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v i i 

SUMMARY 

This research i s devoted to invest igat ing how Bayesian s ta ­

t i s t i c a l analys i s d i f f ers from c l a s s i c a l s t a t i s t i c a l ana lys i s in the 

context of operational t e s t i n g . The s p e c i f i c aspects of operational 

t e s t i n g which are considered are the power resu l t ing from a hypothesis 

t e s t and the expected l o s s , or r i sk , resu l t ing from a dec i s i on . 

First i t i s shown that i t i s quite d i f f i c u l t to develop a 

meaningful measure of comparison between Bayesian and c l a s s i c a l 

analysis in the framework of hypothesis t e s t i n g . Using the power of 

the hypothesis t e s t as a measure of comparison, i t i s shown that under 

certain conditions c l a s s i c a l s t a t i s t i c a l procedures lead to more power­

ful t e s t s than Bayesian procedures. It i s then shown that Bayesian 

s t a t i s t i c a l procedures are superior to c l a s s i c a l procedures in the 

framework of minimizing expected l o s s or r i sk . 
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CHAPTER I 

INTRODUCTION 

Background 

This study was prompted by the des ire of the U. S. Army Opera­

tional Test and Evaluation Agency (OTEA) to compare Bayesian to c l a s s i ­

cal s t a t i s t i c a l procedures for determining sample s i z e s for actual 

t e s t s which have been conducted by OTEA. The object ive of the 

comparison is to determine i f smaller sample s i ze s can be obtained 

through the use of Bayesian procedures which y i e l d inferences compar­

able to those drawn from c l a s s i c a l procedures. To understand the pro­

cedures to be u t i l i z e d in t h i s study, one must be famil iar with the 

nature of operational t e s t i n g as performed by OTEA. 

The purpose of operational t e s t i n g is to provide data upon which 

to est imate a prospective system's mi l i tary u t i l i t y , operational e f f e c ­

t iveness and s u i t a b i l i t y , and need for any modif ications [ 2 ] , This data 

i s obtained through a sequence of three operational t e s t s (referred to 

as OT I, OT I I , and OT I I I ) . Each t e s t must be completed and analyzed 

prior to beginning the next t e s t to determine i f there i s a need for 

the next t e s t in the sequence. When poss ib le the new system i s tested 

alongside the e x i s t i n g system during each phase of t e s t i n g to acquire 

data from both systems under ident ical condit ions . At the end of each 

t e s t , the data i s co l l ec ted and analyzed, and a dec is ion i s made to 

conduct the next t e s t or to re jec t the new system [ l j . 
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The overal l assessment procedure cons i s t s of ident i fy ing certain 

measures of e f f ec t ivenes s (MOE) which are c r i t i c a l to the system under 

considerat ion, such as , percent of target h i t s , mean miss d i s tance , 

mean time between f a i l u r e , and so on. Once i d e n t i f i e d , these MOE are 

incorporated into a t e s t design which wi l l provide for a s ide -by-s ide 

comparison of the competing systems with respect to each MOE. After 

a l l MOE of i n t e r e s t have been t e s t e d , the overall d e s i r a b i l i t y of the 

system i s then evaluated. 

For a given t e s t des ign, the problem at hand i s one of determin­

ing the minimum number of r e p l i c a t e s (sample s i z e ) required for each 

se t of experimental condit ions to achieve a spec i f i ed leve l of conf i ­

dence in the inference made as a resu l t of the experiment. This sample 

s i z e i s currently being determined by c l a s s i c a l s t a t i s t i c a l procedures 

[18 ] . As an example, suppose the random variable of in t ere s t i s assumed 

to fol low a normal d i s tr ibut ion with unknown mean and variance , and the 

decis ion maker i s interested in determining the expected value or mean 

of the random variable . In the c l a s s i c a l sense , the mean i s considered 

an unknown constant. The power of the t e s t , or the probabi l i ty of 

re ject ing the hypothesized value of the mean, when the hypothesized 

value i s inaccurate, i s determined from the operating c h a r a c t e r i s t i c 

curves for the type of t e s t conducted. The above theory of c l a s s i c a l 

s t a t i s t i c s wi l l be important when compared to the Bayesian theory inves ­

t igated in t h i s study. 

Objectives of Research 

The objec t ives of t h i s research are twofold. The f i r s t objec t ive 
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i s to determine whether or not Bayesian methodology can be e f f e c t i v e l y 

applied to operational t e s t i n g . As noted e a r l i e r , operational t e s t ing 

i s conducted in three phases, and many times the same measures of e f f ec ­

t iveness are examined in more than one phase. The current procedures 

used by OTEA consider each t e s t in the sequence independently; i . e . , 

the inferences made at the end of each t e s t are based on the data 

obtained during that s p e c i f i c t e s t only [18] . There i s no attempt made 

to combine the data on a s p e c i f i c MOE measured in OT I and OT I I , for 

example, to obtain a better estimate for the MOE from which better 

inferences can be made. Chapter III i s devoted to developing a 

methodology which wi l l apply Bayesian techniques to the combination of 

data from two phases of t e s t i n g to determine the power of a hypothesis 

t e s t for any spec i f i ed sample s i z e . 

The second object ive of t h i s research i s to determine under what 

conditions the Bayesian methodology wi l l produce a "better" t e s t than 

the c la s s i ca l methodology when considering the same sample s i z e for 

both methods. Chapters III and IV are devoted to comparing the above 

methodologies in the context of- an actual t e s t conducted by OTEA. 

Fundamentals of Bayesian Analysis 

The discussion presented here wi l l compare c l a s s i c a l s t a t i s t i c a l 

theory to Bayesian s t a t i s t i c a l theory to demonstrate how OTEA's present 

concepts of t e s t i n g would have to be a l tered to apply Bayesian tech­

niques to operational t e s t i n g . Presently , i f OTEA i s considering a 

data generating process which may be modeled by the normal process with 

unknown mean and variance, then the probabi l i ty dens i ty function 
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ASSOCIATED WITH THE PROCESS IS THE NORMAL DENSITY, WITH MEAN, y , AND 
2 

VARIANCE, a . THESE PARAMETERS WOULD BE VIEWED AS UNKNOWN CONSTANTS 

BY THE CLASSICAL STATISTICIAN. THESE CONSTANTS ARE GENERALLY ESTIMATED 

BY SAMPLING FROM THE DATA GENERATING PROCESS AND USING THE SAMPLE 
— 2 2 STATISTICS X AND S TO ESTIMATE y AND a , RESPECTIVELY. IF QNE IS 

— 2 

INTERESTED IN y, THE MEAN OF THE PROCESS, X AND S COULD BE USED TO 

CONSTRUCT A CONFIDENCE INTERVAL ON y. FOR EXAMPLE, IF (1 - a) IS THE 

DEGREE OF CONFIDENCE DESIRED, THEN [12] 

1 - a = P[X - ( T A / 2 > N . T ) ( S / / N " ) 1 U < X + i \ / 2 9 n ^ ) { s / ^ ) ] ( 1 - 1 ) 

WHERE N IS THE SAMPLE SIZE AND T ^ N _ ] 1 S THE PERCENTAGE POINT OF THE 

CENTRAL T-DISTRIBUTION WITH N-1 DEGREES OF FREEDOM SUCH THAT 

P(T > T / 0 ' ) = a / 2 . THIS CONFIDENCE INTERVAL ON u WOULD BE INTER-a/c,r\- I 

PRETED IN THE RELATIVE FREQUENCY SENSE. THAT IS , IF REPEATED SAMPLES 

— 2 

OF SIZE N WERE TAKEN, EACH TIME COMPUTING NEW VALUES OF X AND S , AND 

A CONFIDENCE INTERVAL ON y WAS CONSTRUCTED AFTER EACH SAMPLE WAS TAKEN, 

THEN IT WOULD BE EXPECTED THAT 100(1 - a)% OF THE CONFIDENCE INTERVALS 

SO CONSTRUCTED WOULD CONTAIN THE "TRUE" VALUE OF y [ 1 2 ] . THE BAYESIAN 

ANALYST WOULD DIFFER IN SEVERAL WAYS. HE WOULD CONSIDER THE UNKNOWN 
~2 

PARAMETERS, y AND 5 , AS RANDOM VARIABLES. ("TILDES" WILL BE USED TO 

INDICATE RANDOM VARIABLES THROUGHOUT THIS STUDY.) SINCE POINT ESTIMATES 

OF RANDOM VARIABLES ARE USELESS, HE WOULD ASCRIBE TO THEM A PROBABILITY 

DISTRIBUTION INSTEAD. IF PRIOR SAMPLING INFORMATION IS NOT AVAILABLE, 

THE ANALYST MUST USE HIS SUBJECTIVE KNOWLEDGE OF THE PROCESS TO ASSESS 
~2 

A PROBABILITY DISTRIBUTION FOR THE JOINT OCCURRENCE OF y AND a . THIS 
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prior d i s tr ibut ion can then be combined with sample information to 

produce new d i s t r ibut ions for the unknown parameters, as wi l l be 

demonstrated below. The conceptual d i f ferences between the c l a s s i c a l 

and the Bayesian analyst play important ro les in interpret ing the 

resu l t s of a t e s t [36 ] . 

The combination of a prior probabi l i ty d i s t r ibut ion of a ran­

dom variable with sample information i s achieved by use of Bayes' 

theorem. For a continuous random var iable , 8 , Bayes' theorem may be 

written as 

f . . ( e j y ) = f W W ( 1 . 2 ) 

J f'(e)f(y|'e)de 
— 00 

where a s ing le prime superscript ( ' ) denotes a prior d i s t r ibut ion or 

parameter, a double prime superscript (") denotes a posterior d i s t r i ­

bution or parameter, and no superscript denotes a sampling d i s tr ibut ion 

on parameter.* Therefore, in equation ( 1 - 2 ) , f ' ( 0 ) i s the prior d i s ­

tr ibut ion of e representing the ana ly s t ' s b e l i e f s regarding e prior 

to sampling, f ( y | e ) represents the l ike l ihood function chosen to 

describe the sampling process , and f " ( e | y ) i s the posterior d i s tr ibut ion 

of e representing the ana ly s t ' s b e l i e f s regarding e af ter sampling [ 3 6 ] . 

The theorem can a l so be applied to d i s cre t e random variables by sub­

s t i t u t i n g probabi l i ty mass functions for probabi l i ty densi ty functions 

and a summation sign for the integral s ign . Winkler [36] gives a 

Appendix 1 presents a deta i led explanation of a l l notation in t h i s 
study. 
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derivation of Bayes' theorem from conditional probabil i ty formulas. 

In applying Bayes' theorem, the major d i f f i c u l t i e s l i e in assess ing 

the prior d i s t r ibut ion and l ike l ihood function and in evaluating the 

integral in the denominator of the formula. Baker [ 4 ] has suggested 

methods for handling these d i f f i c u l t i e s which are discussed in the 

next chapter and which wi l l be used in t h i s study. 
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CHAPTER II 

BAYESIAN DISTRIBUTION THEORY 

In his t h e s i s , Baker [4] considered a problem s imi lar to the 

one addressed in Chapter I. He has proposed a methodology for combin­

ing data r e l a t i v e to a s i n g l e MOE taken from one phase of t e s t i n g with 

sample information on the same MOE taken in a l a t er phase of t e s t i n g . 

This procedure produces an est imate of the MOE for use in making 

dec i s ions . The methodology appl ies to an operational t e s t in which 

a proposed system i s being tes ted s ide -by- s ide with the system i t has 

been designed to replace , and a s i n g l e MOE i s under considerat ion. 

In general , t h i s methodology uses the theory of s e l e c t i n g a prior d i s ­

tr ibut ion from the natural conjugate family of d i s t r ibut ions which, 

when combined with the l ikel ihood function in Bayes' theorem, produces 

a posterior d i s tr ibut ion that wi l l be of the same form as the prior. 

This wi l l reduce the computational burden considerably in the sequen­

t i a l analys i s used in t h i s study. (For a complete d iscuss ion of 

natural conjugate d i s t r i b u t i o n s , see Raiffa and Sch la i f f er [ 2 9 ] , 

Chapter 3 . ) 

In t h i s study, the r e s u l t s of an actual operational t e s t are 

supplied by OTEA. When considering a s ing l e MOE, OTEA assumes the uni­

variate normal d i s t r ibut ion with unknown mean and variance as the basic 

model for sample s i z e determination for both measurement and a t t r ibute 
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data [18] . The same function w i l l , therefore , be used in t h i s study 

as the l ike l ihood function for the random variable under considera­

t i o n . 

The s ide -by-s ide nature of the operational t e s t s under con­

s iderat ion suggests that inferences be drawn from the di f ference of 

performance c h a r a c t e r i s t i c s of the systems rather than from the actual 

performance c h a r a c t e r i s t i c s of a s i n g l e system. Thus, i f X-| and 

represent the same MOE for systems one and two, r e s p e c t i v e l y , 

D = X-| - X̂  wi l l represent the di f ference between the MOE of the two 

systems. Since and %̂  are assumed to fol low the normal d i s tr ibut ion 

with unknown mean and variance, D, which i s j u s t a l inear combination 

of two independent, normally d is tr ibuted random v a r i a b l e s , can a lso be 

assumed to fol low a normal d i s tr ibut ion [12] with unknown mean and 
~2 

variance, say y and a , r e spec t ive l y . The variable of in t ere s t in t h i s 

study wi l l be y , the mean di f ference between the two systems. 

In the c l a s s i c a l sense y , the mean of the d i s t r ibut ion of D, i s 

considered to be an unknown constant, and inferences are drawn from 

t e s t s of hypothesized values of y . Consequently, i f y can be shown to 

be equal to zero, one can conclude that there i s no d i f ference between 

the competing systems, whereas i f y i s not equal to zero, then one can 

conclude that one system i s better than the other. 

In the Bayesian sense , s ince y i s considered as a random var i ­

able , t e s t s on whether or not y takes on a s p e c i f i c value are mean­

i n g l e s s . One must consider t e s t s where y can take on a range of 

values; e . g . , y £ y , or one can consider a t e s t on s p e c i f i c values of y~, 
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the mean of y. If y can be shown to be equal to zero, one could reason­
ably conclude that there is no difference between competing systems, 
and if y f 0, there is a difference. 

It has been shown [29] that when y is considered as a random 
variable, the distribution of y is the Student's t distribution, rep­
resented by the density 

f(y|m,v,n,v) = f$(y|m,n/v,v), (2-1) 
where (m,v,n,v) is the statistic resulting from a sample of size n 
and is given by 

l n 

m = X = 1 J D. (2-2) n i=l 1 

v = ̂ TiHDi -m)2 

v = n - 1 . 
The parameters (m,n/v,v) in the argument of f<. on the right side of 
equation (2-1) indicate the degree of non centrality of the distribu­
tion. The central or standard Student's t distribution would be given 
by fg(y|0,1,v). The distribution given in equation (2-1) can be 
standardized so that cumulative t tables can be used in computing prob-
abilities as follows: 

P(y < y|m,v,n,v) = F$*( [y-m]/n7v~| v ) , 

where the subscript S* indicates the standard Student's t distribution. 
It has also been shown [29] that the mean and variance of y are given by 
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E(y|m,v,n,v) = y = m v > 1 (2-3) 

V(y |m,v,n,v) = y* = ^ n v - 2 
v 

v > 2 

The object ive of th i s methodology i s then to determine the minimum 

sample s i z e which wi l l produce a poster ior d i s t r ibut ion of y that wi l l 

enable the decis ion maker to achieve a spec i f i ed level of confidence in 

the inference drawn concerning y. 

Since the Department of the Army has imposed on OTEA the require­

ment that operational t e s t i n g be independent of a l l other t e s t i n g [ 2 ] , 

i t has been assumed that prior to OT I the s t a t e of knowledge concerning 

y can be represented by a d i f fuse d i s t r ibut ion for the normal-gamma 

family, as developed in Winkler [36 ] . Thus, when the prior d i s t r i b u ­

tion i s combined with the sample information from OT I the re su l t ing 

poster ior d i s tr ibut ion wi l l a lso be normal-gamma [ 3 6 ] . When a measure 

of e f f ec t ivenes s that was considered in OT I i s being reconsidered in 

OT I I , i t must be assumed that the poster ior standard deviat ion of 

y, /y", determined in OT I was too large to reach a meaningful conclusion 

about y. The sequential nature of the t e s t i n g then presents the oppor­

tunity to use the posterior d i s t r ibut ion determined from OT I regarding y 

as the prior s t a t e of knowledge of y for OT II . The methodology now 

concentrates on developing a sample s i z e for OT II which wi l l produce a 

poster ior standard deviation for y equal to some fract ion of the prior 

standard dev iat ion; i . e . , / y " = s v ^ , where 0 < s <_ 1. 

Baker [4] has shown that a sample of s i z e 

n = ( -y - D n ' , 0 < s < 1 
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where n' represents the sample s i z e of the prior d i s t r i b u t i o n , can be 

expected to reduce the prior standard deviation of y by a factor s . 

He approximated E ( / y " ) with 

E( / F | m \ v ' , n ' , v ' ; n,v) = V ^ T (2-4) 

Due to the approximations used in his formulation, Baker [4] has in tro ­

duced an error into the expected posterior standard deviat ion which can 

be written as 

% error = 1 - exp [-3/4 ( - i^r}^))] • (2-5) 

If th i s error i s determined by the decis ion maker to be too large , then 

equation (2-4) cannot be used, and a more complex formula must be used 

to determine the sample s i z e , n, which wil l produce a desired expected 

posterior standard deviation of y. This equation is 

E [ / F | m ' , v ' , n ' , v ' ; n , v ] = / ( n ' / n " ) y ' exp - [ | ( ( ^ ) - ( ^ r j ^ ) ) ] , (2-6) 

where n" = n'+n. 

Although equation (2-6) cannot be solved e x p l i c i t l y for n, given 

a desired value of E(/i"), i t can be solved i t e r a t i v e l y . Baker has sug­

gested a s tart ing value of n to be that found by solving equation (2-4) 

for n. 

Once a sample s i z e has been determined and a sample has been 

taken, the s t a t i s t i c (m",v",n",v") i s determined [29] as fo l lows: 
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M = 
N'M'+NM 

N '+N 
(2-7) 

N" = N' + N 

w „ . [ v ' V ' + N ' ( M ' ) 2 ] + (VV+NM2) - N"(M")2 

V " T W 6 ( N ' ) ] + [ v + <S(N)] - <S(N") 

v " = [ v 1 + 6(N')] + [ v +• 6 (N)] - <S(N"), 

WHERE <5(Y) = ( 0 IF Y = 0 

J IF Y > 0 . 

THE MEAN AND VARIANCE OF THE POSTERIOR DISTRIBUTION OF y ARE THEN 

E ( y " ) 

V (y") 

= U 

= y = 

M' 

V"v" 
N"(v" -2 ) 

(2-8) 

IN THE CASE WHERE THE PRIOR DISTRIBUTION IS DIFFUSE, AS IN OT I , 

N' = v ' = 0, AND THE POSTERIOR PARAMETER (M",V , , ,N l l ,v 1 1 ) EQUALS THE 

SAMPLE STATISTIC (M,V,N,v) [29]. 

THE ABOVE DEVELOPMENT IS DIRECTED AT PRODUCING A VALUE OF THE 

POSTERIOR STANDARD DEVIATION OF y WHICH WILL MAKE THE DISTRIBUTION OF 

y "TIGHT" ENOUGH TO ENABLE THE DECISION MAKER TO MAKE HIS DECISION CON­

CERNING y WITH A SPECIFIED DEGREE OF CONFIDENCE. HOWEVER, THE VALUE OF 

/ y " WHICH SATISFIES THE ABOVE CRITERION IS SUBJECTIVE IN NATURE. THE 

PROBLEM OF DETERMINING VALUES OF / J " WHICH MEET CERTAIN CRITERIA WILL 

BE DISCUSSED IN CHAPTER I I I . 
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CHAPTER III 

CLASSICAL VS. BAYESIAN HYPOTHESIS TESTING 

Introduction 

In t h i s chapter an attempt wi l l be made to compare Bayesian and 

c l a s s i c a l s t a t i s t i c a l methods in the context of hypothesis t e s t i n g . 

One commonly accepted measure of comparison between methods of t e s t i n g 

hypotheses i s the power of each t e s t . We shall define the power of a 

t e s t as the probabi l i ty of re jec t ing the null hypothesis when i t i s 

f a l s e , or , equiva lent ly , the probabi l i ty of not committing a type II 

error. The power of the t e s t i s an appropriate measure of comparison 

for th i s study because of the consequences of the dec i s ions resul t ing 

when type II errors are made. In the case of operational t e s t i n g , con­

s ider the null hypothesis: there i s no d i f ference between the standard 

equipment and i t s proposed replacement versus the a l ternate hypothesis: 

the proposed replacement i s better than the standard. If the dec is ion 

maker makes a type II error ( i . e . , the new equipment i s bet ter but i t 

wil l not be purchased), he i s denying the army the use of a better piece 

of equipment and thereby keeping the level of mission accomplishment 

lower than i t could be. 

In the case of a type I error, however, where the dec i s ion maker 

re jec t s the null hypothesis when i t i s true ( i . e . , there is no d i f f e r ­

ence in equipment but the new equipment i s purchased), the consequence 

would be that a probably more expensive piece of equipment would be 
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purchased which would not improve the mission accomplishment of the 
army. A better piece of equipment would not have been overlooked, 
however. 

In this example, a type II error could be more harmful to the 
army than a type I error. For this reason, the probability of not 
committing a type II error, or the power of the test, is considered of 
prime importance in this study. 

The Two-tailed Hypothesis Test 
To compare classical versus Bayesian tests in terms of power, the 

hypotheses of interest in both tests must be considered. In the classi­
cal two-tailed test, HQ: y = 0 vs Ĥ : y f 0 ( y is considered a constant), 
the type I error can be fixed at any desired level, and the type II 
error can be determined for any given sample size by use of the appro­
priate operating characteristic curves. However, since the Bayesian 
considers y to be a continuous random variable, the probability that 
y = 0 will always be zero. In fact, Winkler [36] has stated that there 
is no logical Bayesian equivalent to the classical two-tailed test. Two 
modified Bayesian hypotheses will, therefore, be considered in this 
study. The first tests whether or not the mean of y , y~, equals zero; 
i.e., H : y = 0 vs Hn: y f 0. Since the variance of ii decreases as o I 
n increases, an infinite sample would yield exact knowledge of 
the true y . In the infinite sample case, the mean of y would be the 
exact value of y when the variance of y is zero. It is, therefore, 
logical to compare the value of y~ in the Bayesian test to the value of 
y in the classical test. This will be done in the next section. 
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The second modified Bayesian hypothesis tests whether or not y 
lies in some interval about zero; i.e. HQ: -a < ii < a vs H-j: -a > y 
or a < y , a > 0. Since the classical decision maker is really more 
interested in knowing whether y is in some small interval about zero 
rather than if y is exactly equal to zero, this Bayesian hypothesis 
would also serve as a valid comparative to the classical two-tailed 
test. This comparison will be discussed in connection with the one-
tailed test later in this chapter. 

In this section, the hypotheses HQ: y~ = 0 vs : y" f 0 in the 
Bayesian context will be compared with the hypotheses, Hq: y = 0 vs 
H.|: y f 0 in the classical context. The measure of comparison will 
be the power of the test. As stated in Chapter II, D, the difference 
between the same MOE of two competing systems, is assumed to follow a 

2 

normal distribution with unknown mean, y, and unknown variance, o . In 
the classical test, a sample size can be determined which will yield a 
specified power for the test for any fixed type I error, a. The rejec­
tion criteria for H . established from the a level desired, is [ 1 2 ] : 

Solution Using Bayesian Prediction Interval 

o 
reject H if t > t 

o 1 o1 i 
a/2,n-1 * 

t = test statistic = o 
m-0 
v//n~ 

n m = sample mean = n 

v = sample variance 
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t / 0 , = value of t such that P ( | t | > t / 0 „ - , ) = a / 2 a / £ , n - 1 1 1 ald. ,n-1 

The power of the t e s t for various sample s i z e s and departures of y from 

0 are given by the appropriate operating c h a r a c t e r i s t i c curves for the 

2 - t a i l e d t t e s t in [ 1 2 ] . 

Before defining the power of the Bayesian t e s t , some discuss ion 

of a Bayesian prediction interval i s needed. A Bayesian prediction 

interval (BPI) i s an interval having a stated probabi l i ty , e . g . , ( 1 - y ) , 

of containing the variable of i n t e r e s t . In Figure 1, y~" i s the mean of 

the posterior d i s tr ibut ion of y , a_ i s the lower prediction l i m i t , t?_ i s 

the upper prediction l i m i t , and the shaded area i s the probabi l i ty that 

a < y " < b. 

a y " b 

Figure 1. Generalized Bayesian Interval on y " . 

If the interval i s centered on y"> the length of the i n t e r v a l , d", i s 

given by [12] 

D " * 2 T Y / 2 , v " ^ • ( 3 " ] ) 

When considering the Bayesian hypotheses, HQ: 1 7 = 0 vs H-j: y" ^ 0, the 

reject ion c r i t e r i a to be used in t h i s sect ion wi l l be: re j ec t HQ i f 

zero does not f a l l in the (1-Y) BPI on y " . The type I e r r o r , a , i s 
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a = P (re ject ing HQ |y = 0), 

which can be restated as 

a = P(0 i s not in ( l -y )BPI |y = 0), (3-2) 

The power of the t e s t i s defined as 

Power = P (re jec t ing Ho|y~ = c ^ 0), 

which can be restated as 

Power = P (0 i s not in (l-y)BPI|TT = c ) . (3-3) 

Using d" from equation ( 3 - 1 ) , the power becomes 

Power = P (0 i s not in interval ["y" - d"/2, y"+d"/2] |7T= c ) . (3-4) 

Since y"" = m" (defined by equation (2-7)), equation (3-4) becomes 

Power = P (0 i s not in interval tm" - d"/2, m" + d"/2] |y~ = c ) . (3-5) 

Prior to sampling, m" and d" are random var iab le s , denoted m" and d", 

which lead to 

Power = P (0 i s not in interval [m" - d"/2,m" + d"/2]\v= c ) . (3-6) 

Since zero wi l l not be in the BPI only i f the end points of the BPI 

have the same s ign , 

Power- P (m"-a72 < 0 and m" + d'72 < 0-|y' = 'c) + (3-7) 

P(m" - dM/2 > 0 and m" + d"/2 > 0|y= c) . 
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Equation (3-7) is equivalent to 

Power = P(|m"| > d"/2|y = c ) . (3-8) 

Substituting the value of d" given in equation (3-1), 

Power = P(|m"| > ty/2>V../HU = c ) . (3-9) 

Since / y " i s always greater than 0, 

Power = P ( | m " | / / F > t T / 2 J V „ | 7 = c ) . (3-10) 

I t has been shown [29] that m" fol lows a non central t d i s t r ibut ion and 

/jV^ fol lows an inverted beta 1 d i s t r i b u t i o n . I t i s , there fore , very 

d i f f i c u l t to ca lcu la te the power of the t e s t from the expression given 

in equation (3-10). To s implify the c a l c u l a t i o n s , / T ^ w i l l be replaced 

by i t s expected value, as given in equation (2-4) , and the resu l t ing 

power computation i s considered to be an approximation to the power in 

equation (3-10). After replacing / " j F w i t h i t s expected value as given 

in equation (2-4) and l e t t i n g k = t y ^ 2 v „ E( / I F ) , equation (3-9) 

becomes 

Power = P(|m"| > k|y = c) (3-11) 

= P(m" > k|y = c) + P(m" < -k | y= c) (3-12) 

Using m" as given in equation (2-7) , equation (3-12) becomes 

n n / m1 n1.+ mn , , — \ , n / m' n 1 + mn , i — \ , 0 n o \ Power = P ( -TI > k|y = c) + P ( -n < -k|y = c) (3-13) 

Equivalently, 
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Power - P(m > | y = c) + P(m < -| y = c ) (3-14; 

= 1 - P(m < | y = c) + P(m< - | y = c) . (3-15) 

It has been shown [29] that the d i s t r ibut ion of m i s given by 

D ( m | m ' , v ' , n ' , v ' ; n , v ) = f s ( m | m ' , n u / v ' , v ' ) , (3-16) 

where n = n n 

u n+n 

S t r i c t l y speaking, the Bayesian analyst does not consider y to be an 

unknown constant with some true value. Rather, he considers y" to be a 

random variable a l s o . However, in order to use Bayesian procedures to 

formulate a t e s t which can be compared to the c l a s s i c a l hypothesis t e s t , 

i t has been assumed that there i s some true value for y". With t h i s 

assumption, the expected value of the sample mean, E(m), would then be 

equal to y . Cumulative p r o b a b i l i t i e s for m would then be computed as 

given below. 

P(m < a | y , n u S v , , v ' ) = F $ * ( [ a - y ] / n J 7 v T " | v ' ) (3-17) 

Using equation (3-17) with y = c, equation (3-15) can be rewritten as 

n i r / kn^'-rn'ri'-cni , . , r -kn" - m' n 1 - cn. t. l r > , Q \ Power = 1 - F s *( — — — | v ) + F s*( l v )• (3-18) 
n/v 7rT~ n /v ' /n u u 

Summarizing the method for determining the power of the Bayesian t e s t 

for a given sample s i z e and a prior s t a t i s t i c ( m 1 , v * , n * , v ' ) : 
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1. Calculate E(/1F) from equation ( 2 - 4 ) . 

e t / T » \ _ / y ' n ' 

2. Calculate v " and n u from equations (1-5) and (3 -16) . 

v" = n' + n - 1 

« - n ' n n - —:—r u n+n 

3. Calculate k = t y / 2 v „ E(/fF).. 
4. Calculate power from equat ion ( 3 - 1 8 ) f o r any value o f c. 

I l l u s t r a t i n g the Procedure 

In th i s s e c t i o n , the so lut ion procedure described above wi l l be 

i l l u s t r a t e d in the context of an actual operational t e s t conducted by 

OTEA. The t e s t se lec ted was an OT II for the Lightweight Company Mortar 

System (LWCMS), which i s being considered as a replacement for the 81 mm 

mortar currently being used by the army. The purpose of the t e s t was to 

provide data for a s ide -by-s ide comparison of the two mortars to assess 

the r e l a t i v e operational performance and mi l i tary u t i l i t y of the LWCMS 

[20] . One of the MOE which was considered in both OT I and OT II was 

the time required for an individual to complete the gunner's examina­

t i o n , which i s a t e s t designed to determine how quickly an individual 

can perform c r i t i c a l operations in preparing a mortar to f i r e . In OT I 

a sample s i z e 14 was used to determine the d i s t r ibut ion of times to per­

form the gunner's t e s t . The r e s u l t s of t h i s t e s t are contained in 

Appendix 2. If X-, and X? represent the times to perform the t e s t on the 
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old system and the new system, r e s p e c t i v e l y , then D = - i s the 

variable described in Chapter I I . The mean of D, y , i s the variable 

of in t ere s t in t h i s study. 

Using a d i f fuse prior d i s t r i b u t i o n , Baker [4] determined the 

parameters of the posterior d i s tr ibut ion of y for OT I from equation 

(2-7) to be 

m" = m = 17.6 sec 

n" = n = 14 

v" = 2040.5 s e c 2 

H - 1 3 

Since the same MOE was also t e s ted in OT I I , the above values wil l be 

used in the prior d i s tr ibut ion of y for OT I I . The value of the prior 

variance of y for OT II i s computed from equation ( 2 - 3 ) . 

T V - V ' , V ' ' - ( 2 0 4 0 5 ) ( 1 3 ) . , 7 2 2 , 2 
y " rT 1 7 ^ 2 1 ( 1 4 ) ( 1 1 ) " 1 7 2 ' 2 5 S E C 

In OT I I , OTEA used a sample of 3 0 i nd iv idua l s , each of whom per­

formed the gunner's t e s t twice on each of the competing systems. The 

average times for each individual on each system are given in Appendix 

3 . The power curve for the c l a s s i c a l two- ta i l ed t e s t with n = 3 0 wi l l 

be compared to the power curve for the Bayesian t e s t with n = 3 0 . The 

s tep-by-s tep procedure for ca lcu la t ing the power using the s t a t i s t i c 

( m ' , v ' , n ' , v ' ) = ( 1 7 . 6 , 2 0 4 0 . 5 , 1 4 , 1 3 ) , n = 3 0 , and a 9 5 % Bayesian predic­

tion interval (Y = . 0 5 ) i s given below. 
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!. E ( / F ) . ( 1 G V 2 F I ( 1 4 > • 7-40 sec 

2. v" = 14 + 30 - 1 = 43 

n = 30(14) = 9 5 5 
n u 30+14 

3. k = t Q 2 5 4 3 E ( / P " ) = 2 .02(7 .40) = 14.95 

4. Power g T . F c M Q 4 - 9 5 ) t 4 4 ) • ( 1 7 . 6 ) ( 1 4 l z 3 0 c 
5 30 /2040 .5 /9 .55 

13] 

+ F ( - 1 4 . 9 5 ) ( 4 4 ) - - - ( 1 7 . 6 ) ( 1 4 ) - 3Qc 
S . 30 /2040 .5 /9 .55 

13] 

The cumulative d i s t r ibut ion for the standard Student 's t d i s tr ibut ion 

i s given in Biometrika Tables for S t a t i s t i c i a n s , Volume 1 , by Pearson 

and Hartley [22 ] . The power for c = 20 i s calculated to be 

Power = 1 - F s * - ( - . 2 | 1 3 ) + F $ * ( - 3 . 9 | l 3 ) 

= 1 - .42 + .0009 

= .58 

The power for other values of c i s ca lculated in a s imi lar manner. Since 

the value of Y in the (1-Y) BPI i s not the type I error for t h i s t e s t , 

the type I error must a l so be calculated for each value of n. The type 

I error, a, i s given by 

a = P(reject ing HQ[TT = 0) 

= P(0 i s not in ( l -y )BPI \V = 0) 
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This formula i s the same as the formula for the power with y = c = 0, 

Therefore, 

a = 1 - F A [ ( 1 4 . 9 5 H 4 4 ) - (17 .6 ) (14) 
S 30 /2040 .5 /9 .55 

13] 

+ p a [ ( - 1 4 . 9 5 ) ( 4 4 ) - (17 .6 ) (14) 13] , 
30 /2040 .5 /9 .55 

= 1 - F $ * ( . 94 |13 ) + F s * ( - 2 . 1 |13) 

= 1 - ( .82) + .03 = .21 

In order to f i x a at a certain l e v e l , as i s done in the c l a s s i c a l c a s e , 

the width of the (1-Y) BPI must be changed with each value of n; i . e . , 

Y must change with each n to keep a f ixed. To ca l cu la te the value of Y 

which produces a given a , consider eq. (3-18) with c = 0. 

- l u i k n " ~ m 'n' | , r , -kn" - m 'n ' | (r( 1 Q N a - 1 - FQ* ( — — ^ — | v ) + F^* ( — l v ) 
^ n /vT/rT 5 n / v V n -

' u u 

For p o s i t i v e m', the l a s t tenn in equation (3-19) i s i n s i g n i f i c a n t . 

Therefore, l e t t i n g a = .05 and dropping the l a s t term y i e l d s 

.95 = F s * ( k n " " n 1 ' n ' |13) . (3-20) 
n/v '/n 

u 

The value of the argument in the r ight s ide of equation (3-20) which 

y i e l d s a probabi l i ty of .95 i s 1.8 [22]. Thus 
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Equivalently, 

1.8 n /v ' /n + m'n' 
k = r r r ^ (3-21) 

n 

For n = 30, 

. = 1 .8 (30) /2040 .5 /9 .55 + (17 .6 ) (14) 
K 3 0 + 1 4 

= 23.54 . 

Since k = v » E ( / f i " ) by de f in i t i on 

f — k 23.54 _ o i p 
S / 2 , 4 3 f~~~~ 7.40 

E( / y , r 

Thus, Y ~ .005 , or a 99.5% BPI wi l l produce a type I error of . 05 . Table 

1 l i s t s the values of k needed to produce a = .05 for various values of 

n. 

Table 1. Sample Size versus k, a = .05 

Sample Size 

2 23.08 

4 23.93 

7 24.28 

10 24.30 

15 24.13 

20 23.91 

30 23.54 

40 23.27 
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With the type I error fixed at .05 , the power curves for the Bayesian 

and c l a s s i c a l t e s t s for n = 30 and n = 4 have been plotted in Figures 

2 and 3, r e spec t ive ly . From the f igures i t can be seen that for n = 4 , 

the Bayesian t e s t i s s l i g h t l y more powerful but for n = 30 the c l a s s i ­

cal t e s t i s much more powerful. Plots of the power versus sample s i ze 

for each t e s t for | c | = 20 and | c | = 4 0 are shown in Figures 4 and 5, 

re spec t ive ly . There i t i s evident that the c l a s s i c a l t e s t i s superior 

to the Bayesian t e s t in detect ing both small and large values of | c | , 

part icular ly when large values for the power are required. 

We wi l l now inves t iga te the behavior of the power curves i f Y 

in the (1 - Y) BPI i s held constant at Y = .05 . In t h i s case , the type 

I error wi l l not remain fixed as i t did in the previous c a l c u l a t i o n s . 

The type I error can be computed from equation (3-19) for various sample 

s i z e s . The resu l t s of the ca lcu la t ions are given in Table 2. 

Table 2. Type I Error Versus Sample Size 

Sample Size Type I Error 

2 .01 

4 .04 

7 .08 

10 .11 

15 .14 

20 .16 

30 .21 

40 .25 



Figure 2 . Power Curves, n = 30, a = . 0 5 . 



Figure 3 . Power Curves, n = 4 , a = .05 . 
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Power 

0 10 20 30 40 

Sample Size 

Figure 4 . Power vs . Sample S i z e , | c | = 20, a = .05 . 
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Plots of the power versus sample s i ze for the two t e s t s for | c | = 20, 

30, and 40 are given in Figures 6, 7, and 8, r e s pec t ive l y . There i t 

can be seen that as | c | increases , the d i f ference between the two curves 

decreases. However, as seen in Table 2 , the type I error for the 

Bayesian t e s t i s greater than that for the c l a s s i c a l t e s t ( .05) for 

sample s i z e s greater than four. Once again, the c l a s s i c a l t e s t appears 

to be superior, part icu lar ly when high values of the power are required. 

In the foregoing example, a 95% BPI was u t i l i z e d in computing 

the power for the Bayesian t e s t . If a larger interval i s used, both 

the power and the type I error wi l l decrease. This i s obvious from equa­

t ions (3-3) and ( 3 - 2 ) . If the length of the BPI i s increased, the 

probabil i ty that the BPI wi l l include zero must increase . Therefore, 

the probabi l i ty that the BPI wi l l not include zero (or power) must 

decrease. S imi lar ly , decreasing the length of the BPI wi l l increase the 

power and the type I error. Thus, various power and type I error com­

binations can be achieved by varying the width of the BPI. 

In the above example, the v a r i a b i l i t y of m was a f f ec ted by n^, 

as defined in equation (3-16) . In Table 3 below, the d i f ference between 

n and n u can be seen to increase as n increases . The parameter, n u , 

takes into e f f e c t the v a r i a b i l i t y of m' in ca lcu la t ing the v a r i a b i l i t y 

of m, which i s given by [29] 

V ( m | m ' , v , , n u , v ' ) = £ v (3-22) 

where n = u 
nn 
n+n 
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Figure 6 . Power vs. Sample Size, = 20, Y = . 05 . 
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Figure 7. Power vs . Sample S i z e , |c | = 30, a = .05 . 



V 
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Table 3. Sample Size Versus n u 

Sample Size n 
u 

2 1.75 

4 3.11 

7 4.67 

10 5.83 

20 8.24 

30 9.55 

40 10.37 

Since we are considering the true value of y~ t o be a constant , which i s 

the expected value of m, we shall next inves t iga te how the power of the 

Bayesian t e s t i s af fected i f the v a r i a b i l i t y of m' i s not considered in 

the variance of m; i . e . , n u wi l l be replaced by n in equation (3 -18 ) . 

Solution Using Alternate Method 

Replacing n u with n in equation (3-18) y i e l d s 

Power = 1 - F<.* ( kn" - m'n' - cn 

n /v ' /n 

-kn" - m'n'-cn 

n /v ' /n 
') (3-23) 

The type I error for t h i s t e s t i s obtained from equation (3-23) with 

c= 0. 

a - 1 - FQ*( kn" - m'n 
n/v ' /n 

V ) + F<*( -kn" - m'n 
n /v ' /n 

(3-24) 
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I l lu s t ra t ing the Procedure 

Using the same sample data as in the previous s e c t i o n s , the 

values of k required to keep a = .05 are obtained from equation (3-21) 

with n = n and are shown below, u 

Table 4. Sample Size Versus k, a = .05 

Sample Size k 

2 22.59 

4 22.72 

7 21.98 

10 20.98 

15 19.36 

20 17.94 

30 15.72 

40 14.09 

With the type I error fixed at .05 , the power curves for n = 30 and 

n = 4 for | c | = 20 are plotted in Figures 9 and 10, r e s p e c t i v e l y . It 

can be seen that for n = 4 the Bayesian t e s t i s more powerful and for 

n = 30, the c l a s s i c a l t e s t i s marginally more powerful. The p lots of 

power versus sample s i z e for | c | = 2 0 and | c | = 4 0 are given in Figures 

11 and 12, r e spec t ive ly . From these curves, i t can be seen that there 

is l i t t l e d i f ference between the two t e s t s in terms of power. Thus, when 

the v a r i a b i l i t y of m1 i s not considered in the v a r i a b i l i t y of m, there 

i s no s i g n i f i c a n t d i f ference in the power of the two t e s t s . There has 

been no evidence so far to j u s t i f y using Bayesian instead of c l a s s i c a l 



Figure 9. Power Curves, n = 30, a = .05. 



Figure 10. Power Curves, n = 4 , a = .05 . 
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Power 

Sample Size 

Figure 11. Power vs . Sample S i z e , | c | = 20, a - .05 . 
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procedures in the case of the two-tai led hypothesis t e s t . Another 

method of treat ing the two-ta i led t e s t wi l l be discussed in connec­

t ion with the one - ta i l ed t e s t in the next s e c t i o n . 

The One-Tailed Hypothesis Test 

If the decis ion maker i s interes ted in the c l a s s i c a l one- ta i l ed 

t e s t , r l Q : ' u <_ 0 vs H.|: u > 0, there i s an equivalent Bayesian t e s t ; 

namely, H : y <_ 0 vs :' y > 0. In f a c t , an a l ternate method for t e s t ­

ing the two-tai led hypothesis a lso f a l l s into t h i s category. Rather than 

t e s t H : y = 0 vs H,: y t1 0, consider H : -a < y < a vs H,: y < -a or o I o — — I 

y > a, a > 0. This rea l l y t e s t s whether y i s in some interval about zero 

and can be treated as a special case of the one- ta i led t e s t discussed 

below. 

As in the two-ta i led t e s t , the type I and type II errors for the 

c l a s s i c a l one- ta i l ed t e s t can be determined for any d i s t r ibut ion of the 

random variable of i n t e r e s t . However, in the Bayesian t e s t once a 

poster ior d i s tr ibut ion for y has been determined, the p r o b a b i l i t i e s of 

HQ and H-j being true can be determined; i . e . , 

0 
P(y £ 0|sample data) = / f ( y ) d y . 

— CO 

If the density function of y i s known, the above integral can be com­

puted. Addit ional ly , 

P(y > 0|sample data) = 1 - P(y <_ 0|sample da ta ) . 

Equivalently, [36] 

P(H1 i s true) = 1 - P(HQ i s t r u e ) . 
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If one considers 

a = P(reject ing HQ|HQ i s t r u e ) , 

and one knows the probabi l i ty that HQ i s t rue , i t i s d i f f i c u l t to 

j u s t i f y any re jec t ion c r i t e r i a for HQ which would lead to a meaningful 

ca lculat ion of a. Winkler [36] suggests that the s ign i f i cance level 

of the t e s t can be determined by measuring how "unusual" the sample 

re su l t obtained i s , given that the null hypothesis i s t rue . Equiva­

l e n t s , one could determine the chance of obtaining a sample resu l t more 

"extreme" than the one observed, given H i s true . In the t e s t consid-
3 o 

ered in the previous s e c t i o n , for example, i f y = 0, how "unusual" i s 

the sample re su l t of m = 72.95 sec? (See data in Appendix 3 . ) The 

standardized value corresponding to m = 72.95 i s 

t a £ b 0 _ a 7 2 . 9 5 _ a 1 0 > 2 6 ^ 
0 s / /n 38 .96 / / 30 

Since i s one- ta i l ed to the r i g h t , the s ign i f i cance level i s equal to 

the P ( t Q _> 10 .26) , which is l e s s than .0001. The smaller the s i g n i f i ­

cance l e v e l , the l e s s l i k e l y the sample r e s u l t i s , given that HQ i s 

true [36] . I t can be seen, then, that the s ign i f i cance level as 

defined above cannot be fixed as in the c l a s s i c a l t e s t s ince i t depends 

on the sample r e s u l t . Addit ional ly , there i s no c lear method for deter­

mining a power for the Bayesian t e s t . As s tated e a r l i e r in t h i s s e c t i o n , 

the modified two-ta i led t e s t can be considered a special case of the one-

ta i l ed t e s t . If the hypotheses of i n t e r e s t are HQ: -a <_ y <_ a and 

H-.: y < -a or y > a, a > 0, then the probabi l i ty that H i s true i s 
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a 
P(H i s true|sample data) = / f (y)dy . 

-a 

When the poster ior d i s tr ibut ion of y i s determined, the above integral 

can be computed. Obviously, 

P(H-| i s true|sample data) = 1 - P(HQ i s true|sample data ) . 

The arguments given for determining the s ign i f i cance level and power 

for the one - ta i l ed t e s t apply as well for the modified two- ta i l ed t e s t . 

Since there i s no meaningful de f in i t i on of power ava i lab le for 

the Bayesian one - ta i l ed t e s t , i t i s necessary to determine a d i f ferent 

measure of comparison between the c l a s s i c a l and Bayesian s t a t i s t i c a l 

procedures. The concept of minimum l o s s w i l l , therefore , be considered 

in Chapter IV as the bas is for comparison. 
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CHAPTER IV 

CLASSICAL VS. BAYESIAN ANALYSIS WITH LINEAR LOSS FUNCTIONS 

Introduction 

In t h i s chapter, a l inear l o s s function wi l l be u t i l i z e d to 

compare the consequences of the dec i s ions made under Bayesian and 

c la s s i ca l analyses of the same problem. In a l l real world problems, 

there are certain payoffs or l o s s e s associated with dec i s ions made 

under uncertainty. When the dec is ion maker i s not sure of the value 

of a certain quanti ty , such as u in the analys i s in the l a s t chapter, 

he i s subject to making a dec is ion which i s based on the assumption of 

the wrong value of y. For example, i f the null hypothes is , H Q : y < _ 0 , 

were accepted, causing the decis ion maker to re j ec t the new equipment, 

when in fact the true y i s greater than 0, a certain "opportunity" l o s s 

i s experienced. The army would be penal ized, in that i t would not have 

the opportunity to use a better piece of equipment. Even though i t i s 

not always poss ib le to attach a monetary f igure to the opportunity l o s s , 

some type of lo s s function must be considered by the c l a s s i c a l decis ion 

maker, at l e a s t subjec t ive ly . When the dec is ion maker determines maxi­

mum acceptable l e v e l s for the type I and type II errors for a t e s t , he 

i s indicat ing the r e l a t i v e importance of each type of error. For exam­

ple , i f .05 and .10 are the maximum l e v e l s for the type I and type II 

errors , r e s p e c t i v e l y , the dec is ion maker could be indicat ing that he 

considers the l o s s associated with a type I error to be twice as great 
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as the loss associated with a type II error. In the classical analysis 
of a problem, however, a decision is based on the outcome of a hypothe­
sis test on some central MOE, rather than on the possible losses result­
ing from each possible decision. Many times the type I error is 
arbitrarily set as some low value, say .05 or .01, and the power of the 
test is made as high as necessary by increasing the sample size. How­
ever, in considering actual loss functions formally, the decisions 
resulting from the classical and Bayesian approaches to the problem may 
differ considerably. The linear loss function will be considered in 
this chapter. 

Linear Payoff Function 
Before considering the linear loss function, a brief discussion 

of the linear payoff function is needed. In considering the two action 
problem of concern in this study, let a-j denote the action of rejecting 
the new equipment in favor of the old, and let a2 denote the action of 
purchasing the new equipment. Define linear payoff functions as in [36], 
say 

R(ar y ) = r] + s]y (4-1) 
R(a2, y ) = r2 + s2y 

where r. and s. are constants and s2 > ŝ. 
With these functions, the decision maker would consider the 

payoff of a certain action linear with respect to the actual state of 
the world, y. In this case action a-, would be optimal if 
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EtRfâ] > E[R(a2)] 
E(r].+ ŝ) > E(r2+ s2y) 
r, + s,E(y) > r9 + s9E(y). 

(4-2) 

Subtracting r9 and s,E(y) from both sides we get 
r1 - r2 > E(y)(s2 - s]) . 

Since s2 > s-j, dividing by s2 - ŝ  gives 
ri " r? 
Y T> E(y). (4-

Therefore, if equation (4-3) is satisfied, action a-| is optimal. If 
the inequality is reversed, action a2 is optimal. For this decision 
making problem, y, is called the breakeven value of y: 

Figure 13 displays ŷ  pictorially. 
If the expected value of y is less than ŷ, action â  is optimal; 

if it is greater than ŷ, action a2 is optimal; if it is equal to ŷ, 
the payoffs are equal, and the decision maker should be indifferent 
toward each action. 

The Linear Loss Function 
If action â  is chosen and the true value of y is really greater 

than yh, then an opportunity loss has been suffered by not having chosen 

y (4-4) 
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Payoff 

R ( a r y ) 

R ( a 2 , y ) 

a 2 and i s given by 

Figure 13. Payoff vs y 

L ( a 1 9 y ) = R ( a 2 , y ) - Rfa .^y) 

= r 2 + s 2 y - ( r ] + s ^ ) 

(4-5) 

= ( r 2 - r ^ ) + ( s 0 - s n ) 2 J l 
(4-6) 

On the other hand, i f act ion a 2 were chosen and the true value of y i s 

l e s s than y b , then the opportunity l o s s i s 

L ( a 2 , y ) = R ( a v , y ) - R ( a 2 , y ) 

= r ] + s-|y - ( r 2 + s 2 y ) 

= (r-i - r 0 ) + ( s n - s 0 ) y 

(4-7) 

(4-8) 

If a-| were chosen and the true value of y i s l e s s than y ^ » then the 
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opportunity l o s s would be 0. If a 2 were chosen and the true value of y 

is greater than y^, the opportunity loss i s a l so 0. The lo s s functions 

for a-| and a 2 are summarized below: 

L ( a r y ) = 
0 i f y < y^ 

( r 2 ~ r i ) + ( s 2 - s 1 )y i f p > u b 

(4-9) 

L ( a 2 , y ) = I 
f (r 1 -r 2 )+(s 1 -s 2 )y i f y < y b 

0 i f y > y. 
(4-10) 

The re lat ionship between the payoff and l o s s functions i s shown in 

Figure 14. 

Figure 14. Payoff and Loss vs . y. 
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The l o s s funct ions , L(a-|,y) and L ( a 2 , y ) are shown in Figures 15 and 16 

It i s obvious from these f igures that the l o s s functions are related 

to the value of the breakeven point as given in equation ( 4 - 4 ) . If 

y > y b , 

( r 2 - r j 
L ( a r y ) = {r2-r}) + {S2-S^)M = ( s ^ s ^ s ^ _ s ^ + ( s ^ s - ^ y 

= ( s 2 - S 1 ) ( - y b ) '+ ( s ^ S ^ y 

= ( s 2 - S - | )(y - y b ) . 

Simi lar ly , for y < y b 

L(a 2 , y ) = ( s 2 - s - | ) ( y b - y ) . 

Therefore, the loss functions can now be written 

0 y < y 

' ( 
L ( a r y ) = K - b (4-11) 

( S 2 - S - | ) ( y - y b ) y >_ y b 

( S p - S - , ) ( y . - y ) y < y, 
L ( a 2 , y ) = \ 2 1 b - b . (4-12) 

0 y - y b 

The expected value of each lo s s function depends on the d i s t r ibut ion of 

y and i s given by [36] 

CO 

EL(a.|) = ( s 2 - S l ) / ( y - y b ) f ( y ) d y (4-13) 

% 
y b 

EL(a 2) = ( s 2 - S l ) / ( y b - y ) f ( y )dy (4-14) 



Loss 
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The integra l s in equations (4-13) and (4-14) are ca l l ed r ight hand 

and l e f t hand l inear l o s s i n t e g r a l s , r e s p e c t i v e l y . Formulas for 

tabulation of the above in tegra l s are given in [36] for various conju­

gate d i s t r i b u t i o n s . The l o s s functions given in equations (4-11) and 

(4-12) are va l id for both the c l a s s i c a l and Bayesian analyses . The 

di f ference in the two approaches a r i s e s from the d i f fer ing decis ion 

c r i t e r i a in each a n a l y s i s . 

Comparison of Decisions 

In the c l a s s i c a l a n a l y s i s , action a-| ( r e j e c t new equipment) i s 

taken i f the null hypothesis , HQ: y £ 0 , i s accepted, while action a 2 

(purchase new equipment) i s taken i f the null hypothesis i s re jec ted . 

No formal consideration i s given to the value of y ^ or t o the l o s s 

function. In the Bayesian a n a l y s i s , however, action a-| i s taken i f the 

expected los s due to a-| i s l e s s than the expected l o s s due to a 2 , and 

a 2 i s taken i f the expected lo s s due to a 2 i s l e s s than that due to a-|; 

i . e . , expected lo s s i s minimized [36] . Consider Figure 17, where two 

typical l inear los s functions are graphed. 

In the case where the c l a s s i c a l analyst accepted the null hypothe­

s i s , resul t ing in action a-|, i f y ^ < 0, then the l o s s given by L(a-|y) 

would s t i l l be incurred for values of y between 0 and y ^ , even though 

HQ i s true. If HQ were actual ly f a l s e , and the true y i s greater than 0 

( i . e . a type II error ) , then the l o s s e s are even greater . If, however, 

y ^ > 0, then a l o s s i s incurred by choosing â  only i f the true y i s 

greater than y ^ . This would a l so be a type II error. Thus, the c l a s s i c a l 

analyst may incur a l o s s L ( a l s y ) by accepting H , i f he has made a type 
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Loss 

Figure 17. Loss vs . y . 

II error or no error at a l l , in terms of hypothesis t e s t i n g . 

S imi lar ly , i f the c l a s s i c a l analyst rejected the null hypothes is , 

he would choose act ion a^. If y ^ < 0, the loss given by L ( a 2 » y ) would 

be incurred i f the true value of y i s l e s s than y ^ (a type I error ) . If 

y ^ < 0 then a l o s s given by L(a2»y) i s incurred for values of y between 

0 and y ^ even though he correctly rejected HQ. Thus, a lo s s given by 

L ( a 2 , y ) may be incurred by making a type I error or no error at a l l . 

The above d iscuss ion points out that by not considering the break­

even point or l o s s function in his a n a l y s i s , the c l a s s i c a l analyst i s 

very l i k e l y to incur higher l o s s e s , even when he chooses the hypothesis 

which i s t rue , than the Bayesian who chooses the action with the l e a s t 

expected l o s s . 

The LWCMS OT II problem wi l l again be used to demonstrate the 

above procedures. 
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I l l u s t r a t i n g the Procedure 

Consider the payoff functions given by 

R ( a ] , y ) = - 1 0 0 - 2 0 y 

R ( a 2 , y ) = - 2 5 0 + 1 0 y 

A reasonable explanation of such payoff functions could be as fo l lows . 

Action a-| corresponds to re jec t ing the new equipment. If t e s t i n g the 

equipment costs 1 0 0 units and the decis ion maker considers a penalty 

cost of 2 0 units for each unit of y above 0 , he would be expressing the 

importance he attaches to the actual mean d i f f erence , y , between the 

MOE of the competing systems. As y becomes more p o s i t i v e , the new piece 

of equipment becomes much bet ter than the old and the more c o s t l y 

(negative payoff) becomes the dec i s ion of having chosen act ion a-|. 

Action a 2 indicates that the new system has been chosen. The cost 

of sampling plus purchase i s equal to 2 5 0 u n i t s , and the decis ion maker 

attaches a payoff of 1 0 units per unit of y . 

Using equation ( 4 - 4 ) , 

_ r r r 2 _ - 1 0 0 - ( - 2 5 0 ) _ 1 5 0 _ c ( A 

1 0 - ( - 2 0 ) 3 0 " 5 ( 4 " 1 5 ) 

From equations ( 4 - 1 1 ) and ( 4 - 1 2 ) 

{0 y <_ 5 

(4-16) 
30 ( y - 5 ) y > 5 
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"30(5-y) y £ 5 
L ( a 9 , y ) = \ (4-17) 

c 1 0 y > 5 

From equations (4-13) and (4^14) 

EL(a n) = 30 /. (y -5) f (y)dy (4-18) 
1 5 

5 
EL(a 2) = 30 / (5-y) f (y)dy (4-19) 

It has been shown [29] that i f y fol lows the student dens i ty , as i t 

does in th i s example, then 

CO 

/ ( z - y ) f s ( z | m , n / v , v ) d z = L $ * ( t | v ) / v 7 n ~ (4-20) 

and 

where 

/ ( y - z ) f $ ( z | m , n / v , v ) d z = L $ * ( - t | v ) / v 7 n " , (4-21) 

t = (y-m)/n/v 

L $ * ( t | v ) = 7TT- f s* ( t l v ) " t G

s * ( t l v ) 

G $ * ( t | v ) = 1 - F $ * ( t | v ) . 

Values of f ^ * ( t j v ) are given in [29] Table I. 

The expected l o s s e s given in equations (4-18) and (4-19) could 

be computed from e i ther the prior or posterior d i s t r i b u t i o n s for y. 

Since the decis ion wi l l be made in the c l a s s i c a l case a f t er the sample 

has been taken, the posterior d i s t r ibut ion wi l l be used. 
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As given in Chapter III the prior d i s tr ibut ion of y before t e s t ­

ing in OT II has parameters 

( m , , v ' , n , , v ' ) = (17 .6 , 2040.5, 14, 1 3 ) . 

The sample data given in Appendix 3 for OT II produced the s t a t i s t i c 

(m,v,n,v) = (72.95, 1517.9, 30, 29) . Thus the parameters of the poster­

ior d i s tr ibut ion of y , as given by equation ( 2 - 7 ) , are 

_ n'm' + nm _ (14) (17 .6 ) + (30) (72 .95) _ 5 5 3 4 
m n+ n' 30 + 14 D D ' ^ 

n" = n + n' = 30 + 14 = 44 

„ = [v 'v ' + n ' ( m ' ) 2 ] + (vv + nm2) - n"(m") 2 

v [ w ' + 6 ( n ' ) ] + f v + 6(n)] - 6(n") 

= ( 1 3 ) ( 2 0 4 0 . 5 ) + ( 1 4 ) ( 1 7 . 6 ) 2 + ( 2 9 ) ( 1 5 1 7 . 9 ) + ( 3 0 ) ( 7 2 . 9 5 ) 2 - ( 4 4 ) ( 5 5 . 3 4 ) 2 

1 3 + 1 + 2 9 + 1 - 1 

= 2320.5 

v " = [ v * + 6(n' ) ] + [ v +. 6(n)] - 6 ( n " ) 

= 13 + 1 + 29 + 1 - 1 = 43 

fO x = 0 
where 6 ( x ) = ) 

[ 1 x > 0 

Thus (m",v",n",v") = (55 .34 , 2320.5 , 44, 43 ) . 

To evaluate the l inear l o s s in tegra l s in equations (4-18) and 

(4 -19 ) , 
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t = ' ( u b - mM)/r?7VTR = (5- 55.34)/44/2320.5 = -6.9 

G s*(t|vM) = 1 - Fs*(t|v") = 1 - F$*(-6.9|43) = 1 

Gs*(-t|v") = .1 - Fs*(-t|v") = 1 - Fs*(6.9|43) = 0 

2 
Ls*(t|v") = f s*(t |v"j - t Gs*(t|v") 

2 

Ls*(-6,9|43) = 43

4V_"̂ 9)
 fs*(-6.9[43) - (6.9)G$*(-6.9| 43) 

= (2.16)(-.00000015) + (6.9)1 

= 6.9 (4-22) 
Ls*(-t|v") = Ls*(6.9|43) 

2 

= 4 3 4 2

( 6 - 9 ) fs*(6.9|43) - 6.9 G$*(6.9|43) 

= (2.16)(.00000015) - 6.9(0) 
L$*(6.9|43) = 0 (4-23) 

Using the LQ* calculated in (4-22) and (4-23) ; 

/ (Y- 5)F(Y)DY = LQ*(-6.9.|43)/VV 
.5 b 

= 6.9 /2320.5/44 

= 50.1 
5 

/ (5- Y)F(Y)DY= L$*(6.9143J/VVN" 
— CO 

= 0 
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Thus, from equations (4-18) and (4-19) 

ELfa^ = 30(50.1 ) = 1500.3 

EL(a 2) = 30(0) = 0 

The Bayesian would, therefore , choose action a 2 and buy the new equip­

ment. 

In the c l a s s i c a l a n a l y s i s , using H q : y <_ 0 vs : y > 0, the 
X"_ o 

s t a t i s t i c t = - would be computed and the null hypothesis would be 
s / /n 

rejected i f t Q > t^ n_-j [ 1 2 ] . In t h i s example, 

t = 7 2 - 9 5 - ° = 10,26 
0 38 .96 / /30 

* .05 ,29 = 1 " 6 9 7 ' 

Therefore, the c l a s s i c a l analyst would re jec t the null hypothesis and 

also choose action a 2 - Since the data for t h i s part icular problem has a 

mean so much greater than 0, one should expect both methods to reach the 

same dec i s ion . A better comparison would r e s u l t from a sample with a 

mean c loser to zero. Consider the case where the sample r e s u l t s in a 

mean of X = 10, with the same sample variance. Now, the c l a s s i c a l . 

analyst would not re j ec t H s ince t = ^ " ^ = — = 1 .41 , which 
0 0 s//n~ 38 .96 / /30 

i s l e s s than t 2 g = 1.697. The c l a s s i c a l analyst would then choose 

action a-j and re jec t the new equipment. On the other hand, the Bayesian 

would recompute EL(a-|) and EL(a 2 ) . The new parameters of the posterior 

d i s tr ibut ion of y are 
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m„ _ (14)(17.6) + (30)(10) . 1 ? 4 ? m 30+14 

n" = 44 

_ (13)(2040.5)+(14)(17.6)2+ (29)(1517.9) + (30)(IP)2 - (44) (12.42)-2 

v • 43 -

= 1653.37 

v" = 43 

The t value in equations (4-18) and (4-19) is 

t = (5 - 12.42J/44/1653.37 = -1.21 

G$*(-1.21|43) = 1 - F$*(-l.21(43) = .8814 

Gs*(1.21]43) = 1 - F$*(1.21|43) = .1186 

Ls*(-1.2l|43) = 4 3 + 4 2 K 2 1 ) 2 fs*(-1.21.|43)- (-1 .21 )G$*(-1.21143) 

= 1.059 (-.19) + 1.21(.8814) 

= .865 
2 

Ls*(1.2l|43) = 4 3 +

4 ^ 1 , 2 1 ) fs*(1.2l|43)- (1.21 )G$*(1.211 43) 

= (1.059)(.19) - 1.21(.1186) 

= .058 
CO 

EL(aJ = 30 / (y-5)f(y)dy 
5 

= 30 L$*(-1.21| 43)/l653.37/43 

= 30(.865)(/1653.37/43 ) 

= 160.91 
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5 

= 30 ( . 0 5 8 ) / l 6 5 3 . 3 7 / 4 3 

= 10.79 

Since EL(a 2) < EL(a^), the Bayesian would choose action a^ and buy the 

new equipment. In t h i s example, the c l a s s i c a l analyst chose the decis ion 

which had the higher expected l o s s . This resulted from considering only 

the true value of u and not the e f f e c t of the value of u on the l o s s 

which could be incurred from each d e c i s i o n . 

Although t h i s example considers only the l inear l o s s funct ion , 

the conclusions resu l t ing from the example are val id for a l l l o s s func­

t i o n s . Since the dec i s ion maker i s u l t imate ly concerned with choosing 

the action which wi l l minimize his l o s ses (or maximize his payof fs ) , i t 

i s imperative for him to formally assess his l o s s or payoff funct ion. 

Once t h i s i s done, he can base his decis ion on the action which has the 

l e a s t expected loss or greates t expected payoff, rather than on the true 

value of some s t a t i s t i c . 

It can be seen from equations (4-18) through (4-21) that there i s 

a re la t ionsh ip between the sample s i z e and the expected lo s s from each 

act ion . The sample s i z e a f f ec t s both the degrees of freedon, v , and the 

value of t , as well as the values of the in tegra l s in equations (4-20) 

and (4 -21) . I t i s poss ib le that a sample s i z e could be determined which 

would minimize the expected loss of each action, but such a determination 

i s beyond the scope of t h i s study. 

EL(a 2) = 30 / (5 -u ) f (u )du 
— CO 

= 30 L $ *( l . 21 [43 ) /1653 .37 /43 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The conclusions of t h i s study must be considered from two d i s ­

t i n c t viewpoints. The f i r s t i s that of hypothesis t e s t i n g . If the 

decis ion maker i s in teres ted purely in t e s t ing one hypothesis against 

another, such as H Q : U = 0 vs : ^ / 0 , there are several disadvan­

tages to u t i l i z i n g Bayesian s t a t i s t i c a l procedures. 

The hypotheses of in teres t may not be meaningful from a Bayesian 

viewpoint, part icular ly for the two-ta i led t e s t . In f a c t , to u t i l i z e 

Bayesian s t a t i s t i c a l procedures, the dec is ion maker must a l t e r his con­

ception of the mean and variance of a d i s t r ibut ion of a random variable 

as discussed in Chapter I. With the Bayesian conception of a random 

variable in mind, the dec is ion maker must formulate a new hypothesis to 

be tes ted which he f e e l s wi l l provide him with information equivalent to 

that which he would have obtained from the c l a s s i c a l hypothesis t e s t . 

An example of th i s was given in Chapter III with H : 7 = 0 vs H :̂ u t 0 . 

Once the a l ternate hypotheses have been formulated, they can be tes ted 

using Bayesian s t a t i s t i c a l procedures. However, i t was shown in Chapter 

III that when the probabi l i ty of a type I error was held constant , the 

Bayesian t e s t was l e s s powerful than the c l a s s i c a l in the meaningful • 

range of values for the power. When the BPI was kept constant , the 

Bayesian t e s t was also l e s s powerful than the c l a s s i c a l t e s t for large 
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values of the power with the additional disadvantage that the proba­

b i l i t y of a type I error increased with the sample s i z e . When the var i ­

a b i l i t y of the sample mean was assumed to be independent of the varia­

b i l i t y of the prior mean, i t was shown that there i s l i t t l e d i f ference 

between the two types of t e s t s in terms o f power. 

In the case of the one- ta i l ed t e s t , there are nearly equivalent 

hypotheses which can be invest igated with Bayesian and c l a s s i c a l proce­

dures; e . g . , HQ: y <_ 0 vs . H-j: y > 0 and HQ: y £ 0 vs H-j : y > 0, respec­

t i v e l y . Although the probabi l i ty of a type I error can be determined, 

i t cannot be f ixed in the Bayesian t e s t . Also , the power of the Bayesian 

t e s t cannot be meaningfully def ined, as discussed in Chapter I I I . There­

fore , the two types of procedures cannot be meaningfully compared for 

the one- ta i l ed t e s t . 

The second viewpoint from which the conclusions must be considered 

i s that of the dec is ion c r i t e r i a . If the dec i s ion maker can formally 

describe the l o s s function in re la t ion to each of the poss ib le dec i s ions 

he may make, Bayesian s t a t i s t i c a l procedures have been developed which 

wi l l enable him to make the decis ion which has the l eas t expected l o s s . 

In Chapter IV an example was provided to demonstrate the procedures in 

the case of a l inear l o s s function. Since the c l a s s i c a l dec is ion maker 

does not formally consider a lo s s function and bases his dec i s ion on the 

resu l t of a hypothesis t e s t , he may make a dec i s ion which would not mini­

mize h is expected l o s s . From t h i s viewpoint, therefore , Bayesian s t a ­

t i s t i c a l procedures are far superior to c l a s s i c a l s t a t i s t i c a l procedures. 

Therefore, i f the dec is ion maker i s in teres ted purely in t e s t i n g 

one hypothesis against another, he should use c l a s s i c a l s t a t i s t i c a l 
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procedures. However, if he is interested in making a decision which 
has the least expected loss, he should use Bayesian statistical proce­
dures. 

Recommendations 
In Chapter II it was stated that one of the objectives of the 

Bayesian methodology was to determine the minimum sample size from which 
meaningful probability statements could be made regarding y . In this 
study an attempt was made to determine the sample size which would pro­
duce a desired power. It is recommended that some other measure of a 
"meaningful probability statement" be investigated to reduce the sample 
size now being used by OTEA. 

It is also recommended that the Bayesian methodology presented in 
Chapter IV be investigated to determine the effect of sample size on the 
decision to be made. 

Finally, it is recommended that Bayesian statistical procedures be 
applied to a problem in which more than one MOE is under investigation 
since the procedures in this study apply to a situation in which only 
one MOE is being considered. 
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A P P E N D I C E S 
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APPENDIX I 

EXPLANATION OF NOTATION 

Chapter I 

vi mean of normal densi ty function 
2 

a variance of normal density function 
X sample mean 
2 

s sample variance 

f ' ( e ) prior d i s t r ibut ion of e 

f ( y | e ) l ike l ihood function for y given e 

f " ( e | y ) poster ior d i s t r i b u t i o n of e 

Chapter II 

f g ( n | m , n / v , v ) densi ty function for Student's t - d i s t r i b u t i o n 

m ' j V ' . n ' . v ' prior parameters for Student's t -dens i ty function 

( these are interpreted on page 10) 

m",v",n",v" poster ior parameters for Student's t - d e n s i t y function 

(these are defined mathematically on page 9 ) 

m,v ,n ,v parameters of a normal sampling d i s t r ibut ion ( these are 

defined mathematically on page 11) 

F g * ( ' | v ) l e f t t a i l cumulative d i s t r ibut ion function for standard 

Student's density function with v degrees of freedom 

u expected value of y 

5 variance of p 
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j j ' . prior variance of y 
/ y ' prior standard deviation of y 
u' prior mean of ii 
/ y " posterior standard deviation of y 
s ratio of expected posterior standard deviation of y to 

prior standard deviation of y 
y " posterior variance of y 
y " posterior mean value of y 

Chapter III 
n' n 

n u n+n 
a type I error 
3 type 11 error 
t test statistic for classical hypothesis test 
d" length of a (1 - Y) Bayesian prediction interval on the 

posterior distribution of y 

Chapter IV 
R(a..,y) payoff function of the decision, â , and the true value 

of y , y 

y ^ breakdown value of y 
L(a^,y) loss function of the decision, a., and the true value of 

y » y 

EL(a.j) expected loss if action a. is chosen 
G<j*(*lv) right tail cumulative distribution function for the 

standard Student's density function with v degrees of 
freedom 
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f"s*(- |v) standard Student density function with v degrees of 

freedom 

L s * ( - | v ) partial evaluation of l inear l o s s integral for standardized 

Student density function with v degrees of freedom 



APPENDIX II 

LIGHTWEIGHT COMPANY MORTAR SYSTEM OT I TEST DATA 

Gunner's Examination Times El9] 

System 

Test 81 mm LWCMS Difference in 
Participant ( sec) ( sec) Performance 

1 358.0 303.4 54.6 

2 367.0 350.8 16.2 

3 299.0 330.0 -31 .0 

4 261.0 147.5 113.5 

5 380.0 313.0 67.0 

6 226.8 250.0 -23 .2 

7 272.0 247.0 25.0 

8 239.8 273.0 -33 .2 

9 235.0 258.0 -23 .0 

10 247.5 244.8 2.7 

11 279.1 242.7 36.4 

12 303.0 234.2 68.8 

13 240.9 250.7 - 9 . 8 

14 279.0 296.9 -17 .9 
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APPENDIX III 

Systems 

Test 81 mm LWCMS Difference in 
t i c i pant (sec) ( sec) Performance 

1 321.5 225.5 96.0 
2 310.0 194.5 115.5 
3 314.0 248.0 66.0 
4 293.0 272.5 20.5 
5 304.5 259.0 45.5 
6 256.0 173.0 83 .0 
7 321.5 224.0 97.5 CO 397.5 256.0 141.5 
9 297.5 282.0 15.5 

10 254.5 220.0 34.5 
11 258.0 262.0 - 4 . 0 
12 294.5 177.5 117.0 
13 279.0 255.0 24.0 
14 316.0 186.0 130.0 
15 288.0 216.0 72.0 
16 317.5 204.5 113.0 
17 325.0 245.0 80 .0 
18 326.0 289.5 36.5 
19 321.5 269.5 52.0 
20 308.5 205.5 103.0 
21 311.5 211.0 100.5 
22 322.0 213.5 108.5 
23 297.0 200.0 97.0 
24 316.0 272.5 43.5 
25 261.0 208.5 52.5 
26 335.0 208.5 126.5 
27 274.5 243.5 31.5 
28 270.0 200.0 70.0 
29 342.5 257.5 85.0 
30 314.5 280.5 34.5 

LIGHTWEIGHT COMPANY MORTAR SYSTEM OT II TEST DATA 

Gunner's Examination Times [20] 



1 30 

Sample mean = I D. = m = 72.95 sec 

30 2 

Sample variance = J . (D i -ra) = 1517.88 sec' 
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