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SUMMARY

The gaseous core nuclear rocket is generally considered to be the
most promising approach to achieve both high thrust and high specific im-
pulse for a space vehicle propulsion system. In this system a very hot
core of gaseous fissioning fuel radiates energy to the propellant contain-
ing very small particles which render the propellant opaque to the radia-
tion.

This thesis measured the absorption parameters as a function of
temperature and wavelength for a carbon particle seed in hot nitrogen.
This information is required in order to evaluate the absorptive proper-
ties of seeded propellant for various core temperatures, propellant tempera-
tures, seed concentrations and pressures.

Nitrogen, first unseeded, and then seeded, was heated to the desired
temperature by a furnace employing an electrically heated tungsten strip,
A beam of monochromatic light from a vacuum ultraviolet spectrometer was
passed through unseeded and then seeded nitrogen at a given temperature.
Measurements of the transmission for the two cases yilelded the linear
attenuation coefficient for the particle seed. The density of seed mater-
ial in the gas was simultaneously measured by withdrawing a known volume
of seeded gas through a filter, and dividing the weight of carbon deposited
on the filter by the volume of gas that passed through., The mass absorp-
tion coefficient, which is independent of particle concentration, was the
measured linear attenuation coefficient divided by the measured seed density.

The resulting data showed thet at room temperature the mass absorp-
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tion coefficient of the carbon seed used was essentially independent of
wavelength from 1100 A to 8000 A. Observations at higher temperatures up
to 1525°F indicated no change in either the magnitude (about 20,000 cmz/gm)
or the wavelength independence of the mass absorption coefficient of the

particle cloud.



CHAPTER I
INTRCDUCTION

The basic purpose of a rocket engine is to produce thrust by
accelerating gases from rest with respect to the rocket to an exhaust
velocity T with respect to the rocket. This acceleration is usually
achieved by heating the gases to a high temperature inside the engine and
then allowing them to escape through a nozzle. In chemical rockebs this
heating is accomplished by burning the fuel in the combustion chamber and
then the combustion products become the ejected gases. The nuclear rocket
heats the gases with a nuclear reactor instead of by combustion.

The performance of a rocket engine i1s measured by two criteria: the
specific impulse, defined by Equation (2), and the thrust-to-weight ratio,
which is the thrust of the propulsion system divided by the total wvehicle
weight. The thrust-to-weight ratio for a space propulsion system should
be as large as possible so that the mission can be accomplished with a
minimum fuel expenditure and in a minimum time period., The specific im-
pulse, which is a measure of the effective exhaust velocity of the pro-
pellant, is the primary factor determining the mission capability of a
propulsion system.

Letting Mi and Mf be the initial and final masses of a rocket which
has executed a mission equivalent to a velocity change Av in free space,

the mass ratio Mi/Mf is then related to Av by



- Av (1)

where L is the effective exhaust velocity. The specific impulse, Isp’

may be defined by

T - Thurst (2)
Sp ¥
m g

where m is the mass flow rate of the propellant, and g is a constant equal
to the acceleration of gravity at sea level. Since the thrust is given by

.

mv , I may also be written
e sp

v
e

Isp = 1;- (3)

so ISP is actually a measure of the effective exhaust velocity. Eguation

(1) may now be written

4 IS
_ o e (1)

Since the relationship between the mass ratio and Isp is exponential, a
small change in Isp may produce a very large change in the corresponding
mass ratio. This means that for a given payload and mission reguirement,
the size of the rocket vehicle decreases considerably when the specific im-
pulse of the propulsion system is increased.

Economical space travel will require a rocket propulsion system that
has both high specific impulse and a high thrust-to-weight ratio (unity or

greater). Today's chemical boosters have an adequate thrust-to-weight ratio



but their specific impulse is limited to about 500 Seconds(l). The solid
core nuclear rocket, which utilizes a graphite-fuel reactor to heat the
propellant, is expected eventually to develop a specific impulse of about
1000 seconds(g). But for practical, economical space transportation a
rocket engine capable of a specific impulse of several thousand secconds,
which also produces a thrust-to-weight ratio of unity or greater, is needed,

Nuclear electric rockets (ion propulsion) have the required specific
impulse, but they have extremely low thrust-to-weight ratios(l) and there-
fore would not be suitable for many space missions.

In order to increase the specific impulse of a propulsion system one
must increase the effective exhaust velocity, e For propulsion systems
which obtain thrust by exhausting a hot gas through a nozzle, v, is in-
creased by increasing the average velocity of the gas molecules inside the
engine.

The root mean square velocity of the gas molecules may be found from
B = %—mv2 = % KT (5)

where m is the molecular weight, T i1s the absolute temperature of the gas,

and k is the Boltzmann constant, Thus,

2 3 kT (6)

and



Hence the exhaust velocity, Ve’ which is proportional to v, is given by

v, = const., [ 3 (8)

so one may write

5p

where o means "is proportional to."

The greater specific impulse of graphite core nuclear rockets re-
sults not from an increase in the propellant temperature (actually T is
lower than in the LOX-hydrogen system), but from a considerable decrease
in m. In the LOX-hydrogen rocket the exhaust gas is water with a molecular
mass nine times that of molecular hydrogen, the exhaust gas of the nuclear
rocket; so the specific impulse of the nuclear rocket is considerably
greater, even at a slightly lower propellant temperature.

Further increases in the specific impulse can be obtained by in-
creasing T. The solid core nuclear rocket is limited to a specific impulse
of about 1000 seconds because raising the temperature further would cause
the core to melt. 1In order to circumvent this temperature limitation, con-
siderable attention has been given in recent years to the gaseous core
reactor propulsion concept because of the very high temperatures that might

(3)

be achieved A specific impulse of several thousand seconds might be
attainable with such a system.
Three approaches have been proposed which, in principle, might lead

to an engine with the desired thrust-to-weight ratioc and a specific impulse



of several thousand seconds or greater. These are the Orion concept (in
which thrust would be obtained from nuclear explosions behind the space-
craft), the gaseous core nuclear rocket, and the thermonuclear fusion
rocket,

The Orion concept, or the nuclear pulse rocket, originated at Los
Alamos shortly after the Second World War, and the first report on the
project was written in 1955(1;). General Atomics developed a design weigh-

ing 2,500 tons which would have a specific impulse of the order of LO0O

seconds. However, the cost of actually building such a vehicle would be

()

about a billion dollars Nuclear pulse rockets presently are not con-
sidered practical because of their size and cost.

Fusion propulsion may eventually be developed after fusion becomes
practical as an energy source. At the present, however, of the three
approaches to achieving high thrust and high specific impulse, the gaseous
reactor concept, in which the propellant is heated by fission energy pro-
duced in a cavity reactor having its nuclear fuel in gaseous form, eppears
closest to becoming a reality(l).

Most of the earlier ideas for using gaseous fission cavity reactors
to propel rockets involved diffusion of the propellant through the gaseous
fuel so that heating occurred by direct conduction and convection(l). The
separation ratio (ratio of propellant mass flow rate to fuel mass flow rate)
must be kept as high as possible because of the high cost of nuclear fuel
and the undesirable effect of the fuel nuclel on the specific impulese. To
date, the possibilities of achieving high separations with these diffusion

systems have appeared remote.

The prospects for a practical gaseous fission rocket have brightened,



however, with the recent introduction of a new family of systems that
operate on a basically different principle(l). In these systems the pro-
pellant is heated by radiation from the fission plasma, rather than by
direct intermixing. The containment problem is then not so difficult be-
cause the gases are never mixed. Two concepts that are being investigated
are the coaxial flow reactor, in which a slow moving central stream of
fissioning fuel heats a fast moving annular stream of hydrogen solely by
radiation, and the nuclear light bulb concept, in which the fissioning fuel
is contained in a transparent partition and the propellant is heated by

(5)

radiation through the partition

_:- ——————— o
v U?E? H*ga o Exhaust -——~——//,§ “;#;:> Exhaust

7/// //// //// LLZ
G~ Q\/, - L S .

= gas

e T £ o _ v —
77777777 R TTTELEE
Coaxial Flow Model Light Bulb Model
Figure 1.

In both of these concepts, the propellant (hydrogen containing very
small particles) is heated by thermal radiation from the very hot gaseous
core., The particles are necessary to make the propellant opadque to the
radiation from the core in order to insure maximum heat transfer to the
propellant and minimum heating of the containment vessel.

Some investigations with seeded gases and liquids have been carried

out by several groups, Lanzo and Ragsdale(6’7) investigated experimentally



the absorption of suspended particles as a function of material, size and

concentration; and investigated heat transfer from an arc to a flowing

(8)

made an analytical study of radiant heating of a
9,10)
3

seeded gas. DMasser
seeded gas for a particular regctor configuration. McAlister et al.(
have reported theoretical and experimental studies of radiant heat transfer
from a heated tungsten cylindrical enclosure to a cloud within it., Experi-
mentally they endeavored to avold ccnduction and convection and measured
the heat gained by the cloud, Results were in good agreement with theory.

(11)

Marteney studied techniques of producing dispersions of submicron-
radius solid particles in a carrier gas and investigated the optical para-
meters of these particles for several wavelengths. Tests were conducted
wilth carbon and tungsten particles having nominal radii of 0.0045 and 0.01
microns, respectively, dispersed in helium and nitrogen. These studies
showed that the application of aerodynamic shear forces on a carbon aerosol
resulted in an increase in the extinction parameter for carbon particles
from approximately 10,000 cme/gm to 58,000 cma/gm. These increases are be-
lieved to be caused by a reduction in the size of particle agglomerates
since theoretically a decreaselin the average agglomerate size should result
in an inecrease in the value of the extinction parameter(le).

The first experimental work involving seeded gases at elevated temp-
eratures was reported this year by Valerie Burkig(lg). In this experiment
a cloud of particles in a gas was injected into a transparent guartz tube
and exposed to the two millisecond flash of a xenon flashtube. The tempera-
ture rise of the gas was inferfed from the pressure rise measured with a

fast response pressure transducer. The bulk of the work was with carbon,

iron, and tantalum carbide particles of about one micron diameter. Helium



and hydrogen were used as carrier gases.

During the flash, the temperature of the carbon aerosol rose to
about ZOOOOK for about aqne millisecond. After the flash gaseous and solid
residues were examined for chemical products and evidence of vaporization;
no evidence of chemical changes was found.

To date no work has been reported on the optical properties of
egquilibrinum carbon aeroscls at elevated temperatures. The residence time
of the propellant in the gaseous core rocket engine would be of the order
of 100 milliseconds, and Burkig(l3) demonstrated that the aercsol required
only about a2 millisecond to come into equilibrium. Also, the work reported
thus far primerily involves the attenuation of energy from broad spectrum
radiation sources. Few measurements have been made on the optical properties
of seeded gases as a function of wavelength over a broad range of wevelengths,
and nothing has been reported regarding the optical properties of aerosols
in the vacuum ultraviolet between 1000 and 2000 A. In the gaseous core
rocket, most of the energy reaching the particles would probably lie in
this wavelength range (Figures 2 and 3).

One preblem with experiments involving the transfer of heat from
hot plates or arcs to a gas containing small particles, is that fthe maximum
(1)

temperature of the plate (about 3OOGDK)(9) or the arc (about BOOOOK) is

much lower than the expected temperature for the gaseous core (about
LLo,otaoox;)(w). This means that the emission of the radiation from the
gaseous core will be almost entirely in the ultraviolet, whereas for the
arc and tungsten plates the emission is primarily in the visible or in-

frared (Figure 2). The ultraviolet region down to sbout 1000 A is the

region most applicable to the gaseous core. Below about 1000 i hydrogen
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becomes essentially opaque to the radiation (Figure 3).

The absorption of a beam of radiation in a purely absorbing medium
is. governed by the simple expression
X —kT(l)x '
T(h,x) = T{ky0) e (10)
where kT(h) is the total lineavy attenuation coefficient at wavelengtih A
and x 1s the distance into the medium. This equation holds as long as

kT(l) is independent of wavelength. (L) has dimensions of reciprocal

1
S

length. TFor light of multiple wavelengths, one can write

> < -k (A)x
T{z) = f I(A,x) dx = f I(},0) e T & (11)

Thus, if one is given the attenuation coefficient k(\) and the spectrum of
the light source I(X,0), the intensity of the radiation I(x) at any dis-
tance x in the absorber can be calculated,

If the absorption takes place by more than one process, say two
processes, called 1 and 2, then kT(h) is the sum of the attenuation coeffi-

cients for each process Séeparately, i.e.,
ki (A) = kl(k) + kg(?\) . (12)

In a gas containing particles, the absorption takes place by absorption
in the gas and absorption by the particles. Letting kg(h) be the absorption
coefficient due to absorption in the gas alone, and kp(l) be absorption ecoef-

ficient for the particles in the gas, then the total absorptilon coefficient
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is given by

kT(}\) = kg(;\) + Kp()x) : (13)

(16)

For the case of hydrogen, kg(l) has been evaluated by Krascella
from the extreme ultraviolet to the far infrared (Pigure 4). Thus, if
kp(h) can be measured for a given type of particle seed, then kT(h) can be
calculated from Equation (13) for hydrogen containing that type of particle
seed, assuming no chemical interactions between seed and hydrogen. Xnowing
kT(k) for that propellant mixture, then I(x) can be found for any core
emission spectrum I(A,0).

If a beam of light is passed through a transparent gas containing
very small particles, the attenuation of the beam takes place almost en-
tirely by absorption. The Mie theory of light scattering by particles,
which is discussed in Appendix A, and numerous experiments using particle
suspensions have verifiled that scatlering is negligible for particles of
interest(ll’l7_19).

Thus, k (\) can be obtained by passing a beam of light of wavelength

kK
p
A through a transparent gas containing very small particles and measuring
the attenuation of the light., The value of kp(h) for all particle concen-
trations of interest can be obtained by measuring it for a known particle

concentration and assuming that it is proportional to particle concentra-

*
tion. Once kp(h) is known, the absorptive properties of the seeded pro-

* The proportionality holds as long as the particle volume fraction in the
gas is small (that is, the average distance between particles is much
greater than the average effective particle radius) and the particles are
randomly oriented., These conditicns hold for all concentrations of infer-
est to nuclear propulsion.
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pellant can be calculated,

Purpose of the Research

The purpose of the research described in this thesis was to:

l. Measure the mass absorption coefficient of a transparent gas
(nitrogen) seeded with carbon particles as a function of incident radiation
wavelength in the range from 1100 A to 8000 & at room temperature and at
elevated temperatures, The mass absorption coefficient is defined as the
linear attenuation coefficient, kp’ divided by the density of the seed
material in mass of seed material per unit volume of aerosol.

2. Relate the measured mass absorption ccefficient to the radiative
heat transfer problem in the gaseous core nuclear rocket by calculating the
total energy attenuation as a function of distance through the propellant

for various seed concentrations.
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CHAPTER 1T

INSTRUMENTATTON AND EQUIPMENT

General Arrangement

An objective of this project was to obtain measurements of the
attenuation of monochromatic light in hot nitrogen seeded with very small
carbon particles. The experimental system (Figure 5) consisted basically
of the following components. A vacuum ultraviclet spectrometer which
utilized a caplllary discharge tube served as a monochromatic light source
of variable wavelength. A photomultiplier detector observed the light
which passed through the observation chamber, and the resulting signal was
recorded by a micro-microammeter. The furnace consisted of three perts:

a heating chamber which raised the aercsol temperature, an observation
chamber through which a beam of light was passed, and an exhaust chimney.

A shielded chromel-alumel thermocouple in the observation chamber con-
nected to a millivolt meter indicated the gas temperature. An aeroscl
generator seeded nitrogen with carbon partlcles. A sampling system allowed
the carbon density in the gas to be measured, Three power supplies provided
power for the tungsten heater, the photomultiplier, and the capillary dis-
charge tube, respectively.

In general, the system operated as follows. The aerosol generator
was Tirst filled with carbon black. Nitrogen passed through this aerocsol
generator and carbon particles were injected into it which remained sus-

pended in the gas. The resulting aerosol entered the heating chamber of
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the furnace and was heated to the desired temperature, When the aeroscl
emerged from the heating chamber into the observation chamber, it inter-
sected a beam of light passing through the chamber. The hot aerocsol then
passed out of the exhaust chimney, became mixed with air to bring down the
temperature, and was drawn through a filtering system to clean the exhaust
gas.

The aerosol in the cobservation chamber attenuated the beam of light
from the spectrometer, This attenuation was messured by the photomultiplier
detector, and the linear attenuation coefficient of the aercosol could then
be calculated., The aeroscl density was measured by drawing a known volume
of aerosol through a millipore filter and finding the welght of the de-

posited carbon.

Spectrometer

A vacuum ultraviolet spectrometer was utilized to provide a team of
monochromatic light of a.wavelength which could be varied from 1100 i to
8000 ﬁ. The light source was a capilllary discharge tube filled with hydrogen
or helium, A concave reflection type diffraction grating located at the
opposite end of the spectrometer focused a spectrum on the plate containing
the exit aperture., The wavelength of the light passing through the exit
hole and through the furnace could be selected by slightly rotating the
grating. This was accomplished by turning a wavelength dial on the outside
of the spectrometer, which turned the grating through a gear mechanism.

Since the grating was used at nearly normal incidence, the wavelength
dial could be cglibrated by taking two readings at the beginning of a run;

the first at the "white point" with the grating at normal incidence which
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corresponded to zero wavelength (Figure 34), and the second at a known
line in the spectrum. The dial reading, D, was related to the wavelength

*
A by a first-order eguation .

A=C D0 (14)

2 [}

These two calibrations esgtablished the values of the constants Cl and 02.

A mechanical pump maintained a pressure of about five microns of
mercury inside the spectrometer whenever the spectrometer %as not in
operation. Since the gas flowing through the caplllary discharge tube
passed into the spectrometer before being pumped out, the pressure rose to
several hundred microns when the spectrometer was operating. Both hydrogen
and helium were used in the discharge tube.

The only solid material between the discharge tube and photomulti-
plier was & lithium fluoride window covering the exit aperture. This

7 (29)

window transmitted only those wavelengths above 1100 A

Detector System

An EMI 95145 photomultiplier tube operating at 1200 volts attached
to the furnace opposite the spectrometer detected the light emerging from
the o?servation chamber. The face of the photomultiplier was covered with
a thin coating of sodium salicylate which fluoresced when irradiated by
ultraviclet light. With this arrangement the photomultiplier responded
to both visible and ultravioclet light. Without the phosphor coating, a

large portion of the ultraviclet spectrum would have been undetected because

*
Actually there is a sine relationship, but the angle involved is so
small the correspondence appears to be linear.
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of absorption in the front face of the photomultiplier tube.

The photomultiplier output was recorded by a Keithley model 415
micro-microammeter, which in turn operated a chart recorder, The micro-
microammeter was located at the end of the spectrometer with the wave-
length dial so that the photomultiplier signal could be observed as the
wavelength was changed. Data were taken directly from the micro-micro-
ammeter. The chart recorder was used primarily when the aerosol concentra-

tion was being adjusted.

Furnace

Figure 6 illustrates the furnace design. The furnace consisted
basically of two stainless stezl cylinders irnside a water jacket, The
inner cylinder contalned the asrosol, while nitrogen coolant flowed in the
annular regions oubside of the inner cyliander and inside the water jacket.
About twenty liters per minute of water flowed through the water jacket to
keep the outside of the furnace cool at all times.

One-eighth inch hot pressed boron nitride was used ag an insulating
and structural material surrounding and supporting the tungsten heating
element in the heating chamber. The heating element was a two-foot long
by one-half inch wide strip of five mil thick tungsten. The ends of the
strip were connected to the copper power leads,

The copper water jacket was made in two parts so that the furnace
could be disassembled and reassembled easily. By lifting off the top half
of the water jacket, the inner stainless steel components were exposed, and
these could be taken apart easily. The furance was designed so that the

filament could be easily replaced should it burn out.
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The aerosol was prevented from backing up in the tubes and deposit-

ing carbon on the lithium fluoride window or the photomultiplier by a very

small flow of nitrogen into the observatiocn chamber through the observation

tubes.

This window flow had to be adjusted carefully for a given aerosol-

coolant flow, and usually amounted fo less than one percent of the total

flow.

Thermocouple

observation tube

HEEEP
11 1l .
light- ' :
b s
| :
f
. ‘ Observation
water W Né Chamber
Figure 7.

Thermocouple Configuration

The temperature of the heated gas was measured with a chromel-

alumel thermocouple.

An alumel wire and a chromel wire were inserted

through a ceramic sleeve and twisted together for one quarter inch at the

end.,

Keithley millivolt meter indicated the thermocouple voltage.

Heater Power Supply

The end was ghielded from the filament by stainlesgs steel. A

The power supply used for the heater is located in the Unit Opera-

tions Lab of the Chemical Engineering Building at the Georgia Institute of

Technology.

A saturable core reactcr was employed to allow the heater

power to be varied from zero to 125 kilowatts of single phase power,
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Since another project was using the power supply concurrently with
this thesis work, a switch was made and installed to allow the power to
be easily transferred from one set of eguipment to the other, Three Q/O
cables, capable of carrying 600 amps, carried the power from the switch
to the hot copper lead, and three more L/0 cables grounded the other lead.
The copper leads from the cables to the tungsten heater had a cross section

of 7/8 inch by 1/8 inch.

Aerosol Generator

The aerosol generator consisted of a two-liter round bottom flask
and a twelve-liter flask mounted on a ringstand with assorted tubing and
rubber stoppers. The arrangement is illustrated below., Nitrogen under
five to ten psi pressure flowed through a small oriface in the end of the
tube in the generator flask, agitating the carbon black and producing the
aerosol. A twelve-liter flask acted as a trap for the large particles and
as a surge btank to smoothe out the fluctﬁations in the aerosol concentra-

tion from the generator flask,

about 10 psi

100

aerosol output

Generator
Lﬂﬁ_di// Flask

Figure 8. Aerosol Cenerator

Su;éé Tank
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This arrangement produced a uniform aerosol for the flow rates used. A

3

total of twenty-eight cylinders (224 ft.” each) of extra dry grade nitro-

gen were used.

Sampling Apparatus

In order to measure the density of the aercsol, in grams of carbon
per cubic centimeter of aerosocl, a known volume of gas was drawn through a
filter and the weight of the deposited carbon measured. The sampling
apparatus consisted of a vacuum pump, two one-gzllon jugs, a filter holder,
a filter, a stopcock, and assorted tubing and stoppers. The arrangement

is indicated by the following drawiags.

: [ ",T"LI_[_-'- J o -L]j,:..:l i '
to vacuum Ag—— i
pump

" églj pi1ter pp—gﬂ—j e
( .
; A

|t

Before Samplihg After Sampling
Figure 9, pampling Apparatus

To take a sample, the vacuum pump was turned on and the stopcock
opened, This reduced the pressure in jug A so that water flowed from B
into A, Then the stopcock was closed and the pump turned off. When pres-
sure equilibrium was again established the volume of water in A equaled
the volume of water which left B, which in turn was equal to the volume of
gas entering B. This was the gas that passed through the filter at one
atmosphere pressure. The aerosol concentration was the weight of carbon

deposited on the filter divided by the volume of water in A.
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The weight of the deposited carbon was found by weighing the filter
before and after the sample was taken. The volume of the water was mea-
sured with a graduated cylinder. The volume of the filter holder was sub-
tracted from the water volume to get the volume of gas passing through the
filter.

About a minute was required to pull a sample. The sample was pulled
slowly to avoid significantly perturbing the serosol concentration., The
attenuation of a reference line was carefully watched while a sample was
taken to insure that the particle concentration did not change significantly

while the sample was collected.
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CHAPTER III

PROCEDURES

Data Acquisition

The experimental procedure for taking data is outlined in detail
in Appendix B. The resulting data were the values of the photomultiplier
output for a number of spectrometer wavelength dial settings with seeded
nitrogen and with unseeded nitrogen in the observation chamber. Since the
photomultiplier output was taken to be proportional to the intensity of the
light emerging from the observation chamber, for a single wavelength, the
desired light intensity ratio (intensity with particles to intensity with-
out particles) was simply the ratio of the signals for the two cases. The
wavelength dial was calibrated (Equation: (14)) so that the wavelength
corresponding to each dial setting was known.

Two factors that had to be considered when taking data were the
variation of the aerosol concentration during a run and the background
signal which was a function of the temperature of the observsation chamber,
The aercsol concentration was monitored by quickly turning the wavelength
dial back to a reference wavelength each time a data point was taken with
particles in the nitrogen. Thus, each time the signal corresponding to the
light of a given wavelength, which passed through the aeroscl, was recorded,
the signal for the reference wavelength was also recorded. Signal varia-
tlons at the reference wavelength were related quantitatively to variations

in the aercsol concentration.
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The density of the aerosol was measured by withdrawing a known
volume of aerosol through a filter. The aerosol density in weight of
carbon per unit volume of aerosol was the weight of carbon deposited on
the filter divided by the volume of gas passing through. When the sample
was withdrawn, the signal corresponding to the reference wavelength was
recorded so that changes in the reference signal could be related to
changes in the measured particle concentration.

At elevated gas temperatures the walls of the observation chamber
and the inner ends of the observation tubes became hot enough to emit visi-
ble light. Even though the photomultiplilier was less sensitive to red light
than to visible light of shorter wavelengths, the intensity of thernal
radiation from the observation chamber which reached the photomultiplier
was great enough to produce a significant background signal. This back-
ground was teken into account by cbserving a "black" part of the spectrum
(any wavelength below 1100 ﬁ) occasionally during a run and recording the
value of the background signal. The background was observed as often as
required to ensure that it was known accurately throughout a run. The
background dropped considerably when particles were introduced into the
gas,

The thermocouple voltage was recorded periodically. This voltage
was related to the temperature by using & table giving the thermal EMF of
a chromel-glumel junction as a function of temperature. Tank pressures
were recorded before and after a run so that the nitrogen flow rates could

be estimated.
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Data Reduction

The first step in reducing the data was establishing the value of
IO/I, the attenuwation of the signal in the aerosol, for each wavelength A
for which data was taken. Io is the signal without the particles, minus
the background. Bince the signal without particles was taken twice during
each run (before and after the data are taken with the particles), T, was
taken to be the average of the two signal minus background measurements,
T is the signal with particles in the gas, minus the background. Then the

linear attenuation ceoefficient k could bhe evaluated from

SRy L ] IC()")
k(A) = % ) —i’_er (15)

for each wavelength ), where x, the path length between the two inner ends
of the observaticn tubes, was five centimeters.

The signal E’(KT} at the reference wavelength Kr’ which was recorded
each time a value of T()) was obtained, was used to evaluate the linear

attenuation coefficient at the reference wavelength kr for the aerosol con-

centration at the time I()) was measured. k’(xr) is given by
: T (h)
() =i - (16)
I'(2)

This data required for the calculation of k()) and K’(kr) were taken together
for the same aerosol concentration. k(\) and k'(hr) are both proportional
to the aerosol concentration, so k(k)/k’(hr) is independent of the concen-

tration. Thus, values of k(l)/k'(lr) may be calculated which give relative



28

values of the linear attenuvation coefficlent that are independent of

changes in the aercsol concentration, k(k)/k'(hr) is evaluated fron

TS ~t%5 - (17)

At some time during the run, a sample of the aercsol was taken
while the signal abt the reference wavelength was recorded, Thus, the
density p’ which produced the recorded sigral I'(lr} was found, and k'(hr)
corresgsponding to the mesasured density p" was calculated, This fixed the
value of the mass absorption coefficient k/p at wavelengbh A as k'(hr)/p’.

The mass absorpticn coefficient correspondine to the other wavelengths is

then

K k) O (18)
0 k i?\r) P *

The mass absorption coeificient i1g independsent of the particle masz den-

sit .
W Pp
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CHAPTER IV

RESULTS

Experimental Data

Attenuation data were obtained from 1100 & to 8000 A at room
temperature, and over a more limited wavelength range at higher tempera-
tures because of the increasing background signal. These data are presented
in Appendix C., The calculated values of k/pp, based on measurements, are
presented in Figures 10 through 15 for 63°F, 500°F, 750°F, 900°F, 1L0o°F,
and l5250F. The data indicated the mass absorption coefficient of the
carbon aercsol to be essentlally independent of wavelength over the range
of wavelengths and temperatures investigated,

The first runs (Tables 2 through L) indicated a peak in k/pp values
in the vacuum ultraviolet region, however, when more care was taken to keep
oxygen out of the observation chamber, this peak disappeared. The largest
k/pp values were at wavelengths at which oxygen absorbs the strongest.

The data in Tables 2 through 4 which were affected by oxygen absorption
were not plotted in Figure 10.

The carbon mass density in the aerosol, pp’ varied from about 6 ugm/
cm3 to about 20 ugm/cmB for different runs. The accuracy with which pp
was estimated is expected to be about fifty percent (Appendix C). Since
the mass absorption coefficient, k/pp, depends on the particle size dis-
tribution, which in turn depends on how the aerosol is produced and the

type of powder used, the data obtained in this experiment apply to a parti-
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cular carbon aerosol rather than to all carbon aerosols., However, this
work has shown that a carbon aeroscl can be easily produced for which
k/pp is essentially wavelength independent over the entire wavelength
range of interest. Similar work using the same type of carbolac powder
and generating the aerosol with a high velocity gas stream demonstrated
the nominal particle size to be about 0.01 microns (Reference No. 11,
page 32).

The seed material used was Cabot carbolac powdered carbon. Extra

dry grade nitrogen was used as the carrier gas.

Sample Caleculation

The value of k/pp for each scale setting was calculated from the
measured values of IO, Ty B, @64 pp using the procedure described in
Chapter III. A sample calculation of the first k/pp value in run number
35 follows,

The measured value of Io (signal minus background for the gas with-
out particles) with the wavelength dial set on 1084 was 21 micrcamps,

The value of I (signal minus background for the gas with particles) was
3.6 microamps. Immediately after I was measured, the value of I’ (signal
minus background at a scale setting of 611, the reference setting) was

measured to be 14.5 mieroamps,

=

I_O " ?3.3% = 5.8k (19)

The value of Io at a wavelength sething of 611 had been 91 microamps, So

Ié = 91 microamps.
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The value of k’/pp had been evaluated from several density measure-
ments with a gas temperature of about 1BOOOF which were taken while k' was
..
measured with the wavelength dial at 611. k'/pp was found to be 2 x 10

2
cm /gm with a probable error of about fifty percent. Using this value of

k’/pp, one obtains

k/pp = k/k' - k’/pp = (6.9725)(2 x 10") = 1.95 x 10" en” /gm (22)

Error Analysis

Some of the factors that introduced errorve into the data are enumer-
ated below.

Errors in k/k’

l. Fluctuations in the aerosol concentration between the measure-
ments of the signal and the background, or between the measurement of I and
I/, These fluctuations were minimized by taking the respective measure-
ments as quickly as possible, but could not be eliminated entirely because
of the finite amount of time required to turn from one dial setting to the
other.

2. Fluctvations in X, the distance the light passed through the
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aerosol. With the window gas flow and aerosol generator adjusted
properly, the intensity of a monochromatic beam of light which was signi-
ficantly attenuated by the aerosol did not change noticeably with time.
Under these circumstances, X was not fluctuating measureably, and these
conditions were always established before data were taken. However, 1t

is possible that fluctuations in X due to changes in the flow pattern in
the observation chamber could occur during the run and affect the results.

3. The voltage to the capillary discharge tube, the voltage to the
photomultiplier, the amplitifcation of the micro-microammeter, all could be
affected by a change in line voltage, which could occur during a run if
there was a significant change in the power used in the rest of the build-
ing. The electronics equipment and spectrometer were allowed at least an
hour to warm up before data were taken, and since all of the data were taken
in the evening, the fluectuations in the line voltage should have been
minimal.

i, PBach reading of the intensity of the signal (eight were required
to get k/k') involved recording the reading of a meter on the micro-micro-
ammeter., Care was taken in making these readings, but some error was ob-
viously introduced. Also, in setting the wavelength digl some human error

was introduced.

Errors in k'ipp_

Whereas errors in k/k' introduced fluctuations in the data points
(Figures 10 through 15), an error in k'/pp would throw all of the data
points off by the same factor. k’ was subject to the same errors discussed
above, but the greatest source of error in the magnitude of the k/QD values

was probably in the measurement of Ppor Py varied from about 6 ugmfcma with
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50 percent attenuvation to about 20 ugm/cm3 with 90 percent attenuation.

It should be pointed out, however, that the purpose of this research
was directed toward establishing the wawvelength dependence of k/pp at
various temperatures, rather than its magnitude, It 1s well known that
the magnitude of k/pD depends on how the aerosol is produced, and experi-
mental measurements by others have ranged from 10,000 cmg/gm to 50,000 cmg/
gm(ll). The value of this research lies in establishing that a carbon aero-
8ol has been produced rfor wunich k/gp is essentially independent of wavelength
up to lEOOOF. Factors inbtroducing errors in pp include the deposition of
parbicles on the tube walls before reaching the filter, changes 1n the
aerosol concentration in the chimney due to the sample being withdrawn,
air leaks in the sampling system, and the uncertainty in the gas tempera-
ture in the reservoir Jjug after the sample has been pulled.

The measured values of k’/pp ranged from 2 x th to b x 104, both
at room temperature and at higher femperatures, Since all major factors
introducing error into the value for pp tend to make pD appear too large,
k'/pp should be closer to the lower value of 2 x 1.0LL cmg/gm. A careful

analysis of the density data obtained throughout the course of this experi-

ment has led the author to accept the value of
’ + 2
k /pp =2 x 10 cm /gm £ 50% . (23)

This relatively large error in pp could be reduced considerably by

using a more sophisticated sampling mechanism,
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Destructive Test

Temperatures above 1525OF were not investigated because of possible
damage to the spectrometer due to melting of the lithium fluoride window,
and because of an increasing vackground signal. After all data had been
taken, the spectrometer was filled with helium under a positive pressure
of six inches of water to insure that a window meltdown would result in
a gas flow out of the spectrometer, thus averting any damage to 1ts inter-
nal components, and a destructive test of the furnace was run to ascertain
the maximum gas temperature that could be reached with the present design.
With the photomultiplier removed and nitrogen flowing, the heater power
was turned on and the power slowly increased., The observation chamber was
viewed through a plece of handi-wrap covering the photomultiplier housing.

As the power was increased, the gas temperature rose and the voltage
across the tungsten filament increased. When the gas temperature reached
lOOOOF, the observation chamber was glowing red and the filament, which
could be seen through the chimney, glowed like a light filament, At a gas
temperature of 18500F, the filament melted and shorted out on the botiom
plate of the water jacket. The splke in the voltage curve resulted from
the initial break of the filament, and the voltage dropped to zero as the
melted filament shorted out. The details of this test are shown in Figure

16.
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Figure 16.
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CHAZTER V
CONCLUSTONS

The initial purpose of this research was to demonstrate the feasi-
bility of using small carbon particles in hydrogen propellant to absorb
the radiant energy from the hot gaseous core which is not absorbed by the
hydrogen., Previously no measurements of the wavelength dependence of the
optical properties of carbon seroscls had been reported in the vacuum
ultraviclet region or at elevated temperatures. This project had as its
objective the measurement of the mass absorption cecefficient of a carhon
particle cloud over all wavelengths of interest to the gaseous core con-
cept (1000 & to about 8000 A) and at elevated temperatures.

The mass absorption ccefficiznt, k/pp, of a4 carbon particle clouc
was measured and found to be essentially independent of wavelength and
temperature over the wavelength range investigated, for temperatures below
about 1500°F. The value of K/Dp was measured Lo be about 2 x th cu?/gm.
The application of the results of this experiment to the gasecus core
nuclear rocket is greatly simplified by assuming that the apparent wave-
length and temperature independence of k/pp also applies to seeded hydroger.

Ragsdale(ls)

suggests that the pressure inside the gaseous core
rocket would be about 500 atmospheres, and the thickness of propellant
surrounding the core may be about 100 ecm. Since the particles are only

useful for absorbing radiation at propellant temperatures below about MSOOOK,

one might consider the average temperature of the seeded gas in the core to
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be about BOOOOK, based on an entrance temperature of about l5OOOK.

Hydrogen at BOOOOK temperature and 500 atmospheres pressure has a density

3 3 (16)

of b x 1077 gm/em”.

3

Letting the hydrogen density, pH, be 4 x 10 gm/cm3 and assuming
the mass absorption coefficient, k/pﬁ, to be the value measured in this
L j

. 2 i . ;
experiment, 2 x 10 c¢m /gm, one can then calculate the attenuation, I/IO,
of a beam of light at a distance x into the aerosol as a function of seed
density, P in grams of carbon seed per cubic centimeter of aerosol. The
results of the calculations are given in Table 1 and presented in Figures

17 through 19.

Taole 1. Attenuation Versus Seed Concentration

9 Seed Py 3 /1 = kX

EE x 10_2 gs cmfl x=1lcm S5cm 10cm 50em 100em
pH cm3
0.01 4@-7 0.00&  1.000 0.960 0.923 0.670 0. 4hg
0.02 8@-7 0,016 0.990 0.923 0.852 0.4ho 0.201
0.05 2@-6  0.04 0.960 0.819 0.670 0,135 1.683@-2
OLE le-6 0.08 0.923  0.670 0.449 1.83@-2  3.35@-4
0.2 8@-6 0.16 0.852  0.4h9 0.201 3.35@-4  1.12@-7
0.5 2@-5 0.4 0.670  0.135 1.83@-2 2,06@-9 L, ,25@-18
5 he-5 0.8 o0.4hkg  1.83@-2 3.35@-4 L4.,25@-8 @ ceeeea-
2.0 8@-5 1.6 0.201 3.35@-h  1,12@-T7  —eeemen emmeeen

Thus, to get a factor of 10,000 attenuation over a one meter distance,

only sbout 0.1 percent by mass of carbon seed is reguired, This means that
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only one pound of carbon is required per thousand pounds of hydrogen,
which would have a negligible effect on specific impulse and would be
guite satisfactory for the gaseous core rocket,

Actually, the energy from the core would not be radiated entirely
perpendicular to the surface of the core. Much of the radiant energy must
traverse a distance greater than the thickness of the propellant because
it leaves the surface at an angle other than 900. This means that the
attenvation of the radiant energy is even greater for a particular seed
concentration than is indicated above, unless the carbon particles become
gignificantly less absorbing at temperatures between lEOOOF and 65000F,

The spectrum emitted from the core would probably not be that of
a black body, but as long as the absorption coefficient of the carbon
particles is independent of wavelength, the spectrum of the emitted radia-
tion i1s unimportant. It is interesting to note that the theory for spheri-
cal particles, which is discussed in detail in Appendix A, does not necess-
arily predict this wavelength independence. One might imagine the mass
absorption coefficient of a real particle cloud to represent a sum cf many
of the curves presented in Figure 23 for different sizes such that the sum
is wavelength independent, Also one must remember that in the real case
the particles are not spheres but are irregularly shaped.

The results of this research indicate that, unless the absorption
characteristics of the particle cloud change drastically at temperatures
above l5OOOF but below the vaporization temperature, the carbon particles
investigated would make a highly satisfactory seed material for gaseous

core rocket applications,
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CHAPTER VI

RECOMMENDATIONS

The experimental technique demonstrated by this project should be
useful in obtaining attenuation data for much higher temperatures than
those investigated here., A few minor meodifications in the equipment
arrangement should serve to greatly increase the operating temperature.

l. The furnace should be located between the source and the spec-
trometer rather than between the spectrometer and the photomultiplier as
was the case here., With this arrangement the background signal would be
practically eliminated because only that thermal radiation from the obser-
vation chamber which traversed the length of the spectrometer and was dif-
fracted off the grating at the appropriate angle would be observed.

2. The filament and heating chamber should be raised so that the
beam of light would pass across the top of the heating element. Then the
gas would not cool down as much before being traversed by the light beam.

3. Separate vacuum systems should be used for the source and the
spectrometer so that the source would operate at a relatively high pressure
(several hundred microns of mercury) while the spectrometer would pump down
to a good vacuum.

4, An automated data collecting system which could take data rapidly
and punch them onto paper tape would greatly increase the accuracy of these
measurements. The paper tape could then be used for rapid and accurate

computer processing of large amounts of data.
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5. A more precise, and probably more elaborate, means of measuring
the seed density, pp, is needed.

6. The aerosol generator used in this research was simple and pro-
duced a fairly uniform aerosol for a short time but offered 1ittle control
of the aerosol density. A more sophisticated approach, as described in
reference 10, could be taken to produce a steadier, finer aerocsol.

T. At higher temperatures, above about 25OOOF, thermocouples can-
not be used for temperature measurements. Above 25OOOF the temperature
can be measured with an optical pyrometer or by monitoring the resistance
of a tungsten wire inside the observation chamber.

8. Flow meters would be useful in monitoring the gas flow rates so
that given flow conditicns could be reproduced easily.

9, For this type of work, it is important that the tungsten heating
element be of a simple design and easily replaceable. Since one would like
to operate with the heating element as hot as possible, the heating element
would need to be replaced occasicnally when it melts. The basic furnace
design and especially the heating chamber design employed in this work is
highly recommended because of the ease of making and installing the heating
element.

10. If the arrangement in recommendation number 1 is used, a photo-
multiplier detector covered by a narrow band pass filter may be positioned
beside the grating to give a signal proporticnal to the intensity of the
light which passed through the aerosol. Since this photomultiplier would
respond to a narrow band of wavelengths only, its signal could be related
to the mass density, Py of the aerosol by I/ID = exp(-kx) where k = const:

pp. This arrangement would permit the continuous monitoring of the aerosol
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concentration.

11l. This experimental technique can be easily applied to seed
materials other than carbon and carrier gases other than nitrogen.
Burkig(B) suggests that iron and tantslum carbide may be useful seed
materials, Experiments using hydrogen as the carrier gas would be more

applicable to the gaseous core rocket problem,
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APPENDIX A
MIE THEORY OF SCATTERING

Background
In a paper published in 1908, G. Mie(Ql) obtained from Maxwell's
equations a rigorous solution for the diffraction of a plane monochromatic
wave by a homogenecus sphere of any diameter and of any composition situated
in a homogeneous medium. An equivalent solution of the same problem was
published shortly afterward by Peter Debye(ae}, and since then the subject
has been treated in its different aspects by many writers.

Mie's sclution, though derived for diffraction by a single sphere,
also applies to diffraction by any number of spheres, provided that they
are all of the same diameter and composition and provided also that they
are randomly distributed and separated from each other by distances that
are large compared to the particle radius. Under these circumstancss there
are no coherent phase relationships between the light that is scabttered by
the different spheres, and the total scattered energy is equal to the energy
scattered by one sphere multiplied by their total number., Similarly, for a
distribution of sizes, the energies scattered by the spheres of each parti-
cular size may be summed to obtain the total scattered energy.

The following detailed derivation of the Mie equations follows for
the most part a brief outline of the solution in reference 19. References
17, 12, 23, 2L, and 25 were also used extensively.

In this derivation the solution of Maxwell's equations is found
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which describes the field arising from a plane monochromatic wave incident
upon a spherical surface, across which the properties of the medium change
abruptly. he incident wave and the boundary conditlons are described in
terms of a spherical polar coordinate system centered on the sphere, and
the field represented as the sum of two subfields, each of which satisfies
Maxwell's equationg and the boundary conditions. Maxwell's eguations to-
gether with the boundary conditions then separate into a set of ordinary
differential eguations, which are solved for the two subfields in the form
of infinite series. The sum of the solutions for the two subfields is the
solution for the actual field. The solution for the scattered wave is used

to calculate the desired cross sections for spherical particles.
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NOMENCIATURE

magnetic component of an electromagnetic wave
electric component of an electromagnetic wave
inductive capacity

magnetic permeability (=1 for non-magnetic materials)
electrical conduchivity

frequency of the timc varying fields

/-1, as a superscript represents the incident wave
time

speed of light in vacuum

i .l
constant equal to EE (e + 1 —EE )
i
constant equal to ;3
i - . :
constant given by k¥ = -k +k. , called the wave number

12

as a superscript ddentifies quantities pertaining to the medium
surrounding the sphere

as a superscript identifies quanbtities pertaining to the sphere
direction of the electric vector of the incoming wave
direction of the magrnetic vector of the incoming wave
direction of propagation of the incoming wave

as a superscript represents the wave within the sphere

as a superscript represents the scattered wave

unit vector in x direction

unit veector in y direction

unit vector in z direction

perpendicular component

parallel component

52
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radius of the sphere

distance from the center of the sphere to a field point
angle of scattering

angle between plane of observation and x axis
superscript which represents the "electric wave"
superscript which represents the "magnetic wave"

Debye's potentials-scalar functions from which the electric and
magnetic waves may be derived

e

scalar function equal to %;(r )
. . 8 ,.m

scalar function equal to S?(T )

E i 5 {5
general function representing either I or "
functional dependence of Il on r
functional dependence of [I on 8
functional dependence of Il on ¢

A ; ;
constant equal to m where m is any integer

constant equal to £(2+l) where £ is any integer greater than or
equal to the absolute value of m

= cos O
BResgsel funetlion of order n

Neumann function of order n

a R
Ty o2 Jn+%(p)

TP
% Ypiy(P)

I

¥ () - 1x,(p)

Hankel function given by H;l) =J + 1N

Langendre polynomials
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wavelength of the light in vacuum
wavelength of the light in medium surrounding the sphere

complex refractive index of the sphere relative to the sur-
rounding medium

o a/\

Mie coefficients
extinetion cross section
scattering cross section
absorption cross section
denotes the real part
particle volume

density of sphere

pL!



55

DIFFRACTION BY A CONDUCTING SPHERE (MIE THEORY)

For small metallic particles refraction, absorption, and diffrac-
tion of light take place simultaneocusly. If the metallic particles were
pure conductors, one would only be dealing with a problem of pure diffrac-
tion. For real metal particles, however, the effects that are due to the
partial penetration of light into the particles are of particular physical
interest.

In deriving Mie's formulae, one concerns himself with finding a
solution of Maxwell's equations which describes the field arising from a
plane monochromatic wave incident upon & spherical surface, across which
the properties of the medium change ebruptly. Using spherical polar co-
ordinates one finds that Maxwell's equations, together with the boundary
conditions, separate into a set of ordinary differential equations which
may be taken to represent two subfields. These equations are then solved
to obtain infinite series solutions.

Consider the diffraction of a plane, linearly polarized, monochro-
matic wave by a sphere of radius &, immersed in a homogeneous, isotropic
medium., We assume the medium to be a non-conductor and both medium and
sphere non-magnetic,

*
Maxwell's equations include,for no sources,

D) (21)

o/ N
V XH(¥) = ??-ji%J*C ey

x Strattontgs), P, I78
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= / agfr» _ 9
VxER) 1 E S 7 © (23

—5

. Dit) =0 (26)

—¥

V-Bt =0 (27)

P = €E0¢) -
Bl L) -

Tit) . (30)

— *‘
M, the permeagbility, is 1 for non-magnetic materials, so B is equal to i.
For plane waves incident on the sphere, the {ime dependence is taken to
-iwt ;
he e . . The time dependence will be the same inside the sphere, so both

inside and outside the sphere

s Ak

Elt)= Fe (31)

i ~J..w/t

Hit) = He (32)

* Stratton(25), p. 153
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- —

E and H are now time independent. TInsert Equations (28) and (30) into

Equation (2L4).

7 AT Bty +§: LR (33)

=)

/
VrElt) = - L 2EE (3
Substituting Equation (31) into Fquation (33) one gets

0 tne A

Wer = "g

€

=3 (35)

-

N

Also, substituting Equation (32) into Equation (34) produces

\7%?: %@/7‘7 (36)

Equations (35) and (36) are Maxwell's equations in their time-free Zorm,

which may also be written

——

VxH =-4 E (37)

VxE= 41'7 (38)

where
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: . Y77T
A =48 (eri E (39)

and
4

Consider Equations (37) and (38). Insert Equations (28) and (29) into
Equations(26) and (27), and remembering that € and u are assumed to be

constant, one has for the case of no sources,
' —
V-E=0 (k1)
V-H=0 (2)
Take the curl of Equations (37) and (38),

U VxH = - 4VxE (13)

VxVxE:ﬁZVxH (k)
Substitute Equations (37) and (38) into Equations (43) and (k).

U e-AbH (45)

s T = kB (46)
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Since

TV A) = VIVA) - VA ()

Ead

where A is any vector, substitute Equations (L41), (42), (45), and (i46) into

Equation (47) to get Equations (48) and (49).

VH-44H (+6)

VE-AAE (49)

— -3
Let uw represent any Cartesian component of E or H, then one has

Z; i b
Vus= 4hu=-tu (50)
2 . .
where k  1is defined by

A=-44,

Eamn

an
~

—

If one considers a wave propagating in only one direction, say, the =z

direction, then the solution for u(z,t) is

ihz-iwl ibz - AWk
M(Z,f):/l e +f§@ (52)

where k is given by Eguation (51). k is called the wave number, It is

real outside the sphere and complex inside the sphere,
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) (i)
Direction of, € \\\i- a
propagation

Figure 20. Diffraction from a Sphere

Let the superscript 1 refer to quantities pertaining tc the medium

surrounding the sphere and 1T refer to the sphere,

O“(D' O (53)

1

Let z be the direction of propagation of a plane wave and X be the
direction of its electriec vector.

Iet the amplitude of the electric vector of the incident wave be
normalized to unity, i.e.,

(L)

) A'/g =
F /

ST

2 | (54)
Let superscript (i) represent the incident wave, (w) represent the
wave within the sphere, and (8) represent the scattered wave. Thus, one has
) . (L)
() ‘(% Z

E - e (55)

X

and since
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'Zp \;' X 12l L IL)
H =mWVxE *75|% & %|2ma - B8
*x 3 Z e J/ k2 /
4 47127 2 T
e O O

The six components of the incident field vectors are

()
W o ikz o)
= 57
X e (
(o,
/_/w: M‘ @Mz (58)
/ ’érr,l :

(A )
(59)

-

Gauss' theorem states that for any vector A

$A-da = [V A v

Using Equations (41) and (42), Equstion (60) becomes Equations (61) and (62).

k}£>;z0£; f//%Z /jZJV =.{)

(60}

‘ﬂgzgiﬁizlz $7;£?1%w =0
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If one considers a small element of volume as shown, then

e

[E=
.z—— =

~

s
e )
A,

2
b

using Equation (61) he has

=il KB3)

2 -t (2)
ﬁH'OE‘ - }—7 ,7_‘?:6/4'-* /:; .i;éAzi- contribution from walls

Let 6nh - O, then the contribution from the walls approaches zero and at

the surface,

(/;7-6)?"?:1‘-/[7-(??2)5/4 =0 (61)

Since at the surface - Ei = Hé = H;p, and 8A F 0, Equation (64) implies
Equation (65)
— -»(2) Hrr,J!w i
ne(H-H )=0 (65)

-
Thus, the normal component of H is continuous at the interface betwesen two

non-magnetic materials. The same argument shows that the normal component

5
of ¢ E is continuous at the interface.

Next, examine the behavior of the tangential components.
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4

Consider the rectangular path with points P. and Ql in material 1, and

points P2 and Q2 in material 2, TLet b be the unit vector perpendicular to

—
the plane of the rectangle, Stokes' theorem states that for any vector A,

(]

.4 - Jived)-da (66)

50

C

GBS fionEr b [T

The second and third integrals are taken throughout the area of the rec-
tangle, and the firet along its boundary.

Let the length P. to Ql = 621, then the length P, to QE = 6£2’ then

i 2
if 6£l and 5£2 are small, E may be replaced by constant values E(l) and E(C)
along each of these segments, Simllarly, g% may be replaced by constant

values. Equation (67) then gives

el

SASh (68)

(2)-»

“i i + -‘. \ | + contribution from ends = =
’5/?' E zé 2

%%,

] —

where §4 is the length of 6£l or 6£?. Now if the height of the rectangle,

&h, is shrunk to zero, the contribufion from the ends shrinks to zero.
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Also, if %% remains finite, the last term vanishes and Equation (68) be-

w

comes

—{l) —>

(EE+ECE)Sh =0 (69)

Tet 512 be the normal from medium 1 to medium 2, so

-/f:;-/‘f?:—gxﬁjz (79)

f:jz:‘éx 12 (71)

Thus, Equation (69) becomes

(@, (72)

[ —»fzJ —» (1} 27

Since the orientation of the rectangle and consequently that of the unit

-

vector b is arbitrary, it follows that

_*(a (u

x( =0 (73)

thus, the tangential component of the electric vector is continuous across
the surface, The analysis of the tangential component of the I vector is
the same,

Thus, in the case of the conducting sphere, one has the following

four boundary conditions at r = a.



() ) (2) __(2)

n\]

(1) (2)
H. = H,

(74)

(75)

(76)

(77)

In order to satisfy these boundary conditions, one must assume that

in addition to incident field m 1), F(1)

and the field within the sphere

E(W), ﬁ(w), there is a scattered (or diffracted) field E(S>, ﬁ(s) in the

medium surrounding the sphere. Thus, the total electric field is given

by Equation (78) outside the sphere,

—f] =2 (5)

E=E +F

and by Equation (79) inside the sphere,

== = (w)

£E=F

e d
with similar expressions for H.

(78)

(79)

Since the boundary conditions must hold for all time, all the six

vectors must have the same time dependence. Obviously, if they did not

have the same time dependence, then Etar

and € Ei_would not always be con-
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tinuous at the surface of the sphere, Thus, the time dependence of all six

: -iwt
vectors is e ‘

Now introduce spherical polar coordinates r, €, ¢ such that

X=rsimg cos (80)
y=rsing sin 0 (81)
(82)

7 =vcos B

- = =¥
Let 1, J, and k be the orthonormal basis vectors of our Cartesian coordi-

— 3

= = L - .
nate system, and lr’ lej and l¢ be the basis vectors of the spherical sys-

=
tem, Then in the rectangular system, for any vector A

i 4
Ved = |5 2. 5 (83)
A A A
In the spherical polar coordinate system, the curl is
AN S )
r"' sinb v sinb r
Vﬁ‘ﬁ = %\" g@ %‘5 (84)
A, r/;@ rsr'né)/zﬁg

5
The components of A are transformed from the Cartesian to the spherical
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system by
/4,, :/4)( sin6 cos -f*/4), sinbsing + A, cos6 (85)
A,= A, cosbeos @ +/4/cc>5<9 sin- A, sinb (86)
A= -Aysind s fyeos § -

Applying Equation (84), Equations (37) and (38) become Equations (88)

through (93).

“AE, :T*’/Sme {99(:* ol - 5 (Hé/)ﬁz =
'%;E@ - ;;./;—é %gf - ;:(’rf/ﬁg smé)f (89)

I (J
jf;j 2 = 5?«(”’;)'35//*“} (90)
AH. =m{ (r smz%;sr (vEp } (91)

#Hy =% 2k, ) - g;g,,} (93)
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he boundary conditions at r = a, Equations (74) through (77), become

Equations (94) through (99).

(L) (z)

e (94

£4 = ikp )
(T) ()

(x) (Z/)
Egj = [ﬁ( (%6)
(] (IZ)
/é ://é (97)
{T) (Z)

E}fi, = E;zg; (98)

Ho= K, &

Equations (88) through (93) and boundary conditions,Fquations (9h)
through (99),are the basic equations of the problem of the scattering of
electromaghetic radiation by a conducting sphere,

The first step toward solving these equations will be to represent
the E End ﬁ fields as a superposition of two linearly independent fields

(eﬁ, eﬁ) and (mﬁ, mH) each satisfying Equations (88) through (93) such that

e—'—"-

F o= F +mE (100)
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e (101)
s, |

and

Write these fields as vectors,

{106)

f:ﬁ,
I

E 2 efg (107)
e

(108)

N
I
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- 4 (109)

H

‘“;[}7- 9/{9 (110)

"}7 - \my (111)
w%?h

—

Since eE, eﬁ, and mﬁ, "H each are taken to satisfy Equations (88) through
— —

(93), then B and H also do and the representation of the field as two sub-

fields is consistent with the equations of the problem.

=3,
Now look at the electric wave, (eE, eH), which is assumed to obey

Maxwell's equations. Since eﬁr is zero, Equations (89) and (90) become

/ 9
lges :Fa__/rwé) (112)

Substituting Equation (112) into Equation (93) yields

A 77;15 - }é?(é%[i %,(T9H¢)]* e (114)



which becomes

or

but k2 is -k, k., by Equation

L 2

Similarly, substitute Equation (113) into Equation (92)

which becomes

or

so finally,

e / ok,
’%’éé :JZEEiégj(;¢ Ir

/’ée/%j 2%{;5’?!{"}%

| -

/

| E,

ro6

r fﬁ 4£,ﬁ'r'/é5 .4% ij;

e

(51), where k is the wave number;

)(r Hé) / 99

L{, gr (r sm 9];

S0,

s

(115)

(116)

(117)

(118)

(120)
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Z
= 2) é) N __ é Iy
=+ = 17 — 121
(91- % (Y‘ }/9} snb (121)

Equations (88), (117), and (121) constitute a complete system of equations

for Er, eHe, and eHQ. This system of equations is written

§25(vsindHy)- (rHp) § =~ AE, (88)

Y“Srhg
(5 okl =4 %

) e A OE
(?ug *'%Jz‘sﬁ'é'aB (121)

Only those solutions of this system of equations which satisfy the condi-
. & ; 5 :
tion v - H = 0, Equation (27), represent physical fields, so one is re-

: p : e
stricted to such solutions. Since Hr = 0,

—> r

V‘EH i'“—-g“ 89{ /—/ ;,m&)? =0 (122)

rmn@

for any value of r and 8, so

599 sind //} 5—5(@%) =0 (123)

Now substitute Equations (102), (112), and (113) into Equation (91)
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)smﬁ-] L;% ar( Hﬁ)j} (124)

QJ%Q)

0= ,}z r‘jzs;'nQ {-9— [-:{%

which becomes

0= — _ 9 5].: [%(sm@ (e/—é)N (125)
ﬁrsmé’ or
which is satisfied because of Equation (123).

Equations (112) through (125) refer to the components of the eﬁ,
°f field. The mﬁ, mﬁ tfield could have been applied to obtain Lhe comple-
mentary set of equations with mEr = Q and.nﬂ% = Hr' The procedure 1s the
same.

The solution (ei.,eﬁ) with a vanishing radial magnetic field is
called the electric wave (or transverse magnetic wave) and the solution
(mﬁ, mﬁ) with a vanishing radial electric field is called the magnetic
wave tor transverse electric wave). Now it will be shown that there exist-
scalar potentials ®ll and M1 from which they may be derived. eﬂ and mﬂ are
called Debye's potentials.

Looking again at Equations (123) and (125), one sees that
d_(y°F, sin8 )= &(rE) (126)
_— Sin =
89(7'5’,; ) of' @
Then, there exists a scalar function U such that

154
gg:v% sinf (127) Y "rEé‘ (128)



Equation (126) may be written

512 40

which is an identity. Thus,
e / aU
f; “rsing 96

er 1AW

s I 00
lNow let

U = 53(}-3T7)

Then Fguations (130) and (131) become

e _ 1 3(r'T)
£, Ty oroo
3 1r °rT)

€ |
éi;—'rshﬁ orap

Substituting Equation (133) into Fquation (112) yields

Th

(129)

(130)

(131)

(132)

(133)

(135)
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jar[ aﬁj r /-45) (136)

This equation is satisfied by

£ (=
e g ll_ 4ol Tl \

Similarly, using Equation (134) it may be shown that Equation (113) is

satisfied by

e A 3T 4 3Tl (138)

4~ b o8 rsind af

Now substitute Equations (137) and (138) into Equation (88)

(=]
e 4 Q___U rl}? a ”} f12c
,ﬁ Er _;;r?@ {rﬁl%[SmQ 35) nl o (139)
or
e 1 (3fpdmy, 12T -
Er— —rsiné‘ga_a(sma 9§)+55n9 1 } (140)

Substitute Equations (138) and (140) into Equation (117) to get

T DRV BTN TN < SR
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which may be written

€
oy 1 37
’5[3&51}18 39) *sind 9;[]"] (1k2)

A [ ¢ _é 3 1
T a_;ﬁ Eﬁ(]“ -|_|-) ¢(¥J 7)

rsm ‘b 2

or, multiplying Equation (142) by sin e/klr, one may write

+ 5 = T J (143)
jﬁﬁ[ra g n}+fs;n859('§m9 38)+\,J5m9 56 +»j I

Also, substitute Equations (137) and (1L0) into Equation (121) to get

T “'TT
(3_22 ) ! 99(1‘ ﬂ} ’é % v SIinb [aﬁ(smg a&f? ) ?;;?:?9 9845 Z (1hh)
j oI Tf 1. .
C%E a%'z(r‘-’ﬂ) +r‘;r'n€ ga(smﬁ ) g " aqb +/@ TT =0 (145)

Equations (1L43) and (145) express the vanishing of the ¢ and 6 derivatives
of the same expression. These equations may, therefore, be satisfied by

equating this expression to zero.

e ze'ﬂ ze _
0T "T) 2 (5;7?8 j) e d g =0 (146)
v ar'l‘ T‘ 537?9 o8 6 yosin 8 9P

This equation may be rewritten
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" Tsing |20 26 /) sinb 3p°

Ze 2, e 2 e
5/ 0Ty, 1 Ty _alr T gl (147)
} [39(5”15 4 ]" or* 4

which means that Equation (140) may be written as

Zr e
g _@ﬁ:_jﬂ AT (148)
r or
e e...

Expressions for all the components of the electric wave (E, H)
have now been obtained in terms of a single scalar function el'l. These

components are given by

E,

r

2, e 5
- ag"zﬂ_f}_ﬁﬁren— (148)

2 e
@E - r—f— 5 (r°TI) (133)

P BY o6
e / az(r K
@ T rsin® or o (134)

77/]# = £} (102)

¢ Y
R .1 138
%_é T rsing  9¢ )
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A4 (Tl (
/~/6 - ;-. Y - (137)

In order to verifyy that a solution to the set of equations has been
found, substitute these last six equations and Equation (146) into Equations
(88) to (9;).

First, substituting Equations (137), (138), and (148) into Equation

(88), yields

4 %%ZU—)%%;EW_ ’ 59[_ Smga(rn)] a;é[ A J]f (149)

S YED Snd of

or

Zg

e
9(" ﬁ) _ 2 (5:)199 77)+_J—-*z* 3 ye +/@z M=0 (150)
" rsm& o0

Equation (150) is satisfied because of Equation (146), so Equations (137),
(138), and (148) are indeed solutions for Equation (88).
Similarly, substitute Equations (133), (102), and (137) into Equa-

tion (89) to get

4 Fe<T) e 5
7 oroe rsmaér[”ésme 4 )] s

or

2, € z, e
L4 905 _ -‘-f—"w ) —
I



79

which is an identity; hence, Equation (89) is solved.

Substitute Equations (134), (138), and (102) into Equation (90).

LA T 1] 4 ) (153)

el S

rsind  Jrog T rorl sme 5’/55

which is written

4 2T A4, 2T (154)
rsimé Jrof rsind  raof

Substitute Equations (102), (134), and (133) into Equation (91).

e 2(96[ 50 TTJF 9;5[ Vil 2 (155)

rsimé drop r 30 ,1

which becomes

| g 2r7) _ 3T ) (156)
Psinp Cor 263f raeap )

Substitute Equations (138), (148), and (134) into Equation (92).

A4, o) _ §Qﬂ{g7riﬁ)+/&zfﬂ_ MJH (157)
rsm@ 9¢ T ysinb

which can be written

e / 3
2 2(r°77) - aja;,lﬂ +£2M- 3(r°) (158)
iy 57 op 50 arof
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And finally, substitute Equations (137), (133), and (1k8) into

Equation (93).

oy Q@J :i{&[@}g@r; mﬂ% TTJ (159)

which is written

3 ° 3, e 2 @
e
2o 1 rm 16TV 4 arr ) -
— o T Z
= 5o Y Dr 26 r Ordb T o6

It has now been shown that (eﬁ, eﬁ), given by Equations (102), (133),
(134),(137),(138)and(148) ,in terms of °II, is a solution of the set of Equa-
tions (88) through (93), which are Maxwell's equations in spherical polar
coordinates.

_ . . gl )

In a similar way the magnetic wave ("E, "H) may be considered, and
it is found that this wave can be derived from a scaler potential Tunction,
", which satisfies the same differential Equation (146) as “m. with

mEr = 0, Equations (92) and (93) become

A B o Silrbysine) =~ 1 30 Ey) B
tdl _ / 162
A5l E) (162)

Now substitute Equation (162) into Equation (89).
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- IHp 3 [s5inb 3 1 m
NE -y {22223 e )
o 2, m
b Ey -y L 2L =
2 _ 4D (165)
ek E) = S l

Similarly, substitute Equation (162) into Equation (90).

“émé; - %{é%’—[ 4{7 sinb QI‘(rEﬁg 51?‘:19)] E 166)
j%r%-—% (&) j‘w’/" (167)
ook )

Equations (165), (168), and (91) constitute a complete system of

equations for er, mEe, and mE(b. Equation (88) becomes
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47 sind gaé’[s’”e SEE) - (307 Jf =0 ¢
or
32 ke 2] -
A5 sin6 QW’LZ.%?(]r B E6)+a¢(r E¢5)] = & (170)

This equation is satisfied because for physical fields and no sources

e

V-F =0 CETL)

and in spherical polar coordinates, this is written

f_..a_'trm @ " f (172)
o [g@(s:r@ EB)+8¢ ESJ O

since mEr = .

Looking again at Equation (88) and letting mEr = 0, one sees that

9 p mt _ ':;_)‘m o
é.z}fs;rzﬂ /%5)- 5 /7; (173)

It follows from Equation (173) that mH@ and mﬁe may be represented

as the gradient of a single scalar function v.

¢ rsing af



Now, as before, let

then Equations (174) and (175) become

51 ")
/_/ﬁ rsm«? e a¢

m 1 3Tl
/é'-f or db

Substituting BEquation (178) into Equation (161) yields

A ICTTT) - 19 (r™T7)
7 oroe T Or

or
5 " T < _ 2 4
A= HR)

This equation is satisfied by

Substituting Equation (177) into Equation (162) yields

4 I
rsinf Sro¢ T

J o
5;1]’ EE)

83

(176)

(177)

(178)

(179)

(180)

(181)

(182)
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A 2 [@lﬂ] -2 (v'E,) (183)

"TT (184)

Now substitute Equations (181) and (184) into Eguation (91).

AH, =12 Asin i T} 2 Jo e anﬂmbz (185)

7_/14: rsfme ga(sta—“) ﬂ] (286)

Substitute now Equations (184) and (186) into Equation (165).

rik, o Il TT k3 NI Rl (187)
(ar ﬁ)sm@ op rs,fegep[aer(sna 99) Tsmb PaTJE]

or

30 T 0 (27T, 1 T _ »
_-[F or +r51n999(5m9 ) Fsin0 3525 j Tf] o (188)

Substitute Equations (181) and (186) into Equation (168).
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(53:2 *ﬁl)(;ﬁzrag): /ﬂ’;gggﬁw[as( no TT) ,;9 ;:ﬂ E (189)

ra m ?I’?W zmﬂ -
-{TJ ort +rzs;’n€ QQ(Sm 26 ) * risin d¢° +p (190)

Equations (188) and (190) express the vanishing of the ¢ and 6 deri-
vatives, repsectively, of the same expression. These equations are satis-

fied if the expression is zero; so let

") | 9( 10 2 77) / +,,ém_f O  (191)

T orf T Ysinb 36 9 /" r'sin® 945

This equation, which is identical to Equation (1L6), is just the wave

equation written in spherical polar coordinates:

T + 4 6TT =0 (192)

72’”1‘[+,,$sz = 0O (193)

By means of Equation (193), Equation (186) may be rewritten as

LT a(r:"m o T (194)
g

ar

Expressions for all the components of the magnetic wave (mﬁ, mH)
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have now been obtained in terms of a single scalar function mH. Thase

components are given by

"

L =8 (103)

e A "1) (184)
0 )'“Smé’ ;h;b

E “_j_ ™) (181)
# 0B

/_/ )+,¢{9r 17 (194)

”/’/_/ _ ! M (178)
e T Irdb

m 3T "TT)

/7; rsvn@ ara¢ )

In order to varify that a solution of the set of Equations (88) through
(93) has been found, substitute thess last six equations and Equation (193)
into Equation (88) through Equation (93), First, substitute Equations

(203), (177), and (178) into Equation (88), to get

:éjfé)ﬁ[ ar:;_[)] 9?5[ a,.;;-”]} o (195)
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or

5 (-"T) _ 9 *(r"T1) (196)
or60¢ Iro8of

so BEquation (88) is satisfied by Equations (103), (177), and (178). Now

substitute Equations (184), (194), and (177) into Equation (89) to get

AL T _ 5
rsid 3 T vsing (o9

BT 43D o

or

220" 20r7TT) JeT) _ ,23("TT) jﬁ”fm (198)
55 55 A o T 558

so Equation (89) is satisfied. Now substitute Equations (181), (178), and

(194) into Equation (90).

/u A(r"M) _ 1 (3 M) 2 [0 TT), g2 m .
20 55"[79_’]"39[ e kv WH e
/gza(r‘ IT) a(r "TT) _ _XZQ(T‘MJ (™) (200)

260 96 D6 or' 96

so Equation (90) is satisfied. Now substitute Equations (194), (181), and

(184) into Equation (91).
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ja(r b T = 95 U sind a(rem} 9¢Lma%rj}; o

T‘Sm

or

Ug i (202)

LI, 12 (s 99”

T Qra rsm@ 26 )+ rzsfnzﬁ Q;ﬁz

This is Equation (193), so Equation (91) is satisfied. Now substitute

Equations (103), (181), and (178) into Equation (92) to get

£ 2 (r"TT) I3 . a6™TT)
F_?: Irab :-rsinéié?{]%sma_gﬁ_ﬁ s

or

az(rm-[--n _ Q?_(rvnﬂ) (201.;)
or b orab

so Equation (92) is satisfied. Now substitute Equations (103), (177), and

(184) into Equation (93).

Y ) 3™l s
rsinb or A Troar [‘ng op ] -
‘(v TT) _ 5 (") (206)

ara¢ aY“9¢

so Equation (93) is satisfied.
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It has now been shown that (m-E-’, ml—f), given by Equations (103), (177),
(178), (181), (184), and (194) in terms of m’H, is a solution of Equations
(88) through (93). Since (°E, ®H), given by Equations (102), (133), (13k),
(137), (138), and (148) in terms of mH, is also a solution of Equations (88)
through (93), then the sum of these two solutions is a solution. Thus, E
and ¥ are solubions of Equations (88) through (93), where E and H are given

by

— -
The components of E and H are now written as:

e 'E ~ SE(VTU # ATl (209)
ZE;,: Z;F The T 5k

— = _1a(r (TT) -
E=FL+F, - STy, 4 o) (210)

r ord6 | rsind ac,?ﬁ

e me 6D 4ol (B11)
ng B E¢5 ’ Eﬁ T rsin@ 9rop r 36 k

™
—

14%)
—

H.=H.+H. - 9 BT (B2
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™

ST o 3rTT)
f# }J f{ rsmB 3p '% Sr 8 (213)
i(rﬂ) sl s 9:@;1)

H¢=ef“/¢+m?§ v 36 r"s;'nt? ara¢ (214)

Looking again at Equations (146) and (193), remember that both

potentials, eI'[ and mH are solutions of the wave equation

VAT =0 (225

written in polar coordinates.

The boundary conditions Equations (94) through (99) state that E

e)
E¢, € Er’ Hej H¢, and Hr shall be continuous across the spherical surface
e
r = a, Equation (210) shows E, is continuous across r = a if 3(r 1 and

9 ar

kzr mH are continuous across r = a. Equation (211) shows E(25 is continuous

across r = a if these same conditions hold. Equations (213) and (214) show

that He and H¢ are continuous across r = a if g&%;ﬂl and klr eﬂ are contbin-

uous across r = a. Thus, in order that the components E., E , He, and H

8’ "¢ &

shall be continuous over r = a, it is sufficient that the four guartities

AT 40T g,—, T %) (216)

=

shall be continuous across this surface., Thus, these boundary conditions
split into independent conditions for en and mH. The diffraction problem

is thus reduced to the problem of finding two mutually independent solutions



of the wave equation, with prescribed boundary conditions,

Solve the Wave Equation (215) for [I by separation of variables. ILet

TT=Rir)Bw @) (217)

and substitute into Equation (215).

VIT+4TT=0 (248)

or

?“R J:J Fa 5m9 j@ (sm@%?—j+® is;“e o/gf Ao (221)
Or E%@f? Jz:ﬁ) + %ﬁj@( ed@) é—iﬁf w LD =0 (222)

The ¢ term is jndependent of the @ and R terms, since r, 6 and ¢ are in-

dependent variables, so the & term must be & constant, and we may write



g2

Equation (222) as two independent equations,

Eféz?ﬁ ;M) P Sog L{sineSg)+ A sine = (223)
. '
1 d0 (22L)
0ot ©

where B8 is a constant, Equation (224) is written

§£+ﬁ© =0 e

Divide Equation (223) by sin” 4 to get

I—o)z(rf?) ﬁ QI__ . é_@ 22 g .
R dvf ’“sma@afa(s'”%e)*ﬁr "o © (226)

Since 8 and r are independent variables, write Equation (226) as two inde-

pendent equations

¥ CJZ(T—R) Jr.2"2._: )
R o rhr e (227)

/ _i(SJ'nQi@).- B = . o (228)

sing © o6 d6/ " sin’6

Equation (227) may be written
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and Equation (228) may be written

—L-d (5n998) . (- £ )@ =0 (230)

5in g o0 o8 sin g

Az the field E, H is a single valued function of position, so Il
mist also be gingle valued, This requirement lmposes restrictions on §
and @, as will be shown,

Pirst consider the simplest of owr three equatlons, the § Equation

(225).
9@ +gd=0 (231)
The general solution of thie equation is

Dip) = acos(YE'D) + b sin(vE'D) (232)

where ¢ 16 in radians, Since ¢ ear take on any value from == Lo 0, in

order for & to be gingle valued, 1t 18 necessary that

Dip) = Pibrarn (233)

for all velues of ¢, where n is any integer from == Lo +®, this holds true

only if



e
A=

B=m" (234)

where m 1s any integer. Thus, the single valued solution of Equation (275

is
§(¢) =ay Cos(mﬂs) * él"?‘ sin f??‘?;’ﬁ) (235)
Now examine Equation (230}
__!__. gf_(s‘nggl_@) .__Ei__..) — ;33()')
s de\” """ Je +(°( S8= 0 3
becomes

L d_(sing 22), («~2 )@ - o
e G a’a)*(“ S;ng)@—o (237)

w

Here remember @ = 8(9), and for the same reason that $(¢) must be
single valued, so must ®(8) be single valued, for all values of & from

-o to +. It turns out that @(8) is single valued when,and only when

Ci-:,fﬁf+f) (238)

where 4 is an integer 2|m|. HNow, to facilitate solving the equation, let

E = cosH (239

Then
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dE =~ simbde (240)
or

3@ . ,m_,é Zj'é (241)
Also,
sr'nec—j}é- = sinb sifﬁcfé = ~((*co329,[/—5;'—ﬁ die") == [';- f) -:‘E (2k2)

Substituting Equations (238), (2Ll), and (242) into Equation (237) produces

J [ Zd@H [ A _”{i —~ ~ Ll'
LIS T ﬁ—[mu)- lg=0 (243)
4§# E)Jgj 2ol
2
®(€) must be zero at the singular points € = = 1 (because L 5 = @ for
1 o« g

m>0and 4({+1) ® =0, £ >0, for m = 0, at € = £ 1), Thus, to find an
analytic expressicn for @, try to find a series solution about the points

€ = £ 1 (north and south poles of the unit sphere) in powers of € % 1:

A
) =(551) pan(571) 0
Note:

.CEE) = | (245)

or



JIEFH =d¢
50
J6 21 n
—_— = =] [ﬂ+%)&n(§$0
e (§%1) s

Cjﬁ:) ) ) -2 o0 ] o
:@:*(fn) ZR n)(A+n-1)dn (55 1)

Write Equation (2L3) as

(1-§)¢ @‘ffj_? - Ut - 25]@ =0

JE

&
m
(- ¢

and substitute in Equations (2Lk), (247), and (248)

n=o

§= L€}

Square both sides to get

A

€= r2(ern)+ (g5

S0

2 AtN-2 -1 2 N
Z{(PE WET1) (A+7) (AF71-1) Ay - 2§(§::fq§+w) A+ A1) - f"}:](f:l)zan} =0 .

96

(2h7)

(248)

(249)

(250)

(251)

(252)
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and one may write
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(1"§')=3E3(§"£-!)—~(g’r|)2 (253)

2¢=-272(871) (254)

mwo o omt (255)

[-¥%  t2(ET)(E3Y)

Series Equation (250) must vanish term by term. The lowest term is the

(g F 1)}"l term which yields

or

or

g0

2

-23Q-1) -2+ & =0 (256)
R(Z-f)»«)w”’_j.—.o (257)
P (258)
A=13 (259)

But the root A = ~ _;: must be excluded for @ to be continuous, so
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i
A=+ S (260)

Now look for a solution of Equation (249) in the form

'ﬂ
G(5)=(1-€) (261)
since
2
(1-€)=(1-€)1+E) (262)

and see if a solution can be found. Equation (249) becomes

(|-gz)j§=-[(f'§)z] §j‘_2 [ [Mﬂ)u__l[ §)v)=o0  (263)
z ;? o, ‘-%?“’ 2

5‘%" )" = Z(-8)" (-28) =-m5(-5) % (264)

< el ) - s (- &) o1& s(3- 5] F g (265)

so Equation (263) becomes

_§2)mv[(f—§z)?j(m-z)§z(f~§) ) }+(rn§J~ —L+2777§2(;-§) U (266)



or

l§

_-»i

['m’(r G’) +(7m 2%1)5( E’) -r—ng' '} §)Z f,?(fv‘r’)(f'ﬁt}?

_..”'O/’U'

el v -2tm g6t TGk

or

[ €18 2me 15T s 2mE (=) " wattrs) - =€) ]V

-2(

or

.[‘7‘”' mz(f‘gl)-h‘gl) +/?I/4p*f)]v -2(m+) ¥ %+ (j-g'lJ‘i[i: =0

or

{(/~§L)j_;_‘2(7ﬂ+!)§j§ +[/€(/(+j)_m(???+/)]3'v- —

Now let

99

(267)

(268)

(269)

(270)

(271)

where p is a function to be determined. Substituting into Equation (270)
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d P

§(:_ ‘)éi—z(?m:)gi'!— +[£(.f+z)—m(m+!)7§ —om -
3 Jg dE “d
Now it will be shown that
» ”n
" ed _(ed 0L
il e
First let U be any function, then
d (ed¥) odV v _1od IV
I(Eag) Je e "(555-“)?
o (edv) _dfedy vy dV JU LV
clgl.(gch) c)g(g °t§1—+ '-:JgJ g;‘Té-B +'J§'1+°}§z. =(§°‘E'\t2
43(4}_’_:{ S SV P U _ed
4{545)“ag(5353+ cxg‘) 545“’ ;J?*ZJ?"(EJE
o U

d5” (E«Jg) (5 )cfs

So Equation (273) is proved. Equation (272) may ve written

100

(272)

(273)

(274)

(275)

(276)

(277)

(278)
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or

[J? d_ ol ; dP g
[jg (g’ — +2ME Iz 7 ]—{§J_§+w) 44 f)}q}gm o (279)
o | /pd 1 7P =0 (280)
[*‘"‘(Ew*mk/f““ +7ﬂ/ -(_g';jg,f-?ﬁ/ J{jﬂ/]c}/g}ﬂ
d el 4—?; edy_d el i’ii(ﬁ')]P:o (281)
[Fa_(fdfw)c/é’ (*'u’f’)" J€ ’(§d§>+ JE | :
d [d (cd Ved d {_] 5 (282)
$ [ (555 35) s riunfp -2
d" [d" . ‘Zi‘i‘ gl Rt P = o (283)
J E”’LEZ TR A
w7 € J ; D( — -
i—»ﬂ(h "')0—/ML~-2§'"" -;-Iﬁ(jar)]; E-o (28k)
dg'm 3 JE JE :

This equation is satisfied for all values of m, including m = Q,

if,and only if

[("Ez)jg “£% 1k U? (f+1 ]P =0 (285)


rJi.nO
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*
But this is Legendre's equation, and the solutions to this equation for

integral values of 4 are the Legendre Polynomials,?g(g). Pg(g) is given

by
(2}’) ,?(ﬁ 1) ‘?"2 HU)8-2)g-3) ;; i j (286)
1- 00 § :) "l aze-3)
Since
P=Ris o
and
U= 9£~[ (288)

we Nnow have

- Q{E;ﬂm (289)
So from Equation (261) the solution to Equation (2L3), the @ eguation, is

7
m
Ec/ 3(6056') m = any integer

z
6)=(]-cosB) ° '
@( Cv}(cose)m ¢ = any integer =|m] (290)

i}

These solutions are celled the asscclated Legendre Polynomials,

which are usually written as Pﬁ(g). So we have

*
Equation solved in Miller, Partial Differential Equations in Engineering
Problems, 2nd. ed.,pp. 190-19%L,
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m o P((os 8) _—
@(9} /D(cosg) (/- cosB)’ o) 91)

Now one seeks to determine a solution for the remaining Equation

(229); which is now

JOR) [,z Ji] s = 5 (292)
i f@% SR )H?

Let
/)g)’“ iy € (293)

and
four) = Z(P) (20k)

Also,

Al :mé_/-df: (295)

and substitute into Equation (292).

ALHTER) 2 mf”/)wzmzo (296)
g ¢k

ﬁﬁ;@ ; (/_ ﬂ;ﬂgﬁ)yf—’z (p) =0 (297)
dp '

but



10k

S0e2) _J [de2)] - d [_z; " 7 (298)
dt dr"’[ dp / dr Zﬁ’ﬂﬁ dfj 7
| dZ JdZ Z L JZ JdZ_1 %

¥
e P Al ZFQ’F?@ ,‘Wq{f'f

so Equation (297) becomes

7/-%/72 2. iR - ’W”JZ O (299)
fc’,@ ?‘P% it ¢
JZ  1dZ [,. [0 ] 5 (300)
o Pae LT J2
but
peahlte)) _ [ e (28] (fe2) (301)
%FZ ?‘PZ L/-PZ Lf—*sz PZ
JZ2 1 dZ [ ) ]2 - (302)
= 8L 4|23 £ =0 3
Je° 2 F dp [ P ]
j E [P }+ )]Z O (303)

This Equation (303) is Bessel's equation of order (£ + 3). Two



linearly independent solutions for this equation are J£$L(p)
+3

1

105

, the Bessel

*
function of order 4 + 5, and N£ .(p), the Neumann function of order £ + 7,
+:

Ve

The general solution of the second order Equation (303) can then be

written

2 =47 e+ By N, ie)

I~

when A£ and B£ are arbitrary constants,

Now ,

rR=

PLz -5 - ¥PA
ok G VR

so for convenience, let

Ay =47E ¢,

and
E,=-#/%4

Then the general solution becomes

- e ey me
rRe= oy 55 J 0 -1 7 N,

Watson, A Treatise on the Theory of Bessel Functions, 2nd
p. 56 M

Summerfeld, Partial Differential Equations in Physies, p.

(304)

(305)

(306)

(307)

(308)

ed. (19uk),

113-11k,
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This is the general solution of Equation (292), The references listed on
the bottom of the previous page discuss  the Xﬁ(p) and Yﬂ(p) functions,

which are defined by

Yoy =/ ZE

The Wﬁ(p) functions are regular in every finite domain of the p plane, in-

b

i
3

.
() (309) Zp‘(fj) - “}/HTP Nng(f’) (310)

cluding the origin, whereas the Xg(p) functions have singularities at the
origin p = 0, when they become infinite. Thus, the wave inside the
sphere may be represented in terms of the Yﬁ(p) functions but not the
xg(p) functions,

The solution to Eguation (292) can now be written as

rRo =W hr) +d, X fhr) (311)

For the scattered wave, let By S 1 and dg = -1 to get

) a)
vRe) = Tibr = Wie)-i X0 =YE H @ (312)
Ji4r = W) i X fp) ;/; f{ae
(1)

where H is the Hankel function which is given by

(1)
/—5 = IM'/\/J. (313)

J

The Hankel functions are distinguished from other cylindrical functions
(1)

by the property that they vanish at infinifty in the complex plane.

vanishes in the half plane of the positive imaginary part of p and is thus



107

sultable for the representation of the scattered wave.
Now, Equations (235), (291), and (311) give the solution for II,

Substituting into Equation (217), we now have

x 4 4 m _
TT=) )L =) DlithohZiibr]]l Proselaneostndiobyzintat] (314)
A=c m=- Azp Me-4

where am, bm, cm, and dm are arbitrary constants, This is the general
solution to the wave equation.

Thus far all that has been done is to solve the wave equation with-
out regard to the boundary conditicns. Now the boundary conditions will
be applied to determine the wvalues of the constants for this specific
problem. To do this, first write the components of the incident weve,
given by Equation (57) through Equation (59), in spherical polar coordi-

nates according to Equations (85) through (87).

(I}

a ihrcosd N
£orag) =e sin@ cosp (315)
i "-rg r'l 05
Egll:éagﬁ) = cosbcosd (316)

()

(4) M’% ssd
E;j(r;e?,gﬁﬂ -e e sin (317)

(r)

T ik sk
/L//(fé?é) f:} e cos@ sin§b (318)
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. 0T =
ﬂg’T) ik rcost o sing (319)
4

(1)
/7;0:9@)

(I)

& @ oY cosh
/_éf":é}fé) = ‘{j’n e ( COSQB (320)

2

8. (1) .. B (1)

In order to determine the potentials I and ', substitute
Equations (315) through (320) into Equations (209) through (214), re-
spectively, and solve the resulting equations, TFirst, substitute Equa-
tion (315) into Equation (209) to get

)

)
ih recose 5 (r’ [ ) @l e w

€ smlcos® = Tz +,;é r 1l (321)
"

Now make use of Bauer's formula

(T} ¢t}

A reese & Yk R
€ T (24+1) f’ )P(Case) (322)

j v]
and the identities
(b eost ! (Mcr'}cosﬁ)
S s s gt 32
- simf = T 56 & / (323)
(1)
P(co= 6) = - P(ms@) (324)

*
Watson, A Treatise on the Theory of Bessel Functlons, Cambridge Univ,
Press, 2nd ed., (194%4), p. 368.
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(4)

, (c856) =0 (325)
so that
(&4 ol
LA cosh [ (1
e siné cosgp :Z’;’—)E ,<j(2!+f)/ﬁ r‘)P[cosS}coS&J (326)
r
£=1
Equation (321) becomes
2, e () 2 e
(L) e (4 (1)
2'—%_1]‘"2*/? vl = (kr}P{cosg)cos;fJ (327)
&
Pt

Try, as a solution, a series of similar form

€. <) = ) ~Y L
vl ":{;}}T %%(&r)ﬁ?aose) cos¢ (328)
4=y

where Qg is a constant to be determined. Take the second derivative

“’ ul
rT}' X 3 (}3( () )
9rz ,émz i Ay a'rz E(cos&) coszﬁ (329)

and substitute Equations (329) and (328) into Equation (327) to get

fd

/ t4)
;é_r;f j:’? Qﬁg(}e )4‘/,% o{ L/)(}em “mfZ,Ph‘)(;V{a{'r)JP((ﬂQ)cos{é o (330)

L=1
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Since this holds for all values of 8§ and ¢ and since the Lagendre Poly-

nomials are linearly independent,

(1)

ey .j-"
Z(}? r) "f‘/fé{) 9 #! (hv) = ﬁ}:? (Zﬁ”)%u% ) 33
.

[/fé“;& A% . 5; m] ﬁ_’ff’ji (332)

If one lets c, = 1 and dg = 0, then from Equation (311) he can see

that a solution to Equation (292) is

so write Equation (292) as

c/% (rrx ,é(fﬂ))

."'

Y =0 (334)

Substitute Equation (334) into Equation (332) to get

2

Of:d,ém% ‘,,ém IHJ%?J (Z,? () % (335)

or

ip.._
G 0+) =4 (2w (336)
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S0

A 20 -
O(ﬁ-,c o, (337)

Thus, using @, given by Equation (337), Equation (328) becomes a

solution of Equation (327), The solution of Equaticen (327) may be written

e 1 GQ.ﬁd Zh+1 (z)
r1T= 0 24" qam 41y (cost)cocd (338)
4=

The Equation (330) for Hr in terms of 'l is the same as Fquation

(1)

given by Equa-
i 1)
tion (318) and E(l) given by Eguation (315) is the constant EETTT , S0
* k

(209) for E, in terms of °ll. The only difference in H

5 : e
one may use precisely the same procedure previously used to ge% Il ) to

determine that

oA “qdém 2/
r ‘%EFZ Af’ }"L V.ém //P(o;sg)sm;é (339)

m (i)

and 1

e (1)

have now been expressed in the form of the general solu-
tion to the wave Eguation (31L4), so the unknown constants have been deter-
mined,

Using

T“T = TFT inside the sphere (3k0)

TW': T_T +W'T outside the sphere (3k41)
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rewrite the boundary conditions Equation (216) as

,,gm[?”(ﬁi};ﬂm))] :%(ETT’EU(W? (342)
ey )
jrn[r(ﬁ;,\i T;Tcs;ﬁ _:/é;m[rw rw;}r:a (343)

ST 2 E B

2 o] -2,

QV red.

Looking again at Equations (338) and (339), in order for these
boundary conditions to be satisfied for all values of 8 and ¢, only the

m = 1 terms in Equation (314) may be used. Thus, Equation (314%) becomes

rTT = Z”ﬂcj %(Ji’r) +d‘ezf(}qr)]ézo59)[&lcos¢+ b sin M (3k6)

=0

Also, from Equation (338),

for the electric potential; and from Equation (339),
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ah =0 (348)

for the magnetic potential

It has previously been recognized that only the Y

W)

) functiones may

be used to represent H( because they remain finite; whereas, the X
functions go to infinity at r = 0. Thus, from Equation (346) and these

considerations, write

(1

YﬁTWJJj‘gz;A{#%rjpawewws¢ (349)
A=

and

m_w) e o m
vl = “U L4 /4 (/ (,é r') (cos B) Smyﬁ (350)
2 -t

=t

It heae also been noted that the scattered wave may be represented
e 5 SR e : e o Bt . (LY .
in terms of the { ¢ functions, given by Equation (312), where Qg is ob-
{
; - . 1 v e ; [
tained from the Hankel function HE ) on multiplication by‘w Eﬁ . Thus,

)
(I}

e (g | 22
de ) B L UNR sty cosd (351)
and

; m
m (5) A i tl) U/ ]
Pl =@ § B, S kv Rcose)sind (352)
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Now substitute the six expressions for rll into the boundary condi-
tions to obtain linear relations between the coefficients, from which
these coefficients may be determined. First substitute Equations (338),

(349), and (351) into Equation (3L4L) to get

b

) ¢xi
9 24t 3%hY), By 25,h7) ,4 ‘/’M ) (353)
Zf(cose,i(os;{[ a)® ,f(j*f) ’ér 440:2* a?" jun J

2=1

=

(1

Since the Pg ) (cos 8) are linearly independent for different 4, this

means that

()

°p L 25, (43) M2t ka) y ¥4 '3)
l} (it aT‘ ka j(jﬁ) Sr ‘ém;z 54 ar

(354)

but one can write, for any function

Y= (rf_/,,ér) (355)

IYthr) _ Ihr) Jylhr) - 4 Iypthr) (356)
or S Blkr) # Stker) Ay 4

so write Equation (354) as

12,(4; /@ /

I 4 (x4 ’ ur!
5?,3{:1 S;(lea) ’&m/{ 20U J! .& 5] & Z /4}%{)!; a) (357)
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Now substitute Equations (339), (350), and (352) into Equation (345)

m ; ¢ L A2 (10 T +x. TBT ,ku:r /4 (}z ] 5 (358)
(c::.ss)S'n oA k| (b a) , a) m—; a)

é{rr)
or
m ;o om 7/ om
) ( 1 .
f}tl‘)g(ﬁ& +4£(z)"{' ,?(ﬁhV’# = &;ﬂ) Aﬂg/(-)% 5’.) (35})
Similarly, for the cther two boundary conditions,
W A=/ "
() ¥ 508 ) |
B mg(.& uxﬁ ,?{,Pff) 4@&.) ;’ A ‘f)(‘éa) (360)
and
me~ M | Tab i iT) / )
B}/{Qm E!}?a) '*‘;?Tﬁ A (ﬁ,} 11}{»/? "z /4}%(,@ a) (361)

Equations (357), (359), (360), and (361) are a complete set of equetions

m

for the determinastion of egﬂ, Ay eBg, and mB )

One is only interested in the coefficients BE and m]E!‘g which

characterize the scattered wave, so he needs only to eliminate eAz and

mgg. Write Equations (357) and (359) as

)

y "g 'P‘r 24+ (xs
/4 = (}?ug-)[ B}}ang(,k a)+ v.:'}/. j(f-H) suk %? (362)
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@ A1 2441 s ’
/? b”,é )[8 g( *IN( /(J‘gﬂ)(]u(»éa)] (363)

and substitute into Bquations (360) and (361).

rm

e ! & ! y ¢ 11
S o ZA+ (x) V’(.éa) [ B /
) + 7 a A .._..r....f__..._. 2 A (2841),)) @ (364)
Bﬂﬁz Sl)u" S 1o 4 ) * Ifz/?k% ﬁ“’gu" it

& " (ml y

AT w2 tha)[™ o
Bxfha) "a,f(ﬁifﬁfprﬁa) —;%%[5?34 i ek J (365)

A’(M
or
[ AU T et R 1 ye)
i Sy S w{rm ra

/ ()
) « @) ) ,ka) M &
vy _L__ iIJ j E)y{,é ) & an [46 ’f’E(fea %( SUUQ&J -
Ej[ S' A _ﬂ_ﬁ-——*‘;’ Su., Q‘J /‘~ ﬂ’?‘“} ,éln:&(;)% :m 4 y (3 ()
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eB _ Mz J._j (:: }‘3"2 (l 1; . > (368)
o (1 ru/
4 j(j”}&‘,;} X(‘% a) - rr; m / 3;]) S( J

£

B £ (ZM)[ A;‘Ii{‘%m 2 & 2 (369)
9 j{fw}[ } t:} (z; L& S‘H,}}émJ
4, = 2 m}”r’i )

or

() @) /(L (L) @ 7 2/

eB Hiage 1 ;ﬁ(,ga)/(ja) b 4 Yha) Hitha) (370)
x) w/ (L) (T) ¢ ¢
2O YT A Y ka)h 4 4D )

1) &} (I} @y

th /(!HZ,W'/ )fo ! y’(ﬁd)‘i’"/ﬁa) ,Jz ,é %(Aécl)}b{.é &) (371)
ﬂ(ﬁf‘!) j(n mg;&fjﬁ a) lﬁ S‘(A{va) }*(&fn;.f

The potential functions representing the scattered wave, Lquations
(351) and (352), for which the constants eB£ and mBE have been determined,
are now substituted into Equations (209) through (214) to give the compo-
nents of the scattered field. Substituting Equation (351) into Equation

(209) gives

()

e%accosg)cosﬁ[jg;_-#&m] S’g)? (372)

————————

——— e

A T
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Remembering that rR = gi‘l)(kr), Equation (312), is a solution of Equation
(292)
JOR) ()2
8 A0 u, - {(A’H) ) =0 (292)
dv
write

[ )S’ (hr) ’W’”) E jf’ (373)

so Equation (372) becomes

fatid

E{F@&)_"—“ C:iég(’(‘t") R ?(4?1’)[)(&&2@) (374)

ey

Now substitute Equations (351) and (352) into Equation (210).

(5) 72

/ osp : P . B () i)
E D{'m Z[ C'éi“ a;\rﬁ )c; ;;‘;se) :né\gk r)P(/ogB)(osrb (375)

or

mo

(s)
vk o L. 505' <ra
Z‘;(r;{//ﬁ) Agf—w e [B S}(—fe Pf(os@)ﬁma -(B S}, f‘ 595an (376)

2=t

Substitute Equations (351) and (352) into Equation (211).



or

s/

Lylrp) =-

S.r?‘!

(1.'/

31?19 L;Hc

=)

(n

Substitute Equation (352) into Equation (212).

or

{

?_p

H

(%) (i) > 2 )
H. = (I,FBX, Rrecsso) sinp [+ )T 4%
2=
g ) gﬁ) = A Smé Obwﬁ) g Kaim (1)
%r:zg;rg - P ( r) (cos b)

Substitute Equations (130) and (352) into Equation (213).

or

(s /

/%; =

(s}

/

47

J?

b

Z{ ff!zr}F

£=y

]
o} (U

B‘pS(»E F') (¢o, SQ.JS 6

dd 4 ar de

/ w’

*/‘*B J(,é P(cosfu")s"”é’

Z B ?(1@ T)ILQ {(0.59)——-- --,{ @E f;,{,:ij) P{(a:@)SmQ

J({osﬁﬁ) i Sg C}};(.er, c:ng((ﬂsé)Sl'”

]

G)a ) CI.' )
e o) 7 f ot} r)”')(l:' 9,}
5 RE c{S}{ CJ( S/ /)(r 05 <K B g\«(* ”_".;S_ﬂw

|

]

i
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(377)

(378)

(379)

(380)

(381)

(382)
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Substitute Equations (351) and (352) into Equation (21L4).

1)

, sind dv

f A o B ( ” ing) 8
- _.._-Z[ -, ng 5 c:J (c Se)cosz,bi' =/ c}S',Q ,&7‘) c)c(j; (383)
2=

or

1)

°‘° .1)f w” o
2

The problem is now solved in that (E(S), ﬁ(s)) has been determined
by applying the boundary conditions to Maxwell's equations and (i‘:{i), ﬁ(l))

What follows is a discussion of this solution. First take a look at
the various constants. Since it has been assumed that C}”(I) = 0 (non-con-
ducting medium), one may write G(II) = ¢ for simplicity.

Thus, from Equa-

tions (39) and (40) one may write

tx) : tz)

AW T 2T (385)
"% C A j{og
SPC I (356)
4= =45
0
%rr): (.-jm rr;)fw W . 27 [ = ZIT (387)
/ 2 C £ Ao 2‘1'?



Fn e ) < B (e a ) (369

I e
L -
(Z} @), wwhr 27 O a0
AL b= LT (350

where AG is the wavelength of the light in a vacuum and Acl) is the wave-
length in the medium surrounding the sphere.
Sometimes it 1s convenient to introduce the complex refractive in-

dex of the sphere relative to the surrounding medium. Denoting this in-

A
dex by n,
z 2
2 (I} (z) (1) (z)
A _f € /{5‘/?'6"__,44 B
i = am: = ) T @) T @ T T a
n A we 4
Note that

(Z) , (L)

), ) - 2
= [é?éi é&; = éuz"_;é?r} (392)
"é‘ j 4#2 Agz j

Sy
1
—
iém
8
L — |
M-

Also, to simplify the equations, introduce the dimensionless para-

meter g defined by

G = 272 (393)
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that is, 2 m times the ratio of the radius of the sphere to the wavelength
of the light in the medium outside the sphere, Wow using Equations (392)

and (393) write the coefficients glven by Equations (370) and (371) as

B = Ml AL UiRe) - it (39%)
A1) 75814 hg) - St tatAp)

’ /
”B - A 2 7 %) 5) - Y)Y (Fg)

/{. ¥ 1 )/ A
R TR T

(395)

Now examine the intensity of the scattered light. To look at the
relative values of the intensity take as a measure of the intensity the
square of the real amplitude of the electric vector. Since one here con-
siders only the distant field (r >» \) replace Yg, Yé, gél), and gil)’ by

their asymptotic approximations:

) ~ax . L1 gx
Yo=Llie roe (396)
] Al
S)’?(x) =(4) eM (397)
rd ! ;
J X A _Ax
%w:%— Ae +(4)e j (398)

i) . ,? /('X
:i(xl = (i) e (399)
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It is seen from Equation (374) that the amplitude of the radial

(s)

component E of the scattered wave falls off as the inverse square of

the distance from the scattering center, whereas from Equations (376) and
(378) the amplitudes of the transverse components fall off more slowly,as
the inverse of the distance. Thus, at sufficiently great distance (r >> a)

the radial component may be neglected in comparison with the tangential

components, and the wave 1s considered to be transverse, Thus, for r => a:

(s]
a (400)
£ =0
[’5)_ ) ¢) P 1 A.;@Y fr\/ 5 ) ﬂﬂ”i:&f’ j;{fo>9)| -~
Eg _7(—;; el Bme Reesg)sine - 4 BM’ “Th| e
j:
or
(s) Aﬁr U tﬁwsé) (402)
£y w28 S [T Blniysins T, A2 |
=1
and
o (r) 500

i e 1 I 2 ey A =
! s .F ) ._fe’“@* /[k(cosé) el il ‘f-'é;ﬂu .,;.';qej (403)

or

(s) . 22 y, :
ot Smfﬁi : ¢ -ikr i (Lol
g~ _#ér:) I:S{' __(ff’_f[f) " 5/9 &)(cosg) S,-'??QJ )

y
) sing
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Then, letting I(S) represent the intensity of the scattered wave,

Z

22 S z = )’ y Lo g
I Coszé/Z_A.} IQBJ; E(cosejshra _w@ E(Cose)sfm]/ (405)

2 :jrrf i

or, from Equation (387)

CIPLANE < I w’ ” P“) =y
T e , ) !
L - ”) Z}«,{) [B E?z'cose)sm@ - "B 2(28 fcos o (406)
O A vy 4 ¥ Tsine
Similarly,
% () 5
“ /7(17 3 £ Pwose) — -m a’ - 5
P ‘;‘-772 z % e ined Z?Q /} (cosB)smb| | sin ¢)

Now define the "plane of observation" to be that plane whick con-
tains the direction of propagation of the incident light (the z axis) and
the direction (6, @) of observation. ¢ has been defined to be the angle
between this plane and the x axis, which is the direction of vibration of
the electric vector of the incident wave. Then, if I&S) is the intensity
of the light parallel to the y direction and IES) is the intensity perpen-

dicular, close examination of the relationship between the Cartesian and

polar coordinate systems show that

(s) (s) (] 08)
- y Iy
59 - é—n f_osgs
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(s) (s)

E¢ :é-:- S:’"ﬂ',’ﬁ (4o9)

80 write

_Z_ _Z; COS¢ (L#l())

/i

(s} ts) . . (}-*ll)
'Z;Zﬁ :_7; Sf?’)zsf.’)

so, comparing these with Equations (405) and (L07), one sees that

f RO
4 7
/Z("‘) [5 /D(COSQ)SJ??Q’ % ;;g%f;f]/ (412)
(s) oo (IU 2
K 0356
7— ;z / (x) f(c - mB (ms&):m&?/ (413)
L o4pit ﬂ sim@

d=1

The total intensity of the scattered light is then given by

(s) (<)
L (red)= L, +I¢ I,, P Py (h1k)

In practice, one is usually concerned with the scattering of un-
polarized light, so the appropriate formuls may be obtained from the above
by averaging over all directions of polarization. ILetting a bar denote

the average, since

L15)
2 R T (
cos’@ =sin'p =3




128

the equation for unpolarized light is

s/ €s) (s) .
Zwg) =41, + 47, (416)
or
(s) gmz = o’ B teos) i (417)
— _ B y e \ ’ _'m jfffiﬂﬁ] A
Z (r,é) 8?721'2;/ CA) [ @}i(mss)_sma 5@ <@
A=

o 4 F?j ()’ 2
» i [en Rkes8) Mmoo . - / g (418)
-f*/ (=4} [ Bﬂ = @6& $8)si76 )
L=

Equations have now been obtained for the amplitude and intensity of
the scattered light for a non-polarized beam of incident light. IThe total-
ity of processes by which energy is removed from the beam is called ex-
tinction. The cross section for extinction is the sum of the absorption
cross section and the scattering cross section, One may evaluate the ex-
tinction cross section for a particle from the amplitude function for 6 =
0. The scattering cross section may be evaluated by integration over the
entire scattering pabtern, The absorption cross section i1s then the differ-
ence between the extinetion cross sectlon and the scattering cross section,

Van de Hulst(lT) has evaluated the extinction and scattering cross
sections using the Mie equations., He glves the Mie coefficients in a form
slightly different from Equations (394) and (395) by letting a, and bn be

2

called the Mie coefficients, where a and br are given in terms of Bv1 and
i L

mBn by
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M 2w #l
B = 4 R &?L (418)

m 2 2w/
= Tt
Bt tmed O e
where
_ "Vf&)%(n?r) %@)%(wﬂ (420)
é?Sm B4 - S6) Pidg)
and
/ / A
" fr‘fﬁf?—f %f’?ﬁ') - ti9) %'(7"3') (L21)
7 Sup) hing) - Spte b (g
The components of the scattered wave, Equations (402) and (L403)
now become
Ers)_ A_eu',ér Cosqﬁ 5_(9) (La2)
& A ‘
and
{s/ i ’/(léf-
. L
£o= LS sin¢ 5) -
B A
where

z / UJ )
SI,(B) g Zv:(::#/ [&n f (5059)4—5 P(casa)smej KR
=
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and

o
- ()

E%m %ﬁiﬂ% kj@ Ay [ (cos6) 58 (425)
=/ SN

These equations represent the cutgoing spherical wave for an inci-
dent polarized wave. The extinction cross section is found by evaluating
the amplitude functions, Equations (424) and (425) for 8 = 0. The terms
involving the associated Legendre Polynomials can easily be evaluated from

(26)

the expansion

(")

o =5

(mm) (/# Z *[/%C ) , 'X)+C }:{)3 J (L4e6)

where C ¢

10 Coo . depends on n and m only. From Eguation (426) and its

derivative one finds that

Gy 4
/E(coa &)

ﬁ] :%j(ﬁu} (427)

siné 4,

/

[/??(osé’) sim BJ o 2 ZA+1)

h2g)

——

On substituting Equations (L27) and (428) into Equations (203) and (204),

one finds that

T
=
no

O

R —

S(e) = 5@ = Seo1 =4 ameayeb)
7=
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The fact that there is only one S(0) means that the extinction is indepen-
dent of the state of polarization of the incident light.

The extinction cross section o, is defined as the ratio of the rate
of dissipation of energy and the raete at which energy is incident on a unit

(17)

cross sectional area of the particle, Van de Hulst derived for the

case of spherical particles the formula

% 2 Rus

where Re denotes the real part. Thus,

Y

4
g = A_
€ 21

(221) Re f&n'*bx ? (431)

X
M
T

The form of the function defining the intensity of the scattered

light may be written

/F(gjﬁfj = /5:(9)/505195 +/5;(9;/§5f;7% (432)

(17)

Van de Hulst gives for the general csase

27 7

N :zﬁ;‘ijfﬁ@;ﬁ) sx'n@d@dgé (433)

so using Equation (424) one gets
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-

Y (434)
0 = ﬁj’ 5’(9}f + |SZ\9)! ) 5/ n8d6

The conversion of this result into an expression containing the Mie co-
efficients is not very simple. Since Sl and 82 are in the form of infinite
series, their squares are in the form of doubly infinite series. However,
when the expression is integrated over 6, most ferms in the double series

(1)

are zero because of the orthogoqallty relations of the P . This problem

(27)

has been investigated by Debye + The result is

oo 2 Stametia ot/ (35)
Lo Z: nri)(|a, )+ 1bnal)

The absorption cross sectlion is now given by

J3 = 0g -O% (436)

(12)

Krascella has used these Mie equations to calculate the effect
of particle size, wavelength, and particle temperature on particle opacity
in those regions of the ultraviolet, visible, and infrared spectra for
which complex index of refraction information was avallable.

One may write these cross section equations in terms of the non-

dimensional size parameter q, defined by

- ZTa |
=3 v

and Equations (431) and (435) become



133

2 @
\*"' b
Te = Zﬂza (2n+1) E’eganw‘b;& (439)
8‘ =y
2 &2 2 Lho
05 = 2 Nionrr)(|anl lbaf ) o

F o

where a and b are the Mie coefficients given by Equations (420) and (Lk21).
These equations are difficult to use in this form, and extensive tables of

spherical Bessel functions with complex arguments are not available(lg).

Aden(gg)

, however, has developed a transformation called the Logarithmic
Derivative Method which can be used to transform Equations (420) aad (L21)
into & more useful form. The transformed equations were used by Krascella
to develop a machine program which would allow calculation of Gys s and

= 2 . = - 3 - b N 3 =
o, in em /particle as a function of material, wavelength, and particle
radius. The opacity parameters, or macroscopic cross sections, be’ bs’ and

; 2 e
b_ were also calculated in cm /gm from
&

b, = % (2

b, - % (kk2)
o3

bs =7y (113)

where p is the mass density of the particle and V is the volume of the
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spherical particle of radius a. Their results for carboﬁ, which are taken
directly from reference 12, are presented in Figures 21 and 22,

One may make use of these results for smaller particles and wave-
lengths by remembering that if the particle radius a and wavelength A are
both decreased by a factor ¥, then the macroscopic cross section is in-
creased by X. Since the Mie coefficients are defined in terms of q = 2 1=
a/h, they are not affected by multiplying both a and A by the same factor.
Thus, the cross section per particle, given by Equations (438) and (439),
would be decreased by X2. But since the volume of the particle decreases
by X3, the macroscopic cross sections, given by Equations (4k0), (4hl), and
(4h2) are increased by X when the particle radius and wavelength are both
reduced by X. The graphs given in reference 12 are modified therefore to
obtain values more applicable to the nuclear rocket problem. !

Figure 23 indicates that for carbon particles of about 0.0l microns

radius, scattering is negligible for wavelengths above 1000 i.
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APPENDIX B
EXPERIMENTAL PROCEDURE

The experimental procedure for a single run in which data was taken
is outlined below. A "run" involved taking attenuation data at a single
temperature for a series of wavelengths, This involved the following
operations.

1. Turn on coolant water to capillary discharge light source and
inspect the outlet to be sure that the coolant flow is properly established.

2. Turn on coolant water to water jacket,

3. Turn on the cooling fan for the capillary discharge light source,

L. Turn on the spectrometer pressure gauge and set the "current set!
on 130,

5. Watch to see that the pressure gauge indicates a pressure in the
spectrometer below ten microns of mercury. A higher pressure would indi-
cate a leak.

6. Turn on the gas for the capillary (hydrogen or helium).

7. Increase the gas pressure in the spectrometer to somewhere be-
tween 500 and 1000 microns to flush out the spectrometer. Maintain this
pressure for about five minutes,

8. Turn on the AC power on the spectrometer power supply. The DC
power should not be turned on for a few minutes after the AC is turned on.
9, Turn on the AC power on the photomultiplier power supply.

10. Turn on the Keithleymicro-microammeter.

11. Turn on the Keithleymillivolt meter,
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Note: Operations one through three established the flows necessary
to prevent over-heating of certain components, operations
four through seven flush out the spectrometer, and operations
eight through eleven allow the electronics to warm up before
use.

12. Position the filter intake over the exhaust chimney.

13. Switch the heater power from the other set of equipment to this

equipment.

1k, Insert the shorting bar between the copper leads. When the power
is initially turned on, a power surge results which may damage the heating
filament if it is not dissipated by the shorting bar,

15. Reduce the pressure in the spectrometer to the desired level
(usually 200 or 300 microns) by decreasing the gas flow into the capillary.
The gas flow is controlled by a micrometer valve.

16, Turn on the DC power on the spectrometer power supply.

17. Adjust the variac on the spectrometer power supply (i.e., in-
crease the voltage to the capillary) until the discharge tube is ignited.
Then continue to increase the voltage until the current to the capillary
is 300 milliamps.

18. Turn on the DC power to the photomultiplier tube.

19. Raise the DC voltage to 1200 volts.

Note: Operations fifteen through nineteen have started up the
spectrometer and detection systems, Now the spectrum may be
scanned by observing the photomultiplier signal as the wave-
length dial is turned. This is done to locate the peaks in
the spectrum so these wavelengths may be turned to when data
is teken. Thus, the wavelengths observed when taking data
are those wavelengths of greatest intensity. Before this
scan is made, however, the spectrometer and photomultiplier
should warm up.

20. Observe the photomultiplier signal at a representative wave-

length, such as the white point, to be sure that the source and detector
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are operating and that nothing is obstructing the light path.

21. Fill the aerosol generating flask with carbon black to several
inches below the neck.

22, Connect the aerosbl generator tubing to bypass the generator
flask.

23. Fill the reservoir jug (jug B, Figure 9 ) of the sampling
apparatus with water to several inches below the neck,

2li, Insert stoppers and tubing into the jugs.

25. Insert a filter into the filter holder.

26, Tape the filter holder to insure vacuum tightness.

27. Inspect all the connections of the sampling apparatus to insure
vacuum tightness. Apply vacuum grease as needed.

28. Scan the spectrum to determine the desired wavelengths (i.e.,
scale settings) to take data.

29. Turn on the master switch on the heater power supply control
panel.

30. Turn on the filter for the exhaust gas (a vacuum cleaner was
used part of the time).

31. Turn on the "window gas'" flow.

32. Turn on the nitrogen coolant and adjust to the desired flow
rate.

33. Turn on the aerosol generator gas. No aerosol is generated be-
cause the generator is in the bypass configuration (operation 22). Adjust
the flow rate to the desired value.

34. Place a planchet on the exhaust chimney to decrease the size of

the opening at the top. This makes for a smoother flow inside the furnace
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and prevents oxygen from diffusing down the exhaust chimney, Without the
planchet partially covering the chimney, oxygen diffusion down the chimney
prevents data from being taken in the vacuum ultravioclet.

35. Turn on the heater power supply.

36. Turn on the reactor power.

37. Turn on the control panel power.

38. Be sure that the powerstat is set on zero.

39. Pull out the shorting bar.

Lo, Raise the powerstat to the desired setting.

L1. Observe the heating filament through the chimney to see that it
is heating.

bp, Wait a few minutes until the millivolt meter indicates that
temperature equilibrium is about established. During this time record on
the data sheet the operating conditions, including the spectrometer gas and
pressure, capillary current, photomultiplier voltage, powerstat setting,
tank pressures, thermocouple voltage, and the location of the white point
and a known spectrum line.

k3. Turn the wavelength dial to the pre-established settings and
record the micro-microammeter readings. Also, each time a reading is re-
corded for a particular dial settirg, the dial is turned back to a black
part of the spectrum and a background reading recorded. This background re-
sults from light reaching the photomultiplier from the hot observation
chamber. With a thermocouple reading of 15OOOF, the observation chamber
glows bright red,

Lh, Set the dial at the chosen reference wavelength. This is a

wavelength corresponding to a flat peak in the spectrum which can be turned
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back to easily.

45, Again record the thermocouple voltage. It should have changed
very little since operation L2,

46, Turn on the chaft recorder,

7, Turn off the feeder gas at the tank, not at the pressure regula-
tor, so that when it is turned back on at the tank the flow will be the
same.,

L8. Connect the generating flask so that the aerosol generator now
produces an aerosol when the gas is flowing,

4L9. Turn the gas back on at the tank,

50. Observe the chimney exhaust and the chart recorder to see that
the aerosol is produced and recorded properly.

51. 1If necessary, readjust the "window gas'" flow until the chart
recorder is properly indicating a steady aerosol. Also the height of the
nozzle in the generating flask may need adjustment to produce the desired
concentration.

52. Again record data as in operation 43, but in addition, each
time a reading 1s taken at a particular wavelength, the dial is immediately
turned to the reference wavelength and the reading recorded. The cbserva-
tion of the reference wavelength allows one to monitor any changes which
might occur in the aerosol concentration during a run, and to correct these
changes. Also, when about half the data is taken pull a sample of the
aeroscl in the manner described in Chapter ITI.

53. Record the thermocouple voltage again.

54, Turn off the aerosol generator gas at the tank,

55. Reconnect the aeroscl generator in the bypass configuration.



143

56. Turn on the aerosol generator gas again.

57. Reset the wavelength dial at the reference line.

58. Observe the chart recorder and exhaust until there is no seed
in the exhaust. The signal from the reference line should have the same
value it had in operation 43.

59. Turn off the chart recorder.

60. Repeat operation 43,

61. Record the thermocouple voltage. It should not have been
changed since operation 43,

62. Record the operating conditions again (operation L42).

63. Turn off the power supply, the control panel power, and the
reactor power in that order.

6L. Set the powerstat on zero.

65. Reduce the capillary voltage to zero.

66. In the following order, turn off the capillary DC power, the
capillary AC power, the photomultirlier DC power, the photomultiplier AC
power, the micro-microammeter, the millivolt meter, the coolant gas, the
aerosol generator gas, the capillary gas, the "window gag," and the ex-
haust filter.

67. Measure and record the displaced water in the sampling setup.

68. Remove the filter and put it in a protective container.

69. Check the pressure gauge to be sure it is down to about ten
microns again.

70, Turn off the pressure gauge, the fan, the coolant water for the
capillary, and the coolant water to the jacket.

T1l, Weigh the filter on an electronic bslance. Also weigh & clean
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filter for the next run,




APPENDIX C
DATA

The following data listed in Tables 2 through 16 represent the
best rung, and are believed by the author to accurately describe the
attenuation of radiant energy in a cloud of carbon particles over a wave-
length range from 1100 X to 8000 & at room temperature, and over a more
limited wavelength range at higher temperatures.

Data taken from runs not listed were discarded for one of the
following reasons,

1, The aerosol generabor ran out of carbon black or behaved
irregularly during the run,

2, The intensity of the light from the capillary discharge tube
varied during the run, This occurred occasionally only when the capillary
was operated with hydrogen but without an entrance slit. Hence the data
from these runs were discarded.

3. The intensity of the signal without particles, Io’ was signi-
ficantly different at the end of the run from its value at the beginning
of the run. This indicated a change in the electronic amplification of
the signal or accumulation of carbon on the end of the observation tube
around the thermocouple shield.

L, In a few of the early high temperature runs, before the entrance
8lit was removed, the background signal became great encugh to completely

obscure the signal from the light beam, and the resulting data had to be
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Table 2,
Run No., 2 Temperature 63°F
r Io I; k k
Scale Io I I I 77 = e
P
1630 3.k =l 4.9 11.0 2.5 3.63 6.06
1590 .70 .04 5.0 16.5 2.16 3.64 7.28
1520 14,0 Lol 5.0 180 2,16 2,30 6.60
1hk3 27 .12 5.0 2.25 2.16 1.05 2.1
1335 .98 48 5.2 2.04 2.08 .97 1.9k
1180 3.98 2.0 52 1.99 2.08 Kelt 1.88
1130 .50 2.8 5.3 1.96 2,0k .96 1.92
960 10.8 %3 23 2.0k4 2.0u 1.00 2.0
865 201 105 53 1.95 2.04 el 1.88
82l 2l.1 10.9 5.3 1.6k 2.0l .93 1.86
780 18.6 9.3 543 2.00 2.0k SO 1.94
725 19.4 9.9 5% 1.96 2.04 .95 1.9
682 19.4 9.3 5.3 2.0k 2.0k 1.00 2.0
590 16.8 8.0 5.3 2.10 2.04 1.0k 2.08
515 L6, 21, 543 2.19 2,04 1.10 2.2
340 T3 4.0 5.3 1.83 2.0k B3 1.7
205 9.4 5.0 53 1.88 2.0h4 .89 1.78
20 10.5 5.0 5.3 2,10 2.0k 1.0k 2.08
9730 14,9 T 5.3 1.89 2.0k4 .89 1.78
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Table 3.
Run No. 6 Temperature 63OF.
» / L Ié k k
Scale IO I I T 37 7 Eé
1735 1.02 .16 .62 6.38 2.50 2.025 4,05
1725 1.83 17 .6k 10.76 2.ke 2.69 5.38
1713 33 22 .68 15.0 2.28 3.37 6.7
1700 h.7 .21 an 22,4 2. 42 3.52 7.04
1675 2.7 .085 .62 31.8 2.50 P 8.7k
1662 L. .075 .65 22.7 2.38 3.51 .02 -
1650 1.7 076 .68 2.4 2.28 3.77 8.7h
1615 2.65 .080 .72 33.1 2.15 L.57 9.1k
1590 17.8 079 .72 225, 2.15 7.09 14,18
1583 18.2 080 .7k 228, 2.09 7.37 1h.7h
1550 1.68 125 .84 13.4 1.85 .22 8.4
1450 1.k2 ST .80 1.92 1.94 .985 1.97
1400 1.55 .80 .80 1.94 1.9k 1.00 2.00
1350 1.3 .61 .78 2.13 1.99 1.10 2.2
1250 q.85 1435 .73 2.0 2.12 1L 2,34
1150 FYP 6.2 i3 221 242 1.055 2,20,
1050 L2.0 157 .70 2.47 2,22 1.13 2.26
1000 45.5 17.5 .70 2.60 0,00 1.19 2.38
900 ht.2 19, .68 2.48 2.28 1.10 2.20
800 k1.0 T .66 2.4 2.35 1.03 2.06
700 32.5 1k, .68 2.32 2.28 1.02 2,04
Loo 8.1 3.9 T2 2.08 2.:15 957 1.94
200 16.2 T Th 2.16 2.09 1.0L45 2.09
0 33.0 15.0 <5 2.2 2.07 1.08 2.16
9600 30.8 17.0 .85 1:81 1.83 .98 1.96
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Run No. 8 ; Temperature 63°F
/ Io Io k k
Scale Io I = id = E;
1750 1.00 .50 2, 2.00 1.9 1.121 2.242
1727 3.30 15 2. 1.94 1.9 1.031 2.062
FrLL 6.25 295 g, 1.92 1.9 1.150 2.300
1660 3.6 1,95 2,05 1.85 1.89 .969 1.938
1625 3.3 2.05 2.2 1.64 1.72 .01k 1.828
1590 35.0 22, 2.25 1.59 1,68 .896 1.792
1540 2.0 1.8 2.4 1.66 1.58 1.109 2.218
1490 1.8 1.25 2,45 1.45 1.55 .84g 1.698
1450 Fall 2.1 2.5 1.7 1.52 .919 1,838
1400 3.7 2.5 2.55 1,48 1.49 . 986 1.972
1350 2.8 2.05 2.6 1.39 1.48 .84o 1.680
1300 L.2 1.5 1.h 2.80 271 .959 1.918
1250 8.0 2.6 1.35 3.08 2.81 1,070 2.140
1200 I8 35 ) 3.46 3.16 1.090 2,180
1150 20. B il L.25 358 3.02 1.060 2,128
1105 L7. 17. 1.3 2.76 2.92 .996 1.992
1095 6L, 2% 1.3 2,78 2,92 995 1.990
1030 36. 9 143 3.28 2.92 3 B 2,220
935 5. 15. 1.3 3.46 2.92 1.180 2.360
900 52. 17, 1.3 3.06 2.92 1.070 2,140
700 38. 13,5 1,6 2.81 2.38 1.15% 2,314
500 15.5 7 Lo7 1.9 2.219 .986 1.972
200 21.5 111. 1.9 2.362 2.000 1.236 2.2
0 30. 1k, 2.0 2,141 1.908 1.185 2.370
9800 38. 17 185 2.239 1.952 1.195 1.390
9600 3k, 1%, 1.9 2.262 2.00 1.176 2,352




Table 6,
Run No. 9 Temperature 63°F
’ ID T k

Scale i b I = T‘% T p—p
1750 1.00 Sk 1.9 1.851 2.0 .8902 1,780k
1727 3.30 1.5 1.9 2.195 2.0 i | 2,262
1720 h.15 2.0 1.9 2.075 2.0 1.052 2,104
1711 6.25 2.9 2.0 2.155 1.9 1.199 2,298
1700 7.4 3.9 Bl 1.890 1.81 1.072 2,14k
1690 6.5 sk 2,2 1,565 L1725 8840 1.7680
1680 h.o 2.6 2.0 1.865 1.9 .97hO 1.9480
1660 3,6 18 2.0 1.885 1.725 .9880 1.9760
1625 3.3 1. 2 1770 1. 565 1..0h8 2,006
1590 35, 2L, 2.4 1.665 1,562 1,7025 2.,2050
1540 2.0 1.4 85 1.430 1.460 .8825 1.7650
1450 3.1 2.2 2.6 1.409 1.490 .895 1.790
1400 3.7 2.4 2.55 1.540 1.502 1.10L 2.208
1350 2.8 1.9 2.5 1.475 1.502 . 962 1.924
1300 L.2 2.9 2.5 1.446 1.502 .900 1.800
1250 8.0 545 2.5 1.451 1.502 .9105 1.8210
1200 A2 0a3 25 1.460 L. 502 0139 1.8276
1150 20, 13. 2.k 1.538 1.583 gk2s 1.8850
1095 6k, 45, 2.5 1.4400 1.:560 8720 1.744%0
1030 36. 25 2.0 1.4ko 1.460 9640 1.9280
935 52 39. 2.9 1.332 L.332 1.055 2,110
900 52. Lq. 2.8 1.300 1.355 8625 1.7230
600 5 25, 2T 1.400 1.405 1.150 2.200
500 3545 116 2.8 1.535 14355 1.000 2.000
Loo 15, 11. 2.9 1.365 1.310 1.086 2.172
200 21.5 1 3.0 1.265 1.265 1.052 2.104
9800 38. A N 3.1 1.226 1.260 .8660 1.7320
9700 29. 3.1 1.172 1.260 .8660 1.7320

(&S]
=
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Table 7.
Run No. 26 ; Temperature 6305‘
Scale I 1 1’ ;9 ;3 LS -gﬂ
P
1083 9.7 L1k 63 69,25 73.0 . 986 1.97
956 i 09 63 58,3 3.0 a8 1.9
867 230.0 %5 .68 67.7 67.6 B 2.09
826 36.5 53 78 £8.9 53wl 1,039 2.08
741 11, .22 T3 50.0 £3.0 ols 1,80
685  130. 1.4 63 T2.25 /3.0 190 1,98
607 L6, 03 ok T (3.0 0 2.00
Hhl 53, 65 64 560 {30 T
51k T3 .88 .63 83.0 T3+ 1L.02 2,06
250 5k, 48 63 1120 THs 1.105 2.21
91 1.5 ik .63 10k.5 T3 1.095 %0
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Temperature 5OOOF

Run No. 10
. g Io Ié K K
Scale IO T T T 77 s 5;
1hoo B 0.2 2h 2,210 2.0k 1,045 2,08
1260 1.10 o.k2 .20 2.620 2.u5 L.a72 2.1k
1090 9.0 1.4 .20 6.420 2.450 S L
1035 6.0 1.9 .19 3,145 2,578 1.189 £2.38
gl5 8.5 2.9 10 2,025 2,578 o 2,32
700 6.25 2.3 Bk 2,715 2. 450 1,125 2.25
400 2.25 G 21 lp) 2.4970 2.450 1.215 2.43
200 3.45 1,15 .20 3.000 2,450 1.222 2,44
0 h.75 55 .20 3.070 2.450 1. 291 2.50
5800 5.95 .20 2.980 2, k5o 1.219 2.kl
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Table G,

Run No. 27 " Temperature 5(}00}?
L 1
Scale I T 1t -2 = %- %;
867 180. T3 k55 2.465 2.385 1.056 2l
826 29, The5 1T 2.00 218 .8op 1.8
791 9.7 b,7 16, 2.06 2.31 .86k 1.73
607 37, 16. 16. 2.31 231 1. 2,0
skl L3, 22, 16. 2,28 .3 L GBh 1.097
250 h3.5 26, 16 2.195 2% LG 1.86
9980 1.21 Rite! 15, 2.58 2,462 , 002 1.022
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Table 10,

. 11 Temparature TOCTF

I
=

I a O g k
Io T I T Fr T E:
.3-]+;~ o - - - -— ———

1.283 102 i,
10.4 .3 1
12,3 Lsff 3

i
1

-
~ =] =N =3
-1 oo B
. . .
[ 0
b G |
)
-l =3 ~J
- - -
H = =
|
-
<>
< S
= O
gy B
C = 0
o

1.6 2.6
104 2.h .
8.0 2.0 1t 4. 00 2 117 . :
55 1.05 1.7 5.23 7.117 ’
&l 62 L7 b 3hs 7117 . 750 L.
=i o8 &af h.055 7.117 i 1,43
Lol .68 1.7 6.025 7117 o1 1.83
/-3 1.35 L7 5.405  7.117 860 1,70
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Table 13.

Run No. 31 Temperature 1400°F

’ Io I(; k k

Scale Io I T T 7 e -p-——
D

1160 .28 .0l 6.3 7.00 8.73 .896 1.792
1088 11 Lsh 6.7 7034 8.21 gls 1.890
1030 1.6 .25 6.9 6.0 7.96 .896 1.792
961 5.8 1.09 8.4 5.32 6.55 .911 1.822
870 310. 39 8.0 .92 6.88 1.041 2,082
795 1h, 3.5 13.8 s, 00 3.98 1.02 2.04
688 175. L8, 16. 3.64 3.4k 1.045 2.090
611 B5 17, 16, 3.24 3.0 950 1,908
543 68. 19.5 16.5 3.49 3.38 1.027 2,054
517 9. 25.4 15.4 3.58 3,57 1.001 2,002
g5 16, 3.8 13. 4,21 b1k 1.09 2.18
9985 1.8 35 12.6 5:15 L.37 1.12 2.2l
9835 G 1.0 1L, 520 5.00 1.102 2.204
9770 Bk .05 155 6.20 5.25 1.105 2,210
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Table 15,
Run No. 33 ; Temperature lSC-OOF
T T .

Scale IO L i -:-[-9 f?' %’7 -J;—-
<
960 3.9 B 135 2.789 2.69 1,035 2,070
868 190, 56. 12, 3.399 2.9L ¥.15 2.30
830 29, 11,5 14 2.52 2.4h9 1.013 2.026
7ok 8.4 %8 15 2.ko 2.33 1.034 2,068
685 120, b6, 15, 2,68 2.33 1.230 2.260
611 35. 15.%9 15. 2,22 2.33 g2 1,88k
5kl U5y 19. 15; 2.37 2,33 972 1,944
518 58. 26. 15 2.23 233 oL8 1.846
9985 1.05 b 19 = | 2.33 876 L.752
9836 3.02 1.3 25 2,31 2.33 089 1.978
9770 1.7 o7 15 2.43 2:33 1.048 2.096




Table No. 16

Run No. 35 Temperature 1525 “F
Scale | I To Io K K
e I T T v T -
1084 2L 3.6 1k, 5.8L 6.28 0.973 L1.95
958 12.2 - 12 7.19 7.58 0.973 1.95
834 77 13 16 5.91 5.69 1.021 2.04
792 23 .5 Ry 5.56 5.35 1.024 2.05
686 305 L8 1 6.35 5.35 1.100 2.2
611 91 16 16 5.69 5.69 1.000 2.0
5L5 115 21 16 5.49 5.69 0.983 1.97
519 150 28 17 5.36 5.35 1.005 2.0
9842 8.7 3 25 2.89 3.6L 0.882 1.76
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Figure 24. Heating Chamber Cross Section
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Figure 25. Observation Chamber (% scale)
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Figure 27. Spectrometer with Furnace
and Photomultiplier Attached

Figure 28. Micromicroammeter,
Millivoltmeter and
Wavelength Dial

Figure 26.
Furnace Components
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Figure 29.
Furnace Prior
to Assembly

Figure 31.
Furnace After
Assembly
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Figure 33. Sampling Apparatus
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APPENDIX E

SOURCE SPECTRA

The following graphs show the 3pectra that were used &5 a source
of light through the aerosol. Figures 3l and 35 present the hydrogen
spectra when the entrance slit is in place. Figures 36 and 37 represent

the hydrogen and helium spectra without the entrance slit,
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SCALE CALIBRATION

APPENDIX F
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The wavelength dial reading has been referred tc in Tables 2 through

16 as the scale reading.

This dial reading was related to the wavelength

by recording the signal intensity for the various dial settings and finding

which dial settings correspond to known lines in the spectrum (Figure 3&).

The correspondence between wavelength and dial reading is linear (Equation
P g g

(14)), and this relationship is represented by Figure 38. Table 17 pre-

sents the information used to produce the calibration curve of Figure 38.

Table 17. Wavelength Dial Calibration
Scale
Reading Series Line Wavelength
2070 "Thite Point" 0
1695 Lyman Alpha 1216 &
815 Balmer Delta Lio2 &
745 Balmer Gamma, b3k R
575 Balmer Beta L4861 A
55 Balmer Alpha 6563 A
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