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SUMMARY

Artificial vision is the problem of creating systems capable of extracting information

from digital images in a way that would mimic or even surpass the human eye-brain sys-

tem. A fundamental sub-problem of artificial vision is image segmentation, the problem of

detecting a structure from a digital image. Examples of segmentation problems include the

detection of a road from an aerial photograph or the determination of the boundaries of the

brain’s ventricles from medical imagery. The extraction of structures allows for subsequent

higher-level cognitive tasks. One of them is shape comparison. For example, if the brain

ventricles of a patient are segmented, can their shapes be used for diagnosis? That is to

say, do the shapes of the extracted ventricles resemble more those of healthy patients or

those of patients suffering from schizophrenia?

Because the human eye-brain system is still not very well understood, it cannot be

directly simulated. Therefore, computer programs (and the underpinning mathematical

theories) are proposed that are useful for analyzing visual information even though they

might bear no direct relation to biological vision.

This thesis deals with the problem of image segmentation and shape comparison in the

mathematical framework of partial differential equations. The contribution of this thesis is

threefold:

1. A technique for the segmentation of regions is proposed. A cost functional is defined

for regions based on a non-parametric functional of the distribution of image intensities

inside the region. This cost is constructed to favor regions that are homogeneous.

Regions that are optimal with respect to that cost can be determined with limited

user interaction.

2. The use of direction information is introduced for the segmentation of open curves

and closed surfaces. A cost functional is defined for structures (curves or surfaces)

xii



by integrating a local, direction-dependent pattern detector along the structure. Op-

timal structures, corresponding to the best match with the pattern detector, can be

determined using efficient algorithms. The problem of learning the pattern detec-

tor from some expert’s segmentation (and thus capturing external knowledge) is also

considered.

3. A technique for shape comparison based on the Laplace equation is proposed. Given

two surfaces, one-to-one correspondences are determined that allow for the character-

ization of local and global similarity measures. The local differences among shapes

(resulting for example from a segmentation step) can be visualized for qualitative

evaluation by a human expert. It can also be used for classifying shapes into, for

example, normal and pathological classes. Finally, another important application is

the quantification of the difference between the output of two different segmentation

algorithms or one algorithm and a human expert.
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CHAPTER 1

INTRODUCTION

1.1 Artificial Vision

Artificial intelligence (AI) was initiated as a field in the 1950’s with the ambitious (and so-

far unrealized) goal of creating systems with human-like “intelligence” (the exact definition

of intelligence is still very problematic). Whereas classical AI had been mostly concerned

with symbolic representation and reasoning, new subfields were created as researchers em-

braced the complexity of the goal and realized the importance of perception and lower-level

cognitive tasks that deal with sub-symbolic information.

In particular, artificial vision [1, 2, 3, 4] emerged in the 1970’s with the more limited

goal to mimic human vision with man-made systems (in practice, computers).

Vision is such a basic aspect of human cognition that it may superficially appear some-

what trivial, but, after decades of research, the scientific understanding of biological vision

remains extremely fragmentary. Even though the general problem of artificial vision is far

from being solved, many techniques have been devised and successfully solve specific prob-

lems in fields such as Earth observation, industrial automation, video surveillance, robotics

and different military applications [4].

Medical imaging, which emerged with the discovery of X-rays in the late 19th century

offers many examples of the use of artificial vision [5]. Medical imaging needs highly trained

technicians and clinicians to determine the details of image acquisition (e.g. choice of

modality, of patient position, of an optional contrast agent, etc.), as well as to analyze the

results. The dramatic increase in availability, diversity, and resolution of medical imaging

devices over the last 50 years threatens to overwhelm these human experts. Computer

vision techniques have therefore become indispensable. Artificial systems must be designed

to analyze medical datasets either in a partially or even a fully automatic manner.

1



The human eye-brain system evolved over tens of millions of years and at this point no

artificial system is as versatile and powerful for everyday tasks. In the same way that a

chess-playing program is not directly modeled after a human player, many mathematical

techniques are employed in artificial vision that do not pretend to simulate biological vision.

Artificial vision systems will not be set within the natural limits of human perception. For

example, human vision is inherently two dimensional (stereoscopic vision does not allow

us to see inside objects. It is sometimes described as “2.1 dimensional perception.”). To

accommodate this limitation, radiologists must resort to visualizing only two-dimensional

planar slices of three-dimensional medical images. An artificial system is free of that limi-

tation and can “see” the image in its entirety. Other advantages are that artificial systems

can work on very large image datasets, are fast, do not suffer from fatigue, and produce re-

peatable results. Because artificial vision system designers have so far been unsuccessful in

incorporating high level understanding of real-life applications, artificial systems typically

complement rather than replace human experts.

1.2 Image Segmentation

When looking at an image, a human observer cannot help seeing structures which can

often be identified with objects. Digital images, however, as the raw retinal input of local

intensities, are the sum of local color information. Information on global structures is not

directly present and has to be extracted from local information. Segmentation is the process

of creating a structured visual representation from an unstructured one. Visual information

is thus dramatically condensed, which makes further processing and higher level cognitive

tasks tractable.

The problem was first studied in the 1920s by psychologists of the Gestalt1 school [6]

and later by psychophysicists [7, 8].

Segmentation has been defined as the partitioning of an image into homogeneous regions

that are semantically meaningful, i.e., that correspond to objects we could name. A typical

1Segmentation was then called “perceptual grouping.”
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example is partitioning some medical imagery of the brain into the white and gray matters

and tumor.

The intrusion of linguistics, through the adverb “semantically”, into an otherwise sub-

symbolic problem is rather problematic. In this work we will define segmentation as the

determination of structures from a digital image. We will consider that such structures can

be regions ; the proposed definition therefore encompasses the previous one while removing

the coupling with linguistics. Another important class of structures is open space curves.

Some physical objects and their projections on an image are more naturally described by

curves than by regions. Rivers, roads, blood vessels or neural tracts are all examples of

structures that can appear in different types of imagery and be represented by curves.

Segmentation can be seen as an extreme form of smoothing or information reduction.

Segmentation is also related to registration in the sense that if an atlas2 can be perfectly

registered to a dataset at hand then the registered atlas labels are the segmentation (see

Section 2.1 for a definition of these terms). Segmentation is useful for visualization,3 allows

for quantitative shape analysis and provides indispensable anatomical context for virtually

any subsequent automatic analysis.

It is important to understand that segmentation is not concerned with actually de-

termining what the structures are. In that sense it is a lower level problem than object

recognition.

Finally, a very important and often overlooked aspect of segmentation is validation.

How much does the output of a given segmentation process differ from reality? Given two

different segmentation processes, which one is more robust or performant? Very often the

ground truth, i.e., the real boundaries of the object to be detected, is not readily accessible.

That is usually the reason why imaging is being employed instead of direct measurement.

In that case, the designer of a segmentation algorithm can only compare his system against

human experts. If an artificial system produces exactly the same result as a human expert,

2An atlas is an image from a typical patient that has been manually segmented by some human expert.
3As discussed previously, human vision is inherently two-dimensional. In order to “see” an organ we

therefore have to resort to visualizing its outside boundary. Determining this boundary is equivalent to
segmenting the organ.
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certainly it will be deemed satisfactory. This is along the lines of the famous Turing test [9] of

artificial intelligence. The problem, however, is that human experts typically do not agree

exactly on the same segmentation. In fact, given the same image, the same expert may

not produce exactly the same segmentation. These shortcomings of human segmentation

are one of the reasons why artificial vision is being pursued. At the same time, they

make its validation difficult. Segmentation, being the mimicking of human perception, is

highly subjective. Finally another difficulty is how to quantify the discrepancy between two

segmentation results. The problem can be defined as the comparison of two similar shapes.

Different metrics are possible (volume overlap, maximum minimum distance, etc.) and the

choice will affect the results of the validation process.

1.3 Organization of this Thesis

This thesis is divided into four main chapters that are meant to be relatively self-contained.

If part of the work has been made publicly available, references to the publications are given

in the introduction of the corresponding chapter.

In Chapter 2, we review the application of partial differential equations (PDEs) to

computer vision and image processing. As explained previously, while the ultimate goal of

computer vision is mimicking and eventually surpassing the human visual cognitive abilities,

computer vision systems are typically not built to simulate exactly each and every aspect of

the human eye-brain system. This is due to the fact that the human eye-brain system is not

understood very well. Moreover, to the extent that it is understood, its information pro-

cessing architecture does not lead itself very easily to simulation on a computer. Therefore,

many mathematical approaches have been investigated for applications in artificial vision

that do not pretend to simulate accurately the inner functioning of the human eye-brain

system but that reproduce some of its processing at a much coarser level.4 Methods based

on PDEs have proved extremely powerful and will constitute the mathematical basis of this

work.

4To give another example, consider planes and birds. While they both fly, the design of airplanes is rather
remotely inspired by birds.
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In Chapter 3, we present a new algorithm for the segmentation of regions. The algo-

rithm is versatile, fast, relatively simple to implement, and semi-automatic. It is based

on maximizing a global energy defined from a learned non-parametric estimation of the

statistics of the region to be segmented. Implementation details are discussed and source

code is freely available as part of the 3D Slicer project. In addition, a new unified set of

validation metrics is proposed. Results on artificial and real magnetic resonance imagery

datasets show that the algorithm performs well on large brain structures both in terms of

accuracy and robustness to noise.

In Chapter 4, a technique is proposed for the segmentation of open curves and closed

hypersurfaces. Structures are obtained as the minimizers of some functional that involves

a local cost dependent on structure direction We show that these local costs can be based

on a model of a class of visual neurons. A general connection to pattern detection is also

proposed. The framework is also applied to the detection of neural fibers in diffusion mag-

netic resonance imagery. Minimization techniques are proposed along with implementation

details and results on synthetic as well as real images.

In Chapter 5, a principled approach for shape (hypersurface) comparison is proposed.

Given two surfaces, one-to-one correspondences are determined based on the Laplace equa-

tion. The distance between corresponding points is then used to define both global and local

dissimilarity statistics between the surfaces. This technique provides a powerful method to

compare shapes both locally and globally. It can also be used to validate quantitatively the

result of a region segmentation algorithm by comparing it to some known (or expert-defined)

ground truth or for more general shape analysis tasks.
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CHAPTER 2

PARTIAL DIFFERENTIAL EQUATIONS IN ARTIFICIAL

VISION

In this chapter, we review the use of partial differential equations (PDEs) for computer

vision. This chapter is based on [10].

Many mathematical approaches have been investigated for applications in artificial vi-

sion (e.g., fractals and self-similarity, wavelets, pattern theory, stochastic point process,

random graph theory; see [11]), In Section 2.1 we outline how computer vision problems

can be set in a PDE framework.

We will then sequentially consider the following sub-problems:

• Smoothing, the problem of simplifying the image while retaining important informa-

tion (Section 2.2).

• Registration, the problem of fusing images of the same region acquired from different

modalities or putting in correspondence images of one patient at different times or of

different patients (Section 2.3).

• Segmentation, the problem of identifying structures such as regions or curves from an

image (Section 2.4).

The processing and analysis of medical images offers scores of interesting and challenging

examples for all these problems and will be used to illustrate this chapter. The techniques,

however, are quite general and could be used for many other applications.

2.1 General Mathematical Framework

Here, we briefly outline the major concepts involved in using PDEs for image processing

and computer vision. More detailed reviews include [12] and [13].
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As explained in detail in [14], one can think of an image as a map I : D → C, i.e., to

any point p in the domain D, I associates a “color” I(p) in a color space C. For ease of

presentation, we will mainly restrict ourselves to the case of a two-dimensional grayscale

image, which we can think of as a function from a domain D = [0, 1] × [0, 1] ⊂ R2 to the

unit interval C = [0, 1].

The algorithms typically involve solving the initial value problem for some PDE for a

given amount of time. The solution to this PDE can be either the image itself at different

stages of modification, or some other object (such as a closed curve delineating object

boundaries), whose evolution is driven by the image.

For example, introducing an artificial time t, the image can be deformed according to

∂I

∂t
= F [I], (1)

where I(p, t) : D × [0, T ) → C is the evolving image, F is an operator that characterizes

the given algorithm, and the initial condition is the input image I0. The processed image

is the solution I(p, t) of the differential equation at time t. The operator F usually is a

differential operator, although its dependence on I may also be nonlocal.

Similarly, one can evolve a closed curve Γ ⊂ D representing the boundaries of some

planar shape (Γ need not be connected and could have several components). In this case,

the operator F specifies the normal velocity of the curve that it deforms. In many cases

this normal velocity is a function of the curvature κ of Γ, and of the image I evaluated on

Γ. A flow of the form
∂Γ
∂t

= F(I, κ)N (2)

is obtained, where N is the unit normal to the curve Γ.

Very often, the deformation is obtained as the steepest descent for some functional. In

what follows, we will use the terms “functional”, “energy” or “cost” interchangeably.

For example, the energy

E(I) =
1
2

∫
‖∇I‖2 dx dy (3)
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and its associated steepest descent, the heat equation,

∂I

∂t
= ∆I (4)

correspond to the classical Gaussian smoothing (see Section 2.2.1).

The use of PDEs allows for the modeling of the crucial but poorly understood interac-

tions between top-down and bottom-up vision.1 In a variational framework, for example,

an energy E is defined globally, while the corresponding operator F will influence the image

locally. Algorithms defined in terms of PDEs treat images as continuous rather than dis-

crete objects. This simplifies the formalism, which becomes grid independent. On the other

hand, models based on nonlinear PDEs may be be much harder to analyze and implement

rigorously.

Digital images typically suffer from one or more of the following imperfections:

• low resolution (in the spatial and spectral domains);

• high level of noise;

• low contrast;

• geometric deformations;

• presence of imaging artifacts.

These imperfections can be inherent to the imaging modality or the result of a deliberate

trade-off during acquisition. In medical imaging, for example, X-rays offer low contrast for

soft tissues, ultrasound produces very noisy images, and metallic implants cause imaging

artifacts in MRI. Finer spatial sampling may be obtained through a longer acquisition

time. However, that would also increase the probability of patient movement and therefore

blurring. In this work, we are only interested in the processing and analysis of images and

we are not be concerned with the challenging problem of designing optimal procedures for

1“Top-down” and “bottom-up” are loosely defined terms from computer science, computation and neu-
roscience. The bottom-up approach can be characterized as searching for a general solution to a specific
problem (e.g. obstacle avoidance), without using any specific assumptions. The top-down approach refers
to trying to find a specific solution to a general problem, such as structure from motion, using specific
assumptions (e.g., rigidity or smoothness).
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their acquisition. The ideal computer vision application would be fast, robust with regard

to image imperfections, simple to use, and as automatic as possible.

Note that for ease of presentation, the techniques we present below are applied mostly

to two-dimensional grayscale images. The majority of them, however, can be extended to

higher dimensions, i.e., vector-valued volumetric images I : Rn → Rp.

2.2 Image Smoothing

Smoothing is the action of simplifying an image while preserving important information.

The goal is to reduce noise or useless details without introducing too much distortion so as

to simplify subsequent analysis.

It was realized that the process of smoothing is closely related to that of pyramiding2

which led to the notion of scale space. This was introduced by Witkin [15] and formalized

in such works as [16, 17]. Basically, a scale space is a family of images {St | t ≥ 0} in which

S0 = I is the original image and St, t > 0 represent the different levels of smoothing for

some parameter t. Larger values of t correspond to more smoothing.

In [18], Alvarez et al. propose an axiomatic description of scale space. These axioms,

which describe many of the methods in use, require that the process T t, which computes

the image St = T t[I] from I, have the following properties:

Causality / Semi-group T 0[I] ≡ I and for all t, s ≥ 0, T t [T s[I]] = T t+s[I]. (In particu-

lar, if the image St has been computed, all further smoothed images {Ss | s ≥ t} can

be computed from St, and the original image is no longer needed.)

Generator The family St = T t[I] is the solution of an initial value problem ∂tS
t = A[St],

in which A is a nonlinear elliptic differential operator of second order.

Comparison Principle If S0
1(p) ≤ S0

2(p) for all p ∈ D, then T t[S0
1 ] ≤ T t[S0

2 ] pointwise

on D. This property is closely related to the Maximum Principle for parabolic PDEs.

2An initial image is recursively reduced in size by a constant factor. If all images are stacked on top of
each other a “pyramid” is obtained. Images near the top contain very few details.
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Euclidean invariance The generator A and the maps T t commute with Euclidean trans-

formations3 (i.e., compositions of translations and rotations) acting on the image S0.

The requirement that the generator A of the semi-group be an elliptic differential opera-

tor may seem strong and even arbitrary at first, but it is argued in [18] that the semi-group

property, the Comparison Principle, and the requirement that A act locally make this axiom

quite natural. One should note that already in [16], it is shown that in the linear case a

scale space must be defined by the linear heat equation. (See our discussion below.)

2.2.1 Naive, Linear Smoothing

If a given image I : D → C contains a certain amount of noise, then the most straightforward

way of removing this noise is to approximate I by a mollified function S, i.e. one replaces

the image function I by the convolution Sσ = Gσ ∗ I, where

Gσ(p) =
(
2πσ2

)−n/2
e−‖p‖

2/2σ2
(5)

is a Gaussian kernel of covariance the diagonal matrix σ2Id. This mollification will smear out

fluctuations in the image on scales of order σ and smaller. This technique had been in use

for quite a while before it was realized4 by Koenderink [16] that the function S2σ = G2σ ∗ I

satisfies the linear diffusion equation

∂St

∂t
= ∆St, S0 = I. (6)

Thus, to smooth the image I, the diffusion equation (6) is solved with initial data S0 = I.

The solution St at time t is then the smoothed image.

The method of smoothing images by solving the heat equation has the advantage of

simplicity. There are several effective ways to compute the solution St from a given initial

image S0 = I, e.g., using the fast Fourier transform. Linear Gaussian smoothing is Eu-

clidean invariant and satisfies the Comparison Principle. However, in practice one finds that

3Because an image is contained in a finite region D, the boundary conditions which must be imposed to
make the initial value problem ∂tS

t = A[St] well-posed will generally keep the T t from obeying Euclidean
invariance even if the generator A does so.

4This was of course common knowledge among mathematicians and physicists for at least a century. The
fact that this was not immediately noticed shows how disjoint the imaging/engineering and mathematics
communities were.
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Gaussian smoothing blurs edges. For example, if the initial image S0 = I is the character-

istic function of some smoothly bounded set Ω ⊂ D, so that it represents a black and white

image with no gray regions, then for all but very small t > 0 the image St will resemble

the original image in which the sharp boundary ∂Ω has been replaced with a fuzzy region

of varying shades of gray. (See Section 2.4.1 for a discussion on edges in computer vision.)

Figure 1(a) is a typical MRI brain image. Specular noise is usually present in such

images, so edge-preserving noise removal is essential. The result of Gaussian smoothing

implemented via the linear heat equation is shown on Figure 1(b). The edges are visibly

smeared. Note that even though two-dimensional slices of the three-dimensional image are

shown to accommodate human perception, the processing was actually performed in three

dimensions, and not independently on each two-dimensional slice.

We now discuss several methods that have been proposed to avoid this edge blurring

effect while smoothing images.

2.2.2 Anisotropic Smoothing

Perona and Malik [19] replaced the linear heat equation with the nonlinear diffusion equation

∂S

∂t
= div {g(|∇S|)∇S} =

∑

i,j

aij(∇S)∇2
ijS (7)

with

aij(∇S) = g(|∇S|)δij +
g′(|∇S|)
|∇S| ∇iS∇jS.

Here g is a nonnegative function for which limp→∞ g(p) = 0. The idea is to slow down the

diffusion near edges, where the gradient |∇S| is large. (See Sections 2.4.1 and 2.4.2 for a

description of edge detection techniques.)

The matrix aij of diffusion coefficients has two eigenvalues, one λ‖ for the eigenvector

∇S, and one λ⊥ for all directions perpendicular to ∇S. They are

λ‖ = g(|∇S|) + g′(|∇S|)|∇S|, and λ⊥ = g(|∇S|).

While λ⊥ is always nonnegative, λ‖ can change sign. Thus the initial value problem is ill-

posed if sg′(s) + g(s) < 0, i.e., if sg(s) is decreasing, and one actually wants g(s) to vanish
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(a) Original brain MRI im-
age

(b) Linear (Gaussian)
smoothing

(c) Affine smoothing

(d) Original (zoom) (e) Linear (Gaussian)
smoothing (zoom)

(f) Affine smoothing (zoom)

Figure 1: Linear smoothing smears the edges.
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very quickly as s → ∞ (e.g. g(s) = e−s). Even if solutions St could be constructed in the

ill-posed regime, they would vary strongly and unpredictably under tiny perturbations in

the initial image S0 = I, while it is not clear if the Comparison Principle would be satisfied.

Despite these objections, numerical experiments [19] have indicated that this method

actually does remove a significant amount of noise before edges are smeared out very much.

2.2.3 Regularized Anisotropic Smoothing

Alvarez, Lions and Morel [20] proposed a class of modifications of the Perona-Malik scheme

that results in well-posed initial value problems. They replaced (7) with

∂S

∂t
= h(|Gσ ∗ ∇S|) |∇S|div

∇S

|∇S| , (8)

which can be written as

∂S

∂t
= h(|Gσ ∗ ∇S|) |∇S|

∑

i,j

bij(∇S)∇2
ijS, (9)

with

bij(∇S) =
|∇S|2δij −∇iS ∇jS

|∇S|3 .

Thus, the stopping function g in (7) has been set equal to g(s) = 1/s, and a new stopping

function h is introduced. In addition, a smoothing kernel Gσ, which averages ∇S in a region

of order σ, is introduced. One could let Gσ be the standard Gaussian (5), but other choices

are possible. In the limiting case σ ↘ 0, in which Gσ ∗ ∇S simply becomes ∇S, a PDE is

obtained.

2.2.4 Level Set Flows

Level set methods for the implementation of curvature driven flows were introduced by

Osher and Sethian [21] and have proved to be a powerful numerical technique with numerous

applications; see [22, 23] and the references therein.

Equation (8) can be rewritten in terms of the level sets of the image S. If S is smooth,

and if c is a regular value of St : D → C (i.e., ∀p ∈ D, St(p) = c ⇒ dSt(p) 6= 0), then

Γt(c) = {p ∈ D | St(p) = c} is a smooth curve in D. It is the boundary of the region with

gray level c or less. As time goes by, the curve Γt(c) will move about, and as long as it is
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a smooth curve one can define its normal velocity V by choosing any local parametrization

Γ : [0, 1]× (t0, t1) → D and declaring V to be the normal component of ∂tΓ.

If the normal is chosen to be in the direction of ∇S (rather than −∇S), then

V = − ∂tS

|∇S| .

The curvature of the curve Γt(c) (also in the direction of ∇S) is

κ = −div
∇S

|∇S| = −S2
y Sxx − 2SxSy Sxy + S2

x Syy(
S2

x + S2
y

)3/2
(10)

Thus, (8) can be rewritten as

V = h(|Gσ ∗ ∇S|)κ,

which, in the special case h ≡ 1, reduces to the curve shortening equation5

V = κ. (11)

So, if h ≡ 1 and if S : D × [0, T ) → C is a family of images that evolves by (8), then the

level sets Γt(c) evolve independently of each other.

This leads to the following simple recipe for noise removal: given an initial image S0 = I,

let it evolve so that its level curves (St)−1(c) satisfy the curve shortening equation (11).

For this to occur, the function S should satisfy the Alvarez-Lions-Morel equation (8) with

h ≡ 1, i.e.,
∂S

∂t
= |∇S| div

∇S

|∇S| =
S2

y Sxx − 2SxSy Sxy + S2
x Syy

S2
x + S2

y

(12)

It was shown by Evans and Spruck [30] and Chen, Giga and Goto [31] that, even though

this is a highly degenerate parabolic equation, a theory of viscosity solutions can still be

constructed.

The fact that level sets of a solution to (12) evolve independently of each other turns out

to be desirable in noise reduction since it eliminates the edge blurring effect of the linear

smoothing method. For example, if I is a characteristic function, then St will also be a

characteristic function for all t > 0.

5There is a substantial literature on the evolution of immersed plane curves, or immersed curves on
surfaces by curve shortening and variants thereof. We refer to [24, 25, 26, 27, 28, 29], knowing that this is
a far from exhaustive list of references.
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The independent evolution of level sets also implies that besides obeying the axioms of

Alvarez, Lions and Morel [18] mentioned above, this method also satisfies the additional

axiom

Gray scale invariance For any initial image S0 = I and any monotone function φ : C →
C, one has T t[φ ◦ I] = φ ◦ T t[I].

One can verify easily that (12) formally satisfies this axiom, and it can in fact be rigorously

proven to be true in the context of viscosity solutions. See [31, 30].

2.2.5 Affine Invariant Smoothing

There are several variations on curve shortening that will yield comparable results. Given

an initial image I : D → C, one can smooth it by letting its level sets move with normal

velocity given by some function of their curvature:

V = Φ(κ) (13)

instead of directly setting V = κ as in curve shortening. Using (10), one can turn the

equation V = Φ(κ) into a PDE for S. If Φ : C → C is monotone, then the resulting PDE

for S will be degenerate parabolic, and the existence and uniqueness of viscosity solutions

have been shown [31, 18].

A particularly interesting choice of Φ leads to affine curve shortening [18, 32, 33, 34, 35]

V = (κ)1/3, (14)

(where we agree to define (−κ)1/3 , −(κ)1/3).

While the evolution equation (13) is invariant under Euclidean transformations, the

affine curve shortening equation (14) has the additional property that it is invariant under

the action of the Special Affine group SL(2,R), i.e., compositions of rotations, translations,

dilations, and shears. If Γt is a family of curves evolving by (14) and A ∈ SL(2,R), b ∈ R2,

then Γ̃t = A · Γt + b also evolves by (14).
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Affine smoothing respects edges much better than Gaussian smoothing; see Figure 1(c).

The affine smoothing filter was implemented based on a level set formulation using the

numerics suggested in [36].

2.2.6 Total Variation

Rudin et al. presented an algorithm for noise removal based on the minimization of the

total first variation of S, given by ∫

D
|∇S| dp. (15)

(See [37] for the details and the references therein for related work on the total variation

method.) The minimization is performed under certain constraints and boundary conditions

(zero flow on the boundary). The constraints they employed are zero mean value and given

variance σ2 of the noise, but other constraints can be considered as well. More precisely, if

the noise is additive, the constraints are given by

∫

D
S dp =

∫

D
I dp,

∫

D
(S − I)2 dp = 2σ2. (16)

Noise removal according to this method proceeds by first choosing a value for the parameter

σ, and then minimizing
∫ |∇S| subject to the constraints (16). For each σ > 0 there

exists a unique minimizer Sσ ∈ BV(D) satisfying the constraints.6 The family of images

{Sσ | σ > 0} does not form a scale space and does not satisfy the axioms set forth by Alvarez

et al. [18]. Furthermore, the smoothing parameter σ does not measure the “length scale

of smoothing” in the way the parameter t in scale spaces does. Instead, the assumptions

underlying this method of smoothing are more statistical. One assumes that the given

image I is actually an ideal image to which a “noise term” N(p) has been added. The

values N(p) at each p ∈ D are assumed to be independently distributed random variables

with average variance σ2.

The Euler-Lagrange equation for this problem is

div
( ∇S

|∇S|
)

= λ(S − I), (17)

6BV(D) is the set of functions of bounded variation on D. See [38].
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where λ is a Lagrange multiplier. In view of (10) we can write this as κ = −λ(S − I),

i.e., we can interpret (17) as a prescribed curvature problem for the level sets of S. To find

the minimizer of (15) with the constraints given by (16), start with the initial image S0 = I

and modify it according to the L2 steepest descent flow for (15) with the constraint (16),

namely,
∂S

∂t
= div

( ∇S

|∇S|
)
− λ(t)(S − I), (18)

where λ(t) is chosen so as to preserve the second constraint in (16). The solution to the

variational problem is given when S achieves steady state. This computation must be

repeated ab initio for each new value of σ.

2.3 Image Registration

Image registration is the process of bringing two or more images into spatial correspon-

dence (aligning them). In the context of medical imaging, image registration allows for the

concurrent use of images taken with different modalities (e.g., MRI and CT), at different

times or with different patient positions. In surgery, for example, images are acquired be-

fore (pre-operative) as well as during (intra-operative) surgery. Because of time constraints,

the real-time intra-operative images have a lower resolution than the pre-operative images

obtained before surgery. Moreover, deformations, which occur naturally during surgery,

make it difficult to relate the high-resolution pre-operative image to the lower-resolution

intra-operative anatomy of the patient. Image registration attempts to help the surgeon

relate the two sets of images.

Registration has an extensive literature. Numerous approaches have been explored rang-

ing from statistics to computational fluid dynamics and various types of warping method-

ologies. See [39, 40] for a detailed description of the field as well as an extensive set of

references, and [41, 42] for recent papers on the subject.

Registration typically proceeds in several steps. First, one decides how to measure sim-

ilarity between images. One may include the similarity among pixel intensity values, as

well as the proximity of predefined image features such as implanted fiducials or anatomical
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landmarks.7 Next, one looks for a transformation that maximizes similarity when applied

to one of the images. Often this transformation is given as the solution of an optimization

problem where the transformations to be considered are constrained to be of a predeter-

mined class C. In the case of rigid registration (Section 2.3.1), C is the set of Euclidean

transformations. Soft tissues in the human body typically do not deform rigidly. For ex-

ample, physical deformation of the brain occurs during neurosurgery as a result of swelling,

cerebrospinal fluid loss, hemorrhage and the intervention itself. Therefore, a more realistic

and more challenging problem is elastic registration (Section 2.3.2), where C is the set of

smooth diffeomorphisms. Because of anatomical variability, non rigid deformation maps

are also useful when comparing images from different patients.

2.3.1 Rigid Registration

Given some similarity measure S on images and two images I and J , the problem of rigid

registration is to find a Euclidean transformation T ∗p = Rp + a (with R ∈ SO(3,R) and

a ∈ R3) that maximizes the similarity between I and T ∗(J), i.e.,

T ∗ = maximizer of S(I, T (J)) over all Euclidean transformations T . (19)

A number of standard multidimensional optimization techniques are available to solve (19).

Many similarity measures have been investigated [43], e.g., the normalized cross corre-

lation:

S(I, J) =
(I, J)L2

‖I‖L2‖J‖L2

. (20)

Information-theoretic similarity measures are also popular. By selecting a pixel p at

random with uniform probability from the domain D and computing the corresponding

gray value I(p), one can turn any image I into a random variable. If we write pI for the

probability density function of the random variable I and pIJ for the joint probability density

of I and J , then one can define the entropy of the difference and the mutual information of

7Registration or alignment is most commonly achieved by marking identifiable points on the patient with
a tracked pointer and in the images. These points, often called fiducials, may be anatomical or artificially
attached landmarks, i.e. ”implanted fiducials”.
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two images I and J :

S(I, J) = inf

{∑
c

pK(c) log pK(c) | K = I − sJ, s ∈ R
}

(21)

S(I, J) =
∑

a,b

pIJ(a, b) log
pIJ(a, b)

pI(a)pJ(b)
. (22)

The normalized cross correlation (20) and the entropy of the difference (21) are maxi-

mized when the intensities of the two images are linearly related. In contrast, the mutual

information measure (22) only assumes that the co-occurrence of the most probable val-

ues in the two images is maximized at registration. This relaxed assumption explains the

success of mutual information in registration [44, 45].

2.3.2 Elastic Registration

In this section we describe a method of Haker et al. [46] for elastic registration in which the

similarity between two images is measured by their L2 Kantorovich–Wasserstein distance.

Finding “the best map” from one image to another then leads to an optimal transport

problem. Optimal transport methods have appeared in computer vision [47] as well as in

econometrics, fluid dynamics, automatic control, transportation, statistical physics, shape

optimization, expert systems, and meteorology [48].

In the approach of [46] one thinks of a gray scale image as a Borel measure8 µ on some

open domain D ⊂ Rd, where, for any E ⊂ D, the “amount of white” in the image contained

in E is given by µ(E). Given two images, (D0, µ0) and (D1, µ1), one considers all maps

u : D0 → D1 that preserve the measures, i.e., that satisfy9

u#(µ0) = µ1, (23)

and one is required to find the map (if it exists) that minimizes the Monge-Kantorovich

transport functional (see the exact definition below). This optimal transport problem was

introduced by Gaspard Monge in 1781 when he posed the question of moving a pile of soil

8This can be physically motivated. For example, in some forms of MRI the image intensity is the actual
proton density.

9If X and Y are sets with σ-algebras M and N , and if f : X → Y is a measurable map, then we
write f#µ for the pushforward of any measure µ on (X,M), i.e., for any measurable E ⊂ Y we define
f#µ(E) = µ

�
f−1(E)

�
.
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from one site to another in a manner that minimizes transportation cost. The problem

was given a modern formulation by Kantorovich [49], and so now is known as the Monge-

Kantorovich problem.

More precisely, assuming that the cost of moving a mass m from p ∈ Rd to q ∈ Rd is

m · Φ(p,q), where Φ : Rd × Rd → R+ is called the cost function, Kantorovich defined the

cost of moving the measure µ0 to the measure µ1 by the map u : D0 → D1 to be

M(u) =
∫

D0

Φ(p, u(p)) dµ0(p). (24)

The infimum of M(u) taken over all measure preserving u : (D0, µ0) → (D1, µ1) is called

the Kantorovich–Wasserstein distance between the measures µ0 and µ1. The minimiza-

tion of M(u) constitutes the mathematical formulation of the Monge-Kantorovich optimal

transport problem.

If the measures µi and Lebesgue measure dL are absolutely continuous with respect

to each other, so that we can write dµi = mi(p) dL for certain strictly positive densities

mi ∈ L1(Di, dL), and if the map u is a diffeomorphism from D0 to D1, then the mass

preservation property (23) is equivalent to

m0(p) = det
(
Du(p)

) ·m1(u(p)), (for almost all p ∈ D0). (25)

The Jacobian equation (25) implies that if a small region in D0 is mapped to a larger region

in D1, there must be a corresponding decrease in density in order to comply with mass

preservation. In other words, expanding an image darkens it.

The L2 Monge–Kantorovich problem corresponds to the cost function Φ(p,q) = 1
2 |p−

q|2. A fundamental theoretical result for the L2 case [50, 51, 52] is that there is a unique

optimal mass preserving u, and that this u is characterized as the gradient of a convex

function p, i.e., u = ∇p. General results about existence and uniqueness may be found

in [53] and the references therein.

To reduce the Monge–Kantorovich cost M(u) of a map u0 : D0 → D1, in [46] the authors

consider a rearrangement of the points in the domain of the map in the following sense: the

initial map u0 is replaced by a family of maps ut for which one has ut ◦ st = u0 for some
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family of diffeomorphisms st : D0 → D0. If the initial map u0 sends the measure µ0 to µ1,

and if the diffeomorphisms st preserve the measure µ0, then the maps ut = u0 ◦ (st)−1 will

also send µ0 to µ1.

Any sufficiently smooth family of diffeomorphisms st : D0 → D0 is determined by its

velocity field, defined by ∂ts
t = vt ◦ st.

If ut is any family of maps, then, assuming ut
#µ0 = µ1 for all t, one has

d
dt

M(ut) =
∫

D0

〈
Φp(p, ut(p)), vt(p)

〉
dµ0(p). (26)

The steepest descent is achieved by a family st ∈ Diff1
µ0

(D0), whose velocity is given by

vt = − 1
m0(p)

P (
Φp(p, ut(p))

)
. (27)

Here, P is the Helmholtz projection, which extracts the divergence-free part of vector fields

on D0, i.e., for any vector field w on D one has w = P[w] +∇p.

From u0 = ut ◦ st one gets the transport equation

∂ut

∂t
+ vt · ∇ut = 0 (28)

where the velocity field is given by (27). In [54] it is shown that the initial value problem

(27), (28) has short time existence for C1,α initial data u0, and a theory of global weak

solutions in the style of Kantorovich is developed.

For image registration, it is natural to take Φ(p,q) = 1
2 |p − q|2 and D0 = D1 to be a

rectangle. Extensive numerical computations show that the solution to the unregularized

flow converges to a limiting map for a large choice of measures and initial maps. Indeed, in

this case, we can write the minimizing flow in the following “nonlocal” form:

∂ut

∂t
= − 1

m0

{
ut +∇(−∆)−1 div(ut)

} · ∇ut. (29)

The technique has been mathematically justified in [54] to which we refer the reader for

all of the relevant details.
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2.3.3 Optimal Warping

Typically in elastic registration, one wants to see an explicit warping that smoothly de-

forms one image into the other. This can easily be done using the solution of the Monge–

Kantorovich problem. Thus, we assume now that the gradient descent process has been

applied as described above and that it has converged to the Monge–Kantorovich mapping

ũMK .

Following the work of Benamou and Brenier [55], (see also [51]), we consider the following

related problem:

inf
∫ ∫ 1

0
m(t, x)‖v(t, x)‖2 dt dx

over all time-varying densities m and velocity fields v satisfying

∂m

∂t
+ div(mv) = 0, (30)

m(0, ·) = m0, m(1, ·) = m1. (31)

It is shown in [55] that this infimum is attained for some mmin and vmin, and that it is

equal to the L2 Kantorovich–Wasserstein distance between µ0 = m0 dL and µ1 = m1 dL.

Further, the flow X = X(x, t) corresponding to the minimizing velocity field vmin via

X(x, 0) = x, Xt = vmin ◦X

is given simply as

X(x, t) = x + t (ũMK(x)− x). (32)

Note that when t = 0, X is the identity map and when t = 1, it is the solution ũMK to

the Monge–Kantorovich problem. This analysis provides appropriate justification for using

(32) to define our continuous warping map X between the densities m0 and m1.

This warping is illustrated on MR heart images (Figure 2). Since the images have

some black areas where the intensity is zero, and since the intensities define the densities

in the Monge-Kantorovich registration procedure, we typically replace m0 by some small

perturbation m0 + ε for 0 < ε ¿ 1 to ensure that densities are strictly positive. Full details

may be found in [56].
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Specifically, two MR images of a heart are given at different phases of the cardiac cycle.

In each image the white part is the blood pool of the left ventricle. The circular gray part is

the myocardium. Since the deformation of this muscular structure is of great interest, the

blood pool is masked and we only consider the optimal warp of the myocardium in the sense

described above. Figure 2(a) is a diastolic image and Figure 2(f) is a systolic image.10 These

are the only data given. Figures 2(b) to Figure 2(e) show the warping using the Monge-

Kantorovich technique between these two images. These images offer a very plausible

deformation of the heart as it undergoes its diastole/systole cycle. This is remarkable

considering that they were all artificially created by the Monge-Kantorovich mappings. The

plausibility of the deformation demonstrates the quality of the resulting warping. Images

become much more vivid when viewed as a short animation available at http://www.bme.

gatech.edu/groups/minerva/publications/papers/medicalBAMS2005.html).

2.4 Image Segmentation

When looking at an image, a human observer cannot help seeing structures that often may

be identified with objects. However, digital images (as well as the raw retinal input of local

intensities) are not structured. Segmentation is the process of creating a structured visual

representation from an unstructured one. The problem was first studied in the 1920’s by

psychologists of the Gestalt school (see Kohler [6] and the references therein) and later by

psychophysicists11 [7, 8]. In its modern formulation, image segmentation is the problem

of partitioning an image into homogeneous regions that are semantically meaningful, i.e.,

that correspond to objects that can be identified by a human expert. Segmentation is not

concerned with actually determining what the partitions are. In that sense, it is a lower

level problem than object recognition.

In the context of medical imaging, these regions have to be anatomically meaningful. A

typical example is partitioning an MRI image of the brain into the white and gray matter.

Since it replaces continuous intensities with discrete labels, segmentation can be seen as an

10Diastolic refers to the relaxation of the heart muscle while systolic refers the contraction of the muscle.
11Segmentation was called “perceptual grouping” by the Gestaltists. The idea was to study the preferences

of human beings for the grouping of sets of shapes arranged in the visual field.
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(a) Original Diastolic MR
Image

(b) Intermediate Warp:
t = 0.2

(c) Intermediate Warp:
t = 0.4

(d) Intermediate Warp:
t = 0.6

(e) Intermediate Warp:
t = 0.8

(f) Original Systolic MR Im-
age

Figure 2: Optimal warping of myocardium from diastolic to systolic in cardiac cycle (see
text).
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extreme form of smoothing/information reduction. Segmentation is also related to registra-

tion in the sense that if an atlas12 can be perfectly registered to a dataset at hand, then the

registered atlas labels are the segmentation. Segmentation is useful for visualization,13 it

allows for quantitative shape analysis and provides an indispensable anatomical framework

for virtually any subsequent automatic analysis.

Indeed, segmentation is perhaps the central problem of artificial vision, and accordingly

many approaches have been proposed (for a nice survey of modern segmentation methods,

see the monograph [57]). There are basically two dual approaches. In the first, one can start

by considering the whole image to be the object of interest and then refine this initial guess.

These “split and merge” techniques can be thought of as somewhat analogous to the top-

down processes of human vision. In the other approach, one starts from one point assumed

to be inside the object and adds other points until the region encompasses the object. Those

are the “region growing” techniques and bear some resemblance to the bottom-up processes

of biological vision.

The dual problem to segmentation is that of determining the boundaries of the seg-

mented homogeneous regions. This approach has been popular for some time since it allows

one to build upon the well-investigated problem of edge detection (Section 2.4.1). Difficulties

arise with this approach because noise can be responsible for spurious edges. Another major

difficulty is that local edges need to be connected into topologically correct region bound-

aries. To address these issues, it was proposed to set the topology of the boundary to that

of a sphere and then deform the geometry in a variational framework to match the edges. In

two dimensions, the boundary is a closed curve and this approach was named snakes (Sec-

tion 2.4.2). Improvements of the technique include geometric active contours (Section 2.4.3)

and conformal active contours (Section 2.4.4). All these techniques are generically referred

to as active contours. Finally, as described in [57], most segmentation methods can be set in

the elegant mathematical framework proposed by Mumford and Shah [58] (Section 2.4.6).

12An image from a typical patient that has been manually segmented by some human expert.
13As discussed previously, human vision is inherently two-dimensional. In order to “see” an organ radiol-

ogists therefore have to resort to visualizing its outside boundary. Determining this boundary is equivalent
to segmenting the organ.
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2.4.1 Edge Detectors

Consider the ideal case of a bright object O on a dark background. The physical object is

represented by its projections on the image I. The characteristic function 1O of the object is

the ideal segmentation, and since the object is contrasted on the background, the variations

of the intensity I are large on the boundary ∂O. It is therefore natural to characterize the

boundary ∂O as the locus of points where the norm of the gradient |∇I| is large. In fact,

if ∂O is piecewise smooth, then |∇I| is a singular measure whose support is exactly ∂O.

This is the approach taken in the 60’s and 70’s by Roberts [59] and Sobel [60], who

proposed slightly different discrete convolution masks to approximate the gradient of digital

images. Disadvantages with these approaches are that edges are not precisely localized and

may be corrupted by noise. Figure 3(b) is the result of a Sobel edge detector on a medical

image. Note the thickness of the boundary of the heart ventricle as well as the presence

of “spurious edges” resulting from noise. Canny [61] proposed adding a smoothing pre-

processing step (to reduce the influence of the noise) as well as a thinning post-processing

phase (to ensure that the edges are uniquely localized). See [62] for a survey and evaluation

of edge detectors using gradient techniques.

A slightly different approach, initially motivated by psychophysics, was proposed by

Marr and Hildreth [63, 64] where edges are defined as the zeros of ∆Gσ ∗ I, the Laplacian

of a smooth version of the image. One can give a heuristic justification by assuming that

the edges are smooth curves; more precisely, assume that near an edge the image is of the

form

I(p) = ϕ

(
S(p)

ε

)
, (33)

where S is a smooth function with |∇S| = O(1) which vanishes on the edge, ε is a small

parameter proportional to the width of the edge, and ϕ : R→ [0, 1] is a smooth increasing

function with limits ϕ± = limt→±∞ ϕ(t).

The function ϕ describes the profile of I transverse to its level sets. We will assume

that the graph of ϕ has exactly one inflection point.
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The assumption (33) implies ∇I = ϕ′(S/ε)∇S, while the second derivative ∇2I is given

by

∇2I =
ϕ′′(S/ε)

ε2
∇S ⊗∇S +

ϕ′(S/ε)
ε

∇2S. (34)

Thus, ∇2I will have eigenvalues of moderate size (O(ε−1)) in the direction perpendicular

to ∇I, while the second derivative in the direction of the gradient will change from a large

O(ε−2) positive value to a large negative value as one crosses from small I to large I values.

From this discussion of ∇2I, it seems reasonable to define the edges to be the locus of

points where |∇I| is large and where either (∇I)T ·∇2I ·∇I, or ∆I, or det∇2I changes sign.

The quantity (∇I)T ·∇2I ·∇I vanishes at p ∈ D if the graph of the function I restricted to

the normal line to the level set of I passing through p has an inflection point at p (assuming

∇I(p) 6= 0). In general, zeros of ∆I and det∇2I do not have a similar description, but

since the first term in (34) will dominate when ε is small, both (∇I)T ·∇2I ·∇I and det∇2I

will tend to vanish at almost the same places.

The computation of second derivatives is numerically awkward, so one prefers to work

with a smoothed out version of the image, such as Gσ ∗ I instead of I itself.

See Figure 3(c) for the result of the Marr edge detector. In these images the edge is

located precisely at the zeroes of the Laplacian (a thin white curve).

(a) Original image. (b) Sobel edge detector. (c) Marr edge detector.

Figure 3: Edge detectors on a MRI image of a heart

While it is now understood that these local edge detectors cannot be used directly for the

detection of object boundaries (local edges would need to be connected in a topologically
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correct boundary), these techniques proved instrumental in designing the active contour

models described below and are still being investigated [65, 66].

2.4.2 Snakes

A first step toward automated boundary detection was taken by Witkin, Kass and Ter-

zopoulos [67], and later by a number of researchers (see [68] and the references therein).

Given an image I : D ⊂ R2 → C, they subject an initial parametrized curve Γ : [0, 1] → D

to a steepest descent flow for an energy functional of the form14

E(Γ) =
∫ 1

0

{
1
2
w1(p)|Γpp|2 +

1
2
w2(p)|Γp|2 + W (Γ(p))

}
dp. (35)

The first two terms control the smoothness of the active contour Γ. The contour interacts

with the image through the potential function W : D → R, which is chosen to be small near

the edges and large everywhere else (it is a decreasing function of some edge detector). For

example, one could take

W (p) =
1

1 + ‖∇Gσ ∗ I(p)‖2
. (36)

Minimizing E will therefore attract Γ toward the edges. The gradient flow is the fourth-

order nonlinear parabolic equation

∂Γ
∂t

= − (w2(p)Γpp)pp + (w1(p)Γp)p +∇W (Γ(p, t)). (37)

This approach gives reasonable results. See [69] for a survey of snakes in medical image

analysis. One limitation, however, is that the active contour or snake cannot change topol-

ogy. It starts out being a topological circle and will always remain a topological circle and

will not be able to break up into two or more pieces, even if the image would contain two

unconnected objects and this would give a more natural description of the edges. Special

ad hoc procedures have been developed to handle splitting and merging [70].

2.4.3 Geometric Active Contours

Another disadvantage of the snake method is that it explicitly involves the parametrization

of the active contour Γ, while there is no obvious relation between the parametrization of

14We present Cohen’s [68] version of the energy.
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the contour and the geometry of the objects to be captured. Geometric models have been

developed by [71, 72] to address this issue.

As in the snake framework, one deforms the active contour Γ by a velocity that is

essentially defined by a curvature term, and a constant inflationary term weighted by a

stopping function W . By formulating everything in terms of quantities that are invariant

under reparametrization (such as the curvature and normal velocity of Γ), one obtains an

algorithm that does not depend on the parametrization of the contour. In particular, it can

be implemented using level sets.

More specifically, the model of [71, 72] is given by

V = W (p)(κ + c), (38)

where both the velocity V and the curvature κ are measured using the normal N for Γ. Here,

as previously, W is small at edges and large everywhere else, and c is a constant, called the

inflationary parameter. When c is positive, it helps push the contour through concavities

and can speed up the segmentation process. When it is negative, it allows expanding

“bubbles,” i.e., contours that expand rather than contract to the desired boundaries. We

should note that there is no canonical choice for the constant c, which has to be determined

experimentally.

In practice Γ is deformed using the Osher-Sethian level set method described in Sec-

tion 2.2.4. One represents the curve Γt as the zero level set of a function Φ : D×R+ → R,

Γt = {p ∈ D : Φ(p, t) = 0}. (39)

For a given normal velocity field, the defining function Φ is then the solution of the

Hamilton-Jacobi equation
∂Φ
∂t

+ V
∣∣∇Φ

∣∣ = 0,

which can be analyzed using viscosity theory [73].

Geometric active contours have the advantage that they allow for topological changes

(splitting and merging) of the active contour Γ. The main problem with this model is that

the desired edges are not steady states for the flow (38). The effect of the factor W (p) is
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merely to slow the evolution of Γt down as it approaches an edge, but it is not the case that

the Γt will eventually converge to anything like the sought-for edge as t → ∞. Some kind

of artificial intervention is required to stop the evolution when Γt is close to an edge.

2.4.4 Conformal Active Contours

In [74, 75], the authors propose a novel technique that is both geometric and variational.

In their approach, one defines a Riemannian metric gW on D from a given image I : D → R,

by conformally changing the standard Euclidean metric to

gW = W (p)2
∥∥ dp

∥∥2
. (40)

Here, W is defined as above in (36). The length of a curve in this metric is

LW (Γ) =
∫

Γ
W (Γ(s)) ds. (41)

where s is Euclidean arc-length, i.e., the parametrization such that ‖∂curve
∂s (s)‖ = 1, ∀s.

Curves that minimize this length will prefer to be in regions where W is small, which is

exactly where one would expect to find the edges. So, to find edges, one should minimize

the W -weighted length of a closed curve Γ, rather than some “energy” of Γ (which depends

on a parametrization of the curve).

To minimize LW (Γ), one computes a gradient flow in the L2 sense. Since the first

variation of this length functional is given by

dLW (Γ)
dt

= −
∫

Γ
V

{
Wκ−N · ∇W

}
ds,

where V is the normal velocity measured in the Euclidean metric, and N is the Euclidean

unit normal, the corresponding L2 gradient flow is

Vconf = Wκ−N · ∇W. (42)

Note that this is not quite the curve shortening flow in the sense of [26, 76] on R2

given the Riemannian manifold structure defined by the conformally Euclidean metric gW .

Indeed, a simple computation shows that in that case one would have

V = W−2
(
Wκ−N · ∇W

)
. (43)
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(a) Initial active contour. (b) Evolving active contour. (c) Steady state.

Figure 4: Ventricle segmentation in MRI heart image via shrinking conformal active
contour.

Thus, the term “geodesic active contour” used in [75] is a bit of a misnomer, and the term

“conformal active contour” as in [74] is prefered.

This technique can also be implemented in the level set framework to allow for the

splitting and merging of evolving curves. Figure 4 shows the ventricle of an MR image

of the heart being captured by a conformal active contour Vconf . Topological changes are

illustrated in Figure 5. Two bubbles, which are evolved by the full flow Vact with c < 0,

merge to capture the myocardium of the same image. Conformal active contours can be

employed for the segmentation of images from many modalities. In Figure 6, the contour

of a cyst was successfully captured in an ultrasound image. This again used the full flow

Vact with c < 0. Because that modality is particularly noisy, the image had been pre-

smoothed using the affine curve shortening nonlinear filter (see Section 2.2.5). In Figure 7,

the contracting active contour splits to capture two disconnected osseous regions on a CT

image.

2.4.5 Conformal Area Minimizing Flows

Typically, to get expanding bubbles, an inflationary term is added in the model (42) as

in (38). Many times segmentations are more easily performed by seeding the image with

bubbles rather than contracting snakes. The conformal active contours will not allow this
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(a) Two initial bubbles. (b) Evolving active contours.

(c) Merging of active contours. (d) Steady state.

Figure 5: Myocardium segmentation in MRI heart image with two merging expanding
conformal active contours.
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(a) Three initial active contours. (b) Merging of active contours.

(c) Evolving active contour. (d) Steady state.

Figure 6: Cyst segmentation in ultrasound breast image with three merging expanding
conformal active contours.
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(a) Initial active contour. (b) Evolving active contour.

(c) Evolving active contour. (d) Splitting of active contour and
steady state.

Figure 7: Bone segmentation in CT image with splitting shrinking conformal active con-
tour.
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since very small curves will simply shrink to points under the flow (42). To get a curve

evolution that will force small bubbles to expand and converge toward the edges, it is

convenient to subtract a weighted area term from the length functional LW , namely,

AW (Γ) =
∫

RΓ

W (p) dp,

where dp is the two-dimensional Lebesgue measure, and RΓ is the region enclosed by the

contour Γ.

The first variation of this weighted area is [77, 78, 79]:

d
dt
AW (Γt) = −

∫

Γt

W (Γ(s))V ds (44)

where, as before, V is the normal velocity of Γt.

The functional that one now tries to minimize is

EW (Γ) = LW (Γ) + cAW (Γ), (45)

where c ∈ R is a constant called the inflationary parameter.

The steepest descent for EW is obtained by setting

Vact = Vconf + cW =
(
κ + c

)
W (p)−N · ∇W. (46)

For c = 1 this is a conformal length/area minimizing flow (see [78]). As in the model

of [71, 72] the inflationary parameter c may be chosen as positive (snake or inward moving

flow) or negative (bubble or outward moving flow).

In practice, for expanding flows (negative c, weighted area maximizing flow), one expands

the bubble using only the inflationary part:

V = cW

until the active contour is sufficiently large, and then “turns on” the conformal part Vconf ,

which brings the contour to its final position. Again, as in [71, 72], the curvature part of

Vact also acts to regularize the flow. Finally, [74] contains a detailed mathematical analysis

of (46) as well as extensions to the 3-dimensional space (in which case the curvature κ is

replaced by the mean curvature H).
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2.4.6 Mumford-Shah Framework

Mumford and Shah [80] define segmentation as a joint smoothing and edge detection prob-

lem. In their framework, given an image I(p) : D ⊂ R2 → C, the goal is to find a set of

discontinuities K ⊂ D, and a piecewise smooth image S(p) on D \K that minimize

EI(S, K) =
∫

D\K

{‖∇S‖2 + (I − S)2
}

dp + L(K), (47)

where L(K) is the Euclidean length, or more generally, the 1-dimensional Hausdorff measure

of K.

The first term ensures that any minimizer S is smooth (except across edges), while the

second term ensures that minimizers approximate I. The last term will cause the set K to

be regular. It is interesting to note as argued in [57] that many segmentation algorithms

(including some of the most common) can be formulated in the Mumford-Shah framework.

Further, the Mumford-Shah functional can be given a natural Bayesian interpretation [81].

The functional itself is very difficult to analyze mathematically even though there have

been some interesting results. The book [57] gives a nice survey on the mathematical results

concerning the Mumford-Shah functional. For example, Ambrosio [82] has found a weak

solution to the problem in the class of Special Bounded Variation functions. The functional

itself has influenced several different segmentation techniques some connected with active

contours including [83, 84].
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CHAPTER 3

REGION-BASED IMAGE SEGMENTATION

In this chapter, we consider the problem of finding the boundaries of only one region with

limited user interaction. Interactivity is desirable since the user is given the opportunity to

make use of important implicit external knowledge to guide the algorithm toward a result

that makes sense for her task. The segmentation process can be repeated in order to identify

as many regions as necessary. This chapter is based on [85, 79].

After briefly reviewing techniques previously proposed for image segmentation (Sec-

tion 3.1), we present a unified framework for a large class of region-based image segmenta-

tion techniques (Section 3.2). We then propose a new variational method for region based

segmentation based on non-parametric statistics (Section 3.3), provide full mathematical

details on the fundamental flow and the non-parametric estimation of image statistics (Sec-

tions 3.4 and 3.5) and discuss how this algorithm has been implemented in the open-source

software 3D Slicer (Section 3.6). We propose a novel validation framework (Section 3.7)

based on the Euclidean distance and use it to analyze the performance of the proposed

algorithm both on simulated and manually segmented images (Section 3.8).

The problem of validating the result of a segmentation algorithm is analogous to the

problem of comparing the output of that algorithm with some optimal answer called ground

truth. This can be either known by construction if an artificial phantom is imaged in the

sole purpose of validating the segmentation procedure or determined by some authoritative

source, typically some human expert. Quantifying the differences between surfaces will be

treated in more detail and sophistication in Chapter 5.

3.1 Previous Work

Many different approaches have been proposed to address the problem of region segmenta-

tion which can be dually considered as finding regions or finding boundaries (see [86] and
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references therein). Focusing only on the boundaries is computationally less complex but

also less robust since information inside the region is discarded. This is the approach of the

snakes and active contours variational methods [87, 69, 88]. An approach that can be seen

as intermediate (i.e., in between region-based and surface-based techniques will be proposed

in Chapter 4).

While the original region-growing algorithm [1] formalism is somewhat crude, interest-

ing extensions have been proposed by Adams [89] where some statistical information is

derived from the region as it expands. These techniques have been applied to medical im-

age analysis [90, 91]. The relation between region-growing and active contours has been

studied by Zhu [92] and more recently active contours have been extended by Chan [84] and

Paragios [93] to an elegant active regions formalism where regions boundaries are deformed

according to an evolution equation derived to minimize an energy based on statistics on the

regions.

We refer the interested reader to Section 2.4 for a more detailed description of variational

segmentation algorithms.

3.2 Image Segmentation Techniques based on Volume, Mean
and Variance

3.2.1 General Framework

Given a region R ⊂ D and a scalar image I : D → R defined on a domain D, we can define

the volume (area for 2-dimensional domains, volume for 3-dimensional domains etc.) v(R)

of the region R as well as the volume v̄(R) of the complement R̄ = D \R.

In a similar manner, the mean intensity µ(I,R) of the image inside the region can be

defined as well as the mean intensity µ̄(I, R) of the image outside the region.

Any higher order moment can also be defined inside and outside such as the variances

σ2(I,R) and σ̄2(I,R).
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By combining these scalar quantities through a given function F : R6 → R we obtain a

very general class of region energies of the form

E(I,R) = F(v, µ, σ2, v̄, µ̄, σ̄2). (48)

This kind of functionals have been prviously proposed by Chan et al. [84], Yezzi et al.

[94] among others.

3.2.2 Minimizing Gradient Flow

The minimizing gradient flow for such an energy is readily obtained by composition.

∂Σ
∂t

= −∇E = −{ ∂F
∂v
∇v +

∂F
∂v̄
∇v̄ +

∂F
∂µ

∇µ +
∂F
∂µ̄

∇µ̄ +
∂F
∂σ2

∇σ2 +
∂F
∂σ̄2

∇σ̄2 } (49)

In order to compute the gradient flow of the volumes and moments, we introduce the

notation S(α, R) =
∫
R α dR where α is a scalar field defined on the same domain D as the

image.

As explained in Section 3.4, the minimizing gradient flow for S(α, R) is

∂Σ
∂t

= −∇S(α, R) = −α(Σ)N, (50)

where the surface Σ = ∂R is the boundary of the region R and N is its outward normal.

The minimizing gradient flows of the volumes and moments are then readily computed.

3.2.2.1 Volume v

The case of the volume corresponds to α = 1, i.e., v(R) = S(1, R). The gradient flow ∇v is

therefore simply the evolution in the normal direction Σt = −∇v = −N.

Symmetrically, the complement R̄ = D \R has the same boundary Σ but the normal is

flipped. Using the normal N of R, we obtain Σt = −∇v̄ = N.
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3.2.2.2 Mean µ

The mean can be expressed by µ(I,R) = S(I, R)/S(1, R). Once again the gardient flow

can be obtained by composition of known results.

∂Σ
∂t

=−∇µ(I, R)

=−∇(
S(I, R)
S(1, R)

)

=− S(1, R)∇S(I, R)− S(I, R)∇S(1, R)
S(1, R)2

=− vI(Σ)N− S(I, R)N
v2

=− I(Σ)− µ

v
N

Symmetrically, −∇µ̄ = +(I(Σ)− µ̄)/v̄N.

3.2.2.3 Variance σ2

The variance can be expressed by:

σ2(I,R) =S((I − µ)2, R)/S(1, R)

=S(I2 − 2µI + µ2, R)/S(1, R)

using the linearity of the integration,

=[ S(I2, R)− 2µS(I, R) + µ2S(1, R) ]/S(1, R)

=S(I2, R)/S(1, R)− 2µ2 + µ2

=S(I2, R)/S(1, R)− µ2

=S(I2, R)/S(1, R)− [ S(I, R)/S(1, R) ]2
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Once again the gradient flow can be obtained by composition of known results.

∂Σ
∂t

=−∇σ2(I,R)

=−∇S(I2, R)
S(1, R)

+∇(
S(I, R)
S(1, R)

)2

=− S(1, R)∇S(I2, R)− S(I2, R)∇S(1, R)
S(1, R)2

+ 2
S(I,R)
S(1, R)

∇S(I, R)
S(1, R)

=− vI2N− S(I2, R)N
v2

+ 2µ∇µ

=− vI2N− S(I2, R)N
v2

+ 2µ
(I(Σ)− µ)

v

using again S(I2, R)/v = σ2 + µ2,

=− I2 − (σ2 + µ2)− 2µI + 2µ2

v
N

=− (I − µ)2 − σ2

v
N

Symmetrically, −∇σ̄2 = +[ (I − µ̄)2 − σ̄2 ]/v̄N.

3.2.3 Example

As an illustration, consider the energy

E(I, R) = f(v)σ2 (51)

corresponding to the function F(v, µ, σ2, v̄, µ̄, σ̄2) = f(v)σ2.

The resulting minimizing gradient flow is

∂Σ
∂t

= −(f ′(v)σ2 + f(v)
(I − µ)2 − σ2

v
)N (52)

Since the artificial time parameter is not meaningful (we are only interested in the steady

state), this gradient can be multiplied by any scalar function g(t) (which would correspond

to a change of the parameter t). Therefore the minimizing surface evolution can be written:

∂Σ
∂t

= −vf ′(v)
f(v)

N− (
(I − µ)2

σ2
− 1)N (53)

The first term will tend to expand the region if f ′(v) < 0, i.e., if increasing the volume

v would reduce f(v). The second term will tend to expand the region to pixels p for which
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(I(p)− µ)2/σ2 − 1 < 0, i.e., pixels whose intensity are less than one standard deviation

away from the mean of the region.

3.2.4 Implementation

If the surface evolution is implemented in a levelset framework, it is possible to test if a

pixel p is inside or outside of the region R using the sign of the levelset function φ(p) at

this point. For example, here we assume that φ ≤ 0 in R.

Given an initial region, the inside and outside volumes and statistics can be easily

computed. If narrow-band implementation of the levelset framework is used then not all

pixels are visited at each iteration and the naive approach of recomputing the moments at

each iteration would prove very expensive.

Instead, the moments can be updated at each iteration using only information from

pixels that happen to change sign in the narrow band. In order to do that, the moments

and volume have to be computed globally once and four accumulators s1, s2, s̄1 and s̄2 are

initialized to 0. Then, as the levelset values are being recomputed for each pixel p of the

narrow band, those accumulators are updated using Algorithm 1. Before starting a new

iteration through the narrow band, the moments are updated and the accumulators reset

to 0 using Algorithm 2.

While this technique is simple to implement and very robust with respect to image noise,

two problems are that:

• it is based on parametric statistics (the mean and variance)

• it is based on the idea that “inside” and “outside” are binary characteristics

The use of parametric statistcs (such as the variance inside a region) can be justified

by the idea that, in an ideal image, intensities inside the region R∗ to be segmented would

be uniform. If that image is corrupted by Gaussian white noise, then intensities inside

the region will therefore be Gaussian distributed. The variance inside some region R will

therefore be minimal when R = R∗ and the variance would then be the variance of the

noise. This can be problematic if the region to be detected is not uniform (for example
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Algorithm 1: Updating accumulators
Require: image I, current and previous levelset functions φn+1 and φn at pixel p

if (φn(p) > 0) and (φn+1(p) ≤ 0) then
t = I(p)− µ
s1 ← s1 + t
s2 ← s2 + (t2 − σ2)
v ← v + 1
t̄ = I(p)− µ̄
s̄1 ← s̄1 − t̄
s̄2 ← s̄2 − (t̄2 − σ̄2)
v̄ ← v̄ − 1

else if (φn(p) ≤ 0) and (φn+1(p) > 0) then
t = I(p)− µ
s1 ← s1 − t
s2 ← s2 − (t2 − σ2)
v ← v − 1
t̄ = I(p)− µ̄
s̄1 ← s̄1 + t̄
s̄2 ← s̄2 + (t̄2 − σ̄2)
v̄ ← v̄ + 1

end if

Algorithm 2: Updating moments
Require: accumulators s1, s2, s̄1 and s̄2

µ ← µ + s1/v
σ2 ← σ2 + (s2/v − [s1/v]2)
s1 ← 0
s2 ← 0
µ̄ ← µ̄ + s̄1/v̄
σ̄2 ← σ̄2 + (s̄2/v̄ − [s̄1/v̄]2)
s̄1 ← 0
s̄2 ← 0
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when trying to detect the countour of a person with a shirt and pants of different colors) or

if the additive noise is not Gaussian. To aleviate this problem another technique is proposed

in Section 3.3 that is based on the full distribution of intensities inside (and possibly also

outside) the region and not only a few scalar parameters such as the mean and variance.

Another weakness of the technique is that it does not differentiate between image infor-

mation that is, for example, “slightly outside” the region R and image information that is

“completely outside” the region R. Inside and outside are just binary (mutually exclusive)

properties. A different (surface-based) framework is proposed in Chapter 4 that handles

that difficulty (see in particular the discussion in Section 4.4).

3.3 Non-parametric, Region-based Functional

In this section we briefly present a very general flow for image segmentation. This technique

is based purely on the statistics of the image.

In particular it does does not necessitate external information (such as an atlas) nor

makes extra anatomy or modality-based assumptions. This method is therefore extremely

versatile and we will show in Section 3.8 that it can compete with more specialized ap-

proaches.

Given an image I and a region R, using Bayes’ rule,

P (x ∈ R | I(x), ‖∇I(x)‖)

=P (I(x), ‖∇I(x)‖ | x ∈ R)

× P (x ∈ R)
P (I(x), ‖∇I(x)‖) .

Assuming uniform priors P (x ∈ R) and P (I(x), ‖∇I(x)‖) the likelihood P (I(x), ‖∇I(x)‖ | x ∈
R) and the posterior distributions P (x ∈ R | I(x), ‖∇I(x)‖) are proportional. We use the

notation PR(I(x), ‖∇I(x)‖) for either the likelihood or the posterior. This can be justified

by the facts that:

• the quantity P (x ∈ R) is not known.
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• using P (I(x), ‖∇I(x)‖) would introduce undesired global information. The existence

in the dataset of another unrelated region with statistics similar to region R should

not have any influence1.

We accordingly define the energy functional

E(I,R) :=
∫

R
PR(I(x), ‖∇I(x)‖) dx. (54)

Here, E(I, R) is the volume of the region R where each voxel is weighted by the probability

PR(I(x), ‖∇I(x)‖) of the intensity and the norm of the gradient of I at this voxel. Likely

voxels therefore contribute more to E(I,R) than unlikely voxels and the energy of a region

R will be high if and only if its voxels have consistent values in terms of intensity and norm

of the gradient.

An initial region R0 at t = 0 can be deformed into a region R(t) to maximize E(I,R).

We show in Section 3.4 that the gradient ascent flow is

∂S

∂t
= PR(I, ‖∇I‖)N, (55)

where S(t) = ∂R(t) the boundary of R at time t and N is the unit outward normal.

As the region is deformed, PR is estimated in a non-parametric fashion as detailed in

Section 3.5.

3.4 Fundamental Flow

In what follows we only consider the three-dimensional case. The region R is an open

connected bounded subset of R3 with smooth boundary S = ∂R and N denotes the corre-

sponding outward unit normal vector to S.

Given an image I, a non-negative weighting function w(·, ·) and a region R we define

the energy

E(I, w, R) :=
∫

R
w( I(x), ‖∇I(x)‖ ) dx. (56)

1That would be acceptable in the ideal case of a bimodal image. Most medical datasets are composed of
more than two classes.
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E is the weighted volume of the region R. The weight of a voxel x is determined by the

function w(·, ·) of the local properties I(x) and ‖∇I(x)‖ of the image. Ideally, w should

reflect the local properties of the region to be segmented. As this is not known a priori, w

it is heuristically estimated as R is evolved in order to maximize E.

Proposition 3.1. Notation as above. Then for a given weighting function w, the evolution

in which the energy E(I, w, R) is increasing as fast as possible (using only local information)

is
∂S

∂t
= wN.

Proof. Let ψt : R → Rn be a family of embeddings, such that ψ0 is the identity. Let

w : Rn → R be a positive C1 function. We set R(t) := ψt(R) and S(t) := ψt(∂R). We

consider the family of w-weighted volumes

H(t) :=
∫

R
w(ψt(x)) dψt(x)

=
∫

R(t)
w(y) dy.

Set X = ∂ψt

∂t |t=0 then using the area formula [77] and then by the divergence theorem, the

first variation is

dH

dt


t=0

=
∫

R
div(wX) dx

=−
∫

∂R
(wX) ·N dy,

where N is the inward unit normal to ∂R. Consequently the corresponding w-weighted

volume maximizing flow is
∂S

∂t
= wN.

A different derivation of the same result has previously been proposed by Siddiqi [78].

Since w is a non-negative function, the flow is reversible. In particular, the flow in the

reverse direction,
∂S

∂t
= −wN, (57)

gives the direction in which the energy is increasing as fast as possible (using local informa-

tion). In the context of segmentation, one may think of (57) as a bubble and of the original

flow as a snake.
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Given an approximation R0 of the region to be segmented, a maximum likelihood-like

approach can be used to determine the weighting function w0, which would a posteriori

justify the segmentation of R0.

Proposition 3.2. For a given fixed region R0, the energy E(I, w,R0) is maximized by

setting w to pR0 the conditional probability on that region

pR0 = arg max
w,‖w‖1=1

E(I, w,R0) (58)

= P ( I(x), ‖∇I(x)‖ | x ∈ R0 ).

Proof. We can rewrite the energy as

E(I, w, R0) =
∫

I

∫

‖∇I‖
NR0(u, v).w(u, v) du dv,

where NR0(u, v) is the volume of the set of points x ∈ R0 such that I(x) = u and ‖∇I(x)‖ =

v. But this is just a constant multiple of pR0 = P ( I(x), ‖∇I(x)‖ | x ∈ R0 ) which is

therefore by the Schwartz inequality is the maximizer of E.

As the region evolves, w is periodically updated according to (58). This changes the

definition of the energy (56) and therefore (57) can only be considered a gradient flow for

every time interval when w is fixed.

3.5 Non-parametric Estimation of Image Statistics

Instead of using the distribution pR0 = P ( I(x), ‖∇I(x)‖ | x ∈ R0 ) as described in (58)

we use p = pM · pH where M and H are the median and interquartile range (the difference

between the first and last quartile) operators on a 3×3×3 neighborhood. M and H convey

about the same information as I (gray level) and ‖∇I‖ (local homogeneity). For example if

‖∇I‖ is large then values in a 3× 3× 3 neighborhood are very dispersed and therefore the

interquartile range is large. These measures were chosen primarily because they are robust

to noise2 and they respect edges3 of the image better than their linear counterparts.

2the interquartile range and the median are completely insensitive to isolated outliers
3see [1] for details on median filtering and its advantages

47



Parzen windows (see for example [95]) are used to estimate the probability density

functions. This is a non-parametric technique and therefore no assumption is required on

the shape of the distributions. Given a window function φ and N samples m1, . . . , mN and

h1, . . . , hN the densities are estimated by:

p̂M (m) =
1
N

N∑

i=1

φ(m−mi)

p̂H(h) =
1
N

N∑

i=1

φ(h− hi).

This corresponds to convolving the samples histogram with φ. It can be shown that the

estimates p̂M and p̂H converge toward the true estimates pM and pH with n → ∞ and

φ → δ. A centered Gaussian kernel φ = gσ of standard deviation σ = σ̂H/10 was used to

estimate pH and σ = σ̂M/10 to estimate pM .

3.6 Implementation

We implemented our method as a module of the open-source software 3D Slicer. It is freely

available at http://www.slicer.org. Thanks to the properties of our flow, we were able

to use the very efficient Fast Marching method for evolving the surface. Segmenting a large

structure typically4 takes less than one minute.

The flow (55) is unidirectional (the surface can only expand since pR ≥ 0) any voxel x

is eventually reached at a time T (x). Knowing T is equivalent to knowing R or S since by

definition 



R(t) = { x, T (x) ≤ t }

S(t) = ∂R(t).
(59)

Solving the flow (55) for S(t) is equivalent to solving for T (x) the Eikonal equation

‖∇T (x)‖ · pR(I(x)) = 1. (60)

This can be done very efficiently using the Fast Marching method [96, 23]. Starting

from known seed points which define the initial surface, the algorithm marches outward by

43 GHz processor, 1 GB memory
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considering neighboring voxels and iteratively computing arrival times T in increasing order.

The seed points are set by the user inside the structure to be segmented. By construction,

when computing T (x), the surface contains the voxel x as well as all voxels for which T has

already been computed. The algorithm terminates when T is known for all points. Then

using (59), S(t) can be determined for any t and let the user determine what time t0 of the

evolution corresponds best to the region she wants.

Note that our method is, in its implementation, reminiscent of region growing. The

min-heap data structure which makes Fast Marching efficient is the direct equivalent of the

sequentially sorted list in the seeded region growing algorithm [89]. In fact our algorithm

could be made a direct non-parametric extension of seeded region growing simply by arti-

ficially forcing arrival times to zero for all points inside the surface S. Relations between

region growing and variational schemes have been previously exposed by Zhu [92].

3.7 A Euclidean Distance-based Validation Framework

Objective and quantitative analysis of performance is absolutely crucial (but often over-

looked) when proposing a segmentation algorithm. Since designing a segmentation method

is challenging (lack of unifying formalism, high diversity in the applications, subjectivity,

implicitness, etc.) it does not come as a surprise that the validation of such an algorithm

is also challenging. Different methods have been studied (see [97] and references therein).

We propose a unifying framework for discrepancy measures based on the number and the

position of mis-segmented voxels and show how it relates to classical measures. We then ap-

ply it to the validation of segmentation of realistic synthetic images (for which the “ground

truth”, i.e. perfect segmentation is known) at different levels of noise for accuracy and

robustness assessment as well as to manual expert segmentation of real datasets.

Quantifying the differences between surfaces will be treated in more detail and sophis-

tication in Chapter 5.

3.7.1 Classical Discrepancy Measures

Different measures have been proposed to assess the resemblance between a proposed seg-

mentation S and the corresponding ground truth G. The Dice Similarity Coefficient has
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been widely used and it can be derived as an approximation of the kappa statistic (a chance-

corrected measure of agreement, see [98]). It is defined as

DSC(S, G) :=
VS∩G

1
2(VS + VG)

,

where VX is the volume (number of voxels) of set X.

One disadvantage of this coefficient is that it only takes into account the number of mis-

segmented voxels and disregards their position and therefore the severities of errors. This

was corrected in Yasnoff’s discrepancy measure DM [99] and the Factor of Merit FOM [100]:

DM :=
1
N

N∑

i=1

d(i)2

FOMe :=
1
N

N∑

i=1

1
1 + d(i)2

,

where N is the number of mis-segmented voxels and d(i) is the Euclidean distance from the

ith voxel to the ground truth. Another popular measure is the Hausdorff distance

H(S, G) := max{ max
s∈S

min
g∈G

‖s− g‖,

max
g∈G

min
s∈S

‖s− g‖ }.

H(S, G) is the maximum distance one would have to move the boundaries of one set so

that it would encompass completely the other set. As this is extremely sensitive to extreme

errors, the partial Hausdorff distance [101] Hf (S, G) can be introduced as the maximum

distance one would have to move the boundaries of one set so that it would cover f% of the

other set.

3.7.2 Proposed Framework

Consider now the error-distance:

d(x) :=





0 x ∈ S ∩G

min
s∈S

‖x− s‖ x ∈ G\S

min
g∈G

‖x− g‖ x ∈ S\G
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Assuming that all points x ∈ S∪G are equally likely d can be seen as a random variable

D which describes completely the discrepancy between the segmentation S and the ground-

truth G. Using basic statistical tools we can define the probability of error (PE), mean of

errors5 (µD>0), standard deviation of errors (σD>0) and partial distance-error (Df ) by:

PE := Pr(D > 0)

µD>0 := mean(D | D > 0)

σD>0 := stdev(D | D > 0)

Df := f -quantile(D).

These measures have a natural intuitive interpretation:

• PE is the probability for a voxel x ∈ S ∪G to be misclassified (either over- or under-

segmented, i.e. (x ∈ S ∪G)\((S ∩G))).

• An erroneous voxel is on average µD>0 pixels off. This value is very typical if the

standard deviation σD>0 is small.

• D1−f is the error distance of the worst f% voxels. For example D0.5 is the median of

errors. Equivalently the maximum distance one would need to move erroneous voxels

for the error to be improved to PE = f .

As an example, PE = 10%, µD>0 = 3.1, σD>0 = 0.3 and D0.99 = 14 would mean that

the overlap between the ground truth and the proposed segmentation is 90%. The 10%

remaining pixels are either under-segmented or over-segmented pixels (“false positive” i.e.

pixels that are in S and not in G). On average these pixels are 3.1 pixels off. This value

is very typical since the standard variation is low (0.3). However there is no reason for

the error to be Gaussian and, here, the tail probability is not negligible since the worst 1%

pixels are at least 14 pixels off. This could be due to a thin, long finger of mis-segmented

pixels.

5Note: this is the mean of errors and not the mean error. Valid points are not taken into account at all.
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Figure 8 illustrates 3 different cases of mis-segmentation. Figures 8(a) and 8(b) have

approximately the same probability of error PE (and therefore the same DSC (see Equa-

tion 61) but 8(a) has a lower µD>0 and partial distance error D0.95. This is due to the fact

that even though 8(a) and 8(b) have roughly the same number of mis-segmented pixels, the

errors tend to be more severe in 8(b). Figure 8(c) illustrate the case of a low probability

of error PE and a high µD>0. This might seem counter-intuitive. µD>0 is the mean of

mis-classified points. Here most points are correctly classified and the few points that are

not are rather far off which explains a high µD>0. Moreover the standard deviation of errors

σD>0 is lower than in 8(b) since there are less small errors and therefore µD>0 is typical.

Depending on the end-task 8(a) might be a better segmentation than 8(b) or not and any

of the above mentioned measures might be the most important metric.

(a) (b) (c)

Figure 8: These synthetic examples illustrate different kinds of mis-segmentation. (ground
truth G in gray and segmentation S in black)

These measures are related to the measures presented in Section 3.7.1 according to:

1−DSC ≤PE =
1−DSC
1− DSC

2

(61)

1
FOMe

− 1 ≤µ2
D>0 + σ2

D>0 = DM (62)

H
1− f

1−PE
≤D1−f ≤ H

1− f
2

(63)

(in particular, D1 = H)
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Proof. • (61): let a, b, c, d be the true positive, true negative, false negative and false

positive probabilities respectively then

PE = (c + d)/(a + c + d)

DSC = 2a/[(a + c) + (a + d)].

Simple algebra yields the equality. The inequality follows immediately from the fact

that 0 < 1−DSC/2 ≤ 1.

• (62): By definition and implying condition D > 0 for all expectancies

DM = E{D2}

= E{[D −E{D}]2}+ E{D}2

= σ2
D>0 + µ2

D>0

which is the equality.

For the inequality consider Y = D2 and f(Y ) = 1/(1 + Y ). f ′′ ≥ 0 and therefore f

is convex (on R+). But FOM is E{ f(Y ) }. By convexity E{ f(Y ) } ≥ f(E{ Y }).
Since f−1(x) = 1/x− 1 is decreasing f−1(FOM) ≤ E{ Y } = (µ2

D>0 + σ2
D>0).

• (63): let DS = {d(x,G), x ∈ S} and DG = {d(x, S), x ∈ S} be the distance of all

points of one set to the other set. Consider that DS and DG are ordered such that

value at rank 0 is the minimum. Then the partial Haussdorff distance H1−f is the

max of the values at index (fVS) and (fVG) in DS and DG. Consider DS∪G to be the

values of DS and DG where the points corresponding to S ∩G (those values are all 0

by construction) are counted only once. We also consider that DS∪G is sorted. Then

the proposed metric D1−f is the element at index (fVS∪G). We know that

fVS∪G ≥ f

2
(VS + VG).

This means that the value at index (fVS∪G) of DS∪G has to be smaller or equal to

the largest of the value at index (f
2VS) of DS and the value at index (f

2VG) of DG.

53



The equality occurs only when these two values are equal. This proves the right side

of (63). For the left side, use

fVS∪G =
f

1− PE
VS∩G

≤ f

1− PE
min {VS , VG}.

3.8 Validation Results

We evaluated the validation algorithm proposed in Section 3.3 using the validation frame-

work proposed in Section 3.7 on 2 simulated and 10 real MRI brain datasets. It is fun-

damental to understand that the proposed algorithm is very general. In particular it is

not designed or tuned for any particular structure. Other approaches have been proposed

that necessitate (and take advantage of) prior information. For example in [102] a model

of brain structures (i.e., an atlas) is deformed to match the dataset; in [69, 103], the white

and gray matter of the brain are segmented using special geometric constraints based on

the neuroanatomical knowledge that the thickness of the cortical mantle is nearly constant;

in [104] the datasets are pre-processed to compensate for bias fields in the MR images and

non-brain tissue is removed. Our framework is more general and does not require exter-

nal information or make extra assumptions on the anatomical region to be segmented or

the imaging modality. Because implementations of previously proposed segmentation tech-

niques are typically not publicly available and these algorithms were typically not validated

on publicly available datasets it is difficult to quantitatively compare performances. In

contrast an implementation of our technique is freely available (as part of the open-source

software 3D Slicer). The technique has been validated on publicly available simulated and

real datasets.

The work of Shattuck [104] is a notable exception since it has been validated on publicly

available images. We will show in Section 3.8.1 that even though it is very general and

assumption free, the performance of the proposed technique is comparable to this more

specialized approach.
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3.8.1 Simulated Datasets (N=2)

The Brain Web datasets have been generated from a known ground truth using a physical

modeling of the MRI process [105]. The performance of our method can be assessed in a

perfectly objective way by comparing the result of our segmentation with the underlying

ground truth. Note that even though these datasets are computer-generated they are very

realistic (see figure 9(b)) Another interesting aspect of this project is that from the same

ground truth, datasets with different levels of noise can be simulated which allows us to

study the robustness of our method with respect to noise. Using the proposed framework,

the authors segmented the lateral ventricle, white matter (WM) and white matter and gray

matter (WM+GM) on 2 datasets:

• Normal brain, T1, 1 × 1 × 1 mm (181 × 181 × 217 voxels), 3% noise, 20% intensity

non-uniformity (”RF”) (standard parameters of the Brain Web model).

• Normal brain, T1, 1× 1× 1 mm (181× 181× 217 voxels), 9%, 40% (highest levels of

noise available).

The results (Table 1) show that the proposed algorithm gives very good results on these

structures (according to [98] DSC > 0.7 is regarded as good agreement in the literature).

The complex structure of the white matter makes its segmentation more challenging and

explains the somewhat mediocre performance (in the case of the maximum noise dataset,

the cerebellum was not perfectly segmented).

In the highest level of noise, connectivity between the lateral and the third ventricles

was lost (the intraventricular foramen of Monro disappeared in the noise). This increased

the strength of the ventricle edges in the noisy dataset and, paradoxically, simplified the

segmentation. Overall the algorithm appears extremely robust to noise.

On the same datasets, Shattuck [104] reports6 DSC = 93% (standard noise) and DSC =

81% (maximum noise) for the white matter. These scores are slightly better than our own

results (DSC = 91.9% and DSC = 80.3% respectively). However it is very important

to keep in mind that there is a trade-off between performance on a specific problem and

6scores are the better of ML and MAP approaches, with no bias fields compensation
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versatility. Our technique was not created specifically for white matter extraction and,

unlike more specialized techniques, it can be used for a very wide variety of structures and

modalities. In summary, the wide applicability of the proposed technique comes at a minor

performance cost vis-à-vis the work of Shattuck [104].

Table 1: Performance measure of proposed technique on artificial dataset. Left bold, with
standard noise, right, with maximum noise

DSC PE µD>0 σD>0 D0.95 D0.99

Ventricle 92.0% 95.1% 14.9% 9.4% 1.07 1.13 0.48 0.61 1.00 1.00 1.00 1.41

WM 91.9% 80.3% 15.0% 32.0% 1.59 2.03 1.58 1.94 1.00 2.83 3.61 8.25

WM+GM 96.2% 95.2% 7.4% 9.2% 1.42 1.40 1.25 1.15 1.00 1.00 1.41 2.00

3.8.2 Real Datasets (N=10)

In this section we use, as the ground truth, the expert manual segmentations of 10 full brains

and brain tumors from the Brain Tumor Database [106]. The semi-automatic segmentation

was performed by a student with no special medical training and no inside knowledge of

the proposed algorithm.

The 10 patients’ heads were imaged in the sagittal and axial plane with a 1.5 T MRI

system7 with a postcontrast three-dimensional sagittal spoiled gradient recalled (SPGR)

acquisition with contiguous slices. The resolution is 0.975×0.975×1.5 mm (256×256×124

voxels). Datasets where manually segmented into 3 regions:

• tumor

• white and gray matter

• other.

Because of inter- and intra-expert variability these results should be expected not to be

as good as in the synthetic case. It should also be noted that the arbitrary conventions of the

manual segmentations are responsible for a lot of the observed error since for example the

ventricle was labeled as gray matter, the medulla oblongata and the spinal cord have been

7Signa, GE Medical Systems, Milwaukee, WI.
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left out etc. (compare Figures 9(a) and 9(c)). Overall, nonetheless, results are consistent

with the artificial case (Tables 2 and 3).

Table 2: Performance measure of proposed technique for white and gray matter segmen-
tation on real datasets

DSC PE µD>0 σD>0 D0.95 D0.99

Mean 88.9% 19.8% 1.79 1.47 2.03 4.91

Std. Dev. 4.0% 6.3% 0.58 0.79 1.52 2.82

Case 1 89.5% 19.0% 1.45 0.87 1.41 3.00

Case 2 90.6% 17.1% 2.29 2.44 2.00 8.25

Case 3 90.9% 16.6% 1.39 0.80 1.41 2.83

Case 4 84.7% 26.5% 1.28 0.79 1.41 3.00

Case 5 93.3% 12.5% 1.58 1.48 1.00 3.00

Case 6 87.0% 23.0% 1.87 1.66 2.24 5.66

Case 7 86.5% 23.8% 1.89 1.68 2.24 6.08

Case 8 81.3% 31.6% 3.15 3.00 6.16 10.67

Case 9 91.4% 15.9% 1.83 0.48 1.00 1.73

Case 10 93.8% 11.8% 1.19 0.48 1.00 1.73

Table 3: Performance measure of proposed technique for tumor segmentation on real
datasets

Tumor Type DSC PE µD>0 σD>0 D0.95 D0.99

Mean – 83.1% 27.6% 1.54 0.88 2.35 3.65

Std. Dev. – 10.9% 15.8% 0.53 0.72 1.73 2.70

Case 1 meningioma 94.6% 10.2% 1.07 0.27 1.00 1.41

Case 2 meningioma 87.2% 22.8% 1.43 0.79 1.73 3.16

Case 3 meningioma 97.5% 4.9% 1.03 0.15 0.00 1.00

Case 4 low grade glioma 84.0% 27.6% 1.51 0.90 2.24 2.24

Case 5 astrocytoma 65.7% 51.1% 1.36 0.56 2.24 3.16

Case 6 low grade glioma 92.1% 14.7% 1.07 0.24 1.00 1.41

Case 7 astrocytoma 88.9% 20.0% 1.16 0.35 1.41 2.00

Case 8 astrocytoma 70.6% 45.4% 2.03 1.49 4.12 6.40

Case 9 astrocytoma 72.7% 42.8% 2.09 1.80 4.36 7.48

Case 10 low grade glioma 77.7% 36.4% 2.61 2.20 5.39 8.25
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(a) Sagittal slice of real dataset
and proposed segmentation
(WM+GM)

(b) Axial slice of artificial dataset
and proposed segmentation (ven-
tricle)

(c) Expert segmentation (gray)
and proposed segmentation
(white)

(d) Underlying ground truth
(gray) and proposed segmentation
(white)

Figure 9: Results of proposed technique on real and noisy simulated datasets (left and
right respectively). Two-dimensional slices are shown, however the processing is performed
on the three-dimensional images. See Figure 10 for corresponding surface renderings.
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(a) Rendered surface of proposed
segmentation (WM+GM)

(b) Rendered surface of proposed
segmentation (ventricle)

Figure 10: Surface renderings of segmented structures. These results correspond to the
slices shown on Figure 9.
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CHAPTER 4

DIRECTION-BASED IMAGE SEGMENTATION

In this chapter we propose a direction based framework for the segmentation of open space

curves as well as closed hypersurfaces. See also [107] and [108].

Image segmentation is set in an optimization framework. This had previously been

proposed in the active contour and LiveWire techniques in which a local cost is defined

based on image information and curves are sought that minimize a total cost obtained by

integrating local costs (Section 4.1, see also Section 2.4 for a more general review). In these

techniques, the cost depends only on position and is typically a decreasing function of some

edge detector. We propose to augment this model with direction information. The global

cost of a structure (a curve or surface) is then computed by integrating the local cost along

the structure using direction information (i.e., the tangent of the curve or the normal of the

surface) (Section 4.2). Optimal structures can be determined using continuous minimization

techniques and efficient algorithms (Section 4.3).

It is known that some neurons in the mammalian (and in particular human) visual

cortex function as detectors of oriented edges. This has been studied extensively by psy-

chophysicists. We show in Section 4.4 that this knowledge of the biological eye-brain system

can be used to define the local cost that will be integrated along the curve (or surface).

This is illustrated on synthetic as well as real images.

Another way to define these local costs is to determine, for every position and every

direction, how much the image locally looks like a known pattern. Structures are then

determined that locally follow this pattern in an optimal way. Conversely, a pattern detector

can be determined that would minimize the global cost of an expert-given structure on a

sample image. After this learning phase, the pattern can be used to determine optimal

structures on previously unseen images. This is detailed and illustrated on examples in

Section 4.5.
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Finally, another application for structure segmentation using direction-dependent local

costs are images that inherently comprise direction information. Diffusion magnetic reso-

nance imagery is one such example and we show in Section 4.6 how the proposed framework

can be used to determine the location of plausible neural tracts from such datasets.

4.1 Related Previous Work

4.1.1 Conformal Active Contour

Active contours have been very popular for image segmentation. In particular, in the

conformal (or geodesic) active contour model (see [74, 75] as well as Section 2.4.4) a local

cost, ψ : Rn → R+∗ is defined based on image information. For a given curve Γ the total

cost E(Γ) is defined as the integration of local costs along the curve:

E(Γ) ,
∫

Γ
ψ(Γ) ds. (64)

This energy can be interpreted as the ψ-weighted length of the curve. Minimal curves

will therefore tend to go through regions where ψ is small while at the same time keeping

their total length as small as possible (in particular since the local costs are strictly positive

everywhere the curve cannot develop some sort of fractal behavior since that would result

in a higher weighted-length and hence higher cost). It is important to note that s is the

arc-length parameterization and this energy is purely geometric (see Section 2.4.4).

If the curve (or surface) is closed1, a partial differential equation is obtained by calculus

of variations that continuously deforms an initial curve Γ(t = 0) (or surface Σ(t = 0)) in a

way that optimally minimizes its total cost E . This can be interpreted as a gradient descent

on the infinite dimensional space of curves (or of surfaces).

In the case of the functional (64), the PDE that deforms a given curve in order to

minimizes the energy as fast as possible in a L2 sense is

∂Γ
∂t

= −∇ψ + ψΓss. (65)

1or, in the case of the curve, if the end points are fixed
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The local cost is typically some decreasing function of some edge detector. A classical

choice is

ψ(p) =
1

1 + |∇I| . (66)

4.1.2 LiveWire

Mortensen et al. [109] had previously proposed the Live-Wire segmentation technique that

also determines optimal curves for the same kind of functional. Their framework is based

on Dynamic Programming and is applicable to open curves with one end fixed on a given

seed region S.

The underlying principle of Dynamic Programming is the principle of optimality verified

by minimum-cost problems such as (64). The principle is that any sub-path p of an optimal

path P is itself optimal (otherwise the P could be improved by following another sub-path

p′ instead of p). This leads to the definition of the value function E∗ which is the minimal

cost to reach the seed region S from any point p of the domain.

E∗(p) , min{ E(Γ),Γ(0) = p,Γ(1) ∈ S }

In problems such as (64), the value functions satisfies the Eikonal equation |∇E∗(p)| =
ψ(p) with boundary condition E∗ = 0 on S. This equation can be solved numerically using

the Fast Marching algorithm [96, 23]. or can be discretely approximated using Dijkstra’s

algorithm.

From any point in the domain an optimal curve in the sense of (64) can then be deter-

mined by gradient descent on the scalar field E∗.

4.2 Direction-based Image Segmentation Framework

In both techniques presented in Section 4.1, segmentation is set in an optimization frame-

work and the cost is not directly defined using the image but rather using the positive

scalar field ψ. The global cost of a curve is defined by the ψ-weighted length of curves (or

ψ-weighted area of hypersurfaces in higher dimensions). If this conformal factor ψ is an

edge detector then locally optimal curves will lay on top of the edges of the image. In fact,
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ψ could be defined by any general pattern detector. A strong constraint however is that the

previously described framework does not incorporate direction information and the pattern

detector must therefore be independent from rotations of the image. This is for example

the case in (66) where the norm of the gradient is used to determine the strength of the

edge but the direction of the gradient (and therefore that of the edge) is ignored.

We propose to extend the conformal active contour and LiveWire technique to direc-

tional data by considering direction-dependent local costs of the form2 ψ : Rn×Sn−1 → R+.

As previously, the total cost of a curve can be determined by weighting its length with

the local cost ψ, which will be a function not only of the position of the curve Γ but also

of the direction of its unit tangent T̂:

E(Γ) ,
∫

Γ
ψ(Γ, T̂) dΓ. (67)

Similarly, the total cost of a closed hypersurface can be determined by weighting its

surface-area with the local cost ψ as a function of the position of the surface Σ and the

direction of its unit normal N̂:

E(Σ) ,
∫

Σ
ψ(Σ, N̂) dΣ. (68)

In the conformal active contour framework, the cost of a given curve (or surface) is

defined to be the length of the curve (the area of the surface) locally weighted by an

image-dependent scalar field. This scalar field is defined to be small at the edges of the

image and therefore the total cost of a curve is small if and only if it lies as much as

possible on the edges of the image. Starting from some user-determined curve, an evolution

is obtained (by gradient descent, using calculus of variations) that deforms the curve to

minimize the total cost. It is important to understand that using this technique, only

a local minimum of the cost functional is obtained. This is actually desirable since the

global minima of the cost functional are trivial (they are the degenerate curves of zero

length, whose weighted length will also be zero). In order to guarantee the cost functional

2A position p in the n-dimensional space Rn is written in bold, and a hat denotes a direction d̂ of the
unit sphere Sn−1.
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will not have too many local minima, the local edge-weighting is spatially smoothed. In

this formulation orientation is not taken into account and therefore smoothing has to be

performed isotropically.3 This means that, when considering how to deform a curve based

on local information, no difference can be made between the processing of image information

that is a little bit further away along the curve and the processing of image information that

is a little bit further away normal to the curve. In the case of a surface, image information

inside and outside the surface (and in fact also along the surface) have to be treated in

exactly the same manner. In contrast, in the proposed framework, the length of the curve

(or area of the surface) is weighted based on the location and the direction (of the unit

tangent in the case of the curve, of the unit normal in the case of the surface).

4.3 Minimization

In this section we present two different techniques for determining optimal structures. In the

first technique (Section 4.3.1), the first variation of the energy with respect to the structure

is determined and subsequently used to determine an optimal minimizing deformation. This

technique can be applied to curves and surfaces. It necessitates some initial guess and can

lead to a local minimum. This technique constitutes an extension of the one described in

Section 4.1.1.

The second technique (Section 4.3.2), is based on the ideas presented in Section 4.1.2.

The principle of optimality is used to define an auxiliary value function which can be solved

for numerically and from which optimal curves can be determined. This techniques only

applies to open space curves and will always result in global minima.

The problem of determining a meaningful direction-dependent local cost ψ from an

image I will be tested in sections 4.4, 4.5 and 4.6.

3Anisotropic smoothing could be performed but it would have to be independent from the curve or surface.
That would not be natural since some direction of space would be privileged and the overall segmentation
scheme would cease to be rotation-invariant.
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4.3.1 Gradient Descent

One way to minimize functionals such as (67) or (68) is to analyze the variation of the energy

for an infinitesimal variation εν. For example, in the case of a curve, if the extremities of

the curve are fixed, this can be written

lim
ε→0

E(Γ + εν)− E(Γ)
ε

=
∫

Γ
ν.α ds.

The optimal way to decrease the energy is therefore to perturb Γ by −α, i.e., to flow

Γt = −α from some initial curve Γ(t = 0). At steady state, Γ will be a local minimum of

E . As in the non direction-dependent case, in order to limit the number of local minima of

the functional E , the local cost ψ has to be smooth. If that is not the case, the evolution

might converge very rapidly to some undesired local minimum. In that case, some explicit

smoothing of ψ needs to be introduced, for example by convolving it with some Gaussian

kernel.

4.3.1.1 Curves

Consider the energy defined by Equation (67) as

E(Γ) ,
∫

Γ
ψ(Γ,Γs) ds,

where s denotes arc-length.

Choosing a parameterization p, of the curve, we compute the first variation for a per-

turbation Γt.

∂E
∂t

=
∂

∂t

∫ 1

0
ψ(Γ,

Γp

|Γp|)|Γp| dp

=
∫
∇pψ.Γt|Γp|︸ ︷︷ ︸

I1

+∇d̂ψ.(
∂

∂t

Γp

|Γp|)|Γp|
︸ ︷︷ ︸

I2

+ ψ
∂

∂t
|Γp|

︸ ︷︷ ︸
I3

dp
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where ∇pψ and ∇d̂ψ are the gradients of ψ with respect to position and direction

respectively. Note that ∇d̂ψ is an element of the tangent space TΓsSn−1. We will consider

that it is an element of Rn with zero component along the unit tangent T = Γs.

Our goal is to write the variation as Et =
∫

Γt.β|Γp| dp which will correspond to the

optimal energy increasing evolution Γt = β.

The first term I1 is already in the right form. We will now work independently on the

second and third terms I2 and I3.

I2 =
∫
∇d̂ψ.(

∂

∂t

Γp

|Γp|)|Γp| dp

using ∂
∂t

Γp

|Γp| = (Id−ΓsΓt
s)Γp,t/|Γp| and omitting the projection since ∇d̂ψ is normal to Γp,

I2 =
∫
∇d̂ψ.Γp,t dp

integrating by parts, (the boundary terms ∇d̂ψ(Γ(0)).Γt(0) and ∇d̂ψ(Γ(1)).Γt(1) vanish

since the extremities of the curve are fixed),

I2 =−
∫

Γt.
∂

∂p
∇d̂ψ dp

using ∂
∂p = |Γp| ∂

∂s ,

I2 =−
∫

Γt.|Γp| ∂

∂s
∇d̂ψ dp

Similarly, the third term can be re-written:

I3 =
∫

ψ
∂

∂t
|Γp| dp

=
∫

ψ
∂

∂t

√
Γp.Γp dp

=
∫

ψ
Γp,t.Γp + Γp.Γp,t

2
√

Γp.Γp

dp

=
∫

ψΓp,t.Γs dp

66



integrating by parts, (the boundary terms vanish as before because Γ(0) = Γ(1) = 0.)

I3 =−
∫

Γt.
∂

∂p
(ψΓs) dp

=−
∫

Γt.|Γp| ∂

∂s
(ψΓs) dp

=−
∫

Γt.|Γp|{ (∇pψ.Γs)Γs + (∇d̂ψ.Γs,s)Γs + ψΓs,s } dp

Since ∇d̂ψ is normal to Γs, it is unchanged when projected on the subspace orthogonal

to Γs. This projection is denoted PΓ⊥s and can be written in matrix form as (Id− ΓsΓt
s).

∇d̂ψ =(Id− ΓsΓt
s)∇d̂ψ

∂

∂s
∇d̂ψ =

∂

∂s
{ (Id− ΓsΓt

s)∇d̂ψ }

=(Id− ΓsΓt
s)

∂

∂s
∇d̂ψ − Γs,sΓt

s∇d̂ψ − ΓsΓt
s,s∇d̂ψ

since ∇d̂ψ is normal to Γs, only the first and last term remain,

=(Id− ΓsΓt
s)

∂

∂s
∇d̂ψ − (Γs,s.∇d̂ψ)Γs

Finally, the three terms can be combined to write,

Et(Γ) =I1 + I2 + I3

=
∫

Γt.{ (Id− ΓsΓt
s)(∇pψ − ∂

∂s
∇d̂ψ)− ψΓs,s }|Γp| dp

=
∫

Γ
Γt.{ (Id− ΓsΓt

s)(∇pψ − ∂

∂s
∇d̂ψ)− ψΓs,s } ds

Using the Cauchy-Schwarz inequality, the geometric deformation Γt that optimally de-

creases the energy E(Γ) (in a L2 sense) is therefore:

Γt = −PΓ⊥s (∇pψ − ∂

∂s
∇d̂ψ) + ψΓs,s. (69)

This evolution is similar to that of the non direction-dependent conformal active contour

with the addition of the term: PΓ⊥s ( ∂
∂s∇d̂ψ). See Section 4.3.1.5 for interpretation.
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4.3.1.2 Implementation of the Curve Evolution

A particle-based approach can be used to evolve an open space curve according to Equa-

tion (69). Derivatives can be approximated by fitting a spline to these marker particles.

If the parameterization of the spline is chosen such that ti+1 − ti = ‖pi+1 − pi‖ then the

parameterization t will approximate the arc-length parameterization s. The derivatives will

therefore approximate the derivatives with respect to arc-length, which will alleviate the

problem of uneven particle sampling on the curve.

In this work, the adaptive time-step RK45 numerical integration scheme [110] was used.

4.3.1.3 Surfaces

Consider the energy defined by Equation (68) as:

E(Σ) ,
∫

Σ
ψ(Σ,N) dΣ.

Choosing a parameterization (p1, . . . , pn−1) of the surface, we want to determine the

variation of E(Σ) for an evolution of the form Σt = αN. Since the geometry of Σ is only

affected by deformations along the normal N, this does not result in loss of generality.

Using the notation Σi , ∂Σ
∂pi

, let the vector w be the cross product of the partial

derivatives w , Σ1 ∧ · · · ∧Σn−1 such that the unit normal is N = w/|w|.

∂E

∂t
=

∂

∂t

∫

p
ψ(Σ,N)|w| dp

=
∫
∇pψ.Σt|w|︸ ︷︷ ︸

I1

+∇d̂ψ.Nt|w|︸ ︷︷ ︸
I2

+ψ
∂

∂t
|w|

︸ ︷︷ ︸
I3

dp

where ∇pψ and ∇d̂ψ are the gradients of ψ with respect to position and direction

respectively. Note that ∇d̂ψ is an element of the tangent space TNSn−1. In order to avoid

technicalities we will consider that it is an element of Rn with zero component along N .
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For a geometric deformation of the form Σt = αN, our goal is to write the variation as

Et =
∫
p αβ|w| dp. The optimal energy-increasing evolution will then be obtained by taking

α = β.

The first term I1 is already in the right form. We will now work independently on the

second and third terms I2 and I3.

I2 =
∫
∇d̂ψ.Nt|w| dp

using Nt = (Id−NNt)wt/|w|, and ∇d̂ψ.N = 0 (i.e., as in the previous calculation, ∇d̂ψ is

an element of TNSn−1 but we will consider that it lives in Rn with zero component along

N), we get

I2 =
∫
∇d̂ψ.wt dp

using the multi-linearity of the wedge product and introducing the notation w(k : v) ,

Σ1 ∧ . . . ∧ Σk−1 ∧ v ∧ Σk+1 ∧ . . . ∧ Σn−1 (this is a version of w where the kth vector in

the wedge product was replaced by v ; note that if n = 2 this reduces to w(1 : [x1 x2]t) =

perp[x1 x2]t = [−x2 x1]t.), we get,

I2 =
∫ n−1∑

k=1

∇d̂ψ.w(k : Σk,t) dp

the dot product of ∇d̂ψ and the wedge product can be interpreted as a determinant, using

the antisymmetry,

I2 =−
∫ n−1∑

k=1

Σk,t.w(k : ∇d̂ψ) dp

integrating by parts (the surface being closed, the boundary conditions vanish),

I2 =
∫ n−1∑

k=1

Σt.
∂

∂pk
w(k : ∇d̂ψ) dp

when computing the partial derivative of the wedge products, all terms containing second

derivatives Σi,j of the surface cancel out for i 6= j and we are left with

I2 =
∫ n−1∑

k=1

Σt.w(k :
∂

∂pk
∇d̂ψ) dp
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if we write d∇d̂ψ = (βi,j) in the basis (Σ1,Σ2, · · · ,N) then since ∂
∂pk
∇d̂ψ is wedged with

all Σl for l 6= k, then only the component βk,k will not cancel out.

I2 =
∫ n−1∑

k=1

Σt.w(k : βk,kΣk) dp

then, using the multi-linearity of the wedge product and the fact that w(k : Σk) = w,

I2 =
∫ n−1∑

k=1

Σt.βk,kw dp

finally, since Σt = αN and N.w = |w|,

I2 =
∫ n−1∑

k=1

αβk,k|w| dp

=
∫

α trace( d∇d̂ψ )|w| dp

where trace( d∇d̂ψ ) is the trace of the linear map d∇d̂ψ : TNSn−1 → TNSn−1.

Similarly, the third term can be written

I3 =
∫

ψ
∂

∂t
|w| dp

=
∫

ψ
∂

∂t

√
w.w dp

=
∫

ψ
wt.w + w.wt

2
√

w.w
dp

=
∫

ψwt.N dp

as before,

I3 =
∫

ψ
n−1∑

k=1

w(k : Σk,t).N dp

which is a determinant, and, by antisymmetry,

I3 =−
∫

ψ
n−1∑

k=1

w(k : N).Σk,t dp
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by parts (the boundary conditions vanish since the surface is closed)

I3 =
∫

Σt.
n−1∑

k=1

∂

∂pk
ψw(k : N) dp

since Σt = αN, and the normal N appears in the wedge product, it will have to be derived

in order to result in a non zero dot product,

I3 =
∫

αN.
n−1∑

k=1

ψw(k :
∂

∂pk
N) dp

as before, if we express dN = (γi,j) in the basis (Σ1, · · ·Σn−1,N) then

I3 =
∫

αN.

n−1∑

k=1

ψw(k : γk,kΣk) dp

=
∫

αN.
n−1∑

k=1

ψγk,kw dp

=
∫

αψ trace( dN )|w| dp

Note: dN is the shape operator and its trace is (n−1)H where H is the mean curvature

of the surface (note that there is a sign difference with the definition in [111] due to the fact

that in this work outward normals will be used).

Finally, the three terms can be combined to write, for an evolution of the form Σt = αN,

Et(Σ) =
∫

p
α{ ∇pψ.N + trace( d∇d̂ψ ) + ψ trace( dN ) }|w| dp

=
∫

Σ
α{ (∇pψ).N + trace( d∇d̂ψ ) + ψ trace( dN ) } dΣ

The geometric deformation Σt that optimally decreases the energy E(Σ) is therefore:

Σt = −{ ∇pψ.N + trace( d∇d̂ψ ) + (n− 1)ψH }N, (70)

where n is the dimension of the spatial domain, H is the mean curvature and N is the

outward normal.

As in the case of the curve, this is similar to the non direction-dependent case with the

addition of the term −trace( d∇d̂ψ )N, which can be interpreted as a realigning term. For

dimension n = 2, the argument is similar to that of the curve case and more insights are

also available in Section 4.3.1.5.
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4.3.1.4 Implementation of the Surface Evolution

Evolving closed hypersurfaces is numerically easier than evolving space curves thanks to

the levelset technique developed by Osher [112] and Sethian [23]. An auxiliary level set

function u is defined such that the surface Σ corresponds to the zero levelset of u:

Σ = { p, u(p) = 0 } (71)

Therefore, by construction, u(Σ) = 0. Differentiating this relation with respect to the

artificial time parameter t, we obtain

ut(Σ) +∇u(Σ).Σt = 0. (72)

The deformation Σt is given by Equation (70). The only difficulty is that (72) only

defines the evolution of the level set function u on the surface Σ. This is due to the fact

that Σ is the only location where u is properly defined by (71). The speed term Σt therefore

has to be defined on the complete domain in a process known as velocity extension.

Geometric quantities such as the normal N or mean curvature H (that are needed to

define Σt) can be computed on the curve from the level set function u.

Equation (72) together with Equation (70) can be written as a transport equation

ut(p) +∇u(p).ṽ(p) + (n− 1)ψ̃Hu = 0. (73)

where the tilde denotes quantities smoothly extended from Σ to the whole domain, for

example by solving the transport equation





ψ̃ = ψ on Σ

∇ψ̃.∇u = 0 everywhere else

Note that the mean curvature Hu is not extended and that a proper upwinding scheme

should be employed to handle shocks. A detailed discussion of these issues can be found

in [112].
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4.3.1.5 Synthetic two-dimensional examples

In order to gain some understanding of the new directional terms we will consider a simple

synthetic example in dimension n = 2. In order to isolate the influence of directionality, we

consider a cost that does not depend on position, for example:

ψv(p, d̂) = 1.0− 0.5 ∗ exp(−0.5 ∗ (cos−1(d̂.v))2/0.32) (74)

The minimal value of this cost is 0.5, reached for d̂ = v. The value of the cost approaches

1 for other directions.

Note that in dimension n = 2, an hypersurface is a closed curve. Therefore Equa-

tions (70) and (69) will have exactly the same effect. The only subtelty is that the direction

provided to the local cost is the normal in the surface case, Equation (70) and the tangent

in the curve case, Equation (69). Therefore in order to obtain the same deformation, the

two local cost have to be defined with a rotation of π
2 , see Figures 11.a and 11.c.

As an example, consider the unit circle. Figures 11.b and 11.d represent the directional

gradient of the local cost. Since this can be interpreted as the direction in which to rotate

the tangent (resp. the normal) in order to increase the local cost, we represent the gradient

at the tip of the unit tangent (resp. the normal). The norm of the gradient in the two case

is the same (on the figures it has been scaled differently for visualization purposes). Let the

function f be such that:

∇d̂ψ1(Γ,T) = fN (75)

or equivalently

∇d̂ψ2(Γ,N) = −fT (76)

The additional term resulting from the dependence on direction in Equation (69) is:
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PΓ⊥s (
∂

∂s
∇d̂ψ1) = PΓ⊥s (

∂

∂s
fN)

= PΓ⊥s (f ′N− fκT)

= f ′N

or equivalently, in the hypersurface case, d∇d̂ψ2 is the 1× 1 matrix [−f ] and therefore

the directional term in Equation (70) is also:

−trace( d∇d̂ψ2 )N = −trace( d(−f))N

= f ′N

Function f and its derivative f ′ are represented on Figure 11.e. The deformation

PΓ⊥s ( ∂
∂s∇d̂ψ1) = −trace( d∇d̂ψ2 )N = f ′N is represented and applied to the initial curve.

Its effect is to realign the curve locally the curve with the prefered direction. Note that

the realigning occurs where the norm of the directional gradient is maximal. This is were

sensitivity is maximal for the local cost and therefore were the optimal deformation in a L2

sense focuses.

Figures 12 and 13 present the result on a smaller portion of the unit circle, as well as

yet another piece of the unit circle for which the direction of the normal has been inverted

(this would therefore correspond to an hpersurface patch with negative curvature). In all

cases, the curve is realigned with the prefered horizontal direction.
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∇d̂ψ1 (thin), projection

using PΓ⊥s and resulting
deformed curve (thick)

Figure 11: Synthetic two-dimensional example (circle). The effect of the new directional
term is to realign the curve with the prefered direction (here right).
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Figure 12: Synthetic two-dimensional example (portion of circle, compare to Figure 11).
The effect of the new directional term is to realign the curve with the prefered direction
(here right).
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using PΓ⊥s and resulting
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Figure 13: Synthetic two-dimensional example (portion of curve with negative curvature,
compare to Figure 12). The effect of the new directional term is to realign the curve with
the prefered direction (here right).
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Another interesting experiment in order to compare the proposed direction-dependent

framework to the non direction dependent framework we let two closed curves (initially

a circle and a bean-shaped curve) evolve according to the minimizing flow derived in the

previous sections.

Since the examples are for dimension n = 2, hyper-surfaces are closed curves and Equa-

tions (70) and (69) are equivalent.

In order to isolate the effect of direction information we study local costs that do not

depend on position but only on the direction N = [n1n2]t:

1. ψ = 1

2. ψ = max( 1√
2
|n1 + n2|, 1√

2
|n2 − n2|)3/0.75

3. ψ = max(|n1|, |n2|)3/0.75

The first cost is isotropic. In that case, the global cost of the curve is its Euclidean length

and the minimizing flow is the classical Euclidean curvature flow [24, 25, 26, 27, 28, 29].

This flow shrinks any planar shape into a smaller and smaller circle. The vanishing point

is the global minimum of any weighted-mean global cost because the Euclidean length of

such a curves converges to 0. This is visible on the first column of Figures 14 and 15.

The second and third costs are defined using direction information. In particular, the

second cost favors portions of the curve that are either horizontal or vertical. The third

costs does exactly the opposite and favors portions of the curve that are diagonal. The

corresponding evolutions can be observed on the second and third columns of Figures 14

and 15. The influence of direction information is very visible in that the curves no longer

deform into a vanishing circle. The existence of preferred (less expensive) directions is very

visible. For example the circle deforms into a rounded square. In effect, for that direction-

dependent local cost, the rounded square is more economical than the sphere. Note that

this rounded square will also shrink to a point which is still a global minimum of the global

cost.
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Figure 14: Synthetic two-dimensional example. These three different local cost depend
only on direction. They are represented as polar plots (first row). The corresponding
deforming shapes are presented on the following rows (black). The initial curve (gray
dashed) is a circle. See text.
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Figure 15: Synthetic two-dimensional example. These three different local cost depend
only on direction. They are represented as polar plots (first row). The corresponding
deforming shapes are presented on the following rows (black). The initial curve (gray
dashed) is bean-shaped. See text.
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4.3.2 Dynamic Programming

As in the isotropic case, given a seed region S ⊂ Rn, the value function E∗(p) is defined to

be the minimum cost over all curves between p and S.

If the local cost ψ depends only in position and not on direction, then, as discussed in

Section 4.1.2, the value function E∗ satisfies the Eikonal equation |∇E∗| = ψ. If the local

cost depends not only on position but also on direction, then the value function E∗ satisfies

the Hamilton-Jacobi-Bellman equation

max
d̂∈Sn−1

{ ∇E∗(p).d̂− ψ(p, d̂) } = 0. (77)

Consider the optimal control problem of determining a trajectory p : [0, 1] → Rn that

is optimal with respect to the functional

J(p(·),u(·)) =
∫ 1

0
L(p(t),u(t)) dt.

The control u(·) is defined by:
∂p
∂t

(t) = u(t)

For any given starting point p0, define the value function as the minimum cost for

reaching a seed region S ⊂ Rn from p0.

J∗(p0) = inf
u(·),p(0)=p0,p(1)∈S

J(p(·),u(·))

This problem satisfies Bellman’s principle of optimality which states that if p∗(·) is

an optimal trajectory then all sub-path are also optimal. This can be expressed by the

following relation:

J∗(p0) = inf
u(·),p(0)=p0,p(1)∈S

{
∫ r

0
L(p(t),u(t)) dp + J∗(p(r)) }

This means that if an optimal trajectory p∗(·) is found such that p∗(0) = p0 and

p∗(1) ∈ S then, for any r ∈]0, 1[ the sub-trajectories p∗|[0,r] and p∗|[r,1] are also optimal.

See [113] for a detailed proof.
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Assuming that all functions are sufficiently smooth and differentiating with respect to

r → 0

0 = inf
u(0)

{ L(p(0),u(0)). +∇J∗(p(0)).pt(0) }

Using pt = u and p(0) = p0, the Hamilton-Jacobi-Bellman equation is obtained:

0 = inf
u(0)

{ L(p0,u) +∇J∗(p0).u } (78)

In general the value function may not be differentiable. In that case the differential

equation (78) holds in the sense of viscosity theory. See [114].

This can be applied to cost functionals of the form

E(Γ) =
∫ L(Γ)

0
ψ(Γ(s),Γs(s)) ds (79)

=
∫ 1

0
ψ(Γ(t),Γt(t)/|Γt(t)|)|Γt(t)| dt,

where s is arclength, L(Γ) is the complete length of the curve and t is some other parame-

terization.

The resulting Hamilton-Jacobi-Bellman equation is

0 = inf
Γt(0)

{ ψ(Γ(0),Γt(0)/|Γt(0)|)|Γt(0)|+∇E∗(Γ(0)).Γt(0) }

finally,





0 = inf
d̂∈Sn−1

{ ψ(p, d̂) +∇E∗(p).d̂ }

E∗(s) = 0 for s ∈ S.

(80)

This equation can be solved numerically [115, 116, 117]. From any point p0 ∈ Rn, an

optimal path in the sense of (79) can then be determined by following locally the vector d̂∗

for which the minimum is attained in (80).

The algorithm sweeps through all points p in search of the least expensive direction.

The cumulated cost to reach p from direction d̂ is fE∗,ψ(p, d̂) , (
∑n

k=1 αkE∗(p + δk) +
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Algorithm 3: Sweeping algorithm to solve the Hamilton-Jacobi-Bellman equation (80),
see [116]
Require: seed region S, direction-dependent local cost ψ
1: Initialize E∗(·) ← +∞, except at starting points s ∈ S where E∗(s) ← 0
2: repeat
3: sweep through all voxels p, in all possible grid directions
4: d̂′ ← arg mind∈Sn−1 fE∗,ψ(p, d̂)
5: if fE∗,ψ(p, d̂′) < E∗(p) then E∗(p) ← fE∗,ψ(p, d̂′) and d̂∗(p) ← d̂′ end if
6: end sweep
7: until convergence of E∗
8: return value function E∗, characteristics d̂∗

Note: as explained in [116] Step 3 can be written in C as:
for(w1=-1;w1<=+1;w1+=2)

for(w2=-1;w2<=+1;w2+=2)
for(x1=(w1<0?nx1:0);(w1<0?x1>=0:x1<=nx1);x1+=w1)

for(x2=(w2<0?nx2:0);(w2<0?x2>=0:x2<=nx2);x2+=w2)

ψ(p, d̂))/(
∑n

k=1 αk), where the n neighbors4 p + δ1, . . . ,p + δn of p in direction d̂ are

interpolated using the components of the vector α , [δ1 | . . . | δn]−1d̂. For example, if

d̂ = δk/‖δk‖ (i.e., d̂ points directly at one of the neighboring voxels) then f = E∗(p+δk)+

ψ(p, d̂)‖δk‖. which is the cost for reaching voxel p from voxel p + δk. This same quantity

would be computed in Dijkstra’s algorithm. Unlike Dijkstra’s algorithm however, the search

for the optimal direction is not restricted to discrete grid directions. and the minimization

is performed continuously over the sphere Sn−1. In our implementation the minimization is

performed over 100 directions sampled uniformly on the sphere 5 and the coefficients α(d̂)

are pre-computed.

4.4 Links to Biological Vision

4.4.1 Model of Direction-sensitive Neurons of the Visual Cortex

In a classical neuroscience experiment, Hubel and Wiesel [118, 119] showed that the spike

rate of single neurons in particular areas of the visual cortex in response to drifting oriented

4in three dimensions, this is n = 3 neighbors among 26.
5for the algorithm to initialize properly, discrete grid directions have to be present
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luminance bars and/or drifting luminance spots is strongly dependent on orientation. These

results were later confirmed by many other researchers [120].

A linear model for the processing of such cells was proposed by Gaugman [121] that

uses some sort of modulated Gabor function.

g(x, y) = exp(
x′2 + γ2y′2

2σ2
) cos(2π

x′

λ
+ φ)

While it is clear to the neuroscience community that the processing of such cells is not

purely linear, the model corresponds very well to experimental data [122], see Figure 16.

This model has been used to detect edges and texture in image processing [123, 124].

(a) Experimental measure (b) Mathematical model using Gabor win-
dows

Figure 16: Measured receptive field of visual neuron and mathematical model,
from [jones1987], see text.

In our case the pattern will be rotated in the direction of the outward normal N. A

curve will therefore be optimum if it corresponds to the boundary between a dark region

(inside) and a bright region (outside), see Figure 17.

4.4.2 Examples

This technique was applied to synthetic examples and real examples.
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Figure 17: The total cost of a curve can be obtained by aligning the biologically-inspired
pattern detector (see Figure 16, the positive and negative Gabor windows are represented
here as bright and dark ellipses) with the normal of the curve and integrating along the
curve. The cost is therefore low for the boundary of a dark region on a bright background.

4.4.2.1 Synthetic Images

In the synthetic case, if the closed surface Σ (here for n = 2, Σ is a closed planar curve)

is initialized halfway between a dark and bright spot, it will, when deformed according to

Equation (70) in order to minimize the total cost (68), be pushed away from the bright

spot and match closely the boundaries of the dark spot that will be the steady state of the

curve, see Figure 18.

If for the same image, intensities are reversed (such that the dark spot become the

bright spot and vice-versa), then the steady state of the evolving curve corresponds to the

boundaries of the other spot, see Figure 19.

Implementation with level sets (see Section 4.3.1.4) allows for changes in topology. For

example, Figure 20 illustrates the breaking of a closed planar curve into two closed pla-

nar curves in order to capture the boundaries of two disconnected darks spots in another

artificial image.
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(a) Initial contour (b) Evolving contour

(c) Evolving contour (d) Steady state

Figure 18: Contour evolution on a synthetic example. The local cost is biologically inspired
(see Section 4.4). The contour captures the dark region on the bottom left. Compare to
Figure 19.
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(a) Initial contour (b) Evolving contour

(c) Evolving contour (d) Steady state

Figure 19: Contour evolution on a synthetic example. The contour captures the dark
region on the top right. Compare to Figure 18.
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(a) Initial contour (b) Evolving contour

(c) Evolving contour (d) Steady state

Figure 20: Contour evolution on a synthetic example. The evolving contour changes
topology.
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4.4.2.2 Real Images

When applied to real images, the proposed technique results in good segmentations in

noisy images that would have been very challenging for previously proposed surface-based

active contours. For example, see Figure 21 for the evolution of the contour on a real

ultrasound image of the heart’s left ventricle and Figure 22 on an ultrasound image of

a breast cyst. The segmentation of these noisy ultrasound images would typically have

necessitated a region-based technique in which all information inside the evolving contour

is used. Instead in the proposed approach only information near the curve is used. Thanks

to the presence of direction information, it is possible to discriminate between the inside and

the outside of the curve and favor, for example here, a dark inside and a brighter outside. In

previously proposed surface-based active contours, this information is not present and the

immediate inside and outside of the curve must therefore be treated symmetrically which

is very detrimental to the segmentation process.

While it is surface-based (the functional only involves integration on the surface Σ and

not on the volume it encompasses) the proposed framework shares with region-based tech-

niques the ability to discriminate between the inside and outside of the contour. Moreover,

unlike previously proposed region-based techniques, the proposed framework can discrimi-

nate between information that is just on the outside of the curve or outside but relatively

far away from the curve. This can prove to be very desirable on real images. For example,

a typical region-based energy could be E(Σ) = Hinside(Σ) + Houtside(Σ) where H is some

measure of the homogeneity of the image inside and outside Σ. While it might make sense

to look for regions that are homogeneous inside, unless the image only contains one object

on a uniform background, there is no reason to expect the outside to be also uniform. For

example, when segmenting some brain structure such as the ventricle in an MRI dataset,

the outside of that structure is itself composed of many different regions and it seems hardly

justifiable that far away outside information such as say, gray levels in the region of the jaw,

would play any role at all. In contrast, the proposed framework can use image information

differently based not only on the binary fact that it is inside or outside but also on how far
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away from the curve it is. In this way the processing can be limited to local information

around the curve.

(a) Initial contour (b) Evolving contour

(c) Evolving contour (d) Steady state

Figure 21: Contour evolution on a real ultrasound image of the heart’s left ventricle.
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(a) Initial contour (b) Evolving contour

(c) Evolving contour (d) Evolving contour

(e) Evolving contour (f) Steady state

Figure 22: Contour evolution on real ultrasound image of a breast cyst.
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4.5 Links to Pattern Detection

In this section we propose to construct the conformal factor from some local pattern detector

and propose a particular pattern detector inspired by image matching as well as a variational

learning procedure.

4.5.1 Defining the Local Cost Using a Pattern Detector

The direction-dependent local cost ψ(p, d̂) can be obtained by translating the image by −p

and applying a direction-dependent pattern detector Φ.

More precisely, if a direction-dependent pattern detector is available of the form

Φ : Sn−1 × (Rn → Rp) → R+∗,

then the local cost can be obtained by

ψ(p, d̂) , Φ(d̂, I ◦ T−p),

where T−p is the translation by vector −p and the image is a map I : Rn → p.

Such a direction-dependent pattern can in turn be constructed by applying a regular

pattern detector on a rotated image. This construction is illustrated on Figure 23.

For example, the local cost used in Section 4.4 could be constructed from the following

pattern detector:

Φd̂(I) = exp
∫

Rn

I(p)(Gd̂(p + d̂)−Gd̂(p− d̂)) dp,

where the exponential ensures that Φ is always positive and G is a Gabor function of

the form

Gd̂(x) = αxtd̂d̂tx + βxtx.

4.5.2 Properties

If the image and the pattern detector are smooth then the local cost is also smooth and the

proposed construction verifies the following properties:
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(a) The local cost ψ(x, d̂) is the output of a
pattern detector Φ that has been centered
at position x and rotated in direction d̂.

(b) The global cost of a curve is then the
integration of the output of the pattern de-
tector along the curve.

Figure 23: The local cost ψ (and therefore also the global cost E) can be constructed from
a general pattern detector.

• Continuity with respect to the curve

(Γ′ → Γ) ⇒ (E(Γ′, ψI) → E(Γ, ψI)) (P1)

Human experts typically do not agree perfectly on the position of a certain feature.

It is important to capture the inherently fuzzy nature of segmentation.

• Continuity with respect to the image

(I ′ → I) ⇒ (E(Γ, ψI′) → E(Γ, ψI)) (P2)

The presence of (limited) noise on the image should not impact drastically the seg-

mentation result.

• Invariance with respect to Euclidean transformations

∀T Euclidean Rn → Rn, E(Γ, ψI◦T ) = E(T ◦ Γ, ψI) (P3)

The image is not assumed to be oriented in a meaningful way.
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Moreover, if the pattern detector is local, i.e., if it only utilizes information within a

finite radius6 then the following additional property is fulfilled:

• Locality of information employed

∃r0 > 0, ∀Γ, ∀I, I ′, (∀x ∈ Rn, d(x,Γ) < r0 ⇒ (I(x) = I ′(x)) ⇒ (E(Γ, ψI′) = E(Γ, ψI))

(P4)

4.5.3 Learning

We propose to use a parametric model for the pattern detector Φ. If the image is expressed

in cylindrical coordinates I(l, r,θ) where l is the abscissa along the axis ê1 we define

Φ(I) ,
∫

l

∫

r

∫

�
[I(l, r,θ)− µ(l, r)]tΣ−1(l, r)[I(l, r,θ)− µ(l, r)] dn−2θ rn−2 dr dl.

This can be interpreted as a Mahalanobis distance with a mean vector field µ : Rn → Rp

and a positive semi-definite covariance matrix field Σ : Rn → S+(Rp). In order to satisfy

the locality property (P4), set Σ−1(l, r) = 0 for l and r larger than some constant r0. In

order to satisfy the continuity properties, (P1) and (P2) the fields have to be continuous.

Given a sample image I for which the optimal curve Γ∗ is given (for example by a human

expert), define the optimal conformal factor:

ψ∗I , arg min
ψI

E(Γ∗, ψI)− EΓ{ E(Γ, ψI) }+ R(ψI), (81)

where R is some regularizing term that ensures that ψI remains regular and the ex-

pectancy EΓ{·} is taken on all curves of same length as Γ∗, which is equivalent to consider-

ing the mean value of ψ along the curves. By applying the aligning transforms TΓ∗(s) to I

for different values of the arc-length parameter s, a set of positive examples { I+
p }p=1...n+ is

obtained. By taking random Euclidean transformations of I we obtain a set negative exam-

ples { I−m }m=1...n− . If the number of examples is large enough a Monte-Carlo approximation

of (81) is achieved. The corresponding optimal local pattern detector is then

6this is a bottom-up assumption. We exclude here higher forms of top-down reasoning, for example
determining the location of an artery from that of the organs it is connected to.
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Φ∗ = arg min
Φ

1
n+

∑
p

Φ ◦ I+
p − 1

n−
∑
m

Φ ◦ I−m + R(Φ).

This is a variational problem. Starting from some initial guess (for example the mean

and covariance fields on the positive examples set), the fields Φ = (µ,Σ) can be deformed

to minimize the energy. After computing the first variation,7

∂µ

∂t
=∆µ + StS

∫

�
(I − µ) dn−2θ rn−2

∂S

∂t
=∆S − S[

∫

�
(I − µ)(I − µ)t dn−2θ rn−2]

+ [Φ(I)/
∫∫ ∑

i,j

s2
i,jr

n−2

∫
dn−2θ dr dl]S,

where the evolution was constrained to ‖Σ−1‖2 constant and, to ensure positive semi-

definiteness it is S defined by StS , Σ−1 that is deformed.

The learning procedure respects the extra property:

• Invariance with respect to invertible affine transformations of the color space

Γ∗, I, T affine invertible Rp → Rp ⇒ ψ∗T◦I = ψ∗I (P5)

4.5.4 Examples

The proposed technique was applied to two two-dimensional images of blood vessels and

roads.

4.5.4.1 Vessel Detection

The proposed framework was applied to an image obtained as a two-dimensional projection

of an angiogram of blood vessels. A short section of the vessel was manually segmented (see

Figure 24). This was used to learn a direction dependent pattern detector in the following

way: for a given point on the curve, a rectangular window was extracted aligned with the

tangent of of the curve, of width slightly more than the radius of the vessel and of length

about the double of its width. This window was then made to slide along the curve an the

7this evolution is for only one positive example, the full case is obtained by linearity
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Figure 24: Vessel image and manually determined curve used for learning the pattern
detector.

mean value of the intensity as well as the variance were computed. The pattern detector

was then set to:

Φ(d̂, I) = exp
∫

window
(Id̂(p)− µ(p))tΣ(p)(Id̂(p)− µ(p)) dp,

where Id̂ is the original image I rotated in direction d̂ and µ and Σ are the mean and

variance of the intensities determined from the previously mentioned procedure. If the

image intensities are very similar to the mean value µ (taking into account the variance Σ

at that point) then the integration will be small and the output of the pattern detector will

also small.

That pattern detector can then be applied to all points of the image to define the local

cost.

Figure 25 shows the evolution of a curve as it is deformed according to the gradient

flow (69) to minimize the global cost (67). This deformation optimally minimizes the

integrated output of the learned pattern detector, i.e., it ensures that the curve locally

resembles as much as possible the pattern learned from Figure 24. At steady state, the

curve matches the road. It should be noted that since the global cost is a weighted length,
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it can sometimes be advantageous to “cut corners” and incurring a slightly higher local

cost (because the pattern is not matched perfectly) on a shorted trajectory. An alternative

could be to minimize the average cost E(Γ)/L(cur) (where L(Γ) is the length of the curve).

However in such an energy the regularizing curvature term would drop out of the curve

evolution equation.

Noise was then added to the image in order to test the robustness of the technique. The

variance σ2
I of the image intensities was computed and Gaussian white noise was added

with a variance σ2
noise. The resulting image Inoise was then thresholded in order to maintain

a dynamic range of [0, 255] using the same sampling of the color space as I. The Signal to

Noise Ratio was defined to be SNR = σ2
I/σ2

noise. Figures 26 and 27 illustrate the evolution

of a user-defined initial curve to steady state. Even though the images are relatively noisy,

the centerline of the vessel is recovered (except for a small section of the curve that got

trapped into a local minimum on the left of Figure 27). This demonstrate the robustness of

the technique due to the fact that the processing of the underlying pattern detector is not

purely local. The use of information on a small window (rather than in a purely local way)

allows for the averaging out of the noise and explains the good results of the algorithm even

on low SNR images. This would not have been possible using the non direction-dependent

in which local cost is defined directly by some function of the norm of the gradient.

Results using dynamic programming are illustrated for the original image on Figure 28

and for SNRs of 1.00 and 0.50 on Figure 29 and SNRs of 0.25 and 0.125 on Figure 30.

The dynamic programming procedure was employed two times independently with different

user-selected seed regions shown as one white and one black large discs.
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(a) Initial curve (b) Evolving curve

(c) Evolving curve (d) Steady state

Figure 25: Curve evolution on a real image. The local cost is determined using a pattern
detector, see text and Figure 24.
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(a) Initial curve (b) Evolving curve

(c) Evolving curve (d) Steady state

Figure 26: Curve evolution on a real image. Signal-to-noise ratio is 1.00. Compare to
Figure 25.
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(a) Initial curve (b) Evolving curve

(c) Evolving curve (d) Steady state

Figure 27: Curve evolution on a real image. Signal-to-noise ratio is 0.50. Compare to
Figure 25.
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(a) Original image. (b) Recovered curves.

Figure 28: Vessel detection using dynamic programming. The procedure was run inde-
pendently for two seed points (large discs) and several target points (small discs).
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(a) Original image, SNR=1.00. (b) Recovered curves.

(c) Original image, SNR=0.50. (d) Recovered curves.

Figure 29: Results of vessel detection using dynamic programming on noisy images. Com-
pare to Figure 28.

102



(a) Original image, SNR=0.25. (b) Recovered curves.

(c) Original image, SNR=0.125. (d) Recovered curves.

Figure 30: Results of vessel detection using dynamic programming on noisy images. Com-
pare to Figure 28.
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Figure 31: Road image and manually determined curve used for learning the pattern
detector.

4.5.4.2 Road Detection

The same protocol as in Section 4.5.4.1 was applied to a road detection task. Figure 31

shows the portion of the road that was used to learn the pattern detector. Figures 32 and 33

show two different initial curves converging to the same portion of the road. Figures 34, 35

illustrate results on images with artificially added noise.

Figures 36, 37 and 38 show the evolution of a self-intersecting initial curve for different

levels of added noise.

Finally, Figures 39 and 40 illustrate the use of dynamic programming.
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(a) Initial curve (b) Evolving curve

(c) Evolving curve (d) Steady state

Figure 32: Curve evolution on a real image. The local cost is determined using a pattern
detector (see text and Figure 31). The initial curve is shown dashed. Compare to Figure 33.
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(a) Initial curve (b) Evolving curve

(c) Evolving curve (d) Steady state

Figure 33: Curve evolution on a real image with a different initialization. Compare to
Figure 32.
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(a) Initial curve (b) Evolving curve

(c) Evolving curve (d) Steady state

Figure 34: Curve evolution on a real image. Signal-to-noise ratio is 1.00. Compare to
Figure 33.
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(a) Initial curve (b) Evolving curve

(c) Evolving curve (d) Steady state

Figure 35: Curve evolution on a real image. Signal-to-noise ratio is 0.50. Compare to
Figure 33.
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(a) Initial curve (b) Evolving curve

(c) Evolving curve (d) Steady state

Figure 36: Curve evolution on a real image for another initial curve.
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(a) Initial curve (b) Evolving curve

(c) Evolving curve (d) Steady state

Figure 37: Curve evolution on a real image. Signal-to-noise ratio is 1.00. Compare to
Figure 36.
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(a) Initial curve (b) Evolving curve

(c) Evolving curve (d) Steady state

Figure 38: Curve evolution on a real image. Signal-to-noise ratio is 0.50. Compare to
Figure 36.
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(a) Original image (b) Recovered curve.

(c) Noisy image, SNR=1.00. (d) Recovered curve.

Figure 39: Results of road detection using dynamic programming on noisy images. Com-
pare to Figure 40.
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(a) Noisy image, SNR=0.50. (b) Recovered curve.

(c) Original image, SNR=0.25. (d) Recovered curve.

Figure 40: Results of road detection using dynamic programming on noisy images. Com-
pare to Figure 39.
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4.6 Application to Neural Tracts Detection in Diffusion
Magnetic Resonance Imagery

In this section we show how the proposed framework can be used for the extraction of neural

fibers from diffusion magnetic resonance imagery (diffusion MRI). The main difference with

previous applications of the technique is that no direction-dependent pattern detector needs

to be applied to the image. Instead the image information at a given point can directly

be treated as a direction-dependent pattern detector. This makes the proposed technique

particularly natural for this type of imagery.

4.6.1 Diffusion MRI and Tractography

Water molecules in the biological tissues are in constant Brownian motion due to their

thermal energy. This motion is influenced by the organization of the tissue. In particular,

in the brain, membranes of axons and myelin sheaths tend to restrict movement in the

direction of the neural fibers [125].

If during the acquisition of a Magnetic Resonance Imagery (MRI) dataset, electromag-

netic gradient pulses are generated in a given direction d̂ of space, then an image S(d̂) is

acquired. The intensity loss relative to an image S(0) for which no gradient was applied

is due to the diffusion of water molecules in direction d̂. This technique is called Diffusion

Weighted MRI. If the diffusion is assumed to be governed by a Gaussian distribution, then

all diffusion information can be captured by a tensor field D and the technique is then

called Diffusion Tensor MRI [126, 127]. The development of Diffusion Tensor MRI has

raised hopes in the neuroscience community for in vivo methods to track fiber paths in

white matter.

A simple and effective method for tracking nerve fibers using DT-MRI is to follow the

direction of maximum diffusion at each voxel, which is equivalent to the direction of the main

eigenvector for each tensor [128, 129, 130, 131]. Although this method is widely spread and

used in various ways the fiber trajectory is based solely on local information which makes

it very sensitive to noise. Moreover the major direction of diffusion can become ill-defined

for example at fiber crossings.
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It has been proposed to shift from the Lagrangian, particle8 based streamline approach

described above to a Eulerian front propagation approach that can use full tensor informa-

tion and is more robust to noise [132, 133]. This can be set in a Riemannian framework

[134, 135].

The Gaussian assumption of diffusion tensor imaging does not hold for example if several

fibers with different directions co-exist within the same voxel. Extensions to the tensor

model, such as using multiple or higher order tensors, have been proposed [136].

High angular resolution diffusion modalities such as Q-Ball imaging [137] acquire diffu-

sion information in potentially hundreds of directions thus measuring direction information

in a non-parametric way.

Hagmann et al. [138] propose a streamline technique for such datasets. Anisotropy

information is reduced to a multi-valued vector field corresponding to the detected directions

and curves are sought that are locally aligned with one of the vectors of the set. Campbell

[139] proposes a front evolution approach based on high angular resolution data.

Using the previously developed framework, tractography is set in a continuous minimum

cost framework. This is different from [138, 139] who do not propose variational (cost

minimizing) techniques. Local costs are defined for every direction on the unit sphere based

on high angular resolution diffusion imagery. Equivalently this can be considered a minimum

arrival time framework in which the speed of fictitious particles would be the inverse of the

cost. The cost ψ can be interpreted as the inverse of the speed of a particle traveling along

the curve. The value of function is dynamic programming, E∗(p), is then the minimum

arrival time at p. Alternatively, an infinite number of particle departing from S at the

same time would propagate as a front geometrically evolving in the direction of its normal

with a speed F . The corresponding equation is ‖∇E∗(p)‖F (p,∇E∗(p)/‖∇E∗(p)‖) = 1.

The two speeds F and 1/ψ are not identical because particles are not restricted to moving

along the normal of the evolving front. Front speed and cost (or its inverse, particle speed)

8“particle” refers to the position of a fictitious evolving point
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are related through the Legendre transformations [140]

F (p, n̂) = 1/ min
d̂.n̂>0

{ ψ(p, n̂)

d̂.n̂
} and ψ(p, d̂) = max

d̂.n̂>0
{ (d̂.n̂)/F (p, n̂) }. (82)

Previously proposed anisotropic front propagation techniques for diffusion MRI tractogra-

phy are not set in a Hamilton-Jacobi-Bellman framework. Consequently it is the front speed

F which is defined from the diffusion data. Curves will then be determined that are optimal

for E , which can only be interpreted as a cost (or an arrival time) in terms of ψ. The max

operator present in the definition of ψ from F will tend to filter out the highest values of the

front speed F that correspond to the preferred spatial directions (and therefore potential

fibers) while preserving the slowest directions. Simulations and further analysis show that

this distortion affects particularly speed functions with very localized direction information

such as those encountered in high angular resolution diffusion imagery and can even result

in loss of information. This problem can be avoided by setting directly the problem in a

minimum cost framework (as proposed) or taking into account the Legendre transforma-

tion (82) when defining F . While the effects of this distortion are already noticeable for

the very commonly used quadratic speed F (d̂) = d̂tDd̂ (Figure 41(a)) the severity of the

problem increases dramatically for more localized peaks that would correspond to fiber di-

rections in high angular resolution diffusion datasets (Figure 41(b)). In summary, setting

tractography in a minimum cost framework provides more control over the optimality crite-

rion E . Alternatively, this can also be achieved in a front propagation approach by using the

appropriate Legendre transformation to define the front speed F . Note that when solving

that after the Hamilton-Jacobi-Bellman equation has been numerically solved, E-optimal

curves can be obtained from any target point back to the seed points.

For these E-optimal curves, the value of another global cost, K, corresponding to a

different local cost Φ can be computed by solving the transport equation

∇K(p).d̂∗(p) = Φ(p, d̂∗(p))

with boundary condition K = 0 on the seed region S. In particular the length L(Γ∗(p)) =
∫
Γ∗(p) 1 ds of these optimal curves corresponds to Φ = 1. The cost per unit length K/L can
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  0.5  1  2

(a) Front cost F (blue, solid) set to some
quadratic form, equivalent particle cost and
speed derived.

  0.5   1   2

(b) Front cost F (blue, solid) models some syn-
thetic non-Gaussian diffusion, equivalent parti-
cle cost and speed.

Figure 41: Whereas the particle speed 1/ψ (green, dashed) and the front speed F (blue,
solid) can be derived from each other, the definition of the cost ψ (red, dot-dashed) from
F does not preserve maxima (preferred directions) and therefore results in severe loss of
anisotropy information especially for localized fast directions. (In both cases the preferred
direction is vertical).

be used to define a validity index and rank curves that are optimal for one criterion using

another criterion as in [132, 133].

4.6.2 Application to High Angular Diffusion MRI Tractography

Most front propagation techniques for diffusion tensor tractography use some ad hoc func-

tion f of the quadratic form d̂tDd̂. If the Gaussian assumption holds, the diffusion weighted

images follow S(p, d̂) ' S(p,0) exp(−b d̂tD(p)d̂). Tensor based techniques can formally

be extended to high angular resolution diffusion datasets by setting

ψ(p, d̂) , f(−1
b

log(
S(d̂)
S(0)

))

Notice that Q-Ball datasets [137] and direction-dependent local costs ψ are both defined on

the same space R3 × S2.
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However, due to the low signal to noise ratio of these datasets, it is desirable to consider

more than one value at a time. The anisotropic cost can be defined by some decreasing

function f ′ of the Funk-Radon transform9 of the attenuation S(p, ·)/S(p,0).

ψ′(p, d̂) , f ′(
∫

v̂⊥d̂

S(v̂)
S(0)

dv̂)

The cost ψ′(p, d̂) will therefore be small if and only if there is limited diffusion loss over

the corresponding equator, i.e., if diffusion does not occur normal to d̂.

Mumford [81] showed that variational techniques, such as the one proposed here, can be

set in an elegant and principled Bayesian framework by considering the cost ψ = ψdata +

ψprior. The extreme simplicity of this construction constitutes another advantage over non-

variational front propagation approaches. Here, ψdata would be as described above and

ψprior could be obtained from an atlas of neural tracts.

The problems of generating such an atlas and registering it to the dataset at hand are

well beyond the scope of this paper. Note however that masking off (with infinite cost

values) the non white matter regions of the brain is a trivial and widely employed use of

prior knowledge.

4.6.3 Results

We now show results obtained by applying the methodology described in the above sections

to diffusion weighted data sets acquired using a single-shot diffusion-weighted EPI sequence,

with 31 different gradient directions with b-values of 500, 1000, and 1500 s/mm2, on a 1.5

Tesla GE Echospeed system. The data was acquired with different b-values to enable

comparisons of the results. Traditional eigenvector based tractography is normally carried

out in data with b-values in the range of 700-1000 s/mm2. Higher b-values give data with

higher angular contrast but at the expense of more noise.

Cost per unit length, which can be interpreted as a validity index for the putative tracts

was determined for all b-values Fig. 42.

All curves are optimal given their starting point. The cost per unit length is a measure

of how good they are compared to each other. The best contrast (corresponding to the most

9Interestingly, the FRT is also central to the Q-Ball technique [137].
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(a) b = 500s/mm2 (b) b = 1000s/mm2 (c) b = 1500s/mm2

Figure 42: Cost per unit length of end points of optimal curves for different b-values (see
text). Best results are achieved for the highest b-value.

coherent set of “super-optimal” tracts for a given seed point posterior of the corpus callosum)

was obtained at the highest b-value available. This could indicate that the algorithm was

able to take advantage of the higher angular contrast in spite of the lower SNR.

Tract results for several user defined seed points are presented on Fig. 43.

Finally the proposed technique was compared to a streamline technique for the needs of

which the tensor field was computed (Fig. 44). While validation is a very challenging task

due to the unavailability of ground truth, it can be noted that both algorithm give similar

results even though their inputs are different. The tracts of the proposed technique tend to

be more coherent as any noise in the data might set the streamline off course whereas the

proposed technique is more global.
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(a) (b)

Figure 43: Fiber tracking from high angular resolution dataset (b = 1500s/mm2).

Figure 44: Proposed technique on high angular resolution data (blue) compared with
streamline technique on tensor field (red) (b = 1500s/mm2).
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CHAPTER 5

SHAPE COMPARISON AND VALIDATION OF IMAGE

SEGMENTATION

In this chapter we propose a technique for shape comparison based on the Laplace equation.

By shape we mean some closed hypersurface that is the boundary of some region R of the

spatial domain Rn. This work is based on [141].

The ability to quantify both local and global differences between shapes is an important

step in computer aided medical diagnosis. After imaging and segmentation have been per-

formed, shape comparison techniques can be used to determine the deviation some structure

or organ has to some standard template. Such differences in shape can be used for pathology

diagnosis. For example, abnormal brain ventricle shape is a symptom of schizophrenia.

Another application of shape comparison is the validation of image segmentation tech-

niques. The diversity of proposed segmentation algorithms raises the issue of performance

evaluation. For a given organ, which algorithm results in the most accurate segmentation?

How can its robustness be quantified? Using a measure of shape similarity, the performance

of a particular algorithm can be quantitatively assessed by comparing its output to a known

ground truth, a manual segmentation or the output of another segmentation algorithm.

In this chapter we describe a mathematical methodology to address the problem of shape

comparison by determining one-to-one correspondences between two shapes and defining

both global and local similarity statistics. To compare more than two shapes, statistics are

computed with reference to a mean shape. Validating a complete medical procedure (only

part of which would be a segmentation step) based on patient outcome is out of the scope

of this work.

Section 5.1 motivates our approach. In Section 5.2 we introduce the Laplace equation

and propose different methods to solve it. In Section 5.3 we show how this can be used

to define corresponding points between two shapes. While these correspondences are very
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well behaved it is possible that the surfaces would be locally so different that there is no

very natural way to put them in correspondence. In particular, in that case a relatively

large area of one of the surfaces might be mapped onto a relatively small area of the other

surface. We show in Section 5.4 how these effects can be quantified. We also describe how

it is possible to compare more than two shapes by using a mean shape. In Section 5.5 we

illustrate our method for the purpose of validation of image segmentation. We show how

to visualize locally the dissimilarity between the surfaces allowing the user to analyze the

accuracy of a segmentation in an anatomically meaningful way. We also demonstrate how

global metrics can be derived to quantify the accuracy of the segmentation. The complete

methodology is illustrated on synthetic and real datasets.

5.1 Motivation and Related Work

This chapter is concerned with shape comparison, i.e., with quantifying similarities between

shapes. Similarities may be defined on different levels of resolution, ranging from global

shape metrics to local correspondences. A classical example for a global shape metric is

the symmetric Hausdorff distance, measuring the maximal minimum Euclidean distance

between two sets. While being able to provide global insight with regards to the “worst-

case-deviation” between two shapes, the symmetric Hausdorff distance (as an example for

a global shape metric) fails at resolving local shape variations. Global metrics may be

computed from local ones but not vice versa. See [142] for an overview of shape matching

techniques.

This chapter aims at calculating shape differences on a local level for descriptional

flexibility. These local measures of shape differences may then be interpreted directly or

may be used to compute more global shape similarity metrics.

We represent a shape by a closed hypersurface: e.g., a closed curve in the plane or

a closed surface in three-dimensional space. Defining a local shape metric then hinges

(in the most local case) on establishing point to point correspondences between surfaces.

A method to obtain surface correspondence points should be computationally efficient,

should generalize to different dimensions, and should yield a correspondence map that
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Figure 45: The minimal Euclidean distance between points may lead to correspondences
that are not unique and not symmetric.

is symmetric, one-to-one and ideally also continuous (i.e., homeomorphic). Figure (45)

shows some exemplary correspondences between two curves based on the smallest Euclidean

distance from curve to curve and highlights the desirability of correspondences that are

symmetric and one-to-one.

We advocate a Laplace equation based approach to find point correspondences between

two surfaces with the aforementioned properties. This is a natural approach for the following

reason: given two surfaces Σ1 and Σ2, envision a flow field transporting particles starting on

surface Σ1 to Σ2. The conditions of (i) symmetry, (ii) one-to-one correspondence and (iii)

continuity are in this setting equivalent to requiring that (i) the flow can be reversed, (ii) a

particle does not get caught up in a vortex or at a stagnant point (unless it started there),

and (iii) particles that start close to each other on Σ1 arrive “close to each other” on Σ2.

Condition (ii) yields a potential flow, i.e., the flow field v can be expressed as the gradient

of a scalar potential u, v = ∇u. If the fluid is assumed to be incompressible, v needs to be

divergence free as well, i.e., ∇ · v = 0, but this implies ∇ ·∇u = ∆u = 0, which is Laplace’s

equation. Solving Laplace’s equation (with suitable boundary conditions) between Σ1 and

Σ2 will induce point-to-point correspondences between Σ1 and Σ2 through the streamlines

of v. Figure (46) shows the vector fields induced by a distance function of a cavity and by

the solution of Laplace’s equation. All particles starting on the boundary of the cavity and

moving along the vector field induced by the solution of Laplace’s equation will eventually
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(a) Vector field induced by the dis-
tance function.

(b) Vector field induced by the so-
lution of Laplace’s equation.

Figure 46: Vector fields induced by the distance function and by the solution of Laplace’s
equation. Dark values indicate larger solution values.

leave the cavity. This is not true for all particles for the vector field induced by the distance

function.

Laplace equation approaches have previously been used in [143, 144] for colon surface

flattening and centerline extraction and in [145, 146] for thickness measurements. This

chapter introduces a framework to measure local shape variability. Given multiple surfaces

Σ and a mean (or comparison) surface Σm point correspondences are used to measure local

distance differences. The local distances between surfaces can then be used for visualization

purposes (e.g., to color-code the mean shape) and to define local and global statistics.

Statistics may be computed at a single point of a mean surface over all surfaces Σ to

assess local shape variation. Alternatively one can compute statistical measures of distance

variations over a single surface. The latter is particularly useful in the context of validation

of surface segmentations: how good is a segmentation compared to a given ground truth.
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5.2 Laplace Equation

Assume that we have two regions R1 and R2 whose boundaries Σ1 and Σ2 are surfaces

implicitly represented as zero level sets of functions φ1 and φ2, i.e.,

Σi = ∂Ri = {x / φi(x) = 0}, i ∈ {1, 2}. (83)

Such a representation is natural for partial differential equations based segmentation al-

gorithms. Regions defined by binary maps and triangulated surfaces can also be represented

using level sets.

The Laplace equation 



∇2u(x) = 0 x ∈ R1 ªR2

u(x) = 1 x ∈ Σ1

u(x) = −1 x ∈ Σ2

(84)

underlies Fourier’s law of heat conduction. In this context u can be interpreted as a

temperature. Equation (84) describes the steady state temperature profile u in between the

surfaces (here, R1ªR2 , (R1\R2)∪(R2\R1) is the symmetric difference of the two regions)

resulting from prescribed boundary conditions on Σ1 and Σ2. The field u is harmonic. It is

smooth and its derivatives of all order exist [147]. Moreover the gradient does not vanish

and therefore the vector field

v =
∇u

‖ ∇u ‖ (85)

is also smooth. By following v (resp. −v) starting at a point on Σ1 (resp. Σ2) we are

assured to reach a unique point on Σ2 (resp. Σ1). This is a very desirable property for es-

tablishing one-to-one point correspondences between Σ1 and Σ2. A variety of schemes exist

to solve (84) based on gradient descent (the Heat equation) or superposition of fundamental

analytic solutions (Boundary Element Method).

Instead of solving the steady state problem (84) directly, we can use the heat equation

∂u

∂t
= ∇2u, (86)
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which with appropriate boundary conditions will converge to the solution of (84). In the

simplest possible case, we discretize the time derivative using an Euler forward or backward

approximation and the spatial derivatives using central differences.

The level set representation yields subpixel accuracy. Using subpixel boundary infor-

mation is not straightforward with finite difference based schemes. The boundary element

method (BEM) and the finite element method naturally handle intricately shaped bound-

aries. The boundary is approximated by N elements and the solution is constructed based

on the superposition of the fundamental solutions of the Laplace equation for each boundary

element [148]. For simple boundary parameterizations, analytical solutions exist. Further-

more, the boundary element method allows for analytical gradient computations which is

very useful when calculating (85) [149, 150].

The BEM is a powerful and accurate method for solving the Laplace equation on the

usually complicated domains resulting from the segmentation of medical datasets. A two-

dimensional synthetic example is shown on Fig. 47 along with a zoom-in on the solution of

the Laplace equation with the two proposed methods. The BEM is not restricted to the

underlying grid and can take full advantage of the subpixel accuracy of the boundaries. It

therefore outperforms the simple finite difference approach.

5.3 Defining a Distance Between Shapes

5.3.1 Local Dissimilarity

As explained in the previous section from any point s on surface Σ1, (resp. Σ2), a trajectory

can be determined to Σ2, (resp. Σ1), by following the characteristics (i.e., the gradient) of

the Laplace equation. A particle can be moved from one surface to the other according to





st(t) = −∇u ◦ s(t) s ∈ Σ1

st(t) = +∇u ◦ s(t) s ∈ Σ2

s(0) = s

(87)

As explained previously such correspondence are well defined, one to one and symmetric.
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(a) Solution of the Laplace equation on R2ª
R1.

(b) Streamlines defined from the gradient of
the solution of the Laplace equation.

5 pixels

(c) Finite difference method (Heat equa-
tion).

(d) Boundary element solution with stream-
lines of the gradient field.

Figure 47: Two-dimensional synthetic example and zoom in on rectangular region.

To each point s on one of the two surfaces we can therefore associate the length l to the

corresponding point s′ on the other surface. We propose to define the local error E as −l

where Σ1 is inside Σ2 and +l otherwise. This scalar field is defined on both surfaces and

describes locally the dissimilarity between the surfaces. See Figure 5.3.1 for an illustration

on a synthetic example.

5.3.2 Visualization

The surfaces Σ1 and Σ2 can be colored with the local dissimilarity scalar field E (Fig. 51(a), 51(b),

51(c)). We use a perceptually linear color scale as proposed by Lefkowitz et al. [151].
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Figure 48: Local dissimilarity for a two-dimensional synthetic example.

5.3.3 Metrics

We define a probability space (Σ1∪Σ2, P ) on the union of the surfaces by P (S) = A(S)
A(Σ1)+A(Σ2)

where A(S) is the area of an element of surface S ⊂ Σ1 ∪ Σ2. The local dissimilarity field

E can then be interpreted as a random variable.

The statistics of E can be used to define several metrics that will quantify the global

dissimilarity between the surfaces.

• sup(|E|) is the largest distance between corresponding points of Σ1 and Σ2. This

information is equivalent to the Hausdorff distance. Moreover, inf(E) and sup(E) are

the largest under and over-segmentation errors. The quantiles of E convey the same

information as the partial Hausdorff distance.

• mean(|E|) is the average distance between the surfaces.

• P (E ≤ −3) is the probability that Σ1 would be inside Σ2 by 3 units.

• the probability density function pE of E gives the full error distribution.

See Table 4 for the values of these statistics on the synthetic and brain datasets. Addi-

tional metrics can easily be defined. For example, the expectancy of 1/(1 + pE2) would be

equivalent to Pratt’s Figure of Merit [152].
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Table 4: Global statistics of the local dissimilarity E on the synthetic example.
99% 1%

sup(E) percentile inf(E) percentile mean(|E|) P (E ≤ −3)

Synthetic (pixel) 31.42 31.24 -28.21 -20.40 5.32 9.50%

5.3.4 Comparing Several Surfaces

In order to study the local variation in a set of n surfaces defined by the level sets function

φ1...φn, the level set function of the mean shape is defined to be

φm ,
n∑

i=1

φi (88)

and all n shapes are compared to the mean surface.

Figures 49 and 50 show the local dissimilarity to a mean shape for n = 11 prostates.

Surfaces were segmented from pre-operative 1.5T MR images acquired using an endorectal

coil integrated with a pelvic multi-coil (Signa LX, GE Medical systems, Milwaukee, WI).

Patients were placed in a supine position in the closed-bore magnet. The slice thickness is

of 3 mm with a slice gap of 0 mm, matrix of 256x192.

5.4 Quantifying Area Distortion

Consider two surfaces Σ0, Σ : Sn−1 → Rn. Let u be a scalar field such that any point x on

Σ can be put in correspondence with a point x0 = F0(x) on Σ0 by following the gradient

lines of u.

If a probability space is constructed from Σ0 by considering that all points of Σ0 are

equally likely, then the probability of an event X ⊂ Σ0 is the ratio of the surfaces areas

A(X)/A(Σ0).

Some scalar field m0 defined on Σ0 can then be interpreted as a random variable. The

integral

I0 =
∫

Σ0

m0(Σ0) dΣ0 (89)
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(a) (b)

(c) (d)

(e) (f)

Figure 49: Comparison of n = 11 prostates to a mean surface. Prostates 1 to 6. These
are color images. Continued on Figure 50.
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(a) (b)

(c) (d)

(e) (f) Mean shape

Figure 50: Comparison of n = 11 prostates to a mean surface. Prostates 7 to 11 and
corresponding mean shape. These are color images. Continued from Figure 49.
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is then equivalent to the expectancy of m0 multiplied by the total area of the surface

Σ0.

The probabilistic structure can be transported on Σ using the mapping F0 from Σ to

Σ0. Specifically we consider, for Y ⊂ Σ, PΣ(Y ) = PΣ0(F0(Y )) = A(F0(Y ))/A(Σ0).

The expectancy of m0 can then be determined by integrating on Σ rather than Σ0. In

fact, this is equivalent to using the change of variable

I0 =
∫

Σ
m0(F0(Σ)) dF0 dΣ (90)

It is not difficult to determine m0 ◦F0, i.e., transport m0 onto Σ. Since F0 puts points in

correspondence along the gradient lines of u, this is done by solving the transport equation

between the two surfaces:





∇m̃.∇u = 0

m̃ = m0 on Σ0

(91)

then m0 ◦ F0 = m̃ on Σ.

The computation of dF0 (i.e., the quantity by which areas are stretched by F0) is a

little more involved and will be the focus of the rest of this section.

Let S(p, θ) : Sn−1 × [0, 1] → Rn be the θ-levelset of u. By definition:

u(S(p, θ)) = θ

therefore,
∂

∂θ
u(S(p, θ)) = ∇u.

∂

∂θ
S = 1

Moreover since S(p, θ) is a levelset of u, its normal is ∇u/|∇u|. The levelsets are

therefore obtained by the evolution equation
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∂

∂θ
S(·, θ) =





0 θ < u(S(·, θ))

0 θ > u(S(·, θ))

∇u(S(·, θ)/|∇u(S(·, θ)|2 otherwise

S(·,min
Σ0

u) = Σ0(·)

By construction, S(·, θ) = Σ0(·) for all θ < minΣ0 u and S(·, θ) = Σ(·) for all θ > maxu.

Therefore we denote S(·,−∞) = Σ0(·) and S(·, +∞) = Σ0(·). Consider now the transform

Gθ that maps Σ0(·) = S(·. − ∞) onto S(·.θ) along the streamlines of u. For θ > maxu,

Gθ = F0 previously defined that maps Σ onto Σ0.

Gθ(Σ(p)) = S(p, θ)

(det dGθ)(det dpΣ) = det dpS(p, θ)

∂ det dGθ

∂θ
(det dpΣ) =

∂

∂θ
det dpS(p, θ)

= (det dpS(p, θ)) trace{ ( dpS)−1 ∂ dpS

∂θ
}

using (detA)′ = (detA) trace{ A−1A′ }

= (det dpS(p, θ)) trace{ ( dpS)−1 dp
∂S

∂θ
}

= (det dpS(p, θ)) trace{ ( dpS)−1 dp
∇u(S)
|∇u(S)|2 }
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now, let w = ∇u/|∇u|2, then dpw ◦ S = dTSw dpS where dTSw is the differential on

the plane tangent to the surface S at that point. Here we will just consider that it is the

differential dRnw in Rn except that the last line and column that would correspond to the

direction normal to the surface are omitted. Since the surfaces S are levelsets of u, this

normal direction is the direction of ∇u. Simple algebral yields dRnw = Pv⊥HRn/|∇u|2w
where Pv⊥ is the projection on the subspace orthogonal to v = ∇u/|∇u| and HRn is the

Hessian in Rn. Finally, as far as dTSw is concerned, that projection is superfluous and we

get dTSw = Hv⊥/|∇u|2.

= (det dpS(p, θ)) trace{ ( dpS)−1 Hv⊥u

|∇u(S)|2 dpS }

= (det dpS(p, θ)) trace{ Hv⊥u

|∇u(S)|2 }

using trace{ A−1BA } = trace{ B }

= (det dpS(p, θ))
∆v⊥u

|∇u|2

Define the scalar field b between the surfaces by b(S(p, θ)) = log(det dGθ). Differenti-

ating with respect to θ we get

∇b.
∂

∂θ
S(p, θ) =

1
det dGθ

∂ det dGθ

∂θ

∇b.
∇u

|∇u|2 =
∆v⊥u

|∇u|2

∇b.v =
∆v⊥u

|∇u|

the right hand side is proportional to the mean curvature hu defined by (n − 1)hu =

∇.( ∇u
|∇u|) = ∆u

|∇u| +∇u.[−1
2

2Hu∇u
|∇u|3 ]

∇b.v = (n− 1)hu
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Since by definition, G−∞ = IdΣ0 then det dG−∞ = 1 and therefore b = 0 on Σ0(·). This

gives the boundary condition for the transport equation in b.





∇b.v = (n− 1)hu

b = 0 on Σ0

(92)

And finally,

I0 =
∫

Σ
m(G0(Σ)) exp(b(G0(Σ))) dΣ (93)

Note: b(G0(Σ)) is obtained by integrating from Σ to Σ0 and then transporting back the

result on Σ along the same path. This is equivalent to integrating from Σ0 to Σ.

If u is such that ∆u = 0 in between the surfaces then the right hand side of the transport

equation in b becomes −uv,v/uv. By integrating we will get b = − log uv|Σ + log uv|Σ0 on

Σ0 and by taking the exponential, the area stretching factor is uv|Σ
uv|Σ0

where v is normal to

the surface.

This can also be found by using the fact that u being a laplacian field, the in and out

fluxes are equal. Therefore ( dΣ0)N0.∇u|Σ0 = ( dΣ)N.∇u|Σ.

In the case where u is a Laplacian field it is therefore not necessary to solve the transport

equation in b to determine the area stretching factor.

5.5 Validation Framework

The previously defined formalism can be applied directly to the quantitative validation

of segmentation if the ground truth is known. In that case, one of the surfaces is set to

be the segmentation result and the other the ground truth. The dissimilarity between

the segmentation and the ground truth can then be compared both quantitatively and

qualitatively. If the ground truth is not available, the results of segmentations obtained

through different techniques can be compared (e.g. automatic and human expert).

In [153], Zhang reviews classical validation metrics. These discrepancy metrics are based

either on the sole frequency of mis-segmented voxels (e.g, the Dice similarity coefficient)

or on their position via some sort of distance information (e.g., the Hausdorff distance,
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Yasnoff’s Normalized Discrepancy etc.). Typically no distinction is made between under

and over-segmentation and the Euclidean distance is employed and, as in the case of the

Hausdorff distance, ill-defined underlying correspondences between the ground truth and

the segmentation are implicitly used. Moreover many of these metrics are dimensionless

scalars whose interpretation can be problematic.

In contrast the error distance E discriminates between under and over-segmentation

(negative values of the local dissimilarity scalar field E will correspond to under-segmentation

and positive values will correspond to over-segmentation). Moreover it is based on well-

defined, physically grounded correspondences and has the dimension of a distance.

Here, as an illustration we use, as the ground truth, the expert manual segmentations of

a full brain from the Brain Tumor Database [106] and the output of a previously proposed

algorithm [85] as the segmentation, see Figures 5.5 and 5.5 and Table 5.

Table 5: Global statistics of the local dissimilarity E on the brain and tumor examples.
99% 1%

sup(E) percentile inf(E) percentile mean(|E|) P (E ≤ −3)

Brain (mm) 14.08 7.09 -86.10 -11.87 2.31 4.03%

Tumor (mm) 6.83 5.15 -4.75 -3.18 1.58 1.17%

In the proposed brain segmentation a large portion of the left hemisphere was left out

(under-segmented) and the superior sagittal and transverse sinuses (venous channels in the

back of the brain) were erroneously classified as brain (over-segmented). This visualization

scheme allows researchers and clinicians to interpret the performance of a segmentation in

an anatomically meaningful way.
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(a) Ground Truth (b) Segmentation

(c) The underlying ground truth and segmentation on the gray slice are shown on the
right. Over-segmented regions are in dark gray, under-segmented regions are in light
gray.

Figure 51: Real dataset of a full brain The surfaces are colored with the local dissimilarity
E. These are color images.
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Figure 52: Real dataset of a brain tumor. The underlying ground truth and segmentation
on the gray slice are shown on the right. Over-segmented regions are in dark gray, under-
segmented regions are in light gray. The surfaces are colored with the local dissimilarity E.
These are color images.
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CHAPTER 6

CONCLUSION

Artificial vision is the problem of mimicking the human visual system. It is not possible

currently to base algorithms closely on the working principles of the inner mechanisms of

biological vision because those mechanisms are mostly unknown. The goal of the artificial

vision researcher is therefore to devise algorithms that describe how artificial systems –

in practice digital computers – can perform some processing from a digital image. Since

they are not closely based on neurological processes, algorithms can be built from any

mathematical framework. The value of a technique is to be assessed by the elegance of the

mathematical formulation, the ease of implementation on a digital computer and ultimately,

the results obtained for a particular1 image analysis task.

This work is set in the framework of partial differential equations and differential geom-

etry. Modern computers are limited to handling discrete information and it is not always

straightforward to use them to simulate a continuous process such as the continuous de-

formation of a surface. However, ultimately, even if they are themselves discrete objects,

digital images are the projection of a reality that is being, for now, better described by

continuous mathematics and in particular partial differential equations. For this reason,

very extensive mathematical theories have been devised to analyze PDEs. The problem of

simulating continuous phenomena on digital computers is under vigorous study for appli-

cations in physics and engineering. Many of these techniques can be applied to the field

of computer vision. The level set framework, which was initially created for the simulation

of front propagation in physics, is a good example. In summary, the existence of a partic-

ular technology, such as digital computers, should not overly influence or restrict the field

1Some algorithms are more specific than others, but ultimately there is reason to believe that all seg-
mentation problems are instances of a unique problem that could be solved by a unique algorithm. It is
therefore not possible to define the efficiency of an algorithm independently of a given segmentation problem
to which it is to be applied.
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of artificial vision, which has much to benefit from all existing continuous mathematical

techniques. This has been illustrated at great length in Chapter 2.

The problem of image segmentation is that of determining the contour of objects from

their projection onto a digital image. While current understanding of the human high-

level visual system is extremely fragmentary, it appears that at some point in the visual

processing, objects are no longer perceived as the sum of independent dots but as a coherent

whole. This leads the way for higher-level processing (e.g., reasoning based on the spatial

relation between objects, detection of symmetries or occlusions etc.) that would not be

possible otherwise. It has been observed that both bottom-up (the whole emerges from

the parts) and top-down (the perception of the whole object is forced by some higher-

level cognitive layer even though it is not necessarily consistent with lower-level perception)

occur concurrently. The understanding and mimicking of the interplay between these two

phenomena is one of the major difficulties of artificial vision. In a variational framework,

a global cost functional is defined for structures to be detected. An optimal structure that

minimizes this cost is then determined using local information. This framework offers a way

to reproduce the interplay of top-down and bottom-up processes. Some global information

is imposed (e.g., the structure has a given topology, it is an open curve, or a closed surface)

and a global cost functional defines good and bad segmentations while, concurrently, local

image information is used to deform the structure in order to minimize its cost.

The contribution of this thesis is threefold:

1. An image segmentation technique is proposed in which the global cost of a surface

is defined by the spikiness of the distribution of intensities inside the region it en-

compasses (Chapter 3). Thus, if the surface corresponds to the boundary of a region

of uniform intensities, the cost will be small. While these kinds of techniques had

been proposed recently by other authors, the proposed functional is based on a non-

parametric description of the distribution of intensities inside the region. It does

not make use of the outside of the region. In particular bimodality of the image is

not required. The functional leads to a unidirectional optimizing flow, which can be

implemented in a very simple and fast way. The validation of image segmentation
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techniques is a very important problem that is too often overlooked. Typically, when

proposing a new technique, authors do not disclose source code, forcing others to

re-implement the technique in order to compare it to their own. More often than

not, the implementation of an algorithm from a published paper is a very arduous

task requiring weeks of work for a skilled programmer. Because implementation de-

tails, such as the exact numerics, are very often omitted, there is no certainty that

once re-implemented the algorithm will be perfectly equivalent to the one presented

in the original publication. Moreover, publications typically demonstrate the effi-

ciency of the algorithm with a figure showing the result of the algorithm on some

test dataset.The reader can then assess the performance of the algorithm using his

own visual system. While this procedure allows for some qualitative validation, it

does not allow for quantitative validation. In fact, the dataset is usually not pub-

licly available, which means that the exact simulation results demonstrated in the

publication are not repeatable. Moreover, the “ground truth” corresponding to the

proposed segmentation is often inaccessible. This is a general problem of image seg-

mentation, which, being the mimicking of the processing of the human visual system,

is inherently subjective. In contrast, the implementation of the proposed algorithm

has been made publicly available through the 3D Slicer project. The algorithm has

been quantitatively validated on several publicly available medical imaging datasets.

2. Directionality was added to the conformal active contour technique (Chapter 4). The

cost of a curve or a surface is defined as the length of the curve (or area of the surface)

weighted by some position and direction-dependent local cost based on image infor-

mation. This allows for the asymmetric processing of information based on direction.

For example, it is possible to define the local cost to be low not only if the curve is

located on an edge of the image but also if the curve is actually oriented along that

edge. In the case of surfaces, it is possible to treat image information inside or outside

the surface asymmetrically. For example, it is possible to define a local cost that will

be low if there is a transition from dark to bright from the inside of the surface to

the outside of the surface. This will allow for the segmentation of dark regions whose
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boundaries will correspond to a small cost. It was shown that the local cost can be

defined from a direction-dependent pattern detector, which can be obtained after a

learning step. A particular example of such a direction-dependent pattern detector is

a model of edge detecting visual neurons that have been identified experimentally in

the mammalian visual cortex.

3. A technique was proposed for the comparison of surfaces based on the Laplace equation

(Chapter 5). In artificial vision, surfaces are usually obtained as the result of a

segmentation step. Such a surface can be used for visualization by a human operator.

Because human vision is inherently two-dimensional, surface rendering is much more

natural than volume rendering, which attempts to represent a full three-dimensional

image through a clever use of transparency. The technique can also be used for

the extraction of quantitative shape information (e.g., position of center of gravity,

area, volume). A more challenging and very important problem is that of classifying

the obtained shape into for example “normal” and “abnormal” or more generally

of determining its variation from some shape template. A technique based on the

Laplace equation was proposed. One-to-one correspondences are determined between

the two shapes and, based on that, local and global similarity metrics are defined.

An important application is the comparison of the result of a segmentation algorithm

with the ground truth (which could be defined as some manual segmentation by a

human expert).

Further research could include a detailed study of the relation between the proposed

direction-based segmentation technique and biological vision. The framework could be

further extended and local costs defined by a pattern detector that would depend not only

on direction but also on some parameter that would vary smoothly along the curve and

would be recovered together with the curve (or surface) by minimization. In the surface

comparison, the problem of determining a mean shape that would be optimal with respect

to the metrics proposed could be investigated. The problem of extending the framework in

order to determine correspondences between un-registered shapes could also be considered.
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Finally, all the proposed techniques could be applied extensively to specific experimental

problems in other research fields such as medicine or neuroscience.

The techniques proposed in this thesis are very general and could be used to extract

information from many different types of imagery. They have been applied mostly to medical

imaging datasets and in particular images of the brain. The development of new imaging

modalities (such as structural, functional or diffusion magnetic resonance imagery) along

with the necessary corresponding image analysis techniques is not only useful for medical

applications but also for perfecting the fundamental understanding of the functioning of the

human brain. Reciprocally, understanding the human brain could ultimately lead to the

designing of better artificial vision and artificial intelligence techniques.
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