some channels.

In Figures 31 and 32, we observed that group-level channel preference stays rea-

sonably stable all day, but the overall channel popularity shows a diurnal pattern.

How can we explain two seemingly conflicting results? In Figure 33, we show the pro-

portion of active STBs for each group by wt-d. We determine that a STB is active if

there is a channel change during the 1-hour window. This figure shows that medium-

watchers constitutes around 35% of active STBs throughout the day, heavy-watchers

between 15% and 35%, and light-watchers between 30% and 50%. We observe that

there is strong correlation between channel popularity change and population mix

change. For instance, in Figure 32, the overall channel access probability for kids

channels peaks between 8am and noon. This coincides with the population gain by

77

0 1 2 3 4 5 6 7 8

0.6

0.8

1

S
im

il
ar

it
y

0 1 2 3 4 5 6 7 8

0.6

0.8

1

Lag (days)

S
im

il
ar

it
y

Figure 34: The cosine similarity function when varying lag. The solid line represents
the real trace, the dash line represents the model. Top: single-class, bottom: multi-
class.

light-watchers (Figure 33), which has significantly higher preference for kids channels.

In Figure 31, while the overall channel popularity peaks at the morning time (7am)

due to the change in preference by heavy-watchers, the increase of heavy-watchers in

the population mix obviously explains the other peak at later time (around 8pm).

In sum, our results show that some sub-groups have different channel prefer-

ence, and their population mix change has a strong correlation with overall popu-

larity change. In the rest of this section, we further investigate these findings and

demonstrate that we can better model channel popularity dynamics by employing

this grouping methodology.

4.4.5 Modeling and Simulation

Now we can use our classification results to further improve the modeling results

shown in Section 4.3. We use the grouping result from the feature wt-d since it has

the highest stability over time and a reasonably large symmetric uncertainty value.

Assume that all channels still follow the mean reversion model in each group. But

the parameters need to be revisited. Let X t
ij, µij, λij and σij denote the popularity

measure, the long-term mean, the mean reversion rate and the volatility of the group j

on the channel i, respectively. The estimation procedure described in Section 4.3 can

be easily adapted to derived the parameters for every (channel, group) combination.

Then to simulate the temporal popularity dynamics for a channel i, we mix all

78

(i, j), j = 1, 2, ..., using the empirical population proportion for each group (see Fig-

ure 33) as the mixture weight. In other words,

X t
i =

∑
j

W t
j ×X t

ij

where X t
i denotes the popularity of channel i at time t and W t

j denotes the proportion

of STBs in group j at time t.

To evaluate the above multi-class model, we compute cosine similarity (defined in

Section 4.2) on the trace generated by our models. We compare the cosine similarity

of both single- and multi-class models with that from the real trace. In Figure 34,

given a fixed lag, we compute the cosine similarity between the channel popularity

vectors of two adjacent 15 minute-time-bins and take average on the length of 9 days.

We repeat this by gradually varying the length of lag. This resulting curve from

the real trace reflects the degree of similarity of channel popularity across the time

domain. The top and bottom subfigures in Figure 34 compare the single-class model

and multi-class model to the real trace in terms of cosine similarity, respectively. It

is clear that the multi-class model can capture the high daily similarity, but single

class model fails to do so. As the result, the MSE of multi-class model is 10−3 which

is around one order of magnitude smaller than that (= 9 × 10−3) from single-class

model. In summary, taking advantage of a good grouping feature with high stability

and symmetric uncertainty scores, our multi-class model can generate a more accurate

temporal dynamics process to simulate the real scenario than the previous single-class

model.

4.5 Related Work

The channel popularity or content/media popularity, in general, has been widely

studied in different applications. Costa et al. [16] analyzed user activities and media

distribution in media streaming applications. Cherkasova et al. [13], Chesire et al. [14],

and Tang et al. [45] modeled workload of media streaming service. Yu et al. [61]

79

studied the user activities to access a Video-on-Demand (VoD) system. Cha et al. [11]

explored how users access videos in the YouTube system. Guo et al. [21] compared

access patterns of different types of media content on the Internet including Web,

P2P, VoD, and live streaming. However, the findings in these studies may not be

applicable to IPTV systems as the user behavior can be inherently different from

those in other applications.

More recently, there are a number of studies on IPTV system. Cha et al. [12]

report various findings about user watching behavior by analyzing control messages

in an IPTV system. While some of our findings are consistent with those reported in

their study, we focus developing a multi-class population model of channel popularity

based on key observations in our analysis. Smith [44] models bandwidth demand to

support both multicast and unicast for fast channel change, where channel switching

is modeled as a renewal process. However, the work does not consider the temporal

dynamics within a day. Hei et al. [23] and Silverston et al. [43] report their measure-

ment studies on P2P-based IPTV systems, while our work focuses on analyzing and

modeling a large commercial IPTV system.

4.6 Summary and Future Work

In this chapter, we analyze and model channel popularity based on user channel access

data in a nation-wide commercial IPTV system. We find that the channel popularity

is highly skewed and can be well captured by a Zipf-like distribution. We also ob-

serve a fair amount of channel access popularity change during a short time window,

although we find that channel popularity during moderately long time windows stays

relatively stable. We demonstrate that we can model such popularity dynamics using

a mean reversion process. Further, we develop a method for identifying groups of users

which show intrinsic difference in their channel preference. We demonstrate that we

can combine this grouping and the change of population mix to obtain a multi-class

80

population model, which enables us to capture diurnal patterns in channel popularity

dynamics.

Although the focus in this paper is on analyzing and modeling channel popularity

in an IPTV system, our methodology can be applicable to other systems, which we

plan to investigate in our future work.

81

CHAPTER V

MODELING IPTV USER BEHAVIOR

5.1 Introduction

In the past several years, there has been a global trend among telecommunication

companies on the rapid deployment of IPTV (Internet Protocol Television) infras-

tructure and service, in which live TV streams are encoded in a series of IP packets

and delivered to users through the residential broadband access network. This fast

growth is motivated in part by commercial reasons – strengthening their competi-

tiveness with so-called triple-play package that combines digital voice, TV and data

service together. More importantly, this new technology provides the users with great

interactive capability and functional flexibility, and creates tremendous opportunities

for a broad range of new applications (e.g., CollaboraTV [22]), which may very well

define a next generation of TV entertainment.

While the industry rushes into the IPTV era, what lags behind is a comprehensive

understanding of the user activities, which directly dictate the flow of video streams

and other bi-directional data (e.g., for user interactive sessions). Although commercial

TV distribution networks (e.g., cable, satellite) have prevailed for decades, to the

best of our knowledge, no detailed study on modeling individual users’ TV watching

activities is available in the literature. This might be partially because there has

not been a strong need, as data flows in conventional TV networks are typically

limited to the downstream direction from servers to set-top boxes (STBs), and user

channel switching (with the exception of pay per view) has very little system-wide

impact. In fact, even tracking the viewership of TV program – a statistic that bears

significant commercial value – is typically done through a third party [3]. In IPTV

82

systems, by contrast, an understanding of user activities is essential to many system

design and engineering tasks such as evaluation of various design options, optimal

system parameter tuning, improving customer care, and defining effective system

care procedures to minimize service impact.

Without a realistic user activity model, the research community often has had to

rely on some hypothetical user models when analyzing system performance [44, 48,

4, 50]. Unfortunately, such models are sometimes quite different from the reality and

can potentially lead to incorrect estimation of the system performance. For example,

while a constant-rate Poisson process is widely used as a workload model in other

systems, it is incapable of capturing the high bursts of channel switches at around

hour boundaries observed in our IPTV data. An alternative is to directly use actual

IPTV trace data for the evaluation of system performance. However, such data, even

when anonymized, can be highly sensitive, containing too much commercial and user

private information to be publicly distributed. This creates a barrier for research

community to perform system evaluation against real data traces. In this work, we

bridge this gap by developing realistic models for user activities in a large IPTV

system.

Our work in this chapter is based on a large collection of data obtained from a

nation-wide operational IPTV network, which includes the system logs from all of its

subscribers’ STBs, control plane signaling messages, network topology and configura-

tion data, and TV channel information. Our approach starts with an in-depth inves-

tigation of the user activities, analyzing many intrinsic characteristics on attributes

such as user viewing sessions, per-channel dwell time, and channel popularity. While

some of our findings overlap with a previous study [12], we further abstract and gen-

eralize the chosen characteristics to enable realistic workload generation, which can

be used for various stages of IPTV system design. Specifically, we develop a work-

load generator that faithfully mimics the user activities in real IPTV systems—this

83

workload generator can turn a limited number of input parameters (published in

the paper) into synthetic traces having similar statistical properties to realistic data

traces.

We also consider this work a snapshot of user activity workload for the current

IPTV system, which provides a feature set highly similar to that of conventional TV

services such as cable and satellite. We envision that user viewing pattern evolves

with more advanced IPTV features fundamentally changing the way users watch TV,

and this work is used as a baseline to understand and to quantify such changes.

We make three major contributions. First, we present in-depth analysis results

based on data traces from a nation-wide operational IPTV system (Section 5.2). In

addition to the largest scale of such study (using more than a million STBs in four

different time zones), we identify many interesting characteristics. For example, we

find that user activities (such as channel switching) are often correlated, hence the

aggregate activities are much more bursty than the outcome of a fixed-rate Poisson

model that many previous studies assume [4, 50].

Second, we develop a series of models that capture these intrinsic characteristics

on each of the attributes (Section 5.3). We use the mixture exponential distribution to

model various session duration distributions. To characterize the time-varying nature

of user activities, we apply Fourier Transform and model the periodically correlated

events. We distinguish sequential-channel-scans and targeted-channel-switches and

use Zipf-like and exponential distribution to characterize channel access popularity.

We also adopt a mixture population model to capture the channel popularity dynam-

ics observed at the finer time granularity.

Third, we combine these models and construct a workload generation tool, namely

SimulWatch (Section 5.4), which takes a small number of parameters as input and

outputs a series of synthetic user traces that mimic a set of real users watching IPTV.

We also validate SimulWatch prototype by comparing the synthetic trace with a

84

real data trace and show that they closely match even for some properties that we do

not explicitly model. Specifically, we show that for a given number of STBs, we can

accurately estimate the unicast and multicast traffic bandwidth based on the synthetic

workload, which also illustrates how to use SimulWatch to drive the performance

study in an IPTV system.

We also review related work in Section 5.5 and conclude our work in Section 5.6.

In the following section, we first overview a typical IPTV system architecture and

describe the data set we use in this study.

5.2 Analyzing User Activities

Recall that our objective is to define a mathematical process that mimics the activities

of IPTV users and thus can produce realistic event series for tasks such as system

performance evaluation. To accomplish this, we first need to understand how real

users act in an operational IPTV system. We do so by studying various characteristics

of our data traces. In particular, we focus on the aggregate properties regarding to

users’ turning STBs on and off, channel switches, and channel popularity.

5.2.1 Turning STBs On and Off

We first focus on the length of STB on- and off-sessions. An on-session is defined as

the duration from a STB being switched on till it gets switched off. Similarly, an off-

session is the duration from the last time a STB was switched off till it gets switched

on. We first examine the distribution function of the length of on- and off-sessions

respectively.

Figure 35 shows the complementary cumulative distribution function (CCDF) of

the length of on- and off-sessions. Using CCDF, we can better illustrate the tail

property of the distributions. We first observe that both on-sessions and off-sessions

exhibit a very long tail in their distributions – around 5% of the on-sessions and

off-sessions are over 1 day in length. In fact, we believe the fast drop in both tails

85

1 sec 1 min 1 day 6 days
10

−6

10
−4

10
−2

10
0

Lasting time (log scale)

lo
g
1
0
(1

−
F

(x
))

On−sessions

Off−sessions

Channel−sessions

Figure 35: CCDF of the length for on-, off-, and channel-sessions

approaching the right end of the x axis is due to the limit of our dataset, which is 6

days in total. Comparing off-session and on-session, we find that the off-session has

a heavier tail than the on-session. This matches our intuition since it is more likely

that an IPTV user leaves the TV off for a long time (several days) than leaving the

TV on. We also notice that the curve of off-session is below that of on-session for low

session length. This is likely due to users’ mistake in operating the remote controller

– a user accidentally turning the STB off while watching a TV program may quickly

switch the STB back on, producing a short off-session of a few seconds.

In Figure 36, we show the time series of the number of on-line STBs in one-minute

precision (normalized by the average number of on-line STBs). We observe a very

strong diurnal pattern, with daily peak at around 9PM, followed by a quick decrease

in number, reaching daily minimum at around 4AM, and then steadily ramping up

during the course of day. Note that there are a significant number of STBs left on

over night.

As both on- and off-sessions are bounded by users’ action in switching on and off

the STBs, it makes sense to observe these event processes directly. Figures 37(a) and

37(b) show a one-day time series of the event rate for the switching-on and switching-

off events respectively. Both plots are shown in one-minute precision. Here the event

86

4/2 4/3 4/4 4/5 4/6 4/7

0.8

1

1.2

1.4

1.6

Local time

N
o

rm
a
li
z
e
d

 n
u
m

b
e
r

o
f

S
T

B
s

Figure 36: Number of on-line STBs

0:00 4:00 8:00 12:00 16:00 20:00 24:00
0

0.02

0.04

0.06

0.08

0.1

Local time

R
a
te

(a) Switching-on events

0:00 4:00 8:00 12:00 16:00 20:00 24:00
0

0.005

0.01

0.015

0.02

Local Time

R
a
te

(b) Switching-off events

0 4:00 8:00 12:00 16:00 20:00 24:00
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Local time

R
a
te

(c) Channel switching events

Figure 37: The normalized switching-on, switching-off, and channel switching events
(one-minute granularity)

rate is the number of switching-on/-off events during the interval normalized by the

total number of off-line/on-line STBs at the beginning of the interval. We make two

observations. First, there is a strong time-of-day effect in both figures.The switching-

on event rate has local peaks at around 7AM and around 9PM and the switching-off

87

event rate has local peaks at around 7:30AM and around 12AM, both matching

well with our intuition relating to the daily living schedules of most people. More

interestingly, we observe that both event rate series are very bursty, with significant

spikes aligning closely with hour or half-hour boundaries (it is more pronounced in

Figure 37(b)). This is due to the fact that most TV programs are aligned to hour

boundaries. Many users may turn on TV in anticipating for a TV program or turn

off TV after watching a TV program. This introduces significant correlations among

users’ activities, causing very strong bursts in the aggregate event rates.

5.2.2 Switching Channels

We now turn to channel switches. Figure 35 shows the distribution function of the

length of channel-sessions, which we define as the duration from the time of a user’s

last channel switch (or turning on STB) till the next channel switch (or turning off

STB). We find that this distribution also has a long tail, although not as heavy as

those of on- and off-sessions.

Similar to those for switching-on and switching-off events, we also examine the

aggregate event process for channel switches. Figure 37(c) shows the time-series of

such event rate, which is defined as the total number of channel switches normalized

by the number of on-line STBs. We note that the diurnal pattern in Figure 37(c)

is quite representative of different days. Compared to switching-on/-off event rates,

the channel switching events demonstrate even stronger spikes with the period of

30 minutes. This is again due to correlated user activities related to TV program

alignment – many users switch channels together when a TV program ends, which

may create temporarily high workload on the IPTV servers.

We next try to gain insight on how IPTV users switch channels. We classify chan-

nel switching events into two categories: sequential-scanning and target-switching. Se-

quential scanning represents the user in a channel-browsing mode by going through

88

the available channels using the Up/Down button on the remote controller, while

target switching represents the user intentionally switching to a specific channel of

choice. We assume channel switches between adjacent channels being the sequential-

scanning and the rest target-switching. To define the channel adjacency, we need

to infer the list of available channels, which can be quite different from one user to

another (e.g., due to different subscription plans). We keep track of all channels that

a STB requests over an extended period (e.g., one month) and regard these channels

as the complete list.

From the data we collected, we observe that 56% of channel switching events are

sequential-scanning. This is a little bit lower than our expectation. We find that the

high ratio of target switching can be attributed to many advanced features that the

IPTV provider supports, including a user-customized favorite-channel list, a program

menu where users can browse and switch channels by name, and an easy access to

DVR. All of these help users find the TV program of interest easily and directly.

To understand this effect better, we construct a user’s favorite channel list using a

heuristic (top ranked channels by watching time and frequency, e.g., watched in at

least 4 days of a week) and find a large portion (46%) of the target-switching is toward

such “favorite channels”. Among sequential-scanning, we observe an unbalanced up-

and down-channel-switches – 72% of them are up-channel-switches. It implies that

more people prefer increasing channel number. Our analysis finds the ratio moderately

stable over time, although we do not have a good intuition on why this is the case.

5.2.3 Channel Popularity

We now focus our attention on the properties of different channels. We first rank

nearly 700 different channels that appeared in our data using two metrics: (1) the

request count, which we call channel access frequency, and (2) total time STBs stay

89

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

Channel index (sorted by channel popularity)

P
ro

p
o
rt

io
n
 (

C
D

F
)

Channel dwell time

Channel access frequency

Figure 38: CDF of channels popularity

tuned in the channel, which we call channel dwell time. Figure 38 shows the cumula-

tive distribution function of channel popularity ranked by the two metrics. We find

that the distribution of channel dwell time is highly skewed – the top 100 channels

account for around 63% of the total channel dwell time. As a comparison, the chan-

nel access frequency curve is less skewed. This is likely due to the large number of

sequencial-scanning channel switch events. We observe similar level of skewness in

the distribution of channel popularity when we examine different subsets of our data

(such as by different time zones or by different date), although the ranking of the

channels varies from one subset to another.

Figure 39 shows how the top 10/50/100 popular channels change in the two ad-

jacent hours during a day. The change percentages are averaged over 6-day data.

We observe that the channel popularity is relatively stable over time of day. For

example, in Figure 39, among top 100 channels at 12pm, less than 20% of them did

not belong to top 100 channels at 1pm, while more than 80% of them were among

top 100 channels at both time periods. We find that the relative channel popularity

changes the most during morning hours, but remain moderately stable for most part

of the day. Figure 40 illustrates an example on the dynamics of channel popularity

90

0:00 4:00 8:00 12:00 16:00 20:00 24:00
0

10

20

30

40

50

Local time

P
er

ce
n
ta

g
e

o
f

ch
an

g
es

 (
%

)

Top 10

Top 50

Top 100

Figure 39: Ratio of change in popular channels, as seen over hours in a single day.

0:00 4:00 8:00 12:00 16:00 20:00 24:00

0.8

1

1.2

1.4

1.6

1.8

2

Local time

N
o
rm

a
li

z
e
d
 n

u
m

b
e
r

o
f

S
T

B
s

Recorded TV

Local News

Kids

Figure 40: Channel popularity distribution change (hourly)

within a day, in which we compare normalized numbers of STBs of a top-ranked kids

channel and a top-ranked local news channel against that of the “recorded TV” that

people use to watch recorded contents (called DVR channel). We observe some inter-

esting time-of-day trends – for example, the local channel peaks in the morning when

people catch early news and weather forecast before going to work; the kids channel

sharply loses popularity after 8PM when most kids go to bed. In comparison, the

DVR channel has the most dramatic change in scale, which finds its peak late into

night. The recent work [42] uncovered the reasons behind this behavior by grouping

the whole user population into subgroups according to their preference. We will also

91

10
0

10
2

10
4

10
0

10
2

10
4

Real trace (log scale)

M
o

d
el

 f
it

ti
n

g
 (

lo
g

 s
ca

le
)

(a) The length of on-sessions

10
0

10
2

10
4

10
0

10
2

10
4

Real trace (log scale)

M
o

d
el

 f
it

ti
n

g
 (

lo
g

 s
ca

le
)

(b) [The length of off-sessions

10
0

10
2

10
4

10
0

10
2

10
4

Real trace (log scale)

M
o
d
el

 f
it

ti
n
g
 (

lo
g
 s

ca
le

)

(c) The length of channel-sessions

Figure 41: QQ plots comparing models and real traces

integrate this into our workload generator in Section 5.3.4.

5.3 Modeling User Activities

In this section, we construct mathematical models to capture the observed charac-

teristics of IPTV user activities. We need to model three different user activities –

switching-on, switching-off and channel-switch. For each of them, we match their

timing properties in both the session length distribution and the dynamics of the

aggregate rate. For channel-switch, we also model channel popularity properties

including popularity distribution and its temporal dynamics. We first present our

models and then describe our methods to deriving the parameters of our model from

the data traces.

5.3.1 Modeling Session Length

In order to capture the long tails exhibited in the empirical session length distri-

butions (Figure 35), we adopt the mixture-exponential model [26] for on-, off-, and

92

Table 14: Model parameters for session length distributions

λ1 a1 λ2 a2 λ3 a3

On-session 1.3e-2 0.3 3.3e-3 0.66 2.3e-4 0.04

Off-session 3.2e-2 0.19 2.5e-3 0.75 2.4e-4 0.06

Channel-session 2.1 0.23 2.6e-2 0.64 3.2e-3 0.13

channel-sessions. The probability density function (PDF) of a mixture-exponential

distribution is

f(x) =
n∑
i=1

aiλie
−λix (9)

where 1/λi is the mean of the i-th exponential distribution in the mixture and∑n
i=1 ai = 1. This model has been widely applied due to its simple form and its

capability in approximating heavy-tailed distributions in a wide range [26].

To determine the model parameters that best describe the data trace we collected,

we apply data fitting for on-, off-, and channel-sessions respectively. In the follow-

ing, we use channel-sessions as an example while the procedure for fitting on- and

off-sessions is essentially the same. We iteratively explore different values for the

number of exponential distributions, n, in the mixture model. For a given n, we

apply the Expectation Maximization (EM) algorithm [7] to find the maximum like-

lihood estimate (MLE) for the parameters λi and ai. For the length distribution of

channel-sessions, we identify the best tradeoff at n = 3, as it achieves a close match

to the data while using a small number (i.e., 6) of model parameters. In Table 14, we

report the parameter values that fit our trace. The QQ (quantile-quantile) plots in

Figure 41 demonstrate good matches between our models and real traces collected.

Looking into the parameters, we gain tremendous insight on the process. For

channel-sessions, the different λi corresponds to Poisson processes with average inter-

arrival time of around 30 seconds, 40 minutes and 5 hours, representing an IPTV

user in the state of channel-browsing, TV-program-watching, and being away-from-

TV respectively. The likelihood of a user entering these modes is quantified by the

93

10
−3

10
−2

10
−1

10
−10

10
−5

10
0

10
5

Frequency (log scale)

P
o

w
er

 (
lo

g
 s

ca
le

)
1 hour 30 min

(a) Switching-on

10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

10
2

Frequency (log scale)

P
o

w
er

 (
lo

g
 s

ca
le

)

1 hour
30 min

(b) Switching-off

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

Frequency (log scale)

P
o

w
er

 (
lo

g
 s

ca
le

)

1 hour

30 minutes

(c) Channel-switching

Figure 42: The time-varying rates in frequency domain

0:00 8:00 16:00 24:00
0

0.05

0.1

Local time

R
at

e

0:00 8:00 16:00 24:00
0

0.05

0.1

Local time

R
at

e

Model fitting

Trace

(a) Switching-on

0:00 8:00 16:00 24:00
0

0.05

0.1

Local time

R
at

e

0:00 8:00 16:00 24:00
0

0.05

0.1

R
at

e

Local Time

Trace

Model fitting

(b) Switching-off

0:00 8:00 16:00 24:00
0

0.2

0.4

Local time

R
at

e

0:00 8:00 16:00 24:00
0

0.2

0.4

Local time

R
at

e

Trace

Model fitting

(c) Channel-switching

Figure 43: Modeling aggregate event rate

ai values. Similar observation can be made for on-sessions and off-sessions too.

94

Table 15: Modeling parameters for event rates

k µ p1-hour p30-min p15-min

Switching-on 0.0036 278 1.76 1.41 x

Switching-off 0.0316 233 4.43 7.85 x

Channel-switch 0.03840 293 4.23 5.34 4.53

5.3.2 Modeling Time-Varying Rates

The mixture-exponential models in the previous subsection imply a constant-rate

stochastic process with the mean event rate equal to 1/(
∑

i ai/λi). However, we have

observed in Figure 37 that the aggregate event rate for switching-on, switching-off,

and channel-switches are all highly variant, highlighted by many apparently-periodic

spikes. The problem lies in a subtle underlying independence assumption (which has

been commonly used in similar study without careful validation). The reality is that

each individual user’s activities are influenced by a common external process – the

TV program schedules, and as a result, they become highly correlated to each other,

breaking the independence assumption. In this subsection, we incorporate this impact

from the external process through modeling the aggregate event rates in Figure 37.

As the aggregate event rates appear very complicated in the time domain – re-

quiring an overwhelming number of parameters to characterize it, we decide to try a

different angle and approach the problem from the frequency domain. We apply fast

Fourier transform (FFT) to the event time series and present the result in Figure 42.

The structure, in all cases, suddenly becomes very clear – there are a few of distinct

spikes at frequencies that correspond to 1 hour, 30 minutes, 15 minutes etc., and an

ambient gradual decrease in the power level (y-axis) from low to high frequencies.

We next approximate the ambient power level by using the Weibull distribution. Its

probability density function is:

f(x; k, µ) =
k

µ

(
x

µ

)k−1

e−(x/µ)k

where k and µ are model parameters. We choose the Weibull distribution since it

95

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5
x 10

−3

The number of spikes

M
ea

n
 s

q
u
ar

ed
 e

rr
o
r

switch on

switch off

channel switch

Figure 44: Find the optimal number of spikes

can very well approximate a wide range of classes of functions including exponential,

normal and lognormal only with two parameters. The model parameters that best

match our data traces are reported in Table 15.

From only a small number of parameters (k, µ, and the values for the spikes in the

frequency domain), we can now generate the frequency domain function and apply

inverse FFT to reconstruct the time series that initially seemed highly complex. To

determine the best trade-off between the number of spikes to explicitly include in the

model and the quality of the match between the model and the empirical trace, we

show in Figure 44 the discrepancy metric (we use mean squared error between the

empirical trace and our modeling output) as a function of the number of spikes in the

model. It is clear that the discrepancy becomes negligible when we choose 2 spikes

for switch on/off and 3 spikes for channel switch. So they are the values we use in

the rest of the paper. Figure 43 compares the result from the real trace (top) and the

result from our model (bottom). We find that they match very well, even when we

use only 13 parameters here (k, µ and the value for the 2-3 spikes in Table 15).

Finally, we define the time series function obtained from the aforementioned pro-

cess as our rate moderating function g(t), which models the impact of external TV

program schedule to individual users’ activity. Since g(t) is constructed from data

96

0 100 200 300 400 500 600 700
10

0

10
2

10
4

10
6

10
8

Chanel index sorted by popularity (linear scale)

A
cc

es
s

fr
eq

u
en

cy
 (

lo
g
 s

ca
le

)

Real trace

Exponential

Zpif−like

Figure 45: Fitting the channel popularity distribution

in a given window W , (in our example W = 86, 400 seconds, or 1 day), we simply

repeat g(t) to make it a periodic function: g(t + W) = g(t). Furthermore, we nor-

malize g(t) such that
∫W

0
g(t)dt = W . Note that the periodic moderating function

g will not impact the tail behavior of the session length distributions that we have

modeled previously. However, it does change the shape of session length distribution

at small durations. In particular, depending on the start time-of-day, the session

length distribution varies.

5.3.3 Modeling Channel Popularity Distribution

We have observed in Section 5.2 that the channel popularity is highly skewed. Mo-

tivated by the success of Zipf-like distribution in modeling skewed access frequencies

of Web [6] and VoD systems [45, 61], we also examine the Zipf-like distribution in

modeling channel access frequencies – for a channel of popularity rank i, the access

probability is a power function of its rank i. Figure 45 shows the channel access

frequency as a function of the rank, along with the best-fit power law function and

the best-fit exponential function. We find the Zipf-like distribution well captures the

top 10% channels (consistent with our previous study in Section 4.3.1) while the ex-

ponential function achieves a better fit for the large “body” part of the distribution

function. The parameters for the Zipf-like distribution, f1(i) = C1i
−α, are α = 0.513,

97

C1 = 12.642. The parameters for the exponential function, f2(i) = e−β+C2 , are

β = 0.006, C2 = 2.392. In the rest of the paper, we use a hybrid model – approxi-

mating the top 10% of the channel popularity distribution using the above Zipf-like

power-law function and the remaining part using the exponential function). Particu-

larly, the probability density function can be expressed as follows,

f0(i) =


C1i

−α/C0 i < 10% of available channels,

e−β+C2/C0 others,

where C0 is the normalization factor such that f0(·) is a well-defined density function.

The concatenated distribution function achieves a good match for the top 600

popular channels, which together account for over 97% of the channel-switches (as

shown in Figure 38).

Channel popularity in terms of channel access frequencies is only applicable to

target-switching. For sequential-scanning, the channel number simply increments or

decrements. We define the probability of user entering target-switching mode as pt,

which is 0.44 in our data. The probability of user entering sequential-scanning mode

is hence 1−pt. When in sequential-scanning state, a user switches to a higher number

with the probability of pu (0.72 in our data), and to a lower number with 1− pu.

To align the channel ID to the channel popularity, we adopt a simple random

permutation method – we randomly shuffle the ranks of the channel popularity and

use them as the channel ID. This however does not capture the subtle clustering effect

in the commercial channel listing, such as music channels being next to each others.

Depending on the application, a detailed modeling of such effects can be of interest.

5.3.4 Modeling Channel Popularity Dynamics

The channel popularity model described in the previous section captures popularity

skewness, which have been found relatively stable at large time scale (e.g., daily [42]).

98

However, we also observe from our data that channel popularity exhibits some tempo-

ral patterns over time-of-day (See Figure 40). While a stationary channel popularity

model might be sufficient for many applications (for example network capacity plan-

ning analysis), we expect that some other applications (for example evaluating a P2P

type content caching scheme for IPTV) may require a proper modeling of such channel

popularity dynamics. One way of modeling such dynamics is to observe the differ-

ences across multiple smaller time intervals (e.g., hourly granularity) and model the

channel popularity in each small interval separately. Alternately, we can try to under-

stand the underlying structure producing such dynamics and model this underlying

process. In fact, in the previous chapter, we demonstrate that the channel popularity

dynamics can be well explained by groups of users that have intrinsically different

channel preference and tend to watch TV at different time of day, as described next.

We divide STBs into multiple classes according to some feature. In the previous

chapter, we have compared different choices for such feature. To model the daily

dynamics of channel popularity, we choose average daily watching time as our classifier

because (1) the resulting subgroups exhibit distinct and stable channel preference and

(2) the STBs in each subgroup tend to affiliate with the same subgroup over time.

Specifically, we classify STBs using two thresholds, and in our data, 28% of STBs

are heavy-watchers (12 hours or longer average daily watching time), 36% of them

light-watchers (1 hour or shorter average daily watching time), and the remaining 36%

medium-watchers. We find that the channel preference among STBs in a particular

subgroup stays stable (e.g., throughout a day), and the overall channel popularity

dynamics is largely due to the change in the population mix of those groups.

We thus extend the model to a multiple-class population model. We first define

the membership ratio for different subgroups using the numbers above. Next, we

identify the channel preference within a subgroup (which is stable and follows Zipf-

like distribution) and characterize the session lengths and moderating functions for

99

Figure 46: ON-OFF model

each subgroup separately. This would capture the change of population mix over

time. We present more details and evaluations of this method in the next section.

5.4 SimulWatch: A Workload Generator

Thus far we have constructed several models to characterize various aspects of IPTV

user activities. In this section, we present our design of SimulWatch – user TV

watching activity generator. We validate our tool by comparing its output with the

real data traces. We also demonstrate how to use this tool to drive the network

performance study in an IPTV system (e.g., estimate unicast and multicast traffic

rates given the number of subscribers).

5.4.1 SimulWatch Design

For simplicity, we first describe the design of SimulWatch based on the single-class

population model. Then we present the extension using the multi-class population

model if the dynamics of channel popularity is of interest.

In the single-class population model, we first focus on generating switching-on and

switching-off events matching both on- and off-session length distributions and the

aggregate event rates. We define a closed-population ON-OFF model where both ON

and OFF states comprise several sub-states, each of which corresponds to one of the

100

mixture exponential distributions in Section 5.3.1. Figure 46 illustrates the structure

of the ON-OFF model with 2 sub-states in each of the ON and OFF states. The

transition rate between sub-states are constructed using the parameters in Sections

5.3.1 and 5.3.2. For example, the transition rate from ONi to OFFj state is

aOFF,j × λON,i × gON(t)

and similarly the reverse direction rate from OFFj to ONi is

aON,i × λOFF,j × gOFF(t)

To drive the event simulation, assuming a STB arrives at state ONi at time t, we

can easily determine the edge of the next transition using the branching probabilities

aOFF,j, and we can also determine the time of the next transition, t + x, using the

following probability density function

φON,i(x; t) = λON, i × gON(t+ x)× e−λON,i

∫ t+x
t gON(y)dy

We next focus on generating channel-switch events. It is not hard to see that the

timing of channel-switch events can be determined in the same fashion as those of

switching-on or switching-off events. There are two subtle details worth noting. First,

we need to trigger the event generation for a next channel-switch event not only at

the time of the previous channel-switch, but also when a new switching-on event takes

place. Second, we need to cancel a pending channel-switch event if a switching-off

event from the same STB takes place first.

In order to determine which channel to switch to, we keep track of, for each STB,

the last channel watched. At the time of a scheduled channel-switch event, assuming

the last channel watched is i with popularity rank ri, we compute the probability

that the next channel is j with rank rj as follows.

101

Probability =


(1− pt)pu + ptf0(rj) j = i+ 1,

(1− pt)(1− pu) + ptf0(rj) j = i− 1,

ptf0(rj) |i− j| > 1.

The initial rank ri is randomly assigned as described in Section 5.3.3. The definition

of f0 and all other parameters involved are defined in Section 5.3.3.

Now we have described the design of SimulWatch using the single-class popula-

tion model. We will show that the above procedure simulating the channel switches

cannot precisely generate the dynamics of channel popularity. To equip SimulWatch

with this functionality, we add an extension of the multi-class population model as

follows. Assume that we obtain N classes/groups, each of which consists of a fixed

proportion, pi, i = 1, 2, ..., N , of all STBs, where
∑N

i=1 pi = 1. Then for each STB, we

first determinate which group it belongs to based on the probabilities pi’s. Then in

each group, the workload is generated using the same method as we described above

using the single-class population model with the proper parameters. To generate the

synthetic traffic to mimic the dynamics of channel popularity, we can determine the

mapping between channel ID and its popularity rank within each group and then the

channel popularity can be calculated by combining the results from all the groups.

5.4.2 Evaluation

In this subsection, we will evaluate whether the synthetic traces generated by our

SimulWatch mimic the real user activities very well. We do so by comparing the

synthetic traces and real traces from three aspects – (i) properties that we explicitly

model such as session length distribution, aggregate event rate, and channel popu-

larity distribution, (ii) properties we do not explicitly model like channel popularity

dynamics and numbers of on-line STBs, and (iii) a case study on estimating the band-

width consumed by simultaneous unicast streams, and concurrent multicast channels

102

1 sec 1 min 1 hour 1 day
10

−6

10
−4

10
−2

10
0

Session length (log scale)

lo
g
1
0
(1

−
F

(x
))

Real trace

Synthetic trace

(a) On-session

1 sec 1 min 1 hour 1 day
10

−6

10
−4

10
−2

10
0

Session length (log scale)

lo
g
1
0
(1

−
F

(x
))

Real trace

Synthetic trace

(b) Off-session

1 sec 1 min 1 hour 1 day
10

−8

10
−6

10
−4

10
−2

10
0

Session length (log scale)

lo
g
1
0

(1
−

F
(x

))

Real trace

Synthetic trace

(c) Channel-session

Figure 47: Comparison of the session-length distribution. CCDFs for the real trace
and generated workload closely match in all cases.

0:00 8:00 16:00 24:00
0

0.05

0.1

Local time

R
at

e

0:00 8:00 16:00 24:00
0

0.05

0.1

Local time

R
at

e

Real trace

Synthetic trace

(a) Switching-on

0:00 8:00 16:00 24:00
0

0.05

0.1

Local time

R
at

e

0:00 8:00 16:00 24:00
0

0.05

0.1

Local time

R
at

e

Real trace

Synthetic trace

(b) Switching-off

0:00 8:00 16:00 24:00
0

0.2

0.4

Local time

R
at

e

0:00 8:00 16:00 24:00
0

0.2

0.4

Local time

R
at

e

Real trace

Synthetic trace

(c) Channel-switch

Figure 48: Comparison of the aggregate event rate. The real-trace results are on the
top, and the workload results are on the bottom.

at different time.

In our experiments, we generate synthetic user activities for two millions STBs

103

and 700 channels based on model parameters listed in Section 5.3. Each STB starts

from a random state at time 0 and we discard the initial part of the output until the

system reaches a steady state. On a PC with 2.4GHz CPU and 4GB memory, it takes

about 5 hours for our implementation of SimulWatch to generate one-day worth of

data. We compare the synthetic trace against the real trace collected on a different

date (April 8, 2009) than the dates from which we derive the model parameters. Since

the single-class population based workload generator works reasonably well for many

properties, we use the single-class population model unless specified otherwise for the

interest of simplicity. We also use the multi-class population model when illustrating

its capability in capturing the dynamics of channel popularity.

5.4.2.1 Properties explicitly modeled

Session-length distribution: Figures 47 shows the session-length distribution of

different types of sessions, where we observe an exceptionally good match between

the real trace and the synthetic trace from SimulWatch by visual inspection. In

order to qualitatively measure the closeness of two distributions, we further compute

the goodness-of-fit. In the chi-square goodness-of-fit computation, we divide the data

into m bins and test

χ2 =
m∑
i=1

(Oi − Ei)2/Ei

where Oi is the observed frequency for bin i (generated by model) and Ei is the

expected frequency for bin i (collected from the real trace). The smaller the value

is, the better the model and trace match. First, we want to test whether observation

O can be considered as arising from the same distribution as E. We represent it

through associated one-sided chi-square P-value P (χ2), i.e., the proportion of the

time that a value of χ2 or greater would be obtained if O and E were drawn from the

same distribution. For a hypothesis testing at significant level P0, we reject the null

hypothesis (O and E are from the same distribution) if P (χ2) < P0.

104

Table 16: Goodness-of-fit scores for session length and channel popularity distribu-
tions

Model
Session length Channel

ON OFF Channel popularity
Single-class 0.147 0.132 0.132 0.083
Multi-class 0.099 0.089 0.091 0.067

Table 17: RMSE when modeling the time-varying rate

Model Switch-on Switch-off Channel-switch
Single-class 2.3e-3 2.4e-3 2.5e-3
Multi-class 1.8e-4 1.9e-4 2.4e-4

Table 16 shows the goodness-of-fit for session length distribution (the bin size is

1 minute). Using a common significant level P0 = 5%, we see that in all cases the

two session length distributions (synthetic trace and real trace) are statistically the

same. In addition, multi-class population model yields smaller goodness-of-fit score,

indicating that it can fit the real trace better than the single-class population model.

Aggregate event rate: Figure 48 shows the aggregate event rate of different

types of events. Again, we observe a reasonably good match between the model and

real trace from visual inspection. Table 17 shows the root mean square error (RMSE)

between the model and real trace when modeling the time-varying rate. We find

that the RMSE of multi-class population model is an order of magnitude smaller that

that of single-class population model. For example, the RMSE of modeling switch-on

events by using single-class population model is 2.3e-3 where the corresponding figure

by using multi-class population model is 1.8e-4. The reduction in RMSE is due to

the fact that much more (triple) parameters are used in the multi-class population

model (i.e., more details have been modeled). Depending on the applications of

SimulWatch, this may or may not be a desirable property.

Channel popularity distribution: Figure 49 shows the channel popularity

distributions for both the real trace and synthetic trace. As expected, the popularity

of top 600 channels matches very well. Table 16 shows the goodness-of-fit for channel

105

0 100 200 300 400 500 600 700
10

0

10
2

10
4

10
6

10
8

Chanel index sorted by popularity (linear scale)

A
cc

es
s

fr
eq

u
en

cy
 (

lo
g
 s

ca
le

)

Real trace

Synthetic trace

Figure 49: Channel popularity distributions for the real trace and the generated
workload.

0:00 4:00 8:00 12:00 16:00 20:00 24:00
0.4

0.5

0.6

0.7

0.8

0.9

1

Local time

#
 o

f
o
n
li

n
e

S
T

B
s

(n
o
rm

al
iz

ed
)

Real trace

Synthetic trace

Figure 50: Number of on-line STBs over time. The results from real trace and
workload closely match.

popularity distribution (the bin size is 1 channel). Again, we observe that the multi-

class population model yields smaller goodness-of-fit score, indicating that it can fit

the real trace better than the single-class population model.

5.4.2.2 Properties not explicitly modeled

Number of on-line STBs: Figure 50 shows the average number of on-line STBs

as a function of the time-of-day. We normalize both synthetic trace and real trace

such that the value at their peak time is 1. This is a property that we do not model

directly, however, we still find a decent match in their shape.

106

0:00 4:00 8:00 12:00 16:00 20:00 24:00
0.5

0.6

0.7

0.8

0.9

1

Local Time

N
o
rm

al
iz

ed
 n

u
m

b
er

 o
f

S
T

B
s

Real trace

Single−class

Multi−class

Figure 51: Multi-class population model captures the change of channel popularity
over time (hourly)

Channel popularity dynamics: Recall that in Section 5.2 we showed that the

channel popularity distribution changes over time within a single day. Taking a kids

channel as an example, we show the change of channel popularity in Figure 51. The

change is normalized such that the maximum value is 1. We observe that the strength

of using multi-class population model is that this model can capture the dynamics of

channel popularity very well, while single-class population model fails. Note that the

curve for the single-class population model is actually similar to the curve of online

STBs over time in Figure 50 because the single-class population model treats every

channel-switch event uniformly. Therefore, the changing rate of channel popularity

is proportional to the changing rate of on-line STB population.

To better understand the reasons that a multi-class population model can better

capture the dynamics of channel popularity, we drill down the above example. There

are two factors which shape the popularity dynamics of a particular channel: i) the

channel access probability defined as the number of STBs in a particular population

(for multi-class population model) watching that channel divided by the number of

online STBs in that population at that time period (e.g. one hour). It is actually

the transition probability of that channel; ii) the population mix which consists of

the proportions of different subgroups in the whole user population. The channel

107

0:00 4:00 8:00 12:00 16:00 20:00 24:00
0.01

0.02

0.03

0.04

0.05

0.01

0.02

Local Time

C
h
an

n
el

 A
cc

es
s

P
ro

b
ab

il
it

y

All Heavy Light Medium

Figure 52: Time-of-day dynamics for a popular kids channel, based on multi-class
synthetic trace

popularity dynamics is generated by the combinational effect (which can be viewed

as the weighted sum of productions of subgroups) of these two factors.

Figure 52 shows the channel access probability of a popular kids channel from our

multi-class synthetic trace. We display one curve for each group and an additional

curve for all-STB cases (denoted by “All”). We observe that the curve for all-watchers

shows a diurnal pattern, but all the other curves are quite stable. This means the

change of the channel access probability in each group is very small and hence does not

contribute to the dynamics of channel popularity in Figure 51. Figure 53 illustrates

the population mix in our synthetic trace. By [42], the light-watcher group consists

of the majority of watchers for kids channels. When we compare Figure 52 with

Figure 53, it is clear that the increase bump (approximately 5:00 – 14:00) of light-

watcher group in population mix contributes to the spike view of Figure 51.

5.4.2.3 Case Study

Since our ultimate goal is to use the synthetic trace from SimulWatch in evaluat-

ing the performance of different design of IPTV system, different system parameter

settings, etc., we put SimulWatch to a final test by using it in a case study. In

particular, we are interested in evaluating the bandwidth requirement to support

108

4:00 8:00 12:00 16:00 20:00 24:00
0

0.2

0.4

0.6

0.8

1

Time (hours)

P
o

p
u

la
ti

o
n

 P
ro

p
o

rt
io

n

Medium−watchers

Heavy−watchers

Light−watchers

Figure 53: Population mix for each group, based on multi-class synthetic trace

0 20 40 60 80 100 120 140
0

0.02

0.04

0.06

0.08

0.1

0.12

The number of simultaneous unicast streams

P
D

F

Real trace

Synthetic trace

(a) Simultaneous unicast stream count

130 230 330 430 530
0

0.02

0.04

0.06

0.08

The number of active multicast sessions

P
D

F

Real trace

Synthetic trace

(b) Active multicast channel count

Figure 54: Case study. The results from real trace and workload closely match.

fast-channel-switch. Recall that using fast-channel-switch, a short (x seconds) uni-

cast stream is transmitted to the STB (in addition to a new multicast stream) when

a user switches to a new channel. We focus on a single router in one of the VHOs in

the IPTV network, which connects to 2, 137 downstream STBs. We evaluate different

value of x (4, 8, 16, 32). We only present result for x = 32 seconds, while other results

are quantitatively very similar.

We study the number of simultaneous unicast streams flowing downstream from

the router of interest under the above settings. Figure 54(a) shows the distribution

density function on the number of concurrent unicast streams when using either real

trace or synthetic trace in evaluation. We observe that the two curves closely match.

Both curves show that for around 4% of time there is no unicast stream in the system;

with a small probability, there can be demand for more than 80 concurrent unicast

109

streams, with the maximum being 128 in both cases; and interestingly there are

two local peaks (at 10 and 60) in both distribution functions, the second of which

may relate to the correlated channel switchings at hour boundaries. This result

demonstrates that SimulWatch faithfully preserves the intrinsic characteristics of

user activities that are essential to our evaluation.

We also examine the number of channels that these 2, 137 STBs collectively re-

quest. This value translates to the amount of multicast traffic involved to support live

TV viewing for the users. In Figure 54(b), we report the probability density function

for the number of channels, in which we confirm that the result from synthetic trace

closely matches that of real trace.

5.5 Related Work

Traditionally, understanding users’ TV viewing activities in the conventional TV

systems relied on phone surveys or specialized monitoring boxes (e.g., by Nielsen

Media Research [3]). The challenge with that approach is the difficulty conducting a

large-scale survey or deploying monitoring boxes for the majority of TV users. In this

paper, we analyze user activity data from more than one million commercial IPTV

subscribers and present models that can be used to generate realistic user activity

workload.

Many researchers recently have looked into various aspects of IPTV systems. The

closest work to our study is the recent measurement study conducted by Cha et

al. [12]. While some of our findings overlap with their study, our focus is to model

the user activities based on the measurement study and design a workload generator,

which can be used to evaluate different aspects of IPTV system design and perfor-

mance with respect to realistic user workload. In our earlier work [42], we extensively

study one aspect of IPTV system: channel popularity. In this paper, we model a

wider range of aspects of user activities, and design a workload generator. Smith [44]

110

analyzed bandwidth demand to support both multicast and unicast for fast chan-

nel change, where channel switching is modeled as a renewal process. However, the

work is not based on actual traces, and such a study can benefit from our workload

model and trace generator. Whereas our work focuses on IPTV services running on

top of a provider backbone, there are a number of peer-to-peer (P2P) based IPTV

systems [63, 32] and the measurement study focusing on P2P IPTV systems [23, 43].

Some researchers have investigated user activity workload in other context. For

example, Costa et al. [16] analyzed user activities in media streaming applications.

Cherkasova et al. [13], Chesire et al. [14], and Tang et al. [45] built models for the

workload of media streaming service. Yu et al. [61] studied the user activities to

access a Video-on-Demand (VoD) system. Cha et al. [11] explored how users access

videos in the YouTube system. Guo et al. [21] compared access patterns of different

types of media content on the Internet including Web, P2P, VoD, and live streaming.

These studies are complimentary to our work in that as IPTV providers offer more

interactive video streaming and VoD services, we also need to consider these aspects

in the system design.

5.6 Summary and Future Work

In this chapter, we have performed an in-depth analysis on several intrinsic char-

acteristics of user activities in large IPTV systems, including durations for on-, off-

and channel-sessions, time-varying rates of switching-on, switching-off and channel

switching events, and channel popularity. We have also developed a series of practi-

cal mathematical models to capture these characteristics. Furthermore, we construct

the first IPTV user activity workload generation tool SimulWatch, which can gen-

erate synthetic yet realistic activity traces of a large number of IPTV users. All the

derived models and the implementation of SimulWatch have been validated using

real traces collected from a large nationwide IPTV provider in the United States.

111

In particular, we demonstrate that while not explicitly modeled, the estimation of

unicast and multicast traffic demand based on SimulWatch trace closely matches

the actual values from the real trace. We believe that SimulWatch will prove useful

in many different aspects of IPTV system design and evaluation.

Our future work includes several extensions to our current model. We plan to

include proper modeling for the use of advanced features in IPTV, such as PIP and

DVR. We also expect that users’ activities likely change over time as IPTV providers

introduce more features. It would be also interesting to analyze such changes and

evaluate the performance impact those new features impose on IPTV systems.

112

CHAPTER VI

CONCLUSION

Through this dissertation, we expect to demonstrate how to better utilize systems logs

to manage a large-scale IPTV network. We study two types of system logs: router

syslogs and STB logs. We present the methodologies to uncover the useful information

buried inside the raw logs, and demonstrate their usefulness to a number of network

management applications. We will conclude this dissertation by summarizing our

contributions. Open problems in each of these topics can be found at the end of the

corresponding chapters.

In Chapter 3, we design a SyslogDigest system that can automatically transform

and compress such low-level minimally-structured syslog messages into meaningful

and prioritized high-level network events, by exploring both temporal and spatial

relationship among different logs. These events are three orders of magnitude fewer

in number and have much better usability than raw syslog messages. We demonstrate

that the output of SyslogDigest can be used in network troubleshooting, and network

health monitoring and visualization of a IPTV network.

In Chapter 4, we focus on analyzing the channel popularity in the context of

IPTV by analyzing the STB logs. In particular, we propose a series of models to

capture two important aspects of channel popularity – the distribution and temporal

dynamics of the channel popularity. Furthermore, we propose a method to identify

subsets of user population with inherently different channel interest. We also validate

our channel popularity model using real user channel access data from a commercial

IPTV network.

In Chapter 5, we perform an in-depth study on several intrinsic characteristics of

113

IPTV user activities by analyzing STB logs collected from an operational nation-wide

IPTV system. We further generalize the findings and developed a series of models for

capturing both the probability distribution and time-dynamics of user activities. We

then combine theses models to design an IPTV user activity workload generation tool,

which takes a small number of input parameters to generate synthetic workload traces

that mimic a set of real users watching IPTV. This tool can estimate the unicast and

multicast traffic accurately, proving itself as a useful tool in driving the performance

evaluation study in IPTV systems.

In this dissertation, we show that system logs can be better utilized in a large-

scale IPTV network. We hope this work can inspire network operators to rethink the

way of using system logs collected in a large-scale IP network. We also hope that the

general methodologies we propose (e.g., temporal-spatial association rule mining) for

system logs can be extended to other network measurement data sets.

114

REFERENCES

[1] “Emc lonix website.” http://www.emc.com/products/family/ionix-family.

htm, August 2011.

[2] “Ibm netcool website.” http://www-01.ibm.com/software/tivoli/welcome/

netcool, August 2011.

[3] “The Nielsen Company.” http://www.nielsenmedia.org, August 2011.

[4] Agrawal, D., Beigi, M. S., Bisdikian, C., and Lee, K.-W., “Planning
and Managing the IPTV Service Deployment,” in 10th IFIP/IEEE International
Symposium on Integrated Network Management, pp. 353–362, 2007.

[5] Agrawal, R., Imielinski, T., and Swami, A., “Mining association rules be-
tween sets of items in large databases,” in Proc. ACM SIGMOD, 1993.

[6] Barford, P. and Crovella, M., “Generating representative web workloads
for network and server performance evaluation,” in SIGMETRICS, pp. 151–160,
1998.

[7] Barger, K. J.-A., “Mixtures of exponential distributions to describe the dis-
tribution of poisson means in estimating the number of unobserved classes,”
Master’s thesis, Cornell University, 2006.

[8] Bradley, J., Distribution-free statistical tests. Prentice-Hall., 1968.

[9] Brauckhoff, D., Dimitropoulos, X., Wagner, A., and Salamatian, K.,
“Anomaly extraction in backbone networks using association rules,” in Proc.
ACM IMC, 2009.

[10] Brockwell, P. J. and Davis, R. A., Introduction to Time Series and Fore-
casting. Springer, 2002.

[11] Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.-Y., and Moon, S., “I Tube,
You Tube, Everybody Tubes: Analyzing the World’s Largest User Generated
Content Video System,” in Proceedings of ACM IMC, 2007.

[12] Cha, M., Rodriguez, P., Crowcroft, J., Moon, S., and Amatrianin,
X., “Watching Television Over an IP Network,” in Proceedings of ACM IMC,
2008.

[13] Cherkasova, L. and Gupta, M., “Characterizing locality, evolution, and life
span of accesses in enterprise media server workloads,” in NOSSDAV, 2002.

115

[14] Chesire, M., Wolman, A., Voelker, G. M., and Levy, H. M., “Measure-
ment and analysis of a streaming media workload,” in USITS, pp. 1–12, 2001.

[15] Chu, J., Labonte, K., and Levine, B., “Availability and locality measure-
ments of peer-to-peer file systems,” 2002.

[16] Costa, C. P., Cunha, I. S., Vieira, A. B., Ramos, C. V., Rocha, M. M.,
Almeida, J. M., and Ribeiro-Neto, B. A., “Analyzing client interactivity
in streaming media,” in WWW, 2004.

[17] Doob, J. L., “The Brownian movement and stochastic equations,” Annals of
Math, vol. 40, no. 1, pp. 351–369, 1942.

[18] Eirinaki, M. and Vazirgiannis, M., “Web mining for web personalization,”
ACM Transactions on Internet Technology (TOIT), vol. 3, no. 1, pp. 1–27, 2003.

[19] Facca, F. and Lanzi, P., “Mining interesting knowledge from weblogs: a
survey,” Data & Knowledge Engineering, vol. 53, no. 3, pp. 225–241, 2005.

[20] Gerhards, R. and GmbH, A., “The Syslog Protocol,” in IETF RFC, 2009.

[21] Guo, L., Tan, E., Chen, S., Xiao, Z., and Zhang, X., “The stretched
exponential distribution of internet media access patterns,” in PODC, pp. 283–
294, 2008.

[22] Harrison, C. and Amento, B., “CollaboraTV: Using Asynchronous Commu-
nication to Make TV Social Again,” in EuroITV, 2007.

[23] Hei, X., Liang, C., Liang, J., Liu, Y., and Ross, K. W., “A measurement
study of a large-scale p2p iptv system,” IEEE Transactions on Multimedia, vol. 9,
no. 8, pp. 1672–1687, 2007.

[24] Huang, Y., Fu, T. Z. J., Chiu, D.-M., Lui, J. C. S., and Huang, C.,
“Challenges, Design and Analysis of a Large-scale P2P-VoD System,” in Proc.
ACM SIGCOMM, 2008.

[25] Huang, Y., Feamster, N., Lakhina, A., and Xu, J. J., “Diagnosing net-
work disruptions with network-wide analysis,” SIGMETRICS Perform. Eval.
Rev., vol. 35, no. 1, pp. 61–72, 2007.

[26] Jewell, N. P., “Mixtures of Exponential Distributions,” in Annuals of Statis-
tics, 1982.

[27] Kalmaneka, C. R., Ge, Z., Lee, S., Lund, C., Pei, D., Seidel, J., der
Merwe, J. V., and Yates, J., “Darkstar: Using exploratory data mining
to raise the bar on network reliability and performance,” in Proc. the 7th in-
ternational workshop on Design of Reliable Communication Networks (DRCN),
October 2009.

116

[28] Kandula, S., Chandra, R., and Katabi, D., “Whats going on? learning
communication rules in edge networks,” in Proc. ACM SIGCOMM, 2008.

[29] Kandula, S., Mahajan, R., Verkaik, P., Agarwal, S., Padhye, J.,
and Bahl, P., “Detailed diagnosis in enterprise networks,” in Proc. ACM SIG-
COMM, 2009.

[30] Kompella, R. R., Yates, J., Greenberg, A., and Snoeren., A. C., “De-
tection and localization of network blackholes.,” in Proc. INFOCOM, 2007.

[31] Lakhina, A., Crovella, M., and Diot, C., “Mining anomalies using traffic
feature distributions,” in SIGCOMM ’05: Proceedings of the 2005 conference on
Applications, technologies, architectures, and protocols for computer communi-
cations, (New York, NY, USA), pp. 217–228, ACM, 2005.

[32] Liao, X., Jin, H., Liu, Y., Ni, L. M., and Deng, D., “Anysee: Peer-to-peer
live streaming,” in INFOCOM, 2006.

[33] Lim, C., Singh, N., and Yajnik, S., “A log mining approach to failure analysis
of enterprise telephony systems,” in Dependable Systems and Networks With
FTCS and DCC, 2008. DSN 2008. IEEE International Conference on, pp. 398–
403, IEEE.

[34] MacQueen, J. B., “Some methods for classification and analysis of multivari-
ate observations,,” in Proceedings of 5-th Berkeley Symposium on Mathematical
Statistics and Probability, pp. 281–297, 1967.

[35] Mahimkar, A., Ge, Z., , Shaikh, A., Yates, J. W. J., Zhang, Y., , and
Zhao, Q., “Towards automated performance diagnosis in a large iptv network,”
in Proc. ACM SIGCOMM, 2009.

[36] Mahimkar, A., Yates, J., Zhang, Y., Shaikh, A., Wang, J., Ge, Z., and
Ee, C. T., “Troubleshooting chronic conditions in large ip networks.,” in Proc.
ACM CoNEXT, 2008.

[37] Mahimkar, A., Song, H. H., Ge, Z., Shaikh, A., Wang, J., Yates, J.,
Zhang, Y., and Emmons, J., “Detecting the performance impact of upgrades
in large operational networks,” in Proc. ACM SIGCOMM, 2010.

[38] Nielsen, J., “Zipf curves and website popularity,
www.useit.com/alertbox/zipf.html,” 1997.

[39] Oliner, A. and Stearley, J., “What supercomputers say: A study of five
system logs,” 2007.

[40] Perkowitz, M. and Etzioni, O., “Adaptive web sites,” Communications of
the ACM, vol. 43, no. 8, pp. 152–158, 2000.

117

[41] Plonka, D., “Flowscan: A network traffic flow reporting and visualization
tool.,” in Proc. USENIX System Admin. Conf.,, 2000.

[42] Qiu, T., Ge, Z., Lee, S., Wang, J., Zhao, Q., and Xu, J. J., “Modeling
Channel Popularity Dynamics in a Large IPTV System,” in SIGMETRICS, 2009.

[43] Silverston, T., Fourmaux, O., Salamatian, K., and Cho, K., “Measuring
p2p iptv traffic on both sides of the world,” in CoNEXT, p. 39, 2007.

[44] Smith, D. E., “IPTV Bandwidth Demand: Multicast and Channel Surfing,” in
INFOCOM, pp. 2546–2550, 2007.

[45] Tang, W., Fu, Y., Cherkasova, L., and Vahdat, A., “Medisyn: a synthetic
streaming media service workload generator,” in NOSSDAV ’03, pp. 12–21, 2003.

[46] Tariq, M., Zeitoun, A., Valancius, V., Feamster, N., and Ammar., M.,
“Answering what-if deployment and configuration questions with wise.,” in Proc.
SIGCOM, 2008.

[47] Uhlenbeck, G. and Ornstein, L., “On the Theory of Brownian Motion,”
Physical Review, September 1930.

[48] Weber, J. and Gong, J., “Modeling switched video broadcast services,” in
Cable Labs, 2003.

[49] Willinger, W., Taqqu, M., Sherman, R., and Wilson, D., “Self-similarity
through high-variability: statistical analysis of ethernet lan traffic at the source
level,” IEEE/ACM Transactions on Networking (ToN), vol. 5, no. 1, pp. 71–86,
1997.

[50] Won, Y. J., Choi, M.-J., Park, B.-C., Lee, H.-W., Hwang, C.-K., and
Yoo, J.-H., “End-user iptv traffic measurement of residential broadband access
networks,” in NOMS Workshops 2008, 2008.

[51] Xiao, Y., Du, X., Zhang, J., Hu, F., and Guizani, S., “Internet proto-
col television (iptv): The killer application for the next-generation internet,”
Communications Magazine, IEEE, vol. 45, no. 11, pp. 126–134, 2007.

[52] Xie, Y., Yu, F., Achan, K., Panigrahy, R., Hulten, G., and Osipkov, I.,
“Spamming botnets: Signatures and characteristics,” in Proc. ACM SIGCOMM,
2008.

[53] Xu, W., Huang, L., Fox, A., Patterson, D., and Jordan, M., “Min-
ing console logs for large-scale system problem detection,” in Proceedings of the
Third conference on Tackling computer systems problems with machine learning
techniques, pp. 4–4, USENIX Association, 2008.

118

[54] Xu, W., Huang, L., Fox, A., Patterson, D., and Jordan, M., “Detecting
large-scale system problems by mining console logs,” in Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles, pp. 117–132, ACM,
2009.

[55] Xu, W., Huang, L., Fox, A., Patterson, D., and Jordan, M. I., “De-
tecting large-scale system problems by mining console logs,” in SOSP ’09: Pro-
ceedings of the ACM SIGOPS 22nd symposium on Operating systems principles,
(New York, NY, USA), pp. 117–132, ACM, 2009.

[56] Yamanishi, K. and Maruyama, Y., “Dynamic syslog mining for network fail-
ure monitoring,” in Proc. ACM KDD, August 2005.

[57] Yang, Q., Zhang, H., and Li, T., “Mining web logs for prediction models
in www caching and prefetching,” in Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 473–478,
ACM, 2001.

[58] Yang, Y., “Expert network: effective and efficient learning from human deci-
sions in text categorization and retrieval,” in SIGIR 94: Proceedings of the 17th
annual international ACM SIGIR conference on Research and development in
information retrieval, (New York, NY, USA), pp. 13–22, Springer-Verlag New
York, Inc., 1994.

[59] Ye, N., Vilbert, S., and Chen, Q., “Computer intrusion detection through
EWMA for autocorrelated and uncorrelated data,” in IEEE transactions on re-
liability, October 2003.

[60] Yu, H., Zheng, D., Zhao, B. Y., and Zheng, W., “Understanding user
behavior in large-scale video-on-demand systems,” SIGOPS Oper. Syst. Rev.,
vol. 40, no. 4, pp. 333–344, 2006.

[61] Yu, H., Zheng, D., Zhao, B. Y., and Zheng, W., “Understanding user be-
havior in large-scale video-on-demand systems,” in EuroSys, pp. 333–344, 2006.

[62] Za
”ıane, O., Xin, M., and Han, J., “Discovering web access patterns and trends
by applying olap and data mining technology on web logs,” in Research and
Technology Advances in Digital Libraries, 1998. ADL 98. Proceedings. IEEE
International Forum on, pp. 19–29, IEEE, 1998.

[63] Zhang, X., Liu, J., Li, B., and Yum, T.-S. P., “Coolstreaming/donet: a
data-driven overlay network for peer-to-peer live media streaming,” in INFO-
COM, pp. 2102–2111, 2005.

[64] Zhang, Z. and Nasraoui, O., “Mining search engine query logs for query
recommendation,” in Proceedings of the 15th international conference on World
Wide Web, pp. 1039–1040, ACM, 2006.

119

[65] Zhao, X., Massey, D., Lad, M., and Zhang, L., “On/off model: a new tool
to understand bgp update burst,” tech. rep., USC/CS Technical Report 04-819,
2004.

120

VITA

Tongqing Qiu received his Bachelor of Science and Master of Engineering both in

computer science and engineering from Nanjing University, Nanjing, China in 2000

and 2004 respectively. Tongqing joined the College of Computing at the Georgia

Institute of Technology, as a Ph.D. student in August 2007. His thesis work was

conducted under the able guidance of Dr. Jun (Jim) Xu.

121

