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In general, after having established the fundamental equations of movement of heat, 
and the method of calculation which serves to integrate them, I turned to the solutions of the 
questions…and made known the relations of this study to the systematic behavior of the 
world. 
    -Jean-Baptiste Joseph Fourier [1] 
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SUMMARY 
 
 

Thermo-mechanical failure of components in planar-type solid oxide fuel cells 

(SOFCs) is a major obstacle on the path to bringing this technology to commercial viability.  

The probability of material degradation and failure in SOFCs depends strongly on the local 

temperature gradients at the interfaces of different materials.  Therefore, it is of paramount 

importance to accurately predict and manage the temperature fields within the stack, 

especially near the interfaces.  In this work we consider three effects in detail.  

 First, we analyze radiative heat transfer effects within the semi-transparent solid 

electrolyte and compared them to thermal conduction.  We also, present the modeling 

approach for calculation of surface-to-surface exchange within the flow channels and from 

the stack to the environment.  The simplifying assumptions are identified and their carefully 

justified range of applicability to the problem at hand is established.  This allows thermal 

radiation effects to be properly included in overall thermal modeling efforts with the 

minimum computational expense requirement.  The work reported in this chapter has 

recently been published in refereed journals [2, 3]. 

 Second, we developed a series of reduced-order models for the transient heating and 

cooling of a cell, leading to a framework for optimization of these processes.  The optimal 

design is one that minimizes heating time while maintaining thermal gradients below an 

allowable threshold.  To this end, we formulated reduced order models (validated by rigorous 

CFD simulations) that yield simple algebraic design rules for predicting maximum thermal 

gradients and heating time requirements.  Several governing dimensionless parameters and 

time scales were identified that shed light on the essential physics of the process.  The 

contents of this chapter are currently under review for journal publication [4]. 



 

 xii 

 Finally, an analysis was performed to assess the degree of local thermal non-

equilibrium (LTNE) within porous SOFC electrodes, and through a simple scaling analysis 

we discovered the parameter that gives an estimate of the magnitude of LTNE effects.  We 

conclude that because of efficient heat transfer between the solid and gas in the microscale 

pores of the electrodes, the temperature difference between gas and solid is often negligible.  

However, if local variations in current density are significant, the LTNE effects may become 

significant and should be considered.  The contents of this chapter are currently under review 

for journal publication [5]. 
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CHAPTER 1 

INTRODUCTION 
 

 

Solid Oxide Fuel Cells (SOFCs) are power plants that produce electricity directly and 

in an environmentally benign way by electrochemically reacting hydrogen and oxygen.  With 

the potential for very high efficiency (~70% anticipated by some manufacturers of hybrid 

SOFC-gas turbine systems) and zero emissions (water is the only reaction byproduct), they 

are an attractive alternative power source for the future.  Several distinct advantages that they 

enjoy over other types of fuel cells arise from elevated operating temperatures (600 - 800 ºC).  

These include 1) the use of nickel (rather than expensive precious metals such as platinum) 

as a catalyst, 2) the ability to internally reform fuels such as methane or other hydrocarbons, 

3) tolerance of carbon monoxide, sulfur, and other contaminants in the fuel and oxidizer 

streams, and 4) high quality waste heat that can be recovered to increase overall 

thermodynamic efficiency of the power generation system.  However, these benefits come at 

a cost—thermo-mechanically induced degradation and failure of the delicate anode-

electrolyte-cathode (PEN) structure is a critical roadblock in bringing this technology to the 

point of commercial viability.  Central to mitigation of this failure mode is the ability to 

accurately manage and predict thermal gradients within the cell, especially at the interface of 

the ultra-thin (15 µm or less) solid electrolyte and porous anode/cathode layers.  Thus, 

thermal modeling of SOFCs has generated significant interest in recent years, resulting in 

highly detailed CFD and FEM based models that predict the coupled current density, flow, 

species, and temperature fields within a cell.   



 

 2  

 Several weaknesses and shortcomings of these state-of-the-art models are addressed 

in the current research.  Chapter 2 considers the role of thermal radiation as a heat transfer 

mechanism in SOFC unit cells and stacks.  A review of the literature in this area shows that 

few works consider its effect on the operating conditions of the cell, and those that do, 

consider it in a highly simplified fashion, often reporting conflicting results.  The inherent 

complexity of radiative transfer models and the computational expense of calculating 

radiative heat flux and coupling it to the other modes of heat transfer are typical reasons for 

neglecting radiation.  For this reason, the issue of thermal radiation in SOFCs, at both the 

component (unit cell) and system (stack) level, is addressed.   

In Chapter 3 transient thermal models for simulating the startup and shutdown of 

SOFCs are considered.  The need for fast and safe methods of bringing the cell from ambient 

temperature to the elevated temperature of steady state operation, or vise-versa, is currently 

an important issue to broadening the use of the SOFC especially in transportation 

applications.  Although state of the art CFD or FEM models can potentially simulate this 

transient startup/shutdown behavior, they do so at a significant computational expense with 

highly complex models.  To address this challenge, reduced order transient thermal models 

of varying complexity are developed and results are used to develop simple, accurate, and 

concise design rules for optimization of the transient process.  This approach enables 

efficient parametric search of the design space during the early stages of conceptual 

development by providing a valuable industry tool for bringing SOFCs to market.  

The fourth and final chapter of this thesis critically assesses the validity of one of the 

key assumptions of state-of-the-art SOFC modeling tools, that of local thermal equilibrium 

between the gas and solid matrix within the porous electrodes.  A survey of the relevant 
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literature indicates that most (possibly all) of the current models make this assumption with 

little or no justification given.  Here, a two-equation, thermal non-equilibrium model of heat 

transfer between the gas and solid phase and its scaling analysis are used to estimate the 

magnitude of the temperature difference that would be expected between the gas and solid 

phase, and thus the significance of local thermal non-equilibrium effects.  A simple criterion 

based on this analysis is  then developed for determining under what conditions local thermal 

non-equilibrium effects may safely be neglected, and when they are likely to become 

significant. 
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CHAPTER 2 

RADIATIVE HEAT TRANSFER ANALYSIS 

 

2.1   Background 

Solid oxide fuel cells (SOFCs) operate at temperatures on the order of 600-1000 ºC 

[6]; thus, radiation heat transfer must be given special consideration in thermal modeling 

efforts, including stack thermal management and materials development. During the last 

decades, a number of increasingly detailed theoretical and numerical models of the coupled 

electro-chemical, thermal, and fluid processes in SOFCs have been developed, and multiple 

papers have been published on the subject.  The first modeling efforts were highly simplified 

and limited to predicting average cell values such as voltage, current density and temperature 

in isothermal cells—which sidesteps the issue of thermal radiation altogether.  More detailed, 

non-isothermal numerical models (for example [7-9]) began to appear in the early 1990’s, 

and building on these pioneering works, Hartvigsen, et al.[10] were the first to consider 

surface-to-surface radiation exchange in thermal models of SOFCs and concluded that it was 

significant.  Since that time, many papers have reported results of numerical calculations, 

some including the effects of radiation (for example, see references [11-16]), and others not.  

The methodologies employed vary from highly simplified analysis to much more detailed, 

computationally expensive methods (often via commercial CFD codes) with sometimes 

conflicting results and conclusions reported.   

The goal here is to establish a complete picture of how radiation heat transfer should 

be treated in different components of SOFCs and identify and properly validate the justifiable 

simplifying assumptions that ease the computational burden without compromising the 
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validity of the analysis. First, radiative heat transfer in the semitransparent anode (positive 

electrode)-electrolyte-(negative electrode) cathode, or simply PEN structure of the SOFC 

unit cell, is considered and its effect on the overall operating conditions is evaluated.  Next, 

the discussion is extended to modeling surface-to-surface radiation exchange in the flow (air 

and fuel supply) channels, including the effects of participating gases in the channels.  

Finally, stack level thermal radiation effects including recent developments [17, 18] in the 

area of high temperature thermal insulation and overall stack thermal management are 

analyzed and future research areas identified.   

From a heat transfer perspective, the unit cell operates as a heat exchanger, 

dissipating heat generated by the irreversible electrochemical conversion of fuel (hydrogen or 

reformate in the case of SOFC with internal hydrocarbon fuel reformation) to electricity.  On 

the cathode side, oxygen molecules diffuse through the porous electrode and are reduced at 

the interface of the cathode and electrolyte.  These ions travel through the electrolyte and 

combine with dissociated hydrogen (at the electrolyte-anode interface), which has diffused 

through the anode from the fuel channel [6] (see Figure 1).  The irreversibilities of 

electrochemical reactions and the electrical resistance to flow of ions through the electrolyte 

generate heat, which is carried out of the cell by the flowing gases in the channels.  The heat 

transfer from this region of generation to the ultimate heat sink (ambient) involves radiative 

transfer in participating media such as electrodes, electrolyte, and participating gases in the 

channels, as well as surface-to-surface radiation exchange in the channels.   

On the other hand, in a stack of many unit cells, it is desirable to maintain uniform 

temperature profiles and not allow cells near the edges to operate at lower temperatures than 

cells in the interior of the stack.  Thus, management of heat losses from the stack, through the 
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Figure 1.  Schematic of a planar SOFC stack consisting of numerous individual unit cells. 
Radiation effects are important on various levels: (1) within each individual cell, (2) between the 
cell stack and insulation, (3) within the insulation, and (4) between the insulation and 
surroundings.  

 

insulation, to the environment is of critical importance in maintaining the overall efficiency 

of the stack, and prohibiting the development of damaging thermal gradients.  The design of 

high temperature thermal insulation involves an analysis of radiative transfer in participating 

media (within the insulation materials), while the transfer of heat from the stack to the 

insulation and to the environment can be modeled as surface-to-surface radiation exchange.   

Inclusion of radiative transfer in analysis of heat transfer entails a number of 

challenges which are particular to thermal radiation modeling and not encountered in analysis 

of convective-conductive heat transfer.  The first is the inherent complexity of the governing 

equations which are integro-differential and, in general, depend on as many as seven 

independent variables (time, three position variables, two angular variables describing 

direction of propagation of radiation rays, and the wavelength).  Further, the governing 

equations are non-linear, as the emissive power features a fourth-power dependence on 
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temperature.  Besides the difficulty associated with solving these equations, the accuracy of 

any analysis is always limited by the extent to which radiative properties are known.  Unlike 

the thermophysical properties relevant to conduction or convection heat transfer, which are 

well behaved, rather well characterized, and usually weakly dependent on temperature, 

radiative properties are often highly (even erratically) dependent on wavelength of radiation 

and surface preparation, and a strong function of the temperature.  Furthermore, in many 

cases limited experimental data exists for radiative properties, and even that is for the 

materials relevant to power generation and aerospace applications.  Fortunately, in certain 

cases making use of carefully justified simplifying assumptions renders these difficulties 

manageable and allows one to obtain results sufficiently accurate for engineering 

calculations.  Even a simplified analysis can be very costly, however, increasing 

computational time requirements by an order of magnitude or more [11, 15] as compared to 

the conductive-convective heat transfer calculations alone.  This fact motivates us not only to 

discuss the existing modeling methodologies and simplifying assumptions for treating 

radiative heat transfer, but also to specify the conditions under which certain radiative effects 

could be neglected altogether. 

2.2   Radiative transfer in participating media 

In a previous work [11] a framework for modeling radiation within the optically thick 

porous electrodes, and optically thin yttria-stabilized zirconia (YSZ) electrolyte, was 

developed.  It was shown that the radiative effects are significant for thicker, semitransparent 

electrolytes, reducing the overall operating temperature (by 150 K) and decreasing thermal 

gradients in the monolith type cell.  Also, it was shown that the Schuster-Schwarzchild’s 

two-flux approximation gives accurate results at a fraction of the computational cost of the 
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discrete ordinates (DO) method.  In that work, however, knowledge of the relevant radiative 

properties was limited, and the models were developed assuming gray properties.     

Here, experimental measurement of optical properties of the SOFC materials is 

reported. Since the optical properties exhibit significant spectral variation, the radiative 

transfer model is formulated on a spectral basis, still in the optically thin limit of the two-flux 

approximation, and used to solve the radiative transfer equation (RTE) in the YSZ electrolyte 

layer.  The divergence of the total radiative heat flux is then incorporated into the overall 

energy conservation equation as a heat sink term through the user defined function utility in 

the FLUENT CFD model of the SOFC.  The cell geometry under consideration is shown in 

Figure 2, with relevant dimensions, properties, and operating conditions given in Table 1.   

 2.2.1 Measurement of radiative properties 

In general, the electrolyte and the porous electrodes of SOFCs are semitransparent 

materials; that is they can absorb, scatter, and emit thermal radiation.  For a linear medium, 

the spectral absorption coefficient,κ , refractive index, n, spectral scattering coefficient, sσ ,  
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Figure 2.  Schematic of the planar, anode-supported unit cell model of SOFC (not to scale).  
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Table 1.  SOFC Unit Cell Dimensions, Material Properties, and Operating Conditions 
 

Region Type Size/Thickness
Density    
[kg/ m3]

Thermal Conductivity 
[W/m K]

Cathode Porous (0.3)   75 µm 3030 5.84
Anode Porous (0.4) 500 µm 3310 1.86
Electrolyte Solid   15 µm 5160 2.16
Current collector Solid   5 mm 8030 20.0
Cell Length (x-direction)   10 cm
Cell Width (z-direction)   5 mm
Air/Fuel Channels 2.5 x 3.0 mm
Fuel Inlet (1000 K) 80% H2 20% H2O 85% utilization
Air Inlet (1000 K) 21% O2 79% N2 20% utilization  

 

and the scattering phase function,Φ , provide a complete set of phenomenological properties 

required to model the propagation of radiative energy in the medium.  In addition, emissivity, 

ε , and reflectivity, ρ, of the bounding interfaces must be provided in order to specify the 

boundary conditions.  These radiative properties typically vary with wavelength, and we used 

Planck’s law [19] to find the relevant spectral range for measurements.  For typical operating 

temperatures of 900-1100 K and refractive index of the electrolyte, n ≈ 1.8 [11], it can be 

shown that over 90% of the emissive power is contained within the near to mid infrared 

spectral region, 0.9 < λ < 7.8 µm.  Figure 3 shows the emissive power as a function of 

wavelength for these conditions.  
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Figure 3.  Definition of the spectral range of interest wherein 90% of radiative energy falls according to 
Planck’s law for blackbody emissive power (n =1.8) for the temperatures relevant to SOFCs. 
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A Fourier transform infrared (FTIR) spectrometer (Bruker Optics TENSOR 37) fitted 

with a reflectance accessory was used to obtain transmittance, Tr, and reflectance, R, data for 

samples of YSZ, nickel-doped YSZ, and strontium-doped Lanthanum ferrite (LSF)—

materials commonly used for the electrolyte, anode, and cathode, respectively, of SOFCs.  

For collecting near-IR data, an InGaAs detector and quartz beam splitter were used, and for 

the mid-IR data, a KBr/DLaTGS collector and Ge on KBr substrate beam splitter were used.  

All measurements were performed at room temperature.  For 200 µm thick samples of Ni-

YSZ, and LSF, the transmittance was essentially zero within the noise of the measurements.  

Thus, it is assumed that the electrodes are opaque in this region of the spectrum, although 

scattering could play a role in radiative transfer and should be investigated further.  The 330 

µm thick sample of polycrystalline YSZ, however, is semitransparent and shows significant 

spectral variation in transmittance and reflectance as seen in Figure 4.   

This transmittance and reflectance data can be related to the transmittivity, τ, and 

reflectivity, ρ, through geometric optics and ray tracing methods [19] via simultaneous 

solution of the following equations:  

 
2 2

2 2

(1 )1
1

R ρ τρ
ρ τ

 −
= + − 

 (1) 

and, 

 
2

2 2

(1 )
1

Tr ρ τ
ρ τ

−
=

−
 (2) 

Once transmittivity and reflectivity are calculated, the absorptive index, k, is found from, 

 [ ]ln
4

n
k

d
λ τ
π

= −  (3) 

where, d is the thickness of the sample.  The refractive index, n, can be approximately found 
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Figure 4.  FTIR transmittance and reflectance data for a 330 µm thick sample of polycrystalline yttria-
stabilized zirconia (YSZ). 

 

using Fresnel’s equation [19] by assuming that the material of interest has low absorptive 

index, and for near normal incidence, 

 ( )
( )

2 2

2 2

1

1

n k

n k
ρ

− +
=

+ +
 (4) 

Finally, the spectral absorption coefficient, κ, is related to the absorptive index by, 

 4 k
n
πκ
λ

=  (5) 

where, λ is the wavelength of the radiation.  The resulting absorption coefficient, found by 

processing FTIR data using the method described above, is given in Table 2 and plotted in 

Figure 5.  For a typical electrolyte thickness of 15 µm, the resulting spectral optical thickness, 

τλ, of the electrolyte layer varies between 0.07 and 0.24 in the spectral region of interest.  

Thus, a spectral, optically thin approximation is appropriate for solving the radiative transfer 

equation in the electrolyte [19].   
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Table 2.  Absorption Coefficient and Refractive Index of YSZ 
 

Wavelength, 
λ [µm]

Absorption Coefficient, 
κ [cm^-1]

Refractive 
Index

1.0 172 1.38
1.5 165 1.79
2.0 163 1.90
2.5 162 1.80
3.0 159 1.83
3.5 148 1.86
4.0 121 1.88
4.5 90 1.88
5.0 66 1.87
5.5 50 1.85
6.0 40 1.84
6.5 34 1.82
7.0 35 1.79
7.5 47 1.75
8.0 65 1.71
8.5 79 1.67
9.0 109 1.63
9.5 152 1.58
10.0 203 1.52  
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Figure 5.  Absorption coefficient of YSZ computed from transmittance and reflectance measurements 
showing strong spectral dependence.  

 

2.2.2 Formulation of radiative transfer model 

 Modeling of thermal radiation propagation in participating media requires solution of 

the radiative transfer equation (RTE), an integro-differential equation which cannot be solved 

analytically in its most complete form [19].  It is convenient to write an RTE in terms of the 
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spectral optical thickness, 
0

s

dsλ λτ β= ∫ , which is a rescaled spatial variable, s, in the direction 

of radiation beam propagation with the spectral extinction coefficient, λ λ λβ κ σ= + , acting 

as scaling factor.  In quasi-steady state form, with the given change of variables, the RTE is, 

 ( ) ( ) ( )
4

ˆ ˆ ˆ1 ,
4b i i i

dI I I I d
d

λ λ
λ λ λ π

λ

ωω
τ π

= − + − + Φ Ω∫ s s s  (6) 

where Iλ  is the spectral intensity of radiation, bI λ  is the blackbody intensity of radiation 

(function of the local temperature), λ λ λω σ β=  is the single scattering albedo (ratio of 

radiation decay by scattering to the total extinction of radiation), and ( )ˆ ˆ,is sΦ is the scattering 

phase function, which upon integration over the entire hemisphere in Eq. (6) gives 

augmentation of radiation via in-scattering (i.e., redirection of radiation from other directions 

to the given direction).  The radiative heat flux at any point within the medium can be 

computed from the spectral intensity of radiation (after it is determined by solving Eq. (6)) by 

integration over all possible directions of radiation propagation as well as over the entire 

electromagnetic spectrum, 

 ( )
4

0

ˆ ˆrq I d dλπ
λ

∞

= Ω∫ ∫ s s  (7) 

Solving Eq. (6) in the most general case of a three-dimensional, spectrally-dependent, 

absorbing-scattering-emit-ting medium is a formidable task even when it is done 

numerically. Therefore, it is beneficial to employ several simplifying assumptions that allow 

approximate solution of the problem.   

First of all, the typical SOFC unit cell geometry features very thin (high aspect ratio) 

layers of electrode and electrolyte materials arranged in either plane-parallel (planar design) 
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or cylindrical/concentric (tubular design) fashion, thereby making a one-dimensional heat 

transfer approximation well justified. This reduction in dimensionality of the problem 

reduces the complexity significantly.  Second, the experimental data suggest that SOFC 

electrodes are opaque and, therefore, volumetric radiation can be neglected or treated in the 

limit of the optically thick media approximation, for which the optical distance, 1L Lτ β= , 

if the extinction coefficient is known.  In this case, the very simple, Rosseland approximation 

[19] can be invoked since the mean free path for photon propagation is short and radiation 

propagation can be treated as a diffusion process.  On the other hand, the YSZ electrolyte 

appears to be optically thin ( 1Lτ ≤ ), and in the case of a 1-D, plane parallel medium the 

Schuster-Schwartzchild two-flux approximation can be used to reduce the RTE to a second-

order ODE for spectral radiative heat flux.  

  The Schuster and Schwartzschild’s, or two-flux, approximation assumes that the 

radiative intensity is uniform over the upper and lower hemispheres.  Also, assuming 

isotropic scattering in the YSZ, the RTE can be rewritten as an ODE for the spectral heat flux 

 
2

2 (1 )(4 ) (1 )4 bd q dEq
dd

λ λ
λ λ λ

λλ

ω ω
ττ

− − = −  (8) 

where, qλ is the spectral radiative heat flux, and bE λ  is the spectral, black-body emissive 

power.  The boundary conditions for diffuse surfaces can be expressed, after some 

manipulation, as, 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
1 11

2
, 2 22

1
0 : 2 1 4 1 4

1

1
: 2 1 4 1 4

1

b b

L b b

dq q E E
d

dq q E E
d

λ
λ λ λ λ

λ

λ
λ λ λ λ λ

λ

ρ
τ ρ ε ρ

ω τ

ρ
τ τ ρ ε ρ

ω τ

−
= − + + = − −

−

−
= − − − = − −

−

 (9) 
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where, ρ is the reflectivity of the boundaries, (subscripts 1 and 2 indicate properties at the 

boundaries), ε is the emissivity of the boundaries, and ,Lλτ is the spectral optical thickness of 

the 1-D layer.  Equation (8) was solved for spectral radiative heat flux as a function of 

spectral optical thickness, however, the solution obtained is only semi-analytical, containing 

integrals of the blackbody emissive power that were numerically approximated.  (See 

Appendix A for the complete solution.) 

Once the spectral radiative heat flux is determined, total radiative heat flux is 

obtained by integration of the spectral heat flux over the entire electromagnetic spectrum, 

 
0

rq q dλ λ
∞

= ∫  (10) 

Numerically, the spectral integration is accomplished through the N-band approximation 

method [19, 20], which assumes that spectral properties, (in this case the extinction 

coefficient), are approximately constant over discrete wavelength intervals and replaces the 

integral by a summation.   

2.2.3  Model validation 

In order to validate the semi-analytical solution for solving the spectral RTE for the 

optically-thin electrolyte, the numerical solution was compared to an analytical solution 

given by Modest [19] for an isothermal problem as well as to a simple 1-D combined 

conduction-radiation problem solved using FLUENT’s built in Discrete Ordinates (DO) 

method.  

The radiative heat flux in a gray, isothermal, non-scattering, 1-D, plane-parallel 

medium between two black walls at equal temperatures (Figure 6), is given analytically by  
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Figure 6.  A simple problem of radiation-conduction heat transfer in a 1-D, plane-parallel medium bounded 
between two isothermal plates used for validation of the spectral two-flux radiation model. 

 

the following two-flux approximation [15], 

 ( )22 4 4 2( ) L
wq n T T e eτ τ τσ − − − = − −   (11) 

where, σ is the Stefan-Boltzmann constant, T and Tw are the absolute temperatures of the 

medium and walls, respectively, and τ is the optical length.  A dimensionless heat flux is then 

defined as: 

 ( )2 2
2 4 4( )

L

w

q e e
n T T

τ τ τ

σ
− − −Ψ = = −

−
 (12) 

Figure 7 compares numerical predictions of the wall heat flux obtained using the spectral 

algorithm (with gray properties) and the analytical solution given by Eq. (12).  In the 

simulations, the temperatures of the walls and medium are taken to be 1000 K and 900 K, 

respectively.  Clearly, the results agree very well for optical thickness up to approximately 

2.0. 

Further validation of the solution algorithm demands comparison of the results for the 

problem involving both radiation and conduction. To this end, the spectral two-flux model 

was implemented in FLUENT CFD software as a user defined function (UDF), which 

incorporates the divergence of the radiative heat flux as a heat sink in the energy equation.  In 

order to validate this implementation, a simple problem was considered of combined 

radiative-conductive heat transfer in a 1-D, plane-parallel medium bounded by two 
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Figure 7.  Comparison of the numerical predictions obtained using the spectral two-flux model with the 
analytical solution (eqn.(12)) for the non-dimensional wall heat flux. 

 

isothermal plates (Figure 6).  The temperatures of the upper plate and lower plate were fixed 

at 1200 K and 800 K, respectively.  The temperature field within the medium was solved 

using the discrete ordinate (DO) method (standard FLUENT implementation) as well as by 

using the UDF for the two-flux approximation that was developed.  A comparison of the 

results for optical thickness of 0.001, 0.1, and 1.0 shown in Figure 8 clearly indicates the 

robustness of the developed spectral two-flux radiation-modeling algorithm.   

In addition to testing the two-flux model implementation on these gray problems, a 

spectral case was also considered by using three spectral bands to approximate the spectral 

dependence of the extinction (absorption) coefficient of the electrolyte (obtained from 

measurement results in Table 2), 

 

1

1

1

160 ; 0.0 3.5

110 ; 3.5 5.0

50 ; 5.0

cm

cm

cm

λ

β λ

λ

−

−

−

 < <
  = ≤ < 
 ≤ < ∞  

 (13) 

These values correspond to optical thicknesses of 0.24, 0.165, and 0.075 for three respective 

spectral bands in the case of a 15 µm thick electrolyte.  Figure 8 shows a comparison between 
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Figure 8.  Comparison of results obtained using the two-flux and discrete ordinates (DO, benchmark) 
methods for various optical thicknesses and gray optical properties (a-c), and spectrally varying absorption 
coefficient (d).   

 

the temperature predictions obtained using the two-flux model and FLUENT’s standard 

discrete ordinate method for the 3-band spectral model.  In this simulation, the boundaries 

were assumed gray (ε = 0.9), with an isotropically scattering medium (ω = 0.l).  Once again, 

the agreement appears to be satisfactory.  Although the medium is assumed to be 

isotropically scattering, the single scattering albedo is not known, and for the remainder of 

this analysis, was assumed zero.  
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2.2.4   Model Results and Analysis 

Solution of the momentum, energy, and species conservation equations that describe 

species transport and the temperature field in the unit cell of an SOFC stack was obtained 

using FLUENT CFD software as described in the previous work [11].  The electrochemical 

reactions and the potential field within the cell were solved by an add-on tool developed by 

the Department of Energy’s National Energy Technology Laboratory, which is described in 

the literature [21, 22].  The unit cell geometry, material properties, and the standard operating 

conditions under consideration are given in Table 1.  The FLUENT model of the SOFC unit 

cell was discretized using a fine mesh of 105,600 elements. The appropriateness of this mesh 

was verified against another model of 262,500 elements, and the results from both compared 

favorably.  Because the unit cell is part of a larger stack, the boundaries were treated as 

adiabatic.  The electrodes were modeled as porous media, and the electrolyte as a solid 

region.  In this model, the current density of the cell was specified (150 mA/cm2), resulting in 

an average operating voltage of 0.87 V and average cell temperature of 1046 K. 

Because the temperature gradients at interfaces are of particular interest for thermo-

mechanical failure analysis, Figure 9 shows a comparison of the temperature distribution at 

the anode-electrolyte and cathode-electrolyte interfaces for the cases with and without 

radiation in the electrolyte layer.  Clearly, the effect of radiation is minimal, leading to at 

most a couple of degrees reduction in the interfacial temperature. This is in sharp contrast to 

the previous findings [11], wherein significant reduction in temperature was reported when 

radiation is included. This significant difference in results owes to difference in 1) radiative 

properties of YSZ and 2) cell geometry that was simulated in [6] and here. Specifically, the 

absorption coefficient for polycrystalline YSZ experimentally measured and reported here is 
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Figure 9.   Temperature profile of the anode/electrolyte and cathode/electrolyte interfaces with and without 
radiation.  

 

at least an order of magnitude greater than that of single crystal YSZ used in [11].  Also, in 

the previous work a thick, 500 µm electrolyte layer was used, leading to significant (relative 

to thermal radiation) conduction resistance.  With the correct properties of YSZ now 

available, the optical thickness of the 500 µm electrolyte ranges from 2 – 7 (optically thick) 

vs. 0.25 previously calculated in [11].  This has the effect of greatly reducing radiative 

transfer due to the exponential decrease in transmittance that occurs with an increase in 

optical thickness.  In the current case of a more realistic electrolyte thickness (15 µm or less) 
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found in state-of-the-art SOFCs [22-24], the conduction resistance across the electrolyte is 

reduced by a factor of more than 30.  Combined with the increase in radiation resistance just 

mentioned, the net result is dominance of conduction heat transfer over radiative heat transfer 

even for such high operating temperatures as found in SOFCs.  Thus, the disparity in results 

from the previous work vs. the current work is fully explained from a physical standpoint. 

In SOFCs, heat generated by the electrochemical reactions at the electrode-electrolyte 

interfaces and by ohmic heating in the electrolyte is carried away mostly by flow in the air 

channel.  Thus, the electrolyte acts as a thermal resistance to removing heat generated at the 

interface of the anode and electrolyte.  It can be shown that for the geometry and operating 

conditions reported in [11], radiative heat transfer contributes approximately 15% to the total 

heat flux across the electrolyte in the presence of only 1 K temperature difference across the 

electrolyte at temperatures relevant to SOFCs.  This is not the case when the corrected 

radiative properties are used, or for a very thin electrolyte, which must sustain much greater 

temperature gradients before radiation becomes significant. 

Finally, although our results indicate that radiation within the electrolyte has little 

effect for the geometry and operating conditions used in this study, it cannot, in general, 

simply be neglected. For example, during the start-up and shut-down of the SOFC, one could 

develop significant temperature gradients across even very thin electrolyte leading to 

potentially significant radiation effects. The major concern on whether or not to include the 

radiation analysis into the SOFC thermal model lies in the tremendous increase in 

computational costs associated with inclusion of radiation. This demands development of 

computationally efficient techniques for treatment of radiative heat transfer. 
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The spectral two-flux model developed here is sufficiently accurate and adds only 

20% to the CPU time required to obtain the converged solution of the overall SOFC thermal-

fluid model.  This is in comparison to the approximately ten-fold increase in the CPU time 

required for computations if radiation is solved using the standard discrete ordinate (DO) 

method implemented in FLUENT.  Thus, we would argue that the spectral two-flux 

treatment of radiative heat transfer is sufficiently accurate and computationally efficient to be 

included in any SOFC thermal-fluid analysis tool to study, on a case-by-case basis, variations 

in geometry, operating conditions, or electrolyte materials that could potentially induce 

significant temperature gradients across the electrolyte layer.   

2.3   Surface radiation in flow channels 

 In this section, we consider radiative transfer in the flow channels which are used to 

supply the fuel (hydrogen or hydrocarbons) and oxidizer (air) to the cell PEN structure and 

are bounded by hot (emitting radiation) walls. In general, one needs to consider emission and 

reflection of radiation by the walls as well as its extinction (absorption and scattering) and 

emission by the flowing gases.  

 2.3.1   Radiative properties 

 Air mainly consists of simple non-polar nitrogen and oxygen molecules and, 

therefore, is non-interacting (transparent) with thermal radiation at the moderate pressures 

and temperatures found in SOFCs [19].  Therefore, no bulk extinction and emission of 

radiation takes place, limiting the radiative transfer to surface-to-surface exchange of 

radiative energy. For the fuel channels, however, the analysis is more complicated due to the 

presence of the following participating species: H2O, CO2, CO, CH4, and possibly other 

hydrocarbons. Radiative properties of these gases are well established (at high temperatures) 
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and show very strong spectral, temperature, and pressure dependence [19].  Therefore, an 

accurate treatment of spectral emission and absorption by gases can quickly become very 

involved with more than a half of a dozen of advanced, competing models available, each of 

them still with somewhat limited range of validity.  

 Here, we are more interested in a simplified analysis in order to establish whether or 

not radiation transfer in gases should be considered at all or if gases can be treated as 

essentially non-participating medium as far as SOFC fuel flow channels are concerned. To 

this end, the concept of the Planck-mean absorption coefficient becomes very useful for this 

approximate analysis.  From the literature data (see, for example, Modest [19]) these 

spectrally-averaged absorption coefficients are approximately: 0.1 1 1cm bar− −  for H2O; 0.3 

1 1cm bar− −  for CO2 and CO; and 0.4 1 1cm bar− −  for CH4 at 600 ºC.  A quick calculation of the 

optical thickness of the fuel channel across its diameter (~5 mm) for a typical fuel stream 

composition yields 0.1Lτ <  at atmospheric pressure, leading to gas transmittance, 

[ ]exp LTr τ= − , approaching unity—implying that the medium can be treated as transparent. 

Surface-to-surface radiation exchange is thus the only radiative transfer mode that must be 

considered in the flow channels of SOFC unit cells.  From the property perspective, the only 

required input to this model is the emissivity of the relevant materials, which is not well 

known and can vary significantly depending on temperature and redox state. Finally, it 

should be noted that this conclusion is strictly valid for the air/fuel supply channels with very 

high aspect ratio only.  

2.3.2   Model formulation 

Here, we review the net radiosity method [19] for calculating the radiative heat flux 

between surfaces in a channel (planar and tubular cell) separated by a transparent medium, 
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and comment on some simplifications that can be made to the analysis under certain 

conditions.  As a first approximation, one can assume that the walls are opaque, gray, diffuse 

emitters and reflectors of thermal radiation, especially in the absence of more detailed 

property data.  However, in the case when one of the walls is a porous surface of the 

electrode, this assumption may be questionable and the analysis becomes proportionately 

more complex. One way to avoid this difficulty is to assign an apparent emissivity and 

reflectivity to the porous electrode interface, which can be computed or measured by 

considering the entire porous electrode layer. By forming an enclosure based on the flow 

channel geometry (where all openings are closed by virtual black surfaces maintained at 0 

K), the radiative heat flux at any point on the surface of the flow channel is given by  

 ( )
( ) ( ) ( ) ( ) ( ) ( )1 1 dA dA o b b dA dAA A

q
q dF H E E dF′ ′− −

 
′ ′− − + = −  ′∈ ∈ 

∫ ∫
r

r r r r
r r

 (14) 

where, dFdA-dA’ is the diffuse shape (view) factor between two surface elements dA and dA’, ε 

is the emissivity of the surface, 4
bE Tσ= is the black-body emissive power, and Ho is 

incident radiation entering or leaving the enclosure through a virtual surface (can be used to 

couple analysis of the flow channel with radiation to/from the cell surrounding/manifolds).  

Notice that in order to solve Eq. (14) for heat flux, the temperature at every point in the 

enclosure must be known as well as the emissivity.  However, the flow channels in the 

planar-type fuel cells typically have high aspect ratio (L/d ~30), and, therefore, following the 

conclusions reached in papers [25-27], the walls can be treated as black surfaces with 

emissivity equal to 1.  This greatly simplifies the analysis and the radiative heat flux at any 

point on the channel walls can be expressed as,  

 ( ) ( ) ( )r b b dA dA oA
q E E dF H′−′= − −∫r r r  (15) 
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The view factor dFdA-dA’ in Eqs. (14) and (15) physically represents the fraction of 

radiation leaving surface element dA that is incident on another surface element dA’ without 

any intermediate reflections, i.e., via direct travel (see Figure 10).  View factors are 

geometric quantities which can be evaluated analytically, numerically, or by consulting 

tabulated values [19].  The view factors between elements on the channel walls and 

inlet/outlet elements diminish to zero very rapidly with distance from the end [26]. The view 

factors between elements at fixed axial positions (i.e., on top of each other) are relatively 

large, but the temperature differences between the wall surface elements at a given axial 

position are relatively small in a typical fuel cell.  Thus, radiative heat flux is not expected to 

have a large effect on the average operating temperature of the cell, although some have 

indicated as much as a 30 ºC decrease in maximum temperature and a flattening of the 

temperature profile with the inclusion of surface radiation in planar cell channels [12, 15].   

It is important to point out the fundamental difference between a tubular cell channel 

and planar cells in analyzing the flow channel radiation exchange.  In the tubular cell, 

radiation exchange is between the surfaces of two concentric tubes, the air supply tube and 

the porous support tube (Figure 11), and the black surface approximation would not generally 

be appropriate. However, there does exist symmetry in the radial direction that allows the 

channel to be discretized into N isothermal slices unlike the channels in planar cells.  Figure 

12 shows this schematically, and gives an indication of the view factors that should be 

dA

dA’

dA

dA’

 
 

Figure 10.  Schematic to aid in view factor definition for two surface elements in a planar cell flow channel.  
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Figure 11.  In a tubular cell [9,10], thermal radiation from the outer supporting air tube to the air supply 
pipe is the dominant heat transfer mechanism due to the large temperature difference between the two 
surfaces. 

  

be appropriate. However, there does exist symmetry in the radial direction that allows the 

channel to be discretized into N isothermal slices unlike the channels in planar cells.  Figure 

12 shows this schematically, and gives an indication of the view factors that should be 

calculated.  Depending on geometry of the channel, some of these view factors may be 

negligible or vanish quickly in the axial direction.  Once again, this must be determined on a 

case-by-case basis. 

2.3.3   Coupling of radiation to energy equation 

 Once radiative heat flux at the surface is calculated, it can be incorporated into overall 

energy conservation through the boundary conditions at the walls, 

 ( )b
boundary

Tq q q h T T q k
n∞

∂
+ = → − + = −

∂conv rad cond rad  (16) 

Comparison of the magnitude of the convective and radiative heat fluxes will give an 

indication of which heat transfer mode is dominant, and which, if any, can be neglected.  

2.4   Stack level thermal radiation 

 Here we review several topics related to thermal radiation from a stack of unit cells to 

the environment.  In particular, recent work on high temperature insulation systems for  
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Figure 12.  View factor calculation for the isothermal slices on two concentric tubes: (A) the inner surface 
“sees” the outer surface of the same slice and vice versa, (B) both surfaces see other slices along the axial 
direction, (C) the outer surface sees itself, (D) both surfaces of a given slice see the external environment. 

 

SOFC application completed by Spinnler, et al. [17, 18], is an excellent example of the 

approach that should be followed in future work.  Also, we provide guidelines and a 

framework for future work in stack thermal management, including identification of 

objectives and methodology for proper accounting of thermal radiation effects. 

 2.4.1   Radiative properties 

 Recently, Spinnler, et al. [17, 18], published an excellent theoretical and experimental 

analysis of high temperature insulation for application to SOFC stacks.  The insulation design 

considered by these authors featured multi-layer thermal insulations (MTIs), wherein highly 

reflective screens are separated by insulating, opaque spacers as shown in Figure 13.  The 

screens increase the overall thermal resistance of the MTI by reflecting thermal radiation 

back towards the hot side.  Several screen materials such as gold, ceramic, and stainless steel 

have been considered with reflectivity ranging from high to low values, respectively.  The 

spacer materials considered by the authors were of the fibrous (thermal conductivity, k ~ 0.1-

0.35 W m-1K-1) and microporous (k ~ 0.02-0.04 W m-1K-1) type with known absorption and 

scattering characteristics.  The goal of the analysis was to develop a thermal model for MTIs 

that predicts the experimentally measured effective thermal conductivity, given material 

selection and configuration.     
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Figure 13.  Multilayer thermal insulation (MTI) wherein opaque, insulating spacer materials are separated 
by reflective screens which reduce the heat loss by back-reflecting thermal radiation [17,18]. 

 

 2.4.2   Radiation model 

The analysis was done in the limit of steady, one-dimensional conductive-radiative 

heat transfer in the plane-parallel layer of insulation.  It was determined that the Rosseland 

diffusion approximation underestimates the influence of radiation screens, since the opaque 

spacer material is optically thin very near the screens.  Thus, the RTE was still used to 

calculate radiative heat transfer in the optically thick spacers, 

 ( )2

0
ˆcos , sin

2b
dI I n I I d
ds

πσθ β κ θ θ θ′ ′ ′= − + + ∫ s  (17) 

In order to solve the RTE, the scaling model of Lee and Buckius [28, 29], which converts a 

scattering radiation problem into a non-scattering one, was used.  In this elegant approach, 

the scattering coefficient is set to zero and the transmission and reflection coefficients are 

scaled, assuming linear scattering in an optically thin layer, as 

 ( ),
21 ; 1 3 24

L L
L

andβ βτ ω τ ρ
τ ω

= − = −
+

 (18) 
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A further simplifying technique was to split up each layer of spacer material into N optically 

thin, isothermal layers, which are irradiated and emit radiation from both sides.  In this 

manner, the transmittance, reflectance, and emittance of each layer were calculated 

independently and added together to yield the total radiative heat flux.  The heat flux was 

then coupled to the energy equation in the solid via a source term,  

 0c r
d dTk q
dx dx

 − + =  
 (19) 

The theoretical model predictions compared favorably with results in the literature for highly 

scattering materials, but not so well for purely absorbing materials. 

 2.4.3   Experimental results 

The theoretical predictions were also compared to experimental data obtained by the 

authors [17, 18].  Test MTIs 30mm in thickness were constructed with screens (4 equally 

spaced) and without screens.  The screens were stainless steel (Cr 22 A15Y), gold, or 

ceramic (Al2O3).  The spacer materials tested were Isotherm 1000 (Frenzelit), HT 1000 

(Klevers), Saffil (ICI), and Super G (Microtherm).  Theoretical calculations of temperature 

dependent, effective thermal conductivity fit the experimental data within 10% except for the 

case of highly absorbing spacer materials.   

In general, the presence of the screens dramatically lowers the effective thermal 

conductivity of the MTI, by as much as 50% in some cases.  Also, it was shown that effective 

conductivity decreases with a decrease in screen emissivity (gold screens performed best).  

As expected, use of higher opacity spacer materials such as Microtherm Super G resulted in 

lower effective thermal conductivity.  Overall, this work [17, 18] provides a sound theoretical 

and experimentally validated basis for the design and application of multi-layer thermal 
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insulation and can be recommended for use in design analysis of other thermal insulation 

materials for SOFCs. 

 2.4.4   Radiation from stack to environment 

Effective stack thermal management is a requirement for maintaining uniform 

operating conditions across the stack and thus preserving stack efficiency.  For example, if 

cells near the edge of the stack are not properly insulated, their performance can vary from 

the stack average causing variations in cell voltage.  Heat loss from the edges also has the 

potential to induce damaging thermal gradients within cells.  In addition, SOFC-based power 

plant design will require the outer surface of the insulation to be maintained at some safe, 

prescribed temperature [30].  These considerations make thermal modeling of the stack to 

environment critical, and because of high operating temperatures, thermal radiation should be 

given special treatment.   

A first order simplifying approximation in modeling the stack would be to treat the 

outer surface of the stack as isothermal, exchanging heat with an isothermal inner surface of 

the insulation [30].  However, this is clearly not the case for some configurations of cells (co-

flow, counter-flow), which exhibit highly non-isothermal behavior along the flow direction.  

It would be ideal to preserve this same temperature profile on the inner surface of the 

insulation, so as not to disturb the outer cells.  In fact, a single cell can become completely 

isothermal if it is allowed to exchange thermal radiation with an isothermal enclosure [31].  

This temperature non-uniformity would then propagate into the stack, affecting overall 

performance.  Our literature review indicates that little has been reported about the 

interaction between stack and insulation and on the role of radiation heat transfer in 

minimizing heat losses from the stack.  The methods for detailed treatment of radiation heat 
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transfer in stack thermal management have already been covered in this thesis and they are 

equally applicable to treatment of stack-to-environment radiation heat transfer. We can only 

emphasize again that the choice of the model and implementation will depend on the 

geometry, flow configuration and composition of the gas mixture, choice of insulating 

material, and prescribed external temperature of the insulation.  

2.5   Concluding remarks 

Radiation heat transfer in SOFC components and materials has been analyzed with a 

goal of developing the proper radiation modeling methods for different cases.  Simplifying 

assumptions and simple scaling laws have been introduced, where applicable, to provide 

guidance and reduce costly computations.  Radiation in participating media and surface-to-

surface radiation exchange have been considered both within the unit cell and at the stack 

level.  It was demonstrated that only careful treatment of these radiative regimes would 

enable an accurate prediction of temperature fields and operating conditions.   

Measurements and analysis of spectral radiative heat transfer as relevant to SOFC 

membrane electrodes was reported. Specifically, the absorption coefficient and refractive 

index of the yttria-stabilized zirconia electrolyte (YSZ) were experimentally determined. It 

was found that the YSZ is optically thin for the electrolyte layer thicknesses relevant to 

currently developed SOFC, and optical properties exhibit strong wavelength dependence.  

The Schuster-Schwartzchild two-flux approximation was used to solve the RTE on a spectral 

basis with three spectral bands used to approximate spectral variation of the absorption 

coefficient.  The model implementation was validated against an analytical solution from the 

literature for an isothermal case, as well as using the benchmark solution for one-dimensional 
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conduction-radiation heat transfer across gray and non-gray layers obtained using the discrete 

ordinate method implemented in the FLUENT CFD software.  

It was found that for the geometry, materials, and operating conditions used in this 

study, which are thought as being representative of SOFC systems currently under 

development, radiative heat transfer within the electrolyte has negligible effect on the 

average cell operating temperature, voltage, or temperature gradients at the interfaces of the 

electrolyte and electrodes.  In general, however, the geometry, materials, and operating 

conditions of SOFCs that will eventually be brought to market are unknown at this time.  

And because the spectral two-flux model is demonstrated to be an accurate and 

computationally-efficient method of accounting for radiative heat transfer within optically 

thin layers, it can and should be used as a part of any sound thermal-fluid analysis of SOFC 

systems.   

 We also reviewed thermal radiation heat transfer in the flow channels of SOFCs.  Our 

analysis showed that the effect of participating gases is negligible due to the small 

dimensions of the channels (i.e. short optical path length which implies transparency of the 

medium).  Surface-to-surface radiative heat flux is calculated through the Net Radiosity 

method.  A key simplifying assumption is that the walls may be treated as black surfaces due 

to the high aspect ratio of the channels.  A review of preliminary results in the literature 

shows that surface radiation effects result in a 0-30 ºC difference in operating temperature as 

compared to the baseline case without radiation.  In considering stack level radiative effects 

we discovered that, in light of recent developments, the design of high temperature thermal 

insulations is a fairly mature field.  Stack thermal management, overall, presents its own set 

of challenges but the formulation of the radiative thermal models is well established. 
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CHAPTER 3  

TRANSIENT HEAT TRANSFER ANALYSIS 

 

3.1   Background 

Solid oxide fuel cells (SOFCs) are currently being developed for mobile and 

stationary power plant applications, and much attention is being paid to the design and 

optimization of their steady state performance in an effort to make SOFC technology 

commercially viable in the near future.  However, it is being increasingly realized [32] that 

because of substantial thermomechanical stresses developed in the cell components and 

stack, the transient process of heating an SOFC from room temperature to operating 

temperature (600 - 800 ºC) during startup, or cooling down to ambient during shutdown must 

be given special attention as well.  The ultra thin electrolyte and electrode layers (PEN 

structure) are prone to delamination, cracking, or other catastrophic failure if subjected to 

excessive thermal shock, temperature gradients, and thermal cycling during startup or 

shutdown processes.  

These dangers can usually be avoided altogether by proceeding through the transient 

in a very slow, controlled fashion (in a recent ASME conference presentation Hawkes, et al., 

[33] reported taking two days to bring a stack up to operating temperature).  As SOFC 

technology matures, however, it is likely that the consumer will demand that the fuel cell 

reach operating conditions as quickly as possible, for example, in the cold start of an 

automobile [30].  Thus, the optimal design of a startup process will minimize the total time 

required for heating, subject to the constraint of some maximum allowable temperature 

gradient (to avoid thermomechanical fracture) as well as time rate of change of temperature 
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(to avoid thermal shock and creep stresses).  It will also be necessary to quantify the expected 

number of thermal cycles the cell can withstand during its lifetime, subject to the real 

possibility that faster heating times will lower the life expectancy of the cell.   

In the literature, some preliminary efforts to address these concerns have been 

reported.  Although numerous papers have presented the development of numerical/CFD 

models to simulate SOFC behavior at steady state, few are capable of simulating transient 

operation [22, 24, 30, 32], and only one [32] has begun to quantify thermally induced, 

transient thermal stresses during startup/shutdown.  These models are based on finite element 

or volume approaches with the intent to give highly detailed information about current 

density, species distribution, flow and temperature fields, and propagation of thermal waves 

in the solid.  Thus, the information required for transient design would be available, but the 

complexity of the models and the copiousness of the results may obscure the underlying 

physics of the process and prohibit the development of simple design rules for optimal 

transient heating/cooling processes (assuming such rules do exist).  In addition, the rigorous 

CFD-based approaches demand a great deal of computational power, especially when 

simulating a long transient process with a large number of parameters to study.  Adding to 

the computational expense is the very fine discretization required for numerical modeling 

because of the very high aspect ratio of components in the cell, for example, the 15 µm thick 

by 10 cm long electrolyte layer. 

To overcome the above-mentioned conceptual and computational problems, we aim at 

developing reduced order models and an analytical approach leading to the closed-form 

solution of the problem.  Our ultimate goal is to develop simple, efficient design rules that 

clearly show the effects of the various system parameters on 1) the total time required for 
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startup, and 2) the maximum temperature gradients developed during the process.  The 

interest is not in developing a model that can give a highly detailed prediction of the 

temperature field at any given moment in time, but rather, a model that accurately and 

efficiently predicts the global quantities just mentioned.  This work is the first to attempt to 

develop an efficient design strategy for optimizing the transient process and will focus on the 

initial startup of a cell from ambient temperatures with a simplified approach that generally 

(with few modifications) applies to shutdown as well.  

3.2   Model formulation 

Under consideration is the planar type SOFC, which is a stack of repeating unit cells 

with dimensions shown in Figure 14.  The interconnects (current collectors) are made of 

stainless steel, the solid electrolyte is yttria-stabilized zirconia (YSZ), the porous anode is Ni-

doped YSZ, and cathode is Sr-doped LaMnO3 (LSM).  The cell is heated by flowing hot air 

into the oxidizer channel while controlling the inlet air temperature as a function of time.  As 

a first approximation, conditions in the fuel channel are assumed quiescent (negligible flow), 

with the composition of the gas phase similar to what would be found in a typical fuel 

stream.  At startup, no electrochemical reactions take place until a prescribed temperature is 

reached, at which point electrochemical “light-off” occurs [34].  The electrochemical process 

generates heat, and consumes and produces chemical species in the flow streams, coupling 

the thermal-fluid model to the electrochemical model.  For simplicity, it is assumed that a 

desired operating temperature is reached without triggering electrochemical reactions (i.e. no 

heat generation), so that attention is limited to convective heating of the cell.   

Another simplifying assumption is that of a 1-D temperature field in each component 

of the cell, with variation only along the flow direction, as suggested by the high aspect ratio 
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Figure 14.  Geometry of the unit cell of a planar-type SOFC stack.   
 

of the channel (>30:1).  The small physical dimensions of the components also suggest that 

they may be in local thermal equilibrium (normal to the flow direction) and this possibility is 

investigated through the development and analysis of three reduced-order models of varying 

complexity.  The first and most general model assumes the solid temperature is different from 

the gas temperature, and the resulting two-equation, coupled, transient model is solved 

numerically.  The second model assumes the gas and solid are in local thermal equilibrium 

resulting in a single transient convective-conductive equation for which an analytical solution 

has been obtained [35].  The third model goes ones step further in simplifying the problem 

and assumes that conduction along the flow direction is negligible compared to advection of 

thermal energy down the length of the cell. This latter model is thus a purely convective 

heating model, also yielding an analytical solution.  The range of validity of these models is 

then established by comparing their predictions of heating time and maximum temperature 

gradients to the results of detailed, 3-D CFD simulations of SOFC unit cell.  It is assumed 

that the geometry of the cell, material selection, and initial and final temperatures are 
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prescribed design parameters, leaving the inlet air temperature and air velocity (flow rate) as 

parameters that can be used to optimize the heating process. 

3.2.1   Two-equation, coupled, solid-gas model 

The most general, reduced order, transient heating model we developed is derived by 

applying conservation of energy to each layer (component) of the cell shown in Figure 15.  

This yields a set of seven partial differential equations (PDEs) that are coupled through the 

temperature difference between adjoining layers.  The equation for the air channel, assuming 

constant velocity plug flow and neglecting thermal radiation, is 

 ( ) ( ) ( ) ( )
2

2
g g g

p g C g C g IC g ICgg

T T T
c A u kA hP T T hP T T

t z z
ρ − −

∂ ∂ ∂ 
+ = − − − − ∂ ∂ ∂ 

 (20) 

subject to the boundary and initial conditions, 
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∂
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where, h is the convective heat transfer coefficient, CT  and ICT  are temperatures of the  
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Figure 15.  Schematic of the unit cell as a channel with composite, insulated walls.  The temperature profile 
is assumed 1-D in each layer with variation in the flow, z-direction only.   
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cathode and interconnect, respectively, g CP −  and g ICP −  are the contact perimeters between the 

air (gas) channel and the cathode layer , and the air (gas) channel and the interconnect layer, 

respectively, A is the cross sectional area of the air channel, and , , pk cρ are the thermal 

conductivity, density, and specific heat of the air, respectively.  Similar equations are written 

for the other layers, for example, the interconnect layer, 

 ( ) ( ) ( ) ( )
2

2
IC IC IC C

p g IC g IC IC CICIC
IC C

T T Pc A kA hP T T T T
t z R

ρ −
−

−

∂ ∂
= + − − −

∂ ∂
 (22) 

which is coupled to the air equation through the convection term (the second term on the 

right-hand-side), and to the cathode layer (see Figures 14 and 15) through the thermal 

resistance,  

 
2 2

IC C
IC C

IC C

t tR
k k− = +  (23) 

where, ,IC Ct t  are the thickness of the interconnect and cathode layers, respectively.  In like 

manner, the remaining equations for the cathode (C), electrolyte (E), anode (A), fuel channel 

(f), and lower interconnect (IC2), are, 
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The boundary and initial conditions for Eqs. (22) and (24) are all of the same form, 
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This set of coupled PDEs can be solved numerically in its current form, but a 

reasonable simplifying assumption at this point, is that the temperatures in the solid are 

locally uniform at each cross-section in the direction normal to the flow.  This is verified by 

calculating the Biot number, Bi, for this configuration as the ratio of thermal resistance across 

the entire composite channel wall, to convective thermal resistance between the channel walls 

and air stream,  

 conduction i

iconvection i

R tBi h
R k

= = ∑  (26) 

 

where h is the convection heat transfer coefficient, t is the thickness of layer i and k is 

thermal conductivity.  Using values found in Table 3 for ki, dimensions from Figure 14 for ti, 

and estimating h ~ 60 2 1Wm K− −  for fully-developed internal, laminar air flow in a 3 mm pipe, 

yields ~ 0.02Bi , validating the assumption that the solid can be treated as a locally 

isothermal lumped capacitance element. This understanding allows us to combine Eqs. (22) 

and (24) to formulate a single energy equation for the effective temperature of the solid 

matrix,  

 ( ) ( ) ( )
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with boundary and initial conditions, 
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The equation for the gas is similar to Eq. (20), 
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with the same boundary and initial conditions given in Eq. (21).  We further consider the case 

when the inlet air temperature is defined by a linear increase in time until a desired final (Tf) 

steady-state temperature is reached,  

 ( )
( )
( )

/

/

o f o

f f o

T Kt t T T K
f t

T t T T K

 + ≤ −= 
> −
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where, K is the rate of temperature rise at the inlet in units of ºC s-1. It should be noted that 

although the results for the linear temperature increase are discussed in this thesis, all 

mathematical developments are general and could be readily extended in a straight-forward 

fashion to investigate any functional dependence of the inlet air temperature. 

  Equations (27) and (29) are solved numerically using a Crank-Nicholson, finite 

difference scheme [36] (see Appendix B for details).  The gas equation for the next future 

time step is solved by guessing a temperature distribution in the solid, and using the tri-

diagonal matrix algorithm [36] to invert the coefficient matrix.  Using this temperature 

distribution, the solid equation is solved in a similar manner, and the process is repeated until  

Table 3.  Material Properties of Cell Components 
 

Anode (Ni-doped YSZ) 3030 5.84 595
Cathode (LSM) 3310 1.86 573
Electrolyte (YSZ) 5160 2.16 606
Current collector (SS) 8030 20.0 502
Air Channel 0.58 0.047 1051
Fuel Channel 0.2 0.2 5000

Component 3

kg
m

ρ  
 
 

Wk
m K

 
 
 

p
Jc

kg K
 
 
 
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the temperatures converge before proceeding to the next time step.  The calculations proceed 

forward in time until steady-state is reached.  Temperature gradients (spatial and temporal) 

are calculated numerically from the resulting temperature field history, allowing the 

maximum temperature gradients developed through the entire heating process to be 

identified.  The only modification necessary for simulating cooling (rather than heating) 

processes is to use negative values for K in the boundary condition, Eq. (30). 

3.2.2   Convective-conductive model 

To further simplify Eqs. (27) and (29), and to enable closed-form analytical solution 

of the problem, an assumption of local thermal equilibrium between the gas and solid is 

employed.  This bold simplification is applied to the problem at hand, not to prove or 

disprove that the solid and gas are at the same temperature, but to determine whether the 

approach will yield accurate predictions of heating time and maximum temperature gradients.  

If the model can accomplish this task, and do it analytically, then it is a very powerful design 

tool for optimizing the transient heating and cooling process.   

To implement the local thermal equilibrium assumption correctly (i.e., without even 

locally violating energy conservation), the following procedure is employed: First, both 

conservation equations (27) and (29) are added together, which cancels the coupling 

convective solid-gas heat exchange term.  Then, by definition of local thermal equilibrium, 

the temperatures of the gas and solid are made the same, leading to the following single 

convective-conductive governing equation describing transient heating dynamics of the unit 

cell: 

 
2

2eff eff
T T Tu
t z z

α∂ ∂ ∂
+ =
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 (31) 



 

 42  

where, effu is the effective velocity and effα is the effective thermal diffusivity defined as 

follows, 

 
( )
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; ;
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 (32) 

Note that the summations are now indexed to include every component of the cell including 

flow channels.  The effective velocity is the physical air velocity scaled by the ratio of heat 

capacity of the air channel to energy stored in the channel walls.  The effective thermal 

diffusivity is the cross-sectional area-weighted diffusivity of the composite channel wall.  

Both of these terms are dominated by the relatively massive interconnects with their high 

conductivity, density, and cross-sectional area.   

The same procedure used to derive Eq. (31) can be applied to the boundary and initial 

conditions (they must be first expressed in a conservative basis in terms of the total energy 

rate/flux [35]), yielding, 
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where the coefficient effβ  in Eq. (33) combines thermal energy conduction in the solid to 

thermal energy transport in the air channel, 
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Notice that if heat diffusion in the air is neglected—a very reasonable approximation as 

compared to advection—then, /eff eff effuβ α= .   
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When temperature, length, and time are normalized using the following characteristic 

scales, 

 
( )

* * *; ;
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the dimensionless form of Eq. (31) can be expressed as, 
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where Pe is defined as the effective Peclet number, /eff effPe u L α= , that is, the ratio of 

advection of thermal energy down the length of the channel to diffusion of thermal energy in 

the solid layers of the SOFC unit cell.  Likewise, the boundary and initial conditions are 
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where ( )*F t  is the non-dimensional form of the inlet temperature function given by Eq. (30) 

 ( ) ( )
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Eq. (38) reveals the second dimensionless parameter that determines the thermal response of 

the cell, the effective rate of inlet temperature rise, 

 
( )

/
/

eff
eff

f o

L u
K

T T K
=

−
 (39) 

 
Physically, this parameter represents the ratio of the advective time scale, c effτ L u= , to the 

time scale associated with the transient forcing of the inlet temperature, ( )τi f oT T K= − , 

that is, the time required for the inlet air temperature to reach the final desired temperature.  

A significant insight into the transient heating process can be obtained by analyzing this 
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parameter.  In advection dominated flows (Pe >>1, note the modified definition of effective 

Peclet number here, combining properties of the air and solid), a value of effK greater than 

unity implies that the rate of thermal energy input at the inlet of the cell exceeds the 

capability of the cell to store and distribute this heat input. Thus, temperature at the inlet 

builds up too quickly, leading to excessive thermal gradients without significant 

improvement in total heating time.   

The usefulness of Eq. (36) lies in the fact that a closed-form analytical series solution 

has been found [35] (see Appendix C for details), and that the temperature distribution 

dependence has been reduced to only two dimensionless parameters: effective Peclet number, 

Pe, and the effective rate of inlet temperature rise, effK .  Also, this solution provides a 

convenient way to validate the numerical scheme used to solve Eqs. (27) and (29) in Section 

3.2.1.  As the heat transfer coefficient coupling the gas and solid temperatures is made 

arbitrarily large, the temperatures of the gas and solid should converge onto each other and 

the resulting single temperature solution must match the analytical result given by the closed-

form solution of Eq. (36).   

3.2.3   Purely convective model 

A very interesting limiting case of Eq. (36) is that of purely convective flow 

( Pe →∞ ), in which case the right-hand side of Eq. (36) vanishes.  The resulting equation,  
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and in particular, its dimensional form,  
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looks very much like the governing equation for a cell with thermally thin cell components 

(i.e. no thermal energy storage in cell components, and local thermal equilibrium between the 

solid and gas [35]).  However, because the effective, not physical velocity is used here, 

thermal energy storage in the cell is properly accounted for, and only thermal energy 

conduction along the axial direction is neglected.  The relevant boundary and initial 

conditions are, respectively, 

 ( ) ( ) ( )* * * * *0, ; , 0 0T t F t T z= = . (42) 

The method of characteristics yields the analytical solution of the time dependent, 1-D 

temperature distribution: 

 ( ) ( )
* *

* * *
* * * *

0,           
,

,   eff

z t
T z t

K t z z t

 >= 
− ≤

 (43) 

This very simple equation for the unsteady temperature distribution provides simple 

algebraic relationships for dimensionless heating time 

 * 1 1h effKτ = +  (44) 
 
and dimensionless temperature gradients 

 
* *

* *
max max

eff
T T K
z t

∂ ∂
− = =
∂ ∂

 (45) 

 
The dimensional form of these equations yields some physical insight.  The total heating time 

is the sum of the two time scales, cτ and iτ  previously discussed in Section 3.2.2 above, 

 τ f o
h

eff

T T L
K u
−

= +  (46) 

 
The fastest that the cell can be heated, assuming it is a perfect heat exchanger, is given by the 

time required to bring the incoming air to the desired operating temperature, plus the time 



 

 46  

required for thermal energy to travel from the inlet to the exit.  So, Eq. (46) is the theoretical 

lower bound (minimum possible value) on heating time, and unambiguously suggests that 

heating time is inversely proportional to both K and u.  The maximum dimensional (physical) 

temperature gradients become, 

 
max max

;
eff

T K T K
z u t

∂ ∂
− = =
∂ ∂

 (47) 

 
indicating that spatial temperature gradient is inversely proportional to u, but both 

temperature gradients (spatial and temporal) increase linearly with K.  Equations (47) set 

upper bounds on the maximum temperature gradients that can exist in the solid during the 

transient heating, owing to the fact that thermal conduction, which tends to diminish 

temperature gradients, has been neglected in the formulation. 

Equations (46) and (47) constitute very simple design rules that establish 

relationships between design parameters and clearly explain the competing effects that must 

be balanced to optimize the heating process: 

• Increasing flow velocity, u, tends to decrease both the heating time (positive effect) 

and spatial temperature gradient (positive effect), but has no effect on the temporal 

gradient. 

• Increasing the rate of inlet temperature rise, K, tends to decrease the required heating 

time (positive effect), but increases both the temporal and spatial temperature 

gradients (negative effect). 

Thus, the purely convective model has yielded useful information about limiting cases, which 

in hindsight seems to be almost intuitively obvious, and provides the framework for 

optimization of the heating process—even though the validity of the results still needs to be 

established. This is done in the next section. In order to determine whether or not the simple, 
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reduced-order transient heating models have any significant bearing on reality, we compared 

their predictions of heating time and temperature gradients to the results of transient 3-D 

CFD simulations of SOFC unit cell heating.  

3.2.4   CFD model 

  To critically compare the predictive power of the reduced-order transient thermal 

models, a fully three-dimensional thermal-fluid analysis of the unit cell in Figure 14 was 

performed via the commercially available CFD software Fluent.  In simulations, 

thermophysical properties of the solid materials were assumed constant (estimated at the 

average temperature) and are listed in Table 3.  The steady-state flow field in the oxidizer 

channel was found under the assumption of laminar flow using constant thermophysical fluid 

properties evaluated at the average temperature of 300 °C.  For simplicity, this flow field was 

then used for the unsteady calculations of the temperature field in the cell, as the inlet 

temperature was linearly increased from 25 to 625 °C.  Once the inlet air temperature reached 

625 °C, it was held constant until the normalized temperature of the solid at the end of the 

flow channel was within 5% of the normalized steady state value (i.e. 595 °C), at which point 

the simulations were terminated.  The temperature history of the solid (electrolyte) was 

recorded throughout, and post-processed to yield maximum spatial and temporal temperature 

gradients.  Because of symmetry along the axial midplane, only half of the unit cell was 

modeled using 44,000 discrete volumes.  The mesh and time-step were properly refined to 

ensure that the results were mesh and time-step independent.  The time-step for each 

simulation was adjusted based on the rate of inlet temperature rise, K, and typically 

corresponded to a 2 °C (per time step) temperature rise at the inlet. 
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Cases were run for K values of 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, and 2.0 °C /s.  The 

inlet velocities used were, 1, 5, 10, and 20 m/s, corresponding to effective Peclet numbers of 

0.8, 4.2, 8.4, and 16.7.  Results of these simulations are compared with results of the reduced-

order models in the next section. 

3.3   Model results and analysis 

First, the results of CFD simulations were compared to predictions obtained with the 

most general reduced-order model, which is the two-equation, coupled, solid-gas model 

described in Section 3.2.1. Before the two-equation model can be numerically solved, the 

heat transfer coefficient, h, must be specified at each point along the air channel.  Because 

almost one-third of the channel is in the thermally-developing entrance region, the 

correlation based on the Graetz solution for thermally developing, hydrodynamically fully-

developed laminar flow in a duct with constant wall temperature [37] was used to 

approximately account for variation in heat transfer coefficient along the channel length:  

 
( )

*
2*1/3 *2/3

0.00183.66 ;
Re Pr0.04

h
x

x DNu x
x x

= + =
+

 (48) 

 
where the Nusselt number at a given position, x, is /x x hNu h D k= , hydraulic diameter is 

4 /h c wD A P= , the Reynolds number is Re /huD η= and Prandtl number is Pr /η α= .   

Several steps were taken to validate the numerical solution of the two-equation, 

coupled, solid-gas model, Eqs. (27) and (29).  First, the grid spacing was reduced until results 

were grid independent.  This requirement was satisfied by discretizing the channel length into 

100 nodes.  Second, the time step was reduced until results were time-step independent,  
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Figure 16. Validation of numerical solution of two-equation, coupled solid-gas model (dashed line) vs. 
analytical solution of convective-conductive model (solid line) in the limit of local thermal equilibrium.  
The cell is in the initial stages of being heated by hot air with velocity, u = 1 m/s, and at a rate K = 1 °C/s.  
Simulation time (in seconds) for each temperature profile is indicated as a label for each curve in the figure. 

 

which occurred for the same time-step size as discussed in Section 3.2.4 for the CFD model.  

Finally, the numerical solution was validated against the analytical solution of the 2nd 

reduced-order model in Section 3.2.2 in the limit of local thermal equilibrium.  In order to 

force thermal equilibrium between the gas and solid, the heat transfer coefficient was made 

1000 times larger than the baseline, thermally-fully developed value ( *x →∞ ) for laminar 

flow in a duct as predicted by Eq. (29).  This caused the temperature difference between the 

gas and solid to vanish, and the resulting solid/gas temperature profile matched that obtained 

analytically by solving Eq. (31).  Figure 16 shows results of this validation test for a cell in 

the initial stages of being heated by air flowing at u = 1 m/s with the inlet air temperature 

increasing at a rate of K = 1 °C/s.  The analytical and numerical solutions match very well for 

this case as well as several other cases that were run, thus establishing the validity of the 

numerical procedure used for integration of the 1st reduced-order model, Eqs. (27) and (29). . 
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Figure 17.  Predictions of heating time vs. K for hot air velocity, u = 10 m/s.  The solid line is the two-
equation, coupled, solid-gas model predictions, and the triangles are data points obtained from 3-D CFD 
Fluent simulations.   

 

Having validated the numerical scheme for solving the two-equation coupled, solid-

gas model, the predictions of heating time and maximum temperature gradient were 

compared to the results of the CFD Fluent simulations.  Figures 17 and 18 show heating time, 

spatial temperature gradient, and temporal temperature gradient vs. rate of inlet temperature 

rise, K, for a heating air velocity of u = 10 m/s.  The predictions of heating time and temporal 

temperature gradient show excellent agreement for a wide range of K.  However, the model 

significantly over predicts spatial temperature gradients (>100% error) as seen in Figure 18.  

In fact, this was seen to be the case for most values of u that were used in simulations.  

Further investigation revealed that the excessive temperature gradients occurred near the inlet 

and were highly sensitive to the assumed behavior of heat transfer coefficient, h, which 

increases dramatically near the inlet.  Indeed, the constant-wall temperature correlation, Eq. 

(48), appeared to predict significantly larger values of h (near the inlet) than what was found 

by rigorous solution of the conjugate mass, momentum, and energy conservation equations in  
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Figure 18.  Predictions of maximum temperature gradient vs. K for hot air velocity, u = 10 m/s.  The solid 
line is the two-equation, coupled, solid-gas model predictions, and the triangles are results of 3-D CFD 
Fluent simulations.  The upper plot is for spatial temperature gradient and the lower plot is for temporal 
temperature gradient. 

 

the Fluent CFD model.  In reality, h varies with air velocity, distance from the inlet, thermal 

condition of the channel walls, and time—a relationship not explicitly known, and requiring  

solution of a much more complicated conjugate heat transfer problem (see for example, [38, 

39]).  Adding this significant additional level of complexity to the two-equation coupled 

solid-gas model would cut into its expected advantage of being much simpler and more 

computationally efficient than the 3-D Fluent model.   

Having established that the two-equation coupled solid-gas numerical model is 

severely limited in its ability to be used as a reliable transient process design tool for SOFCs, 

the remainder of our analysis will focus on the analytical model results and their application 

to optimal design of SOFC transient heating process. These two analytical reduced-order 
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models—for purely convective and convective-conductive heating—were solved for a range 

of realistic values of effective rate of inlet temperature rise, effK , and effective Peclet 

number, Pe. All calculations were performed for the SOFC geometry shown in Figure 14 and 

the material property values given in Table 3.  The studied values of Pe correspond to 

physical velocity in the range 1 20u≤ ≤ m/s, and the values of effK  covers the range 

0.01 5K≤ ≤  °C/s in terms of the actual rate K of the inlet air temperature rise.  Model 

predictions of dimensionless heating time, and maximum temperature gradients (spatial and 

temporal) are shown in Figures 19 through 21.  Strictly speaking, the purely convective 

model is the limiting case of the convective-conductive model, in the limit of Pe →∞ .  

However, the convective-conductive model results rapidly converge to the purely convective  
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Figure 19.  Dimensionless heating time, *

hτ , as a function of effK for various effective Peclet numbers.  The 
solid lines are the reduced-order analytical model predictions and the data points are results of 3-D Fluent 
simulations.  For 1effK the analytical models (regardless of Peclet number) accurately predict heating 
time.  As effK  increases, the analytical models are less accurate but still predict the correct trend.  For large 
Peclet numbers (e.g. Pe = 16.7) both analytical models (i.e., for purely convective and convective-
conductive heating) predict identical results. 
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model results for effective Peclet numbers as small as 10.  Thus, the results for the case of Pe 

= 16.7 shown in the plots are obtained using the purely convective model calculations with 

the realization that further increases in Pe do not change the behavior.   

3.3.1  Heating time 

The first quantity of interest in transient thermal modeling of SOFCs is the total time 

required to heat the cell to the desired operating temperature.  Figure 19 shows total 

dimensionless heating time for various effK . The dimensionless heating time predicted by the 

purely convective reduced-order model is simply 1/ 1*
h effτ K= + , which is a much ‘nicer’ 

result than the infinite series solution of the convective-conductive model.  However, it is 

apparent from Figure 19 that the convective-conductive model and the purely convective 

model give virtually indistinguishable results for any (even small) Pe as long as effK  is 

sufficiently small.  At larger effK , some Pe dependence is seen, with heating time 

asymptotically approaching a finite value (dimensionless value greater than 1) depending on 

Pe.  Another feature of Figure 19 is that excellent agreement (<2% error) is obtained between 

the analytical models and 3-D Fluent simulation results at small values of effective rate of 

inlet temperature rise, ~ 0.1effK < .  This lack of Pe dependence and good agreement with 

rigorous CFD simulations is hardly surprising when considered in the context of the physical 

time scales, cτ and iτ , identified in Section 3.2.2 of this paper.  Small effK  implies that the 

time scale associated with the prescribed rate of inlet temperature rise, ( )τi f oT T K= − , is 

primarily responsible for determining how fast the cell can be heated.  Thus, with respect to 

predictions of total heating time, the details of heat transfer within the cell are practically 
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irrelevant!  (The relevant portion of the analysis was implicitly included in the statement that 

effK  is small.)  For large effK  this is no longer the case; the time scale (and mechanism) for 

heat flow within the channel (whether by advection or conduction) is of critical importance, 

and a rigorous multi-dimensional thermal-fluid analysis is required in order to accurately 

predict heating time.  Fortunately, effK  (as related to SOFC unit cells) is often small, and use 

of the purely convective model for prediction of heating time is quite accurate for practical 

purposes.   

3.3.2   Maximum spatial temperature gradient 

The second quantity of interest in transient thermal modeling of SOFCs is maximum 

spatial temperature gradient, which sets an upper limit on thermomechanical stress developed 

in the cell during its transient heating.  The purely convective model prediction of  
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Figure 20.  Maximum dimensionless spatial temperature gradient as a function of effK  for various Peclet 
numbers.  The solid lines are the analytical convective-conductive model predictions and the data points are 
results of 3-D Fluent simulations.  Temperature gradients decrease with a decrease in Pe at a fixed effK . 
The case of Pe = 16.7 is as calculated from the purely convective model (the limiting case of Pe →∞ ), 
which yields results identical to those obtained using the convective-conductive model at such a high Peclet 
number. 
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dimensionless maximum temperature gradient is explicitly stated in Eq. (47).  On the other 

hand, convective-conductive model predictions of temperature gradient were calculated 

numerically from the analytical solution of Eq. (36).  Results of these two models along with 

predictions obtained using the 3-D Fluent simulations are shown in Figure 20.  Satisfactory 

agreement between the models (<20% error) is seen at high effective Peclet numbers 

( 8Pe ≥ ) for ~ 1effK < .  It is clear that the purely convective model over predicts temperature 

gradients for very low Pe, although it still predicts the correct trends.  The convective-

conductive model provides some improvement at very low Pe, but it is not reliable for 

intermediate values.  An expected, yet interesting feature of the graphs shown in Figure 20 is 

that the dimensionless temperature gradient for any given effK  decreases with a decrease in 

Pe from its maximum at large Pe values (purely convective model).  This is due to the fact 

that the addition of conduction as a significant heat transfer mechanism reduces temperature 

gradients along the axial direction.  This does not imply, however, that real (physical) 

temperature gradients decrease with a decrease in velocity.  The only way that lowering the 

effective Peclet number will result in lower (real) temperature gradients is by increasing the 

effective thermal diffusivity of the cell.  Unfortunately, this may not be a viable design 

option, as it requires changing the geometry of the cell or selecting new materials, which are 

usually optimized for the most efficient steady-state operation.   

3.3.3   Maximum temporal temperature gradient 

One last quantity of interest in transient operation of a cell is the maximum temporal 

temperature gradient in cell materials.  This is important because the cell is composed of 

layers made of different materials with different thermal expansion coefficients and  
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Figure 21.  Maximum dimensionless temporal temperature gradient as a function of effK  for various Peclet 
numbers.  The solid lines are the analytical model predictions and the data points are results of 3-D Fluent 
simulations.  Excellent agreement between the analytical models and 3-D results is observed across a wide 
range of effK .  At values of ~ 0.5effK <  the Peclet dependence is negligible and the purely convective 
heating analytical model provides satisfactory results.   

 

characteristic time scales for creep.  If the temporal temperature gradient exceeds the rate at 

which creep can relax interfacial stress due to thermal expansion mismatch, then 

delamination, cracking, or other failure may occur.  Figure 21 is a plot of the maximum 

dimensionless temporal temperature gradient for various Pe and effK .  Clearly, for the values 

of effK less than ~1, the temporal gradient is essentially independent of Pe, showing excellent 

agreement with the 3-D Fluent model results.  Thus, results given by the purely convective 

heating model are valid for prediction of the local rate of temperature change during transient 

heating of the SOFC.   

For the three global quantities of interest—heating time, maximum spatial 

temperature gradient, and maximum temporal temperature gradient—we find then, that the 
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purely convective model provides satisfactory results within certain limits of parameters.  For 

heating time predictions, the model is valid for 0.1effK ≤  and 1 Pe≤ ≤ ∞ .  The purely 

convective model may be valid at even smaller effective Peclet numbers, but we do not have 

data to support this, and do not envision scenarios in which such low Pe is a realistic 

operating regime.  For maximum spatial temperature gradients, the model is reasonably 

accurate for 1effK ≤  and 5 Pe≤ ≤ ∞ .  If in-depth, precise local information, beyond simply 

the maximum temperature gradient, is required, we recommend multi-dimensional, CFD 

modeling such as that described in Section 3.2.4.  The purely convective heating model is 

also valid for predicting maximum temporal temperature gradients in the ranges 1effK ≤ and 

1 Pe≤ ≤ ∞ .  Because the convective-conductive model provides little improvement for 

expanding this range of validity, we recommend a design procedure for the heating/cooling 

process based on the purely convective model only.  Note that this model is shown to have 

good predictive capabilities for the global heating/cooling characteristics just mentioned, and 

not necessarily for giving detailed time-varying temperature fields within the cell.  

3.4   Design maps for heating and cooling 

Figures 19 through 21 are design maps, which can be used to develop a protocol for 

an optimal SOFC heating process.  Typically, the cell geometry and material selection will be 

optimized for steady-state cell performance, leaving the hot air velocity, u, and heating rate, 

K, as control variables for optimizing the transient process.  Assuming that the maximum 

allowable stress (and corresponding temperature gradient) has been specified through a 

thermo-mechanical stress analysis of the unit cell, the design goal is to minimize heating time 

through proper choice of K and u.  One method for using these design maps is as follows:  

First, fix the effective velocity at the maximum value allowed by system constraints (cell 
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geometry, materials, pumping power, etc.).  (The reason for choosing the highest possible 

velocity will become apparent shortly.)  This will fix the effective Peclet number since cell 

geometry and materials are not likely to be variable.  Next, specify a maximum allowable 

spatial temperature gradient below which no thermo-mechanical failure would be expected to 

occur.  Using this value, together with previously specified Pe, Figure 20 will yield the value 

of effK that should be used.  From this value, the actual rate of heating, K, can be calculated 

and Figure 19 will give an estimate of the required dimensionless heating time.  This will be 

the shortest heating time available under the above constraints.  Notice from Figure 20 that 

lowering the Peclet number will allow a higher value of effK , resulting in a lower 

dimensionless heating time.  If it is possible to decrease Peclet number without decreasing 

velocity, then this should be done, as it would permit fastest heating.  However, if the Peclet 

number is decreased by lowering the velocity, the corresponding increase in effK and 

decrease in dimensionless heating time, *
hτ , will be offset by an increase in actual heating 

time, hτ , proportional in magnitude to the decrease in velocity.  Therefore, from the 

perspective of minimizing the total heating time, subject to a constraint of maximum 

allowable temperature gradient, the higher velocity is always better.   

To further illustrate application of the above-described design methodology, consider 

the following example.  Assume the maximum allowable dimensionless temperature gradient 

is 0.1, and Pe = 10.  From Figure 20, this gives 0.1effK = , and Figure 19 gives dimensionless 

heating time of 11.  Now, attempt to lower the heating time by lowering airflow velocity.  If 

the velocity is lowered by a factor of 10, then Pe = 1, and 0.2effK ≈ .  This gives a new 

dimensionless heating time of approximately 6, which is ~45% lower than the original 
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dimensionless heating time of 11.  However, actual heating time will not decrease, but 

increase by a factor of 60/11 (or 545%) since it scales inversely proportional to the effective 

velocity.  Clearly, the situation only becomes worse as velocity is decreased further.   

Because of the use of properly scaled dimensionless variables, Figures 19 through 21 

have the advantage of presenting a large amount of information on a single curve.  However, 

to increase our understanding of the underlying physics of the heating process it is 

advantageous to refer back to physical parameters in outlining generalized design rules for 

optimization of the heating/cooling process.   

In particular, Figure 22 shows a design map (with dimensional quantities) created 

from the purely convective model predictions (see Eqs. (46) and (47)).  This model was 

shown in Section 3.3 to be valid over specific ranges of effective Peclet number and effective 

rate of inlet temperature rise.  The map in Figure 22 is specific to the geometry and material 

selection previously specified (see Figure 14 and Table 3), and considers a unit cell being 

heated from 25 °C to 625 °C (the map is applicable for any process involving a 600 °C 

temperature change).  Lines of constant K and u are shown with maximum spatial 

temperature gradient on the vertical axis and heating time on the horizontal axis.  Once a 

horizontal line corresponding to the maximum allowable temperature gradient is specified, K 

and u can be chosen below that line such that heating time is minimized.  This allows some 

flexibility in choice of K and u but these parameters are likely to be restricted by system 

constraints such as pumping power, heater size, etc.  Alternatively, the maximum allowable 

heating time could be the specified design constraint, in which case K and u are chosen such 

that temperature gradient is minimized.  This would give an estimate of the allowable  
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Figure 22.  Design map based on purely convective model predictions of spatial temperature gradient 
(°C/m) vs. heating time (s) for various K and u.  This map is specific to the cell geometry and materials 
described in Fig. 1 and Table 1, and is applicable to a cell being heated or cooled over a 600 °C temperature 
interval. 

 

gradients that the cell must be designed to withstand if the heating time requirement is to be 

met.  Notice that increasing the air flow speed, u, always allows movement in a favorable 

direction on the map (i.e., reduction in both the heating time and maximum temperature 

gradients), while increasing K yields the mixed result of lowered heating time but increased 

temperature gradients.  A design map such as Figure 22 is thus an excellent graphical 

representation of how the design space may be efficiently searched to yield approximate 

values of hot air velocity and heating rate to achieve an optimal design of SOFC transient 

heating process.  Once the parameter K and u values resulting in optimal transient operation 

have been obtained, only a minimal amount of highly-intensive CFD computations can be 

used to yield the detailed information required to complete a thermo-mechanical failure 

analysis of the cell. 
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3.5   Conclusions/Future work 

Reduced-order transient thermal models of varying complexity have been considered 

for optimizing the heating and cooling of an SOFC unit cell.  The first and most general 

one—the two-equation, coupled solid-gas model—resulted in fast numerical solution of the 

problem, compared to CFD simulations, but was shown to be unreliable for predicting 

maximum temperature gradients. The next two models—the convective-conductive heating 

and purely convective heating--permitted analytical solutions of the time-varying 

temperature field in the cell.  The simplest of these, the purely convective heating model, also 

yielded explicit, algebraic relationships between heating time, temperature gradients, hot air 

velocity, and heating rate.  These predictions of integral thermal quantities (i.e., the heating 

time and maximum spatial and temporal temperature gradients) were shown to be valid for a 

fairly broad range of operating parameters through comparison with fully 3-D Fluent 

simulations.  The more general convective-conductive model of the cell provided little 

improvement in accuracy over the purely convective model; however, its formulation and 

analysis led to the definition of the appropriate scales for physical velocity and the 

dimensionless parameters that govern cell transient response.   

Predictions of the analytical models have been presented in the form of generalized 

thermal design maps, and a specific example of a design map based on the purely convective 

model was used to develop a conceptual framework for optimizing a heating and cooling 

process.  Our analysis shows that increasing the velocity of the hot air stream, and lowering 

the Peclet number (by increasing the effective thermal diffusivity of the cell) leads to the 

optimal design, which minimizes heating time under the constraint of maximum allowable 
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temperature gradients.  While this result is hardly surprising in hindsight, the ability of the 

purely convective model to accurately predict favorable design trends with little or no 

computational effort makes it a powerful tool for searching the design space in the early 

stages of transient process development.   

Throughout the development of these reduced-order models and thermal design maps, 

it has been assumed that the maximum allowable temperature gradient (to avoid failure of 

cell components) is known a-priori based on thermo-mechanical stress analysis.  This is not 

necessarily the case and efforts similar to [32] are required for the development of 

relationships between failure, maximum allowable stresses, and maximum allowable 

temperature gradients as relevant to SOFC transients.  Also, the effects of thermal cycling 

require additional research—in particular quantification of cell lifetime in terms of number of 

cycles and maximum temperature gradients developed during each cycle.  Another 

assumption of the current analysis that will be challenged is that the cell is perfectly 

insulated.  In reality, the cell heat losses are temperature dependent (increasing as the cell 

heats up) which raises the possibility that the heating times could be much longer than what 

has been predicted here.  In the most extreme case, a cell might never reach the desired 

operating temperature if the magnitude of heat input is not sufficiently larger than heat losses.  

Finally, extension and validation of the current analysis for other geometries, such as cross-

flow cells, will greatly expand the applicability of the results.  This future work will 

complement and enhance the presently developed simple and computationally efficient 

design rules for transient heating/cooling of the SOFC. 
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CHAPTER 4 

LOCAL THERMAL NON-EQUILIBRIUM EFFECTS IN POROUS ELECTRODES 

 

4.1   Introduction 

 Thermal modeling is a vital tool in the design and development of SOFCs due to the 

close coupling between temperature, reaction kinetics, ionic resistance of the electrolyte, 

current density, operating voltage, fuel utilization, and flow fields.  Accurate prediction of 

the temperature fields within SOFCs is not only essential to predicting and optimizing overall 

cell performance, but is also a prerequisite to mitigating thermo-mechanical degradation and 

failure of the delicate anode-electrolyte-cathode structure.  These concerns have resulted in 

the development of highly detailed CFD/FEM based models whose ability to predict global 

quantities such as average current density, voltage, and temperature has been well established 

through experimental validation.  However, lack of detailed experimental data such as local 

temperature fields or current density distribution has prohibited a more thorough validation 

of the numerical models.  Thus, simplifying assumptions of the models can and should be 

challenged from a physical standpoint in order to maintain rigor and to provide the required 

careful justification (and limits of validity) of those assumptions.   

 One such assumption is that the temperatures of the gas phase and solid matrix within 

porous electrodes are locally the same, i.e. the gas and solid are in local thermal equilibrium 

(LTE).  A survey of the relevant literature indicates that most (possibly all) of the current 

models make this assumption with little or no justification given.  (Recently, however, 

Hwang [40] has addressed this issue in modeling low temperature proton exchange 

membrane fuel cells.)  Three typical conditions found in the porous electrodes of SOFCs 
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bring the assumption of local thermal equilibrium into question:  1) the presence of 

volumetric heat generation in the medium, 2) very low Reynolds number flow, and 3) large 

difference in thermal conductivities of the solid and gas phases.  Under these conditions, the 

gas and solid temperatures can differ greatly and local thermal non-equilibrium (LTNE) 

modeling is often required [41].  To carefully address these issues, LTNE effects are 

investigated here through an order of magnitude analysis, which results in the development 

of a single LTNE parameter that can be used to assess the validity of the local thermal 

equilibrium assumption in SOFCs.   

4.2   Model formulation 

 During steady state operation, all of the heat generated within the anode-electrolyte-

cathode structure of a well-insulated cell is transferred to the fuel and oxidizer flow streams, 

which carry it out of the cell.  In the porous electrodes, most of the heat is generated near the 

electrode-electrolyte interface (see Figure 23) and is dissipated by (i) conduction through the 

solid matrix, (ii) heat transfer from the solid to the gas phase by convection within the porous 

electrodes, and (iii) advection of the gas through the micro-pores of the electrode into the 

flow channel.  These processes are accounted for in the following two-equation, thermal non-

equilibrium model, derived from conservation of energy in the gas and solid phases [41]:  

 
( ) ( )

( ) ( ) ( )
,

,

0       -      (Solid phase)

        -  -       (Gas phase)

s eff s sf s f s gen i

p f f eff f sf s f s

k T h a T T Q

V c T k T h a T Tρ

′′′= ∇ ⋅ ∇ + +

∇⋅ = ∇ ⋅ ∇

∑
 (49) 

 
where sfh  is the solid to gas phase convective heat transfer coefficient, sa  is the specific (per 

unit volume) surface area within a representative volume of the media, ρ is density, pc is 

specific heat, and V is velocity of the gas phase, and 
igenQ′′′  represents sources of volumetric  
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Figure 23.  Schematic representation of the TPB region of the porous anode and solid electrolyte of a 
SOFC.  Oxygen ions migrate from the cathode side, through the electrolyte, and react with hydrogen ions 
adsorbed on the surfaces of the anode to form water vapor.  Heat generated due to electrochemical reaction 
and ohmic losses is dissipated by two mechanisms: convection to the gas phase and conduction through the 
solid.   

 

heat generation within the solid phase.  The simplest models for isotropic effective thermal 

conductivity of the solid and gas phases are, 

 ( ), ,1 ;s eff s f eff fk k k kε ε= − =  (50) 

respectively, where ε is porosity.    

The magnitude of the difference in local temperatures between the gas and solid 

phases,  - s fT T T∆ = , is an indicator of the validity of the assumption of local thermal 

equilibrium (LTE).  Since heat generation is the driving force behind any thermal non-

equilibrium in SOFCs, an order of magnitude analysis of the energy conservation equation 

for the solid phase in Eqs. (49) yields a proper estimate of the magnitude of T∆ .  As a first 

approximation, temperature gradients in the solid (first term on the right-hand-side) can be 

assumed small compared to the other two terms in the equation and can be neglected.  This 
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requires that the remaining two terms balance each other, and the expected temperature 

difference is then scaled as,  

 ~  gen sf sT Q h a′′′∆  (51) 

This temperature difference is the greatest possible (upper bound) that can be expected for 

the problem at hand, because it assumes that all the heat generated in the solid is dissipated 

by convection to the gas phase.  For verification, examine the effects of the assumption that 

the heat conduction term is negligible.  As solid conduction effects become significant, this 

provides an additional route for heat transfer, leading to a reduction in convective heat 

transfer, and thus, reducing the temperature difference between solid and gas.  Therefore, Eq. 

(51) is a conservative indicator of whether or not LTNE effects should be neglected.  The 

remaining task is to estimate the magnitude of the heat generation term and the interstitial 

heat transfer coefficient, v sf sh h a= , that would be expected in the SOFC.  

4.3   Scaling analysis 

4.3.1   Interstitial heat transfer coefficient 

The solid to gas phase heat transfer coefficient, sfh , depends on the thermal 

conductivity of the fluid, the Reynolds number of the flow, and the geometric characteristics 

of the medium.  The specific surface area, sa , also depends on the structure of the solid 

matrix.  As a first approximation for this order of magnitude analysis, the structure of the 

porous electrode material can be assumed isotropic, consisting of roughly spherical particles 

of diameter, pd .  This is a conservative approximation—more so than considering a 

continuous solid phase, which would enhance conductive heat transfer, thereby reducing 

LTNE effects.  The SOFC electrodes have pores or voids of diameter, vd , which has been 
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experimentally measured as 0.3 – 0.4 µm for anode materials [42].  (For simplicity, we 

assume that pore size in the cathode is of the same magnitude.)  The relationship between 

specific surface area and void diameter given by Vafai [43] is 4 /s va dε= .  This yields a 

specific surface area of the order of 64 10×  m-1.  Particle diameter can be estimated from the 

equation for the specific surface area for either spherical particles [44], 

 6(1 )s pa dε= −  (52) 

 or for sintered metal beads [45], 

 220.346(1 )s pa dε ε= −  (53) 

yielding 0.9 and 1.1 µm, respectively.  Although the exact value of these parameters is 

uncertain for the available porous electrode materials, it is clear that sa is proportional to 

1 pd , and particle and void diameters are the same order of magnitude.   

Another area of uncertainty in determining interstitial heat transfer coefficient is the 

Reynolds number, Red f p fudρ µ= , of the gas flow through the micro-pores of the 

electrodes.  In general, it is reasonable to expect that the transport through the electrodes, 

especially near the electrode-electrolyte interface, is dominated by diffusion [42, 46].  In this 

region, known as the triple phase boundary (TPB) region, the electrochemical reaction takes 

place at the junction of catalyst, electrolyte and gas phase.  As a first estimate, the order of 

magnitude of the average velocity here can be found from conservation of mass and 

Faraday’s law, which relates moles of reactants or products to electrical current.  

Specifically, for a given current density, the required mole flux of the relevant species (e.g. 

H2) to the TPB is given by, 2n i F= , where i is the current density of the cell (A m-2 ), F is 

Faraday’s constant (96500 C mol-1 e-1), and the 2 appears because 2 electrons are produced 
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by the balanced electrochemical reaction.  For a representative current density of 104 A m-2 

the corresponding mass flux of H2 to the TPB region is of the order 0.1 g m-2 s-1.  Dividing by 

density and porosity yields a gas phase velocity on the order of 0.01 m s-1.  Given such small 

velocity and using the previously estimated particle diameter and appropriate fluid properties, 

it becomes apparent that Re 1d  in the electrochemically active region of the porous 

electrode.   

A very common correlation for sfh , developed by Wakao and Kaguei [47] from an 

extensive collection of experimental data (for spherical particles) is, 

 0.6 0.332 1.1Re Prf
sf d f

p

k
h

d
 = +   (54) 

where, kf is the thermal conductivity of the fluid and Pr f  is the Prandtl number of the fluid.  

This correlation is valid over a large range of Red , although little data exists for very low 

Reynolds numbers.  However, the correlation does asymptotically approach the correct 

theoretical value of sfh in the limit of Re 0d →  (pure conduction through the gas phase).  

(Other frequently used correlations, such as that of Kar and Dybbs [48], do not appear to be 

valid at this limit [41].)  Using the fact that Re 1d  as previously discussed, Eq. (54) is 

reduced to, 

 ~ 2sf f ph k d  (55) 

This is the most conservative estimate of sfh since it considers only heat transfer by 

conduction in the gas.  Any increase in Red  would only increase the heat transfer coefficient 

from this baseline value.   
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 Combining Eq (55) with Eq. (52) or (53) yields a lower bound estimate of the 

interstitial heat transfer coefficient, vh .  A typical value of this parameter for air, assuming 

electrodes with 1 µm particles and porosity of 30% is on the order of 1110  W m-3 K-1.  This 

very high volumetric heat transfer coefficient is due to efficient heat transfer within the 

microscale porous structure of the electrodes because of the very large specific surface area.  

Since the calculations are sensitive to particle diameter and porosity, results will be presented 

for a range of these parameters. 

4.3.2   Volumetric heat generation 

 An upper limit for the magnitude of the volumetric heat generation term, genQ′′′  in Eq. 

(51) is found from an examination of the thermodynamic effects associated with 

electrochemical reactions in the fuel cell and the ohmic heating effects in the ionic 

conducting electrolyte material.  Although the processes by which heat is generated are 

complex and coupled, the overall energy balance of the cell effectively provides an estimate 

of the upper limit of heat generated without requiring an in-depth analysis of these processes.  

The total heat generation for a single cell can be calculated based on a given current density, 

and that quantity of heat is then applied to the TPB region (assumed to be a 10 µm thick layer 

next to the electrolyte [42]) in order to estimate the upper bound of volumetric heat 

generation. 

 The reversible electrochemical reaction for the hydrogen-fueled cell [6] is, 

 - -
2 2 2

1H O 2e H O 2e
2

+ + +  (56) 

 
The limit of the energy available for electrical work is the Gibbs free energy given by,  

  = = idealG H T S nFE∆ ∆ − ∆ −  (57) 
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where, n is the number of electrons (2) in Eq. (56), F is Faraday’s constant, and idealE  is the 

ideal reaction potential evaluated at the operating temperature and pressure of the cell.  The 

quantity T S∆  is the heat generated by the reaction (per mole of hydrogen) if the cell is 

operating ideally (reversibly) and H∆ is the net enthalpy of formation of products and 

reactants.  Rewriting Eq. (57) in terms of readily available, tabulated values of oE , oG , oH , 

and oS at standard conditions (298 K, 1 atm), and assuming H does not vary with temperature 

( oH H∆ ≈ ∆ ) [6], the total reversible heat generated (kJ mol-1) by the reaction is, 

 ( )o o o
rev idealQ T S nF E E= − ∆ + −  (58) 

 
where the superscript o indicates quantities evaluated at standard conditions.  From Faraday’s 

law, the rate of heat generation on a volumetric basis in the solid is,  

 
( ) ( )= 
1

o o
o

rev ideal
i T SQ E E

L nFε
 ∆′′′ − + − −  

 (59) 

where, i is the current density, L is the length scale (thickness) of the heat generating region, 

and ε is porosity.  Because the cell does not operate ideally, the operating voltage is lower 

than the ideal voltage.  This voltage drop is primarily due to the ionic resistance of the 

electrolyte, activation overpotential, and concentration overpotential, resulting in additional 

heat generation which can be calculated as, 

 
( ) ( )1irrev ideal oper

iQ E E
L ε

′′′ = −
−

 (60) 

 
Thus, after adding Eqs. (59) and (60), the total volumetric heat generation is expressed as, 

 
( ) ( )= 
1

o o
o

total oper
i T SQ E E

L nFε
 ∆′′′ ⋅ − + − −  

 (61) 
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For example, consider a cell operating at 0.5operE =  V and a current density of 410i =  A m-2.  

For the reaction given in Eq. (56), the standard potential, oE , is 1.22 V, and o oT S∆  is –48.6 

kJ mol-1 [49].  If all the generated heat is confined to the 10 µm thick TPB region, the 

volumetric heat source term is of the order 910 W m-3.  The large magnitude of this term is a 

result of the conservative assumption that all heat-generating processes occur in a very small 

region of the porous electrodes, while in fact they are distributed through the electrodes and 

electrolyte.   

4.4   Estimate of LTNE effects 

 Having developed expressions for heat generation and interstitial heat transfer 

coefficient, the LTNE criteria given in Eq. (51) can now be used to estimate the maximum 

temperature non-uniformity between the solid and gas phases.  To consider the case of 

maximum heat generation, the operating voltage in Eq. (61) is set at zero (i.e., cell is short-  
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Figure 24.  The maximum expected temperature difference between the solid and gas phase of the porous 
medium as a function of current density for various porosity and particle diameter of the porous electrodes.  
In this plot the thickness of the heat generating region is assumed to be 10 µm.  
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circuited and drawing maximum current), and this equation along with Eqs. (52) and (55) are 

substituted into Eq. (51), yielding an estimate of a maximum gas-to-solid temperature 

difference that can be expected in SOFC electrodes, 

  

 
( )

2

max 2~ 0.12
1

p

f

i d
T

k L ε
∆

−
 (62) 

This parameter allows the user to determine if LTNE effects can safely be ignored, or if 

detailed non-equilibrium thermal modeling is required.  Figure 24 shows a plot of maxT∆  vs. 

electrode particle diameter for various values of current density.  Although our assumptions 

have erred on the side of maximizing the expected temperature difference, it should be noted 

that local current density could be significantly higher than the average value used in Eq. (62) 

leading to local “hot spots” with increased LTNE effects.  It is left to the discretion of the 

user to properly interpret the results of Eq. (62) and use relevant local values of i, fk , L, and 

ε in assessing the validity of the LTE assumption for specific cases.   
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CONCLUSION 

 

Thermo-mechanical failure of components in planar-type solid oxide fuel cells 

(SOFCs) is a major obstacle on the path to bringing this technology to commercial viability.  

The probability of material degradation and failure in SOFCs depends strongly on the local 

temperature gradients at the interfaces of different materials.  Therefore, it is of paramount 

importance to accurately predict and manage the temperature fields within the stack, 

especially near the interfaces.  In this work three effects were considered in great detail.  

 First, radiative heat transfer effects within the semi-transparent solid electrolyte were 

analyzed and compared to thermal conduction.  Also, the modeling approach for calculation 

of surface-to-surface exchange within the flow channels and from the stack to the 

environment was presented.  The necessary simplifying assumptions were identified and their 

carefully justified range of applicability to the problem at hand was established.  This work 

has contributed to overall thermal modeling efforts by allowing thermal radiation effects to 

be properly included SOFC models with the minimum computational expense requirement.   

 Second, we developed a framework for optimization of the transient heating and 

cooling of SOFCs, leading to the optimal design which minimizes heating time while 

maintaining thermal gradients below an allowable threshold.  This was accomplished through 

the formulation of reduced order transient thermal models (validated by rigorous CFD 

simulations) that yielded simple algebraic design rules for predicting maximum thermal 

gradients and heating time requirements.  Several governing dimensionless parameters and 

time scales were identified that shed light on the essential physics of the process.   
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 Finally, an analysis was performed to assess the degree of local thermal non-

equilibrium (LTNE) within porous SOFC electrodes, and through a simple scaling analysis 

we discovered the parameter that gives an estimate of the magnitude of LTNE effects.  We 

conclude that because of efficient heat transfer between the solid and gas in the microscale 

pores of the electrodes, the temperature difference between gas and solid is often negligible.  

However, if local variations in current density are significant, the LTNE effects may become 

significant and should be considered. 

 

 

 

 

 

 

 



 

 75  

APPENDIX A 

SOLUTION OF 2-FLUX EQUATION 

 

 The 2nd order ODE describing spectral radiative heat flux as a function of spectral 
optical thickness is, 

 
2

2 (1 )(4 ) (1 )4 bd q dEq
dd

λ λ
λ λ λ

λλ

ω ω
ττ

− − = −  (A.1) 

subject to the boundary conditions, 
 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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λ

ρ
τ ρ ε ρ π

ω τ

ρ
τ τ ρ ε ρ π

ω τ

−
= − + + = − −

−

−
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−

 (A.2) 

These equations are derived from the RTE following the procedure outlined in Chapter 14 of 
Modest [19].  The homogeneous portion of the solution is,  
 

 ( ) 2 1- 2 1-
1 2hom e eq C Cλ λ λ λω τ ω τ

λ
−= +  (A.3) 

 
and the particular solution is, 
 

( )
' '2 1 2 1 2 1 2 1' '

' '
0 0

1 b b
P

dE dEq e e d e e d
d d

λ λ
λ λ λ λ λ λ λ λ

τ τ
ω τ ω τ ω τ ω τλ λ

λ λ λ λ
λ λ

ω τ τ
τ τ

− − − − − + − 
= − − 

  
∫ ∫ (A.4) 

 
The integrals of blackbody emissive power with respect to optical thickness can be rewritten 
in a more manageable form after integration by parts, i.e. 
 

 2 1 2 1 2 1

0 0

2 1b
b b b

dEe d E e E e E d
d

λ λ
λ λ λ

τ τ
ω τ ω τ ω τλ

λ λ λ λ λ
λ

τ ω τ
τ

− − − − − −= − + −∫ ∫  (A.5) 

 
The constants 1C  and 2C are found from the boundary conditions.  For simplicity, we 
introduce several new variables as placeholders,  
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( ) ( ) ( ) ( )
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 (A.6) 

 
This allows the constants to be expressed as, 
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 (A.7) 

The integrals in the expression for 2K  can only be evaluated numerically.  Total radiative 
heat flux is found by integrating spectral radiative heat flux over the entire spectrum, 
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 (A.8) 

 
The first integral is approximated by discretizing the spectrum into N intervals, 
 

 ( ) ( )
1

2
1 1

10
e exp 2

i

i

N
D

i
i

C d D C dλ

λ
τ

λ
λ

λ τ λ
+∞

=

 =  ∑∫ ∫  (A.9) 

 
It should be remembered that 1C  and 2C are spectrally dependent.  The second integral is, 
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The third integral is, 
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and fourth integral, 
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 (A.12) 

 
 and finally the last two integrals are 
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APPENDIX B 

 
NUMERICAL SOLUTION OF 2-EQN COUPLED MODEL 

 
 

The set of coupled partial differential equations describing the two-equation reduced-
order transient heating model are 
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with boundary and initial conditions, 
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The solid and gas layers are discretized in the following manner: 
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and then applying conservation of energy to each node gives the set of linear algebraic 
equations for the gas temperature, 
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where 0 1β≤ ≤  is a weighting factor between fully explicit (forward march in time) and 
fully implicit integration in time.  For our calculations the Crank-Nicholson scheme 
( 0.5β = ) was absolutely stable and provided the second-order approximation in time.  The 
solid temperature equations are of the form, 
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( ) ( )
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 (B.4) 

 
Note also the following definitions of effective properties, 
 

 ( ) ( ) ( ) ( ); ; ;g p g s p sg ig i
i i

C c A k kA C c A k kAρ ρ= = = =∑ ∑  (B.5) 

The boundary conditions for the gas yield the following equations at the inlet, 
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 (B.6) 

 
and at the exit,  
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 (B.7) 

 
For the solid at the inlet, the boundary equation is expressed as, 
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and at the exit, 
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The set of equations (B.3) through (B.9) can be written in matrix form as, 
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 (B.10) 

 
where, T, is a temperature vector, C, is a tri-diagonal coefficient matrix, and λ ’s are 
constants.   
 
The procedure for solving the matrix equations (B.10) is as follows: 

1.  populate the coefficient matrices 
2.  guess the temperature in the solid for the future time step 
3.  calculate the right hand side of the gas equation 
4.  calculate the future temperature in the gas using the tri-diagonal matrix algorithm 
5.  using the results of the previous step (4), calculate the right hand side of the solid 

equation 
6.  calculate the future temperature in the solid using the tri-diagonal matrix algorithm 
7.  compare the results of the previous step (6) to the guess used in step (2).   
8.  repeat steps (2) – (7) using the calculated solid temperature as the new guess in 

step (2) until convergence is obtained. 
9.  proceed to the next time step and return to step (1). 

The best initial guess for step (2) is the solid temperature at the current time step. 
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APPENDIX C 
 

ANALYTICAL SOLUTION OF TRANSIENT CONVECTIVE-CONDUCTIVE MODEL 
 

We seek a solution of the dimensionless governing equation of the convective-
conductive model, 
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2

1T T T
t z Pe z

∂ ∂ ∂
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∂ ∂ ∂
 (C.1) 

 
subject to the boundary and initial conditions, 
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 (C.2) 

 
where 1/ Peβ =  if diffusion in the gas equation is neglected.  We expect the solution to take 
the form, 
 

 ( ) ( ), , Az BtT z t z t eθ += ⋅  (C.3) 
 

where A and B are arbitrary constants found by substituting back into Eq. (C.1).  It can be 
shown that if 2A Pe=  and 4B Pe= −  then Eq. (C.1) becomes,  
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 (C.4) 

 
The boundary and initial conditions of the original problem are transformed yielding, 
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 (C.5) 

 
The problem is complicated by the presence of a non-homogeneous, time-dependent 
boundary condition.  Assume the problem described by Eqs. (C.4) and (C.5) can be 
expressed as, 

  
 ( ) ( ) ( ) ( )*

1 2, ,z t z t D t z D tθ θ= + ⋅ +  (C.6) 
 
where the unknown functions are found by forcing the boundary conditions to be 
homogeneous yielding, 
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 ( ) ( ) ( ) ( ) ( )1 2
2 4 2;

4 4
PeD t f t D t f t

Pe Pe Pe
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= =
+ +

 (C.7) 

 
Thus, Eq. (C.6) becomes, 

 ( ) ( ) ( ) ( )* 4 2 2, ,
4

Pe Pe zz t z t f t
Pe Pe

θ θ + − ⋅
= +

+
 (C.8) 

 
with ( )f t  described by Eq. (C.5) and initial condition, 
 

 ( ) ( ) ( )* 4 2 2,0 0
4
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Taking the derivatives of Eq. (C.8) and substituting them into (C.4) yields, 
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which can now be solved analytically.  The homogeneous portion of Eq. (C.10) is solved 
using separation of variables, 
 

 ( ) ( ) ( )* ,z t Z z tθ = Ψ  (C.11) 
 
resulting in the following eigenvalues problem in space, 
 

 2 0Z PeZλ′′ + =  (C.12) 
 
whose eigenvectors are, 
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with the eigenvalues n n Peω λ=  satisfying the following characteristic equation 
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which must be solved numerically. 
 Next, assume a solution of the form, 
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where, 
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The denominator is the norm, which we will call nG  for now.  The next step is to write an 
ODE for nC , 
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which, from Eq. (C.10) can be rewritten as, 
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The first integral on the RHS is integrated by parts twice, and after some manipulations, it 
can be shown that, 
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or, more conveniently,  
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The solution of this ODE is found using an integrating factor, 
2dt

e
λ∫ , with solution, 
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where, 
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The integrals for nG , ( )0nC , and ( ),S z τ are now evaluated.  For the inlet temperature 

specified as a linear function of time,  
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Also, note that once the inlet temperature function reaches the final temperature at time 1t , 
the inlet temperature is held constant at fT  and the function becomes,  
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Because ( )0 0f = , then ( )0 0nC =  and nG ’s are constant, 
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Next, the integral, 
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First, the interior, 
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Next, the outer integration, 
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So,  
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Finally, the integration for the final, constant portion of the inlet temperature function, 
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