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SUMMARY

Hybrid neural-microelectronic systems, systems composed of biological neural net-

works and neuronal models, have great potential for the treatment of neural injury and

disease. The utility of such systems will be ultimately determined by the ability of the en-

gineered component to correctly replicate the function of biological neural networks. These

models can take the form of mechanistic models, which reproduce neural function by de-

scribing the physiologic mechanisms that produce neural activity, and empirical models,

which reproduce neural function through more simplified mathematical expressions.

We present our research into the role of model complexity in creating robust and flexi-

ble behaviors in hybrid systems. Beginning with a complex mechanistic model of a leech

heartbeat interneuron, we create a series of three systematically reduced models that in-

corporate both mechanistic and empirical components. We then evaluate the robustness

of these models to parameter variation, and assess the flexibility of the models’ activities.

The modeling studies are validated by incorporating both mechanistic and semi-empirical

models in hybrid systems with a living leech heartbeat interneuron. Our results indicate

that model complexity serves to increase both the robustness of the system and the ability

of the system to produce flexible outputs.

xii



CHAPTER I

INTRODUCTION AND BACKGROUND

The machines and inventions of mankind — while impressive in their power and scale —

appear crude and ugly when compared to the elegant creations of nature. Consider the

capabilities of a simple worker ant. The ant can navigate based upon visual and chemical

cues in its environment, can traverse uneven terrain while carrying over thirty times its own

weight, and runs on sugar water. No creation of mankind can be said to meet any of these

impressive feats.

Nature can therefore serve as an effective teacher, instructing us in how to design tech-

nologies that allow us to treat disease, repair injuries, interact with our environment, and

increase our productivity.

This idea is not without precedent. For centuries, mankind has used the designs of

nature to inspire his own creations. Leonarda da Vinci studied the anatomy of birds and

bats in his efforts to design gliders. George Cayley noted that birds’ wings performed

two separate functions, lift and thrust, and used this knowledge to build a manned glider.

Wilbur and Orville Wright observed how birds’ wings change shape to alter their lateral

movement. These studies of how biology solves the problem of flight were all critical to

the development of the airplane.

In fact, many people view evolution as a sort of “perfect engineer” designing a solution

ideally suited for a given goal and constraints. Whether evolution may or may not be

a perfect engineer, it is certainly a very, very good engineer, producing systems that are

extremely well suited to solving certain problems.
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1.1 Introduction

The nervous systems of animals are able to integrate vast amounts of information from the

animal’s internal and external environment, and produce responses to regulate and control

a wide variety of physiological processes. The power and flexibility of nervous systems is

produced in part by the massive parallel structure and integrative capabilities of the system.

But another key factor is that even small circuits of neurons, or individual neurons them-

selves, can demonstrate an amazing degree of complexity in their behavior. By studying

the nervous system and basing new technologies on neural-like properties, we can develop

new methods to treat neurodegenerative disease, repair traumatic neural injury, and create

machines that better interact with the physical world.

In order to better understand the workings of the nervous system, however, it is neces-

sary to develop a quantitative description of the workings of the nervous system: a neural

model. Fortunately, although neurons demonstrate a great deal of functional and mecha-

nistic complexity, their electrical activity can be approximated by simplified models. There

are two basic types of neural models: empirical models and mechanistic models.

Empirical models take a “black box” approach to describing neural function. This ap-

proach assumes no underlying structure for relating a neuron’s inputs to its output. The

model is deemed “good” as long as its input-output relationship corresponds to that ob-

served in biology. Empirical modeling therefore seeks to reproduce the function of a given

neuron or neural system, often through the simplest means possible.

Mechanistic models reproduce the input-output relationships of biological neurons by

describing the biophysical processes responsible for the generation of neuroelectric activity.

The behavior of the model derives from a neuron-like structure. Mechanistic models are

usually much more complex than their empirical counterparts. They are, however, able to

provide insight into the inner workings of a neuron or neural system that are not possible

with empirical models. Mechanistic modeling often assumes that the biophysical structure

of the neuron is important to its function.
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Ultimately, the choice of modeling strategy is dependent upon the context in which

that model is to be used. Determining the “best” model for a given application requires

evaluating the tradeoff between modelsimplicity and modelaccuracy. A simple model

may not be able to provide the necessary functionality, while an overly complex model

may inhibit one’s ability to study or control the system.

An emerging area in which model choice plays a crucial role is in the development of

hybrid neural microsystems: systems in which neural models and living neurons interact

in real-time. These systems exploit biology as part of the technology, creating a functional

result that is a product of both the biology and the engineered construct. The assumed ben-

efit of such a system is that the complex dynamics and functionality of the living neurons

are left intact, while the model provides a means to manipulate and control the system. In

such a system the model component needs both to correctly interpret signals coming from

the living neurons and to produce a meaningful response to those signals. Obviously, the

choice of model in such a system is of critical importance.

Two characteristics of neural systems that must be reproduced by such hybrid systems

arerobustnessandflexibility. Robustness can be considered as the size of the system’s in-

put/parameter space; the nervous system is able to function reliably despite the ever-present

"noise" of physiologic processes: changing concentration gradients, errors in transcription,

etc. Flexibility can be considered as the size of the system’s ouput/behavior space; neural

systems are able to produce a rich variety of behaviors in order to achieve their function. In

order for hybrid systems to accurately reproduce the function of neural systems, it is critical

that the models employed in such systems contribute to operation that is both robust and

flexible.

1.1.1 Specific Aims

Our long-term goalis to develop the techniques and methodologies for creating hybrid

systems that accurately reproduce the function of biological neural networks. Theobjective

3



of this research is to determine how the performance of hybrid systems is affected as the

complexity of the model is reduced. Ourhypothesisis that reducing the complexity of the

model will both decrease therobustnessof the system and decrease theflexibility of the

system. Towards this end, we propose the following specific aims:

1. Create a hybrid half-center oscillator for investigating neural network proper-

ties. As an initial step towards building hybrid neuro-microelectronic systems, we

will create a hybrid system composed of a single biological neuron and an analog cir-

cuit model neuron already developed within our group. This aim will serve several

goals. First, it will familiarize us with the neurophysiological and engineering tech-

niques necessary to build hybrid neural circuits. Second, by using a physiological

model neuron and basing the structure of the hybrid network on that of a biological

network, we will be able to use the controllability of the model neuron to investigate

neuronal properties responsible for generation of activity in the network.

2. Construct a flexible platform for interfacing real-time model neurons to living

neurons. In order to interface a variety of neuronal models with living neurons, we

need to construct a platform for modeling that meets several criteria. First, it must

have a means to communicate with the equipment used for recording and stimulating

living neurons. Second, it must allow all neuronal models to operate in real-time. Fi-

nally, the architecture of the platform must accommodate a variety of neuronal model

structures — the underlying dynamics of the neuronal model must be modifiable.

4



3. Develop a series of systematically reduced neural models.Starting with a previ-

ously developed physiologically realistic neuron model, we will perform a series of

systematic reductions in the complexity of the model. These reduced models will

encompass both physiologic and empirical mechanisms. We will the evaluate the

models for their ability to produce robust and flexible behavior.

4. Validate neural models with hybrid systems.Using the reduced models developed

in Aim 3, we will construct at hybrid systems using our reduced model neurons, and

evaluate the ability of these systems to produce robust and flexible behavior.

1.2 Background and Significance

This project draws from three subject areas: modeling neural systems, the dynamics of

rhythmic neural networks, and the electrophysiological techniques to bring models and

neurons together.

1.2.1 Modeling Neural Systems

Neurons display an incredible diversity of activities, behaviors, and functions. In most

neurons, there are numerous ion channel types, modulatory agents, and spatial processing

structures that contribute to the behavior of the neuron. Despite this extraordinary amount

of complexity, the electrical activity of a neuron can often be described by a simplified

system of equations — a neural model. Neural modeling seeks to relate neural function to

a mathematical structure that provides insight to the operation of the system.

The rationale for modeling a neuron is the same as for modeling any physical system:

a model allows the operator to better analyze or understand the physical system without

the constraints of the physical system. In the case of the nervous system, analysis and

understanding of neuronal properties are very compelling reasons to create a neural model

because many neuronal properties are physically inaccessible with current technology. As

an example, it is very difficult to record with high precision from numerous individual

5



neurons in a large neural network; a model neural network, however, can provide us with

detailed information about the behavior of individual neurons. A model therefore provides

us with a means to understand how a physical system works, what function it accomplishes,

and what properties and parameters are necessary for its operation and control.

The requirements for a neural model are also the same as for any model of a physical

system: the model must be simple enough to be understandable, but also accurately portray

the relevant aspects of the physical system. Which aspects are relevant and what criteria

constitutes a “good” model are left to the discretion of the modeler. While a simple model

may produce the desired results, it may not provide enough insight into the workings of the

system to be of much use. Alternatively, the detail of information in a complex model may

prohibit effective analysis. This trade-off is the fundamental decision that must be made in

modeling any physical system: model simplicity vs. model accuracy.

It is not surprising that there are a wide variety of neural models, from the extremely

simple to the incredibly complex. At the risk of over-simplification, we will separate these

models into two categories: empirical models and mechanistic models (Figure 1).

Empirical models, also known as nonparametric models, take a “black box” approach

to describing neural function. This approach assumes no underlying structure for relating

a neuron’s inputs to its output. An empirical model is considered to be a “good” model as

long as its input-output relationship corresponds to that observed in biology. An underlying

assumption of empirical neural modeling is that the function of a neuron is distinct from

the mechanisms used to produce that function. Given the constraints of physics, chemistry,

and genetics, it is not surprising that complex mechanisms may be needed to achieve a

functionally simple result. As an example, consider the transduction of light into electrical

potentials by photoreceptors in the retina. This process is dependent on several complex

biochemical reactions, involving numerous enzymes and proteins. The conversion of light

energy to electric energy by a photodiode, in comparison, seems rather simple. Mathe-

matical neuronal models, which are free from all physical constraints, can seek the most
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Empirical Model

Mechanistic Model

.

.

.

Ohm’s Law

Diffusion

Ion Channel States
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Vm

Iinj
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Iinj
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Figure 1: Empirical neural model (black box) utilize any convenient mathematical struc-
ture to describe neuronal function. Mechanistic neural models (grey box) utilize known
physical properties of the system to describe neuronal function.

straightforward way to describe a neuron’s activity. Empirical modeling therefore seeks to

reproduce only the function of a given neuron or neural system, often through the simplest

means possible.

The classical integrate-and-fire neuron model is an excellent example of an empirical

neuron model [19]. In this model, the neuron simply integrates a current input until a

certain threshold voltage is reached. The neuron then “spikes” , its voltage is reset to

some value, and the integrate-and-fire process continues. The integrate-and-fire model

thereby provides a good description of the relationship between current input and spiking

frequency: as the magnitude of the current increases, the time required to reach firing

threshold decreases, and therefore the spike frequency increases. The Fitzhugh-Nagumo

and Hindmarsch-Rose models are other good examples of empirical neural models [8, 30].

Another excellent example of an empirical model is the resonate-and-fire model, which
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describes how neurons can respond preferentially to stimuli given during a certain phase of

their oscillation [17].

The distinct advantage of empirical models is that are relatively easy to analyze and

require little computational overhead. The disadvantage of these models is that while they

describewhat a neuron does they do not explainhow a neuron does it. For example, the

integrate-and-fire model neuron would correctly predict that lowering the spike threshold

would increase the resultant spike frequency but would not be able to explain how spike

threshold could be lowered in a real neuron.

Mechanistic models, which are also known as also known as physiological or paramet-

ric models, reproduce the input-output relationships of biological neurons by describing the

biophysical processes responsible for the generation of neuro-electric activity, and the be-

havior of the model derives from a neuron-like structure. They incorporate known physical

and chemical laws to describe both the activity of a neuron and the process by which the

neuron generates that activity. Mechanistic models are usually much more complex than

their empirical counterparts. They are, however, able to provide insight into the inner work-

ings of a neuron or neural system that are not possible with empirical models. Mechanistic

modeling often assumes that the biophysical structure of the neuron is important to its

function. As a result, they can not onlydescribea neuron’s behavior but alsopredict the

neuron’s behavior under altered conditions.

The standard method for mechanistic neural modeling is based on the Hodgkin-Huxley

formalism [16]. This method of mechanistic modeling describes the activation and inacti-

vation of voltage-dependent ion channels in a neuron’s membrane. Ions move across the

membrane dependent upon the state of the channel and the chemical and electrical forces

upon the ion; in turn, the movement of the ions across the capacitative membrane of the

neuron changes the neuron’s membrane potential, altering the state of the ion channels.

The advantage of mechanistic modeling is that the structure and parameters of the

model correspond with physical properties of the neuron itself, and thus describe not only
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what the neuron does, but alsohow the neuron does it. Continuing our spike threshold

example, increasing the density of the fast sodium current would effectively lower spike

threshold, leading to an increase in spike frequency for a spiking neuron. Because of the

physiological approach to modeling, we know not only that lowering the spike threshold

increases firing frequency, but also how a living neuron might accomplish this feat. Fur-

thermore, because the interaction of different physiological processes is taken into account

we often find that modifying one parameter has a significant effect on howanotherpara-

meter effects the system. The disadvantage of mechanistic modeling is that it generally

requires far more computational resources than a simplified empirical model. Furthermore,

the large number of equations and parameters necessary often make effective analysis of

the model very difficult.

These two neural modeling strategies illustrate the classic trade-off in modeling phys-

ical systems. The simplicity of empirical models facilitates implementation and analysis;

the accuracy of mechanistic models provides greater insight into the the form and func-

tion of living neurons. Of course,everymodel is, at some point, a simplification of the

physical system. A modeler who studies the physical biochemistry of ion chances might

say that Hodgkin-Huxley type neural models are overly simplistic. Nonetheless, there is a

significant difference between models that assumenounderlying structure and models that

incorporatesomeof the known structure of neurons into their operation; and as more of the

neural structure is incroporated into the model, the model’s accuracy increases, while the

model’s simplicity decreases.

Given this trade-off, it is not surprising that many modelers have sought to find an

approach to modelling that bridges the empirical and mechanistic strategies. The goal of

this approach is to reduce the complexity of mechanistic models while still retaining their

physiological relevance and insight into neuronal function.

One of the simplest methods to reduce neural model complexity is to eliminate con-

ductances to a smaller set that produce the desired feature or features of neural behavior.
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The oscillatory Morris-Lecar model is good example of this type of model [28]. Although

Morris and Lecar originally designed their model to describe slow action potentials in the

barnacle muscle fiber, the reduced set of conductances they use has proven extremely use-

ful for describe oscillatory phenomena in small neural networks. For example, this model

has been used very effectively to demonstrate the “escape” and “release” mechanisms re-

sponsible for creating oscillations in a two-neuron network [45]. Other techniques for

model reduction include combining several variables with similar dynamics into one vari-

able [18, 10], separating the model into fast and slow subsystems and characterizing their

interactions [3], or even replacing the fast variables with an integrate-and-fire model and

quantifying the effects of spiking on the evolution of the slow variables [2]. All of these

methods provide a means to reduce the complexity of a model while still retaining much of

its physiological relevance.

1.2.2 Rhythmic Neural Networks and the Leech Heartbeat Timing Network

Rhythmic neurons and neural networks are characterized by the regular appearance of a par-

ticular pattern of activity. They are found in nearly all nervous systems, and are implicated

in a diverse range of behaviors and activities. Although they are critical for the formation

of locomotor actions and other movements, rhythmic pattern generating networks are also

involved in such diverse phenomena as visual processing, olfaction, memory, and sleep.

There are therefore two extremely compelling reasons to study rhythmic neural net-

works. First, their production of a sterotypic activity pattern provides a well-defined base-

line of activity. Applying a stimulus to the network often has a distinct effect on the timing

relationship between the different elements of the network. Because we have a well-defined

baseline of activity and a well-defined response, we can make strong conclusions about

the relationship between the inputs and outputs of the network and how neural networks

process information. Second, the ubiquity of rhythmic neural networks across numerous

systems and species demonstrates that they are a critical component of animal life. In order
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Figure 2: The Central pattern generator for the leech heartbeat timing network. Two heart
interneurons in ganglia three and four (circles) are coupled via inhibitory synapses to form
a half-center oscillator. Coordinating interneurons from ganglia one and two (rectangles)
couple the two half-center oscillators.

to fully understand the behaviors and activities produced by these networks, it is critical to

understand the mechanisms by which oscillatory circuits function [27].

One rhythmic network that has been particularly well studied is the network that paces

the heartbeat in the medicinal leech. This network produces a pattern of activity that is rela-

tively simple; the generation of this pattern, however, relies on the interaction of numerous

complex mechanisms, both intrinsic and synaptic. The network has a very well-defined

and symmetric synaptic structure, with a few core elements that produce a rhythmic pattern

that paces the rest of the network. The central timing of this network is generated by two

elemental oscillatorsin the third and fourth ganglia of the leech [14, 15]. Each elemental

oscillator is composed of twoheart interneurons(HN) that are connected by mutually in-

hibitory synapses. This two-cell network is generally referred to as ahalf-center oscillator.

The two elemental oscillators are coupled bycoordinating fibersthat originate from heart

interneurons in the first and second ganglia (Figure 2).

When one heart interneuron of an elemental oscillator fires, it inhibits the activity of its

partner. Mechanisms within the inhibited neuron serve to drive the neuron out from inhibi-

tion, the neuron begins firing and then inhibits the activity of the first neuron, and the cycle

repeats [1]. Thus, the neurons fireburstsof spiking activity separated by periods of silence.
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Numerous intrinsic currents within the heart interneurons serve to determine the structure

of the bursts . In particular, a hyperpolarization-activated inward current,Ih, and a slow

calcium current,ICaS, appear to interact to determine the period and duty cycle of bursting.

Ih determinines the frequency of inhibitory stimuli from which an inhibited neuron can es-

cape;ICaS of the opposing cell, however, determines the time course of inhibitory stimuli

[14]. In simpler terms,Ih determines the dynamics of the inhibited phase of activity, while

ICaSdetermines the dynamics of the active phase of activity.

The well-defined synaptic structure of the leech heartbeat timing network makes it ideal

both for circuit analysis and for the creation of biologically realistic hybrid systems. Ap-

plication of the pharmocological agent bicuculline blocks the inhibitory synapses in the

network, effectively isolating individual neurons from all other neuronal activity. This fa-

cilitates the creation of a hybrid oscillator in which one of the neurons of the elemental

oscillator is replaced by a model neuron.

1.2.3 Hybrid Neural-Microelectronic Systems

Modeling and experimentation have been viewed traditionally as separate, albeit comple-

mentary, fields. Data from neural models suggest new experimental directions; experi-

ments, in turn, suggest refinements to the models.

Advances in technology, however, have led to the creation of models that operate in real

time: the input given to the model is represented in the output of the model with a minimal

delay. These real-time models can therefore perform an active role in an experiment. In

such experiments, the features of the model — high degree of controllability, access to

internal states, well-defined structure — can be used to investigate or control the neural

system in ways that are impossible through traditional techniques. The neural system, on

the other hand, provides a level of physical realism and complexity that modeling can not

accomplish. Thus, a “hybrid” system is created that draws from the strengths of both the

model and the physical system.
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As described earlier, neuronal modeling is a diverse field, with many different types of

models used investigating different phenomena. Given the diversity in both biology and

biological modeling, it is not surprising that the development hybrid systems has taken

many different directions.

In one of the first hybrid systems, four interconnected analog oscillator circuits were

coupled to each other and to a single neuron from the mamallian inferior olive [48]. Oscil-

lations in this hybrid network were triggered by a stimulus to either the neuron or one of

the analog oscillators. These oscillations were sustained with activation of a low-threshold

calcium current in the olivary neuron. This approach illustrates one of the primary strate-

gies for building hybrid systems. With this approach, a relatively simple empirical model

component is designed to reproduce some dynamical feature of the neuronal system’s be-

havior. This approach is useful because a simplified modeling paradigm facilitates the

investigation of the dynamical properties of the system. In this approach, precise physio-

logic modeling is neither required nor desired, as the complexity introduced by modeling

physiological processes would hinder analysis of the system. This approach has shown

that realistic activity can be generated between non-physiologic models and living neurons

[40, 47].

A different strategy for building hybrid systems was made possible by the development

of the dynamic clamp, a technique for creating computer-generated physiologic conduc-

tances in living neurons [41]. Shortly after the development of the dynamic clamp, a hybrid

system was created wherein a Hodgkin-Huxley type model LP cell was introduced into the

stomatogastric ganglion network of the crab [38]. In this system, it was shown that increas-

ing the strength of model ionic currents could alter the behavior of the hybrid network. In

further studies this network was used to investigate how both synaptic and cellular con-

ductances contribute to network behavior [20]. This approach relies on physiology-based

modeling paradigms, such as the Hodgkin-Huxley approach. While such systems are osten-

sibly more difficult to work with and harder to analyze, the advantage is that the physiologic
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nature of the modeled system can be used to understand the mechanisms by which neuronal

systems generate activity. This approach has been used extensively in recent years to inves-

tigate network activity in the stomatogastric ganglion, the leech heartbeat timing network,

the thalamus, and the spinal cord [21, 6, 29, 26, 44].

Another, less significant, division within the field of hybrid systems is the choice of

model implementation technology. Most hybrid systems have been constructed with digi-

tal microprocessors or digital signal processors as the implementation architecture for the

neural model. Several other systems, however, have been implemented by using analog

solutions, either discrete or integrated analog circuits. Each method offers several advan-

tages and disadvantages. As a general rule, digital systems are easier to implement, and

more flexible; however, they consume large amounts of power and often require much

overhead in order to obtain real-time operation. Alternatively, analog systems possess the

characteristics of automatic real-time operation and low power consumption, although they

are usually more difficult to implement and characterize and are less flexible than digital

systems [25, 33, 34, 7].

Ultimately, the choice of implementation technology is less important to the behavior

of the hybrid network than the underlying structure of the model, and should be chosen

based on the requirements of the particular project.

Hybrid neural systems have generally remained relatively small in scope. That is, they

have involved only a few model neurons and a few living neurons. This is due to the

limitations of both neural interfacing techniques and simulation methods. However, as

both the technology for emulating networks and the technology simultaneously recording

and stimulating from neurons improves we can expect hybrid neural networks to grow in

both scale and complexity. Early signs of this trend are currently evident in projects that

use microelectrode arrays to interface engineered systems to cultures of living neurons [35].

As the scale of these systems grows, we can expect that the complexity of the systems will

grow as well. It is therefore important to assess how much computational complexity is
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required in order to produce useful interactions with the nervous system.
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CHAPTER II

HYBRID SYSTEMS DEVELOPMENT

This chapter presents our initial studies in developing hybrid systems composed of model

neurons and living neurons. Our goal with these experiments was to demonstrate that we

could generate biologically realistic activity with a hybrid system, and use the properties

of the model to reveal the functional role of an ionic current [46]. Our interest in the

consequences of model complexity grew out of these experiments.

The hybrid system used in these experiments is composed of a single leech heart in-

terneuron and an analog circuit based "silicon neuron" connected by inhibitory synapses.

The rhythmic activity produced by this hybrid half-center oscillator is qualitatively similar

both to the activity of the rhythmic network in the leech, and to the activity of a mathemat-

ical model half-center oscillator.

We focused our studies on investigating the functional role of the hyperpolarization-

activated inward current,Ih, on the oscillations produced by the network. We focused our

studies onIh because it has been implicated in the generation of rhythmic activity in nu-

merous vertebrate and invertebrate systems [32, 42, 23, 39]. By inducing changes inḡh,

the maximal conductance ofIh, we show that̄gh determines both the period of the oscil-

lations and the balance of activity between the two neurons in the network. Moreover, we

demonstrate that the model neuron is an effective replacement for a heart interneuron, and

that changes made in the model can accurately mimic similar changes made in the living

system. We also used a previously developed mathematical model the half-center oscilla-

tor to corroborate our findings. Our results demonstrate that this hybrid system technique

is advantageous for investigating neuronal properties that are inaccessible with traditional

techniques.
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Figure 3: Schematic of hybrid half-center oscillator. A heart interneurons (HN) in the
leech ganglia is pharmacologically isolated with bicuculline and impaled with a sharp mi-
croelectrode. Voltage/current-clamp amplifiers were used to record voltages and inject
current into both the heart interneuron and the silicon neuron (HN). The dynamic clamp
creates real-time model synaptic currents that couple the heart interneuron and silicon neu-
ron.

2.1 Materials and Methods

The hybrid system used in these experiments consists of three components: the heart in-

terneuron (HN), the silicon neuron (SiN), and the dynamic clamp (Figure 3). The specific

methods used to create this hybrid system are described below.

2.1.1 Leech Heart Interneurons

Leeches (hirudo medicinalis) were obtained from a supplier (Leeches USA, Westbury, NY

and Biopharm, NC) and maintained in artificial pond water at15◦C. The animals were

anesthetized in ice-cold saline, and midbody segmental ganglia three and four were each

isolated and pinned ventral-side-up in Petri dishes lined with Sylgard (bath volume 0.5

ml). The methods for preparing and maintaining leech ganglia and for identifying heart in-

terneurons for electrophysiological recording are described elsewhere [31]. The ganglionic
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sheath over the cell bodies was removed with fine microscissors or scalpels.

Ganglia were superfused continuously with normal leech saline containing (in mM):

115 NaCl, 4 KCl, 1.8CaCl2, 10 glucose, 10 HEPES buffer, pH adjusted to 7.4 using 2 M

NaOH. Heart interneurons were isolated pharmacologically with2.5x10−4 M bicuculline

methiodide (Sigma, St. Louis, MO) added to normal saline. In some experiments, a2 mM

concentration of CsCl was added to the saline to blockIh.

Heart interneurons were penetrated with sharp microelectrodes made from borosilicate

glass tubes (A-M Systems) 1 mm outer diameter, 0.75 mm inner diameter and filled with 4

M potassium acetate with 20 mM KCl. Microelectrode resistance was 25-30 MΩ. Mem-

brane potential recording and current injection were performed using an Axoclamp 2A

electrophysiology amplifier (Axon Instruments, Foster City, CA). All hybrid systems ex-

periments were performed using discontinuous current clamp (DCC) mode. DCC sample

rates were between 2.5 and 3 kHz. The electrode potential was monitored by an oscillo-

scope to ensure that it settled between current injection cycles. The input resistance (Rin)

of the neurons was measured by injecting several short pulses of inhibitory current; only

neurons withRin > 60MΩ were accepted for hybrid experiments.

2.1.2 The Silicon Neuron Model

The silicon neuron was fabricated through an integrated-circuit brokerage service in the

AMI 1.2µm process (MOSIS, Marina del Rey, CA). It was designed to produce electri-

cal activity similar to a leech heart interneuron by emulating its major ionic currents with a

Hodgkin-Huxley-like formalism [16, 43]. The silicon neuron provides emulation of several

ionic currents: a passive leak current,I leak, fast sodium current,INa, a fast inactivating potas-

sium current,IK1, a persistent potassium current,IK2, persistent sodium current,IP, slowly

inactivating low-threshold calcium current,ICaS, and a hyperpolarization-activated inward

current,Ih. Parameter values of the silicon neuron were set using 16-bit, 4-channel digital

to analog converters (Analog Devices, Inc., Norwood, MA). Digital to analog converters
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were interfaced to a PC via PIC microcontrollers (Microchip, Inc., Chandler, AZ). A user

interface and software to communicate with PIC microcontrollers was written with the

Java programming language (Sun Microsystems, Santa Clara, CA). Membrane potential

measurement of and current injection into the silicon neuron were accomplished by direct

connection to the headstages of an Axoclamp-2A electrophysiology amplifier (Axon In-

struments, Union City, CA). State variables were measured through a current preamplifier

(Stanford Research System, Sunnyvale, CA).

The architecture of the silicon neuron was based on a previously published mathemat-

ical model of a heart interneuron [14]. There are three notable differences between the

silicon neuron and this mathematical model. First, the silicon neuron does not emulate the

potassium currentIKA , or the fast calcium currentICaF. Second, there is no exponential

power (other than 1) applied to the state variables of the silicon neuron. Third, the time

constants of the silicon neuron are single-valued parameters, instead of voltage-dependent

functions.

2.1.3 Dynamic Clamp

Dynamic clamp was used to implement artificial synaptic conductances between the silicon

neuron and an intracellularly recorded oscillator heart interneuron [5]. Dynamic clamp

synapses were implemented according the following equations [4]:

ISyn = ḡSynYpostMpost(Vpost− ESyn) (1)

dYpost

dt
=

Xpost− Ypost

τ2
(2)

dXpost

dt
=

M∞(Vpre) − Mpost

0.2
(3)

X∞(Vpre) =
1

1 + e−1000(Vpre+.01)
(4)
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dMpost

dt
=

X∞(Vpre) − Xpost

τ1
(5)

M∞(Vpre) = 0.1 +
0.9

1 + e−1000(Vpre+.04)
(6)

whereτ1 = .002s,τ2 = .011s, ḡSyn = 500nS, andESyn = −0.062V.

Dynamic clampIh was implemented as follows:

Ih = ḡhmh(Vm − Eh) (7)

mh

dt
=

m∞h −mh

τmh

(8)

m∞(Vm) =
1

1 + e180(Vm+.047) + e500(Vm+.047)
(9)

τmh = 0.7 +
1.7

1 + e−100(Vm+.073)
(10)

whereEh = −.02V.

All dynamic clamp calculations were performed on a dedicated real-time signal process-

ing controller board (DS1104, DSPACE, Detroit, MI).

2.1.4 Data Acquisition and Analysis

All experimental data were digitized and stored using pCLAMP software (Axon Instru-

ments, Union City, CA). For both hybrid experiments and mathematical modeling, analysis

of burst characteristics were performed off-line with scripts written in Matlab (MathWorks,

Natick, MA).

Action potentials (spikes) were detected by determining when the membrane potential

rose and then fell across a threshold of -20mV. If this sequence of two crossings occurred
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within a time window of .001 s, the event was taken to be spurious due to noise or digitiza-

tion and discarded. All other such events were considered to be spikes.

The time of occurrence of the spike was taken as the time when the maximum mem-

brane potential was reached. For all detected spikes in a continuous record, the mean and

standard deviation of the inter-spike interval (ISI) was calculated. ISIs greater than 0.5

sec were used to mark the end of one burst and the beginning of the next burst, however

when three successive ISIs were greater than 0.5 sec, the middle spike was considered to

be spurious and was discarded. All ISIs within a burst had values within the mean ISI±
two standard deviations. We verified this method manually for 630 sec of recorded data

and it was found to be highly accurate for detecting both spikes and bursts of spikes.

At least 8 burst cycles were detected and analyzed per experimental trial. For each

experimental trial, cycle period, burst duration, duration of the inhibited phase, and final

spike frequency at burst transition was calculated. Burst period was calculated as the time

between the median spike of one burst and the median spike of the next burst. Determin-

ing cycle period in this fashion minimizes period variability due to spurious spikes at the

beginning and end of a burst. Burst duration was calculated as the time between the first

and last spike of a burst of spikes. Duration of the inhibited phase was calculated as the

time between the last spike of a burst and the first spike of the next burst. The final spike

frequency was defined as the instantaneous spike frequency for the last two spikes of a

burst.

In experiments where the maximal conductance ofIh was varied directly in the sili-

con neuron or in the heart interneuron with dynamic clamp, we measured the activation

variable,mh, and determined the percent of the inhibited phase at which it first reached it

maximal value. For heart interneurons, even whenḡh was set to zero or a negative value in

dynamic clamp,mh was calculated and this point of maximal activation was determined to

estimate when endogenousIh would activate.

Values reported here are the mean and standard deviation across experiments, except
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as indicated. Statistical significance was assessed by performing a one-way ANOVA and a

multiple comparison of means using the Bonferroni t-test. A cutoff of p = 0.05 was used

to evaluate statistical significance.

2.2 The Hybrid Half-Center Oscillator

We discovered after several trials that cell input resistance (Rin) after sharp electrode pen-

etration was critical to the success of establishing rhythmic bursting in the hybrid system.

Poorly penetrated heart interneurons,Rin < 60MΩ , fired at a high frequency and dominated

the silicon neuron in the hybrid half-center. Moreover, the low input resistance resulted in

a fast membrane time constant and therefore poor synaptic integration. We thereby decided

to accept only cells withRin > 60MΩ for the experiments described here.

To determine appropriate synaptic strength for hybrid oscillations, the maximal synap-

tic conductance,̄gSyn, for both artificial synapses was varied between 0 nS and 625 nS in

twelve equal steps for four separate preparations. When isolated (ḡSyn = 0) both the sili-

con neuron and heart interneuron fired tonically (Figure 4A). For low values of synaptic

conductance, the two neurons continued to fire tonically, with occasional lapses in activ-

ity (Figure 4B). Once sufficient synaptic strength had been reached, the neurons began

alternating oscillations (Figure 4C). Once stable oscillations were established, their period

varied little with increasinḡgSyn (Figure 4D). The oscillations observed atḡSyn = 511 nS

were regular; the coefficient of variation of the period ranged from 3.7% to 11.5% with a

mean of 6.8% for the four preparations shown. We selected 500nS as the canonical value

of ḡSyn for all further experiments.

Using canonical parameters for the silicon neuron and withḡSyn set at 500nS, rhythmic

antiphasic bursting was obtained with all heart interneurons whereRin > 60MΩ. To initiate

antiphasic bursting, the synapses were activated by moving their maximal conductances

from 0 to 500 nS (Figure 5). Activating the synapses caused one of the neurons to be

inhibited while the other continued to fire tonically. Once a neuron was inhibited, itsIh
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Figure 4: Variation of ḡSyn in hybrid half-center oscillator.A. In isolation, both the
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Figure 5: Strong artificial inhibitory synapses cause an immediate transition from tonic
firing to rhythmic bursting in a hybrid half-center oscillator. Membrane potential (Vm),
synaptic current (ISyn), and h-current conductance (gh)) are shown for the silicon neuron
(SiN, red) and the heart interneuron (HN, black). The vertical dashed line indicates the
time at which the dynamic clamp was activated to enable the mutual inhibitory synapses.
When one of the neurons is inhibited, itsIh activates, driving it back toward the firing
threshold. Once it begins to fire, the other neuron is inhibited, itsIh activates, driving it
back toward firing threshold so that it inhibits the first neuron, and the cycle repeats.
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Figure 6: Comparison of biological and hybrid half-center oscillators.A. Biological half-
center oscillator.B. Hybrid half-center oscillator. Membrane potential of the silicon neuron
is shown in red. Membrane potential of the biological neuron is shown in black.
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activated; meanwhile, the spike rate of the active neuron rapidly increased and then slowly

decreased due to the activation and subsequent inactivation ofICaS. Once the spike rate

in the active neuron was low enough, the inhibited neuron escaped from inhibition and

began firing, inhibiting the other neuron. This process then repeated, resulting in antiphasic

bursting that was similar to that observed in the biological oscillator (Figure 6).

2.2.1 Unilateral Variation of ḡh in the Silicon Neuron

To assess experimentally the effects of varyingḡh of the silicon neuron (SiN̄gh), we es-

tablished rhythmic antiphasic bursting between the silicon neuron and an isolated heart

interneuron. In five separate experimental preparations, we varied SiNḡh from 0 to 8 nS

in increments of 2 nS (canonical SiN̄gh = 4 nS). At each interval we assessed the cycle

period, the burst duration, and the final spike frequency for each neuron. Typical activity is

shown in Figure 7, and results are summarized in Figure 8.

With canonical parameter values, the cycle period was4.7 ± 0.4 s. This period is is

considerably shorter than both the average period observed in the biological system and

the period of the mathematical model mathematical model (8.8s and 8.6s, respectively),

although the period is close to the low end of the range observed in the biological system

(6.4s) [4]. There are several possible factors that might explain this difference. For ex-

ample, sharp microelectrode penetration of the heart interneuron causes a decrease in the

membrane time constant, reducing the efficacy of spike-mediated synaptic transmission.

Limitations in the silicon neuron, such as the lack of voltage-dependent time constants, or

in the dynamic clamp synapses, such as the lack of graded synaptic transmission, could

also play a role.

With increasing SiN̄gh, the oscillator cycle period decreased (Figure 8A); there was a

statistically significant effect of varying SiNḡh on the period of the system. With complete

removal ofIh (SiN ḡh = 0), the silicon neuron was not always able to escape from inhibi-

tion (n = 2); in the cases where it was able to escape (n=3), the cycle period was greatly
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SiN membrane potential trace. Asterisks indicate whengh reaches its maximal level of
activation.A. SiN ḡh = 2 nS.B. SiN ḡh = 4 nS.C. SiN ḡh = 8 nS.
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Figure 8: Results of varyinḡgh in silicon neuron. Data for SiN are shown in red and data
for the HN are shown in blue.A. Oscillator period.B. Burst duration of SiN and HN.C.
Escape frequency (final spike frequency of the opposing cell).

elongated (13.3±1.8 s). When SiNḡh is varied, the change in the cycle period of the hybrid

half-center oscillator is largely accounted for by the change in the duration of the inhibited

phase of the silicon neuron.

In this hybrid half-center oscillator, the duration of the inhibited phase of one cell is

approximately equal to the burst duration of the opposing cell. With canonical parameters,

the burst duration of the silicon neuron and the burst duration of the heart interneuron were

similar (2.5± 0.5 s and2.2± 0.2 s, respectively). With increasing SiN̄gh the burst duration

of the heart interneuron decreased, corresponding to a decrease in the inhibited phase of

the silicon neuron (Figure 8B). The final spike frequency of the heart interneuron also

increased (Figure 8D). There was a statistically significant effect of varying SiNḡh on the

burst duration and final spike frequency of the heart interneuron but no apparent effect on
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these characteristics in the silicon neuron. The absence of a significant change in the burst

duration of the silicon neuron indicates that variations in SiNḡh selectively influence the

inhibited phase of the oscillation. The increase in the final spike frequency of the heart

interneuron indicates that with a higherḡh the silicon neuron is able to overcome a higher

frequency of inhibition from the heart interneuron and escape into its burst. Variations in

SiN ḡh thereby change the balance of oscillations; with higher values of SiNḡh the silicon

neuron has an increased duty cycle, and with lower values of SiNḡh the heart interneuron

has an increased duty cycle.

With canonical parameters, the final spike frequency is noticeably higher for the silicon

neuron than for the heart interneuron; the heart interneuron is generally able to escape from

a higher frequency of inhibition. This difference is most likely due to the difference in

membrane time constants and input resistance, which determine the efficacy of dynamic-

clamp synaptic currents in altering membrane potential.

At low values of SiNḡh, the time point during the inhibited phase of the burst cycle

at which Ih attained it maximal level of activation was well before the burst transition

occurred. We expressed this time point as a percent of the inhibited phase. This observation

indicates that the silicon neuron was "waiting" for a decrease in the inhibition it receives

from the heart interneuron before it could begin firing. Therefore, the dynamics of spike

frequency adaptation in the heart interneuron were determining the duration of the inhibited

phase of the silicon neuron rather than the dynamics ofIh activation. As SiNḡh increased,

Ih attained its maximal level of activation at relatively later and later time points in the

inhibited phase. The absolute amount of time necessary to attain maximal activation was

nearly invariant but this maximal activation occurred at a greater percent of the inhibited

phase. At high values of SiN̄gh, Ih attained it maximal level of activation practically at

the end of the inhibited phase. This observation indicates that at high values of SiNḡh the

dynamics ofIh activation were determining the duration of the inhibited phase of the silicon

neuron rather than the dynamics of spike frequency adaptation in the heart interneuron.
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2.2.2 Unilateral Variation of ḡh in the Heart Interneuron

To vary the strength ofIh in the heart interneuron, we used dynamic clamp to create a model

Ih, which could be used in conjunction with the endogenousIh of the heart interneuron. By

setting the maximal conductance of the dynamic clampIh, HN ḡh, to be greater than zero,

we added to the endogenousIh. We subtracted from the endogenousIh by setting HNḡh to

negative values. SubtractingIh in excess of the effective endogenousIh created a positive

feedback system, driving the cell to an extremely hyperpolarized state. Several cells were

tested, and it was found that an artificial maximal conductance of -16 nS would almost

always cause this undesirable condition to occur, but -12 nS would not; -12 nS was there-

fore chosen as the maximal "negative conductance". Furthermore, the heart interneuron

required a larger variation inIh than did the silicon neuron to observe similar effects, so

HN ḡh was varied over a larger range than in the case for the silicon neuron.

In five experiments, hybrid oscillations were established and HN was varied between

-12 nS and+16 nS. SiNḡh was kept constant at the canonical value of 4nS. Typical activity

for different levels of HN̄gh is shown in Figure 9. With no addition or subtraction to the

endogenousIh (HN ḡh = 0 nS), the cycle period of the hybrid oscillator was4.24± 0.6 s,

and the burst duration of the silicon neuron (2.1 ± 0.3 s) was similar to the burst duration

of the heart interneuron (2.2 ± 0.4 s). With increasing HN̄gh the period of the system

decreased (Figure 10A); there was a statistically significant effect of varying HNḡh on

period. Moreover, with increasing HN̄gh the burst duration of the silicon neuron decreased,

corresponding to a decrease in the inhibited phase of the heart interneuron, and the final

spike frequency of the silicon neuron increased (Figure 10B-C). There was a statistically

significant effect of varying HNḡh on the burst duration of the silicon neuron, but the effect

on final spike frequency of the silicon neuron was not statistically significant (p = 0.08).

There was no apparent effect of varying HNḡh on burst duration or final spike frequency

in the heart interneuron.

As observed when varying SiN̄gh, the change in period when varying HN̄gh was due
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Figure 9: Half-center oscillator activity with variation of̄gh in HN. Membrane potential
traces for SiN (red) and HN (blue).gh for the silicon neuron is shown in black below the
HN membrane potential trace. Asterisks indicate whengh reaches its maximal level of
activation.A. HN ḡh = −12nS.B. HN ḡh = 0 nS.C. HN ḡh = 16nS.
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to a change in the duration of the inhibited phase of the modified neuron. The duration

of the inhibited phase of the heart interneuron, which is equivalent to the burst duration of

the silicon neuron, decreased, while the burst duration of the heart interneuron remained

relatively constant. These results are remarkably similar to the case when SiNḡh , was

varied; increasing HN̄gh causedIh to attain its maximal level of activation at a relatively

later point of the inactive phase of the burst cycle. Although the effect here is not as striking

as in the SiNḡh case, it is still apparent.

In six additional experiments, we blocked the endogenousIh of the heart interneuron

with 2mM Cs+ and the dynamic clamp was then used to reintroduce a completely artificial

Ih into the heart interneuron. HN̄gh was then varied from 0nS to 32 nS in 8 nS increments.

Typical activity for different levels of HN̄gh is shown in (Figure 11). As observed in the

other experiments wherēgh was varied, increasing HN̄gh decreased the cycle period of

the system (Figure 12A); there was a statistically significant effect of varying HNḡh on the

period. Moreover, with increasing HN̄gh the burst duration of the silicon neuron decreased,

corresponding to a decrease in the inhibited phase of the heart interneuron, and the final

spike frequency of the silicon neuron increased (Figure 12B-C). There was a statistically

significant effect of varying HNḡh on the burst duration and final spike frequency of the

silicon neuron but no apparent effect on these characteristics in the heart interneuron. As

in the previous experiments, the change in period was due to a change in the duration of

the inhibited phase of the modified neuron (Figure 13D). Increasing HNḡh also led to

an increase in the percent of the inhibited phase at whichIh attained it maximal level of

activation in the heart interneuron (Figure 13C), which was very similar to whenḡh was

varied in the silicon neuron.

The remarkable similarity in results when̄gh was varied in the silicon neuron and the

living heart interneuron, both with endogenousIh present and when it was blocked by Cs+,

demonstrates that the dynamics of dynamic clampIh are compatible with the intrinsic cur-

rents in the living neuron and thatIh serves a similar function in both the heart interneuron
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nS.C. HN ḡh = 32nS.

34



B

C

A

0 8 16 24 32
0

1

2

3

4

B
ur

st
 D

ur
at

io
n 

(s
)

SiN
HN

_
 HN gh (nS)

0 8 16 24 32
1.5

3

4.5

6

7.5

P
e
ri
o
d
 (

s
)

HN

SiN

_
 HN gh (nS)

0 8 16 24 32
6

10

14

18

E
s
c
a
p
e
 F

re
q
u
e
n
c
y
 (

H
z
)

SiN

HN

_
 HN gh (nS)




Figure 12: Results of varyinḡgh in heart interneuron when endogenousIh is block by
Cs2+. Data for SiN are shown in red and data for the HN are shown in blue.A. Oscillator
period. B. Burst duration of SiN and HN.C. Escape frequency (final spike frequency of
the opposing cell).
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and the silicon neuron.

2.3 Comparison with Mathematical Modeling

To corroborate our results from the hybrid systems analysis, we investigated the effects of

unilateral variation in a mathematical model of a leech heartbeat half-center oscillator. This

additional mathematical modeling of the half-center oscillator was performed in the GEN-

ESIS simulation environment (freely available fromhttp://www.genesis-sim.org/ ), running

under Mandrake Linux v8.1. The model half-center oscillator consisted of two single-

compartment heart interneurons connected by inhibitory synapses. Differential equations

were integrated using the exponential Euler method with a time step of10−4 s. For each

simulation, the model was run for 100 s to allow the activity to settle, and then 400 sec of

data were recorded. Details of the model structure and simulation parameters are found in

Hill et al. [14].

Previous modeling studies indicated thatḡh determines the final spike frequency, the

firing frequency at which a heart interneuron escapes the inhibition of the other neuron in

the half-center oscillator. However, these studies investigated only the effects of bilateral

variation of parameters not the unilateral variations that we employed in our hybrid systems

analysis. We varied̄gh of one model neuron of a model half-center oscillator from 0 to 8

nS (4 nS canonical) in 0.5 nS increments. We then assessed the resultant activity for cycle

period, burst duration, duration of the inhibited phase, and final spike frequency.

Unilateral variation ofḡh in the model revealed effects similar to those observed in

the hybrid system. Increasinḡgh unilaterally resulted in a decrease in the burst dura-

tion of the unmodified (constant) model cell corresponding to a decrease in the duration

of the inactive phase of the modified model neuron (Figure 14A). The burst duration of

the modified model neuron, however, exhibited virtually no change. This selectivity for

influencing the inactive phase of the burst was not apparent when was varied bilaterally

(Figure 14B, inset). Final spike frequency increased nearly linearly for the constant model
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neuron but remained constant for the varied model neuron (Figure 14C). The changes in

final spike frequency in the unmodified model neuron for unilateral variation ofḡh corre-

sponded closely to the changes in final spike frequency observed for symmetric variation of

ḡh (Figure 14C, inset)). These modeling results for asymmetric variation of further support

the hypothesis developed from symmetric variation ofḡh in the model and from our hy-

brid system analysis that̄gh sets the final spike frequency from which an inhibited neuron

escapes.

Finally, the changes in cycle period of the model half-center oscillator observed under

bilateral and unilateral variation of are qualitatively very similar (Figure 15). Essentially,

the change in period for a bilateral change inḡh is double that for a unilateral change in̄gh.

2.4 Discussion

These experiments provide three findings that are important for the rest of this thesis. First,

they demonstrate that biologically realistic activity can be generated using a hybrid oscilla-

tor. Second, they demonstrate that the parameters of the model can be used to manipulate

the output of the hybrid network. Third, they demonstrate that a hybrid system built from

a reduced model can produce results that are very similar to the predictions of a complex

mathematical model.

2.4.1 Functional role ofIh in the Hybrid Half-Center Oscillator

We investigated the role of the hyperpolarization-activated inward current,Ih, in rhythm

generation and the control of period and burst duration. We varied the maximal conduc-

tance ofIh, ḡh, in the silicon neuron and, by using dynamic clamp, in the heart interneuron,

both with endogenousIh present and with endogenousIh blocked. In all three of these stud-

ies, Increasinḡgh increased the firing frequency of the active (unvaried) neuron at which

the inhibited (varied) neuron escaped from inhibition. As a result, increasingḡh decreased

the duration of the inhibited phase in the varied neuron, and decreased the cycle period.
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model half-center oscillator.

Previous modeling and physiological studies have indicated thatIh exerts an important

control on period in heart interneuron half-center oscillators [31, 14]. By making unilat-

eral changes in this analysis, we have supplemented the previous work to demonstrate the

selectivity of Ih in controlling the inhibited phase of the heart interneuron burst cycle. In

both the mathematical model and the hybrid system, modulation ofIh by ḡh substantially

effects the duration of the inhibited phase of the oscillation, with little or no effect on burst

duration of the varied neuron. Thus, in addition to its role as a period regulator,Ih can also

alter the balance of activity in a half-center oscillator. Our results are consistent with other

investigations into the functional role ofIh, which demonstrated that increasingIh decreases

cycle period and increases the duty cycle of modified cell [24]. Because leech heartbeat

half-center oscillators always produce equally balanced rhythmic oscillations, any modu-

latory process which acts on̄gh would either have to either act bilaterally or additionally

effect some other property in order to maintain an appropriate balance of activity.

These results demonstrate that the hybrid systems technique is useful for investigating

the role of neuronal properties in the generation of neural activity. The accessibility of

the model provides a degree of control that is not possible with traditional experimental

methodologies; the neural component, however, provides a level of realism and relevance
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greater than with modeling alone.

2.4.2 Validity of the Hybrid Neural Network

For several years, numerous efforts have been made to construct hybrid networks for neu-

ronal network investigations. The goal of such investigations has been to use the control-

lability and well-defined structure of a model to better understand neuronal function, while

still retaining the realism provided by living neurons. In general, these efforts have taken

two different approaches. The first approach has employed non-physiological models, such

as nonlinear oscillators or phenomenological model neurons, coupled to a neuron or a neu-

ronal network [48, 47]. The relative simplicity of these models facilitates the study of

dynamical properties; such study is extremely difficult with more complicated models. The

second approach has been to use physiologically realistic, conductance-based model neu-

rons. This approach facilitates the investigation of both the mechanisms by which activity

is produced and the functional role of different conductances [38, 20, 29, 26, 21, 6].

Our hybrid system used an analog silicon neuron that implemented a realistic conductance-

based model based on the Hodgkin-Huxley formalism [16, 43]. This mechanistic approach

to modeling was necessary because we were interested in studying how intrinsic ionic cur-

rents contribute to generating rhythmic oscillatory activity. When the tonically firing model

neuron and tonically firing biological neuron were coupled with inhibitory synapses using

dynamic clamp, they produced alternating rhythmic bursting. This transformation in ac-

tivity is analogous to results observed when inhibitory synaptic transmission is reversibly

blocked in heart interneurons recorded by sharp microelectrode penetration [4].

The oscillations produced by our hybrid system were qualitatively similar to those ob-

served in the living heart interneuron half-center oscillator. We demonstrated that alter-

ations ofḡh in the silicon neuron and heart interneuron produced similar affects on cycle pe-

riod, burst duration, and escape frequency. This demonstration of symmetry in observed ef-

fects between the model neuron and the heart interneuron indicates that conclusions drawn
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from the model can be applied confidently to the living system.

2.4.3 Reduced Models in Hybrid Systems

The silicon neuron used in these experiments is a reduced version of a physiologically

realistic mathematical model of a heart interneuron. As compared to the mathematical

model, the silicon neuron implemented a reduced set of ionic currents, the time constants

of the silicon neuron were single-value parameters rather than voltage-dependent functions,

and the state variables were not raised to powers.

In spite of the reduced nature of the model, however, the results produced by experi-

ments with the hybrid system were very similar to the results observed in simulations with

the more complex mathematical model. The one prominent difference was that the hybrid

system oscillated at a substantially shorter period than the mathematical model; the effects

of ḡh on period, burst duration, and escape frequency, however, were the same in both the

hybrid system and in the mathematical model.

It appears, therefore, that the function ofḡh was not affected by the reduced nature of

the silicon neuron. This finding led us to question the functional consequences of model

complexity in hybrid systems.
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CHAPTER III

REDUCTION OF THE HN MODEL

In the previous chapter, we demonstrated our ability to generate realistic half-center oscilla-

tions with a hybrid system, and we demonstrated how these oscillations could be controlled

through the parameters of the model neuron. Our ultimate goal is to evaluate how model

complexity contributes to the performance of such hybrid systems. In order to address this

goal, we must first create a series of reduced models based on the heart interneuron.

We begin with a previously developed mechanistic model of the leech heartbeat in-

terneuron, referred to hereafter as the FULL model [14]. We then use a variety of model

reduction techniques to eliminate state variables and ionic currents in this model, creating

a simplified mechanistic model referred to as the R1 model. In the next reduction stage,

we will replace the Hodgkin-Huxley style spiking mechanisms with integrate-and-fire type

dynamics, creating a model with both mechanistic and empirical components, referred to

as the R2 model. In the final reduction stage, we will replace several active ionic currents

with a passive current; this final model is referred to as the R3 model.

In the following chapters, we will evaluate the robustness and flexibility of these re-

duced models in model half-center oscillators. We will then validate our reduced models

using hybrid half-center oscillators. These studies will produce both an understanding of

how model complexity contributes to the robustness and flexibility of model systems and

an understanding of how well our reduced models predict the behavior of hybrid systems.

3.1 FPGA Implementation of Neuronal Models

Before reducing our model, we must consider our simulation platform. The silicon neuron

used in Chapter 2 is not an effective platform for evaluating model reduction. Although the
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silicon neuron provides control over a model’s parameters, it does not provide control over

the model’s structure. Utilizing the silicon neuron would therefore allow only specific kinds

of reduction techniques. For example, while a particular state variable could be eliminated

from the model by adjusting its parameters, a more structural change, such as replacing

Hodgkin-Huxley style dynamics with integrate-and-fire type dynamics, would be very dif-

ficult. Although different circuits could implement structurally different models, the long

fabrication time makes this strategy rather onerous. Additionally, the silicon neuron’s real-

time performance can be a hinderance in modeling; platforms capable of running a given

model faster than real-time provide a distinct advantage when investigating the parameter

space of a model.

In order to address these deficiencies with the silicon neuron, we implemented our

neuron models on a field-programmable gate array (FPGA). The FPGA provides several

distinct advantages over the silicon neuron: the model structure can be easily altered, the

time required to physically implement a given model design is minimal, and FPGAs are

capable of incredibly fast running speeds [13, 12]. We will describe here the basics of

modeling neurons on FPGAs, and provide the specifics of our FPGA-based neuronal model

design.

3.1.1 FPGAs

FPGAs are programmable digital logic devices. In their simplest form, FPGAs consist of

two elements: logic cells and interconnects. The logic cells are small circuits consisting

of a small look-up table, binary logic gates, and flip-flops. The interconnects consist of

wires and multiplexors placed around the logic cells; they allow different logic cells to be

hooked up to each other, and also allow communication with devices outside of the FPGA.

Although the functionality of a single logic cell is quite limited, when several logic cells are

hooked together they are capable of implementing much more complicated functions, such

as counters, adders, or multipliers. Because a single FPGA device can contain millions of
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logic cells, an FPGA is capable of extremely complex functionality. Furthermore, advanced

FPGAs contain additional logic elements, such as block RAM or dedicated multipliers,

augmenting the capabilities of an FPGA even further.

The user of an FPGA creates a description of the desired function of the FPGA either

by using a hardware description language (such as VHDL or Verilog), or by designing a

logic schematic. Computer software is then used to turn the code or schematic into a binary

file that can be downloaded to the FPGA. This binary file defines how the the logic cells

are interconnected to each other, and how the communicate with external devices. Once

this binary description has been downloaded to the FPGA, the FPGA will implement the

described logic as long as the device remains powered.

3.1.2 Modeling Neurons on FPGAs

There are several important differences between FPGAs and digital computers to consider

when modeling neurons on FPGAs. The first major difference is that FPGAs utilize fixed-

point representation for all numbers, rather than floating-point representation. This differ-

ence means that the model must be analyzed ahead of time in order to determine how much

precision is needed for each signal or parameter within the model.

For example, consider the following equation describing an ionic current in a Hodgkin-

Huxley style model:

I ion = ḡionm
2
ionhion(Vm − Eion) (11)

We then make the following assumptions: The membrane potentialVm, ranges from

−80 to +20 mV, and requires a resolution of at least .1 mV. The reversal potentialEion

will be -20 mV, requires similar resolution to the membrane potential. The state variables

mion and hion range from 0 to 1, and require resolution of at least .001. The maximal

conductance,̄gion, will be varied from 20 to 200 nS, with a resolution of 0.25 nS. The

current,I ion, would therefore be expected to range from -12 to 8 nA.
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If SI units are used to represent these signals in Volts, Siemens, and Amps, the voltage

signals would require 15 bits (including the sign bit), the state variables would require 10

bits, and the maximal conductance would require 32 bits. If we wish to resolve the current

to .01 nA, we would require 38 bits of precision. If we utilize non-SI units (mV, nS, nA),

however, we can obtain similar resolution using 12 bits for the voltage signals, 10 bits for

the maximal conductance, and 12 bits for the current (the state variables are unitless, and

therefore their requirement is unchanged). By changing the units of our signals, we have

conserved FPGA resources without losing any numerical resolution.

The second factor to consider when implementing a neuron model on an FPGA is that

certain mathematical operations — namely exponential functions and divisions — are ex-

tremely resource intensive. When such resource-intensive functions are required by the

model, it is necessary to utilize look-up tables stored in memory to implement the function.

For example, the steady-state activation function

m∞ =
1

1 + ea(Vm+b)
(12)

would be extraordinarily difficult to implement using standard logic elements. How-

ever, if the parametersa andb are known, the signalVm can easily be turned into an index

into a look-up-table (LUT) whose values correspond tom∞. This method, unfortunately,

means that the parametersa andb must be set at compile time, and cannot be altered while

the FPGA is running.

The third consideration when implementing a design using FPGAs is that not all pa-

rameters or signals are externally accessible. The number of inputs and outputs of the

FPGA are limited; in addition, due to the operation mode in which the FPGA was used,

increasing the number of inputs and outputs of the model decreased the speed at which the

FPGA could run. Although the inputs and outputs of the model can be time multiplexed, or

buffered, it adds a level of design complexity that we were not able to address during this

project. We therefore had to choose which model parameters and signals were externally
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accessible.

As a final consideration, we note that not all FPGA operations are instantaneous. For

example, accessing a stored value from memory requires one FPGA clock cycle to com-

plete; utilizing a dedicated multiplier to multiply two signals requires three FPGA clock

cycles. Many FPGA clock cycles are therefore necessary to compute one model simulation

step. This latency provides an opportunity to increase the performance of the FPGA. By

changing the parameters of the model with each FPGA clock step, several models with

different parameters can be run simultaneously. This technique is known aspipelining.

3.1.3 Specific Methods Used for HN Models on FPGAs

Our HN HCO models were implemented on a BenADDA FPGA development board from

Nallatech, Inc. (Eldersburg, MD). We chose this development package because it contained

a powerful FPGA and converters for interfacing to external analog devices. At the center

of this board is a Xilix Virtex-II FPGA. The Virtex-II provides 3 million logic gates, 96

dedicated 18x18 multipliers, and 96 1-KB units of block RAM. In addition, the BenADDA

board provides two analog-to-digital converters (ADCs) and two digital-to-analog convert-

ers (DACs) that can be used to interface the FPGA with external devices.

The logic design for the FPGA was performed using the Xtreme DSP development kit

from Xilinx. This kit allows the logic for the FPGA to be designed and compiled within the

Simulink modeling environment (Mathworks, Cambridge, MA). Different Simulink blocks

are provided for different logic structures: such as counters, adders, multipliers, etc. Model

design is accomplished graphically by connecting these block together. Once the model

has been designed, it can be compiled into FPGA-usable code; furthermore, the code can

be linked into a new Simulink block that can be used in other Simulink models. This new

block will use the FPGA as a computational resource, a functionality known ashardware

co-simulation.

The hardware-co-simulation functionality facilitates utilizing the FPGA as a modeling
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tool. Once the neuron model has been compiled into a hardware co-simulation block, a

new Simulink model is created that contains the neuron model block, and Simulink con-

stant blocks for the input parameters. The output of the neuron model block is sent to the

Matlab workspace or to a file. Using the matlabset_paramandsim commands, scripted

simulations of the neuron model can be run that utilize the FPGA for solving the model

equations. The functionality, however, comes at a price; in order to synchronize data trans-

fer between Matlab/Simulink and the FPGA, it is necessary to the Simulink and FPGA

clocks to be matched (known assingle-step modewithin Simulink). This clock-matching

causes significant computational overhead, and limits the performance of the FPGA. In

our model, the FPGA was clocked at approximately 200 kHz in single-step mode, whereas

when the FPGA could generate its own clock (know asfree-runningmode), clock speeds

of over 40 MHz were possible. Even with this limitation, however, the FPGA was still able

to run the model at very fast speeds; data were produced at a rate approximately 36 times

real-time.

All ionic current state variables in the model were implemented as 28 bit unsigned

signals with their binary point at the 28th bit. The membrane potential was represented

in mV using a 28 bit signed 2s-complement signal with the binary point at the 20th bit.

This permitted an effective range of±128mV with a resolution of2−18 = 3.8 × 10−6 mV.

All state variables were integrated using Euler-type integrators with a simulation step size,

T = 1× 10−4 s.

Time constants were implemented using look-up tables. Each look up table consisted

of 2048 entries, with each entry consisting of an 18-bit unsigned value with 18 fractional

bits. The values stored in the look-up tables corresponded toT/τi(Vm), with entry 0 corre-

sponded to a membrane potential of -80 mV and entry 2047 corresponded to a membrane

potential of 48 mV. The time constant look-up table were therefore able to resolve time

constant values from1 × 10−4 to 26.2 s, in 1/16 mV increments, with a numerical preci-

sion that varied from0.38× 10−9 s at the low end to13.1 s at the high end (because of
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the inverse function there is more precision for smaller values and less precision for larger

values). Eight bits of extra precision were added to the values for the look-up tables for

τhCaS andτmh, in order to provide better resolution of their larger time constants.

Steady-state activation and inactivation functions were also implemented with look-

up tables. As with the time constant look-up tables, each table consisted of 2048 entries

that spanned the voltage range from -80 to 48 mV. Each entry contained a 14-bit unsigned

value with 14 fractional bits. This precision provides a resolution of the steady-state value

to 6. × 10−5.

A concession to resource conservation must be made when modeling synaptic currents.

Spike mediated synaptic currents are described in the original model by the following equa-

tions:

ISyn(t,V) = (Vpost− ESyn) ×
N∑

s=1

MiḡSynfSyn(t − ts) (13)

fSyn(t) = a(e−(t−ts)/.011− e−(t−ts)/.002) (14)

dMpost

dt
=

M∞(Vpre) − M

0.2
(15)

M∞(Vpre) = 0.1 +
0.9

1 + e−1000(Vpre+.04)
(16)

wherea = 1.785, ESyn = −62.5 mV, ḡSyn = 60 nS, andts is the time of occurrence

of presynaptic spikes. Vpre andVpost are the pre- and post-synaptic membrane potentials,

respectively.

Because the exponential functionfSyn(t) is implemented using a look-up table,t − ts ≤
102.4 msec. At the end of this time range, however,fSyn(t) has decayed to1.5e− 4, several

orders of magnitude below its peak value of1, so we do not think this limitation impacts

the efficacy of a single synaptic event.
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Furthermore, due to the limitation of resources on the FPGA, we cannot considerevery

presynaptic spike as in equation 13. In order to conserve resources on the FPGA we restrict

the number of presynaptic spikes considered when calculationISyn to the previous four:

ISyn(t,V) = (Vpost− ESyn) ×
N∑

s=N−3

MiḡSynfSyn(t − ts) (17)

Taking this limitation and the time limitation offS yn(t) together, we could possibly

encounter problems when the spike frequency of the presynaptic cell is greater than 39 Hz,

although given the exponential drop off of fSyn(t), we think this will only pose a problem

when the frequency exceeds 115 Hz. At this rate, an additional spike will "interrupt" more

than 5% of the last synaptic event in the queue of four. This condition only occurred during

a few of our hybrid systems experiments, and we do not think that it caused any significant

alteration of the system’s activity.

Eighteen simultaneous models were pipelined through the FPGA; we could therefore

run eighteen simultaneous single-cell models, or nine simultaneous half-center oscillator

models.

The input parameters to the FPGA consisted of abaseandspacevalue for the maximal

conductances of the ionic currents. For example if the baseḡh value were set to 4, and the

spaceḡh value were set to 0.5, the first neuron model in the pipeline would haveḡh = 4,

the second model would havēgh = 4.5, the third would havēgh = 5, and so on. In some of

the reduction stages, it was necessary to include other model parameters as FPGA inputs.

These differences are noted in the sections on model reduction.

The output of the FPGA was limited to the membrane potential of the models. The

membrane potentials of the eighteen model neurons were multiplexed together and output

as a single signal in order to optimize the FPGA speed during single-stepped hardware

co-simulation. Because of this multiplexing, the time spacing between output samples for

a single model was 1.9 msec, even though the model was simulated with a step size of

.1 msec. Given the width of the spikes produced by all our models, we do not think this
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downsampling caused any problems for our analysis.

3.2 Model Descriptions

We now turn our attention to the reduction of the original HN model. Beginning with the

FULL model, we will perform three reductions to the model. The first reduced model (R1)

will be created by eliminating state variables and ionic currents from the FULL model. The

second reduced model (R2) will be created by replacing the Hodgkin-Huxley style spiking

mechanisms with integrate-and-fire mechanisms. The final reduced model (R3) will be

created by replacing active ionic currents with a passive ionic current. All results reported

in this section are from neuron models running on the FPGA.

3.2.1 Parameter Tuning

One of the primary problems with model reduction (and with neuronal modeling in general)

is the phase of model development known as the tuning orparameter estimationphase. In

this phase, the parameters of the model are adjusted so that a desired activity is produced

by the model.

One of the primary problems of tuning the model is that multiple sets of parameter can

produce the same activity [22, 9, 11, 37, 36]. Thisnon-uniqueness problemposes a serious

challenge for the model developer because although the same activity may be produced

by the model at distinct point in parameter space, the response of the model to parameter

variation at these points may be very different. Unfortunately, no current method exists to

determine the "correct" parameter set for a given activity, and developing such a method is

beyond the scope of this thesis.

With all of our reductions, the parameters were tuned in the context of an asymmetric

half-center oscillator. That is, once thestructureof a reduced model had been determined,

the reduced model was coupled via inhibitory synapses to a FULL model neuron. The
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parameters of the reduced model were then tuned with the goal of achieving an approxi-

mately equal duty cycle between the two neurons in the oscillator. Specifics as to which

parameters were tuned are included with the details of each reduction.

3.2.2 FULL Model

The FULL model is taken from Hill et al [14]. This model is a single isopotential com-

partment following the Hodgkin-Huxley formalism. In addition to the details cited in the

section on FPGA neuronal modeling, the FULL model differs from the original published

model in three ways. First, we have eliminated the FMRF-amide activated currentIKF.

Second, we have eliminated the externally injected currentI inj. Third, we did not include

the graded synaptic currentISynG. Both IKF andI inj were not required for any of our simu-

lations, so their removal had no impact on any of our studies.ISynG has been shown to have

little effect on the half-center oscillations, so we do not think its elimination impacts any of

our studies.

As implemented on the FPGA, the FULL – FULL model half-center oscillator (a FULL

model coupled to a FULL model) produces oscillations that are very similar to those pro-

duced in the original published model (Table 1). This similarity demonstrates that our

FPGA model was able to accurately reproduce previous modeling results obtained through

a conventional modeling system. The FULL model is capable of producing both tonic

spiking (Figure 16) and intrinsic rhythmic bursting (Figure 17).

3.2.3 R1 Model

The first reduction stage combines state variables and ionic currents with similar dynamics

into a single variable or current. The R1 model therefore retains the Hodgkin-Huxley

formalism used in the FULL model; only the number of state variables emulated has been

reduced.

In an attempt to uncover similarities between different ionic currents and state variables,

we performed a multi-dimensional parameter sweep of each state variable. These sweeps

52



10
 m

V

0.1 s−45 mV

Figure 16: Tonic firing in the FULL model.

were performed on the FULL model in single cell configuration, and they covered a plane of

the parameter space described by the half-maximal activation voltagebmion and the maximal

conductancēgion. For ionic currents with inactivation variables, two additional parameter

planes were investigated: thebhion – gbarion plane and thebmion – bhion plane. We analyzed

the regions of these planes where the model produced intrinsic bursting behavior in order

to determine where the model could be reduced.

We first recognized that the inactivation ofIK1, hK1 is largely unimportant in the be-

havior of the model (Figure 18). IncreasingbhK1 shifts the steady-state inactivation curve

to a point where there is little or no inactivation ofIK1; this change had little effect on the

period, duty cycle, or spike frequency characteristics of the model.

By eliminatinghK1, we now have

IK1 = ḡK1m2
K1(Vm− EK) (18)
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Figure 17: Intrinsic bursting in the FULL model.

In asymmetric half-center oscillator configuration, there was a slight imbalance in duty

cycle due to elimination ofhK1. ḡK1 was tuned from 100 to 71 nS in order to compensate

for this imbalance.

Next, we discovered that the fast calcium current,ICaF is functionally very similar to

the slow calcium current,ICaS (Figure 19); the period, duty cycle and spike frequency

characteristics of the model respond similarly to changes in the half-maximal activation

and maximal conductance of bothICaF andICaS. This similarity is surprising, becauseICaF

and ICaS evolve on very different time scales.ICaF was therefore eliminated by setting

ḡCaF = 0 nS, andḡCaS was tuned from 3.2 nS to 4.0 nS to compensate for the change in

activity.

These two reductions, the elimination ofhK1 andICaFwere discovered through examina-

tion of the model’s parameter space. To supplement this method, we employed the method
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Figure 18: Effect of hK1 and ḡK1 on period, duty cycle, and mean spike frequency of
bursting. As the half-maximal inactivation voltage ofhK1 increases, there is little change in
the period, duty cycle, or mean spike frequency of bursting.

of equivalent potentials to reveal similarities among the state variables (Figure 20) [18, 10].

The equivalent potential of a state variable is the value of the membrane potential at which

the state variable’s steady-state value would be equal to its current value. The steady-state

function, f∞, for the state variables (exceptmh∞) in the FULL model always takes the form

of the sigmoidal function:

f∞(a,b,Vm) =
1

1 + ea(Vm+b)
(19)

the equivalent potential,Um of a state variablem is therefore given by
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Um(m,a,b) =
ln( 1

m − 1)

a
− b (20)

whereb is the half-maximal activation (or inactivation) voltage,a is the slope of the

function at the half-maximal voltage, andVm is the membrane potential. We compute the

equivalent potentials for all remaining state variables over one oscillation period of the

FULL – FULL half-center oscillator. We then compare the equivalent potentials to each

other, and make reductions for state variables whose equivalent potentials are correlated.

The equivalent potential formh was not computed because its steady-state function is non-

invertible.

The equivalent potentials method shows us two further reductions that can be made to

the FULL model. First, the activation of the fast sodium current,mNa, is linearly correlated

with Vm. This relationship means that we can eliminatemNa as a state variable, replacing it

with its steady-state activation function

mNa = mNa∞ (21)

Second, we assume a linear relationship betweenUmKA andUmP, and a quadratic corre-

lation betweenUhKA andUmP. These assumptions initially led us to modelIKA as a quadratic

function of mP; further investigations, however, revealed that the net activation ofIKA

(m2
KAhKA ) could be closely approximated bymP itself (Figure 21). We set̄gKA = 0, and

ḡP was tuned from 7 to 6.3 nS in order to compensate for the change in activity induced by

this reduction.

All of these reductions taken together constitute the R1 model. This reduced model is

very similar to the FULL model; it is capable of both tonic firing and intrinsic bursting.

The spike shape is very similar (Figure 22) to the FULL model, as is the waveform of the

intrinsic bursting (Figure 23). The behavior of the FULL – R1 half-center oscillator is very

similar to the FULL – FULL half-center oscillator (Table 1).

This reduction has greatly simplified the FULL model. The number of state variables
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has been reduced from 14 to 8, and the number of ionic currents emulated has been reduced

from 9 to 7.
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Figure 19: Modulation ofICaS andICaF have similar effect on burst period. The period of
the model responds similarly to changes in the half-maximal activation voltage and maxi-
mal conductances ofICaSandICaF.
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3.2.4 R2 Model

In the second stage reduction, we replace the fast spiking currentsINa andIK1 with integrate-

and-fire (IAF) mechanisms [2]. In this hybrid integrate-and-fire model, the integrate-and-

fire parametersVthresh, the firing threshold, andVreset, the reset potential, are functions of

the slow calcium inactivation variablehCaS.

In order to make this reduction, we first characterize the relationship betweenhCaS and

Vreset. We do this by makinghCaS a parameter of the R1 model, varyinghCaS from 0 to 1

in increments of1/128, and then analyzing the activity of the model at each value ofhCaS.

The model was given 30 seconds to settle and then 30 seconds of data were recorded. We

calculateVreset as the average minimum voltage between spikes (Figure 24); additionally,

we calculate the spike frequency for each value ofhCaS (Figure 25).

Next, we removed the spike generating currentsINa andIK1, and replace them with IAF

mechanisms that are described byVreset andVthresh. Vreset is a function ofhCaSbased on the

results shown in Figure 24, and implemented as a 128-entry look-up table withhCaS as the

index into the table. We madehCaS andVthresh model parameters, and examined the spike

frequency of the model at different points in theVthresh−−hCaSparameter plane (Figure 26).

Using these values, we then calculated what values ofVthresh (as a function ofhCaS) would

best reproduce the relationship between spike frequency andhCaS. Overall, the hybrid IAF

model produces spike frequencies that are higher than R1 model. We were unable to lower

the spike frequency by raisingVthresh; doing so caused the model to fall silent.

The final step in creating our hybrid IAF model is to consider the effect of a spike on

the slow variablehCaS. In an IAF model, the membrane potential transitions instantly from

Vthresh to Vreset; this transition ignores the effect of a spike waveform on the evolution of the

state variablehCaS. In order to compensate for this effect, we calculated the perturbational

effect of a spike onhCaS by integratinghCaS over a typical spike waveform from the R1

model (Figure 27).

Our new "hybrid" IAF model is therefore described by:
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Figure 24: Vreset as a function ofhCaS in the R1 model. Changes isEleak andgleak affect
Vreset.

dVm

dt
=


− 1

C(IP + IK2 + ICaS+ Ih + I leak) : Vm < Vthresh(hCaS)

Vreset(hCaS) − Vm : Vm ≥ Vthresh(hCaS)
(22)

dhCaS

dt
=



mhCaS∞(Vm)−mhCaS

τCaS(Vm) : Vm < Vthresh(hCaS)

DhCaS(hCaS) − hCaS : Vm ≥ Vthresh(hCaS)
(23)

and all other equations are as in the R1 model.

Two problems were encountered with this model. First, the model was not able to

produce intrinsic bursting behavior. Second, the model did not produce half-center oscilla-

tions.

To address the first problem, we investigated how changes inEleak andgleak affect the

reset voltage and spike frequency, asEleak and gleak are associated with changes in the

intrinsic behavior of the model. The results are shown in Figures 24 and 25. These figures

show that a decrease inEleak or an increase ingleak is essentially equivalent to an increase

in hCaS. Changes inEleak andgleak had little effect on the perturbation ofhCaS by a spike.
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Figure 25: Spike frequency as a function ofhCaS in the R1 model. Changes isEleak and
gleak affect the spike frequency.

We therefore changed the structure of the model to account for this effect:

dVm

dt
=


− 1

C(IP + IK2 + ICaS+ Ih + I leak) : Vm < Vthresh(h′CaS)

Vreset(h′CaS) − Vm : Vm ≥ Vthresh(h′CaS)
(24)

dhCaS

dt
=



mhCaS∞(Vm)−mhCaS

τCaS(Vm) : Vm < Vthresh(h′CaS)

DhCaS(hCaS) − hCaS : Vm ≥ Vthresh(h′CaS)
(25)

h′CaS = hCaS+ .016× (Eleak− 62)+ 0.029× (gleak− 11) (26)

This change adequately reproduced the relationship between spike frequency andhCaS

(Figure 28), and allowed the model to produce both tonic firing (Figure 29) and intrinsic

bursting activity (Figure 30).

To account for the second problem, the inability of this model to produce half-center

oscillations, we theorized that the elimination ofINa was preventing our hybrid IAF model
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spike frequency relationship of Figure 25

from reaching firing threshold. We based this theory on the fact that the steady-state activa-

tion function formNa, m∞Na has a relatively shallow slope. Without the slight contribution

of INa at subthreshold voltages, the model was unable to reach firing threshold. We tested

three approaches to solving this problem: First, we tried increasing the magnitude of the

hyperpolarization-activated currentIh by increasinḡgh; a two-fold increase in̄gh was unable

to elicit half-center oscillations, so we abandoned this approach. We tried both increasing

ḡP and decreasinggleak; both of these approaches produced half-center oscillations, but the

oscillations were unequal, with the R3 model dominating the activity of the FULL model.

Finally, we tried increasinḡgCaS to 5.375 nS. This approach was successful: the increase in

ḡCaS caused the hybrid IAF model to escape inhibition, and an increase ingleak from 8 to

8.75 nS created approximately equal duty cycles between the two neurons.

The introduction of integrate-and-fire dynamics has eliminated the formation of phys-

iologic action potentials. In the data shown here, "spikes" are overlayed on top of the
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Figure 27: Change inhCaS, DhCaS due to a spike.

membrane potential waveform in order to aid comparisons between the models. The spike

is created by setting the external membrane potential of the model (that is, the membrane

potential output by the FPGA) to 0 mV for 1.9 msec after a spike event occurs. The "inter-

nal" membrane potential of the model does not have this spike overlay.

The spike shape of the R2 model is obviously quite different from the FULL and R1

models. Even with this significant change in the structure of the model, however, the

period, duty cycle, and slow-wave characteristics of the FULL-R2 half-center oscillator

are very similar to FULL-FULL half-center oscillator (Table 1). Only the spike frequency

characteristics of the R2 model are noticeably different from the FULL-FULL half-center

(Table 2).
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3.2.5 R3 Model

In the third and final reduction of the HN model, we replace the persistent sodium current,

IP, and the persistent potassium current,IK2, with a single passive currentI leak2 (Figure 31).

I leak2 = gleak2(Vm − Eleak2) (27)

wheregleak2 = −7.875nS andEleak2 = −64.5 mV.

This reduction was not possible before the introduction of integrate-and-fire mecha-

nisms because in the superthreshold region the combination ofIP and IK2 was not nearly

linear.
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Figure 33: Comparing FULL and R3 models intrinsic bursting.
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gleak was set to 8.5 nS in order to create balanced oscillations in the FULL-R3 half-

center oscillator.

This reduced model was able to produce both tonic firing (Figure 32) and intrinsic burst-

ing (Figure 33) that were very similar to the R2 model. The period, duty cycle, and slow-

wave characteristics in the FULL – R3 half-center oscillator were very similar to the FULL

– FULL half-center. As in the FULL – R2 half-center oscillator, the spike frequency char-

acteristics of the reduced model were noticeable higher than those of the the FULL model.

3.2.6 Discussion

We have successfully reduced our FULL neuron model to create three reduced neuron

models: R1, R2, and R3. The R1 model retains the physiologic character of the FULL

model, albeit with a smaller set of state variables and ionic currents. The R2 model replaces

the physiologic spiking mechanisms with integrate-and-fire mechanisms, creating a model

with both mechanistic and empirical components. The R3 model replaces two active ionic

currents with a single passive current.

All three reduced models were able to produce both intrinsic bursting and tonic spiking

activities, similar to the FULL model. In this sense, all three reductions are "good" reduc-

tions of the original model. In the following chapter, we will investigate the ability of the

models to produce robust and flexible activity in half-center oscillators, we will investigate

how parameter variation effects the reduced models, and we will validate our modeling

studies using a hybrid half-center oscillator.
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CHAPTER IV

FUNCTIONAL ROLE OF MODEL COMPLEXITY IN

HALF-CENTER OSCILLATORS

Neural systems are presumed to produce activity that is bothrobustandflexible. They are

robust in the sense that they function despite changes in their environment, such as changes

in temperature, ionic concentrations, transcription errors, etc. They are flexible in that they

are able to produce a rich variety of behaviors in order to achieve their function.

In order to accurately reproduce the function of neural systems, a neuronal model sys-

tem must also be robust and flexible. In a hybrid neural system, robustness and flexibility

are necessary because without them the functionality of the system will be extremely lim-

ited. The primary goal of this thesis is to evaluate how model complexity contributes to

the functionality of hybrid systems built from both model neurons and living neurons; ro-

bustness and flexibility are our metrics for evaluating the functional performance of the

system.

Unfortunately, given the experimental overhead involved, we cannot fully evaluate

these metrics within the context of our hybrid system. Instead, we will create threeasym-

metric model oscillators that emulate a hybrid system. In these asymmetric oscillators, a

reduced model neuron will be coupled to a FULL model neuron; the FULL model neuron

will serve as the "biological equivalent" in the system. We will then perform a first-order

parameter sweep of the maximal conductances in each asymmetric oscillator, and evaluate

the robustness and flexibility of each model system. We will then use the hybrid system to

validate a subset of our simulations of asymmetric model oscillators.
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4.1 Robustness and Flexibility Metrics

Neural systems are considered to berobust: they function despite changing input condi-

tions. For example, all neural systems are subject to biological "noise": internal variations

in ion concentrations, errors in protein transcription, the presence of modulatory agents,

varying synaptic input, etc. A neural system must be able to function in spite of these

ever-changing conditions.

Neural systems are also considered to beflexible: they produce a rich variety of out-

puts in order to achieve their function. In a locomotor system, for example, the network

may produce different patterns of activity depending on whether the animal is walking or

running.

In order to assess the robustness and flexibility in our model networks, we must first

define quantitative measurements of robustness and flexibility. Our robustness metric will

describe the range of inputs over which the model functions, an approximation of the size

of the system’s input space. Our flexibility metric will describe variability in the model’s

outputs over its functional range, an approximation of the size of the system’s output space.

4.1.1 Robustness Metric

The robustness of a system describes the size of the systems input space over which the

system functions. We assume that the function of a half-center oscillator is to produce half-

center oscillations. The inputs to our system are the system parameters: maximal conduc-

tances, reversal potentials, time constants, etc. Our robustness metric therefore describes

the range of model parameters over which the system produces half-center oscillations.

For each parameterp investigated, we will produce arobustness score, r:

r = 50×
(
log

(
pmax

pmin

))
(28)

wherepmin is the lowest value of the parameter where the system produces half-center
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oscillations, andpmax is the largest value where the system produces half-center oscilla-

tions. pmin is greater than or equal to 0.1 times the canocial paramter value. A score of

100 indicates that the model produces half-center oscillations from 0.1 times the canonical

parameter value to 10 times the canonical parameter value.

4.1.2 Flexibility Metric

The flexibility of a system describes the variability in the system’s output over its functional

range. The functional range is determined by the range of parameters over which the system

produces half-center oscillations. The output of our system is taken to be the measurements

of the burst characteristics: period, duty cycle, etc. In order to assess variability of the

system’s output, we will use a statistical method known as principal component analysis

(PCA).

PCA is a data reduction method in which a number of possibly correlated variables are

transformed into a new set of uncorrelated variables, which are called theprincipal compo-

nents. The first principal component will account for as much of the variance between the

variables as possible; it is often a weighted mean of all the variables. The second principal

component accounts for as much of the remaining variance as possible, and so on, until all

the variance in the data is accounted for.

Although the number of principal components returned is equal to the original number

of variables, most of the variance in the data will often be explained by the first few princi-

pal components. PCA thereby gives us a method to assess the overall amount of correlation

in the data, an approximation of the size of the space spanned by the data. In the case of

our neuron models, it gives us an approximation of the number of independent outputs that

the system can produce. For example, if the oscillator period, duty cycle, and mean spike

frequency could all be controlled independently, we would expect more principal compo-

nents would be needed to explain the variance of the model’s output than if the period and

mean spike frequency were correlated.
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We must note that there is no standard method for interpreting the results of PCA. In

order to turn the results of PCA into a measure of oscillator performance, we chose to use

the 95% level of variance explained; that is, how many principal components are needed

to explain 95% of the variance in the data. A data set where three principal components

are needed to explain 95% of the variance in the data is judged to have fewer modes of

operation than a data set where five principal components are needed. Therefore, the more

principal components needed to explain 95% of the variance, the lessflexiblewe will con-

sider the model to be.

We perform PCA on twelve measures of the half-center oscillator activity: period, duty

cycle, burst duration, inhibited duration, mean spike frequency, median spike frequency,

initial spike frequency, peak spike frequency, final spike frequency, phase of peak spike

occurrence, number of spikes per burst, peak of the slow-wave, and trough of the slow-

wave. The PCA was performed on the combined data set from the FULL and reduced

neuron in the oscillator, for a total of 25 measures (period is identical for both neurons in a

half-center oscillator).

4.2 Asymmetric Half-Center Oscillators

Our ultimate goal is to determine how model complexity effects the robustness and flexi-

bility of a hybrid half-center oscillator. Unfortunately, assessing robustness and flexibility

within the context of a hybrid system would be very difficult, if not impossible. Our present

interfacing techniques have several problems associated with them: the time required for

dissection and preparation of the ganglia, the low probability of an electrode stick of suf-

ficiently high resistance, and the limited life of a heart interneuron after microelectrode

penetration. This overhead prohibits the large-scale parameter variations needed to fully

assess the robustness and flexibility of the system. Furthermore, because our measurement

of flexibility is based on the variability of the data, it is likely that the inherent variability

between biological preparations, which is considerable, may overshadow any effect due to
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model reduction.

In order to assess how model reduction might affect the robustness and flexibility of

hybrid systems, we will utilize a model system that emulates a hybrid system. We will

constructasymmetricmodel half-center oscillators. In each of these oscillators, one of the

reduced models will be coupled to a FULL model neuron; the FULL model will serve as

a "biological analogue". We will then vary the maximal conductances of both the FULL

and reduced model in each oscillator, and evaluate how the robustness and the flexibility of

the oscillators change as the model complexity is reduced. We will then use the the hybrid

system to validate a subset of these studies. If the hybrid system reproduces the results

of these studies, we can be reasonably well assured that the conclusions drawn from the

models can be adequately applied to the hybrid system.

4.2.1 Asymmetric Model Half-Center Oscillators with Canonical Parameters

Using the models described in the previous chapter, we constructed four asymmetric half-

center oscillators. In each model half-center, a FULL model neuron was coupled to another

model neuron, either another FULL model neuron or one of the three reduced model neu-

rons. As described in the previous chapter, the parameters of each reduced model were

tuned in order to produce balanced oscillations with the FULL model; for each reduced

model, this set of parameters is referred to as the canonical parameter set.

The canonical activity of all four oscillators is shown in Figure 34. The most notable

difference between the model oscillators is that the period increases from 8.3 s in the FULL

– FULL oscillator to 10.8 s in the FULL – R3 oscillator. Because of the use of IAF mecha-

nisms in the R2 and R3 models, the spike shape of the R2 and R3 models is noticeably dif-

ferent than in the FULL and R1 models. The shape of the underlying slow-wave, however,

is largely unchanged as the model complexity is reduced, indicating that our reductions

have not significantly effected the models’ slow variables.

The measured characteristics of the model oscillators are compared in Tables 1 and
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Figure 34: Comparing full and reduced half-center oscillators at canonical parameter val-
ues. A. FULL – FULL half-center oscillator.B. FULL – R1 half-center oscillator.C.
FULL – R2 half-center oscillator.D. FULL – R3 half-center oscillator.

2. For both the FULL and the R1 model in the FULL – R1 oscillator, the period, duty

cycle, spike frequencies, and slow wave characteristics are very similar to those observed

in the FULL – FULL oscillator. In addition, these characteristics are all very similar to the

previously published modeling studies [14], indicating that our FPGA implementation has

not significantly altered the behavior of the model.

As compared to the FULL – FULL and FULL – R1 oscillator, the period of the FULL

– R2 oscillator is increased. The spike frequency characteristics of the R2 neuron are

increased as well; the mean, peak, and initial spike frequency of the R2 neuron are notice-

ably higher than for the FULL and R1 neurons. The escape frequency of the R2 neuron (the
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Table 1: Canonical oscillation for different half-center oscillators. Data are taken from the
FULL model of the asymmetric half-center oscillators.

Original FULL – FULL FULL – R1 FULL – R2 FULL – R3
Model[14] HCO HCO HCO HCO

period (s) 8.6± 0.1 8.3± 0.2 8.0± 0.2 9.6± 0.0 10.8± 0.0
duty cycle 0.50± 0.02 0.51± 0.29 0.53± 0.25 0.50± 0.05 0.50± 0.0
meanf (Hz) 12.9± 0.6 13.0± 0.6 13.4± 0.5 13.4± 0.1 12.4± 0.0
initial f (Hz) 12.4± 5.9 13.0± 5.8 15.5± 4.8 17.4± 2.3 17.2± 2.4
peakf (Hz) 17.6± 1.0 17.5± 1.0 18.0± 1.1 18.2± 0.6 18.0± 0.9
escapef (Hz) 10.3± 0.7 10.3± 0.9 10.6± 0.9 10.3± 0.1 10.3± 0.1
sw peak (mV) −41 −40.5± 1.6 −40.5± 1.3 −40.7± 0.6 −41.1± 0.3
sw trough (mV) −59 −58.2± 0.2 −58.7± 0.1 −60.1± 0.0 −60.4± 0.0

spike frequency of the opposing cell at which the R2 neuron begins its burst) is unchanged

in the FULL – R2 model. The spike frequency characteristics of the FULL neuron in the

FULL – R2 oscillator are essentially unchanged from the FULL – FULL and FULL – R1

oscillators. The trough of the slow wave for the FULL neuron decreases slightly in the

FULL – R2 oscillator, most likely due to the increased spike frequency in the R2 neuron.

Finally, the standard deviations of all measurements except the initial spike frequency de-

crease in the R2 model; the activity of the FULL – R2 oscillator is less variable than in the

FULL – FULL and FULL – R1 oscillators.

The FULL – R3 model has the longest period of all four oscillators, and the R3 model

has the highest mean and peak spike frequencies of all four models. The escape frequency

of the R3 is lower than in the other models, indicating that the R3 model can not as easily

escape from inhibition as the other modelsThe spike frequency and slow-wave characteris-

tics of the FULL model in the FULL – R3 oscillator are all essentially unchanged from the

FULL – R2 oscillator.

These data demonstrate that the R1, R2, and R3 reduced models are all able to form

half-center oscillators with the FULL model. The membrane potential waveforms of all

four oscillators have a qualitatively similar structure, although there is an increased period

in the FULL – R2 and FULL – R3 oscillators. The measured characteristics of the FULL
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Table 2: Canonical oscillation data for reduced model in asymmetric half-center oscilla-
tors.

Original FULL – FULL FULL – R1 FULL – R2 FULL – R3
Model[14] HCO HCO HCO HCO

period (s) 8.6± 0.1 8.3± 0.2 8.0± 0.2 9.6± 0.0 10.8± 0.0
duty cycle 0.50± 0.02 0.51± 0.03 0.49± 0.03 0.49± 0.01 0.49± 0.0
meanf (Hz) 12.9± 0.6 13.0± 0.6 13.6± 0.4 18.2± 0.2 23.0± 0.2
initial f (Hz) 12.4± 5.9 13.0± 5.8 14.6± 7.0 24.1± 6.5 22.8± 8.5
peakf (Hz) 17.6± 1.0 17.5± 1.0 20.6± 1.4 26.9± 0.8 35.3± 0.7
escapef (Hz) 10.3± 0.7 10.3± 0.9 10.5± 1.0 10.2± 0.1 9.3± 0.3
sw peak (mV) −41 −40.5± 1.6 −40.5± 1.3 −40± 1.3 −40.6± 0.1
sw trough (mV) −59 −58.2± 0.2 −58.7± 0.1 −58.4± 0.2 −59.1± 0.0

model in these oscillators are all generally unchanged as the complexity of the opposing

neuron is reduced. In the FULL – R2 and FULL – R3 oscillators, the spike frequency

characteristics of the reduced model is noticeably higher than in the FULL –R1 oscillator.

Overall, we think that these data demonstrate that the asymmetric reduced model oscilla-

tors are all able to reasonably reproduce the characteristics of the FULL – FULL model

oscillator, at least at canonical parameters. We will now examine the performance of the

reduced oscillators when the parameters of the model are varied.
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Table 3: Robustness scores for parameter variation in FULL model. For each conductance,
the parameter score is equal to50× log(pmax/pmin) wherepmax andpmin are the maximum
and minimum of the parameter range over which the oscillator function. A score of 100
indicates that the oscillator operates from .1 to 10 times the canonical parameter value.

Parameter Full – Full HCO Full – R1 HCO Full – R2 HCO Full – R3 HCO
ḡNa 63.0 63.0 52.0 56.2
ḡP 4.4 4.9 5.8 2.4
ḡCaF 100.0 97.8 90.6 83.6
ḡCaS 72.7 75.3 96.7 100.0
ḡK1 79.8 57.6 70.7 96.9
ḡK2 12.2 12.2 47.7 63.9
ḡKA 69.0 71.6 96.5 47.1
ḡh 100.0 100.0 100.0 100.0
gleak 11.6 10.2 55.9 53.2

4.2.2 Parameter Variation in Full Model

There is a great degree of variability among living neurons. Even neurons with the same

functional role in a network may have significantly different morphologies or ion channel

concentrations. In a hybrid system, it is of critical importance the model component of the

system function despite variance in the biological component.

We will use our asymmetric model oscillators to assess how the performance of the

reduced models might be effected by biological variability in hybrid systems. For each

asymmetric half-center oscillator, each maximal conductance in the FULL model is var-

ied from 0 nS to 10 times its canonical value, while keeping all other parameters at their

canonical values. We will evaluate the robustness and flexibility of each oscillator in order

to determine how the system’s function is effected by model reduction.

Robustness

The parameter ranges over which the oscillators function are shown in Figure 35.

The robustness scores for the four asymmetric half-center oscillators are shown in Table

(Table 3). There is no consistent effect of reducing the complexity of the model on the

parameter range where the model produces half-center oscillations. The functional ranges
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Figure 36: Flexibility assessment for parameter variation in FULL model. Bars represent
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of ḡNa andḡCaF are reduced when the complexity of the opposing cell is reduced. The func-

tional ranges of̄gCaS and ḡK2 increase as the complexity of the opposing cell is reduced.

The functional range of̄gh is unaffected by model reduction. The functional range of the

other maximal conductances constricts or expands at different stages of model reduction.

Because there does not appear to be any consistent overall effect of model reduction on the

parameter ranges of the FULL model, it stands to reason that all of our reduced models

should be able to form hybrid half-center oscillators when coupled to a biological neuron.

Flexibility
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The results of our flexibility analysis are shown in Figure 36. For all of the model oscil-

lators, 95% of the variance in the data was explained by six or seven principal components.

When the maximal conductances of the FULL model are varied, there is essentially no

difference in the results of PCA between the four half-center oscillators oscillators. This

finding indicates that although reducing the model can constrict or expand the functional

range of the parameters, no significant modes of activity are lost or gained.

Discussion

The results presented here demonstrate that the reduced model neurons are all capable

of creating a half-center oscillations when coupled to a FULL model neuron. The overall

robustness of the system, as determined by the parameter ranges of the FULL neuron where

the model produces half-center oscillations, does not appear to be substantially effected by

model reduction.

We must note, however, that the robustness of the system to variation in a single para-

meter can be substantially effected by model reduction. This affect was most notable in the

cases of̄gCaF, whose functional range was decreased as the model complexity was reduced,

andḡK2, whose functional range was increased as the model complexity was reduced. Fur-

thermore, it is very likely that the robustness of the system is dependent upon the location

of the canonical parameter point in the system’s parameter space. The system can exhibit

its canonical activity at different points in its parameter space; a more thorough analysis of

the system’s robustness would need to examine the system using different canonical para-

meter sets. Unfortunately, we were not able to examine the system in such detail in these

studies.

The overall flexibility of the system, as determined by PCA, did not noticeably increase

or decrease as the model complexity was reduced. As with our robustness measurement, a

caveat to this finding is that the results may be dependent on the location of the canonical

parameter point in the system’s parameter space. Another caveat is that we have only

analyzed the overall flexibility of the system; the flexibility of the system in the face ofḡh

86



variation, for example, may be altered as the model complexity is reduced.

Nonetheless, the overall robustness and flexibility of the asymmetric oscillators do not

appear to be significantly altered as the model complexity is reduced. This finding indicates

that there should be no difficulty in creating hybrid oscillators using our reduced model

neurons, and that the functional role of the biological neuron in these hybrid systems will

not be significantly altered as the complexity of the model neuron is reduced.
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4.2.3 Parameter Variation in Reduced Models

The primary rationale for creating hybrid systems is that the model component provides

access to controls that are not accessible through other techniques. In future medical ap-

plications, this control will allow the model component to modulate the activity of the

biological network, curtailing the affects of traumatic injury or disease. In scientific inves-

tigations, this control allows the investigator to examine the functional effects of specific

neuronal components. In either of these cases, it is desirable that the model component

be both robust and flexible. A high level of robustness means that the system will be able

to function over a large range of parameters, and a high level of flexibility means that the

system can produce a variety of outputs in order to achieve its function.

We will now use our asymmetric model oscillators to assess the potential for reduced

models to produce robust and flexible activity in hybrid half-center oscillators. In the re-

duced model of each asymmetric half-center oscillator, we individually varyḡCaS, ḡh, and

gleak from zero to ten times their canonical value while keeping all other parameters at their

canonical values. We chose these parameters as the focus of our study because they are

retained across all three model reductions. After examining the individual effects of each

parameter on the network activity, we will compare the effect of parameter variation on the

overall robustness and flexibility of system.

Variation of ḡh in reduced models

The affect of varyingḡh on the oscillator period, duty cycle, mean spike frequency and

escape frequency is shown in Figure 37. There is no significant affect of model reduction on

the role ofḡh in the system. The only difference between the four model oscillators occurs

for the FULL – R2 oscillator, where the functional range ofḡh is noticeably decreased.

This reduction in the range of̄gh is due to a peculiar interaction of the ionic currents.

Large amounts ofIh cause the neuron to rapidly overcome inhibition. This rapid escape

from inhibition, however, does not allow for sufficient removal ofICaS inactivation before

Ih deactivates. The lack of removal ofICaS inactivation means that less depolarizing current
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Figure 37: Effect of varyingḡh in reduced models.A.Oscillator period, which is the same
for both neurons in a half-center oscillator.B. Duty cycle for the reduced model neuron.
C. Mean spike frequency of the reduced neuron.D. Escape frequency of reduced model
neuron (the final spike frequency of the FULL model neuron)

is available to driveVm to the firing threshold. These combined effects together cause

the R2 neuron to be unable to escape from inhibition. This problem disappears in the R3

model because replacingIP and IK2 with a passive current provides a slight decrease in

hyperpolarizing current between -45 and -40 mV (Figure 31), which helps the neuron to

reach its firing threshold.
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Figure 38: Effect of varyingḡCaS in reduced models.A.Oscillator period, which is the
same for both neurons in a half-center oscillator.B. Duty cycle for the reduced model
neuron.C. Mean spike frequency of the reduced neuron.D. Escape frequency of reduced
model neuron (the final spike frequency of the FULL model neuron)

Variation of ḡCaS in reduced models

The affect of varyingḡCaS on the oscillator period, duty cycle, mean spike frequency

and escape frequency is shown in Figure 38. There is little difference on how̄gCaS effects

the FULL – FULL and FULL – R1 oscillators. IncreasinḡgCaS causes an increase in the

oscillator period and the duty cycle of the modified cell. AsḡCaS increases, there is an

initial increase in the mean spike frequency of the modified neuron, followed by a gradual

decrease. The escape frequency of the modified neuron dramatically decreases at a certain

point, but otherwise remains constant. This transition is due to the appearance of "plateau-

like" oscillations, where the modified neuron becomes severely depolarized and as a result
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Figure 39: Typical oscillator activity with increasinḡgCaSin FULL—FULL model half-
center oscillator. The unmodified neuron (ḡCaS = 3.2 nS) is shown in blue. The modified
neuron is shown in red. The activity in the FULL-R1 half-center was very similar to that of
the FULL – FULL model.A. ḡCaS = 2 nS.B. ḡCaS = 3.2 nS (canonical)C. ḡCaS = 10 nS.
Note the appearance of "plateau-like" oscillations in the modified neuron.

cannot fire action potentials (Figure 39). In the R2 and R3 models, however, this type of

activity is not possible because of the resetting ofVm after a spike event (Figures 40 and

41).

The relationship between̄gCaS and the oscillator period is dramatically effected by the

introduction of IAF mechanisms, as are the duty cycle and spike frequency relationships.

IncreasinḡgCaS in the R2 neuron causes an increase in the duty cycle of the R2 neuron with

the period initially remaining relatively constant. This change can be seen in the activity

traces shown in Figure 40. When̄gCaSexceeds 13 nS, there is a sharp increase in the period

of the oscillator. In the R3 neuron, the duty cycle increases in a manner similar to the R2
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Figure 40: Typical oscillator activity with increasinḡgCaSin FULL—R2 model half-center
oscillator. The FULL neuron is shown in blue. The R2 neuron is shown in red.A. ḡCaS = X
nS.B. ḡCaS = 5.375nS (canonical)C. ḡCaS = X nS.

model. With low values of̄gCaS, the period is very long. IncreasinḡgCaS initially causes the

period of oscillation to decrease. After this initial decrease in period, the R3 model behaves

similarly to the R2 model: the period remains relatively constant with increasingḡCaS, then

sharply increases before the oscillations terminate.

In both the R2 and R3 models, large increases inḡCaScause the oscillations to terminate.

Even thoughICaS inactivates at depolarized membrane potentials, there is still someICaS

present. When̄gCaS is large, the contribution ofICaS is sufficient to keep the IAF model

neurons firing at a rate from which the FULL model can not escape.
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Figure 41: Typical oscillator activity with increasinḡgCaSin FULL—R2 model half-center
oscillator. The FULL neuron is shown in blue. The R3 neuron is shown in red.A. ḡCaS = X
nS.B. ḡCaS = 5.375nS (canonical)C. ḡCaS = X nS.
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Figure 42: Effect of varyinggleak in reduced models.A.Oscillator period is the same
for both neurons in a half-center oscillator.B. Duty cycle for the reduced model neuron.
C. Mean spike frequency of the reduced neuron.D. Escape frequency of reduced model
neuron (the final spike frequency of the FULL model neuron)

Variation of gleak in reduced models

The effects of varyinggleak on the oscillator period, duty cycle, mean spike frequency

and escape frequency are shown in Figure 42. In all models, increasinggleak causes a de-

crease in the duty cycle and mean spike frequency of the modified neuron. In the FULL and

R1 reduced models, these changes are associated with an sharp decrease in the oscillator

period at low values ofgleak, whereas in the R2 and R3 models these changes are associated

with a sharp increase in the oscillator period at high values ofgleak. Changes ingleak have

little effect on the escape frequency of the neuron.

Robustness
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system produces half-center oscillations.
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Table 4: Robustness scores for parameter variation in reduced models. For each con-
ductance, the parameter score is equal to50 × log(pmax/pmin) where pmax and pmin are
the maximum and minimum of the parameter range over which the oscillator function.
A score of 100 indicates that the oscillator operates from .1 to 10 times the canonical
parameter value.

Parameter Full – Full HCO Full – R1 HCO Full – R2 HCO Full – R3 HCO
ḡCaS 72.7 68.7 27.9 25.1
ḡh 100.0 100.0 83.7 100.0
gleak 11.6 13.5 6.1 3.6

The functional parameter ranges of the reduced models over which the asymmetric os-

cillators function are shown in Figure 43. The robustness scores for the various parameters

are given in Table 4. For both̄gCaSandgleak, there is a significant decrease in the robustness

score as the model complexity is decreased. The most notable change in these robustness

scores occurs between the R1 and R2 models, the point at which the conductance-based

spiking mechanisms are replaced with integrate-and-fire mechanisms. The functional range

of ḡh fully spans the region from .4 to 40 nS in the FULL – FULL, FULL – R1, and FULL

– R3 oscillator; in the FULL – R2 oscillator, the functional range ofḡh is restricted, due

to the interaction explained above. It appears, therefore, that the overall effect of model

reduction is to constrict the range of parameters over which the system functions.

Flexibility

The results of our flexibility analysis are shown in Figure 44. In the FULL, R1, and

R3 models, 95% or more of the variance in the data is explained by the first six principal

components, similar to when the maximal conductances were varied in the FULL model.

In the R2 model, 95% of the variance was explained by the first 5 principal components.

This decrease in the flexibility of the FULL – R2 oscillator’s output is most likely due to

the shortened range of̄gh.

This result is somewhat surprising, because we observed that replacing the physiologic

spiking mechanisms with IAF mechanisms eliminated a particular mode of oscillation: the

"plateau-like" oscillations seen in the FULL and R1 models. If we apply our flexibility
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Figure 44: Principal component analysis of half-center oscillation when maximal conduc-
tances are varied in the reduced model. Bars indicate the contribution of each principal
component to explaining the variance in the data. Lines indicate the total amount of vari-
ance explained. The dashed horizontal line indicates where 95% of the variance in the data
has been explained.

assessment only to the data from̄gCaSvariation, instead of to the entire data set, we observe

that there is a definite reduction in the flexibility of the system in the FULL – R2 and FULL

– R3 oscillators (Figure??). This alteration in the system’s flexibility does not appear in

our analysis of the overall system flexibility because it is overshadowed by the variance

introduced bygleak andḡh.

Discussion

As was the case when parameters were varied in the FULL model, it is apparent that

we must consider the effect of model reduction on each parameter on a case-by-case basis.

Reducing the complexity of the model caused a decrease in the robustness of the system to
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variation inḡCaSandgleak. The robustness of the system toḡh variation was effected only in

the R2 model.

As we discussed in the previous section, it would also be advantageous to examine the

functional parameter space of the system in a more global fashion. The robustness of the

system to variation in a particular parameter is likely effected by our choice of a canonical

parameter point; a more global analysis of the model would inform us whether or not the

results at this parameter point are typical of the system as a whole.

Although there was a clear restriction in the functional ranges of the inputsḡCaS and

gleak, there was little overall change in the flexibility of the models as determined by PCA.

The notable difference was in the FULL – R2 model, where the restriction ofḡh appeared

to reduce the flexibility of the model somewhat.
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4.3 Validation of Reduced Models Using Hybrid Systems

The results from our modeling studies indicate that a reduction in model complexity can

effect the robustness of the system to parameter variation in the model. The model studies

also demonstrated that the flexibility of such systems may be altered by model reduction.

But do these results hold true for actual hybrid systems?

Unfortunately, directly assessing robustness and flexibility within the context of a hy-

brid system would be impossible. The experimental overhead and limited time available to

work with an individual preparation preclude using large-scale parameter sweeps in hybrid

systems. Furthermore, the lack of a means to account for the variability among biological

neurons severely decreases the utility of our robustness and flexibility metrics.

We can use the hybrid system, however, to validate some of the predictions from our

model. We demonstrated this ability in Chapter 2 where we examined the functional role of

ḡh in both the hybrid system and mathematical model oscillator. The effect ofḡh on the os-

cillatory characteristics was the same in both the model system and the hybrid system; this

similarity validated our ability to apply predictions from the model to the hybrid system.

The effects ofḡh variation on oscillator period, duty cycle, and spike frequency char-

acteristics was nearly identical in all of our asymmetric model oscillators; the effects were

also what we observed and validated in Chapter 2. We can therefore be reasonably well

assured that all of our model oscillators correctly describe the role ofḡh in determining

network activity.

In asymmetric model oscillators, the reduction of the HN model had a significant effect

on the role of̄gCaS. In the R3 and R4 reduced models, the dynamic range ofḡCaSis shortened

as compared to the FULL and R1 models. The FULL and R1 models have a very similar

relationship in howḡCaS effects the oscillation characteristics, and the R2 and R3 models

have a very similar relationship in how̄gCaS effects the oscillation characteristics. There

is, however, a noticeable difference between the first two and the last two models in how

ḡCaSeffects the oscillation characteristics. Notably, the range ofḡCaSover which the system
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operates is constricted in the R2 reduction stage, and the effect ofḡCaSon oscillator period,

duty cycle, and spike frequency characteristics is noticeably different.

In order to validate these modeling results, we created a hybrid half-center oscillator

using the R1 and R2 reduced models, and variedḡCaS of the model neuron. We chose to

utilize only the R1 and R2 models in our hybrid systems because it was at the reduction

from R1 to R2 that we observed the most noticeable change in oscillator behavior. We chose

to study the effect of ḡCaS on oscillations because it was the parameter most influenced by

the reduction from R1 to R2.

For both the R1 and R2 model neuron, we created four separate hybrid system prepara-

tions. In the R1 model hybrid oscillator we varȳgCaS over four points: 2, 4, 8, and 16 nS.

In the R2 hybrid oscillator we varȳgCaSover these points as well as 5.375 nS, the canonical

value ofḡCaS for the R2 model.

4.3.1 Using FPGAs in Hybrid Systems

The creation of hybrid systems requires the model used to operate in real-time. In real-time

operation, a simulation step size of1× 10−4 s must take1× 10−4 s to compute. Otherwise,

the model will run to fast or too slow for its output to correlate with the physical system

with which the model interacts. In order to achieve real-time performance with the FPGA,

several modifications to our previous methods were necessary.

Second, because the lowest possible FPGA clock frequency (20 MHz) provides per-

formance far in excess of real-time it was necessary to modify the FPGA model neuron

architecture.

First, the FPGA was no longer run with a single-stepped clock. As stated previously,

the hardware co-simulation functionality provided with the Xilinx XtremeDSP package

was necessary in order to run scripted simulations with the neuron models. It was also

necessary to run the model using a single-stepped clock; that is, the Simulink clock and the

FPGA clock needed to be synchronized. Othewise, we did not obtain correct output from

100



the neuron model. This synchronization is accomplished by having Simulink generate the

clock signals for the FPGA. Unfortunately, this method means that the user of the model

has no control over the clocking speed of the FPGA. Additionally, the clock speed can vary

greatly as the resource load on the PC changes. Therefore, in order to obtain true-real time

operation the FPGA was run infree-runningclock mode, where the clock frequency of the

FPGA is explicitly set before the model is run.

Second, because the lowest possible FPGA clock frequency provides performance far

in excess of real-time it was necessary to modify the FPGA model neuron architecture. The

minimum possible free-running clock frequency is 20 MHz. This limitation is built into the

FPGA development system, and cannot be overcome. At this frequency, the model, with a

simulation step size of1×10−4 s, will run at approximately 2000 times real-time. There are

several possible ways to modify the model in order to obtain real-time performance. One

would be to reduce to the simulation step size to5 × 10−8. This method, however, would

require significant changes to the precisions of time constants and state variables within

the model, so we did not pursue it. Instead, we modified the state variable integrators so

that they were enabled for only 1 out of every 2000 clock cycles. This method proved very

simple to implement, and produced true real-time results from the FPGA.

Third, because we wanted only one model to interact with a living neuron at a time, we

no longer pipelined multiple models through the FPGA.

Finally, in order to interface with the electrophysiology equipment, we added the DACs

and ADCs to our model. The membrane potential of the living neuron was input to the

model through one of the two dedicated ADCs. The membrane potential and the synaptic

current signal for the living neuron were output using the two dedicated DACs.

A schematic deptiction of the FPGA-based hybrid system is shown in Figure 45. All

electrophysiology, data acquisition, and data analysis methods are the same as those used

in Chapter 2.

101



Voltage amplification &
current injection

HNHN

Vm

ISyn

Heart Interneuron (HN)

Bicuculline

FPGA Development Board

...dVm

dt
=

HN Models
(FULL, R1,

R2, R3)

Dynamic
Clamp

A/D

D/A

Figure 45: FPGA-based hybrid system design.
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4.3.2 ḡCaS in the R1 model.

With canonical parameters (ḡCaS = 4 nS), the R1 hybrid half-center oscillator produced

rhythmic oscillations in all four experiments. The period was6.6 ± 2.2 s, the duty cycle

was0.47± 0.17, and the mean spike frequency was20.9± 3.5 Hz. The escape frequency

was7.9± 3.8 Hz.

As predicted by our modeling studies, increasingḡCaS shows a consistent increase in

the oscillator period (Figure 46), although only the first group (at 2 nS) was significantly

different from the others (p< .05). Also, the oscillator period is significantly shorter for the

hybrid half-center oscillator than for the model half-center. This phenomenon was observed

in the silicon neuron hybrid system used in Chapter 2; as we discussed then, this shortening

of the period is most likely due to the effects of sharp microelectrode penetration, which

decreases the membrane time constant and limits the efficacy of spike mediated synaptic

transmission.

IncreasingḡCaS from 2 to 4 nS causes a slight decrease in the duty cycle of the model;

this difference, however, was not statistically significant. The increase in duty cycle be-

tween 4 and 8 nS was both significant and similar to the increase predicted from our mod-

eling studies, although the range of duty cycles observed was smaller than that predicted

from modeling.

There was a significant increase in mean spike frequency from 2 to 4 nS, and from 4

to 8 nS. There was no significant change in mean spike frequency from 8 to 16 nS. This

change was similar to that predicted by modeling, although we did not see the decrease in

spike frequency from 8 to 16 nS as we saw in the model half-center. Additionally, the mean

spike frequency was noticeably higher in the hybrid half-center than they were predicted

by modeling.

Finally, increasinḡgCaS from 4 to 8 nS caused a significant decrease in the escape fre-

quency of model neuron. The trend of this result is very similar to that predicted by mod-

eling, although the escape frequency is lower in the hybrid system.
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Figure 46: ḡCaS in R1 hybrid HCO.

The activity observed in the hybrid system is similar to that observed in the modeling

studies (Figure 47). As in the model, large values ofḡCaS cause the "plateau-like" oscilla-

tions in the model, where the model becomes so depolarized that it cannot fire.

Overall, the results from our HN – R1 hybrid system are very similar to what we expect

from our modeling studies of the FULL – R1 model oscillator.
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Figure 47: Hybrid oscillations with the R1 model.Vm of the heart interneuron is shown
in black. Vm of the R1 model neuron is shown in blue.A. ḡCaS = 2nSB. ḡCaS = 4 nS
(canonical value for R1 model)C. ḡCaS= 8 nS.
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4.3.3 ḡCaS in the R2 model.

With canonical parameters (ḡCaS = 5.375nS), the R2 hybrid half-center oscillator produced

rhythmic oscillations in all four experiments. The period was9.7 ± 2.7 s, the duty cycle

was0.59±0.11, and the mean spike frequency was32.5±3.2 Hz. The escape frequency of

the R2 neuron was6.2 ± 1.4. The period and mean spike frequency were all significantly

higher in the HN – R2 oscillator than in the HN – R1 hybrid oscillator; this increase,

however, is predicted by modeling. The mean duty cycle was higher for the HN – R2 hybrid

oscillator than in the HN – R1 hybrid oscillator, and the escape frequency was lower; these

differences, however, were not statistically significant.

The R2 hybrid half-center oscillator behaved very differently from the R1 hybrid half-

center (Figure 48). As predicted by the modeling studies, the R2 hybrid system did not

produce half-center oscillations when̄gCaS = 2 nS. IncreasinḡgCaS from 4 to 5.375 nS

caused a slight decrease in the period of oscillations, and increasingḡCaS to 8 nS caused

a slight increase in the oscillator period; neither of these changes were statistically signif-

icant, however. In the model oscillator, increasingḡCaS from 8 to 16 nS, caused a large

increase in the oscillator period. In the hybrid oscillator the oscillations also increased, but

not to the extent predicted by modeling.

As ḡCaS was increased from 4 to 8 nS, the duty cycle of the R2 neuron increased, in a

manner very similar to the duty cycle predicted by our modeling studies. IncreasingḡCaS

from 4 to 5.375 nS and from 5.375 to 8 nS caused a statistically significant increase in the

duty cycle. There was no statistically significant change in the duty cycle between 8 and

16 nS.

IncreasingḡCaS caused a large increase in the mean spike frequency of the R2 neuron.

As in the HN – R1 hybrid oscillator, the mean spike frequency of the reduced model neuron

in the hybrid oscillator was much higher than that predicted by the model oscillator. This

difference is especially noticeable forḡCaS = 16 nS. This very high spike frequency is un-

doubtedly due to the fact that, in the R1 model, the conductance-based spiking mechanisms
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place a limit on the maximum firing rate the neuron; without sufficient time to remove in-

activation fromINa, there is no way the neuron can fire another spike. This firm limit in

the inter-spike interval is often referred to as theabsolute refractory periodof the neuron.

When the conductance-based spiking mechanisms are replaced by IAF mechanisms, how-

ever, there is no such limit to the spike frequency;Vm only needs to exceedVthresh in order

for a spike to occur. Thus, with an large increase in the depolarizing currentICaS, the neu-

ron fires at a very high frequency, and the mean spike frequency of the R2 neuron increases

substantially with increasinḡgCaS.

Overall, the escape frequency of the R2 neuron is lower than that predicted by model-

ing. Overall, there is little change in the escape frequency asḡCaS is increased. Although,

increasinḡgCaSfrom 4 to 5.375 nS does cause a significant increase in the escape frequency

of the R2 neuron, there was no statistically significant difference in the escape frequency

whenḡCaSwas increased above 5.375 nS.

Overall, the oscillations observed in the HN – R2 hybrid oscillator were very similar

to what we observed in the FULL – R2 model oscillator (Figure 49). The period remains

relatively constant as̄gCaSincreases, while the duty cycle of the R2 model neuron noticeably

increases.
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Figure 48: ḡCaS in R2 hybrid HCO.
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Figure 49: Hybrid oscillations with the R2 model.Vm of the heart interneuron is shown in
black.Vm of the R2 model neuron is shown in red. Unlike the R1 model, half-center oscil-
lations were not produced when̄gCaS = 2nS.A. ḡCaS = 4nSB. ḡCaS = 5.375 nS (canonical
value for R2 model)C. ḡCaS= 8 nS.
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4.3.4 Discussion

These experiments provide validation of our reduced models. As was predicted from our

modeling studies, both the R1 and R2 model neuron were able to create realistic half-

center oscillations when coupled to a living neuron. Furthermore, the relationships between

ḡCaS and oscillator period, duty cycle, and spike frequency characteristics were correctly

predicted by our modeling studies.

The R1 hybrid oscillator functioned when̄gCaSof the R1 model was set to 2 nS; the R2

hybrid oscillator did not. This result indicates that there is indeed some constriction of the

system’s input space when the model is reduced. As was the case with our modeling stud-

ies, however, we must admit that our experiments did not address the parameter space in

holistic fashion.ḡCaSwas the sole parameter varied; the parameters of the heart interneuron

are, of course, unknown.

As we observed in our hybrid experiments in Chapter 2, the absolute values for the

period, duty cycle, and spike frequency characteristics in our hybrid system are not what

we expect from our modeling studies. Thetrend of the these characteristics asḡCaS is

varied, however, is correctly predicted by the modeling studies. It appears, therefore, that

the functional role of̄gCaS in the hybrid oscillators is correctly represented by our model

oscillators.

4.4 Symmetric Half-Center Oscillators

The asymmetric half-center oscillators used in the previous studies are a useful tool to an-

alyze and understand how reduced neuron models might behave in a hybrid half-center

oscillator. The asymmetric parameter variation showed that model reduction had little ef-

fect on the functional range of parameters in the FULL model of the asymmetric oscillator,

but did reduce the functional range ofḡCaSandḡleak parameters in the reduced model of the

asymmetric oscillators. The overall flexibility of the model, however, did not noticeably

change as the model was reduced.
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There is a seeming contradiction in this result: although the size of the input space is

noticeably reduced by model reduction, the apparent size of the output space is not. It is

therefore possible that the presence of the FULL model neuron in the asymmetric model

oscillators acts to maintain the flexibility of the oscillators as its partner is reduced.

In order to test this hypothesis, we constructed threesymmetrichalf-center oscillators

for each of the three reduced models; we then asymmetrically variedḡCaS, ḡh, andgleak, as

we did with the asymmetric half-center oscillators. Although these models do not provide

a direct comparison with hybrid oscillators, they provide an insight into the functional

role of complexity that is important in development of hybrid systems: if the presence of

additional complexity in a model system helps to stabilize the robustness and flexibility

of that system, that additional complexity provided by a biological neuron may serve to

accomplish the same function in a hybrid system.
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Figure 50: Functional parameter ranges for symmetric oscillators. Each bar shows the
functional range of the parameter in the reduced models over which the system produces
half-center oscillations.

Robustness

The parameter ranges over which the symmetric reduced oscillators produce oscilla-

tions are shown in Figure 50. Robustness scores are given in Table 5. In the case of the

R3 – R3 model network, half-center oscillations were not produced with canonical para-

meter values. It was possible to produce half-center oscillations by increasinggleak in both

neurons of the oscillator, but because this change would be a departure from our previous

studies we chose not to do so.

As was the case with parameter variation in the reduced model of the asymmetric half-

center oscillators, decreasing model complexity from the R1 to the R2 model causes an
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Table 5: Robustness scores for parameter variation in symmetric oscillator models. For
each conductance, the parameter score is equal to50× log(pmax/pmin) wherepmax andpmin

are the maximum and minimum of the parameter range over which the oscillator function.
A score of 100 indicates that the oscillator operates from .1 to 10 times the canonical
parameter value.

Parameter Full – Full HCO R1 – R1 HCO R2 – R2 HCO R3 – R3 HCO
ḡCaS 72.7 79.8 20.1 —
ḡh 100.0 100.0 75.6 —
gleak 11.6 21.4 3.5 —

overall decrease in the ranges of the parameters where the model produces half-center

oscillations. Interestingly, the R1 – R1 oscillator appears to be slightly more robust than

the FULL – R1 osicllator. Furthermore, the robustness of the oscillator to variations inḡCaS

andgleak increases in the R1 – R1 oscillator as compared to the FULL – FULL oscillator.

In the R2 – R2 oscillator, the robustness of the system toḡCaS, ḡh, andgleak are all decreased

with respect to the FULL – R2 oscillator, indicating that for the R2 model, the presence of

the FULL model in the oscillator serves to increase the robustness of the system.

Flexibility

The results our flexibility assessment are shown in Figure 51. In the FULL – FULL

oscillator, six principal components were needed to account for 95% of the variance data.

In the R1 – R1 oscillator, five principal components were needed to account for 95% of

the variance in the data. In the R2 – R2 oscillator, 95% of the data were explained by

slightly more than four principal components. These results are noticeably different than

for the asymmetric reduced oscillators. In the asymmetric reduced oscillators, there was

little change in the flexibility of the model as the model was reduced. In the symmet-

ric oscillators, however, decreasing model complexity causes a noticeable decrease in the

number of principal components needed to explain 95% of the variance in the data; the

flexibility of the model is noticeably reduced for the reduced model oscillators. In addi-

tion, the flexibility of the R1 – R1 and R2 – R2 oscillators are lower than their asymmetric

counterparts.
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Discussion

The functional affects of model complexity are more apparent in the symmetric oscil-

lators than in the asymmetric oscillators. Replacing the physiologic spiking mechanisms

with IAF mechanisms causes a significant decrease in the robustness of the system. In the

case of the R3 – R3 oscillator, this decrease in robustness is so severe that the canonical

parameter point no longer lies within the system’s functional input space. It is interesting

to note, however, that the R1 – R1 oscillator is more robust than both the FULL – FULL

oscillator and the FULL – R1 oscillator. In this case, model reduction appears to increase

the size of the system’s functional input space.
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CHAPTER V

CONCLUSIONS

The goal of hybrid systems research is to develop systems that reproduce the function of

biological neural networks, either for the treatment of injury or disease, or for the creation

of engineered constructs that use neural properties for computation or interaction with the

physical world. In these systems, the living neurons provide the complex dynamics and

functionality that are necessary to reproduce biological phenomena, whereas the model

provides a means to manipulate and control the system. In order for these systems to

function, however, the the engineered component must be able to correctly interpret signals

from the nervous system, and produce signals that are functionally relevant to the nervous

system.

We have developed a hybrid half-center oscillator that consists of a single model neuron

coupled to a single biological neuron. The relative simplicity of this system allowed us to

ask fundamental questions regarding the role of neuronal mechanisms and model complex-

ity in the generation of neuronal activity. We have shown how a single neuronal property

can be used to control the activity of the system. We have shown how the hybrid system

can be used to validate neuronal models. Finally, we have shown how the complexity of

the model affects the robustness and flexibility of the system. These three findings are im-

portant for the development of next-generation hybrid systems in which neuronal models

will interact with larger-scale neural networks.

116



5.1 Regulation of Neuronal Network Activity by an Intrinsic
Current

Biological neural networks regulate their activity through numerous mechanisms. Ionic

currents, 2nd-messenger systems, and the transcription of proteins all play a role in deter-

mining how the nervous system behaves. In order to create engineered constructs that can

be used to modulate or control the activity of biological neural networks, it is critical to

understand how biological neural modulate and control their own activity.

Our hybrid system provides a novel method for investigating the role of neuronal prop-

erties in the generation of neural activity. The model provides a degree of control over

neuronal properties that is not possible with traditional techniques. The biological compo-

nent, however, provides a degree of realism and relevance that is much greater than with

modeling alone. By utilizing a physiologically realistic model in our hybrid system, we

can draw very strong conclusions about how neural networks can modulate their activity

using neuronal properties.

We investigated how the ionic currentIh regulates the activity of a half-center oscillator.

Increasinḡgh, the maximal conductance ofIh, caused the period of oscillations to decrease.

The decrease in oscillator period was caused by a decrease in the inhibited phase of the

modified neuron, indicating thatIh preferentially affects the inhibited phase of the oscil-

lation. Furthermore, we demonstrated thatḡh determines the frequency of spike-mediated

synaptic inhibition at which an inhibited cell escapes from inhibition; this finding demon-

strates howIh can be used to regulate the relationship between two cells in a half-center

oscillator.

The findings of this study are important both to biologists and engineers. Identifying the

effects of neuronal properties on the activity of neural networks improves our understanding

of the nervous system. Identifying mechanisms that can be used to modulate or control

the activity of neural networks improves our ability to develop functionally useful hybrid

systems.
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5.2 Validation of Neuronal Models with Hybrid Systems

Much of our understanding of the nervous system is based on studies using mathematical

neuron models. A neural model provides a degree of access and controllability that is

impossible with a biological neuron or neural network. Of course, the mathematical model

simplifies many properties of the biological system; a critical concern in neural modeling

is whether or not the model is valid representation of the biological system.

Hybrid systems are an invaluable tool for validating neuronal models. In a traditional

modeling paradigm, a model is validated by reproducing a particular characteristic of the

biological system; the model is then used to make predictions about the biological system

itself. Hybrid systems provide a means to further validate the predictions of the model.

By operating the model system in concert with a biological system, the idealizations of

modeling are tempered by the reality of biology. If a particular mechanism effects both

the model system and the hybrid system in a similar fashion, we can be reasonably well

assured that the model correctly describes the function of that mechanism.

We validated the results of modeling in three separate hybrid systems protocols. In

the first set of experiments, we examined the effect of ḡh in a mechanistic mathematical

model of a half-center oscillator, and validated this study using a hybrid half-center that

incorporated a silicon model neuron that was a reduced version of the mathematical model.

In addition, we induced changes in the living neuron to demonstrate that the model neuron

and the living neuron were operating in symmetry. In the second set of experiments, we

examined the role of̄gCaS in an asymmetric model half-center oscillator; in these studies,

a reduced mechanistic neuron model was coupled to a more complex mechanistic model.

We then validated these studies using a hybrid half-center oscillator composed of a living

neuron and the reduced mechanistic model neuron. In our final set of experiments, we

studied the affect of ḡCaS in an asymmetric model half-center oscillator that was composed

of a complex mechanistic model neuron and a simplified, semi-empirical model neuron.

We then validated these studies using a hybrid half-center oscillator composed of a living
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neuron and the simplified semi-empirical model neuron.

All of our hybrid systems experiments validated the results of modeling. Although the

absolute values of certain oscillator characteristics (such as period, duty cycle, and spike

frequencies) were different in our hybrid experiments and modeling studies, the effect of

parameter variations on these characteristics was the same. For example, although the pe-

riod of the hybrid oscillator was less than the period of the mathematical model oscillator,

increasingḡh caused the period to decrease in each of these systems. This validation in-

creases our confidence in the conclusions drawn from our models.

5.3 The Functional Role of Model Complexity

One of the most critical decisions in developing a hybrid system is the decision of how

complex the model component needs to be in order to produce a functional system when

coupled to the biological component. A more complex model might accurately reproduce

the behavior of biology, but may be so complex as to render it unusable. A simple model,

however, might be easily understood, yet may not provide enough accuracy to create an

effective system.

Biological neural systems are presumed to be both robust and flexible. Robustness

describes the ability of the system to function despite variable inputs. For example, the

presence of increased levels of nicotine in the brain does not affect the ability of a person

to perform motor functions. The motor system could therefore be said to be robust to

changes in nicotine concentration. Flexibility describes the ability of the system to produce

different outputs in order to achieve its function. For example, a person’s motor system

produces different patterns of muscle activation depending on whether or not the person is

walking, jogging, or running. The function of the system, moving the person forward, can

be achieved using different outputs.

In order to evaluate how model complexity might effect the robustness and flexibility

of hybrid systems, we created three asymmetric model half-center oscillators; in each of
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these model oscillators, a complex mechanistic model neuron was coupled to a reduced

model neuron. In addition, in order to evaluate the effects of model complexity in model

systems, we created three symmetric model half-center oscillators; in each of these model

oscillators, a reduced model neuron was coupled to an identical reduced model neuron.

We assumed that the function of a half-center oscillator is to produce half-center oscilla-

tions. We assessed the robustness of these oscillators by determining the parameter ranges

of the maximal conductances over which the model systems produced half-center oscilla-

tions. We assessed the flexibility of our oscillators by performing a principal component

analysis on the output measures of oscillator activity. We judged that the more variance

there was between the measures of oscillator activity, the more flexible the system was.

Although decreasing model complexity did not appear to have any consistent effect on

the robustness of the asymmetric oscillators when parameters were varied in the complex

model, it did reduce the robustness of system when parameters were varied in the simplified

models. In the symmetric oscillators, reducing the model complexity caused a reduction in

the system’s robustness. In our asymmetric oscillators, there was little change in the overall

flexibility of the system as the model complexity was reduced. In our symmetric oscillators,

however, decreasing the model complexity caused a decrease in the overall flexibility of the

system.

Our original hypothesis was that model complexity serves to increase system robustness

and flexibility. Our modeling studies appear to support our original hypothesis. There are,

however, several caveats to this conclusion.

5.4 Future Research Directions

The findings reported here bode well for the development of hybrid systems. They demon-

strate the utility of these systems for biological investigations. They demonstrate that the

findings of neural modeling can be confidently applied to hybrid systems. Finally, they

demonstrate that even simplified models can be used to create realistic activity in hybrid
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systems, although their is a trade-off in system performance as model complexity is de-

creased. We envision that this research can be refined through two developments: a more

global analysis of neuronal models, and improved metrics for evaluating model perfor-

mance.

The studies presented here investigated only a small portion of the systems’ parameter

space. All of our parameter sweeps were conducted in one dimension off of a single canon-

ical parameter point. To more fully gauge the effect of model reduction on the model’s

parameter space, we would either need to map out a set of canonical parameter points —

distinct points in parameter space where the model produces the canonical output — or

conduct a multi-dimensional parameter sweep — simultaneously varying the parameters

of the oscillator instead of one parameter at a time. Either of these approaches, however,

would require more computational resources than we were provided in this study. Future

research studies should develop the computational resources that will allow a more global

analysis of the system to be performed.

The metrics we utilized to evaluate system robustness and flexibility were useful as a

first-order measure of system performance. Improved metrics are possible, however. Of

primary importance is the development of methods to assess what features of the activity

are important to the system. For example, we evaluated flexibility based on the relation-

ships between measures of spike timing and membrane potential. It is likely, however, that

other measures, such as the shape of spikes or slow-wave potentials, are more important to

the functionality of the system. More work will need to be done in order to evaluate what

features are most important to the functionality of the system.

The research presented here has provided a critical step in the development of hybrid

systems for biomedical and neuromorphic applications. Continued research will serve to

increase the applicability and importance of these systems.

121



REFERENCES

[1] A, J. and C, R., “A hyperpolarization-activated inward current in
heart interneurons of the medicinal leech.,”J Neurosci, vol. 9, no. 8, pp. 2846–57,
1989.

[2] B, B., G, W., andB, R., “Hybrid Integrate-and-Fire Model of a Burst-
ing Neuron,”Neural Computation, no. 15, pp. 2843–2862, 2003.

[3] B, J, R., C, J, J., andB, J., “Dissection and reduction of a modeled
bursting neuron.,”J Comput Neurosci, vol. 3, no. 3, pp. 199–223, 1996.

[4] C, G. S., G, Q., M, M. A., andC, R. L., “Bursting in
Leech Heart Interneurons: Cell-Autonomous and Network-Based Mechanisms,”J.
Neurosci., vol. 22, no. 24, pp. 10580–10592, 2002.

[5] C, G., S, M., S, M., DW, S., andC, R., “Soft-
ware tools for hybrid systems analysis.,”Society for Neuroscience Annual Meeting,
2002.

[6] D, D., B, S., L M, G., L, M., M, V., andN,
F., “Dynamic balance of metabotropic inputs causes dorsal horn neurons to switch
functional states.,”Nat Neurosci, vol. 6, no. 3, pp. 274–81, 2003.

[7] D, R. andR, C., Silicon Neurons. MIT, 2002.

[8] F, R., “Impulses and physiological stages in theoretical models of nerve mem-
brane.,”Biophys J, vol. 1, pp. 445–466, 1961.

[9] G, M., G, J., M, E., andA, L., “Global structure, robust-
ness, and modulation of neuronal models.,”J Neurosci, vol. 21, no. 14, pp. 5229–38,
2001.

[10] G, D., G, J., andG, S., “Reduction of a channel-based model
for a stomatogastric ganglion LP neuron.,”Biological Cybernetics, vol. 69, pp. 129–
137, 1993.

[11] G, J., G, M., A, L., andE, M., “Failure of averaging in the con-
struction of a conductance-based neuron model.,”J Neurophysiol, no. 87, pp. 1129–
1131, 2002.

[12] G, E., B, E., andL, R., “An fpga-based approach to high-speed simulation
of conductance-based neuron models.,”Neuroinformatics, vol. 2, no. 4, 2004.

[13] G, E., “Exploration of alternative to general-purpose computers in neural simu-
lation,” master’s thesis, Georgia Institute of Technology, 2003. methods.

122



[14] H, A., L, J., M, M., O, O., andC, R., “A model of a segmental
oscillator in the leech heartbeat neuronal network.,”J Comput Neurosci, vol. 10, no. 3,
pp. 281–302, 2001.

[15] H, A., M, M., andC, R., “Model of intersegmental coordination in
the leech heartbeat neuronal network.,”J Neurophysiol, vol. 87, no. 3, pp. 1586–602,
2002.

[16] H, A. andH, A., “A quantitative description of membrane current and its
application to conduction and excitation in nerve,”J. Physiol., vol. 117, pp. 500–544,
1952.

[17] I, E., “Resonate-and-fire neurons.,”Neural Netw, vol. 14, no. 6-7, pp. 883–
94, 2001.

[18] K, T., A, L., andM, E., “Reduction of conductance-based neuron
models.,”Biol Cybern, vol. 66, no. 5, pp. 381–7.

[19] L, L., “Recherches quantitatives sur l’excitation electriquedes nerfs traitee
comme une polarization.,”J Physiol (Paris), vol. 9, pp. 620–635, 1907. This is the
original integrate-and-fire paper.

[20] L M, G., L M, S., andM, M., “From conductances to neural net-
work properties: analysis of simple circuits using the hybrid system method.,”Prog.
Biophys. molec. Biol., vol. 64, no. 2/3, pp. 201–220, 1995.

[21] L M, G., R-L M, S., D, D., andB, T., “Feedback inhibi-
tion controls spike transfer in hybrid thalamic circuits.,”Nature, vol. 417, no. 6891,
pp. 854–8.

[22] LM, G.andM, R., Introduction to Equation Solving and Parameter Fitting.
Boca Raton: CRC Press, 2001.

[23] L, A. and MC, D., “H-current: properties of a neuronal and network
pacemaker.,”Neuron, vol. 21, no. 1, pp. 9–12.

[24] ML, J., Z, Y., J, B., andH-W, R., “Activity-independent
homeostasis in rhythmically active neurons.,”Neuron, vol. 37, no. 1, pp. 109–20.

[25] M, M. and D, R., “A silicon neuron,” Nature, vol. 354, no. 6354,
pp. 515–518, 1991.

[26] M, Y. andN, F., “Synaptic depression mediates bistability in neuronal net-
works with recurrent inhibitory connectivity.,”J Neurosci, vol. 21, no. 23, pp. 9460–
70.

[27] M, E. and C, R., “Principles of rythmic motor pattern generation,”
Physiol. Review, vol. 76, pp. 687–717, 1996.

123



[28] M, C. andL, H., “Voltage oscillations in the barnacle giant muscle fiber.,”
Biophys J, vol. 35, no. 1, pp. 193–213.

[29] N, F. andM, Y., “Frequency regulation demonstrated by coupling a model
and a biological neuron,”Neurocomputing, vol. 38-40, pp. 269–278, 2001.

[30] N, J., A, S., andY, S., “An active pulse transmission line simu-
lating nerve axon.,”Proc IRE, vol. 50, pp. 2061–2070, 1962.

[31] O, O. andC, R., “Activation of intrinsic and synaptic currents in leech
heart interneurons by realistic waveforms.,”J Neurosci, vol. 16, no. 16, pp. 4958–70.

[32] P, H., “Queer current and pacemaker: the hyperpolarization-activated cation cur-
rent in neurons.,”Annu Rev Physiol, vol. 58, pp. 299–327.

[33] P, G.andDW, S., “Analogue vlsi moris-lecar neuron,”Electronics Letters,
vol. 33, no. 12, pp. 997–998, 1997.

[34] P, G. andDW, S., “Bifurcation analysis of a silicon neuron.,”Advances in
Neural Information Processing Systems, 2000.

[35] P, S. andDM, T., “A new approach to neural cell culture for long-term
studies.,”J. Neurosci. Methods, vol. 110, pp. 17–24, 2001.

[36] P, A., B, C., andM, E., “Alternative to hand-tuning conductance-
based models: construction and analysis of databases of model neurons.,”Journal of
Neurophysiology, vol. 90, pp. 3998–4015, 2003.

[37] P, A., B, D., and M, E., “Similar network activity from disparate
circuit parameters.,”Nature Neuroscience, pp. 1345–1352, November 2004.

[38] R-LM, S., LM, G., M, E., and A, L., “Hybrid Cir-
cuits of Interacting Computer Model and Biological Neurons,” inNeural Information
Processing Systems 5, (San Mateo, CA), pp. 813–819, Morgan Kauffman, 1993.

[39] R, R. andS, S., “Htperpolarization-activated cation currents: from
molecules to physiological function.,”Annu Rev Physiol, vol. 65, pp. 453–80.

[40] S, A., R, M., A, H., E, R., S, A., P, R.,
H, R., andV, P., “Reliable circuits from irregular neurons: a dynamical
approach to understanding central pattern generators.,”J Physiol Paris, vol. 94, no. 5-
6, pp. 357–74.

[41] S, A., O’N, M., A, L., andM, E., “Dynamic clamp: computer-
generated conductances in real neurons.,”J Neurophysiol, vol. 69, no. 3, pp. 992–5.

[42] S, A., S, F., andM, E., “Mechanisms of oscillation in dynamic clamp
constructed two-cell half-center circuits.,”J Neurophysiol, vol. 76, no. 2, pp. 867–83.

124



[43] S, M. F., C, G. S., S, M. E., C, R. L., andDW,
S. P., “A Multiconductance Silicon Neuron With Biologically Matched Dynamics,”
IEEE Trans. Biomed. Eng., vol. 51, pp. 342–354, 2004.

[44] S, M. F., C, G. S., S, M. Q., C, R. L., andDW,
S. P., “Development of Hybrid Systems: Interfacing a Silicon Neuron to a Leech
Heart Interneuron,” inNeural Information Processing Systems 13, (Cambridge, MA),
MIT Press, 2000.

[45] S, F., K, N., andM, E., “Mechanisms for oscillation and frequency
control in reciprocally inhibitory model neural networks.,”J Comput Neurosci, vol. 1,
no. 1-2, pp. 69–87.

[46] S, M., C, G., DW, S., andR, C., “Using a hybrid neural sys-
tem to reveal regulation of neuronal network activity by an intrinsic current,”Journal
of Neuroscience, vol. 24, no. 23, pp. 5427–5438, 2004.

[47] S, A., V, P., V, A., A, H., R, M., andS-
, A., “Interacting biological and electronic neurons generate realistic oscillatory
rhythms.,”Neuroreport, vol. 11, no. 3, pp. 563–9.

[48] Y, Y., “Rhythmogenesis in a hybrid system–interconnecting an olivary neuron to
an analog network of coupled oscillators.,”Neuroscience, vol. 44, no. 2, pp. 263–75.

125



VITA

Michael Sorensen was born in Lakeland, FL. He lived in Utah, British Columbia, and

Arizona before finally settling down in Roswell, GA at the age of eight. There he spent a

magical childhood surrounded by a loving family and several wonderful dogs. He attended

Roswell High School from 1991-1995, and failed to do anything there that warranted any

attention whatsoever. He left Roswell in 1995 to attend Rice University in Houston, TX.

He served as the president of Jones College at Rice from 1998-1999, and also worked as

a research assistant at Baylor College of Medicine. He graduated Rice in 1999 with a BS

in electrical engineering. He began his post-graduate career in 1999 at Georgia Institute of

Technology in Atlanta, GA. He received his PhD in bioengineering from Georgia Tech in

2005. On August 4, 2001, he somehow managed to convince a beautiful, intelligent, and

charming woman to spend the rest of her life with him. At the time of this writing they live

in Asheville, NC, where they have a house and a dog named Molly.

126


