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SUMMARY

This research is devoted to investigating how Bayesian sta-
tistical analysis differs from classical statistical analysis in the
context of operational testing. The specific aspects of operational
testing which are considered are the power resulting from a hypothesis
test and the expected loss, or risk, resulting from a decision.

First it is shown that it is quite difficult to develop a
meaningful measure of comparison between Bayesian and classical
analysis in the framework of hypothesis testing. Using the power of
the hypothesis test as a measure of comparison, it is shown that under
certain conditions é]assica] statistical procedures lead to more power-
ful tests than Bayesian procedures. It is then shown that Bayesian
statistical procedureé are superior to classical procedures in the

framework of minimizing expected loss or risk.



CHAPTER 1

INTRODUCTION

Background
This study was prompted by the desire of the U. S. Army Opera-

tional Test and Evaluation Agency (OTEA)'to compare Bayesian to classi-
cal statistical procedures for determining sample sizes for actual

_tests which have been conducted by OTEA. The objective of the
comparison is to determine if smaller sample sizes can be obtained
through the use of Bayesian procedures which yield inferences compar-
able to those drawn from classical procedures. To understand the pro-
cedures to be utilized in this study, one must be familiar with the
nature of operational testing as performed by OTEA.

The purpose of operational testing is to provide data upon which
to estimate a prospective system's military utility, operational effec-
tiveness and suitability, and need for any modifications [2]. This data
is obtained through a sequence of three operational tests (referred to
as OT I, OT II, and OT III). Each test must be completed and analyzed
prior to beginning the next test to determine if there is a need for
the next test in the sequence. When possible the new system is tested
alongside the existing system during each phase of testing to acquire
data from both systems under identical conditions. At the end of each
test, the data is collected and analyzed, and a decision is made to

conduct the next test or to reject the new system [1].



The overall assessment procedure consists of identifying certain
measures of effectiveness (MOE) which are critical to the system under
consideration, such as, percent of target hits, mean miss distance,
mean time between failure, and so on. Once identified, these MOE are
incorporated into a test design which will provide for a side-by-side
comparison of the competing systems with respect to each MOE. After
all MOE of interest have been tested, the overall desirability of the
system is then evaluated.

For a given test design, the problem at hand is one of determin-
ing the minimum number of replicates (samp1e'size) required for each
set of experimental conditions to achieve a specified level of confi-
dence in the inference made as a result of the experiment. This sample
size is currently being determined by classical statistical procedures
[18]. As an example, suppose the random variable of interest is assumed
to follow a normal distribution with unknown mean and variance, and the
decision maker is interested in determining the expected value or mean
of the random variable. In the classical sense, the mean is considered
an unknown constant. The power of the test, or the probability of
rejecting the hypothesized value of the mean, when the hypothesized
value is inaccurate, is determined from the operating characteristic
curves for the type of test conducted. The above theory of classical
statistics will be important when compared to the Bayesian theory inves-

tigated in this study.

Objectives of Research

The objectives of this research are twofold. The first objective



is to determine whether or not Bayesian methodoliogy can be effectively
applied to operational testing. As noted earlier, operational testing
is conducted in three phases, and many times the same measures of effec-
tiveness are examined in more than one phase. The current procedures
used by OTEA consider each test in the sequence independent]y; i.e.,
the inferences made at the end of each test are based on the data
obtained during that specific test only [18]. There is no attempt made
to combine the data on a specific MOE measured in OT I and OT II, for
exampie, to obtain a better estimate for the MOE from which better
inferences can be made. Chapter III is devoted to developing a
methodology which will apply Bayesian techniques to the combination of
data from two phases of testing to determine the power of a hypothesis
test for any specified sample size.

The second objective of this research is to determine under what
conditions the Bayesian methodology will produce a "better” test than
the classical methodology when considering the same sample size for
both methods. ChaptersIII and IV are devoted to comparing the above

methodologies in the context of. an actual test conducted by OTEA.

Fundamentals of Bayesian Analysis

The discussion presented here will compare classical statistica1‘
theory to Bayesian statistical theory to démonstrate how OTEA's present
concepts of testing would have to be altered to apply Bayesian tech-
niques to operational testing. Presently, if OTEA is considering a
data generating process which may be modeled by the normal process with

unknown mean and variance, then the probability density function



associated with the process is the normal density, with mean, u, and
variance, 02. These parameters would be viewed as unknown constants

by the classical statistician. These constants are generally estimated
by sampling from the data generating process and using the samp]e
statistics X and 52 to estimate u and 02, respectively. If one is
interested in u, the mean of the process, X and 52 could be used to

construct a confidence interval on u, For example, if {(1-a) is the

degree of confidence desired, then [12]

1-a=P¥-( Js/vm) < w<T+ (¢ J(s/v1 (1-1)

ta/2.n1 0/2 .01

where n is the sample size and tOL/2 -

L]

] is the percentage point of the
central t-distribution with n-1 degrees of freedom such that

P(t » tu/Z,n-l) = af/2. This confidence interval on u would be inter-
preted in the relative frequency sense. That is, if repeatéd samples
of size n were taken, each time computing new values of X and 52, and

a confidence interval on u was constructed after each sample was taken,
then it would be expected that 100(1- «)% of the confidence intervals
so constructed would contain the "true" value of u [12]. The Bayesian
analyst would differ in seQera] ways. He would consider the unknown
parameters, n and 62, as random variables. ("Tildes" will be used to
indicate random variab]es—throughout this study.) Since point estimates
of random variables are useless, he would ascribe to them a probability
distribution instead. If prior samp]ing'information is not available,
the analyst must use his subiective knowledge of the process to assess

a probability distribution for the joint occurrence of i and 52. This



prior distribution can then be combined with sample information to
produce new distributions for the unknown parameters, as will be
demonstrated below. The conceptual differences between the classical
and the Bayesian analyst play important roles in interpreting the
results of a test [36].

The combination of a prior probability distribution of a ran-
dom variable with sample information is achieved by use of Bayes'
theorem. For a continuous random variable, 5, Bayes' theorem may be

written as

£ (8]y) = 'F'Soe)f(ﬂe) , (1-2)
[ f(8)f(yle)de

-0

where a single prime superscript (') denotes a prior distribution or
parameter, a double prime superscript ("} denotes a posterior distri-
bution or parameter, and no superscript denotes a sampling distribution
on parameter.* Therefore, in equation (1-2), f'(8} is the prior dis-
tribution of & representihg the analyst's beliefs regarding & prior

to sampling, f(y|e) represents the Tikelihood function chosen to
describe the sampling process, and f"(6ly) is the posterior distribution
of & representing the analyst's beliefs regarding 6 after sampling [36].
The theorem can also be applied to discrete random variables by sub-
stituting probability mass functions for probability density functions

and a8 summation sign for the integral sign. Winkler {36] gives a

*
Appendix 1 presents a detailed explanation of all notation in this
study.



derivation of Bayes'- theorem from conditional probability formulas.
In applying Bayes' theorem, the major difficulties lie in assessing
the prior distribution and Tikelihood function and in evaluating the
integral in the denominator of the formula. Baker [4] has suggested
methods for handling these difficulties which are discussed in the

next chapter and which will be used in this study.



CHAPTER T1

BAYESIAN DISTRIBUTION THEORY

In his thesis, Baker [4] considered a problem similar to the
one addressed in Chapter I. He has pfoposed a methodology for combin-
ing data relative td a single MOE taken from one phase of testing with'
sample information on the same MOE taken in a later phase of testing.
This procedure produces an estimate of the MOE for use in making
decisions. The methodoicgy applies to an operational test in which
a proposed system is being tested side-by-side with the system it has
been designed to replace, and a single MOE is under consideration.
In general, this methodology uses the theory of selecting a prior dis-
tribution from fhe natural conjugate family of distributions which,
when combined with the 1ikelihood function in Bayes' theorem, produces
a posterior distribution that will be of the same form as the prior.
This will reduce the computational burden considerably in the sequen-
tial ana]ysié used in this study. (For a complete discussion of
natural conjugate distributions, see Raiffa and Schlaiffer [291,
Chapter 3.)

In this study, the results of an actual operationa1 test are
supplied by OTEA. When considering a single MOE, OTEA assumes the uni-
variate normal distribution with unknown mean and variance as the basic

model for sample size determination for both measurement and attribute



data [18]. The same function will, therefore, be used in this study
as the Tikelihood function for the random variable under considera-
tion.

The sfde-by-side nature of the operational tests under con-
sideration suggests that inferences be drawn from the difference of
pérformance characteristics of the systems rather than from the actual
performance characteristics of a single system. Thus, if X1 and 22
represent the same MOE for systems one and two, respectively,

D= X]- Xz w111'represent the difference between the MOE of the two

systems. Since R] and iz are assumed to follow the normal distribution
~ with unknown mean and variance, D, which is just a linear combination
of two independent, normally distributed random variables, can also be
assumed to follow a normal distribution [12] with unknown mean and
variance, say v and 32, respectively. The variable of interest in this
study will be p, the mean difference between the two systems.

In the cjassica1 sense u, the mean of the distribution of D, is
considered to be an unknown constant, and inferences are drawn from
tests of hypothesized values of n. Consequently, if p can be shown to
be equal to zero, one can conclude that there is no difference between
the competing systems, whereas if 1 is not equal to zero, then one can
conclude that one system is better than the other.

In the Bayesian sense, since yp is considered as-a random vari;
able, tests on whether or not p takes on‘a specific value are mean-

ingless. One must consider tests where p can take on a range of

values; e.g., p < Mg or one can consider a test on specific values of y,



the mean of ;. If y can be shown to be equal to zero, one could reason-
ably conclude that there is no difference between competing systems,
and if v # 0, there is a difference.

It has been shown [29] that when § is considered as a random
variable, the distribution of p is the Student's t distribution, rep-

resented by the density
‘F(ﬁlm,v,n,v) = fs(ﬁlman/vs\))a (2_1)

where {m,v,n,v) is the statistic resulting from a sample of size n

and is given by

B ]n . .
m=X=HZ D1 (2"2)
i=1 _
17 2
v=—:—Z(D-m)
n-T ;500
v=n -]

The parameters (m,n/v,v} in the argument of f. on the right side of

S
equation (2-1) indicate the degree of non centrality of the distribu-
tion. The central or standard Student's t distribution would be given
by fs(ﬁ|0,1,v). The distribution given in equation (2-1) can be

standardized so that cumulative t tables can be used in computing prob-

abilities as follows:
P < ulm,v,n,v) = Fex(lu-mlvn/v]v),

where the subscript S$* indicates the standard Student's t distribution.

It has also been shown [29] that the mean and variance of ; are given by
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E(i|myv,n,v) = w=m v o> 1 (2-3)

Vin|m,v,n,v) = ;§§— v > 2

=1
1
3|<

The objective of this methodology is then to determine the minimum
sample size which will produce a posterior distribution of u that will
enable the decision maker to achieve a specified level of confidence in
the inference drawn concerning p.

Since the Department of the Army has imposed on OTEA the require-
ment that operational testing be independent of all other testing [2],
it has been assumed that prior to OT I the state of knowledge concerning
p can be represented by a diffuse distribution for the normal-gamma
family, as developed in Winkler [36]. Thus, when the prior distribu-
tion is combined with the sample information from QT I the resulting
posterior distribution will also be norma]—gamma [36]. When a measure
of effectiveness that was considered in 0T I is being reconsidered in
0T II, it must be assumed that the posterior standard deviation of
0y /ﬁ:: determined in QT I was too large to reach a meaningful conclusion
about u. The segquential nature of the testing then presents the oppor-
tunity to use the posterior distribution determined from OT I regarding u
as the prior state of knowledge of u for QT II. The methodology now
concentrates on developing a sample size for OT Il which will produce a
posterior.standard deviation for 1 equal to some fraction of the prior
standard deviation; i.e., /7" = s/ﬁTl where 0 < s <1,

Baker [4] has shown that a sample of size

n = (Jg -1n', O0<s <1
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where n' represents the sample size of the prior distribution, can be
expected to reduce the prior standard deviation of pn by a factor s.

He approximated E(vfiﬁ) with

_V:-; ’ ) ) - n']
E(CY0"m" v on' vty nyy) = ﬁf%T‘ (2-4)
Due to the approximations used in his formulation, Baker [4] has intro-
duced an error into the expected posterior standard deviation which can
be written as

% error = 1 - exp [-3/4 (( 1 )-{ L N1, (2-5)

vwh-2 v'+n-2

If this error is determined by the decision maker to be too large, then
equation (2-4) cannot be used, and a more complex formula must be used
to determine the sample size, n, which will produce a desired expected

posterior standard deviation of . This equation is

EC/B v ont v sn,o] = A0/ exp ~[3((=) - (criems)) 1, (2-6)

v'-2 v'+n-2

where n" = n'+n.

Although equation (2-6) cannot be solved explicitly for n, given
a desired value of EG/E;), it can be solved iteratively. Baker has sug-
gested a starting value of n to be that found by solving equation {2-4)
for n.

Once a sample size has been determined and a sample has been

taken, the statistic (m",v",n",v") is determined [29] as follows:
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w _ n'm'+nm ' _
m = A _ (2-7)

n'"=n' +n

_ [v'v'+n‘(m‘)2] + (vv+nm2) - n“(m“)2

T Tk (n T+ T+ s(n)T - 8(n™)

= v +6(n")] + [v + 8(n)] - 5(n';),

<
I

where &{y) = (0 if vy =20
1 ifvys>o0.

The mean and variance of the posterior distribution of 1 are then

mn (2-8)

™

-
=

-~
14
h o
1}

V(ﬁ") = o nnvv:_g

In the case Wheré the prior distribution is diffuse, as in OT I,
n' =~v' =10, and fhe posterior parameter {m",v",n",v") equalis the
sample statistic (m,v,n,v) [29].

The above development is directed at producing a value of the
posterior standard deviation of p which will make the distribution of
p "tight" énough to enable the decision maker to make his decision con-
cerning p with a specified degree of confidence. However, the value of
JEW which satisfies the above criterion is subjective in nature. The

problem of determining values of vfgﬁ-which meet certain criteria will

be discussed in Chapter III.
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CHAPTER III

CLASSICAL VS. BAYESIAN HYPOTHESIS TESTING

Introduction

In this chapter an attempt will be made to compare Bayesian and
classical statistical methods in the context of hypothesis testing.
One commonly accepted measure of comparison between methods of testing
hypotheses is the power of each test. We shall define the power of a
test as the probability of rejecting the null hypothesis when it is
faise, or, equivalently, the probability of not committing a type II
error. The power of the test is an appropriate measure of comparison
for this study because of the conseguences of the decisions resulting
when type II errors are made. In the case of operational testing, con-
sider the null hypothesis: there is no difference between the standard
equipment and its proposed replacement versus the alternate hypothesis:
the proposed replacement is better than the standard. If the decision
maker makes a type II error (i.e., the new equipment is better but it
will not be purchased), he is denying the army the use of a better piece
of equipment and thereby keeping the level of mission accomplishment
Tower than it could be. |

In the case of a type I ervor, however, where the decision maker
rejects the null hypothesis when it is true (i.e., there is no differ-
ence in equipment but the new equipment is purchased), the consequence

would be that a probably more expensive piece of equipment would be
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purchased which would not improve the mission accomplishment of the
army. A_better piece of equipment would not have been over]ooked;
however.

In this exampie, a'type IT error could be more harmful to the
army than a type I error. For this reason, the probability of not
committing a type Il error, or the power of the test, is considered of

prime importance in this study.

The Two-tailed Hypothesis Test

To compare classical versus Bayesian tests in terms of power, the
hypotheses of interest in both tests must be considered. In the classi-
cal two-tailed test, HO: p=0vs H]: uw# 0 {(n is considered a constant),
the type I error can be fixed at any desired level, ahd the type II
error can be determined for any given sample size by use of the appro-
priate operating characteristic curves. However, since the Bayesian
considers u to be a continuous random variable, the probability that
p =0 will always be zero. In fact, Winkler [36] has stated that.there
is no logical Bayesian equivalent to the classical two-tailed test. Two
modified Bayesian hypotheses will, therefore, be considered in this
study. The first tests whether or not the mean of i, u, equals zero;

j.e., H:u=0vs Hy: U # 0. Since the variance of 1 decreases as

o
n increases, an infinite sample would yield exact knowledge of

the true . In the infinite samp1é case, -the mean of n would be the
exact value of u when the variance of  is zero. It is, therefore,

logical to cbmpare'the value of u in the Bayesian test to the value of

p in the classical test., This will be done in the next section.
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The second modified Bayesian hypothesis tests whether or not n
lies in some interval about zero; i.e. Hy: -a <j<avs Hyo -a >
or a <u, a > 0. Since the classical decision maker is really more
interested in knowing whether u is in some small interval about zero
rather than if p is exactly equal to zero, this Bayesian hypothesis
would also serve as a valid comparative to the classical two-tailed
test. This comparison will be discussed in connection with the one-

tailed test later in this chapter.

Solution Using Bayesian Prediction Interval

In this section, the hypotheses Hoz-ﬁ'= 0 vs H]: u # 0 in the
Bayesian context will be compared with the hypotheses, HO: p =0 vs
H]: v # 0 in the classicaj context. The measure of comparison will
be the power of the test. As stated in Chapter II, D, the difference
between the same MOE of two competing systems, is assumed to follow a
normal distribution with unknown mean, p, and unknown variance, 62. In
the classical test, a sample size can be determined which will yieid a
specified power for the test for any fixed type I error, a. The rejec-

tion criteria for Ho’ established from the o level desired, is [12]:

reject H  if |t0| > ty2.n-1"

to = test statistic = m-0
v/vn
;0
m = sample mean = — ) D,
n oL Vi
i=1
) o1 2
v = sample variance = ﬁ?T".Z (Di-m)
1:

1
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tu/z’n_] = value of t such that P(|t| > ta/Z,n-1)= /2

The power of the test for various sample sizes and departures of u from
0 are given by the appropriate operating characteristic curves for the
2-tailed t test in [12].

Before defining the power of the Bayesian test, some discussion
of a Bayesian prediction interval is needed. A Bayesian prediction
interval (BPI) is an interval having a stated probability, e.g., (1-vy),
of containing the variable of interest. In Figure 1, u" is the mean of
the posterior distribution of p, a is the lower prediction Timit, b is
the upper predictfon limit, and the shaded area is the probability that

a <u" <b.

Figuré 1. Generalized Bayesian Interval on n".

If the interval is centered on u", the length of the interval, d", is

given by [12]

d" = ZtY/Z,\J" '/l‘-‘l“ . (3'])

When considering the Bayesian hypotheses, HO: w=0vs H]: u#0, the
rejection criteria to be used in this section will be: reject H0 if

zero does not fall in the (1-v) BPI on u". The type I error,a, is
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a = P (rejecting Holﬂ'= 0),

which can be restated as

a = P{0 is not in (1-v)BPI|u = 0). (3-2)
The power of the test is defined as

Power = P (rejecting Hoiﬂ'= c# 0),
which can be restated as

Power = P (0 is not in (1-v)BPI|u = c). (3-3)
Using d" from equation {3-1), the power becomes

Power = P (0 i§ not in interval [u"-d"/2, W"+d"/21|u=c). (3-4)

Since p" = m" (defined by equation (2-7)), equation (3-4) becomes

Power = P (0 is not in intervallm"-d"/2, m*+d"/21|u=c). (3-5)

Prior to sampling, m" and d" are random variables, denoted @" and d",

which lead to
Power = P (0 is not in interval(m"-d"/2,m"+d"/2]|u=c). (3-6)

Since zero will not be in the BPI only if the end points of the BPI

have the same sign,

Power = P (f"-d"/2 < 0 and m"+d"/2 < Q|u = c) + (3-7)

P("-d"/2 > 0 and m" +d"/2 > Olu=c) .
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Equation (3-7) is equivalent to
Power = P(|@"| > d"/2|u = c). (3-8)
Substituting the value of d" given in equation (3-1),

Power = P(|m@"| > ty/2,u“JE:1;-= c). (3-9)

Since %lﬁ” is always greater than 0,

Power = P([m“|/¢f::- Y/2 v"'_= c). (3-10)

It has been shown [29] that m" follows a non central t distribution and
/E:-fo110ws an inverted beta 1 distribution. It is, therefore, very
difficult to calculate the power of the test from the expression given
in equation {3-10). To simplify the calculations, /IE:-will be replaced
by its expected value, as given in equation (2-4), and the resulting
power computation is considered to be an approximation to the power in
equation (3-10). After replacing #rE:-with its expected value as given
( Jf335, equation (3-9)

in equation (2-4) and letting k = LMY E
becomes |
Power = P{|m"| > k|u = c) (3-11)
= P(m" > k|u = + P(m" < -k|u=C) (3-12)

Using m" as given in equation (2-7), equation (3-12) becomes

m'n' +mn

Power = (’”“nﬂ > k=0 + P (BT M k[i=c)  (3-13)

Equivalently,
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Power = P(@ > - |u = ¢) + P(i < :Eﬂ%:llﬂll|‘g= c) ({3-14)
N_mlp! e —kn"-mtp' —
= ]_p(rﬁ <kn—h_u.-. qu C) <+ p(m<__|$.n_n_m_ﬂ_lu=c). (3"]5)

It has been shown [29] that the distribution of m is given by
D(ﬁ']lm',V' :n' ’VI ;n,\)) = fs(ﬁzllmI 9nu/Vl v ), (3'16)

n'n
n+n'

where n =
u

Strictly speaking, the Bayesian analyst does not consider u to be an
unknown constant with some true value, Rather, he considers u to be a
random variable also. However, in order to use Bayesian procedures to
formulate a test which can be compared to the classical hypothesis test,
it has been assumed that there is some true value for u. With this
assumption, the expected value of the sample mean, E{m), would then be
equal to u. Cumulative probabilities for m would then be computed as

given below.
P(m < a|ﬁ}nu,v',u') = FS*([a— H]«nu7v'|v') (3-17)
Using equation (3-17) with u = ¢, equation (3-15) can be rewritten as

(kn -mn -Cnl\J') + F *(-kn ~mn _Cn|\Ji). (3-]8)

nfv'/nu S n»/v'/nu

Power = 1 - FS*

Summarizing the method for determining the power of the Bayesian test

for a given sample size and a prior statistic {(m',v',n',v'):
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1. Calculate E(Y {") from equation (2-4).

~ | 1
e/ 1) = Shs

2. Calculate v" and n, from equations (1-5) and (3-16).

v'=n"'"+n-1
nl
n = n'
u n+n

3. Calculate k = tv/z,v" E(/ 1").

4. Calculate power from equation (3-18) for any value of c.

ITlustrating the Procedure

In this section, the solution procedure described above will be
illustrated in the context of an actual operational test conducted by
OTEA. The test selected was an 0T II for the Lightweight Company Mortar
System (LWCMS), which is being considered as a replacement for the 81 mm
mortar currently being used by the army. The purpose of the test was to
provide data for a side-by-side comparison of the two mortars to assess
the relative operational perfofmance and military utility of the LWCMS
[20]. One of the MOE which was considered in both OT I and OT II was
the time required for an individual to complete the gunner's examina-
tion, which is a test designed to determine how quickly an individual
can perform critical operations in preparing a mortar to fire. In 0T I
a samb]e size 14 was used to determine the distribution of times to per-
form the gunner's test. The results of this test are contained in

Appendix 2. If i1 and RZ represent the times to perform the test on the
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old system and the new system, respectively, then D = X] - iz is the
variable described in Chapter II. The mean of D, 1, is the variable
of interest in this study.

Using a diffuse prior distribution, Baker [4] determined the

parameters of the posterior distribution of 1 for QT I from equation

(2-7) to be
m" =m= 17.6 sec
n"=n=14
V' = 2040.5 sect
V"' =13

Since the same MOE was also tested in OT II, the above values will be
used in the prior distribution of p for OT II. The value of the prior

variance of u for OT II is computed from equation (2-3).

p'o= %;—T;¥£§7-= Lg%%gj%%%%§2-= 172.25 sec’

In OT II, OTEA used a sample of 30 individuals, each of whom per-
fofmed the gunner's test twice on each of the competing systems. The
average times for each individual on each system are given in Appendix
3. The power curve for the classical two-tailed test with n = 30 will
be compared to the power curve for the Bayesian test with n ; 30. The
step;by—step procedure for calculating the power using the statistic
(m',v',n',v') = (17.6, 2040.5, 14,13}, n = 30, and a 95% Bayesian predic-

tion interval (Y = .05) is given below.
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vy (172.25Y(14) _
1. E{v' ") = SR = 7.40 sec
2. v' =14 +30-1-=43
_30(14) _
v T 30+18 T 9%
3 k = t‘025,43 E(v u") = 2.02(7.40) = 14.95

* (14.95)(44) - (17.6)(14)-30c
S 30/2040.5/9.55

}13]

(-14.95)(44)- (17.6){14) - 30¢
30/2040.5/9.55

131

+ FS*

The cumulative distribution for the standard Student's t distribution

is given in Biometrika TabTes for Statisticians, Volume 1, by Pearson

and Hartley [22]. The power for ¢ = 20 is calculated to be

Power = 1 - Fex (-.2[13) + Fex(-3.9[13)

1 - .42 + .0009

= .58

The power for other values of ¢ is calculated in a similar manner. Since
the value of ¥ in the (1-v) BPI is not the type I error for this test,
the type I error must also be calculated for each value of n. The type

I error, a, is given by

Q
1]

P{rejecting H0|IT= 0)

P{0 is not in {1-v)BPI|u = 0)
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This formula is the same as the formula for the power with u = ¢ = 0,

Therefore,

=
"
—_

F.p18.95)(a4) - (17.6)(14)‘]31
5 30/2040.5/9.55 |

b F 214.95)(44) - (17.6)(14)’13]’

3 30/2040.5/9.55
=1 - Fex (.9413) + FS*(-2.1\13)

1 - (.82) + .03 = .21

In order to fix o at a certain level, as is done in the classical case,
the width of the (1-v} BPI must be changed with each value of n; i.e.,
Y must change with each n to keep o fixed. To calculate the value of vy

which produces a given «, consider eq. (3-18) with ¢ = O.

n 1 1 - n - ] 1 .
R I N e e (3-19)
n/v'/nu nvv! n,

For positive m', the Jast term in equation {3-19) is insignificant.

Therefore, letting o = .05 and dropping the last term yields

95 = Fou( K3y (3-20)
nn/v'/nU

The value of the argument in the right side of equation {3-20) which

yields a probability of .95 is 1.8 [22]. Thus

knll _ mlnl _ ].8

n\/v'/nu
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Equivalently,

1.8 n-/v'/nu +m'n’

P (3"-2])

k =

For n 30,

_ 1.8(30)v2040.5/9.55 + (17.6)(14)
30 + 14

23.54 .

v

Since k = tY/Z,v" E( /11") by definition,

_k_ _23.54 _ .-
Yyje43° — 5= = 740" 318 .
E( ﬂll)

Thus, v = .005, or a 99.5% BPI will produce a type I error of .05. Table

1 1ists the values of k needed to produce « = .05 for various values of

n.

Table 1. Sample Size versus k, o = .05
Sample Size k
2 23.08
4  23.93
7 24.28
10 24.30
15 24.13
20 23.91
30 23.54

40 23.27
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With the type I error fixed at .05, the power curves for the Bayesian
and classical tests for n = 30 and n = 4 have been plotted in Figures
2 and 3, respectively. From the figures it can be seen that for n = 4,
the Bayesian test is slightly more powerful but for n = 30 the classi-
cal test is much more powerful. Plots of the power versus sample size
for each test for |c| = 20 and |c| = 40 are shown in Figures 4 and 5,
respectively. There it is evident that the classical test is superior
to the Bayesian test in detecting both small and large values of |c|,
particularly when Targe values for the power are required.

We will now investigate the behavior of the power curves if v
in the {1 - v) BPI is held constant at v = .05. [In this case, the type
[ error will not remain fixed as it did in the previous calculations.
The type I error can be computed from equation (3-19) for various sample

sizes. The results of the calculations are given in Table 2.

Table 2. Type I Error Versus Sample Size

Sample Size Type I Error
2 .01
4 .04
7 .08
10 11
15 .14
20 .16

30 21
40 .25
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Plots of the power versus.samp1e size for the two tests for |c[ = 20,
30, and 40 are given in Figures 6, 7, and 8, respectively. There it
can be seen that as |c| increases, the difference between the two curves
decreases. However, as seen in Table 2, the type I error for the
Baygsian test is greater than that for the classical test (.05) for
sample sizes greater than four. Once again, the classical test appears
to be superior, particularly when high values of the power are required.
In the foregoing example, a 95% BPI was utilized in computing
the power for the Bayesian test. If a larger interval is used, both
the power and the type I error will decrease. This is obvious from equa-
tions {3-3) and (3-2}. If the length of the BPI is increased, the
probability that the BPI will include zero must increase. Therefore,
the probability that the BPI will not include zero (or power)} must
decrease. Similarly, decreasing the length of the BPI will increase the
power and the type I error. Thus, various power and type I error com-
binations can be achieved by varying the width of the BPI.
In the above example, the variability of m was affected by n,
as defined in equation (3-16). In Table 3 below, the difference between
n and n, can be seen to increase as n increases. The parameter, n,s
takes into effect the variability of m' in calculating the variability

of m, which is given by [29]

! |
V(im0 ') = i S (3-22)
u

nn'
n+n'

where nu =
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Table 3. Sample Size Versus n,

Sample Size n

u
2 1.75
4 3.1
7 4.67
10 5.83
20 8.24
30 9.55
40 10.37

Since we are considering the true value of pu to be a constant, which is
the expected value of m, we shall next investigate how the power of the
Bayesian test is affected if the variabi1ity of m' is not considered in

the variance of m; i.e., n, will be replaced by n in equation (3-18).

Solution Using Alternate Method

Replacing n with n in equation (3-18) yields

Power = 1 - Fex ( kn” - m'n__- cn v' )4+ Fsk('k""'m'""cniv') (3-23)
nvv'/n nv'/n

The type I error for this test is obtained from equation (3-23) with

c=0.

kn" - m'n' v') +F *(:Eﬂi:JELﬂl' v') (3-24)

a=]-FS*( S
nvv'/n nvv'/n
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I1Tustrating the Procedure

Using the same sample data as in the previous sections, the
values of k required to keep a = .05 are obtained from equation (3-21)

with n, = n and are shown below.

Table 4., Sample Size Versus k, o = .05

Sample Size k
2 22.59
4 22.72
7 21.98
10 20.98
15 19.36
20 17.94
30 15.72
40 14.09

With the type I error fixed at .05, the power curves for n = 30 and

n =4 for |c| = 20 are plotted in Figures 9 and 10, respectively. It

can be seen that fpr n = 4 the Bayesian test is more powerful and for

n = 30, the classical test is marginally more powerful. The plots of
power versus sample size for |c| = 20 and |c| = 40 are given in Figures
11 and 12, respectively. From these curves, it can be seen that there

is Tlittle difference between the two tests in terms of power. Thus, when
the variability of ' is not considered in the variability of m, there

is no significant difference in the power of the two tests. There has

been no evidence so far to justify using Bayesian instead of classical
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procedures in the case of the two-tailed hypothesis test. Another
method of treating the two-tailed test will be discussed in connec-

tion with the one-tailed test in the next section.

The One-Tailed Hypothesis Test

If the decision maker is interested in the classical one—tai]éd
test, Hi: w <0 vs Hl: p >0, thefe is an equivalent Bayesian test;
namely, H : & < 0 vs Hy p > 0. In fact, an alternate method for test-
ing the two-tailed hypothesis also falls into this category. Rather than
test H: o= 0 vs Hy:ow # 0, consider Hyt -2 <qu<avs Hy: i< -a or
p >a, a>0. This really tests whether {I is in some interval about zero
and can be treated as a special case of the one-tailed test discussed
below.

As in the two-tailed test, the type I and type II errors for the
classical one-tailed test can be determined for any distribution of the
random variable of interest. However, in the Bayesian test once a

posterior distribution for p has been determined, the probabilities of

H0 and H] being true can be determined; i.e.,

P(i < O|sample data) = [ f(u)du .

If the density function of n is known, the above integral can be com-

puted. Additionally,
P(i > O|sample data) = 1 - P(u < O|sample data).

Equivalently, [36]

P(H] is true) = 1 - P(H0 is true).
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If one considers
a = P(rejecting HOIH0 is true},

and one knows the probability that H0 is true, it is difficult to
Justify any rejection criteria for H0 which would lead to a meaningful
calculation of «. Winkler [36] suggests fhat the significance level

of the test can be determined by measuring how "unusual' the sample
result obtained is, given that the null hypothesis is true. Equiva-
lently, one could determine the chance of obtaining a sample result more
"extreme" than the one observed, given H’0 is true. In the test consid-
ered in the previous section, for example, if pu = 0, how "unusual” is
the sample result of m = 72.95 sec? (See data in Appendix 3.) The

standardized value corresponding to m = 72.95 is

¢ =m0 7295 _ 4526 .

° s//n 38.96/¥30

Since H] is one-tailed to the right, the significance level is equal to
the P (t0 > 10.26), which is less than .0001. The smaller the signifi-
cance level, the less 1ikely the sample result is, given that H0 is

true [36]. It can be seen, then, that the significance level as

defined above cannot be fixed.as in the classical test since it depends
on the sample result. Additionally, there is no clear method for deter-
mining a power for the Bayesian test. As stated earlier in this section,
the modified two-tailed test can be considered a special case of the one-
tailed test. If the hypotheses of interest are H : -a < u < aand

H]: L <-aorqu>a,a>0, then the probability that H0 is true is
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d
P(H0 is true|sample data) = { f(§)du.
-a

When the posterior distribution of u is determined, the above integral

can be computed. Obviously,
P(H] is true|sample data) = 1- P(H0 is true|sample data).

The arguments given for determining the significance level and power
for the one-tailed test apply as well for the modified two-tailed test.
Since there is no meaningful definition of power available for
the Bayesian one-tailed test, it is necessary to determine a different
measure of comparison between the classical and Bayesian statistical
procedures. The concept of minimum loss will, therefore, be considered

in Chapter IV as the basis for comparison.
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CHAPTER IV

CLASSICAL VS. BAYESIAN ANALYSIS WITH LINEAR LOSS FUNCTIONS

Introduction

In this chapter, a Tinear loss function will be utilized to
compare the consequences of the decisions made under Bayesian and
classical analyses of the same problem. In all real world problems,
there are certain payoffs or losses associated with decisions made
under uncertainty. When the decision maker is not sure of the value
of a certain quantity, such as u in the analysis in the last chapter,
he is subject to making a decision which is based on the assumption of

the wrong value of u, For example, if the null hypothesis, H :u< O,

0
were accepted, causing the decision maker to reject the new equipment,
when in fact the true u is greater than 0, a certain "opportunity" loss
is experienced. The army would be penalized, in that it would not have
the opportunity to use a better piece of equipment. Even though it is
not always possible to attach a monetary figure to the opportunity loss,
some type of 1oss function must be considered by the classical decision
maker, at ]east subjectively. When the decision maker determines maxi-
mum acceptable levels for the tybe I and type II errors for a test, he
is indicating the re]ativé importance of each fype of error. For exam-
ple, if .05 and .10 are the maximum levels for the type I and type II

errors, respectively, the decision maker could be indicating that he

considers the loss associated with a type I error to be twice as great =
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as the loss associated with a type II error. In the classical analysis
of a problem, however, a decision is based on the outcome of a hypothe-
sis test on some central MOE, rather than on the possible losses result-
ing from each possible decision. Many times the type I error is
arbitrarily set as some low value, say .05 or .01, and the power of the
test is made as high as necessary by increasing the sample size. How-
ever, in considering actual loss functions formally, the decisions
resulting from the classical and Bayesian approaches to the problem may
diffef considerably. The Tinear 1055 function will be considered in

this chapter.

Linear Payoff Function

Before considering the linear loss function, a brief discussion
of the linear payoff function is needed. In considering the two action
problem of concern in this study, let a, denote the action of rejecting
the new equipment in favor of the 0ld, and let a, denote the action of
- purchasing the new equipment. Define linear payoff functions as in [36],

say
R(d1, U) = P1 + S]U (4‘])
R(a2’ U) = r2 + Szu

where rs and Si are constants and S > s].
With these functions, the decision maker would consider the
payoff of a certain action linear with respect to the actual state of

the world, u. In this case action 2, would be optimal if
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E[R(a'])] > E[R(a2)] (4"2)
E(r] +s]u) > E(r2+ 52“)

r1-+s1E(ﬁ) > r2+-szE(ﬁ).

Subtracting ro and s1E(ﬁ) from both sides we get

ry- Ty E(u)(sz- s]).

Since S, > S1s dividing by So = Sy gives
5 E(0). (4-3)

Therefore, if equation (4-3) is satisfied, action a is optimal. If
the inequality is reversed, action a, is optimal. For this decision

making problem, w, is called the breakeven value of i

r. - r
_hTh (4-4)

i
b 52 - s]

Figure 13 displays My pictorially.

If the expected value of p is less than Mg » action 3y is optimal;
if it is greater than Hpys action a, is optimal; if it is equal to Hpo
the payoffs are equal, and the decision maker should be indifferent

toward each action.

The Linear Loss Function

If action 2, is chosen and the true value of u is really greater

than My > then an opportunity Toss has been suffered by not having chosen
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Payoff

R(a,,u)

R(a1sU)

i
I
t
'
L]
b

u e
Figure 13. Payoff vs u.
a, and is given by
L(a;su) = Rlay,u) - R(a;,u) (4-5)
= rptospe -yt osqu)
= (ry = ry) + (s, = s (4-6)

On the other hand, if'action a, were chosen and the true value of p is

less than My then the opportunity loss is

L(a29U) = R(a]sU) - R(aZ’U) (4‘7)
=rytspp -, *ospu)
= (r] - rz) + (S] - Sz)u (4“8)

If a, were chosen and the true value of p is Tess than My then the
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opportunity loss would be 0. If a, were chosen and the true value of u
is greater than Hp» the opportunity less is also 0. The loss functions

for 3y and a, are summarized below:

0 ifu< My
L(apn) = (4-9)
(r,

_r] )+(52"S'| )U if u z Ub

- - if u <
Lagon) ={(r] )t sysp e ATy (4-10)

0 ifuiub

The relationship between the payoff and loss functions 1is shown in

Figure 14,
Payoff
+  R{a;,w)
R(a,,1)
Loss if a2
is chosen
and u = My Loss if a is chosen

- and 1 = My

Figure 14. Payoff and Loss vs. wu.
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The loss functions, L(a],p)and L(az,u) are shown in Figures 15 and 16.
It is obvious from these figures that the loss functions are related

to the value of the breakeven point as given in equation (4-4). If

uoz Ub"
(rz'r'l)
I-_(a]sll) = (T‘Z*Y'])"' (52‘5])11 = (52'5]) —52—_§'|— + (52'5])11
= (52'51)("1-1'3) + (52'51)11
= (SZ—S])(U 'Ub)
Similarly, for u < My
L(azsl-l) = (52'5])(ub'11) .
Therefore, the loss functions can now be written
0 T
L(a],u) = (4-11)
(spmsq)(umug) w2 wy
(s,=5. ) (np-n) w <
L(ayou) =4 & 1P b (4-12)
0 TR

The expected value of each loss function depends on the distribution of

p and is given by [36]

(555) ] (umag ) F (1) (4-13)
b
Hb

EL(ay) = (s5-57) [ Gy )fl)du (4-14)

oo

EL(a])
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Loss

L(aPU)

Yb

Figure 15. Loss vs. u for Action 3y

Loss

L(azsﬂ)

Hb

Figure 16, Loss vs. u for Action a,-
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The integrals in equations (4-13) and (4-14) are called right hand
and left hand linear loss integrals, respectively. Formulas for
tabulation of the above integrals are given in'[36] for various conju-
gate distributions. The loss functions given in equations (4-11) and
{4-12) are valid for both the classical and Bayesian analyses. The
difference in the two approaches arises from the differing decision

criteria in each analysis.,

Comparison of Decisions

In the classical analysis, action ay (reject new equipment) is
taken if the null hypothesis, HO: u < 0, is accepted, while action a2
(purchase new equipment) is taken if the null hypothesis is rejected.

No formal consideration is given to the value of up or to the loss
function. In the Bayesian analysis, however, action 2, is taken if the
expected Toss due to ay is less than the expected loss due to a5, and
a, is taken if the expected loss due to a, is less than that due to as
i.e., expected Toss is minimized [36]. Consider Figure 17, where two
typical linear loss functions are graphed.

In the case where the classical analyst accepted the null hypothe-
" sis, resulting in action a; if iy < 0, then the loss given by L(a]u)
would still be incurred for values of u between 0 and W even though
H0 is true. If-HO were actually false, and the true p is greater than 0
(i.e. a type II error), then the losses are even greater. If, however,
My > 0, then a loss is incurred by choosing a, only if the true p is
greater than up - This would also be a type II error. Thus, the classical

analyst may incur a 10ss L(a],u) by accepting Ho’ if he has made a type
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Loss

.
!
1

0

Y

Figure 17. Loss vs. .

IT error or no ervor at all, in terms of hypothesis testing.

Similarly, if the c]assica] analyst rejected the null hypothesis,
he would choose action a,. If ny < 0, the loss given by L(az,u) would
be incurred if the true value of u is less than Hp (a type I ervor). If
Hp < 0 then a loss given by L(az,u) is incurred for values of u between
0 and uy, even though he correctly rejected Ho‘ Thus, a loss given by
L(az,u) may be incurred by making a type I error or no error at all.

The above discussion points out that by not considering the break-
even point or loss function in his analysis, the classical analyst is
very likely to incur higher losses, even when he chooses the hypothesis
which is true, than the Bayesian who chooses the action with the least
expected loss.

The LWCMS OT II problem will again be used to demonstrate the

above procedures.
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I1lustrating the Procedure

Consider the payoff functions given by
R(a'lalJ) = ‘100 - 20 u
R(agsu) = -250 + 10 u

A reasonable explanation of such payoff functions could be as follows.
Actfon 2y corresponds to rejecting the new equipment. If testing the
equipment costs 100 units and the decision maker considers a penalty
cost of 20 units for each unit of u above 0, he would be expressing the
importance he attaches to the actual mean difference, Hs between the
MOE of the competing systems. As u becomes more positive, the new piece
of equipment becomes much better than the old and the more costly
(negative payoff) becomes the decision of having chosen action a-
Action 2, indicates that the new system has been chosen. The cost
of sampling plus purchase is equal to 250 units, and the decision maker
attaches a payoff of 10 units per unit of u.

Using equation (4-4),

_ 2 _ -100- (-250) _ 150 _
“b 5575 10- (<20) 30

5 (4-15)
From equations (4-11) and (4-12)

0 p<bh
L(a]al-l) ={ (4"]6)
30 (u-5) uw>5
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30(5-u) p <5
L(az,p) ={ . (4-17)
0 u>5

From equations (4-13) and (4-14)

EL(a,) (4-18)

1]
(%]
(]

—
——
=

i
(8]

L
—
——
-
—r
(=N
=

EL(a (5-u)f(u)du (4-19)

1]
[#%)
[an)

—

5)

" It has been shown [29] that if ji follows the student density, as it

does in this example, then

o

[ (Z-u)fg(z|mn/v,v)dz = Low(t]v)/V/n (4-20)
u
u
and [ (w-2)f(z|m,n/v,v)dz = LS*(-t|v)/v/ﬁ', (4-21)
where
t = {p-m)/n/v
Lex(t|v) = vt t2 Foxlt £6ex (t|v)
g* |v = oo g* |\J)— S* |\)
GS*(t|\)) =1- FS*(t|\J) .

Values of fs*(t[u) are given in [29] Table I.

The expected losses given in equations (4-18) and (4-19) could
be computed from either the prior or posterior distributions for .
Since the decision will be made in the classical case after the sample

has been taken, the posterior distribution will be used.
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As given in Chapter III the prior distribution of [ before test-

ing in OT II has parameters

(m',V',n',v') = (17.6, 2040.5, 14, 13).

The sample data given in Appendix 3 for OT II produced the statistic

(m,V,n,\J)

(72.95, 1517.9, 30, 29). Thus the parameters of the poster-

ior distribution of 1, as given by equation (2-7), are

mll

where §(x) = {

i

_ {13)(2040.5)+(14)(17.6
13 +

_n'm' +nm _ (14)(17.6) + (30)(72.95) _

55.34

n+n’ 30 + 14
n+n'=30+14 = 44

[vW‘+n%mW2]+(vv+m¥)-nﬂm"2

D'+ 6(n")T + [v+s(n)) - 8(n")

2

)2+ (29)(1517.9)+(30)(72.95)%- (44)(55.34)°

T +29+1 -1
2320.5
[v' + 6(n')1 + [v *+ &(n)] - &(n")

13+1+29+1 -1 =43
0 x=0

1 x>0

Thus (m",v",n",v") = (55.34, 2320.5, 44, 43).

To evaluate the linear loss integrals in equations (4-18) and

(4-19),
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t = (- m" WAV = (5- 55.34),/88/2320.5 = -6.9
Ggx(t]v") = 1- For(t|v") = 1- Fox(-6.9]43) = 1

GS*(—t|v") =1- FS*(-t|v”) =1- FS*(6.9‘43) =0 _

] 2
Lox(t|v") = Y feult]v") - t Goult|v")
2
Lg+(-6.9]43) = BELEEO ¢ (. 6.9143) - (6.9)65x(-6.9]43)
= (2.16)(-.00000015) + (6.9)1
= 6.9 (4-22)
Lgx(-t]v") = Lgw(6.9]43)
2 .
- 83+ (8:9) ¢ ,(6.9]43) - 6.9 Gx(6.9]43)
= (2.16)(.00000015) - 6.9(0)
Lox(6.9143) = 0 | (4-23)

Using the L¢x calculated in (4-22) and (4-23)

o

f5 (u~ 5)F(u)du = Lew(-6.9[43)/V ™"

S
6.9 v2320.5/43

50.1

5
[ (5= w)f(u)du=Lex(6.9]43)/V"/n"

=0
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Thus, from equations (4-18) and (4-19)

EL(a1) 30(50.1) = 1500.3

EL{a 30(0) = 0

2)
The Bayesian would, therefore, choose action a, and buy the new equip-

ment.

In the classical analysis, using HO: p < 0vs H]: w > 0, the

statistic t_ = X-0 would be computed and the null hypothesis would be
s/vn
rejected if t0 > ta’n_1 [127. In this example,
to = M: ]0_26
38.96//30
t_05_,29 = 1.697.

Therefore, the classical analyst would reject the null hypothesis and
also choose action a- Since the data for this particular problem has a
mean $o much greater than 0, one should expect both methods to reach the
same decision. A better comparison would result from a sample with a
mean closer to zero. Consider the case where the sample results in a
mean of X = 10, with the same sample variance. Now, the classical,

analyst would not reject Hy since t = 20, 10 = 1.41, which

s/vn  38.96//30
is Tess than t 05.29 ~ 1.697. The classical analyst would then choose

action 3 and reject the new equipment. On the other hand, the Bayesian
would recompute EL(a]} and EL(az). The new parameters of the posterior

distribution of p are
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= (]4)(;6-2)12 (30)(10) _ 12.42

44
2.

o _ {13)(2040.5)+(14)(17.6)% + (29) (1517.9)+(30) (10)° - (44)(12.42)
' 23

1653.37

v' = 43
The t value in equations (4-18) and (4-19) is

t = (5- 12.42)v44/1653.37 = -1.21

GS*(-1.21[43) =1 - FS*(-1.21|43) = ,8814

GS*(1.21I43) =1 - FS*(1.21|43) = .1186

2 - |
Lox(-1.21143) = 43*’£E‘°2‘) fox(-1.21143) - (-1.21)6¢x(-1.21[43)

1.059 (-.19) + 1.21(.8814)

I

.865

2
Lex(1.21]43) = BEIL2N ¢ L (1.21143) - (1.21)6x(1.21143)

1]

(1.059)(.19) - 1.21(.1186)

= ,058

fLay) = 30 ] (-5 ()ds

30 LS*(-1.21|43)¢1653.37/43

30(.865)(v1653.37743 )

160.91
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.
EL(a,) = 30 [ (5-u)f(u)ds

-0

|

30 LS*(1.21[43)¢1653.37/43

30 (.058)v1653.37/43

1]

10.79

Since EL(aZ) < EL(a]), the Bayesian would choose action a, and buy the

2
new equipment. In this example, the classical analyst chose the decision
which had the higher expected loss. This resulted from considering only
the true value of u and not the effect of the value of u on the loss
which could be incurred from each decision.

Although this example considers only the linear loss function,
the conclusions resulting from the example are valid for all loss func-
tions. Since the decision maker is ultimately concerned with choosing
the action which will minimize his losses (or maximize his payoffs), it
is imperative for him to formally assess his loss or payoff function.
Once this is done, he can base his decision on the action which has the
least expected loss or greatest expected payoff, rather than on the true
value of some étatistic.

It can be seen from equations (4-18) through (4-21) that?there is
a relationship between the sample size and the expected Toss from each
action. The sample size affects both the degrees of freedon, v, and the
value of t, as well as the values of the integrals in equations {4-20)
and {4-21). It is possible that a sample size could be determined which
would minimize the expected loss of each action, but such a determination

is beyond the scope of this study.



CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The conclusions of this study must be considered from two dis-
tinct viewpoints. The first is that of hypothesis testing. If the
decision maker is interested purely in testing one hypothesis against
another, such as HO: u =0 vs H]: u # 0, there are several disadvan-
tages to utilizing Bayesian statistical procedures.

The hypothesés of interest may not be meaningful from a Bayesian
viewpoint, particularly for the two-tailed test. In fact, to utilize
Bayesian statistical procedures, the decision maker must alter his con-
ception of the mean and variance of a distribution of a random variable
as discussed in Chapter I. With the Bayesian conception of a random
variable in mind, the decision maker must formulate a new hypaothesis to
be tested which he feels will provide him with information equivalent to
that which he would have obtained from the classical hypothesis test.

An example of this was given in Chapter III wifh HO: u=0vs H]: u# 0.
Once the alterhate hypotheses have beenlformulated, they can be tested
using Bayesian statistica] procedures, However, it was shown in Chapter
IIT that when the probability of a type I error was held constant, the
Bayesian test was less powerful than the classical in the meaningful -
range of values for the power. When the BPI was kept constant, the

Bayesian test was also less powerful than the classical test for large
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values of the power with the additional disadvantage that the proba-
bility of a type I error increased with the sample size. When the vari-
ability of the sample méan was assumed to be independent of the varia-
bility of the pricr mean, it was shown that there is little difference
between the two types of tests .in terms of’ power.

In the case of the one-tailed test, there are nearly equivalent
hypotheses which can be 1nvestigated with Bayesian and classical Qroce—
dures; e.g., HO:
tively. Although the probability of a type I error can be determined,

p < 0vs. H]: L > 0 and HO: p < 0vs H]: u > 0, respec-

it cannot be fixed in the Bayesian test. Also, the power of the Bayesian
test cannot be meaningfully defined, as discussed in Chapter III. There-
fore, the two types of procedures cannot be meaningfully compared for

the one-tailed test.

The second viewpoint from which the conclusions must be considered
is that of the decision criteria. If the decision maker can formally
describe the loss function in relation to each of the possible decisions
he may make, Bayesian statistical procedures have been developed which
will enable him to make the decision which has the least expected loss.
In Chapter IV an example was provided to demonstrate the procedures in
the case of a linear loss function. Since the classical decision maker
does not formally consider a loss function and bases his decision on the
result of a hypothesis test, he may make a decision which would not mini-
mize his expected loss. From this viewpoint, thérefore, Bayesian sta-
tistical procedures are far superior to classical statistical procedures.

Therefore, if the decision maker is interested purely in testing

one hypothesis against another, he should use classical statistical
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procedures. However, if he is interested in making a decision which
has the least expected loss, he should use Bayesian statistical proce-

dures.

Recommendations

In Chapter Il it was stated that one of thé objectives of the
Bayesian methodology was to determine the minimum sample size from which
meaningful probability statements could be made regarding f{i. In this
study an attempt was made to determine the sample size which would pro-
duce a desired power. It is recommended that some other measure of a
"meaningful probability statement" be investigated to reduce the sample
size now being used by OTEA.

It is also recommended that the Bayesian methodology presented in
Chapter IV be investigated to determine the effect of sample size on the
decision to be made.

Finally, it is recommended that Bayesian statistical procedures be
applied to a problem in which more than one MOE is under investigation
since the procedures in this study apply to a situation in which only

one MOE is being considered.
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APPENDIX I
EXPLANATION OF NOTATION
Chapter 1
u mean of normal density function
02 variance of normal density function
X sample mean
52 ‘sample variance
f'(s) prior distribution of &
f(y]e) Tikelihood function for y given @
f'(ely) posterior distribution of &
Chapter 11
fs(u|m,n/v,v) density function for Student's t-distribution
m.v',n', ! prior parameters for Student’'s t-density function
{these are interpreted on page 10)
m",v",on', VY posterior parameters for Student's t-density function
{these are defined mathematically on page 9 )
MyVaNav ' parameters of a normal sampling distribution (these are
defined mathematically on page 11)
FS*(-|u) left tail cumulative distribution function for standard
Student's density function with v degrees of freedom
n expected value of

variance of u

—«
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prior variance of u

prior standard deviation of [

prior mean of 1

posterior standard deviation of 4

ratio of expected posterior standard deviation of i to
prior standard deviation of j

posterior variance of p

posterior mean value of 1§

Chapter ITI
n'n
n+n'
type I error
type Il error
test statistic for classical hypothesis test

length of a {1- y) Bayesian prediction interval on the

posterior distribution of u

Chapter IV

payoff function of the decision, a s and the true value
of u, n
breakdown value of

Toss function of the decision, ai, and the true value of

Hs M
éxpected loss if action a, is chosen

right tail cumulative distribution function for the
standard Student's density function with v degrees of

freedom
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standard Student density function with v degrees of
freedom
partial evaluation of linear loss integral for standardized

Student density function with v degrees of freedom



APPENDIX TI
LIGHTWEIGHT COMPANY MORTAR SYSTEM OT I TEST DATA

Gunner's Examination Times f19]

System
Test 81 mm LWCMS Difference in
Participant (sec) {sec) Performance
1 358.0 303.4 54.6
2 367.0 350.8 16.2
3 299.0 330.0 -31.0
4 261.0 147.5 113.5
5 380.0 313.0 67.0
6 226.8 250.0 -23.2
7 272.0 247.0 25.0
8 239.8 273.0 -33.2
9 235.0 258.0 -23.0
10 247.5 244.8 2.7
11 279.1 242.7 36.4
12 303.0 234.2 68.8
13 240.9 250.7 -9.8

14 279.0 296.9 -17.9
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APPENDIX TII
LIGHTWEIGHT COMPANY MORTAR SYSTEM OT II TEST DATA

Gunner's Examination Times [20]

Systems
Test 81 mm LWCMS Difference in
Participant (sec) (sec) Performance
1 321.5 225.5 96.0
2 310.0 194.5 115.5
3 314.0 248.0 66.0
4 293.0 272.5 20.5
5 304.5 259.0 - 45.5
6 256.0 173.0 83.0
7 321.5 224.0 97.5
8 397.5 256.0 141.5
9 297.5 282.0 15.5
10 254.5 220.0 34.5
11 258.0 262.0 -4.0
12 294.5 177.5 - 117.0
13 279.0 255.0 24.0
14 316.0 186.0 130.0
15 288.0 216.0 72.0
16 317.5 204.5 113.0
17 325.0 245.0 80.0
18 326.0 289.5 36.5
19 321.5 269.5 52.0
20 308.5 205.5 103.0
21 311.5 211.0 100.5
22 322.0 213.5 108.5
23 297.0 200.0 97.0
24 316.0 272.5 43.5
25 261,0 208.5 52.5
26 335.0 208.5 126.5
27 274.5 243.5 31.5
28 270.0 200.0 70.0
29 342.5 257.5 85.0
30 314.5 280.5 34.5




[#%]
o

Sample mean = 5%
3

1~

D. =m=72.95 sec
1 ]

3

<

1

S 1 i e = 55 2
ample varianc 59

= 1517.88 sec’

1l [~

(D'l - m)

i=1
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