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SUMMARY 

Techniques utilizing analogy methods for the calculation of heat-

transfer coefficients for the turbulent flow of fluids in circular pipes 

have been presented by several investigators o Most of these presenta

tions have been for the case of a constant heat flux along the pipe wallo 

Seban and Shimazaki (Transactions of the American Society of Mechanical 

Engineersa 73» 803-8099 19!?l) used analogy methods to investigate the 

heat-transfer coefficients of fluids with low Prandtl numbers and found 

that the wall temperature profile is significant in such fluids o 

In the present investigation a study of the heat-transfer co

efficients of fluids flowing turbulently in a smooth pipe with walls at 

constant temperature has been made employing analogy methods in a manner 

essentially the same as that presented by Seban and Shimazaki with the 

exception that the method presented in this stucfcr is based on different 

assumptions as to the nature of the buffer region and thermal diffusivityo 

The present investigation presents an analytical solution of the 

momentum equation and the energy equation for the system by employing 

an analogy between the eddy diffusivities of momentum and heato The 

universal dimensionless velocity distribution equations of von Karman 

(Transactions of the American Society of Mechanical Engineers, 61., 

70^-710^ 1939) have been used in this developmento The character of the 

equations developed is such that the temperature distribution across 
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the pipe can be solved by iterative procedureso The heat-transfer 

coefficient for the system can then be computed directly by employing 

this temperature distribution* 

Values of the heat-transfer coefficient in the form of Nusselt 

number have been computed on a Remington Rand 1101 digital computer 

for values of Prandtl number ranging from 0„01 to 10.0 and values of 

Reynolds number from 5,000 to 10,000,000o Values of the Nusselt 

number for Peclet numbers less than l£0 have been corrected for axial 

conduction by employing a semi-empirical correlation postulated by 

Trefethen (Transactions of the American Society of Mechanical Engineerss 

78, 1207-1212, 1956). 

The values calculated in this investigation have been compared 

to existing experimental data and to values computed by Franklet (Ph.D. 

Thesis, Georgia Institute of Technology, 1958) for a system under 

conditions of constant heat flux along the pipe wall (linear wall tempera

ture profile)* The results indicate that fluids with Prandtl numbers 

less than unity exhibit substantially different heat-transfer coefficients 

depending upon the wall temperature profilee 

The heat-transfer coefficients predicted in this investigation 

compare favorably with experimental data for Prandtl numbers less than 

unity,. For fluids with Prandtl numbers greater than unity, the compari

son is not as goodo The discrepancy between the predicted and experi

mental values of the heat-transfer coefficient for fluids with large 

Prandtl numbers can probably be attributed to the velocity distribution 



used in the development presented in this study. If a more accurate 

equation for predicting the velocity distribution near the pipe wall 

were employed, the predicted and experimental values would probably 

be in somewhat better agreement» 



CHAPTER I 

INTRODUCTION 

The use of analogy methods for the calculation of heat-transfer 

coefficients for the turbulent flow of fluids in circular pipes has 

been developed and presented by several investigators*, The more 

important of these have been reviewed by Summerf ield (l) and Jacob (2)«, 

Additional references not contained in the above reviews are listed in 

the bibliography,. Most of these presentations^ however5 have been for 

the case of a constant heat flux along the pipe wall* 

The effect of a constant wall temperature as contrasted to 

constant heat flux was first investigated by Reichardt (3) who found 

that fluids with Prandtl number greater than 0«70 exhibited only small 

variations of heat-transfer coefficients due to changes in the wall 

temperature profile <> 

Seban and Shimazaki (It) used the analogy methods based upon a 

model postulated by Martinelli (5) to investigate the heat-transfer 

coefficient of fluids with low Frandtl number and found that the wall-

temperature profile is significant in such fluids« 

This investigation employs essentially the same development as 

that presented by Seban and Shimazak±5 with the exception that the 

development here presented is based upon a model postulated by Franklet 

(6) and this writer* This study presents an investigation of heat-
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transfer coefficients obtained under conditions of constant wall tempera

ture with a comparison to those obtained under conditions of constant 

heat flux. The present investigation is restricted to flow in smooth 

circular pipes* 

The heat-transfer coefficients are obtained analytically from 

the following differential equations of heat and momentum by means of 

an iterative method. 

g ap 1 a au 1 a _ ^ (1) 
_c — B _ — ( ^ _ ) _ _ —(ru'v1) 
p ax r ar ar r dr 

The solutions of these equations are based upon considering three 

distinct regions of flow within the pipe as follows; 

(a) Laminar sub-layer, where the eddy diffusivities are 

considered to be negligible compared to the molecular diffusivities. 

(b) Buffer layer9 where the molecular and eddy diffusivities 

are considered to be of the same order of magnitude• 

(c) Turbulent corep where the molecular diffusivities are 

considered negligible compared to the eddy diffusivities. 

Von Karman (?) postulated the following dimensionless universal 

velocity distribution for smooth circular pipes based on the data of 

Nikuradse (8). 

u+ - y* 0 * y* 5 * (3a) 
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u+ - -3.05 + S.O In y+ 5 - y+ - 30 (3b) 

u+ = £.0 + 2.5 In y* 30 - y+ (3c) 

These equations are used in this investigation to represent the 

velocity in Equation 2o It should be noted here that Seban and 

Shimazaki, in their developments chose the limits of the laminars buffer 

and turbulent regions to coincide with the limits of Equations 2>a.9 3b 

and 3c respectively*, In this investigation however, the buffer layer 

is considered to extend into the pipe to a y value equal to seventy<• 

Equation 2 above assumes no axial transfer of heato The validity 

of this assumption is dependent upon the physical properties of the 

fluid and the velocity within the pipe» For liquids and gases Deissler 

(9) has shown that a velocity large enough to produce turbulence is 

sufficient to render the axial conduction negligible compared to the 

bulk transport of heat in the axial direction.. The thermal conductivity 

of liquid metals, however, is large enough to cause considerable axial 

conduction at velocities well above that required to produce turbulence* 

Trefethen (10) has postulated a semi-empirical correction as a function 

of the Peclet modulus to correct the heat-transfer coefficient for 

axial conduction. This correction has been applied to the results of 

Equations 1 and 2o 

The mathematical, development of the equations necessary for the 

calculation of the temperature distribution and heat-transfer coefficient 

are presented in Chapter II• 



Discussion of the parameters necessary for the computation of 

heat-transfer coefficients by analogy methods is presented in Chapter 

H I . There is also presented in Chapter III a comparison of the heat-

transfer coefficients for liquid metals computed in this investigation 

with those computed for the case of constant heat flux as calculated by 

Martinelli (£) and Franklet (6), and with existing experimental data. 

There is also presented a brief discussion of the extension of the 

equations developed in this investigation to include fluids with 

Frandtl numbers greater than 0.70« 
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CHAPTER II 

MATHEMATICAL DEVELOPMENT 

For a fluid flowing in turbulent motion within a cylindrical 

pipe sufficiently far removed from the entrance to insure absence of 

end effects, the momentum and energy equations reduce to 

!tt 22 = i 2_(rv 22) - i i-GOT (W 
p 3x r 3r 3r r 3r 

The system satisfying these equations is subject to the follow

ing restrictions: 

(a) fluid properties are independent of temperature<-

(b) Fluid is incompressible<-

(c) Steacty- state conditions exist.. 

(d) Mean velocity of fluid is in the x-direction, the x-axis 

coinciding with the center-line of the pipe*, 

(e) System is symmetrical about the x-axis• 

(f) Axial diffusion is negligible with respect to bulk 

transport of energy in the x~directiono 

If the mean values u'v5 and v't1 are expressed as -Sjr ̂ T 

8t . 
and -STT X" respectively 5 Equations k and 5 reduce to 



The moment-urn equation for the system, Equation 6, can be 

rearranged and integrated once with respect to radius to y ie ld 

g . r 3P , & (8) 
- 2 - —- B „ (v + 6 ) — 

A force balance on an annulus of f lu id with radius r becomes 

1 f s 2 ^ (9) 
p dx R p 

and 

12 = ^ (10) 
R r 

Equation 10 can be wr i t t en as 

* . 1s(l - y/R) (11) 
P P 

Substitution of Equation 9 into Equation 8 yields 
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Then on substitution of Equation 11 into Equation 12 and rearranging, 

there is obtained 

Sc^w ( 1 - ^ R ) 

^ - - M ^ - v (13) du/^-

+ + 
or in terms of the dimensionless parameters u and y 

&M. 
du7agrr 

•where? u s u / v g ^ y P 

Defining the ratio of the eddy diffusivities of heat and 

momentum by the following function 

* - ^ (15) 

Equation lU can then be expressed as 

+ +, 
% + a. rd -y A ) * 1 

T i + -±- - 1] (16) 
cry du /dy aPr 

+ In terms of © B t - t and the dimensionless parameters u and 

y+
5 the energy equation for the system, Equation 1 s can be written in 

the form 
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d- iwA" 1 - 7 7 ""^' nfW (17) 

Now for the system under consideration with a uniform wall 

temperature, the following lemma is developed in Appendix I 

d6 = 8_ 3^ (18) 

ax ' e m ax 

Substituting this equality and rearranging, Equation 17 can be 

integrated once with respect to y+/R since — E is independent of 
dx 

radius to yield 

R 2 7 i ^ ! r f ^ u+ (1 - y7R+)d(yVR+) 
r 

= \ d Ui - y+/R+)(« + eH)d^+/R+) 1 (19) 

where 1 = w ^ 0 

For simplicity of notation let 

F(w) s C ®_ n+ (1 - y+/R+)d(y+/R+) 

Performing the indicated integration on the right hand side and re

arranging, Equation 19 can be integrated a second tijne with respect 

to the radius ratio to become 

(20) 
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where 1 = z £ 0 

Substituting Equation 16 into Equation 21 yields 

ec aem 1 
R2>/i7t7? SL 3T oST 0(a) - 0 - 0C 

where, for simplicity of notation 

(22) 

(K.) = f2 r F W d \ -, to) 
lJ [(I - w)dn7ebr* + 35^-1 J (1 - ») 

where 1 I z S 0 

Also Equation 21 when integrated over the entire region from z = 1 

to z = 0 becomes 

R2V^t7^ l^-i* ia<°> = -eo 

Thus dividing Equation 22 by Equation 2k an expression for the 

generalized temperature distribution can be obtained in the form 

(210 

*-- 1 —Vye.-- i-irt (2^) 

As stated in the introduction the von Karman universal velocity 

distribution equations can be used in the evaluation of Equations 20 

and 23• Introducing these equations into Equations 20 and 23 and 

considering the three regions of flew, the following are obtained* 
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Turbulent Core.— 

u+ • 5-0 + 2.5 In y+ R+ * y+ * 70 (26) 

F^w) • 

TIT 

f [5.0 + 2.5 In R+(y+/R+)] f" (l - 7+/E+)d(y+/E+) (27) 

1 J 

where 1 % w * 70/R+ 

, z F i ( w ) dir 

G(Z) = r sHr— > (28) 

\ a - w ( l - w) 
1 2.5 

where l£z*70 /R + 

Buffer Region."" 

u+ - 5*0 + 2-5 In y* 70 ? y* * 30 

u+ - -3.05 + 5.0 In y+ 30 1 y+ £ 5 

F2(w) 

"w + . . . ^ _ 6 

(29) 

J [5-0 + 2 o 5 l n R + ( y + / ^ + ) ] | - ( 1 - y + / R + ) d ( y 7 R + ) (30) 
70/R+ c 

where 70/R+ \ w > 30/R+ 
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F3W = 

] [-3*05 + 5.0 In R+(y+/R+)3 5J& - 7+/R+)d(y7R+) (31) 

30/R+ 

where 30/R+ = w * 5/R+ 

2 [*!>•) + F 2 ( w ) * F 3 ( w ) 3 ^ 
G ( z ) " [ t ( i - l ) + f £ 0 w ( l . w ) ] ( r - w) ( 3 2 ) 

70/R+ ^ ^ 

where 70/R*1 z £ 5/R+ 

Laminar Sub - layer •—-

u+ - y* ^ y + ? 0 (33) 

F.(w) - J W R* | » (y+/R+)(l - 77R+)d(y7R+) (3U) 
5/R* c 

where 5/R 1 w » 0 

w [F^w) * F2(w) + F3(w) * F^(w)] dw 

G(z) - ( ~ * ~ ' ' ' ~ (35) 

5/R* ST? ( 1 " w ) 

where 5/R* t z 1 0 

Equations 28, 32 and 35 can thus be used i n Equation 25 to 

evaluate the r ad i a l temperature d i s t r i bu t i on . I t can be seen,, however5 
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that the solution of Equation 2$ requires a knowledge of the very 

temperature distribution being sought» Iherefore an iterative 

procedure must be used to converge on the desired temperature distri

bution-

An equation for the heat flow in a round circular pipe can be 

expressed in terms of 6 as 

«a^--x°p^ S8- (36) 

which can be wri t ten in the form 

hD D2 1_ 36m S 

'p' m 
Nu " aC P " ~T ®m "SE a 

Now Equation 2U can be rearranged to the form 

El L , 23ft ^ w g ov 
it 0ffi 3x p ~G(0) 

From the def ini t ion of the f r i c t i o n factor i t follows tha t 

(38) 

gpr,/p
 = Ss/^/8 (39) 

'c 

Substituting Equation 39 into Equation 38 and combining the resulting 

equation with Equation 3? yields 

D2 1 3 % „ /.«\ 
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or 

c Pr 1 

** = s/W 0(0) ^ 

The results herein obtained were calculated by utilizing a 

Remington Rand 1101 digital computer according to the foregoing 

iterative procedure« The integrations involved were accomplished 

on the computer utilizing the trapezoidal rule by using thirty intervals 

in the turbulent core5 thirty in the buffer region and five in the 

laminar sub-layer <» A linear temperature distribution was assumed as a 

first approximation with iterations continued until two successive 

values of the Nusselt number differed by less than 0«005>o In general 

six iterations were required for sufficient convergence of the tempera

ture distributiono 

As a test of computational accuracy several values were re

computed utilizing twice the normal number of intervals for integra

tion purposes and twice the normal number of iterations „ In all cases 

tested the computed values differed by less than 0„2 per cent* 
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CHAPTER III 

DISCUSSION OF RESULTS 

Evaluation of heat-transfer coefficients by the solution of the 

energy equation for the system under consideration as defined in Chapter 

II is contingent upon a knowledge of the velocity distribution,, thermal 

conductivity and eddy diffusivity of heat-transfer of the fluid* The 

accuracy of results obtained from an investigation of this type is 

obviously directly dependent upon the precision with which these three 

quantities are known* Also in using analogy methods the accuracy of 

results depends upon the eddy diffusivity of momentum-transfer as well 

as the ratio of the eddy diffusivities<> 

Some of the problems involved in the evaluation of these quantities 

are discussed in the following paragraphso 

Velocity Distribution,,-^As stated in the introduction*, the von Karman 

universal velocity distribution equations have been used in this investi-

gationo Ross (ll)^ Ruth and Yang (l2)<, and Rothfus,, et aloe, (13) have 

criticized the distribution predicted by these equations9 especially in 

the region adjacent to the pipe wall* The results of this investigation 

indicate, howevers that for liquid metals which exhibit low Prandtl 

numbers the region near the wall contributes very little to the overall 

transfer of energy within the systemo This is not the case for ordinary 
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liquids and gases for which the region near the wall contributes a major 

portion to the overall effect* 

Van Driest (li;) and Deissler (l£) have postulated velocity distri

bution equations in an attempt to better describe the velocity adjacent 

to the pipe wall. Franklet (6) has calculated heat-transfer coefficients 

for the case of constant heat flux using both the universal velocity 

distribution and a modified form of the van Driest equation* His results 

indicate that either distribution gives favorable results for liquid 

metals but that the van Driest equation yields considerably better results 

for ordinary fluids. This comparison has not been made in this investi

gation due to the extreme complexity of computations involved* It can be 

assumed, however, that if a more accurate velocity distribution were used 

in the region near the pipe wall that the results of this investigation 

would be considerably improved for gases and ordinary liquids* 

Eddy Diffusivity *-»~The eddy diffusivity of heat-transferQ e ^ required 

for the solution of the energy equation is obtained in analogy methods 

from the diffusivity of • momentum-transfer« e.,* by employing the relation 

a 5L STT/SJI* Thus the accuracy of &u is dependent upon the evaluation 

of gvr and a* The evaluation of eM can be accomplished directly from 

the momentum equation for the system* It should be noted̂ , however, that 

numerical computation of e*. from the momentum equation is dependent upon 

the evaluation of the velocity gradient within the pipe* Thus empirical 

equations which describe the velocity distribution with great accuracy may 

produce large errors when differentiated to evaluate the velocity gradient* 
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Probably the point of greatest doubt in the evaluation of the 

energy equation by analogy methods is the numerical value of the ratio 

of the two eddy diffusivities5 a. Reichardt (16) postulates that a 

should be between one and two for all fluids <, Jenkins (17) postulates 

a semi-empirical relationship which predicts that a should be less than 

one for all fluids with Prandtl numbers less than one« The latter is 

not borne out5 however., by extensive studies of air conducted by Sage,, 

et alo, (18), (19) and (20)« 

Isakoff and Drew (2l) and Brown5 Armstead and Short (22) have 

measured velocity and temperature distributions for mercury and have 

calculated the ratio of the eddy diffusivities from their results«, 

Isakoff and Drew report values ranging up to approximately lo7<> Their 

values are questionable5 however5 due to the fact that the fluid 

temperature did not extrapolate well to the wall temperature. Brown,, 

et̂  aL. 9 report values of cr ranging up to approximately 0<,95» Unfortunate

ly,, the spacing of their data does not satisfactorily facilitate a 

numerical analysis of the temperature distribution such that somewhat 

higher values can be obtained from their data if either graphical or 

numerical methods are employed* Jenkins5 correlation predicts values 

ranging up to approximately 0ok for mercury.. Sleicher (23) adjusted 

these predicted values to correspond to his measured ratio for air<> 

The result of this adjustment predicts somewhat higher values of the 

ratioo 
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As a result of the uncertainty of the numerical value of the ratio 

of the eddy diffusivities, a value of one has been used as a sort of mean 

in this investigation,. The actual value is probably a function of the 

Reynolds number and Prandtl number as well as the position within the 

pipe* Figure 6 shows a comparison of the predicted Nusselt numbers 

using values of the ratio of the eddy diffusivities equal to 1.0 and 0*8 

for a Prandtl number equal to C01 in order to illustrate the effect of 

this ratio on the prediction of the heat-transfer coefficiento 

Thermal Conductivity»—The model employed in this investigation assumes 

the thermal conductivity and the eddy diffusivity of heat-transfer to be 

additive properties with the magnitude of the thermal conductivity 

becoming insignificant in the turbulent core. If the thermal conductivity 

is assumed to be constant across the pipe5 numerical evaluation of the 

energy equation does not bear out the assumption that the thermal 

conductivity becomes insignificant in the turbulent region for liquid 

metals. This contradiction might be explained in the following ways 

Possibly the thermal conductivity and eddy diffusivity are so inter

related that their effect is not truly additive* That ±s$ it could be 

true that even though the thermal conductivity is in itself constant 

throughout the pipe,, its effectiveness is diminished by the influence of 

turbulence« 

Discussion of Results<,— Figure 7 shows the effect of Prandtl number on 

the temperature distribution for a constant Reynolds number., It can be 

seen that as Prandtl number increases the temperature at any point within 
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the pipe increases relative to the center line temperature* As a result 

the mean temperature across the pipe increases with increasing Prandtl 

number» For fluids of large Prandtl number, the change in temperature 

between the wall and the fluid is localized in the laminar and buffer 

regions immediately adjacent to the pipe wall^ and the temperature is 

almost constant across the entire turbulent core<> Thus the magnitude 

of the mean temperature is only insignificantly affected by variation 

in the temperature of the wallo 

Figure 8 shows the effect of Reynolds number on the temperature 

distribution for a constant Prandtl number,, Here again the temperature 

at any point increases relative to the center line temperature for 

increasing Reynolds number* Thus for sufficiently large Reynolds number 

the mean temperature is essentially independent of variations in the 

wall temperature and becomes approximately equal to the center line 

temperature regardless of the Prandtl number» 

The difference in temperature distributions indicated by the 

analysis of Franklet and by the present investigation is shown in Figure 

9. It is seen that for the same wall to center line temperature 

difference the heat-transfer rate is substantially less for the case of 

constant wall temperature <, This does not exactly reflect the difference 

in the heat—transfer coefficients^, since the mean temperature magnitudes 

are also different for the two caseso 

Table I lists the values for the heat-transfer coefficient 

expressed as Nusselt number as calculated in this investigation for 
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constant wall temperature. It also lists the values for a system under 

conditions of constant heat flux for the same flow conditions as computed 

by Franklet as well as a comparison of these values expressed as a ratio 

of the Nusselt numbers for the two caseso From this table it can be seen 

that as Prandtl number increases the ratio between the Nusselt numbers 

for the two cases tends to unity for any particular Reynolds number. It 

can also be seen that the ratio tends to unity with increasing Reynolds 

number at any particular Prandtl number for Reynolds numbers less than 

1,0005000. For values of Reynolds number above 1«,00050005 however., the 

difference in Nusselt numbers for the two cases tends to become greater 

for a particular value of Prandtl number* The comparison of the two 

systems is also shown graphically in Figure h° 

In order to consider qualitatively the difference between the 

heat-transfer coefficients for the two systems.. Equation 37 can be used 

to express the ratio of the systems under the same conditions of flow as 

(»»>t = %s: W f V ^ t (, 2) 

<*£ (~m - Vt*VH, 
where the subscripts t and q refer to a system under conditions of 

constant wall temperature and constant heat flux respectively.. For 

the case of constant heat flux5 the term 3t /3x is constant for a 

particular system,, whereas for the case of constant wall temperature 

dt^dx is a function of Reynolds number and decreases with increasing 

Reynolds number. As stated above9 for sufficiently large values of 
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Reynolds number, the mean temperature is essentially equal to the center 

line temperature o Therefore if the two cases are considered to have the 

same center line temperature, the heat-transfer coefficients become a 

function of the axial mean temperature gradient 0 Thus the ratio of the 

heat-transfer coefficients should decrease for sufficiently large Reynolds 

numbers* For low Prandtl numbers, however, at somewhat lower values of 

Reynolds number, where the wall temperature affects the mean temperature 

appreciably, both the magnitude of the mean temperature gradient and the 

difference between the mean and wall temperatures become significant and 

it has been found that in this region the ratio of the heat-transfer 

coefficients increase toward unity„ The ratios of the heat-transfer 

coefficients computed in this investigation are shown graphically in 

Figure 5« 

The values of the Nusselt number for Peclet numbers less than l£0 

used throughout this investigation have been corrected for axial 

conduction by employing a semi-empirical correlation postulated by 

Trefethen (10) <> Table II lists the uncorrected and corrected values for 

comparison o 

Figure 1 shows a plot of experimental data obtained from the 

literatureo The majority of these data were obtained under conditions 

of constant heat flux or conditions between constant flux and constant 

wall temperatureo These values have been used for comparison of the 

Nusselt number values computed in this investigation, however, for lack 

of experimental data obtained under conditions of constant wall temperature. 
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Figure 2 reveals the predicted values of Nusselt number for Prandtl 

number values of 0.01 and 0.02 in comparison to the constant heat flux 

solution as computed by Martinelli (5>) and Franklet and with the experi

mental data shown in Figure lo The predicted values of Martinelli are 

plotted as originally reported along with the values corrected for axial 

conduction as applied in this investigation. Figure 3 shows the same 

comparison for Prandtl number values of 0.7̂ , 1*0 and 10.0 as compared to 

those predicted by Rannie (2k) and Franklet. 

Conclusions.—The case of heat transfer to a fluid flowing turbulently 

in a smooth pipe with walls at constant temperature has been considered^ 

and heat-transfer coefficients for fluids of Prandtl number less than 

1.0 have been shown to be significantly different from those for the case 

of constant heat rate. Thus is illustrated the importance of describing 

the surface temperature in the direction of flow for fluids of low 

Prandtl number even sufficiently far from the entrance such that thermal 

entrance effects can be neglected. 

The equations developed in this investigation appear to be 

satisfactory for predicting values of the heat-transfer coefficient of 

fluids with Prandtl number less than unity. They would probably predict 

satisfactory values of the heat-transfer coefficient for fluids of 

large Prandtl number if a better equation for the prediction of the 

velocity distribution of the fluid adjacent to the wall were employed. 

In the case of fluids of large Prandtl number., however5 the heat-transfer 

coefficient for the case of constant wall temperature is not sufficiently 



different from that of the case of constant heat flux to warrant the 

use of the more complex iterative scheme required in the solution of 

the equations developed in this investigation*. 
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APPENDIX I 

AXIAL TEMPERATURE DISTRIBUTION 

In order to integrate the energy equation for the system defined 

in Chapter II, it is desirable to make use of the following lemma. 

a - t 

a* LV " * m' 
= 0 (ltf) 

This lemma can be verified for the system with a uniform wall 

temperature in the following manner» Consideration of a heat balance 

on a differential element of length dx yields 

c-^^-\,-\ m 
Uh 8x 

The mean radial temperature is defined by 

p / ^ d r 
^R 
j urdr 

t = ss-g (2*5) 
m /"H 

0 

which when subs t i tu ted into Equation lj.3 y ie lds 

-R ^R 
C puD d n J turdr 0 J turdr 

Ijh. dx fK urdr ^ fH urdr 
0 0 

(h6) 
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Now 11 and r are independent of x and R is a constant, thus 

Equation k3 can be written as 

•R sj- yR 
p at p 

C puD QJ u r d r 0 t u r d r 

Ijh J urdr J 

£L- H__ t " (u?) 
R w fR 

urdr 
which when cleared of fractions becomes on differentiation 

C puD 8t 
P — - t - t (hS) 

Uh 3x w 

Combining Equations 1^ and 1|85 there is obtained 

(* - 1 ) !ba - (t - 1 ) ^ . 0 a*) 

Now since the wall temperature is constant 

ad^ - t) at 

ax ax 

and 

3(V - V ^m 
ax ax 

Thus Equation h9 can be written as 

($0) 

(5D 

_ *v^V _ „t )^^V (sa) 
vuw ' dx ' w m S x 
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2 2 
By multiplying Equation $2 by (i^ - tm) /(t^ - tm) , it can be reduced 

to 

cv-t,)2 1 ^ L = o (53) 

Now since in general t - t is not equal to zero it follows that 
w m 

a 
dx 

= 0 (&) 

For the case of uniform wall temperature here considered Equation 

%k reduces to 

at t^ - t at 
m 

3x \ - t - <* 
(.55) 

or in terms of 0 • t^ - t 

ae e aa m 
ax e m ax 

(56) 
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APPENDIX II 

TABLES AND FIGURES 
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Table I 

Calculated Values of Nusselt Number for Constant 
Wall Temperature and Constant Heat Flux 

Nu •a * 

Nu 
(Nu) t 

Pr Re Pe ty const* q^ c o n s t . (Nu)q 

0.01 £,000 50 1.39 2.53 0.55 
10,000 100 1.89 3.21 0.57 
30,000 300 3.11 U.U3 0.71 

100,000 1,000 6.19 7.72 0..80 
300,000 3,000 11.17 15.0 0.78 

1,000,000 10,000 20 . k 3U.0 0.60 
3,000,000 30,000 2iu2 76 .3 0.32 

10,000^000 100,000 25 .1 193 0 .13 

0.02 5,000 100 2.76 U.75 0.58 
10,000 200 3.l4l 5ol;6 0.62 
30,000 600 5.76 7.79 0.7U 

100,000 2,000 11.68 1U-2 0.82 
300,000 6,000 22.U 28.2 0.80 

1,000,000 20,000 39.7 65.0 0 .61 
3,000,000 60,000 W.8 1U7 0„32 

10,000,000 200,000 h9.9 371; 0.1U 

0.70 10,000 7,000 29.9 32.6 0.92 
100,000 70,000 170 179 0.95 
300,000 210,000 396 i|25 0.93 

1,000,000 700,000 863 1130 0,76 

1.0 10,000 10,000 36.6 38.3 0.96 
100,000 100,000 210 220 0.96 

1,000,000 1,000,000 1072 1U30 0.75 

10 .0 10,000 100,000 85.5 88 .1 0.97 
100,000 •< 1,000,000 $99 612 0.98 

1,000,000 10,060,000 U060 U610 0.88 

Nu for constant heat flux computed by Franklet (6). 
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Table II 

Correction for Axial Conduction Applied to Nusselt Number 

I T Re Pe 
Nil 

uncorrected 
Nu 

corrected 

0.01 2,000 

10,000 

$0 

100 

1.79 

1-97 

1.39 

1.82 

0.02 2,000 100 3.10 2.76 
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Table i n 

Cross-Sectional Temperature Distr ibut ions 

Z Er = 0,01 Rr = 0.02 Pr = 0,7 Fr = 1.0 Pr = 10.0 
R 

1-000 1.000 1.000 1.000 1.000 1.000 
0.935 0.981 0.982 0.992 0.993 0.998 
0.871 0.951* 0.956 0.982 0.981* 0.996 
0.806 0.925 0.930 0.970 0.971* 0.993 
0.71*1 0.896 0.901 0.958 0.961* 0.990 
Oo676 0.861* 0.871 0.9h$ 0.9^2 0.987 
0o6l2 O.83O 0.839 0.931 0.91*0 0.981* 
0.571* 0.793 0.801* 0.915 0.926 0.980 
0.1*82 0.753 0.766 0.898 0.911 0.976 
0.1*18 0.708 0.723 0.879 0.891* 0.971 
0.353 0.658 0.676 0.856 0.875 0.966 
0.288 0.601 0,621 0.830 0.852 0.959 
0.221* 0.532 0.555 0.798 0.821* 0.951 
O0I6O 0.1*1*5 0.1*71 0.756 0.787 0.91*0 
0.091* 0.319 0.350 0.691* 0.732, 0.921* 
0o029 0o05l 0.091 0.555 0.608 0.888 
0o028 0.01*7 0*085 0.51*8 0.602 0.886 
0.026 0.01*5 0.081 0.51*2 0.596 0.881* 
0.021* 0.01*2 0.077 0.535 0.590 0.882 
0o023 0.039 0.072 0.527 0.583 0.880 
0o021 Oo037 O0O68 0.519 0.576 0.877 
0.019 O.03I* O0O63 0.510 0.567 0.875 
0.018 0o031 0,058 0.500 0.559 0.872 
O0OI6 0o028 0.051* 0.1*90 0.51*9 O0869 
OoOlli 0.026 0.01*9 0.1*78 0.538 0.866 
0o013 0.023 0.01*1* 0.1*65 0.526 0.862 
0.011 0<,019 0.037 0.1*33 0.1*96 0.850 
O0OO8 0.015 0o030 0.389 0.1*53 0.831* 
O0OO6 0o012 0.023 0.335 0.398 0.812 
0.001* 0.0078 0.015 0.261 0.321 6.771* 
0.002 0.0039 0.0076 0.11*7 0.188 0.568 
O0OOI6 0.0031 0.0061 0.118 0.150 0<>1*51* 
0.0012 0.0021* Oo 001*6 0.088 0.112 0.31*0 
O0OOO8 0.0016 0o0030 0.059 0.075 0.227 
O.OOOl* 0.0008 0.0015 0o030 0.038 0.113 
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Figure $. Ratio of Nusselt Numbers for Constant Wall Temperature to Constant 

Heat Rate as a Function of Reynolds Number and Prandtl Number 
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