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Abstract

In quasi-brittle polycrystalline materials, damage by cracking or cleavage dominates plastic and

viscous deformation. This paper proposes a micromechanical model for rock-like materials,

incorporating the elastic-damage accommodation of the material matrix, and presents an original

method to solve the system of implicit equations involved in the formulation. A self-consistent

micromechanical approach is used to predict the anisotropic behavior of a polycrystal in which grain

inclusions undergo intragranular damage. Crack propagation along planes of weakness with various

orientation distributions at the mineral scale is modeled by a softening damage law and results in

mechanical anisotropy at the macroscopic scale. One original aspect of the formulated inclusion-

matrix model is the use of an explicit expression of the Hill’s tensor to account for matrix ellipsoidal

anisotropy. To illustrate the model capabilities, a uniaxial compression test was simulated for a variety

of polycrystals made of two types of mineral inclusions with each containing only one plane of

weakness. Damage always occurred in only one mineral type: the damaging mineral was that with

a smaller shear modulus (respectively higher bulk modulus) when bulk modulus (respectively shear

modulus) was the same. For two minerals with the same shear moduli but different bulk moduli, the

maximum damage in the polycrystal under a given load was obtained at equal mineral fractions.

However, for two minerals with different shear moduli, the macroscopic damage was not always

maximum when the volume fraction of two minerals was the same. When the weakness planes’

orientations in the damaging mineral laid within a narrow interval close to the loading direction, the

macroscopic damage behavior was more brittle than when the orientations were distributed over

a wider interval. Parametric studies show that upon proper calibration, the proposed model can

be extended to understand and predict the micro-macro behavior of different types of quasi-brittle

materials.
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Introduction

Great progress has been made in micromechanical modeling of heterogeneous materials since the
pioneering work of Eshelby (1957) on the deformation of an ellipsoidal inclusion (also called grain)
embedded in an infinite and linear elastic matrix. From there, Kröner (1961) was the first to extend
the self-consistent method of Hershey (1954) to the elastic-plastic behavior of polycrystalline materials.
However, these first developments were based on the assumption that the interaction between the material
matrix and the inclusion is elastic, i.e. that the presence of the inclusion induces only a perturbation of
the elastic strain of the matrix, in the vicinity of the inclusion. Many works then focused on accounting
for the nonlinearity of the matrix behavior, or the so called non-linear accommodation of the matrix,
in the inclusion-matrix interaction model. Hill (1965a,b) introduced two key novelties which facilitated
further developments. First, the model of inclusion subjected to a free strain and then placed in the matrix
was replaced by a cavity embedded in an infinite matrix, and subjected at its wall to surface traction
and displacements. Hill’s stiffness tensor was thus introduced for the cavity. Second, Hill formulated
the interaction model with an incremental method instead of the original secant method, which is more
suitable for nonlinear behaviors. Based on Hill’s contributions, complemented by averaging theorems,
many developments were made on the self-consistent method (Willis, 1977; Cleary et al., 1980; Ju,
1991; Nemat-Nasser, 2004; Nemat-Nasser and Hori, 2013; Zeng et al., 2015). It also became possible
to account for plastic accommodation, as presented in a series of works starting by the one of Berveiller
and Zaoui (1978) and going to more recent works by Molinari et al. (1997). The elastic-plastic model
formulated by Kröner (1961) was extended to viscous behaviors by Weng (1982). However, the self
consistency of Weng’s model was debated by many authors such as Molinari et al. (1987) and Rougier
et al. (1994). Different approaches were proposed, by Masson and Zaoui (1999), Pouya and Zaoui (1999),
and Masson et al. (2000), to address the key question of how the viscous accommodation can be taken
into account, in particular the exhaustive work of Mercier and Molinari (2009).

In quasi-brittle polycrystalline materials like crystalline rocks, for which granite and gneiss are
common examples, damage by cracking or by cleavage on some crystallographic weakness planes
dominates plastic and viscous deformation (Ju, 1996; Feng and Yu, 2010; Zeng et al., 2014; Wang
et al., 2015; Zhu and Shao, 2015; Zhu et al., 2016). Modeling micromechanical damage can be
done either by considering microscopic cracks explicitly in the formulation, or, in continuation of
the inclusion model proposed by Eshelby in plasticity, by introducing damage in the microscopic
constitutive model. Micromechanical models considering cracks were first proposed by Budiansky and
O’connell (1976) and then developed by Kachanov (1980, 1992). The nonlinear behavior and load
induced anisotropy due to crack closure and frictional contact were investigated based on a self-consistent
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homogenization method (Horii and Nemat-Nasser, 1983; Zhu et al., 2008; Qi et al., 2016). The self-
consistent approach was also used by Sumarac and Krajcinovic (1987) for investigating damage by
micro-cracking. These theoretical approaches focused on the determination of the effective moduli of
the solids containing a given population of cracks and not on the modeling of the dynamic damage
process by crack growth. By contrast, Horii and Nemat-Nasser (1985) explained how mechanisms
of crack growth at the micro-scale can determine the macroscopic failure mode for brittle materials.
Rather than representing micro-crack growth explicitly, Chaboche et al. (2001) and Boudifa et al.
(2009) recently extended micromechanical elastic-plastic models to damage mechanics to investigate
damage processes in composite or polycrystalline materials. However, even when a self-consistent
approach was used, the effect of the damage accommodation of the matrix on the inclusion-matrix
interaction was not theoretically investigated. In a recent paper (Pouya et al., 2016), we presented a
micromechanical approach to predict damage and viscous deformation in polycrystalline salt rock, which
explained the micromechanical coupling between damage and viscous deformation, but ignored damage
accommodation. The goal of the present paper is to address the theoretical and numerical challenges
raised by micromechanical modeling of damage accommodation in quasi-brittle heterogeneous materials.
As an example to guide discussions, a composite aggregate constituted of two types of mineral inclusions
is considered. Crystalline minerals are assumed to have a plane of weakness, along which microcracks
can propagate. The plane of weakness is not necessarily passing through the grain, and could actually
represent a plane of weakness passing along the boundary of nonsphearical grains. A local unidirectional
damage model is used to calculate the corresponding stiffness degradation at the mineral scale.

As shown by Horii and Nemat-Nasser (1983), even in a material containing a random (isotropic)
distribution of cracks, a load-induced anisotropy can result from the nonlinear behavior of cracks.
Cracking under mechanical loading also leads most of the time to anisotropic distributions of crack
orientations, thus to anisotropic properties for the matrix (Abdul-Latif and Mounounga, 2009). In the
present paper, we account for the anisotropy of the matrix in the matrix-inclusion interaction model and
use an analytical expression of Hill’s tensor describing the inclusion-matrix interaction, which increases
the computation speed. In past homogenization work, Hill’s tensor had only been exressed analytically
for an isotropic matrix. Only a semi-analytical solution of the Hill tensor was available for a transverse
isotropic matrix. In this study, a fully analytical expression of Hill’s tensor for a particular case of
transverse isotropic behavior is presented, known as ellipsoidal anisotropy (Appendix 1). Ellipsoidal
anisotropy was first represented by Saint Venant (1863), who modeled amorphous anisotropic elastic
solids by assuming an ellipsoidal-shape indicator surface for some elastic parameters. Although Saint
Venant’s work was neglected in previous literatures and cited only occasionally (Lekhnitskii, 1963),
the concept of ellipsoidal anisotropy was widely adopted as a guideline for modeling elasticity in
geomaterials such as soils, rocks, and concrete (Daley and Hron, 1979; Louis et al., 2004; Pouya, 2007).
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As shown by Pouya (2011), the simplified data analysis and reduced number of required parameters
make the concept of ellipsoidal anisotropy an attractive approach, which has diverse applications for the
phenomenological and micromechanical modeling of amorphous, microcracked, or damaged materials
(Halm and Dragon, 1988; Dragon et al., 2000; Sevostianov and Kachanov, 2002, 2008). The analytical
solution of the ellipsoidal Hill’s tensor allows the modeling of a broader range of materials than the
isotropic one, and will be adopted for this reason. The behavior of the damaging grain will be represented
by an ellipsoidal elasticity tensor also. In the illustration example presented below, the grain constitutive
model presents transverse isotropy and depends on 3 parameters only (instead of 5 parameters in the
general case). The ellipsoidal approximation is a simple and computationally efficient way to build a
transversal isotropy elasticity tensor.

This paper explains a self-consistent micromechanical approach to predict the anisotropic behavior of
a polycrystalline material, in which grain inclusions with different crystallographic properties undergo
cracking along various planes of failure. We first describe a local damage model that is used to
represent the rheological behavior of crystalline minerals (grains). Then, we explain the inclusion-
matrix interaction method and provide the resulting expression of the stiffness tensor of the damaged
matrix. Next, we present the iterative algorithm employed to calculate stress, strain, and damage at both
macroscopic and microscopic scales. After that, we detail constitutive equations for the particular case
of unidirectional damage at the grain scale. Finally, we show numerical simulation results that justify
the size of the Representative Elementary Volume, illustrate the influence of the relative mechanical
properties of the mineral species, and highlight the ability of the model to capture the role of the
distribution of mineral orientations on damage initiation and propagation.

Grain Scale Rheological Behavior

Mechanisms of local damage at the grain scale vary significantly in different materials (Feng and Yu,
2010). In this study, grain scale or microscale refers to the scale of the inclusion embedded in a continuum
matrix from the standpoint of homogenization theory, and refers to the scale of a crystal embedded
in a polycrystal from the standpoint of rock physics and mechanics. In quasi-brittle polycrystalline
materials, cracking by cleavage on crystallographic planes is a common mechanism, in which cracks
can propagate in mode I, mode II or mixed mode along a family of weakness planes (Lee and Ju, 1991).
The latter correspond to crystallographic planes that are identified as active for the given conditions of
stress. In some materials, preexisting flaws can serve as stress concentrators leading to the formation of
open tension microcracks (wing-cracks). The formation of wing-cracks at the tips of preexisting cracks
is a common damage mechanism in quasi-brittle materials, which can take place even under global
compressive stress (Horii and Nemat-Nasser, 1985; Nemat-Nasser and Obata, 1988). In this case, the
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wing-cracks nucleate with some initial angle relative to the existing crack, but after a short curving stage,
align themselves in the direction of the maximum principal compression and become almost straight
(Paliwal and Ramesh, 2008). According to these authors, the propagation of these wing-cracks can be
approximated as that of open straight cracks experiencing local tension induced by the frictional sliding
of the pre-existing closed cracks. In this case, the orientation of the plane on which cracks propagate
is induced by the macroscopic stress. Therefore, it is possible to use a scalar local damage criterion to
account for mechanical anisotropy induced by a variety local damage mechanisms, simply by including
the orientation of the weakness planes on which cracks can propagate. In this paper, we take the example
of a unidirectional damage criterion that depends on the local stress σ, the orientation n of the weakness
plane on which cracks can propagate and a scalar damage variable d. The two parameters n and d are
combined to form a unidirectional damage tensor d = d n⊗ n. The damage criterion is thus written as
F (σ,d) ≤ 0. If there are different possible weakness planes, it will be assumed that the orientation n
will be fixed by the first plane on which cracking takes place and then does not change upon damage
propagation. We fixed weakness planes orientations in this model in order to have initial heterogeneity
in the Representative Elementary Volume (REV), which is the minimum size required for the sample to
have the same statistical mechanical response. The damage evolution law, which gives the evolution of d
with deformation, depends on the physical underlying damage mechanisms. In the numerical simulation
section, as an illustration example, a very simple case of the criterion F and the damage evolution law
will be considered. Note that if the orientation of the plane of weakness were made dependent on the
orientation of stress only, all inclusions would be initially the same because before cracking the stress
state is homogeneous. Without the heterogeneity induced by the planes of weakness of fixed orientation,
all micro-stresses are equal to the macro-stress, and no damage occurs. It is true that in our model,
the orientation of the plane of weakness does not change after damage initiation. In future study, we
could extend the present model by adding planes of weakness in damaged inclusions. At the scale of the
damaged inclusion, the addition of weakness planes could thus reflect the occurrence of wing cracks, the
orientation of which depends on the state of stress.

Homogenization Method

Inclusion-matrix interaction model

The inclusion-matrix interaction model is a key element in the homogenization method used in this study.
Hill (1965a) introduced a general relation between small variations of stresses and strains in the inclusion
(σ, ε) and in the far-field matrix (σ, ε), as follows:

δσ − δσ = −L∗ : (δε− δε) (1)
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L∗ is the fourth-rank Hill’s stiffness tensor, which depends on the matrix elastic properties and on the
inclusion shape. For nonlinear materials, L∗ is updated at each load increment. For instance, in our
previous work (Pouya et al., 2016), we modeled damage in quasi-brittle salt polycrystals by introducing
a macroscopic damage variable D and by updating L∗ at each load increment, as follows:

δσ − δσ = −L∗(D) : (δε− δε) (2)

where the tensor L∗ was assumed to remain constant during each load increment - an assumption that
is in agreement with the concept of the interaction law (Eq. 1). However, in damaging materials, the
macroscopic damage D varies in the course of the load increment. Therefore, the effect of the variation
of macroscopic damage D on the variation of L∗ should be taken into account. The elastic tensor of the
matrix depends on the damage variable. Since the elastic tensor of the matrix is assumed to be uniform
in the interaction model, the damage variable must also be assumed uniform. In this paper, we account
for the variation of L∗(D) by deriving the following secant interaction model:

σ − σ = −L∗(D) : (ε− ε) (3)

Which leads to the following tangent incremental interaction law:

δσ − δσ = −L∗(D) : (δε− δε) − ∂L∗(D)

∂D
: (ε− ε) δD (4)

where the last term translates damage accommodation, known as the irreversible alteration of the
inclusion-matrix interaction stiffness tensor due to damage.

Equation (4) is an extension of equation (2), which was obtained in the case when L∗ keeps
constant during the load increment. In our previous work (Pouya et al., 2016), the tensor L∗ was
assumed isotropic. The new interaction law accounts for damage-induced anisotropy and for the damage-
accommodation of the matrix during the load increment, for situations in which an analytical expression
of L∗ can be established. The explicit expression of the Hill’s tensor L∗ for an ellipsoidal type of
aniostropy of the matrix, which was recently derived by the first author and presented in a work currently
in preparation for publication, is given in Appendix 1. In the following, we explain the anisotropic model
considered for the matrix and the calculations necessary for numerical implementation.
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Expression of the ellipsoidal anisotropic stiffness tensor of the damaged matrix

Under the assumption of ellipsoidal anisotropy, the stiffness tensor of the matrix has the following
expression:

Cijkl(D) = λDijDkl + µ (DikDjl +DilDjk) (5)

where λ and µ are reference (intact) values of the Lamé coefficients of the REV. This expression has
been applied independently in other micromechanical investigations to characterize the effective moduli
of heterogeneous media and to represent the elasticity of geomaterials (Milgrom and Shtrikman, 1992;
Milton, 2002). We consider that the matrix behavior has axial symmetry about the loading axis (direction
3). Thus the damage tensorD is diagonal and D11 = D22. The relation between theD components and
the Young’s moduli is (Pouya and Zaoui, 2006):

Eαα(D) =
(3λ + 2µ)

λ + µ
µ (Dαα)

2 (6)

In order to ensure that E1 = E2 = E(1−D) and E3 = E, we have to have: D11 = D22 =
√

1−D,
D33 = 1. Note that the damage tensorD is not isotropic, although its components are dependent and can
be expressed as a function of unique variable D.

Micro-macro Computational Method

Micro-macro Computational Method for Strains, Stresses and Damage

At each loading step or time step tk, known variables include ε, σ, σ, ε, D, L∗ and ∂L∗(D)
∂D . For a

given deformation increment δε (respectively stress increment δσ), the goal is to calculate δε, δσ, δσ,
δD (respectively δε, δσ, δε, δD). The numerical method requires the initial value of the stiffness of
the matrix, which cannot be determined by the self-consistent method based on the initially undamaged
properties of the minerals. Following the approach proposed by Hill (1952), the initial shear and bulk
moduli of the composite matrix are calculated by averaging Voigt (1910) and Reuss (1929) bounds. The
Voigt upper bound for the effective elastic moduli (MV ) of the matrix with two types of minerals is

MV = f1M1 + f2M2 (7)

The Reuss lower bound for the effective elastic moduli (MR) of the matrix with two types of minerals is

1

MR
=

f1
M1

+
f2
M2

(8)
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where f1 and f2 are the volume fractions of minerals 1 and 2.

If the test is controlled in deformation (δε), the incremental interaction law used in the computational
method can be rewritten as:

δσ = −L∗(D) : δε − ∂L∗(D)

∂D
: (ε− ε) δD + δσ +L∗(D) : δε (9)

Moreover, the incremental constitutive law at the microscopic scale of the grain can be expressed as:

δσ = C̃(d(n)) : δε + ε :
∂C̃(d(n))

∂d(n)
: δd(n) (10)

where d(n) refers to the damage of the nth grain.
The microscopic damage evolution law is the following:

δd(n) = 0 if F (σ,d(n)) < 0 or if F = 0 and ∂F
∂σ : δσ < 0

∂F
∂σ : δσ + ∂F

∂d(n) : δd(n) = 0 otherwise
(11)

If δσ and δD are given, then equations (9), (10) and (11) can be solved for the three remaining
unknowns δε, δσ and δd(n). The values of δσ(k) and δD(k) are initialized at iteration k = 0. For the first
iteration of the first loading increment, δσ(0) = C0 : δε and δD(0) = 0. Then, at the first iteration of a
subsequent loading increment, the values of the variables obtained at the end of the previous increment
are used to set: δσ(0) = C(D) : δε and δD(0) = 0 for an unloading path; δσ(0) and δD(0) for a loading
path. For any iteration k, equations (9), (10) and (11) are used to calculate δε(k), δσ(k) and δd(n)

(k)
from

δσ(k) and δD(k). Then the incremental macroscopic stress is updated by averaging: δσ(k+1) =
〈
δσ(k)

〉
.

In the proposed algorithm, the updated microscopic damage in the grains and the updated macroscopic
phenomenological damage variable may lead to two different values for the macroscopic damaged
stiffness tensor. The convergence between the two values is checked iteratively.

First, the macroscopic damaged stiffness tensor is calculated by combining the microscopic
constitutive relation: σ = C(d(n)) : ε and the interaction law in equation (3):

σ = C(d(n)) :
(
C(d(n)) +L∗(D)

)−1
: (σ +L∗(D) : ε) (12)
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By taking the average:

σ =

〈
C(d(n)) :

(
C(d(n)) +L∗(D)

)−1〉
︸ ︷︷ ︸

W

: (σ +L∗(D) : ε) (13)

Replacing
〈
C(d(n)) :

(
C(d(n)) +L∗(D)

)−1〉
byW , we have:

σ = (I −W )
−1

: W : L∗(D) : ε (14)

where I is the fourth-order identity tensor. By replacing (I −W )
−1 as Z, we have W = I −Z−1.

Therefore, (I −W )
−1

: W = Z :
(
I −Z−1

)
= Z − I . Finally:

σ =
[
(I −W )

−1 − I
]

: L∗(D)︸ ︷︷ ︸
Ch

: ε (15)

Ch is the solution obtained by upscaling the matrix stiffness tensor from the damaged stiffness tensors
of the microscopic inclusions.

In a second step, the macroscopic damaged stiffness tensor (noted:Cd) is calculated from the updated
value of the macroscopic damage variable: D + δD, in which δD = δD(k) is taken from the previous
iteration. According to equation (5), we have:

Cd1111 = Cd2222 = (1−D − δD)(λ+ 2µ)

Cd1122 = (1−D − δD)λ

Cd1212 = (1−D − δD)µ

Cd3333 = λ+ 2µ

Cd1133 = Cd2233 = λ
√

1−D − δD

Cd1313 = Cd2323 = µ
√

1−D − δD

(16)

Lastly, the parameters λ, µ and D + δD are calculated iteratively in order to minimize the distance
‖Ch −Cd‖. Equation (16) shows that D is not just a scaling parameter of λ and µ, but also reflects
differently the different components of Cd.

The incremental interaction law in equation (9) is deduced from a simplified, approximate constitutive
law of the matrix, written as δσ = C(D) : δε + ∂C(D)

∂D : ε δD. Note that this is a common
homogenization procedure: the inclusion-matrix interaction law is constructed from an approximate,
yet-unknown matrix constitutive law. According to the incremental constitutive law of the matrix, the
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distance:
‖δσ −C(D) : δε − ∂C(D)

∂D
: ε δD‖ (17)

is minimized for the converged value of δD. Taking the average of the incremental interaction law,
(equation (9)) we also note that:

〈δσ〉 = −L∗(D) : 〈δε〉 − ∂L∗(D)

∂D
: (〈ε〉 − ε) δD + δσ +L∗(D) : δε (18)

The condition 〈ε〉 = ε is always satisfied. Moreover, by construction of the computational method,
〈δσ〉 = δσ. Therefore we have:

0 = L∗(D) : (δε− 〈δε〉) (19)

Since L∗(D) is positive definite, we verify that δε = 〈δε〉.

Example of Unidirectional Damage in Mode I at the Grain Scale

To illustrate the formulated micro-macro modeling approach, we consider a simple damage mechanism
at the grain scale: the grain stiffness decreases in one direction perpendicular to a plane of weakness
due to the propagation of cracks along that plane in mode I. The effect of cracking in the grain is thus
represented by a uniform damage process at the grain scale. We note n(n) the vector normal to the plane
of weakness of the n-th grain (Figure 1). We have n = [sinθcosφ sinθsinφ cosθ], in which the angles
θ and φ are shown in Figure 1. Note that angles ψ and φ have no influence on the initiation and evolution

Figure 1. Local coordinate system in the plane of weakness of a grain.
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of microcrack along the plane of weakness because of the axis of symmetry about the loading axis and
about the direction normal to the weakness plane. Denoting d(n) the microscopic damage of the nth

grain, we have:
d(n) = d(n) n(n) ⊗ n(n) (20)

Following the approach proposed by Chaboche (1992), we define the microscopic effective stress σ̃(n)

(in the sense of Continuum Damage Mechanics) as:

σ̃(n) = M(d(n)) : σ(n) (21)

where M(d(n)) is a fourth-order operator, called “damage operator” in the following. According to the
Principle of Equivalent Elastic Energy, the damaged stiffness tensor is expressed as:

C̃(d(n)) = M−1(d(n)) : C0 : M−T (d(n)) (22)

whereC0 is the stiffness tensor of the undamaged grain, assumed to be linear elastic. Hence the damaged
stiffness tensor depends on three parameters: the two Lamé coefficients (in C0) and the damage variable
d(n). The expression of C̃ is not known though. The assumption of ellipsoidal anisotropy allows
constraining the expression of C̃, as shown in Eq. 67 presented in Appendix 2.

At the grain scale, for mode I cracking, damage initiates when the maximum microscopic principal
stress exceeds the tensile strength of the grain (σT ) and that after damage initiation, the direction of
damage is fixed and the microscopic stress-strain relationship follows a law similar to plasticity with
linear softening. The damage criterion takes the following expression:

F (σ,d(n)) =
(
n(n) ⊗ n(n)

)
: σ − σT g(d(n)) (23)

wheren(n) is the direction in which the maximum principal stress exceeds the tensile strength for the first
time. The resistance of the damaged grain to deformation is assumed to vary linearly with deformation.
We choose g(d(n)) in order to capture this softening behavior. The microstress in direction n(n) is
expressed as: (

n(n) ⊗ n(n)
)

: σ =
(
n(n) ⊗ n(n)

)
: C̃(d(n)) : ε (24)

Moreover, the softening law can be written as:

(
n(n) ⊗ n(n)

)
: σ = σT g(d(n)) =

(
1− εnn − ε0

εf − ε0

)
σT (25)
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where εnn is the microscopic strain normal to direction n(n), ε0 is the normal strain at which damage
initiates and εf is the normal strain at which the normal stress vanishes (Figure 2).

Figure 2. Damage criterion at the grain scale.

From equation (67) in Appendix 2, we have:

σ = λ0 εv δ + 2µ0 ε +
(
d(n)

)2
(λ0 + 2µ0) εnnn

(n) ⊗ n(n) − d(n)λ0
[
εnnδ + εvn

(n) ⊗ n(n)
]

−2 d(n)µ0

[(
ε · n(n)

)
⊗ n(n) + n(n) ⊗

(
ε · n(n)

)]
(26)

After some computations, a projection on n(n) ⊗ n(n) provides:

σT g(d(n)) = (1− d(n))
[
λ0εv + (−d(n)λ0 + 2(1− d(n))µ0)εnn

]
(27)

Let us note t a direction perpendicular to n(n) (Figure 1). If the grain is subjected to a uniaxial stress
condition, then t · σ · t = 0. From equation (26), this condition can be expressed as:

0 = λ0εv + 2µ0εtt − d(n)λ0εnn (28)

where εtt is the microscopic strain in a direction t in the weakness plane. In uniaxial stress conditions,
we have: εv = εnn + 2εtt, which leads to:

εtt = −(1− d(n)) λ0
2(λ0 + µ0)

εnn, εv =
λ0d

(n) + µ0

λ0 + µ0
εnn (29)
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Now combining equations (27) and (29), we find:

σT g(d(n)) =
(

1− d(n)
)2 3λ0 + 2µ0

λ0 + µ0
µ0εnn =

(
1− d(n)

)2
E0 εnn (30)

where E0 the Young’s modulus that corresponds to the Lamé coefficients λ0 and µ0. Noticing that
σT = E0ε0, and using the softening law in equation (25), we get:

g(d(n)) =
(1 + η)

(
1− d(n)

)2
1 + η

(
1− d(n)

)2 , η =
εf − ε0
ε0

(31)

If η = 0, the material is elastic-brittle, i.e. the resistance to deformation falls to zero as soon as the damage
criterion is reached. If η →∞, g(d(n))→ 1, i.e. the material is perfectly plastic.
From the calculations above, we can express the damage criterion (equation (23)) in terms of deformation,
as follows:

F (ε,d(n)) =
(

1− d(n)
)
×
(
λ0εv +

[
−d(n)λ0 + 2(1− d(n))µ0

]
εnn

)
− σT g(d(n)) (32)

Numerical Simulations

In order to understand the influence of the elastic properties of individual grains, the orientations of the
planes of weakness and the mineral fraction, we conduct a parametric study on a polycrystalline material
that contains two mineral constituents. Each mineral is represented by a finite number of grains with
different weakness plane orientations which follow a uniform distribution. This model allows simulations
of complex stress paths such as loading and unloading cycles and different boundary conditions. Here, we
only present the results of uniaxial loading simulations in order to focus on the fundamental mechanism
of grain-matrix interaction.

Calibration of the Model Parameters

We calibrate the model parameters against published experimental data obtained from a uniaxial
compression test performed on granite (Halm and Dragon, 2002). Here we consider that granite as a
mixture of two types of minerals, quartz and feldspar. Each mineral is represented by 200 grains, i.e.
each mineral species has the same volume fraction. The next section presents a sensitivity analysis of the
number of grains. The orientations of the planes of weakness (θ in Figure 1) are uniformly distributed
within the range 0 to π/2. We choose σT = 6 MPa for both minerals, which corresponds to the tensile
strength of granite (Perras and Diederichs, 2014). We take 0.7 for the brittleness indicator η, in order to
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capture the quasi-brittle behavior of the minerals. The calibrated values obtained for the shear and bulk
moduli of the two minerals are reported in Table 1. Calibrated elastic properties fall within the typical
range of values for quartz (Heyliger et al., 2003) and feldspar (Brown et al., 2016). As expected, quartz
has a larger shear modulus than feldspar and and is relatively harder.

Table 1. Calibrated shear modulus and bulk modulus for quartz and feldspar in a granite sample.

Mineral Type quartz feldspar
Elastic Properties µ1 (MPa) K1 (MPa) µ2 (MPa) K2 (MPa)
Calibrated Value 4.07× 104 6.17× 104 2.67× 104 6.14× 104

The simulated stress-strain response matches well the experimental data. In Figure 3(a), solid lines
represent the purely elastic response and dashed lines indicate an extension of the elastic behavior. It can
be seen that the stress/strain curve deviates slightly from the elastic response during the experiment in the
lateral direction. This observation suggests that a small amount of damage was produced in the material
under uniaxial compression. Damage initiates when the uniaxial stress reaches about 38 MPa, as indicated
by the evolution of macroscopic damage (Figure 3(b)), consistent with experimental observations in
Figure 3(a). After initiation, damage propagation is nonlinear: the positive damage rate gradually slows
down as the applied stress becomes larger. We note that the value of macroscopic damage is small, which
explains the quasi-linear stress-strain relation obtained at the matrix scale.
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Figure 3. Measured and simulated uniaxial compression curves for granite: (a) Experimental stress-strain
relation (Halm and Dragon, 2002); (b) Simulated macroscopic damage evolution.
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Model Sensitivity to the Number of Grains

In order to eliminate the influence of the sample size on the computational results, we first carry out a
sensitivity analysis on the total number of grains in the polycrystalline material, which is often overlooked
in polycrystal simulations (Wu et al., 1996; Buchheit et al., 2005). This is equivalent to examining
the mesh size dependence in a finite element method-based approach. For simplicity, we round up the
calibrated values of the mineral elastic parameters to the nearest integers in the following simulations
(Table 2). We study the influence of the number of grains when both minerals have the same shear
modulus but different bulk moduli (scenario 1) and when both minerals have the same bulk modulus but
different shear moduli (scenario 2). The number of grains varies between 5 to 400 but is the same for
both mineral types. Since the sensitivity analysis could refer to any composite material, and not only a
granite made of quartz and feldspar, we denote the mineral types A and B. For both types of minerals, the
orientations of the planes of weakness are assumed to be uniformly distributed in the domain of [0, π/2].

Table 2. Input parameters for mineral A and mineral B in the two scenarios used for the sensitivity analysis on
the number of grains.

Mineral Type Mineral A Mineral B
Elastic Properties µA (MPa) KA (MPa) NA µB (MPa) KB (MPa) NB

Scenario 1 4× 104 6× 104 5 ∼ 400 4× 104 18× 104 = NA
Scenario 2 1× 104 6× 104 5 ∼ 400 4× 104 6× 104 = NA

Figure 4 shows that in both scenarios, the variations of the macroscopic damage in the matrix is
sensitive to the total number of grains whenNA = NB is less than 200. Above that threshold, the ultimate
matrix damage stabilizes and tends to an asymptotic value and becomes independent of the total number
of grains. This simulations validate the calibration presented above with 200 grains for each mineral
species. Hence, we assign 200 grains to each mineral type to ensure statistical representation of the
orientations of the planes of weakness at minimal computational cost.

Influence of Minerals’ Shear Modulus

We compare two composites made of two mineral constituents of equal bulk modulus but distinct shear
moduli, both represented by 200 grains with weakness planes, the orientation of which are uniformly
distributed in the [0, π/2] interval. We study two cases S1 and S2, described in Table 3.

Results are shown in Figure 5. Macroscopic damage accumulates faster and initiates under lower stress
in case S2 than in case S1, because the overall shear modulus of the matrix is lower in case S2 than in
case S1 (Figure 5(a)). The rate of damage propagation decreases as damage accumulates, as the number
of damaged grains reaches an asymptotic value when the stress level increases (Figure 5(b)).
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Figure 4. Dependence of matrix damage on the number of grains used to represent each mineral type
(N1 = N2).

Table 3. Elastic properties of the two minerals used to study the influence of the shear modulus.

Mineral Type Mineral A Mineral B
Elastic Properties µA (MPa) KA (MPa) µB (MPa) KB (MPa)

Case S1 8× 104 6× 104 4× 104 6× 104

Case S2 1× 104 6× 104 4× 104 6× 104

Series l 0.025µB ∼ 2.25µB 6× 104 2× 104, 4× 104 6× 104

Checking the microscopic damage of each individual grain, we find that, for both cases, grain damage
exists only in the mineral type that has the smaller shear modulus (Figure 5(c)), which is consistent with
the experimental observation of granite that intragranular cracks occur in weaker mineral constituents
such as feldspar and biotite grains (Eberhardt et al., 1999). As expected, grain damage is more important
when the orientation of the plane of weakness (θ) is close to 90o, i.e. when the orientation of the plane
of weakness is close to that of the loading axis (Figure 1). We track two grains belonging to the damaged
mineral for further investigation: Grain No. 180 with θ = 84o and Grain No. 200 with θ = 90o. The
microscopic damage in these grains (Figure 5(d)) follows an evolution similar to that of the macroscopic
matrix damage, with higher values (Figure 5(a)): damage in these two grains reaches values up to 0.2,
whereas macroscopic damage remains smaller than 0.02 for the polycrystal. Damage initiation and
propagation in each grain depend on the orientation of the grain’s plane of weakness and on the grain’s
mineral type.

Prepared using sagej.cls



18 Journal Title XX(X)

(a)

0 50 100 150

−σ (MPa)

0

0.005

0.01

0.015

0.02

0.025

D
m
a
t
r
ix

(−
)

case S1

case S2

(b)

0 50 100 150

−σ (MPa)

340

360

380

400

N
g
o
o
d
(−

)

case S1

case S2

(c)

0 30 60 90

θ (deg)

0

0.1

0.2

0.3

d
g
r
a
in

(−
)

d
mineral B

 (case S1)

d
mineral A

 (case S2)

(d)

0 50 100 150

−σ (MPa)

0

0.1

0.2

0.3
d
g
r
a
in

(−
)

B. 200 (case S1)

B. 180 (case S1)

A. 200 (case S2)

A. 180 (case S2)

Figure 5. Simulations of uniaxial compression tests with several contrasts in minerals’ shear moduli. (a) Matrix
damage evolution; (b) Evolution of the number of non-damaged grains; (c) Distribution of microscopic damage;
(d) Damage evolutions in grains No. 180 (θ = 84o) and No. 200 (θ = 90o).

To further investigate the influence of the contrast in minerals’ shear moduli on macroscopic damage,
we carry out a series of simulations with µA varying between 0.025 µB and 2.25 µB , with µB fixed to two
possible values (Table 3). Without any contrast (contrast ratio µA/µB = 1), the two types of minerals
are mechanically equivalent. In that case, the microscopic stress is equal to the macroscopic stress in
all grains, and since the macroscopic stress is compressive, the tensile damage criterion is not reached
in the grains. Therefore, the macroscopic damage does not initiate in the matrix (Figure 6). Damage
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increases as the contrast ratio departs from unity. However, the increasing trend is asymmetric, i.e. results
differ for µA/µB < 1 and µA/µB > 1. This is due to the fact that the effective shear modulus of the
matrix is smaller for the cases studied when µA/µB < 1 than for the cases studied when µA/µB > 1.
By comparing the results for the two different values of µB , we find that at equal value of µA, the
macroscopic damage increases with µB , because the shear modulus of the overall matrix increases with
µB . For the smaller values of µA, when the mechanical behavior of mineral A tends to that of a void
material, the contribution from mineral B to the overall behavior of the matrix becomes negligible, and
the predicted matrix damage is similar in both series of simulations (Figure 6).
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Figure 6. Macroscopic damage in the matrix for different shear modulus contrasts (series l).

Influence of Minerals’ Bulk Modulus

To examine the influence of the bulk modulus, which measures the compressibility of the matrix and its
constituents, we compare two composites made of two mineral constituents of equal shear modulus but
distinct bulk moduli, both represented by 200 grains with weakness planes, the orientations of which are
uniformly distributed in the [0, π/2] interval. We study two cases B1 and B2, described in Table 4.

With a contrast in minerals’ bulk moduli, the material behaves differently both at the macroscopic
and microscopic scales (Figure 7). The Young’s modulus of the composite material studied in case B1
is 9 times smaller than that of the composite studied in case B2. Therefore, the stress-strain curve in the
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Table 4. Elastic properties of the two minerals used to study the influence of the bulk modulus.

Mineral Type Mineral A Mineral B
Elastic Properties µA (MPa) KA (MPa) µB (MPa) KB (MPa)

Case B1 4× 104 6× 104 4× 104 2× 104

Case B2 4× 104 6× 104 4× 104 18× 104

Series m 4× 104 0.375KB ∼ 2KB 4× 104 8× 104, 16× 104

loading direction (ε1) is steeper in case B2 than in case B1 (Figure 7(a)). After reaching the damage
threshold, grain damage develops, causing stiffness degradation that manifests by a slope change in the
stress-strain curve in the lateral direction (ε3) (Figure 7(a)). A compressible material tends to be less
brittle than a material with high bulk modulus. That is why compared to case B1, an earlier damage
initiation and higher damage accumulation is observed in case B2 (Figure 7(b)). Correspondingly at the
microscopic scale, we observe an earlier grain damage initiation and a higher number of damaged grains
in case B2 (Figure 7(c)). We also note that grain damage develops in one mineral type only, that with
the higher Young’s modulus (Figure 7(d)). As expected, microscopic damage increases with the angle of
orientation of the plane of weakness, i.e. damage accumulates preferentially in grains that have a plane
of weakness oriented close the direction of loading, because tensile stresses develop preferentially in the
direction perpendicular to the loading axis.

To further investigate the influence of the contrast in minerals’ bulk moduli on macroscopic damage,
we carry out a series of simulations withKA varying between 0.375KB and 2KB , withKB fixed to two
possible values (Table 4). Like in the previous study of the shear modulus, the macroscopic damage does
not initiate in the matrix when there is no contrast of mechanical properties between the two minerals, i.e.
when KA/KB = 1 (Figure 8). Damage increases as the contrast ratio departs from unity. Results differ
for KA/KB < 1 and KA/KB > 1, and suggest that the rate of matrix damage accumulation decreases
when the overall bulk modulus of the composite increases. By comparing the results for the two different
values of KB , we find that for the same contrast ratio, the macroscopic damage increases slightly with
KB , because the bulk modulus of the overall matrix is higher, which corresponds to a less compressible
and more damageable composite.

Influence of the Mineral Fraction

In the previous parametric studies, we focused on composites with equal mineral fractions for both
constituents. However, the volume fraction of the different minerals is unlikely to be uniform in real
materials, and the effect of volume fraction of various grains on the material deformation and strength
could be significant (Heilbronner and Bruhn, 1998). We study the influence of the minerals’ volumetric
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Figure 7. Simulations of uniaxial compression tests with several contrasts in minerals’ bulk moduli. (a)
Stress-strain relation; (b) Macroscopic damage evolution; (c) Evolution of the number of non-damaged grains;
(d) Distribution of microscopic damage.

fraction by varying the number of weakness plane orientations in each mineral type. Three series of tests
are conducted, as described in Table 5: contrast in bulk modulus (series i), contrast in shear modulus
(series j) and contrast in both shear modulus and bulk modulus (series k). The total number of grains
is fixed to 400 and the volumetric fraction of each mineral varies from 5% to 95%, with a 5% interval.
Since damage does not initiate in a homogeneous matrix with only one type of mineral, cases with 0%

and 100% volumetric ratios are not tested.
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Figure 8. Macroscopic damage in the matrix for different bulk modulus contrasts (series m).

Table 5. Minerals’ elastic properties in the study of volumetric fractions and property contrasts
(i, j, k = 1, 2, 3, ..., 19).

Mineral Type Mineral A Mineral B
Properties µA (MPa) KA (MPa) NA µB (MPa) KB (MPa) NB

Series i 4× 104 6× 104 20× i 4× 104 18× 104 = 400−NA
Series j 1× 104 6× 104 20× j 4× 104 6× 104 = 400−NA
Series k 1× 104 6× 104 20× k 4× 104 6× 104 = 400−NA

Results show that the mineral fraction has a strong influence on matrix damage (Figure 9). Similar
parabolic damage variations are observed in the three test series: matrix damage increases first before
reaching the peak and then decreases, as the volumetric ratio of mineral type A changes from 5% to
95%. In series i and j, the contrast between elastic properties is relatively small, causing smaller damage
in the matrix and a more symmetric damage evolution curve with a peak located between a volume
fraction between 45% and 50%. However, with a more significant contrast of elastic properties in series
k, heterogenity-induced stress concentrations are more intense and cause a strongly asymmetric response
with a peak damage at a mineral fraction of about 75%.
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Figure 9. Dependence of matrix damage on the mineral fraction. Crosses indicate peak values.

According to Figures 9 and 10, in series i, the evolution of the macroscopic damage with stress does not
follow the symmetry of the curve showing the variations of the matrix damage with the volume fraction
of the non-damageable mineral fraction (type A). In other words, the evolution of the matrix damage with
stress for NA/(NA +NB) is not the same as that for 1−NA/(NA +NB). The same comment applies
to the evolution of the number of non-damaged grains with stress. Different mineral compositions that
lead to the same ultimate macroscopic damage usually follow very different damage paths (Figure 10(a)).
For instance, the macroscopic damage at point P corresponds to NA = 80, NB = 320 on a blue path,
and toNA = 340,NB = 60 on a green path. Different damage evolution paths are associated to different
ultimate numbers of damaged grains: as can be seen in Figure 10(b), we have 70 damaged grains at P1

(NA = 80, NB = 320) and 23 damaged grains at P2 (NA = 340, NB = 60). According to Figure 10,
composites with a lower number of damageable grains tend to start cracking earlier.

Influence of the Orientation Distribution of the Minerals’ Planes of Weakness

Each grain contains a plane of weakness, oriented in a pre-assigned direction. In this section, instead
of assuming that the orientation angle is uniformly distributed in the interval [0, π/2] for both mineral
types, we assume that the planes of weakness for one mineral are uniformly distributed in an interval of
π/20 radians, centered about six possible different values (Table 6). The minerals’ elastic properties and
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Figure 10. Simulation results of series i with contrasts in bulk modulus at different mineral fractions. (a) Matrix
damage evolution; (b) Normalized number of non broken grains.

volumetric fractions are kept the same in the six cases investigated, in order to focus the discussion on
the orientation of the weakness planes.

Table 6. Minerals’s properties in the study of the orientation of planes of weakness.

Mineral Type Mineral A Mineral B
Properties µA (MPa) KA (MPa) NA θA (rad) µB (MPa) KB (MPa) NB θB (rad)
Case D1 4× 104 6× 104 200 0 ∼ π

2 4× 104 18× 104 200 0 ∼ π
20

Case D2 4× 104 6× 104 200 0 ∼ π
2 4× 104 18× 104 200 9π

40 ∼
11π
40

Case D3 4× 104 6× 104 200 0 ∼ π
2 4× 104 18× 104 200 9π

20 ∼
π
2

Case D4 4× 104 6× 104 200 0 ∼ π
20 4× 104 18× 104 200 0 ∼ π

2

Case D5 4× 104 6× 104 200 9π
40 ∼

11π
40 4× 104 18× 104 200 0 ∼ π

2

Case D6 4× 104 6× 104 200 9π
20 ∼

π
2 4× 104 18× 104 200 0 ∼ π

2

From the previous sensitivity analysis on the bulk modulus, we know that damage only develops in
mineral B, which has a higher bulk modulus. Among all grains belonging to mineral type B, only those
with a weakness plane oriented by an angle θ close to π/2 are prone to damage, because the uniaxial
load is applied in direction z (Figure 1). In cases D1 and D2, weakness planes are roughly orthogonal to
the loading direction, grains remain undamaged, and no macroscopic damage is produced (Figure 11).
By contrast, when weakness planes are close to vertical (θ close to π/2), damage easily initiates and
propagates, which explains why the matrix material representing case D3 shows the highest damage.
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Since damage exists in mineral B only, varying the range of θ for mineral type A has no influence on
the matrix damage and on the number of non-damaged grains, i.e. cases D4, D5, and D6 provide the
same results. Damage obtained in cases D4, D5, and D6 is much smaller than in case D3, because the
volumetric fraction of damageable grains with a weakness plane oriented close to the loading direction
is higher in case D3.
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Figure 11. Influence of the orientation distribution of the minerals’ planes of weakness. (a) Macroscopic
damage evolution; (b) Evolution of the number of non-damaged grains.

Loading-unloading-reloading Stress Paths

To investigate the mechanical behavior of the polycrystal under extreme conditions, we increase the
maximum uniaxial compression from 150 MPa to 300 MPa and implement a loading-unloading-
reloading stress path. We consider a composite that contains a higher fraction of quasi incompressible
minerals that have planes of weakness oriented close to the loading direction (Table 7). The tensile
strength σT is equal to 6 MPa like in the previous cases. The brittleness indicator η is assumed to be
equal to 20, which corresponds to a less brittle polycrystal than in the previous cases.

Table 7. Properties of the material subjected to a uniaxial loading-unloading stress path.

Mineral Type Mineral A Mineral B
Properties µA (MPa) KA (MPa) NA θA (rad) µB (MPa) KB (MPa) NB θB (rad)

Value 4× 104 6× 104 200 0 ∼ π
2 4× 104 6× 106 300 9π

20 ∼
π
2
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The stress-strain curve along the lateral direction follows the expected trend and shows a clear deviation
from the linear elastic case indicated by the dashed line (Figure 12(a)). The material behavior is linear-
elastic before reaching the damage threshold (O1O2). As shown in the magnified image in the lower
left corner, the slope of the stress-strain curve decreases after damage initiation during the loading stage
(O2O3), and remains linear during unloading (O3O4). The stress/strain curve obtained during reloading
matches that obtained during the unloading until stress reaches the maximum value imposed during the
first loading phase. Beyond that point (O3), the damage threshold is reached, damage propagates again
and the slope of the stress/strain curve decreases due to stiffness degradation (O3O5). The evolution
of the macroscopic damage in the matrix is monotonic except during the elastic unloading stages
(Figure 12(b)). The ultimate macroscopic damage variable reaches more than 36%, due to the extreme
loading conditions, the high contrast of mineral’s bulk moduli and the narrow orientation distribution
of weakness planes’ orientations in the damageable minerals. For this amount of damage, we observe
various decrease in stiffness components, ranging from 0 (C3333) to about 40% (C1111), which highlights
the expected anisotropic behavior of the matrix.

At the microscopic scale, we observe that all grains belonging to mineral B are damaged and
the damage values reach more than 60% after the first loading and more than 80% after reloading
(Figure 12(c)). The values of damage are similar in all grains because all grains have similar θ values. All
the grains belonging to mineral A remain undamaged, even for the grains that have a plane of weakness
oriented by an angle close to 90 degrees to the horizontal. This observation is consistent with the previous
results obtained, because grains of mineral B have larger bulk modulus than those of mineral A. Grains
start to break soon after the load is applied. The number of damaged grains reaches a maximum at a
relatively moderate load (Figure 12(d)). Upon reloading, no more grains get damaged, but damage in the
grains that were already damaged during the first loading stage increases.

Conclusions

In this work, an inclusion-matrix model is proposed to understand the micromechanical processes
that trigger the initiation and propagation of damage in heterogeneous polycrystalline materials.
The inclusion-matrix interaction law is a key element of the formulation because of the numerous
complexities of the matrix behavior. This study focuses on the damage accommodation of the matrix,
i.e., on the effect of the matrix damaging process on the interaction law between the inclusion and
the matrix. The challenge is that the inclusion-matrix interaction law depends on the matrix stiffness
which itself depends on the macroscopic damage, a priori unknown. The main research contribution
presented in this paper is the incremental method that is used to solve the system of implicit equations
at the foundation of the inclusion-matrix model. The propagation of cracks along planes of weakness of
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Figure 12. Macro- and micro- behavior of the material subjected to a loading-unloading-reloading path. (a)
Stress-strain relation; (b) Macroscopic damage evolution; (c) Distribution of microscopic damage; (d) Evolution
of the number of non-damaged grains.

various orientation distributions results in mechanical anisotropy in the matrix. Another originality of the
proposed inclusion-matrix interaction model is the account for the anisotropy of the matrix. It is assumed
that the matrix follows an ellipsoidal anisotropic behavior. A summary of the equations involved in the
explicit expression of the Hill’s tensor for a matrix that has an ellipsoidal type of anisotropy is provided
in the appendix; more details will be published in a paper in preparation.
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Damage in minerals is assumed to result from the propagation of cracks along weakness planes that
are present in the crystalline structure. In order to focus on the mathematical and numerical aspects
of the resolution method for the micromechanical model, only one weakness plane was considered for
each mineral. The orientation of the weakness plane relative to the loading axis was assigned a variable
probability density function in the parametric studies presented. A softening damage model was used to
represent the cracking process at the mineral scale.

A composite made of two types of mineral inclusions is used as an example throughout this study. The
model is calibrated against experimental data available for granite. Although the physical meaning of
the results obtained in the simulations needs to be confirmed by additional experimental and numerical
cases, we can draw the following main conclusions. In the context of a simple uniaxial compression load
applied to the polycrystal, the damage always occurred in only one type of mineral, due to contrasts of
micromechanical properties: the damaging mineral was that with a smaller shear modulus (respectively
higher bulk modulus) when the bulk modulus (respectively shear modulus) was the same. For two
minerals with the same shear modulus but different bulk moduli, the maximum damage in the polycrystal
under a given load was obtained when the volume fraction of the two minerals was the same. For two
minerals with different shear moduli, the macroscopic damage was not always maximum at equal mineral
fractions. Another interesting result was that when the orientation of the weakness planes in the damaging
mineral laid within a narrow interval close to the orientation of the loading axis, the macroscopic damage
behavior was more brittle than when the orientations were distributed over a wider interval.

This paper provides the foundation of a micromechanical model for quasi-brittle materials taking
into account the elastic-damage accommodation of the matrix and presents an original method to
solve the system of implicit equations involved in the formulation. Parametric studies show that upon
proper calibration, the proposed model can be extended to understand and predict the micro-macro
behavior of brittle materials such as concrete, ceramics and hard rocks. Future work will focus on the
micromechanical modeling of the coupling between the visco-plastic and damage accommodation of the
matrix. An infinite number of planes of weakness will also be considered to allow extending the present
formulation with spherical inclusions to both intra- and inter-granular damage.
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Appendix 1: Hill’s Stiffness Tensor for a Matrix with Ellipsoidal Anisotropy

Consider a matrix with the elastic tensor:

Cijkl(D) = λDijDkl + µ (DikDjl +DilDjk) (33)

withD having axial symmetry around the axis N :

D = cos2ω δ + sin2ωN ⊗N (34)

By taking the x3-axis parallel to N , and noting cos2ω =
√

1−D, we obtain:

D =


√

1−D
√

1−D
1

 (35)

The Hill’s stiffness tensor L∗ for a spherical cavity in an infinite matrix is related to the polarization
tensor Λ by Kneer (1965):

Λijkl = (L∗ + C)−1ijkl (36)

For the above ellipsoidal stiffness tensor C, the polarization tensor is given by the following relations:

Λijkl =
1

4µ

[
(D−1)ikVjl + (D−1)ilVjk + (D−1)jkVil + (D−1)jlVik

]
− 1

2µ(1− ν)
Wijkl (37)
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The second and fourth order tensors V and W have axial symmetry about the N direction. When the
axis x3 is parallel to N , the tensor V is diagonal, and the eigenvalues are:

V11 = V22 =
1

2sin2ω

(
−1 +

ω

sinωcosω

)
, V33 =

1

sin2ω

(
1− ω cosω

sinω

)
(38)

Moreover, the only non-zero components of tensorW are:

W1111 = W2222, W3333, W1122 = W1212, W1133 = W2233 = W1313 = W2323 (39)

Given by:

W1111 =
3

8sin4ω

[
1 +

1

2cos2ω
+

ω

sinωcosω

(
−2 +

1

2cos2ω

)]
(40)

W3333 =
1

sin4ω

(
1 +

cos2ω

2
− 3ω

2

cosω

sinω

)
(41)

W1122 = W1212 =
1

3
W1111 (42)

W1133 = W1313 =
1

4sin4ω

[
−3 +

ω

sinωcosω

(
1 + 2cos2ω

)]
(43)

Appendix 2: Damaged Stiffness Tensor of A Grain

In order to ensure that C̃ possesses ellipsoidal anisotropy with three parameters (see equations (42) and
(43) in (Pouya, 2011)), we choose:

Mijkl(d
(n)) =

1

2

[
H

(n)
ik H

(n)
lj +H

(n)
il H

(n)
kj

]
, H(n) =

(
δ − d(n)

)−1/2
(44)

where δ is the second-order identity tensor. The goal of the following derivations is to express
explicitly the components of the damaged stiffness tensor C̃ for the unidirectional damage
d(n) = d(n) n(n) ⊗ n(n).

We define:
P (n) = H(n)−1 =

(
δ − d(n)

)+1/2

(45)

Q(n) = P (n) · P (n) = δ − d(n) n(n) ⊗ n(n) (46)
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The form of the tensorQ(n) imposes the following form for the tensor P (n):

P (n) = δ + βn(n) ⊗ n(n) (47)

where β is a scalar. Since n(n)k n
(n)
k = 1, we have:

Q
(n)
ij = P

(n)
ik P

(n)
kj = δij + 2β n

(n)
i n

(n)
j + β2 n

(n)
i n

(n)
j (48)

By identification, we get:
β = −1 +

√
1− d(n) (49)

We note thatH(n) satisfies:
P (n) ·H(n) = H(n) · P (n) = δ (50)

Therefore,H(n) is of the form:

H(n) = δ + β′n(n) ⊗ n(n) (51)

By identification between equations (50) and (51):

β′ =
d(n) − 1 +

√
1− d(n)

1− d(n)
(52)

Therefore:

J
(n)
ijkl = H

(n)
ik H

(n)
jl = δikδjl + β′

(
δikn

(n)
j n

(n)
l + δjln

(n)
i n

(n)
k

)
+ (β′)2 n

(n)
i n

(n)
j n

(n)
k n

(n)
l (53)

From equation 44, we have:

Mijkl(d
(n)) =

1

2

(
J
(n)
ijkl + J

(n)
ijlk

)
= Iijkl +

β′

2
Ω

(n)
ijkl + (β′)2 ν

(n)
ijkl (54)

In which we note:

Iijkl = 1
2 (δikδjl + δilδjk)

Ω
(n)
ijkl = δikn

(n)
j n

(n)
l + δiln

(n)
j n

(n)
k + δjkn

(n)
i n

(n)
l + δjln

(n)
i n

(n)
k

ν
(n)
ijkl = n

(n)
i n

(n)
j n

(n)
k n

(n)
l

(55)
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We can show that:
Ω(n) : Ω(n) = 2Ω(n) + 8ν(n) (56)

Ω(n) : ν(n) = ν(n) : Ω(n) = 4ν(n) (57)

ν(n) : ν(n) = ν(n) (58)

We note:
N(d(n)) = M−1(d(n)) (59)

From equation (54),N(d(n)) is of the form:

N(d(n)) = I + bΩ(n) + cν(n) (60)

where b and c are scalars, which are determined by identification: b = − β′

2(1+β′)

c = (β′)2

(1+β′)2

(61)

The transpose ofN(d(n)) can now be expressed as follows:

(NT )ijkl(d
(n)) = δipδjqNqpkl(d

(n)) = Njikl(d
(n)) (62)

Since Iijkl = Ijikl, Ω
(n)
ijkl = Ω

(n)
jikl, ν

(n)
ijkl = ν

(n)
jikl, we have:

(NT )ijkl(d
(n)) = Nijkl(d

(n)) (63)

Noting λ0 and µ0 the initial coefficients of Lamé, the expression of the damaged stiffness tensor is as
follows:

C̃(d(n)) = λ0 δ ⊗ δ + 2µ0 I + 4µ0b(1 + b)Ω(n) +
[
λ0(4b+ c)2 + 2µ0(8b2 + c2 + 8bc+ 2c)

]
ν(n)

+λ0(4b+ c)
[
δ ⊗ (n(n) ⊗ n(n)) + (n(n) ⊗ n(n))⊗ δ

]
(64)

We note that:
β = −sin2αn, β′ = tan2αn, b = −1

2
sin2αn, c = sin4αn (65)

Where:
cos2αn =

√
1− d(n) (66)
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Rewriting equation (64) leads to the following expression for the damaged stiffness tensor of the grain:

C̃(d(n)) = λ0 δ ⊗ δ + 2µ0 I − d(n)µ0 Ω
(n) +

(
d(n)

)2
(λ0 + 2µ0)ν(n)

−d(n)λ0
[
δ ⊗ (n(n) ⊗ n(n)) + (n(n) ⊗ n(n))⊗ δ

] (67)
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