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SUMMARY

Richtmyer-Meshkov instability (RMI) occurs when an interface of two fluids

with different densities is impulsively accelerated. The main interest in RMI is to

understand the growth of perturbations, and numerous theoretical models have been

developed and validated against experimental/numerical studies. However, most of

the studies assume very simple initial conditions. Recently, more complex RMI has

been studied, and this study focuses on two cases: reshocked RMI and multiphase

RMI.

It is well known that reshock to the species interface causes rapid growth of in-

terface perturbation amplitude. However, the growth rates after reshock are not well

understood, and there are no practical theoretical models yet due to its complex in-

terface conditions at reshock. A couple of empirical expressions have been derived

from experimental and numerical studies, but these models are limited to certain

interface conditions. This study performs parametric numerical studies on various

interface conditions, and the empirical models on the reshocked RMI are derived for

each case. It is shown that the empirical models can be applied to a wide range of

initial conditions by choosing appropriate values of the coefficient.

The second part of the study analyzes the flow physics of multiphase RMI. The

linear growth model for multiphase RMI is derived, and it is shown that the growth

rates depend on two nondimensional parameters: the mass loading of the particles and

the Stokes number. The model is compared to the numerical predictions under two

types of conditions: a shock wave hitting (1) a perturbed species interface surrounded

by particles, and (2) a perturbed particle cloud. In the first type of the problem,

the growth rates obtained by the numerical simulations are in agreement with the

ix



multiphase RMI growth model when Stokes number is small. However, when the

Stokes number is very large, the RMI motion follows the single-phase RMI growth

model since the particle do not rapidly respond while the RMI instability grows. The

second type of study also shows that the multiphase RMI model is applicable if Stokes

number is small. Since the particles themselves characterize the interface, the range

of applicable Stokes number is smaller than the first study. If the Stokes number is

in the order of one or larger, the interface experiences continuous acceleration and

shows the growth profile similar to a Rayleigh-Taylor instability.
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CHAPTER I

INTRODUCTION

Richtmyer-Meshkov instability (RMI) occurs when an interface between two media of

different densities is impulsively accelerated, for instance by a shock wave. This phe-

nomenon was first theoretically proven by Richtmyer [79], and later experimentally

verified by Meshkov [58]. RMI occurs in various natural and engineering situations

such as supernovae explosions [4], deflagration-to-detonation transition [70], confine-

ment fusion [50], and fuel mixing in a scramjet [95]. The RMI evolution can be

characterized by the inviscid, compressible vorticity equation [96]:

Dω

Dt
=

∇ρ×∇p

ρ2︸ ︷︷ ︸
baroclinic production

+ ω ·∇u︸ ︷︷ ︸
vortex stretching

− ω(∇ · u),︸ ︷︷ ︸
vortex dilatation

(1)

where p denotes the pressure, ρ is the density, u is the velocity, ω = ∇ × u is the

vorticity, and D/Dt = ∂/∂t + u ·∇. A driving mechanism of RMI is the baroclinic

torque vorticity production term that is caused by a misalignment of the pressure

and density gradients. When a shock interacts with the perturbed interface, vorticity

is deposited by this baroclinic term, and the interface is subsequently accelerated

based on the direction of vorticity. This interface perturbation can be considered

as a combination of a bubble and a spike [11], where a bubble is the region where

the lighter fluid penetrates into the heavier fluid, and a spike is the region where

the heavier fluid penetrates into the lighter fluid as shown in a schematic presented

in Fig. 1. To quantify RMI evolution, one can define the mixing length, h, as the

distance between the spike and the bubble tips, a mean amplitude, a = h/2, and

the amplitudes, ab and as, as the distance from the unperturbed interface location to

bubble or spike tip, respectively.
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Figure 1: Bubble and spike definition for a RMI perturbation. The gray and white
regions correspond to the heavy and light species, respectively.

Unlike the Rayleigh-Taylor instability (RTI) [88], which is driven by a continuous

acceleration, RMI is unstable in either a light-heavy or a heavy-light configuration as

shown in Fig. 2 [96]. A shock propagating from the light gas side (light-heavy config-

uration) deposits vorticity that can amplify the original perturbation. On the other

hand, if the shock is approaching from the heavy gas side (heavy-light configuration),

the vorticity causes interface motion initially to reduce the perturbation, and spikes

and bubbles are eventually inverted and grow in opposite directions [96].

Figure 2: Vorticity deposition over a species interface with heavy-light (left) and
light-heavy (right) configurations.
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Numerous theoretical/empirical growth models of single-mode perturbation have

been proposed in the past and have been validated against experimental and numer-

ical studies [13, 19, 42, 46]. RMI occurring in natural and engineering environments

are generally more complex. Therefore, many studies have been performed to inves-

tigate RMI with more complex interface conditions such as a multi-mode interface

[2], with a reshock [48, 91, 93], in cylindrical geometries [52], and in spherical explo-

sions [7]. However, most of these past studies only focus on single-phase flow, and

RMI analysis in multiphase flows is still in its infancy, even though particles might

implicitly play important role in many cases, such as explosions with reactive metal

particles [7], chondrules concentration in a nebula [21] and possibly other multiphase

systems involving shock waves.

1.1 Review of RMI growth models

Growth rates of single-mode RMI have been studied for over fifty years. This section

explains past development of RMI growth rate studies under different conditions.

1.1.1 Single-mode RMI

Richtmyer [79] originally developed a linear growth model of the amplitude, a(t) based

on an impulsive model:

a(t) = a0 + v0t, (2)

where a0 is the initial amplitude, v0 is the Richtmyer velocity defined as v0 =

ka0A∆V1, k is the wavenumber given as k = 2π/λ, λ is the wavelength, A is the

Atwood number defined as A = (ρ2 − ρ1)/(ρ2 + ρ1), and ∆V1 is the change in the

speed of the interface due to an incident shock. Here, ρ1 and ρ2 denote, respectively,

the density of the light and the heavy fluid. The impulsive model is only applicable

in the linear-regime where ka < 0.3 [19]. Therefore, non-linear models have been

developed to predict the late time growth rates. A potential flow model for RTI [47]

was extended to RMI [39, 63], but such models were limited to A=1 (fluid-vacuum

3



interface) and were only applicable to obtain the initial and the asymptotic (time

→ ∞) growth rates [39, 63, 97]. To deal with the constraints of potential flow mod-

els, several Padé approximation based models have been developed [55, 92, 98] to

numerically obtain the time-dependent solution with an arbitrary Atwood number.

However, these approximation methods were not very successful [42] because even

very high order approximations depart from the solution of the models at late times.

More recently, Goncharov [35] developed a potential flow model for an arbitrary At-

wood number, and Mikaelian [64] extended Goncharov’s work to obtain an explicit

time-dependent expression. Sadot et al. [80] obtained an empirical expression to link

the initial and asymptotic solution of the potential flow model [39]. The advantage

of this empirical model is that the coefficients can be modified to adapt to different

analytical models [42]. Past studies have employed 2D [19, 42, 46, 69] and 3D [13, 53]

single-mode RMI experiments and numerical analysis to evaluate and identify the

domain of applicability of these models.

1.1.2 Multi-mode RMI

Although the growth models for single-mode RMI are well established, growth models

for multi-mode or random perturbation are not yet fully developed. Multi-mode

growth is more practically relevant since the interface shape is most likely to be

random in realistic systems. Mikaelian [65] recently developed a technique to describe

the development of arbitrary interface shapes in the linear-regime by using Fourier

expansion. However, non-linear interactions of bubbles and spikes make the interface

shape very unpredictable at the late-time. Moreover, the exact shape of the initial

interface is not usually prescribed or well defined. If the mixing zone is assumed to

be filled with turbulence, the growth of the mixing zone can be interpreted as the

evolution of a turbulent layer that follows a power law [11] such as:

h(t) ≈ tθ, (3)
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where the value of θ is found based on different assumptions. Barenblatt [9] derived

θ < 2/3 for the turbulent plane layer with Kolmogorov similarity hypothesis. Clark &

Zhou [16] assumed that a shock causes only weakly anisotropic turbulence and found

2/7 < θ < 1/2. However, this approach cannot include the effect of Atwood number,

which is concluded to be a very important factor [22].

Models based on the time-dependent average wavelength growth have also been

developed. Alon et al. [1, 2] applied the two-dimensional statistical bubble merger

model, and obtained the power law for bubble and spike individually:

hb/s(t) ≈ tθb/s , (4)

where the subscripts b and s denote bubble and spike. A value of θb = 0.4 for any

Atwood number and 0.4 < θs < 1.0 as function of Atwood number were obtained in

this analysis. However, experimental results [22] showed that θb and θs are smaller

than proposed values. Oron et al. [71] pointed out that the dimensionality of the

flow changes the merging process, and that both θb and θs in 3D are about half the

values of the flow in 2D model (θb = 0.25 and 0.2 < θs < 1.0).

1.1.3 Reshock RMI models

Recently, the Richtmyer-Meshkov instability involving multiple shocks has been stud-

ied. The RMI with multiple shocks is seen in many confined systems such as shock

tubes [3, 48, 93] and blast waves [6, 7], and it has been shown that the impulsive

acceleration of the evolving interface demonstrates different growth behaviors. For

example, RMI with a second shock (often termed as a reshock) has been shown to

cause a rapid increase of growth rates and thereby enhance the amount of mixing

[3, 48, 93].

Even though the growth models of single-mode RMI are well established, the post-

reshock models are still in their infancy. The change in the growth rate due to reshock

was first analytically studied by Mikaelian [61] by applying the potential flow model

5



of the single-mode RMI to a growing perturbation; the criteria to determine whether

the second shock accelerates, decelerates, freezes out, or inverts the perturbation were

analyzed. Brouillette & Sturtevant [12] extended the original Richtmyer’s model to

multiple shock systems. However, both these models are a function of the wavelength

and amplitude at reshock, ar, and they are only applicable when the amplitude at

the second shock is very small (ar ≪ k) as originally assumed in Richtmyer’s model

(Eqn. 2). Due to the very complex interface shapes at reshock, it is difficult to

construct analytic models, and so two empirical models applicable to specific interface

configurations have been developed. The first model is Mikaelian’s reshock model [62]

developed for the multi-mode 3D perturbation, and is the linear correlation:

dh2
dt

= C∆V2A
+, (5)

where dh2

dt
is the growth rate after reshock, ∆V2 is the velocity jump caused by

the second shock, A+ is post-reshock Atwood number, and C = 0.28 is an empir-

ically determined constant from experimental RTI studies [78]. The second model is

Charakhch’an’s model [14] that is obtained from the numerical studies of single-mode

2D RMI with reshock; it was found that the growth rate is only a weak function of

ar and k at the second shock. The following empirical expression was derived [14]:

dh2
dt

= β∆V2A− dh1
dt
, (6)

where dh1

dt
is the growth rate immediately before the reshock, and β = 2.5 from mul-

tiple numerical results. Note that dh1

dt
and dh2

dt
have opposite signs as they correspond

to perturbation growth in opposite directions. Limitations and applicable ranges of

these reshock models are summarized in Table 1.

Charakhch’an’s model and Mikaelian’s reshock model agree with the assumption

that the reshock growth rate is not a function of k or ar. In fact, past experiments

have indicated that the growth rate after a reshock is independent of the interface
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shape [26, 48, 93] for 3D multi-mode RMI. Vetter and Sturtevant [93] performed RMI

with reshock and found that the post-reshock growth rates follow the Mikaelian’s

reshock model. Later, Erez et al. [26] showed that the initial membrane thickness

does not influence the post-reshock growth rate, although it affects the growth rate

after the incident shock. More recently, Leinov et al. [48] performed experiments

of RMI with reshock for different wall distances and reshock Mach numbers, and

found that the reshock growth follows the Milaelian’s reshock model with slightly

larger coefficient, i.e., C ≈ 0.38. These experimental results clearly indicate that the

post-reshock growth rate is not a function of the interface condition at reshock.

Since most of the experimental studies are performed in shock tubes with a flat

membrane separating two gases [41, 48, 75, 93], it is hard to obtain the exact initial

perturbation shapes for numerical simulation. This is a serious issue since the initial

interface shape can be very critical for RMI because the vorticity is deposited only

when a shock hits the interface. Past numerical attempts approximated the initial

conditions from a configuration of a wire mesh used to support a membrane. For

instance, numerical studies undertaken by [17, 37, 40, 83] used an egg-carton type

perturbation to model the RMI experiments with the membrane supported by a

cross wired mesh [93]. Moreover, Schilling & Latini [83] investigated the effect of the

magnitude of the random noise on the late time growth rates and also compared it

with Mikaelian’s model. Mügler & Gauthier [66] performed a 2D numerical study of

the experiments by Poggi et al. [75], with initial conditions defined as a combination

Table 1: List of existing reshock models.

Interface Geometry Function Limitation
Mikaelian’s potential model [61] 2D single-mode ar, k, ∆V2 ar ≪ k
Brouillette & Sturtevant model [12] 2D single-mode ar, k, ∆V2 ar ≪ k
Charakhch’an’s model [14] 2D single-mode ∆V2
Mikaelian’s reshock model [62] 3D multi-mode ∆V2
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of sinusoidal waves with eight different wavelengths that are in the same order of

the wire mesh spacing. Although these wire based initializations provide a good

approximation for the wavelength, the estimation of the initial amplitude is still

ambiguous because it is difficult to precisely measure how much the membrane is

pushed into the wire mesh before it ruptures. Therefore, Leinov et al. [48] neglected

the wire mesh supports, and simply modeled the initial perturbation as a summation

of sinusoidal planes with different wavelengths and amplitudes.

Apart from the flat membrane settings, Schilling et al. [84] briefly analyzed the

post-reshock growth rates of 2D single-mode RMI based on the membrane-less ex-

periment performed by Collins & Jacobs [19].

1.2 Multiphase RMI

RMI in multiphase environments has not been studied yet to the extent of the au-

thor’s knowledge. Therefore, this section summarizes the past studies on multiphase

instability and particle dispersions by shock.

1.2.1 Effect of particles on instabilities

In general, particles in a flow field are known to effect the instability of the gas-phase.

For example, it has been shown in the past that particles modify the Orr-Sommerfeld

equation and stabilize or de-stabilize the transition to turbulence depending on the

particle size [81]. In another study, the amplitude growth of multiphase Kelvin-

Helmholtz instability (KHI) [60] was reduced due to particles in the vicinity of the

interface. The interaction of a RMI with particle clouds has never been studied to the

best of the authors’ knowledge, and the present investigation attempts to establish

the growth model of multiphase RMI by applying the dusty gas formulation [81] with

the assumption that a cloud of a large number of particles behaves as a pseudo-fluid.

Various kinds of instabilities in multiphase flows have been investigated in the past

with regard to the Orr-Sommerfeld equation [81], Poiseuille flow [59] and KHI [60]
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by performing a linear perturbation analysis on the dusty gas formulation. However,

the growth models of multiphase RMI have not yet been developed and analyzed.

1.2.2 Instabilities of a particle cloud

There are various studies of deformation of particle clouds by shocks with different

shapes of particle clustering [10, 43, 44], but none of them are analyzed in terms

of RMI. Since the idea of the dusty gas formulation suggests that a particle cloud

itself can be treated as a different gas, a region filled with particles can be treated

as a dense gas, and the RMI growth model is explored under certain conditions. For

example, Ota et al. [72] observed the deformation of a half-height dense gas caused

by a shock wave, and Kiselev et al. [44] performed numerical simulations with a

similar setup but having particle clouds instead of a heavy gas. Their results showed

qualitatively that particle dispersion shapes are very similar to the deformation of

a dense gas. Moreover, past numerical studies [74, 86] investigated the clouds of

heavy particles falling into a light fluid, and reported the formation of structures

similar to the Rayleigh-Taylor instability (RTI). Thus, this study compares the shock

accelerated perturbed particle clouds against the classical RMI.

(a) The numerical simulation of the deforma-
tion of the square particle clouds

(b) The experimental results of the deforma-
tion of SF6 cube

Figure 3: The comparison of particle dispersion and deformation of SF6 by shock.
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1.3 Objectives

The primary objectives of the thesis are to study the Richtmyer-Meshkov instability

under complex situation such as reshock and multiphase.

1. Investigate the RMI interface growth after reshock and develop a model

applicable to the wide ranges of initial conditions.

Charakhch’an’s [14, 15] and Mikaelian’s [62] reshock models are only appropri-

ate for a specific regime of RMI and cannot be applied to the same RMI configu-

ration. For example, if dh1/dt is very small, Charakhch’an’s model and Mikaelian’s

reshock model have the same equation with different values of the coefficient. Further-

more, since there is serious scarcity of data about the single-mode RMI after reshock,

Charakhch’an’s model is not yet fully validated. Therefore, a re-investigation of the

coefficient is performed in the present work.

Past numerical studies have tested a limited type of initial perturbation shape,

and the effect of initial is not fully understood yet. Given these observations, it is clear

that there still remains some uncertainty about RMI growth after reshock. Therefore,

the present work investigates reshocked RMI for four different combinations of initial

interface geometry and perturbation: 2D single-mode, 3D single-mode, 2D multi-

mode and 3D multi-mode, and investigates the differences in the ensuing growth

rates. Since the experimental validations of the post-reshock growth rates are only

available for 3D multi-mode RMI, the latest reshocked RMI experiments by Leinov

et al. [48] are chosen as a base configuration, and the other types of perturbation

shapes are examined under the same conditions. Then, parametric studies of each

type of initial interface shapes are performed to investigate the controlling factors of

the reshocked RMI growth rates.
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2. Establish a basic understanding of the behavior of RMI interactions

involving dilute particle clouds and draw useful insights.

Almost all the RMI studies only consider single-phase flows, even though the effect

of particles on RMI growth can be significant. However, detailed analysis of RMI

involving particle interactions has not been performed yet. Thus, this study attempts

to establish a linear growth model of multiphase RMI using the dusty gas formulation

and compares the model with the numerical predictions under two types of conditions.

The first type involves the impulsive acceleration of a perturbed species interface of

air/SF6 surrounded by a uniformly distributed cloud of particles as often considered

as the multiphase instability studies. The range of applicability of the multiphase

RMI growth model is evaluated by simulating for a wide range of parametric. The

second type of RMI study undertaken here is the shock wave induced dispersion of

a particle cloud with a perturbed shape within a uniform gas. Since shock-particle

interactions are not considered as RMI in general, this study aims to examine whether

the amplitude growth follows RMI-type growth rates by performing again a detailed

parametric study.

1.4 Outline

This thesis is organized as follows. Chapter 2 describes the governing equations used

to simulate gas-phase and particle tracking scheme. The compressible Navier-stokes

equations for multi-species and multiphase flows are presented, and the Lagrangian

method used for the particle tracking is discussed. Chapter 3 presents numerical

schemes used to solve the governing equations. The results of reshock studies are

described in Chapter 4. The parametric studies of single-/multi-RMI are performed

in two- and three-dimensional domains. The multiphase RMI is discussed in Chapter

5. First, the growth model for the multiphase RMI is derived, and then it is compared

to the numerical predictions with two types of configurations such as the species
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interface surrounded by the particles and the interface characterized by the particles

itself. Finally, conclusions and recommendations for future work are given in Chapter

6.
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CHAPTER II

MATHEMATICAL FORMULATION AND MODELING

This chapter presents the governing equations of the compressible Navier-Stokes equa-

tions and the particle tracking schemes.

2.1 The Navier-Stokes Equations

The compressible Navier Stokes equations for multi-species and multiphase flows un-

der the dilute limit (negligible solid volume fraction) are [7]:

∂ρ

∂t
+
∂ρui
∂xi

= ρ̇p, (7)

∂ρui
∂t

+
∂

∂xj
[ρuiuj + pδij − τij] = Ḟp,i, (8)

∂ρE

∂t
+

∂

∂xi
[(ρE + p) ui + qi − ujτij] = Q̇p + Ẇp, (9)

∂ρYk
∂t

+
∂

∂xi
[ρYkui + Ji,k] = Ṡp,k k = 1, ..., Ns. (10)

Here, ρ is the density, (ui)i=1,2,3 is the velocity vector in Cartesian coordinates, P is

the pressure, E is the total energy, Yk is the mass fraction for species k, τij is shear

stress tensor, qi is the rate of heat transfer, Ji,k is the diffusion flux, and Ns is the

total number of species in the flow. Here, ρ̇p, Ḟp,i, Q̇p,i, Ẇp,i and Ṡp,k are respectively,

the source terms of mass, momentum, heat, work and species due to the presence

of particles. The current study assumes that the particle loading is dilute, so that

volume occupied by particles is considered to be negligible. Also in this study, only

momentum exchange is considered, hence, only Ḟp,i 6= 0. The total energy, E is

defined as:

E = e+
1

2
ukuk, (11)
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where e is the internal energy given as:

e =
Ns∑

k=1

Ykhk −
P

ρ
, (12)

and the sensible enthalpy of k-th species, hk is found as:

hk(T ) = ∆h0f,k +

∫ T

T0

cP,k(T
′)dT ′, (13)

where T is the temperature, T0 is the reference temperature, ∆h0f,k is the enthalpy

formation at the reference temperature and pressure, and cP,k is the specific heat at

the constant pressure. Thermodynamic variables are computed by the equation of

state for a calorically perfect gas:

P = ρRT, (14)

R =
Ns∑

k=1

Yk
Ru

MWk

, (15)

where Ru is the universal gas constant and MWk is the molecular weight of the k-th

species.

Assuming the Newtonian fluids, the shear stress tensor, τij is proportional to the

rate of strain defined as:

τij = µ

(
∂ui
∂xj

− ∂uj
∂xi

)
− 2

3
δijµ

∂uk
∂xk

, (16)

where µ is the molecular viscosity coefficient. The rate of heat transfer is computed

by the Fourier’s law that assumes the rate of heat conduction is proportional to the

local temperature gradient. Also, the enthalpy changes caused by the species diffusion

must be considered as well. Thus, the heat flux is given as:

qi = −κ ∂T
∂xi

+ ρ
Ns∑

i=1

YkhkVi,k. (17)

There are various models to compute the diffusion velocities. The present study uses

the mixture averaged formulation [76] given as:

Vi,k = − 1

Xk

Dkm
∂Xk

∂xi
, (18)
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where Vi,k is the diffusion velocity, Xk is the mole fraction of the k-th species and

Dkm is the mixture diffusion coefficient for the kth species defined as:

Dkm =

Ns∑

j 6=k

XjMWj

MWm

Ns∑

j 6=k

Xj/Djk

, (19)

However, the diffusion velocity does not satisfy the mass conservation

(
Ns∑

k=1

VikYk 6= 0

)
,

so that the correction velocity must be used to adjust the mass flow such as:

V c
i = −

Ns∑

k=1

Yk

(
1

Xk

Dkm
∂Xk

∂xi

)
. (20)

Thus, the diffusion flux of k-th species is given as:

Ji,k = ρYk(Vik + V c
i ). (21)

The molecular viscosity coefficient in the mixture of multiple fluids is given by the

Wilke’s formula [77, 94]:

µ =
Ns∑

k=1

Xkηk
Ns∑

j=k

XjΦkj

, (22)

where

Φkj =
1√
8

(
1 +

Wk

Wj

)− 1

2

(
1 +

(
ηk
ηj

) 1

2
(
Wj

Wk

) 1

4

)2

, (23)

and the ηi in this formulation represents the i-th species viscosity. The thermal

conductivity is similarly calculated by using the following formula:

κ =
1

2




Ns∑

k=1

Xkλk +
1

Ns∑

k=1

Xk/λk



. (24)

where λk is the pure species conductivity of kth species.
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2.2 Particle Tracking - Lagrangian Scheme

There are multiple methods to compute the dynamics of the multiphase flow depend-

ing on the purposes and flow conditions [5, 54]. The Eulerian and Lagrangian scheme

are the most well known schemes. The Eulerian scheme treats particles as continuum

media, so that it is suited to handle a large number of particles. However, the disad-

vantage of the scheme is that the diffusion term is somewhat artificial [54]. Also, the

boundary conditions of the pseudo-fluid, for example at wall, are not well defined.

On the other hand, the Lagrangian scheme tracks the velocity and location of point-

particles. The advantages of the Lagrangian scheme are that the detailed information

and statistics of each particle can be obtained. Also, the Lagrangian scheme does not

require the artificial diffusive models used in the Eulerian schemes. Moreover, it is

easier to define the boundary conditions. Therefore, the Lagrangian scheme is used

for the present study. However, the drawback of the Lagrangian scheme is that it can

be very costly if a large number of particles are used in the computational domain.

Thus, the present study applies the concept of “parcel” that is consists of multiple

particles with the same characteristics such as positions, velocity and radius. It is

possible to reduce the computational load by substituting particles by parcels.

The assumptions of the particle tracking scheme are summarized as follows [27]:

1. The volume fraction of the particles are small, so that interactions between

particles is neglected.

2. The particle is spherical, so that the particle drag model is based in solid sphere

data.

3. External forces such as gravity, Basset force and virtual mass effect are neglected

Under these assumptions, the governing equations of the particle trajectories are

given as [57]:

dxp,i
dt

= vi, (25)
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mp
dvi
dt

=
π

2
rp

2CDρ|ui − vi| (ui − vi) , (26)

where xp,i is the position of the particle, ui is the local velocity of the gas at the

location of the particle, vi is the velocity of the particle, rp is the particle radius,

ρ is density of gas, mp is the particle mass and CD is the drag coefficient. The

drag coefficient is generally expressed as a function of the particle Reynolds number,

Red = 2rpρ|u−v|

µ
, where µ is the viscosity of the gas. Eqn. (26) typically contains

other terms on the right hand side to include the effect of pressure gradient, the

Basset term, the Saffman lift and the Magnus lift [56]. For this dilute study, all these

effects are neglected as a first approximation. Assuming spherical particles, the drag

coefficient, CD is obtained from the empirical relations [20] as:

CD =





24
Red

(
1 + 1

6
Re

2/3
d

)
Red < 1000

0.424 Red > 1000
. (27)

It is shown that heat transfer between the fluid and the particles can affect shock-

particle interactions [73]. However, heat transfer is neglected in the present study as

also done in previous instability analysis [60, 81].

The momentum coupling term, Ḟp, i is given as [7]:

Ḟp,i =
1

V

N∑

n=1

np,n

[π
2
r2p,nCD,nρn|ui,n − vi,n| (vi,n − ui,n)

]
, (28)

where np,n is the number of particles per parcel and N is the number of parcel belong

to the computational cell. The source terms of mass, energy and species transfer is

not considered and not discussed in the present work. Descriptions of each term are

available elsewhere [57].
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CHAPTER III

NUMERICAL METHODS

The simulation of Richtmyer-Meshkov instability encounters large discontinuities near

shocks and species interface. Therefore, upwinding schemes are often used for the

RMI simulations [66]. However, such discontinuities exist only in a small portion of

the domain, and it is preferable to apply high-order non-dissipative schemes within

the smooth regions since the upwinding scheme is dissipative. Therefore, a hybrid

scheme is used in the present study to accurately capture RMI structures with main-

taining high-order solutions. Previous studies show that the hybrid schemes are very

successful to simulate RMI. For example, Hill et al. [40] used a hybrid scheme with

tuned-center difference (TCD) in the smooth region and WENO for shock captur-

ing, to study RMI. Fryxell & Menon [29] also demonstrated hybrid scheme that used

a fourth order scheme for smooth flow and Piecewise-Parabolic method (PPM) for

the shock capturing method and apply it to study RMI. The present study applies

the hybrid scheme developed by Génin & Menon [32, 33, 34] that has been success-

fully applied for various flows such as shock/turbulence interaction [34] and turbulent

mixing in supersonic flows [33]. The hybrid scheme uses the fourth-order central

schemes within the smooth region, but reverts to the flux difference splitting (FDS)

method when the discontinuities are found. This chapter discusses the discretiza-

tion of the governing equations, central scheme, flux difference splitting method, and

the switching criteria. Then, the numerical schemes for the particle tracking is also

explained. The numerical method and the validation of the scheme were reported

elsewhere[30, 34].
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3.1 Discretization of the governing equations

3.1.1 Finite volume method

The governing equations can be written in the following conservation form:

∂Q

∂t
+
∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z
= S, (29)

where Q is the state vector, Fx, Fy and Fz is the flux in each direction, and S is the

source term, and each vector is given as:

Q =





ρ

ρu

ρv

ρw

ρE

ρYk





, (30)

Fx =





ρu

ρuu+ P

ρuv

ρuw

ρu(E + P )

ρuYk





−





0

τxx

τxy

τxz

uτxx + vτxy + wτxz − qx

ρYkVx,k





, (31)

Fy =





ρv

ρvu

ρvv + P

ρvw

ρv(E + P )

ρvYk





−





0

τyx

τyy

τyz

uτyx + vτyy + wτyz − qy

ρYkVy,k





, (32)
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Fz =





ρw

ρwu

ρwv

ρww + P

ρw(E + P )

ρwYk





−





0

τzx

τzy

τzz

uτzx + vτzy + wτzz − qz

ρYkVz,k





, (33)

S =





ρ̇p

Ḟp,x

Ḟp,y

Ḟp,z

Q̇p

Ṡp,k





. (34)

The Navier-Stokes equations are solved with the finite volume method that applies

the conservation principles on a control volume. The changes of the mass, momentum,

energy and species within the control volume are determined by the net flux of each

quantity and the source term. The integral form of the conservation form above can

be described as following:
∫∫∫

V

∂Q

∂t
dV +

∫
�
�
�
�

∫

Σ

(Fxnx + Fyny + Fznz) dΣ =

∫∫∫

V

SdV, (35)

where Σ represents the surface of a control volume and nx, ny and nz is the x, y and

z- components of the normal vector of the surface. The control volume consists of six

surface elements for three-dimensional computation by using structured grid, so that

the change of the state variables is represented as follows:

dQ = −dt
V

6∑

l=1

(Fxnx + Fyny + Fznz) Σl + S dt, (36)

where l indicates each surface element. The present study uses the cell-centered

scheme that stores the state variables at the center of cell (i, j, k).
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3.1.2 Domain discretizations

The finite volume scheme assumes that the structured, three-dimensional Cartesian

grid. Since cells are not rectangular and uniformly spaced all the time, a curvelin-

ear physical domain (x, y, z) is transformed to the uniform computational domains

(ξ, η, ζ) given as:





∂
∂x

= ξx
∂
∂ξ

+ ηx
∂
∂η

+ ζx
∂
∂ζ

∂
∂y

= ξy
∂
∂ξ

+ ηy
∂
∂η

+ ζy
∂
∂ζ

∂
∂z

= ξz
∂
∂ξ

+ ηz
∂
∂η

+ ζz
∂
∂ζ

, (37)

where ξx, ηx, ζx, ξy, ηy, ζy, ξz, ηz and ζz are the grid metrics.

Thus, the conservative form is transformed in the computational domain given as:

∂Q

∂t
+
∂F′

x

∂ξ
+
∂F′

y

∂η
+
∂F′

z

∂ζ
= S, (38)

where,





Q′ = 1
J
Q

F′
x = 1

J

(
ξxFx + ξyFy + ξzFz

)

F′
y = 1

J

(
ηxFx + ηyFy + ηzFz

)

F′
z =

1
J

(
ζxFx + ζyFy + ζzFz

)

, (39)

and J is the grid Jacobian of three-dimensional grid transformation given as:

J =
1

∂x
∂ξ

∂y
∂η

∂z
∂ζ

+ ∂x
∂ζ

∂y
∂ξ

∂z
∂η

+ ∂x
∂η

∂y
∂ζ

∂z
∂ξ

− ∂x
∂ξ

∂y
∂ζ

∂z
∂η

− ∂x
∂η

∂y
∂ξ

∂z
∂ζ

− ∂x
∂ζ

∂y
∂η

∂z
∂ξ

. (40)

3.1.3 Time Integration - McCormack scheme

The McCormack scheme is used to the time integration [34]. It is an explicit predictor-

corrector scheme described as:

Q(⋆) = Q(n) + dQ(n) (Predictor)

Q(n+1) = 1
2

[
Q(n) +Q(⋆) + dQ(⋆)

]
(Corrector),

(41)
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where Q(⋆) is computed based on the state variables and the change of state variables

computed using the property at the time step n, and Q(n+1) is the state variables at

the next time steps. The McCormack scheme ensures second-order time accuracy in

time.

The time step is determined by the properties in the cell. The following equation

is used to compute the time step in each cell:

∆t =


 CFL

|u|
∆x

+ |v|
∆y

+ |w|
∆z

+ a
√

1
(∆x)2

+ 1
(∆y)2

+ 1
(∆z)2

+ 2γν
ρ̄Pr

(
1

(∆x)2
+ 1

(∆y)2
+ 1

(∆z)2

)


 ,

(42)

and the smallest ∆t found in the computational domain is used as the global time

step. CFL = 0.5 and = 0.25 are used for 2nd and 4th order-method respectively to

keep the numerical scheme stable.

3.2 Central Schemes

A central scheme is used to compute flux in the smooth region since the scheme is

not very dissipative. The flux at cell interface is computed from the state variables

at the interface such as:

F±
i+ 1

2

= F
(
Q±

i+ 1

2

)
, (43)

where + and − denote forward and backward differencing, and the directions are

switched at for predictor and corrector to maintain the order of the scheme.

The original formulation of McCormack scheme that results 2nd-order accuracy

in space is given as:

Q+
i+ 1

2

= Qi+1,

Q−
i+ 1

2

= Qi,
(44)

where + and − denote the forward and backward differencing, and the directions is

switched at each iteration so as not to bias the solution by direction. Gottlieb &

Turkel [36] extended McCormack scheme and obtain the fourth-order scheme given
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as:

Q+
i+ 1

2

= 1
6
(7Qi+1 −Qi+2),

Q−
i+ 1

2

= 1
6
(7Qi −Qi−1).

(45)

Later, Nelson [67, 68] pointed out the scheme of Gottlieb & Turkel is only third-

order accurate in space, and developed a fourth-order scheme given as:

Q+
i+ 1

2

= 1
6
(2Qi + 5Qi+1 −Qi+2),

Q−
i+ 1

2

= 1
6
(2Qi+1 + 5Qi −Qi−1).

(46)

Derivatives are similarly computed by fourth-order scheme. ξ derivatives of the

primitive variables at i+ 1/2 interface are found as:

∂u+

∂ξ
= 1

6
(−ui+2 + 8ui+1 − 7ui),

∂u−

∂ξ
= 1

6
(ui−1 + 8ui − 7ui+1).

(47)

Similarly, the derivative transverse to the interface is computed by central differencing

given as:

∂u
∂η

= 1
12
(−uj+2 + 8(uj+1 − uj−1) + uj−2). (48)

3.3 Flux-difference splitting method

Upwinding schemes are applied near discontinuities since central schemes tend to

cause numerical oscillations. The present study uses the flux difference splitting (FDS)

method that computes flux based on the wave propagation. Monotone Upstream

Centered Scheme for Conservation Laws (MUSCL) re-construction is used to keep

the high-order solutions, and flux is computed by HLLC/E [34]. Note that the FDS

method is only applied to the inviscid flux and the viscous flux is still computed by

a fourth-order central scheme.
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3.3.1 MUSCL interface reconstruction

The MUSCL reconstruction evaluates the state variables at the left and right of the

interface assuming a piecewise-linear function shown as following equations:

UL
i+1/2 = Ui +

ǫ(1−ξi)
4

[(1− κ) (Ui − Ui−1) + (1 + κ) (Ui+1 − Ui)] ,

UR
i+1/2 = Ui+1 − ǫ(1−ξi+1)

4
[(1 + κ) (Ui+1 − Ui) + (1− κ) (Ui+2 − Ui+1)] ,

(49)

where ξ is the flattering factor explained later, and the order of the scheme is deter-

mined by the value of ǫ and κ as shown in Table 2.

ǫ 0 1 1 1 1
κ any -1 1 1 1/3
Order 1st 2nd 2nd 2nd 3rd

Table 2: List of order of accuracy of MUSCL scheme

If the first-order method is used, the numerical scheme become very dissipative. How-

ever, the higher-order approximation in Eqn. (49) will over- and under-predict the

state value so that numerical oscillations are generated. Therefore, the slope limiter

function, φ(r), is introduced given as:

UL
i+1/2 = Ui +

ǫ(1−ξi)
4

[
(1− κ)φ(r+i−1/2)(Ui − Ui−1) + (1 + κ)φ(r−i+1/2)(Ui+1 − Ui)

]
,

UR
i+1/2 = Ui+1 − ǫ(1−ξi+1)

4

[
(1− κ)φ(r−i+3/2)(Ui+2 − Ui+1) + (1 + κ)φ(r+i+1/2)(Ui+1 − Ui)

]
,

(50)

where r is defined as:

∆i+1/2(U) = Ui+1 − Ui

∆+
i+1/2(U) = ∆i+1/2(U)φ(r

+
i+1/2) r+i+1/2 =

∆i+3/2(U)

∆i+1/2(U)

∆−
i+1/2(U) = ∆i+1/2(U)φ(r

−
i+1/2) r−i+1/2 =

∆i−1/2(U)

∆i+1/2(U)
,

(51)

Various types of limiters have proposed in the past such as [49]:

• Minmod Limiter

φmm(r) = max [0,min(r, 1)] , (52)

24



• Superbee Limiter

φsb(r) = max [0,min(2r, 1),min(r, 2)] , (53)

φβ(r) = max [0,min(βr, 1),min(r, β)] ,

1 ≤ β ≤ 2
(54)

• Monotonized Central Limiter

φmc(r) = max

[
0,min(2r, 2,

1 + r

2
)

]
, (55)

• Van Leer Limiter

φvl(r) =
|r|+ r

1 + r
, (56)

• Van Albada Limiter

φva(r) =
r2 + r

1 + r2
. (57)

Since all the limiters introduced here hold symmetry defined as:

φ(r)

r
= φ

(
1

r

)
, (58)

Eqn (50) can be simplified as:

UL
i+1/2 = Ui +

ǫ(1−ξi)
2

φ(r+i−1/2)(Ui − Ui−1),

UR
i+1/2 = Ui+1 − ǫ(1−ξi+1)

2
φ(r−i+3/2)(Ui+2 − Ui+1).

(59)

The MUSCL reconstructions are applied to ρ, ui, P , T and ρk. However, corrections

on the species term are required since the result of the MUSCL reconstruction must

also satisfy
Ns∑

i=1

Yi = 1.0. Therefore, the present study limits the equations of interface

construction as follows:

ρl
k,i+ 1

2

= ρk,i +
ǫ(1−ξi)

2
min︸︷︷︸

k=0..Ns

(
φ
(
r+i−1/2(ρk)

))
(ρk,i − ρk,i−1),

ρr
k,i+ 1

2

= ρk,i+1 − ǫ(1−ξi+1)
2

min︸︷︷︸
k=0..Ns

(
φ
(
r−i+3/2(ρk)

))
(ρk,i+2 − ρk,i+1),

(60)

where k = 0 indicate the total gas density.
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The flattering function is used to reduce the order of accuracy near the strong shock.

The shock is detected by the velocity and pressure criteria given as [18]:

dP,i =
|Pi+1−Pi−1|

min
(
Pi+1,Pi−1

) − 1
3
> 0,

du,i = ui+1 − ui−1 < 0.

(61)

If the shock is found, the flattering factor is computed as following:

ξ̃i = max

[
0,min

(
1, 10

(
Pi+1−Pi−1

Pi+2−Pi−2
− 0.75

))]
,

ξi =





max
(
ξ̃i, ξ̃i+1

)
, if (Pi+1 − Pi−1) < 0

max
(
ξ̃i, ξ̃i−1

)
. otherwise

(62)

3.3.2 Riemann solvers

The interface fluxes are calculated from UL and UR obtained by MUSCL scheme.

There are various numerical methods to deal with the Riemann problem. This study

applies a hybrid Riemann solver, HLLC/E [34, 33], that uses HLLE and HLLC de-

pending on the flow conditions. The following sections give brief descriptions of

HLLE, HLLC and the switching criteria of HLLC/E.

3.3.2.1 HLLE Riemann solver

HLL (Harten, Lax and Leer) Riemann solver [38] assumes two waves, left- and right-

moving waves that characterize three regions of different solutions. The scheme is

also called HLLE if the wave speed is determined by the Einfedlt’s scheme [24, 25].

Assuming the control volume of [Xl, Xr]×[0,∆t] as shown in Fig. 4, the state variables

after time step, ∆t is described as:

∫ Xr

Xl
U(x,∆t)dx−

(∫ 0

Xl
U(x, 0)dx+

∫ Xr

0
U(x, 0)dx

)
=

∫ ∆t

0
F
(
U(Xl, t)

)
dt−

∫ ∆t

0
F
(
U(Xr, t)

)
dt.

(63)

Eqn. (63) is simply integrated and simplified as:

U⋆(SR − SL)∆t− (−UL
(
SL∆t

)
+ UR

(
SR∆t

)
)

= FL
(
∆t
)
− FR

(
∆t
)
,

(64)
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Figure 4: HLLE configuration of the different waves at cell interfaces

and U∗ is found as:

U⋆ =
FL − SLUL − (FR − SRUR)

SR − SL
. (65)

From U⋆ the flux at the interface, F ⋆ need to be derived, but F ⋆ 6= F (U⋆) to keep

the conservation laws of the control volume. Therefore, F ⋆ is found by analyzing left

[Xl, 0] and right [0, Xr] portion of the control volume as performed in Eqn. (63) and

obtain:

−(U⋆ − UL)SL∆t = (FL − F ⋆)∆t (Left),

(U⋆ − UR)SR∆t = (F ⋆ − FR)∆t (Right),
(66)

and so that F ∗ is determined as:

F ⋆ =
SRFL − SLFR + SLSR(UR − UL)

SR − SL
. (67)

Thus, the HLLE scheme is summarized as:

FHLLE
i+1/2 =





FL if 0 ≤ SL

F ⋆ if SL ≤ 0 ≤ SR

FR if SR ≤ 0

(68)

3.3.2.2 HLLC Riemann solver

Toro et al. [89] improved HLL by adding a contact surface (HLLC). The control rep-

resentation with the contact surface can be represented by the following conservative
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law:

(∫ X⋆

Xl
U(x,∆t)dx+

∫ Xr

X⋆ U(x,∆t)dx
)
−
(∫ 0

Xl
U(x, 0)dx+

∫ Xr

0
U(x, 0)dx

)
=

∫ T

0
F
(
U(Xl, t)

)
dt−

∫ T

0
F
(
U(Xr, t)

)
dt.

(69)
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Figure 5: HLLC configuration

The integrated form of Eqn. (69) is given as:

(UL⋆(S⋆ − SL)∆t+ UR⋆(SR − S⋆)∆t)− (−UL
(
SL∆t

)
+ UR

(
SR∆t

)
) =

FL
(
∆t
)
− FR

(
∆t
)
,

(70)

and Eqn. (70) is simplified as:

(S⋆ − SL)UL⋆ + (SR − S⋆)UR⋆ = FL − SLUL − (FR − SRUR). (71)

The control volume of each segment is analyzed, and the Rankin-Hugoniot condition

are used to find:

FL⋆ = FL + SL
(
UL⋆ − UL

)
,

FL⋆ = FR⋆ + S⋆
(
UL⋆ − UR⋆

)
,

FR⋆ = FR + SR
(
UR⋆ − UR

)
,

(72)

However, there are only three equations obtained for four unknown parameters (FL⋆,

FR⋆, UL⋆ and UR⋆), so that one more equation is derived from the interface conditions
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expressed as following:

(~V L⋆ · ~n = qL⋆) = (~V R⋆ · ~n = qR⋆) = S⋆,

PL⋆ = PR⋆,

φL⋆ = φL , φR⋆ = φR,

(73)

where φ represents the passive scalars.

To apply the interface conditions, the continuity and momentum equations of either

right or left moving wave is shown as:




ρk⋆S⋆

ρk⋆S⋆uk⋆ + P k⋆nx

ρk⋆S⋆vk⋆ + P k⋆ny

ρk⋆S⋆wk⋆ + P k⋆nz




︸ ︷︷ ︸
Fk⋆

=




ρkqk

ρkqkuk + P knx

ρkqkvk + P kny

ρkqkwk + P knz




︸ ︷︷ ︸
Fk

+Sk







ρk⋆

ρk⋆uk⋆

ρk⋆vk⋆

ρk⋆wk⋆




︸ ︷︷ ︸
Uk⋆

−




ρk

ρkuk

ρkvk

ρkwk




︸ ︷︷ ︸
Uk




.

(74)

The continuity equation shows that:

ρk⋆ = ρk
Sk − qk

Sk − S⋆
, (75)

and similarly, the momentum equations obtains an expression of pressure such as:

P k⋆ = P k + ρk(qk − Sk)(qk − S⋆). (76)

Thus, Uk⋆ can be represented as

Uk⋆ = αkUk +




0

ρkωknx

ρkωkny

ρkωknz

P ⋆S⋆−P kqk

(Sk−S⋆)

0

0




, (77)
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where,

βk = S⋆−qk

Sk−S⋆ ,

αk = βk + 1,

ωk = −βk(qk − Sk)

(78)

Therefore, the interface flux determined by HLLC is given as:

FHLLC
i+1/2 =





FL if 0 ≤ SL

FL⋆ = FL + SL(UL⋆ − UL) if SL ≤ 0 ≤ S⋆

FR⋆ = FR + SR(UR⋆ − UR) if S⋆ ≤ 0 ≤ SR

FR if SR ≤ 0

(79)

3.3.2.3 Wave-speed estimation

There are various methods to estimate wave-speed, and Einfeldt’s method [24, 25] is

applied in the present study. He defined the left- and the right-moving wave as:

SL = min
[
qL − cL, q̌ − č

]
SR = max

[
qR + cR, q̌ + č

]
, (80)

where q̌ and č are the Roe-averaged contravariant velocity and speed of sounds re-

spectably derived from the Roe-averaged variables are determined as:

Ǔ =




ρ̌

ǔ

v̌

w̌

Ȟ

Y̌k




=
1√

ρL +
√
ρR




√
ρL




√
ρLρR

uL

vL

wL

HL

Yk,l




+
√
ρR




√
ρLρR

uR

vR

wR

HR

Yk,r







, (81)

and č is computed from the Roe-averaged quantities, instead of taking Roe-average of

cL and cR. The speed of the contact surface, S⋆ used in HLLC is found by applying

the interface conditions (Eqn. 73). The mass and the momentum conservation at the

contact surface are:
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(S⋆ − SL)

UL⋆

︷ ︸︸ ︷


ρL⋆

ρL⋆uL⋆

ρL⋆vL⋆

ρL⋆wL⋆




+(SR − S⋆)

UR⋆

︷ ︸︸ ︷


ρR⋆

ρR⋆uR⋆

ρR⋆vR⋆

ρR⋆wR⋆




= SR

UR

︷ ︸︸ ︷


ρR

ρRuR

ρRvR

ρRwR




−SL

UL

︷ ︸︸ ︷


ρL

ρLuL

ρLvL

ρLwL




+




ρLqL

ρLqLuL + PLnx

ρLqLvL + PLny

ρLqLwL + PLnz




︸ ︷︷ ︸
FL

−




ρRqR

ρRqRuR + PRnx

ρRqRvR + PRny

ρRqRwR + PRnz




︸ ︷︷ ︸
FR

.

(82)

Then, the two mass and vectorial momentum balance are given as:

ρL⋆(S⋆ − SL) + ρR⋆(SR − S⋆) = ρR(SR − qR)− ρL(SL − qL),
[
ρL⋆(S⋆ − SL) + ρR⋆(SR − S⋆)

]

︸ ︷︷ ︸
S⋆ = PL − PR + ρRqR(SR − qR)− ρLqL(SL − qL).

(83)

Since the right-hand of mass conservation equation can substitute the under-braced

term in the momentum balancing equation, S⋆ can be obtained as:

S⋆ =
PR − PL + ρLqL(SL − qL)− ρRqR(SR − qR)

ρL(SL − qL)− ρR(SR − qR)
. (84)

3.3.2.4 HLLC/E

The purpose of the hybrid scheme is to use the HLLC since it is less diffusive, but to

avoid the carbuncle effect induced by HLLC. Thus, HLLC/E detects shock location

and uses HLLE transverse to the shock front within the shock region [31]. Therefore,

the hybrid scheme HLLC/E uses switching based on the shock detection method Eqn.
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(61) such as:

F u
i+1/2 =





FHLLE
i+1/2 if (dP,j < 0 and du,j < 0) or (dP,k < 0 and du,k < 0)

FHLLC
i+1/2 otherwise

. (85)

3.4 Switching criteria

The hybrid finite-volume formulation is used to integrate the conservative form of the

equations so that both moving shocks and smooth flow maintains high-order solution.

The numerical scheme uses a fourth-order central scheme, well adapted to turbulent

simulations, in smooth regions. The flux evaluation, however, reverts to a high-order

flux difference splitting method in regions of strong gradients. Thus,

Fi+1/2 = λi+1/2F
s
i+1/2 +

(
1− λi+1/2

)
F u
i+1/2. (86)

where F s is the flux obtained by the central scheme used for the smooth region, F u is

the flux computed by the FDS scheme applied near discontinuity, and λ is the switch

variable. Although it is possible to have a smooth function of λ to blend Fu and Fs,

the present study takes a Heavyside step function where only 0 or 1 can be taken.

Curvatures of the pressure and density are the criteria to detect the discontinuity.

The sensors are defined as:

Sφ,i =





|φi+1−2φi+φi−1|
|φi+1−φi|+|φi−φi−1|

− Sth
φ if |φi+1 − 2φi + φi−1| ≥ ǫφφi

−Sth
φ otherwise

, (87)

where φ is the parameter used for sensor, and P and ρ are used in this study. Sth
P =

0.4, Sth
ρ = 0.25, ǫP = 0.005 and ǫρ = 0.1 are used for the current study. More detailed

descriptions of these scheme and validations are given in Génin [30].

λi+1/2 =





1 if max(SP,i, SP,i+1, Sρ,i, Sρ,i+1) ≤ 0

0 otherwise
, (88)
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3.5 Boundary conditions

The boundary conditions (BC) are essential to solve the PDEs. In the present study,

the BCs are enforced to choose the right parameters on ghost cells which are outside

the computational domain and used to compute derivatives and fluxes on the bound-

ary on the domain of interest. Following types of boundary conditions are used in

this study.

• Slip Wall BC

The slip wall BC is a useful boundary condition to mimic the wall if small scale

motions along the wall are not important. The slip wall requires to have no gradient

of pressure (dP
dn

= 0) and temperature if adiabatic (dT
dn

= 0) where the n indicates the

normal vector to the wall. Since it is slip wall, the gradient of the velocity tangential

to the wall have any gradient to the wall as well, (dVt

dn
= 0). However, the the velocity

component normal to the wall must be zero on the boundary. Thus, assuming N + 1
2

represents the boundary and nn and nt are the normal and tangential components of

the VN:

PN+1 = PN , TN+1 = TN ,

VN+1 = −VNnn +VNnt.
(89)

• Periodic BC

In many types of RMI study, the periodic BC is often used to capture large scale

motions. The periodic BC copies the solutions at each times steps. Assuming the 1
2

and N + 1
2
represents the domain boundaries:

N + 1
2

: PN+1 = P1, TN+1 = T1, VN+1 = V1,

1
2

: P0 = PN , T0 = TN , V0 = VN ,
(90)
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• Supersonic outlet

The supersonic outlet BC only relies on the information in the domain. If N + 1
2
is

the supersonic outlet condition, the quantities of ghost cells are found as:

UN+1 = UN . (91)

3.6 Particle tracking

The Lagrangian particle tracking schemes solves a series of ODEs, and they are

integrated by the 4th-order Runge-Kutta scheme. Runge-Kutta scheme uses the

four-step approximation such that:

yn+1 = yn +
1
6
(k1 + 2k2 + 2k3 + k4),

tn+1 = tn +∆tp,
(92)

where k1, k2, k3 and k4 are defined as:

k1 = ∆tpf(tn, yn),

k2 = ∆tpf(tn +
1
2
∆tp, yn +

1
2
k1),

k3 = ∆tpf(tn +
1
2
∆tp, yn +

1
2
k2),

k4 = ∆tpf(tn +∆tp, yn + k3),

(93)

where ∆tp is the time step for particle tracking, which may be different from the

gas-phase time step [82]. The droplet velocity relaxation time, τrelax is:

τrelax = [16ρdr
2
d(CDRed)

−1]/[3ρgν]. (94)

The eddy-droplet interaction time, τint is:

τint = τrelaxln

(
1− ∆

τrelax|ui − ui,d|

)
, (95)

where ∆ indicates grid size of the cell. Then, the time step of particles, ∆tp are

determined as:

∆tp = min{τrelax, τint,∆t}. (96)

Thus, multiple time steps may be needed if the particle time scale is smaller than the

fluid time step.
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CHAPTER IV

RESHOCKED RICHTMYER-MESHKOV INSTABILITY

In this chapter, the growth rates after reshock under various initial interface shapes are

analyzed. First, four types of different initial interface shapes are examined based on

the experimental setup of Leinov et al. [48]. Then, parametric studies are performed

to find out the important factors that determine the post-reshock growth rates.

4.1 Simulation of Experimental Setups

Based on the experimental setups of Leinov et al. [48], four initial conditions for

RMI, i.e., 2D single-mode, 3D single-mode, 2D multi-mode and 3D multi-mode are

simulated and are presented here. The computational domain in this study is taken

from the recent experimental study of reshocked RMI performed by Leinov et al. [48],

and is presented in Fig. 6. The streamwise length (Lx) is 16 cm, and the shock and

the perturbed interface are located at 9 cm and 8 cm from the end wall, respectively.

For 2D, the transverse length is 1 cm, and the simulation domain is discretized with

a grid size of 2048 × 128. For 3D, the cross sectional area is 1 cm×1 cm, and the

simulation domain is discretized with a 1024× 642 grid. The effect of grid resolution

is discussed later.

The incident shock Mach number is 1.2, and SF6 and air are chosen as the species

for the high and the low density fluid across the interface. The effect of initial condi-

tions on the post-reshock growth rate has been addressed recently [37, 83]. However,

these studies focused on a few limited cases and detailed parametric studies have not

yet been performed. This study investigates four types of initial interface shapes such

as 2D single-mode, 2D multi-mode, 3D single-mode and 3D multi-mode. The species

interface is initialized with a thin diffusion layer using the function introduced by
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Latini et al. [45] to make the initial conditions less sensitive to the grid geometry.

For these initial conditions, the reshock hits the interface at around t = 0.75 ms

and the expansion wave from the end wall reaches the interface at t ≈ 1.2 ms. The

parametric studies use these initial conditions as the baseline to analyze the effect of

the different parameters for appropriate models.

Figure 6: Schematic of the RMI test configuration. For reshock, the shock reflects
from the right wall and exits from the left.

The initial conditions for single-mode RMI in 2D and 3D are defined as [13, 19]:

a(y) = a0 sin
(
2π
λ
y
)

(2D);

a(y, z) = a0
[
sin
(
2π
λ
y
)
+ sin

(
2π
λ
z
)]

(3D).
(97)

Similarly, multi-mode perturbation is defined as the superposition of multiple wave-

lengths (Eqn. 98) used by Leinov et al. [48] and Banerjee & Andrews [8].

a(y) = a0
σ

kmax∑

ky=1

[
a1,kcos(

2πkyy

Ly
+ α1,k) + a2,ksin(

2πkyy

Ly
+ α2,k)

]
(2D);

a(y, z) = a0
σ

kmax∑

kz=1

kmax∑

ky=1

[
a1,kcos(

2πkyy

Ly
+ α1,k)sin(

2πkzz
Lz

+ β1,k)+

a2,ksin(
2πkyy

Ly
+ α2,k)sin(

2πkzz
Lz

+ β2,k)+

a3,ksin(
2πkyy

Ly
+ α3,k)cos(

2πkzz
Lz

+ β3,k)+

a4,kcos(
2πkyy

Ly
+ α4,k)cos(

2πkzz
Lz

+ β4,k)
]

(3D).

(98)

Here, λ is the wavelength, ky and kz are respectively, the wavenumbers in y- and

z-directions with values between 1 and kmax, ai,k are random coefficients between -1
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and 1, αi,k and βi,k are random coefficients between −π and π, Ly and Lz are the

domain sizes in y- and z-directions respectively, σ is the standard deviation of the

summation part to normalize the fluctuation to be one, and the initial amplitude, a0

determines the size of the perturbation. The parameters used for the simulation are

summarized in Table 3.

Table 3: List of parameters used to construct species interface perturbations.

Case kmax a0 (mm) Grid Size
2D Single-mode 0.5 2048×128
2D Multi-mode 8 2.0 2048×128
3D Single-mode 1.0 1024×642

3D Multi-mode 4 2.0 1024×642

Grid sensitivity of the growth rate is checked for each of the simulation cases.

2D studies utilize 128 grids in the y-direction, and good agreement with a finer grid

(4096 × 256) are seen in both single- and multi-mode RMI as a previous numerical

study [46] suggests. These results are presented in Fig. 8: single-mode in (a) and

multi-mode in (b). Similarly, 3D RMI with 642 cross-sectional grid shows good agree-

ment with a finer grid (1546 × 962). Note that the amplitude growth deviate after

t = 1.2 ms due to the reflected expansion wave, but this study is not focused on the

time regimes.

Of interest in this study is to determine the mixing length growth behavior for

different geometries and initial conditions. There are different methods to calculate

the mixing length from the numerical results. One approach is the threshold method

that defines the mixing length as the region where ǫ < 〈Yair〉 < 1 − ǫ, where 〈Yair〉

denotes the line (2D) or planer (3D) average mass fraction of air, and ǫ is a small

number [46, 17]; ǫ = 0.01 is used in this study. The threshold measure is widely used

for single and multi-mode studies, but the mixing length is influenced by the value of

ǫ. Experimental studies usually utilize the threshold-type method by taking a picture
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of the interface, but the definition of boundaries are not clearly defined in terms of the

mass fraction. The other method is to measure the amplitude of the iso-contour of

the mass fraction [12]. This iso-contour definition corresponds to theoretical values,

and the diffusion thickness can be ignored, but is practically limited to single-mode

studies only since it cannot account for well mixed regions. The difference between

the threshold and iso-contour definition is shown in Fig. 7.

Figure 7: Differences in the mixing layer estimate by different methods.

The pre-reshock growth rates of 2D and 3D single-mode RMI are also good mea-

sures to check the numerical schemes, since there are reliable theoretical and empirical

models widely validated in the literature [13, 19, 42, 46, 53]. Sadot et al. [80] obtained

the empirical model for the growth rate as:

ab/s(t) = v0
1 + v0kt

1 +Dv0kt+ Ev20k
2t2
. (99)

The coefficients D and E can be chosen based on different theories and are summa-

rized in Table 4. Note that the ± in Table 4 denotes the value used for the bubbles

and spikes, respectively.

The theoretical explicit time-dependent expression obtained by Mikaelian [64] is:

kab/s(t) =





kv0t if kv0t ≤ a∗;

a∗ + C
1±A

ln
[
1 + 1±A

C
(kv0t− ka∗)

]
if kv0t > a∗,

(100)
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Figure 8: Grid sensitivity of single- and multi-mode RMI in 2D and 3D.
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Table 4: List of coefficients for Sadot-type models.
Model Dimension D E

Sadot [80] (Original model) 2D 1± A 3(1±A)
2(1+A)

Niederhaus & Jacobs [69] (NJ) 2D 1± A 1± A

Goncharov [35] (G) 2D 1± A 3(1±A)
(3+A)

Sohn [87] (S) 2D 1± A (2±A)
2

Chapman & Jacobs [13] (CJ) 3D
1∓ (0.01221A3+

0.69844A)
(1±A)

2

where C = (3 ± A)/3 for 2D and C = 2 for 3D; a∗ is the amplitude to reach non-

linear growth rates, chosen as a∗ = 1
2k

for 2D and a∗ = 1
3k

for 3D. The comparisons

between models and numerical simulations are shown in Figs. 9 and 10 for 2D and 3D,

respectively. Note that the iso-contour definition is used to exclude diffusion thickness

to be precisely comparable to models. The numerical result closely follows Sadot-

Sohn model for 2D and Mikaelian for 3D, and this test exemplifies that the numerical

predictions are in accordance with the theoretical models. Note that the validation

study of multi-mode RMI has not been performed in this study since the growth

models highly depends on the statistical approach and are not yet as established as

the single-mode models.

The comparisons of growth rates for each of the simulation cases are shown in

Fig. 11 and are summarized in Table 5. Each study shows distinctly different growth

rates after reshock. 3D multi-mode RMI predicts the growth rate very close to the

experimental value. However, 2D multi-mode RMI results very small growth rates

compared to the 3D multi-mode RMI, as also observed by Gowardhan et al. [37].

The single-mode cases tend to have larger growth rates in 2D and 3D. From these

results, single-mode and 3D tends to have larger growth rates than multi-mode and

2D. However, there are not enough data sets to argue the reasons for such differences.

Therefore, parametric studies for each type of perturbations are performed in the

following sub-sections to determine the importance of the various variables in the
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prediciton of the post-reshock growth rates.
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Figure 11: Comparisons of growth for each case. The straight-line represents the
experimental slope of 23.1 m/s [48].

Table 5: Growth rates before and after reshock, and model coefficients for each case.
C and β are coefficients found from the formulations of Mikaelian’s reshock model
(Eqn. 5) and Charakhch’an’s model (Eqn. 6), respectively, where ∆V2 = 92.5 m/s
and A+ = 0.71.

Case dh1

dt
dh2

dt
C β

2D Single-mode 7.85 34.11 0.52 0.64
3D Single-mode 12.50 59.1 0.90 1.09
2D Multi-mode 11.65 0.17
3D Multi-mode 25.2 0.38

4.2 Parametric Studies of Single-Mode RMI

Even though past studies have reported that the conditions at reshock are likely to

be independent of interface conditions, the previous section shows that the interface

condition changes the post-reshock growth rates. Therefore, parametric studies are

performed to investigate the effect of initial perturbation shapes on the post-reshock

growth rates. First the study conducts parametric studies in 2D to evaluate the

sensitivity of RMI growth rates after reshock to the interface shapes at reshock (ar
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Table 6: Cases simulated for 2D and 3D single-mode RMI.
Case Dim Grid Domain (cm) a0 (mm) L (mm) λ (mm) M1

S1 2D 2048×128 16.0×1.0 0.5 40 1.0 1.2
S2 2D 2048×128 16.0×1.0 0.5 80 1.0 1.2
S3 2D 8192×128 16.0×0.25 0.125 20 0.25 1.2
S4 2D 4096×128 16.0×0.5 0.25 40 0.5 1.2
S5 2D 1024×128 16.0×2.0 1.0 80 2.0 1.2
S6 2D 2048×128 16.0×1.0 0.5 80 1.0 1.1
S7 2D 2048×128 16.0×1.0 0.5 80 1.0 1.3
S8 2D 2048×128 16.0×1.0 0.5 80 1.0 1.4
3DS1 3D 1024×642 16.0×1.02 1.0 80 1.0 1.1
3DS2 3D 1024×642 16.0×1.02 1.0 80 1.0 1.2
3DS3 3D 1024×642 16.0×1.02 1.0 80 1.0 1.3
3DS4 3D 1024×642 16.0×1.02 1.0 80 1.0 1.4

and λ) and the incident Mach number, M1 in both 2D and 3D. The description of

each test case considered in this investigation are summarized in Table 6.

First, various initial geometries are tested (Case S1-S5) and are compared to

analyze the effect of the interface geometry parameters such as ar, λ and ar/λ. Figure

12 predicts that all cases result in similar growth rates (i.e., the slope after reshock).

Note that the distance to the wall is adjusted to obtain the linear post-reshock growth

rate, but the number of the grid points per perturbation is kept 128 in the y-direction

for all these cases. Table 7 summarizes the growth rates and coefficients obtained

from the Mikaelian’s reshock formulation and Charakhch’an’s model, and the values

of these coefficients are relatively close, even though λ and ar are different for each

of the cases. Thus, the results suggest that the post-reshock growth rate is not

a strong function of wavelength as Charakhch’an suggested [14, 15], and that the

reshock models are a function of wavelength. Note that Mikaelian’s potential model

[62] and Brouillette & Sturtevant’s model [12] are inappropriate for predicting the

growth rate for perturbation amplitudes as large as the ones considered in the current

investigation.

The empirical reshock models show that the growth rate is independent of the
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Figure 12: Mixing length growth with different initial geometries.

Table 7: 2D single-mode RMI for different ar and λ.
Case S1 S2 S3 S4 S5
dh1

dt
12.50 7.85 7.42 7.81 10.15

dh2

dt
42.50 34.11 33.83 39.84 40.15

ar (mm) 6.48 9.77 2.42 4.72 8.75
λ (mm) 10.0 10.0 2.5 5.0 20.0
ar/λ 0.648 0.977 0.968 0.944 0.438
β 0.84 0.64 0.63 0.73 0.77
C 0.65 0.52 0.52 0.61 0.61
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interface shape at reshock, but ∆V2 is predicted to be linearly correlated to the

growth rates. The post-reshock growth rate with different ∆V2 in 2D (Case S3, S9-

11) and 3D (Case 3DS1-4) are measured by changing the incident Mach number, and

the results of post-reshock growth rates are summarized in Table 8. The numerical

results show higher growth rates for the cases with the higher incident Mach number,

and the result is presented in Fig. 13. The linear correlation between the post-reshock

growth rate and ∆V2 in both 2D and 3D are found, as previously reported in the 3D

RMI experiment with random perturbations [48], and is presented in Fig. 14 for 2D.

Table 8: 2D and 3D single-mode RMI with different incident Mach numbers.
Case S6 S2 S7 S8 3DS1 3DS2 3DS3 3DS4
M1 1.1 1.2 1.3 1.4 1.1 1.2 1.3 1.4
∆V1 45.9 68.5 99.2 127.5 45.9 68.5 99.2 127.5
∆V2 57.4 92.5 133.7 173.5 57.4 92.5 133.7 173.5
dh1

dt
5.00 7.85 9.06 10.30 9.38 12.50 14.28 18.12

dh2

dt
20.08 34.11 51.92 68.89 34.73 59.09 89.06 94.36

A+ 0.70 0.71 0.74 0.78 0.70 0.71 0.74 0.78
β 0.62 0.63 0.62 0.59 1.10 1.09 1.04 0.83
C 0.50 0.51 0.52 0.51 0.86 0.90 0.90 0.70
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Figure 13: Amplitude of 2D RMI with different incident Mach numbers.
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Figure 14: Correlation between mixing length growth rate and ∆V2. The regression
line shows that the slope is 0.39 in 2D and 0.60 in 3D.

Comparisons to empirical models are performed. Using the formulation of Charakhch’an’s

model, which is appropriate for 2D single-mode RMI, the coefficient β ≈ 0.68 within

the range of 0.59 < β < 0.84 is obtained in the current simulations. However, the

original value proposed by Charakhch’an is nearly four times larger (β ≈ 2.5 with

the range of 1.06 < β < 3.0). The difference is presumably from either the numeri-

cal scheme or the choice of species (Deuterium/Aluminum, but A+ = 0.69 is in the

same order as the present study) used in his study. Assuming a correlation similar to

Mikaelian reshock model, the numerical study reveals C ≈ 0.56 for 2D and C ≈ 0.84

for 3D, that are larger than the originally proposed value. There is no experimental

data available for validation yet. Schilling et al. [84] performed numerical analysis of

2D single-mode RMI with reshock and found similar correlations, C ≈ 0.56 (however,

the value of the slope identified in the title of their Fig. 9 [84] differs from the actual

slope in their figure by a factor of two). Thus, both empirical models can be applied

to the reshock models with proper coefficients.

The differences in the evolution of 2D (Case S2) and 3D (Case 3DS2) are presented
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in Figs. 15 16 and 17. At 0.7 ms, the species interface creates the typical mushroom

shape of the interface. The 3D case shows roll-ups for both bubble and spike fronts,

instead of both bubbles and spikes sharing the same roll-up as in 2D. The difference

is because that 2D RMI generates vortex lines, whereas 3D RMI create vortex rings

around both bubbles and spikes. When the reshock hits the perturbation, the interface

is distorted (0.8 ms), and the inversion of bubble and spike occurs as seen in Fig. 2

(0.9 ms) and show rapid growth at later times. Similar RMI evolution has been

reported in past studies as well [13, 19, 42, 46, 53, 84].

(a) t = 0.7 ms (b) t = 0.8 ms

(c) t = 0.9 ms (d) t = 1.1 ms

Figure 15: RMI interface shape colored by mass fraction of SF6 (Case S2).

Even though the shape of RMI perturbation at reshock does not influence the

post-reshock growth rate, the dimensionality of perturbation is an important factor

as often discussed in classical reshock models [13, 71]. 3D single-mode results show

C ≈ 0.84 and β ≈ 1.02, which are about 1.6 times larger than the values obtained

from the 2D single-mode studies (C ≈ 0.52 and β ≈ 0.63). Although the differences in

the post-reshock growth in 2D and 3D have not been analytically obtained, a couple
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(a) t = 0.7 ms (b) t = 0.8 ms

(c) t = 0.9 ms (d) t = 1.1 ms

Figure 16: RMI interface shapes colored by mass fraction of SF6.

of possible reasons are briefly discussed here. First, the vortex stretching term in Eqn.

(1) is activated in 3D flow, whereas this term is zero in 2D; this vortex stretching

term can possibly strengthen the vorticity if the vortex rings are stretched in 3D. The

other possible reason is due to the geometry of the perturbation. The 3D RMI will

have a point contact to the shock at the bubble and spike fronts, whereas 2D RMI

will have a line contact to the shock. Thus, it is possible for 3D RMI to have larger

vorticities at fronts that can cause larger growth rates.

In summary, the parametric study of single-mode RMI shows that the post-reshock

growth rate is independent of the wavelength and amplitude at reshock, and linearly

correlated with ∆V2. However, the dimension of the perturbation is important and

3D cases result in 1.6 times larger growth rates than their counterpart 2D cases.

4.3 Parametric Studies of Multi-Mode RMI

Since single-mode RMI studies show that the growth rate is not a strong function of

the interface geometry, the same reshock growth model should ideally be applicable

to multi-mode RMI. In fact, Charakhch’an [14, 15] analyzed the post-reshock growth

rates of the interface which consists of three segments of lines instead of a sinusoidal
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(a) t = 0.7 ms (b) t = 0.8 ms

(c) t = 0.9 ms (d) t = 1.1 ms

Figure 17: Iso-surfaces of species interface with different mass fractions of SF6

(Blue-10%, Green-50%, Orange-90%).
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wave, and demonstrated that his model was applicable to the case. However, the post-

reshock growth rates of multi-mode RMI are smaller than single-mode cases in 2D

and 3D, as shown in Sec. 4.1. Therefore, the growth rate is expected to depend also

on the randomness of the initial perturbation. Here, the present study investigates

the growth rate of multi-mode RMI in 2D and 3D with different initial amplitudes

and wavenumbers. The valuds of dh2

dt
and C obtained for each case are presented in

Table 9.

Table 9: List of initial conditions and results for the 2D and 3D multi-mode RMI.
Case Dimension kmax a0 (mm) R Grid Size dh2

dt
C

M1 2D 2 2.0 0.4 2048×128 35.60 0.53
M2 2D 4 2.0 0.8 2048×128 11.98 0.18
M3 2D 8 2.0 1.6 2048×128 11.65 0.17
M4 2D 4 0.5 0.2 2048×128 32.50 0.49
M5 2D 4 1.0 0.4 2048×128 20.62 0.31
M6 2D 4 4.0 0.8 2048×128 13.28 0.20
M7 2D 4 8.0 1.6 2048×128 15.82 0.23
3DM1 3D 2 1.0 0.1 1024×642 61.2 0.93
3DM2 3D 2 2.0 0.2 1024×642 54.5 0.83
3DM3 3D 2 4.0 0.4 1024×642 20.2 0.31
3DM4 3D 2 8.0 0.8 1024×642 23.6 0.36
3DM5 3D 4 1.0 0.2 1024×642 53.1 0.81
3DM6 3D 4 2.0 0.4 1024×642 25.2 0.38
3DM7 3D 4 4.0 0.8 1024×642 26.9 0.41
3DM8 3D 4 8.0 1.6 1024×642 27.5 0.42

Analyzing the results, the post-reshock growth rates of multi-mode RMI show

two different sets of solution based on the initial interface shapes. The first type

of the solution is “rapid growth”, which is the post-reshock growth rate close to

the single-mode RMI. For 2D multi-mode RMI study, small kmax and amplitude

cases such as Case M1 and M4 show that the large post-reshock growth rate (C ≈

0.52) is comparable to the single-mode 2D RMI (C ≈ 0.56). Similarly, the 3D cases

show rapid growth with small amplitudes and wavenumbers (Case 3DM1, 3DM2 and

3DM5) with growth rate constant, 0.81 < C < 0.93, comparable to the single-mode
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solution (C ≈ 0.90). On the other hand, “slow growth” is seen when the initial

interface shape is more random (lager a0 and kmax). 2D cases result in C ≈ 0.2 as

seen in Cases M2, M3, M6 and M7, and 3D RMI cases show 0.31 < C < 0.42. Thus,

the slow-growth cases seem to have a value of C only about 40 % of the rapid-growth

in both 2D and 3D studies, presented in Fig. 18. We define the randomness factor

as:

R =
a0kmax

Ly

, (101)

to quantify the initial perturbation. When R is small, the growth rates follow single-

mode cases. In this study, for example, rapid-growth is likely to happen when R ≤ 0.4

for 2D and R ≤ 0.2 for 3D in the given domain configurations.

A fundamental question is to quantify the differences between rapid and slow

growths. Past experiments [48] obtained the range of C as 0.33 < C < 0.44 that

agrees well with slow growth data sets (0.31 < C < 0.42) obtained from the numerical

prediction. 2D simulations also show slower reshock growth rates in multi-mode, as

also reported in a recent numerical study [37].

The time series of RMI evolution of rapid growth (Case M4) and slow growth

(Case M2) are shown in Fig. 19. Since Case M4 has very small amplitude to begin

with, the interface shape is still resolved at reshock, whereas Case M2 shows a well

mixed interface. Thus, bubbles and spikes after reshock happen to grow as fast as the

single-mode case, similar to the predictions of Charakhch’an [14, 15]. However, Case

M2 shows complex mixing at the time of reshock, and bubbles and spikes carry lateral

motion that cease the growth of the mixing length in the longitudinal direction but

enhances the mixing of species. Similar behaviors of bubbles and spikes are seen in 3D

as well, and are presented in Fig. 20. Thus, even though past experimental studies

[26, 48, 93] have shown that the interface conditions do not influence the reshock,

the randomness of the interface can play a significant role in the post-reshock growth
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Figure 18: Mixing length growth of 2D (a) and 3D (b) multi-mode RMI with
different initial conditions.
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rates. When an experiment is performed with a flat-membrane, the real interface is

inevitably random, and so the randomness criterion is usually satisfied.

The main reason for the differences in the growth rates between single- and multi-

mode RMI is found to be the nature of the randomness of RMI. If a random interface

is present at the time of reshock, the growth rate becomes very small due to the

tangential motion of bubbles and spikes. However, if the interface shapes are sharp

(small R), then, when reshock occurs, the growth rates are in the same order as the

single-mode RMI.

4.4 Conclusions of Reshocked RMI studies

In this chapter, the reshocked Richtmyer-Meshkov instabilities for four different classes

of interface shapes are numerically studied. The initial domain configurations follow

past shock tube experiments with air/SF6 species combinations, and the growth rates

after the reshock are examined. The parametric studies of 2D/3D single-/multi-mode

RMI are performed to investigate the effect of the initial conditions on the late time

growth patterns. Single-mode RMI with different wavelengths and wall distances are

analyzed to study the sensitivity of interface shapes at reshock, and it is found that

growth rates after reshock are a weak function of the interface geometry. Linear cor-

relations of the growth rates to ∆V2 are found in both 2D and 3D, with higher growth

rates for 3D. The value of the coefficient for Charakhch’an’s formulation found in this

study is about a quarter of the originally proposed value. Finally, parametric studies

of multi-mode interfaces are performed. The post-reshock growth rates are in the

same order as the single-mode RMI (so called “rapid growth”) when the interface is

not very random. As the initial amplitude and kmax increase, “slow growth” is ob-

served. Furthermore, 3D RMI results in larger growth rates than 2D in multi-mode

study as well, and are in agreement with previous experimental data [48]. Key results

of the post-reshock growth rate studies can be summarized as:
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(a) t = 0.7 ms (b) t = 0.8 ms

(c) t = 0.9 ms (d) t = 1.0 ms

Figure 19: Side view of interface evolution. Top - Case M2, Bottom - Case M4.
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(a) t = 0.7 ms (b) t = 0.8 ms

(c) t = 0.9 ms (d) t = 1.0 ms

Figure 20: Side view of interface with different mass fraction of SF6 (Blue-10%,
Green-50%, Orange-90%). Top - Case 3DM7, Bottom - Case 3DM5.
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• The numerical prediction of of 3D multi-mode experiment agrees with the past

experimental results [48].

• The post-reshock growth rates of single-mode RMI in 2D and 3D are not a

function of the perturbation geometry parameters such as ar, λ and a/λ

• The post-reshock growth rate is linearly proportional to ∆V2

• The post-reshock growth rates of multi-mode RMI shows rapid-growth if the

interface remains sharp at reshock, and slow growth is observed if interface is

mixed

• Reshock growth rate in 3D is about 1.6∼1.9 times larger than 2D in both single-

and multi-mode RMI.

This study suggests that the growth rates of each RMI configuration can be simply

characterized by the Mikaelian’s reshock model (Eqn. 5) with different values of

coefficient obtained by parametric studies shown in Table 10.

Table 10: The empirical values for the Mikaelian’s reshock model (C) extended for
different interface configurations. Note that original model used C = 0.28 [62], and
recent experimental study showed C = 0.38 for 3D multi-mode RMI [48]

2D 3D
single-mode & multi-mode (sharp interface) 0.55 0.84
multi-mode (mixed interface) 0.20 0.38
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CHAPTER V

MULTIPHASE RICHTMYER-MESHKOV INSTABILITY

This Chapter first discusses the derivation of the growth model of the multiphase RMI.

Then, the model is compared against the numerical predictions under two types of

configurations.

5.1 Amplitude Growth Model of Multiphase RMI

A growth model for two-phase RMI is obtained by following a similar approach but by

employing the dusty-gas formulation [81] that assumes the volume fraction of particles

are very small, and that the interaction between particles is neglected. The linear

perturbation analysis is first used to obtain the growth rate of two-phase RTI following

a past KHI study [60], and then the two-phase RMI growth rates are evaluated by

the impulsive method [79].

The dusty gas equations for a mixture of gas and a pseudo-fluid of small particles

can be written as:

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+ µ∇2u+ κN(v − u) + ρg∇z, (102)

∇ · u = 0, (103)

mN

[
∂v

∂t
+ (v · ∇)v

]
= κN(u− v) +mg∇(Nz), (104)

∂N

∂t
+∇ ·Nv = 0, (105)

where u is the gas velocity, v is the velocity of the particles, p is the gas pressure, µ

is the gas viscosity, ρ is the gas density, κ is the drag term, N is the number density

of the particles, m is the mass of the particle, z is the height, and g is the driving
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acceleration. Assuming the particles are spherical, κ = 6πrpµ is used from Stokes’ law

[81], where rp is the radius of particle. Note that the drag law used for the theoretical

analysis is simpler than that used in the numerical simulation (Eqn. 27) in order to

maintain linearity of the theoretical formulation.

Also, the pseudo-fluid formulation is incompressible since it is assumed that once

the shock wave passes the interface, the flow is incompressible, as also assumed by

Richtmyer [79]. First, the growth rate of the perturbation is studied in the configu-

ration of Rayleigh-Taylor instability as shown in Fig. 21.

Figure 21: Initial configuration of Rayleigh-Taylor instability. Specie 2 (heavy gas)
is on the top of species 1 (light gas) to initiate the instability

The equations are linearized by considering a small perturbation as follows:

u = U0 + u′,v = U0 + v′, N = N0 +N ′,

p = p0 + p′, z = z0 + a, (106)

Here U0, N0, p0 and z0 are, respectively, the mean velocity, the number density,

the pressure and the particle position. Note that U0 is the mean velocity only in

the x-direction, and the mean particle velocity is equated to the gas velocity, U0 as

also assumed in the original papers [81, 60]. Also, z0 is the reference height chosen
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to be zero. u′, v′, N ′ and p′ are the corresponding fluctuation of each parame-

ter, and a is the amplitude of the perturbation. Each disturbance is represented

by a wave of the form in 2D: [u′(x, z, t),v′(x, z, t), N ′(x, z, t), p′(x, z, t), a(x, t)] =

[û(z), v̂(z), N̂(z), p̂(z), â]eik(x−ct) [60, 81]. Here, all variables ψ̂ are the complex ampli-

tudes, k is the streamwise wavenumber and c is the complex phase velocity. Assuming

small perturbations and inviscid conditions [23], Eqns. (102) and (104) are linearized

as follows:

ik(U0 − c)û = −ikp̂/ρ+ s(v̂ − û) + ikgâ, (107)

ik(U0 − c)v̂ = (û− v̂)/τ + ikgâ. (108)

Here, s = κN0/ρ and τ = m/κ. Note that s has a unit of frequency, τ is the particle

response time with the unit of time.

In Eqn. (109), p̂ is obtained by a function of û by combining Eqns. (107) and

(108) [60, 81]:

(U0 − c)

[
1 +

τs

1 + ikτ(U0 − c)

]
û =

−p̂/ρ+
[
1 +

τs

1 + ikτ(U0 − c)

]
gâ. (109)

Here, the velocity potential is defined as ∇φ = U0+∇φ′, where the perturbed velocity

is ∇φ′ = u′. Since φ′ can also be represented by a disturbance of the form φ′(x, t) =

φ̂(z)eik(x−ct), the expression for p̂ is found as:

p̂ = ρ

[
1 +

τs

1 + ikτ(U0 − c)

]
[gâ− ik(U0 − c)φ̂]. (110)

The boundary conditions are taken at the far field and species interface. First, the

velocity potentials in each species are defined as:

φ′ =





φ′
2 z > a

φ′
1 z < a

, (111)
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Here, subscripts 1 and 2 correspond to the light and heavy gases, respectively. At the

far field, the disturbance is zero, so that the following far field conditions are taken:

φ′
2(∞) = 0,

φ′
1(−∞) = 0.

(112)

Since ∆φ′
j = 0 (where the subscript j indicates the specie 1 or 2), φ′

j are found as:

φ′
2 = βekz,

φ′
1 = αe−kz.

(113)

Two boundary conditions at the interface are enforced [23, 60]. First, the fluid motion

at the interface is given as:
∂φ′

j

∂z
=
∂a

∂t
+ Uj

∂a

∂x
. (114)

From Eqns. (112) - (114), α and β are found:

β = i(U2 − c)a,

α = −i(U1 − c)a.
(115)

Also, the pressure at the species interface is continuous (i.e. p̂1(a) = p̂2(a)):

p̂ = ρ1

[
1 + τ1s1

1+ikτ1(U1−c)

]
[gâ− ik(U1 − c)φ̂1]

= ρ2

[
1 + τ2s2

1+ikτ2(U2−c)

]
[gâ− ik(U2 − c)φ̂2].

(116)

Combining Eqns. (115) and (116), and approximate φ̂ on the interface by first order

(i.e. eka ≈ 1.0; e−ka ≈ 1.0):

ρ1

[
1 +

τ1s1
1 + ikτ1(U1 − c)

]
[g − k(U1 − c)2] =

ρ2

[
1 +

τ2s2
1 + ikτ2(U2 − c)

]
[g + k(U2 − c)2], (117)

which is a general expression for instability applicable for KHI, RTI and RMI. Note

that Eqn. (117) becomes the same expression derived by Michael [60] if ρ1 = ρ2 and
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g = 0. Since flow in RTI and RMI is initially at rest, U1 = U2 = 0 is applicable in

Eqn. (117), and the following equation is obtained for a two-phase RTI or RMI:

ρ1

[
1 +

f1
1− ikτ1c

]
(g − kc2) = ρ2

[
1 +

f2
1− ikτ2c

]
(g + kc2), (118)

where f1 and f2 are respectively, the mass loading in light and heavy gases given

by fi = mN0/ρi = τisi. Since the analytical expression presented in Eqn. (118) is

difficult to solve, the small kτc limit (|kτc| ≪ 1.0) is assumed to simplify Eqn. (118)

to:

ρ1 [1 + f1] (g − kc2) = ρ2 [1 + f2] (g + kc2). (119)

Then, the wave speed is obtained as:

c2 =
g

k

ρ1(1 + f1)− ρ2(1 + f2)

ρ1(1 + f1) + ρ2(1 + f2)
= −g

k
Am, (120)

where the multiphase Atwood number, Am is defined as:

Am =
ρ2(1 + f2)− ρ1(1 + f1)

ρ2(1 + f2) + ρ1(1 + f1)
. (121)

Note that the real part of c is found to be zero from Eqn. (120), as also seen in the

Rayleigh-Taylor instability analysis [23]. Also, Am becomes identical to the Atwood

number used in the original model if there are no particles (i.e. f1 = f2 = 0).

The impulsive model [79] assumes that the fluid interface for RMI is accelerated

impulsively as:

∫
g(t)dt = ∆V. (122)

Here, the impulsive model assumes that the particles and the local fluid obtain the

same amount of the velocity change, ∆V . A useful parameter to verify this assump-

tion is the Stokes number, St which is the ratio of the particle response time and the
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flow time [51]. Here, the flow time scale of RMI is chosen based on the initial growth

rate, and St is defined as:

St =
τ

τRMI

. (123)

The time scale for RMI is defined as τRMI = a0/v, where a0 is the initial amplitude of

the perturbation and v is the initial RMI growth rate. When St≪ 1.0, the particles

can catch up with the local velocity very quickly and so that the assumption of the

impulsive model is valid, whereas particles do not respond while the RMI is evolving

if St ≫ 1.0 [51]. The acceleration of the interface motion can be described by the

following differential equation [79]:

d2a(t)

dt2
= −a(t)k2c2. (124)

If the small kτc assumption is invoked, c2 in Eqn. (124) can be substituted by Eqn.

(120) resulting in:

d2a(t)

dt2
= a(t)g(t)kAm. (125)

Applying the impulsive model and integrating in time, the following linear growth

model for multiphase RMI is obtained:

da(t)

dt

∣∣∣∣
t=0

= −ikca0 = v0,m, (126)

a(t) = v0,mt+ a0, (127)

where v0,m = a0kAm∆V is the multiphase Richtmyer velocity. Note that if there are

no particles (f1 = f2 = 0), this formulation reduces to the original Richtmyer’s model

(Eqn. 2). The wave speed, c is obtained as c = −v0,m/(ika0), so that small kτc limit

can be described as:

−ikτc = τ

a0/v0,m
=

τ

τRMI

= St. (128)
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Thus, the model indicates that the initial multiphase RMI growth can be described

by only two extra parameters for multiphase flow: f and St, i.e., particle loading,

and how soon the particles can respond to the flow.

In summary, the two-phase RMI growth model asymptotes to the classical RMI

model in the absence of particles. In the presence of particles, to obtain a modified

growth model, following assumptions are necessary:

1. Volume fraction of particles is small, so collision effects are neglected (dusty gas

formulation);

2. The particle shape is spherical and Red is small; thus the drag law is approxi-

mated simply by Stokes’ law;

3. St≪ 1.0 to apply the impulsive model and to simplify Eqn. (118).

5.2 Results

First, the case with shock driven RMI on an air/SF6 interface surrounded by particles

is discussed, followed by y studies of a shock interaction with a perturbed cloud of

solid particles. Since the multiphase growth model and the numerical scheme treat the

particle phase differently, the numerical setup is chosen to satisfy the assumptions of

the dusty-gas formulation to enable direct comparisons. Thus, dilute mono-dispersed

particle distribution is used in the following numerical studies.

5.2.1 Results for Air/SF6 interface surrounded by particles

Here, the 2D single-mode air/SF6 RMI surrounded by a large number of particles is

analyzed. The domain configuration similar to the reshock study used in the previous

section is chosen and is shown in Fig. 22. The streamwise length is Lx = 16 cm,

and the transverse length is 1 cm. The shock, the dusty gas front, and the perturbed

species interface are located at 13 cm, 9 cm and 8 cm, respectively, from the end wall.

The incident Mach number is 1.2, and SF6 and air characterize the initial species
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interface with a 2D single-mode perturbation as Eqn. 97 [19] with a0 = 0.5 mm, and

λ is equal to the domain height. Spherical particles with a density of 780 kg/m3 are

uniformly distributed along computational cells in the grey region shown in Fig. 22.

The amplitude of the perturbation is measured as the half length of the iso-contour

of the mass fraction at the species interface [12, 91].

Figure 22: Initial configuration of RMI in a perturbed species interface surrounded
by a cloud of solid particles. The grey region denotes the region filled with the
gas-particle mixture.

Parametric studies of RMI particle interactions with different values of f1, f2,

τ1 and τ2 are analyzed by changing the particle sizes and number density. Eight

different particle sizes corresponding to four different mass loadings are simulated.

The parameters of different cases, the predictions by the original RMI growth model,

the multiphase RMI growth model, and the numerical predictions are in Tables. 11

and 12. Note that τ is computed from the properties after the incident shock passes

the interface, and f is computed by also considering the compression of number

density of particles due to the incident shock.

The effects of grid resolution and parcel distribution are presented in Fig. 23. The

amplitudes without particles are numerically obtained using two different grid sizes

(1024×64 and 2048×128), and they show good agreement. Thus, the 1024×64 grid is

used for the remainder of this study. Also, the number of parcels required per cell (and

the number of particles per parcel to be assigned) has been investigated. For example,

two distributions of parcels with the condition of Case 0.5-1 are compared, and this

represents the baseline case. In one case, 64 parcels in the y-direction are distributed
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Table 11: List of parameters for the fist study.
Case rp (µm) f1 f2 τ1 (s) τ2 (s)
0.5-1 0.5 0.88 0.17 2.09×10−6 2.79×10−6

0.5-2 0.5 1.75 0.34 2.09×10−6 2.79×10−6

0.5-3 0.5 4.34 0.84 2.09×10−6 2.79×10−6

0.5-4 0.5 8.69 1.71 2.09×10−6 2.79×10−6

1.0-1 1.0 0.70 0.14 8.37×10−6 1.11×10−5

1.0-2 1.0 1.41 0.27 8.37×10−6 1.11×10−5

1.0-3 1.0 3.53 0.68 8.37×10−6 1.11×10−5

1.0-4 1.0 6.95 1.38 8.37×10−6 1.11×10−5

2.0-1 2.0 0.61 0.11 3.35×10−5 4.47×10−5

2.0-2 2.0 1.21 0.22 3.35×10−5 4.47×10−5

2.0-3 2.0 2.94 0.54 3.35×10−5 4.47×10−5

2.0-4 2.0 5.65 1.08 3.35×10−5 4.47×10−5

4.0-1 4.0 0.52 0.09 1.34×10−4 1.79×10−4

4.0-2 4.0 1.04 0.18 1.34×10−4 1.79×10−4

4.0-3 4.0 2.51 0.45 1.34×10−4 1.79×10−4

4.0-4 4.0 4.57 0.91 1.34×10−4 1.79×10−4

8.0-1 8.0 0.22 0.07 5.36×10−4 7.16×10−4

8.0-2 8.0 0.44 0.14 5.36×10−4 7.16×10−4

8.0-3 8.0 1.13 0.34 5.36×10−4 7.16×10−4

8.0-4 8.0 2.27 0.69 5.36×10−4 7.16×10−4

16.0-1 16.0 1.99 0.50 2.14×10−3 2.86×10−3

16.0-2 16.0 4.04 1.01 2.14×10−3 2.86×10−3

16.0-3 16.0 10.33 2.59 2.14×10−3 2.86×10−3

16.0-4 16.0 20.90 4.88 2.14×10−3 2.86×10−3

32.0-1 32.0 1.97 0.44 8.58×10−3 1.14×10−2

32.0-2 32.0 4.01 0.90 8.58×10−3 1.14×10−2

32.0-3 32.0 10.33 2.30 8.58×10−3 1.14×10−2

32.0-4 32.0 21.41 4.84 8.58×10−3 1.14×10−2

64.0-1 64.0 2.16 0.38 3.43×10−2 4.58×10−2

64.0-2 64.0 4.31 0.76 3.43×10−2 4.58×10−2

64.0-3 64.0 10.97 1.97 3.43×10−2 4.58×10−2

64.0-4 64.0 22.32 4.07 3.43×10−2 4.58×10−2
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Table 12: Results of growth rate obtained from the numerical simulation and the-
oretical models. Stokes number, St is computed based on the initial growth rate
obtained from the numerical results, v0,num. Thus, St1 = kv0,numτ1.

Case ∆V v0,num A v0
v0,num

v0
Am v0,m

v0,num

v0,m
St1

No particle 68.5 10.46 0.71 12.15 0.86
0.5-1 65 8.00 0.71 11.53 0.69 0.57 9.24 0.87 4.19×10−2

0.5-2 62 6.28 0.71 10.99 0.57 0.48 7.44 0.84 3.29×10−2

0.5-3 55 3.53 0.71 9.21 0.38 0.34 4.40 0.80 1.97×10−2

0.5-4 47 1.88 0.71 7.36 0.26 0.25 2.58 0.73 1.13×10−2

1.0-1 66 8.82 0.70 11.66 0.76 0.59 9.72 0.91 0.18
1.0-2 63 7.33 0.71 11.17 0.66 0.51 8.05 0.91 0.15
1.0-3 57 4.27 0.71 10.16 0.42 0.37 5.33 0.80 8.95×10−2

1.0-4 51 2.31 0.71 8.87 0.26 0.28 3.44 0.67 4.96×10−2

2.0-1 66 8.90 0.70 12.13 0.73 0.60 10.3 0.86 0.72
2.0-2 64 7.48 0.71 12.77 0.59 0.52 9.47 0.79 0.56
2.0-3 59 4.51 0.71 12.08 0.37 0.39 6.69 0.67 0.33
2.0-4 53 2.38 0.71 10.65 0.22 0.30 4.47 0.53 0.18
4.0-1 67 9.45 0.70 11.83 0.80 0.61 10.25 0.92 3.17
4.0-2 65 8.42 0.70 11.48 0.73 0.54 8.77 0.96 2.82
4.0-3 61 5.60 0.70 10.77 0.52 0.41 6.22 0.90 1.88
4.0-4 55 3.68 0.70 9.71 0.38 0.32 4.47 0.82 1.23
8.0-1 67 9.94 0.70 11.83 0.84 0.67 11.22 0.89 13.3
8.0-2 66 9.31 0.70 11.65 0.80 0.64 10.58 0.88 12.4
8.0-3 62 7.96 0.70 10.97 0.73 0.57 8.85 0.90 10.6
8.0-4 57 6.46 0.70 10.07 0.64 0.49 7.09 0.91 8.66
16.0-1 60 8.65 0.70 10.53 0.82 0.48 7.17 1.21 46.3
16.0-2 54 7.11 0.70 9.44 0.75 0.38 5.17 1.38 38.1
16.0-3 43 4.84 0.70 7.53 0.64 0.28 3.00 1.61 25.9
16.0-4 34 2.77 0.69 5.86 0.47 0.18 1.53 1.80 14.8
32.0-1 67 9.76 0.70 11.75 0.83 0.46 7.78 1.25 209
32.0-2 65 8.95 0.70 11.39 0.79 0.36 5.86 1.53 191
32.0-3 61 7.25 0.69 10.59 0.68 0.23 3.52 2.06 155
32.0-4 54 5.51 0.69 9.27 0.59 0.16 2.18 2.52 118
64.0-1 67 10.27 0.70 11.81 0.87 0.43 7.18 1.43 881
64.0-2 65 9.98 0.70 11.42 0.87 0.30 4.97 2.01 856
64.0-3 58 9.01 0.70 10.14 0.89 0.16 2.34 3.86 773
64.0-4 56 7.90 0.69 9.74 0.81 0.09 1.24 6.39 677
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Figure 23: Comparison of the effect of the assigned number of parcels to the ampli-
tude growth. ‘64 Grid’ and ‘128 Grid’ corresponds to the grid size in the y-direction.
The legend ‘64 Parcel’ indicates the case with 64 parcels initialized in the y-direction
(i.e., initially one parcel per cell), and ‘128 Parcel’ uses 128 parcels in the y-direction,
with the distance between parcels being half of the ‘64 Parcel’ case (i.e., 128 corre-
sponds to four parcels per cell initially.)

evenly in the x-direction; therefore, one parcel is allocated per cell. The other case

uses 128 parcels in the y-direction, with equal inter-particle spacing maintained also

in the x-direction; this case corresponds to four parcels initially allocated per cell. As

evident from Fig. 23, both these cases show nearly identical growth rates, thereby

exemplifying that 64 parcels suffice in the y-direction for the chosen dimensions. Thus,

for the rest of this study, 64 parcels are initialized in the y-direction, and the same

inter-particle spacing in the x-direction are also used.

The flow visualizations of different sizes of particles around RMI interfaces are

presented in Fig. 24, with Case 0.5-1 in the first row, Case 4.0-1 in the second row,

and Case 64.0-1 in the third row. All the three cases show very different particle

distributions at later times, and can be characterized by Stokes number. In general,

past studies have shown that particles cluster at regions with low vorticity [28, 85]

if St ≈ 1.0. On the other hand, if St is very large, particles do not easily respond

to the fluid motion, whereas small St results in particles following the fluid motion
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Figure 24: Contour of mass fraction of SF6 with particle distribution (white dots).
The first row corresponds to St≪1.0 (Case 0.5-1), the second row to St ≈1.0 (Case
4.0-1), and the third row to St≫ 1.0 (Case 64.0-1).
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very closely; hence, preferential concentration of particles does not occur in either of

these cases [51]. Case 4.0-1 shows that the particles avoid the hydrodynamic roll-ups,

and particle clustering is seen in the spikes since the Stokes number for this case

is the order of 1.0 (St ≈ 3.0). However, the Case 0.5-1 shows that the particles

distribute even within the roll-ups, since Stokes number is very low (St ≈ 0.04) and

the particles inevitably follow the flow. On the other hand, Case 64.0-1 shows that

the particles barely disperse since the Stokes number is very large (St ≈ 880). These

observations are similar to the findings of Ling et al. [51], who investigated particle

cloud interaction with temporal mixing layers.

In Table 12, both single-phase and multiphase RMI growth models are compared

with the numerical predictions. The growth rate without particles (denoted as ‘No

particle’) obtained from the numerical simulation, v0,num is slightly smaller than the

classical Richtmyer velocity, v0 (v0,num/v0 = 0.86) due to the Richtmyer’s model

over-predicting the growth rate, as also reported by Latini et al. [46] The numerical

prediction of Case 0.5-X (where X denotes 1, 2, 3 and 4) shows good agreement with

the multiphase Richtmyer velocity (Eqn. 127) since the particle response time is very

small and the model assumptions are valid (e.g. St≪ 1.0).

The growth rate of the series of Case 0.5-X and the ‘No particle’ cases are examined

in Fig. 25. As the particle loading increases, the initial growth rate decreases since

both Am and ∆V decrease as the mass loading increases. In Fig. 26, the same

amplitude is normalized and presented (note that the multiphase Richtmyer velocity

is used). The normalized growth rate shows good agreement in the early stage; for

example, Case 0.5-1 follows nearly exactly up to kv0,mt < 1, but starts to depart

from the ‘No particle’ case eventually (Fig. 26). The reason for the different late-

time growth may be the non-uniform distributions of particles, which occurs when

the perturbations grow larger at late times. Due to the non-uniform distribution

of particles around the hydrodynamic structures as shown in Fig. 24, the late time
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growth rate of the perturbation will be different from the ‘No particle’ case.
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Figure 25: Amplitude growth for small particles with different mass loadings (Case
0.5-X) and the ‘No particle’ case.

The multiphase RMI model also shows a better prediction than the original Richt-

myer model up to Case 8.0-X (rp ≤ 8.0 µm). It is unexpected to see that Case 4.0-X

and Case 8.0-X follow the multiphase RMI model well since St > 1.0 for these cases

and the assumptions of the multiphase RMI are not valid. However, numerical predic-

tions show very good agreement with the multiphase RMI model. It could presumably

be due to non-linear fluid-particle interactions, but more general theoretical models

could be developed in the future to explain the phenomena more precisely. However,

for much larger particles (rp ≥ 16.0 µm, St ≫ 1.0) the two-phase model is inap-

plicable, and the original Richtmyer velocity shows better predictions. This makes

sense since the original RMI is for single-phase flow. In fact, Case 64.0-X follows

the original Richtmyer velocity very closely since the particles are not significantly

influenced during the RMI growth process. Owing to their higher inertia, these par-

ticles have St ≈ 800. Furthermore, changing the mass loading does not influence the

growth rate as much as the small particle cases shown in Fig. 27, since inter-phase
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Figure 26: Normalized amplitudes for Case 0.5-X and the ‘No particle’ cases. The
x-axis is normalized by the multiphase Richtmyer velocity.

momentum exchange is not very significant. The growth profiles normalized by the

original Richtmyer velocity are nearly identical up to kv0t = 2.0 including the ‘No

particle’ case as shown in Fig. 28, indicating that the presence of particles does not

influence the perturbation growth when St≫ 1.0.

In summary, results for a RMI surrounded by a uniform distribution of particles

suggest that when the particle response time is relatively small (St ≪ 1.0), the

growth rates agree very well with the multiphase Richtmyer velocity. However, when

the particle response time is very large (St ≫ 1.0), the particles are not influenced

by the fluid, and the amplitude growth follows the original Richtmyer velocity. Thus,

the particle response time is a very important factor to control the applicability of

both the current multiphase growth model as well as the original Richtmyer’s growth

model. In the next section, the second RMI problem involving the perturbed shape

particle cloud in air is analyzed.
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Figure 27: Amplitude growth for large particles with different mass loadings (Case
64.0-X).
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Figure 28: Normalized amplitudes for Case 64.0-X and the ‘No particle’ cases. The
x-axis is normalized by the singlephase Richtmyer velocity.
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5.2.2 Results for perturbed shape particle cloud

In this section, the RMI is investigated for a shock wave interaction with a cloud of

solid particles with a perturbed shape in air instead of a heavy gas (such as SF6). A

schematic of the setup is presented in Fig. 29. The dusty gas front and the shock

front are placed 8 and 9 cm from the end wall, respectively, and the initial amplitude

of the perturbation of the dusty gas is 0.5 mm. The same domain size (16×1 cm) and

grid resolution (1024×64) of the first study are used here. The incident Mach number

is 1.2 as well, and the domain is filled with air only. The amplitude of the perturbed

particle cloud is defined as half of the length of the dispersion in the x-direction of the

particles that are initially placed in the front row. Five different particle sizes with

four different mass loadings are studied, and Table 13 summarizes the parameters

and the results of each case. Here, the multiphase RMI growth model and numerical

predictions are compared.

Figure 29: Initial configuration of RMI of the perturbed shape particle clouds. The
grey region denotes the region filled with the gas-particle mixture.

In order to ascertain the choice of the number of parcels to represent the particle

cloud for the simulations, three different parcel distributions are simulated for Case

P0.5-1 and presented in Fig. 30. The case with 64 parcels slightly overpredicts the

growth at late times whereas 128 and 256 parcel cases show very good agreement.

Thus, 128 parcels in the y-directions are used for the rest of this section.

Figure 31 compares the evolution of the perturbation of a particle cloud for dif-

ferent Stokes numbers, for the cases P-0.5-4 and P2.0-4. For Case P0.5-4, narrow
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Table 13: Parameters and results of each case for the second kind of multiphase
RMI. The results of Case P4.0-X and P8.0-X are not listed because the acceleration
of the particles for these cases is not impulsive due to the high inertia of the particles,
and ∆V could not be determined for the same reason.
Case rp (µm) f2 τ2(s) ∆V v0,num Am v0,m

v0,num

v0,m
St2

P0.5-1 0.5 0.86 2.05×10−6 88 5.81 0.30 6.71 0.84 2.90×10−2

P0.5-2 0.5 1.77 2.05×10−6 78 8.13 0.46 9.21 0.80 3.78×10−2

P0.5-3 0.5 4.37 2.05×10−6 62 9.44 0.68 10.84 0.75 4.13×10−2

P0.5-4 0.5 8.73 2.05×10−6 50 9.85 0.81 10.41 0.79 4.18×10−2

P1.0-1 1.0 0.69 8.22×10−6 90 4.77 0.25 5.82 0.80 9.52×10−2

P1.0-2 1.0 1.41 8.22×10−6 81 6.98 0.40 8.36 0.79 0.134
P1.0-3 1.0 3.47 8.22×10−6 66 9.44 0.63 10.65 0.79 0.172
P1.0-4 1.0 6.94 8.22×10−6 53.5 10.02 0.77 10.61 0.81 0.175

P2.0-1 2.0 0.56 3.28×10−5 92 3.1 0.21 5.03 0.62 0.253
P2.0-2 2.0 1.12 3.28×10−5 84 4.75 0.35 7.52 0.63 0.388
P2.0-3 2.0 2.78 3.28×10−5 70 7.59 0.57 10.32 0.74 0.621
P2.0-4 2.0 5.55 3.28×10−5 57.5 9.08 0.73 10.78 0.84 0.743

P4.0-1 4.0 0.35 1.31×10−4

P4.0-2 4.0 0.89 1.31×10−4

P4.0-3 4.0 2.31 1.31×10−4

P4.0-4 4.0 4.47 1.31×10−4

P8.0-1 8.0 1.03 5.26×10−4

P8.0-2 8.0 2.04 5.26×10−4

P8.0-3 8.0 2.94 5.26×10−4

P8.0-4 8.0 3.82 5.26×10−4
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Figure 30: Comparison of the effect of number of parcels to the amplitude growth for
the second kind of RMI under study for Case P0.5-1. In the legend, ‘64 Parcel’, ‘128
Parcel’ and ‘256 Parcel’ denote the number of parcels used in the y-direction, respec-
tively, with the corresponding inter-parcel distance applied also in the x-direction.
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Figure 31: Growth of particle perturbation at different times for the second kind of
RMI.
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spikes are observed and the particles undergo less transverse dispersion vis-à-vis the

P2.0-4 case; due to this, the particle cloud interfaces are sharper for P0.5-4. However,

Case P2.0-4 shows wider spikes that result in the dispersion of particles around the

spike at late times, clearly demonstrating that different particle dispersion is due to

differences in the Stokes number. As Uchiyama & Yagami [90] pointed out, when a

vortex ring interacts with a particle cloud, it can cause particles to move outside the

vortex ring due to a centrifugal force, as a result, the particles are distributed over

a wider region around the vortex ring. However, the Stokes number for the particles

in Case P0.5-4 is very small, St ≈ 0.04, due to which the particles follow the fluid

motion rather than being dispersed by the vortex rings.
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Figure 32: Amplitude growth of perturbed shape particle clouds with different initial
particle mass loading for Case P0.5-X (X = 1, 2, 3 & 4).

The numerical prediction of the growth rate of small particles cases (Case P0.5-X

& Case P1.0-X) are close to the multiphase RMI model (v0,num/v0,m ≈ 0.8) as seen in

the previous section (Table 11). The growth of the dusty gas perturbation is shown

in Fig. 32; unlike the earlier result, the cases corresponding to a higher mass loading

tend to have higher growth rates since it generates a higher Am. However, a higher
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Figure 33: Normalized amplitude of perturbed shape particle clouds for Cases P0.5-
X (X = 1, 2, 3 & 4).

mass loading leads to slower ∆V , and therefore results in smaller v0,m. In fact, from

Table 13, the model prediction of v0,m in Case P0.5-3 is larger than Case P0.5-4 even

though the numerical results are opposite. The normalized growth rates indicate that

the growth of the dusty gas perturbation is even comparable to the single-phase RMI,

especially up to kv0t < 2.0, as presented in Fig. 33. Thus, the results indicate that

the dispersion of perturbed shape particle clouds can be explained by multiphase RMI

growth models, even though it is hitherto not treated as a RMI problem in literature.

However, the growth of the perturbation follows RMI only for small St. If larger

particles are used, they rather experience continuous acceleration until the particles

and the gas attain equilibrium (in terms of velocity). Therefore, the amplitude growth

rate of the heavier particle accelerates in the initial stage as presented in Fig. 34,

and shows exponential growth instead of linear growth as seen in the Rayleigh-Taylor

instability at early times [64].

In summary, the amplitude growth of perturbed shape particle cloud in air is

investigated for a range of conditions by using numerical simulations and compared
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Figure 34: Changes in the behavior of the amplitude growth for different particle
sizes.

with the developed multiphase RMI model. The results show that the growth rates

of the simulations are predicted well by the multiphase RMI growth model, and

the normalized amplitude growth rates are in accordance with the gas phase RMI.

Therefore, this study suggests that dilute particle cloud dispersion by a shock wave

can be treated as a RMI as long as the particle response time is small. However, if

the particle response time is large, the particles experience continuous acceleration,

and the growth of the interface shows exponential growth similar to RTI.

5.3 Conclusions of Multiphase RMI studies

This section derives the growth model of multiphase RMI by using dusty-gas assump-

tions, and analyzes two kinds of Richtmyer-Meshkov instabilities (RMI) in gas-particle

mixtures. For a RMI involving an air/SF6 interface surrounded by a uniformly dis-

tributed particle cloud, it is found that the multiphase RMI model predicts the nu-

merical simulation growth rates better than the original RMI model when the particle

response time, St < 10.0. However, when the particle response time is larger, the

growth rates follow the original Richtmyer’s model since the particles do not follow
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the fluid motion and the RMI process is entirely based on the gas phase. When the

Stokes number is on the order of unity, preferential concentration of particles is found.

However, when the Stokes number is small (St ≈ 0.04), relatively uniform particle dis-

tribution is observed including in the high vorticity region. For large Stokes number

(St ≈ 880), on the other hand, the particles are not influenced by the fluid motion.

The second type of multiphase RMI involves the multiphase growth of the perturbed

particle cloud by a shock wave. Here, too, the multiphase RMI growth model shows

good agreement with the numerical results, and the normalized growth rate of each

case corresponds to the single-phase RMI even at late times. However, requirements

on the particle response time is stricter, and the impulsive acceleration is found only

when St≪ 1.0. If the particles response time is large, particles experience continuous

acceleration after the shock, which results in an RTI-like exponential growth rate at

early times.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusion

The main purpose of this thesis is to study the growth rate of RMI with non-classical

initial conditions. Two objectives are addressed and identified earlier in Sec. 1.3.

To meet the first objective, four different types of air/SF6 interface shapes are in-

vestigated in a shock tube configuration, and the predicted post-reshock growth rates

are compared with available empirical models of Mikaelian’s [62] and Charakhch’an’s

[14]. The simulation of 3D multi-mode RMI shows good agreement with a past ex-

perimental study, but other interface types (2D single-mode, 2D multi-mode and 3D

single-mode) result in different growth rates after reshock. Parametric studies are

therefore performed to investigate the sensitivities of the post-reshock growth rates

to model the empirical parameters. For single-mode RMI configurations, the interface

shape is found to be only a weak function of the post-reshock growth rate, as also

predicted by previous reshock models. The post-reshock growth rate shows a linear

correlation to the velocity jump due to reshock; however, it is only about a quarter of

the prediction of Charakhch’an’s model even though the growth before reshock com-

pares well with pre-reshock models. The 3D single-mode post-reshock RMI growth

rate is nearly 1.6 times larger than the 2D single-mode RMI. The parametric studies

of multi-mode RMI show two distinctly different growth rates depending on the mix-

ing conditions at reshock. If the interface remains sharp at the time of reshock, the

post-reshock growth rate is as large as the single-mode cases. However, if the inter-

face is mixed due to non-linear interactions of bubbles and spikes, the growth rates

becomes slow and independent of the interface shapes. Thus, this study provides
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new insights into the flow features of reshocked RMI for different initial perturbation

types.

The second half of study derives the analytical growth model of multiphase RMI

and compares it against the numerical predictions in order to meet the second ob-

jective. The linear amplitude growth of multiphase RMI is derived by applying past

dusty-gas formulations assuming Stokes number, St ≪ 1.0, and it is shown that the

problem can be characterized by a mass fraction, f and St. The model is tested

and compared with numerical predictions under two circumstances, i.e., a shock wave

hitting (1) a perturbed species interface of air and SF6 surrounded by uniformly dis-

tributed particles, and (2) a perturbed shape particle cloud in uniform air. In the

first type, the interactions between the instabilities of the species perturbation and

the particles are investigated. The multiphase growth model accurately predicts the

growth rates when St≪ 1.0, and the amplitude growth normalized by the multiphase

RMI velocity shows good agreement with the single-phase RMI growth rate as well.

Furthermore, the multiphase model is in accordance with the growth rates obtained

from the simulations even for cases corresponding to St ≈ 10. Thus, it is shown that

the multiphase is surely applicable for St ≪ 1.0 and valid to relatively large Stokes

number (St ≈ 10) as well. When St≫ 10, particles do not follow the RMI motion, so

that the RMI growth is only based on the fluid dynamics, and the growth rates agree

with the original Richtmyer’s model [79]. Preferential concentration of particles are

observed around the RMI roll-ups at late times when St is of order unity, whereas

when St≪ 1.0, the particles respond rapidly to the flow, causing them to distribute

within the roll-ups; and particles hardly respond to the RMI motion if St≫ 1.0.

In the second problem, the multiphase RMI growth model is extended to study

whether a perturbed dusty gas front shows RMI-like growth due to a shock wave.

When St≪ 1.0, good agreement with the multiphase model is again seen. Moreover,

the normalized growth rates are very close to the single-phase RMI growth even at late
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times, so that the multiphase growth model is successfully applicable to the perturbed

shape particle clouds as well. However, the requirement of Stokes number is more

stringent than the first study since particles themselves characterize the interface.

When St is close to unity, the particles do not experience impulsive acceleration

but rather a continuous one, which results in exponential growth rates as seen in a

Rayleigh-Taylor instability.

6.2 Recommendations for future work

This thesis provides basic understandings of the growth rate of reshocked RMI and

multiphase RMI. However, the analysis of the physics involved is still in infancy and

more investigations are recommended for future studies. The key recommendations

for the future work are summarized here:

• The post-reshock growth rates depend on the interface conditions, and the dif-

ferent coefficients for the model are found. However, these coefficients are from

the numerical and experimental studies, and no theoretical model has developed

yet. Thus, it is important to establish theoretical understandings of how the

dimension and interface shapes influence the post-reshock growth rates.

• The multiphase RMI growth model is first derived in this study, but it is still

primitive and theoretical analysis towards more general model that deals with

large St is necessary. Also, the theory should be extended to late times where

the growth rate becomes non-linear. In addition, particle interactions with 3D

RMI should be analyzed.

• The multiphase RMI under complex interface shapes should be studied. For

example, multi-mode RMI generates bubbles and spikes with different Stokes

number, so the particle concentration will be more complex. Also, since 3D

RMI causes the vortex-rings, the particle distribution becomes different from

2D RMI.
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• Reshock studies performed in the present work can be extended for the mul-

tiphase RMI as well. It would be interesting to study multiphase RMI with

reshock since the particle distributions around RMI structures are non-uniform.

• The present study mainly focus on the large scale structures (e.g. perturbation

growth), but the small scales generated by RMI is also important. RMI-induced

turbulence has been studied recently, but it is not known whether it follows

the classical Kolmogorov turbulence or not. Further numerical and theoretical

investigations are necessary.
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