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Abstract

Traditional transaction models ensure robustness for distributed applications through the
properties of view and failure atomicity. It has generally been felt that such atomicity proper-
ties are restrictive for a wide range of application domains; this is particularly true for robust,
collaborative applications because such applications have concurrent components that are in-
herently long-lived and that cooperate. Recent advances in extended transaction models can be
exploited to structure long-lived and cooperative computations. Applications can use a combi-
nation of such models to achieve the desired degree of robustness; hence, we develop a system
which can support a number of flexible transaction models, with correctness semantics that ex-
tend or relax serializability. We analyze two concrete CSCW applications - collaborative editor
and meeting scheduler. We show how a combination of two extended transaction models, that
promote split and cooperating actions, facilitates robust implementations of these collaborative
applications. Thus, we conclude that a system that implements multiple transaction models
provides flexible support for building robust, collaborative applications.

Key Words: Atomicity, Groupware, Extended Transaction Models, Programming Support,
Operating Systems.



1 Introduction

Distributed computing systems are increasingly being used to support interactions between users
that go beyond file sharing and electronic mail, e.g., collaborative editors allow users distributed
across many nodes to concurrently work on shared documents. Outline generators (e.g., Cog-
noter [12]), coauthoring tools (e.g., Quilt [11]), and meeting schedulers (e.g., Visual Calendar [2])
are concrete instances of applications that constitute the broad domain of Computer-Supported
Cooperative Work (CSCW). Collaborative applications have several unique characteristics: users
in these applications operate on persistent data for long durations, and there is cooperation due
to interleaved resource sharing among different users. An editing session may last hours and users

may take turns updating parts of a shared document.

Persistent data manipulated by distributed applications necessitates support for robustness to
maintain consistency despite partial failures and concurrency inherent in a distributed system.
Several distributed systems provide transactional facilities for building robust applications. Flat
[10] and nested [24] atomic transactions ensure failure atomicily (either all or none of a transaction’s
changes to data items persist despite failures), and view atomicity (concurrent access to common
data items by different transactions are made to appear serial). The atomicity properties are
necessary for traditional databases, however not well-suited for robust, collaborative applications.
In fact, it was demonstrated that the Argus system [23], which supported nested transactions, could
not effectively be used to program a robust version of a CSCW tool - the Collaborative Editing
System (CES) [17].

In this paper, we explore the restrictions associated with atomic transactions not only for collab-
orative editing, but also for other CSCW applications. In particular, view atomicity does not permit
interleaved resource sharing among cooperating components of CSCW applications, and reduces
potential concurrency since locks will be retained by atomic computations over extended durations.
Failure atomicity, also provided by atomic transactions, prohibits early committal of changes even to
select data items thereby making the changes vulnerable to failures in long-running computations.
We address these limitations of atomic transactions by exploiting the recent advances in extended
transaction models [9]. Specifically we show that two such models, that promote split [26] and
cooperating [13] transactions, can be used to program robust CSCW applications. Our approach

thus advocates the use of multiple transaction models for programming robust applications.
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Figure 1: System Architecture

As shown in Figure 1, we propose a layered system architecture - operating system (OS) mech-
anisms for concurrency and recovery control that can be used to realize a variety of transaction
models, a library that implements multiple transaction models using the low-level mechanisms,
and robust collaborative applications realized using the transaction models provided by the library.
Such an approach is easy-to-use since the only support facility the CSCW application programmer
needs to exploit is the set of well-defined transaction models. Our approach is efficient also since we
exploit the low-level OS primitives for accommodating such a flexible, multi-model programming
paradigm, still simple since we tailor mechanisms that are readily available in modern systems to
implement multiple transaction models. We will elaborate on these virtues of our system support

later in the paper.

Section 2 explores in detail two applications that come from the domain of groupware (tools
for CSCW) - collaborative editor and meeting scheduler. We analyze the robustness needs of
these applications as dictated by their concurrency and recovery requirements. We then describe
how existing techniques for robustness do not meet the requirements in Section 3. We present
brief descriptions of some extended transaction models and show how each of them meets some
specific needs of CSCW applications in Section 4. Section 5 shows outlines of robust editor and
scheduler applications implemented using a combination of split and cooperating transactions. We
discuss how these multiple transaction models can be implemented using a uniform set of system

mechanisms in Section 6. The contributions of the paper are summarized in Section 7.



2 Robust Collaborative Applications

Collaborative applications contain a shared workspace that is manipulated by concurrent users in a
relatively uninhibited fashion. The users might have varying degrees of collaboration depending on
whether they are competing or cooperating on a certain task. The concurrency and recovery control
techniques employed by the system for robustness should neither force the competing users to wait
for extended durations nor prohibit the cooperating users from interleaving their data accesses.
In the following description of the sample applications, we identify situations which require such
support for robustness, and thereby demand more flexibility than that provided by traditional

atomic transactions.

2.1 Collaborative Editor

A shared document is the workspace manipulated in collaborative editing. The document consists
of disjoint sections and different users can operate concurrently on these sections. The users can be
colleagues who, at the outset, negotiate their roles in writing different sections of a research paper.
Coauthors write complete sections of the paper whereas critical reviewers participate in the writing

process only by commenting on the written sections, after substantial work has been done.

An author who originally accepted the responsibility for writing certain sections of the paper
might want to periodically save his changes without relinquishing control, so as not to lose them
in the event of failures. After a while, on consultation with his reviewer, the author might delegate
some of the sections to the reviewer for further polishing while continuing to work on the remaining
sections. This dynamic division of labor is desirable because the reviewer does not need to wait
for the author to complete all the sections, especially if both agree in the interim that the entire
writing process might take a long time. Even before the author completes a certain section, he can

allow his coauthor to either read the section for a quick reference, or write parts of it.

In a collaborative editing session, one can model a single user writing all the relevant sections
of a research paper as an atomic transaction. However, the task of writing the paper might last
for a few weeks which could make the completed sections vulnerable to failures and prevent the
reviewers from accessing those sections for a long time. Also, interleaved access to different sections
by cooperating authors is not feasible. Contrarily, if editing each section itself is treated as an atomic

transaction a priori, atomicity of accesses to multiple sections by a single author cannot be ensured.



2.2 Meeting Scheduler

A meeting scheduler is a program which coordinates collaborative activities like arranging a group
conference in an office environment. A shared calendar is the workspace manipulated in this
application. The calendar consists of a set of diary objects, each with disjoint fragments representing
different appointment slots. Each individual group member as well as inanimate entities, like a
meeting room or an overhead projector, maintain a diary object. The scheduling task is performed
by a coordinator (secretary) and consists of activities like polling the group members, arriving at
a consensus date (time) and reserving the necessary facilities. This task naturally involves many

rounds of negotiation, which may last even a few days, before a consensus is achieved.

After each round of negotiation, the coordinator needs to release the unwanted slots for other
meetings, and start another round of negotiation with the current compromise slots as the input.
Once a consensus is reached among the group members, possibly after many rounds of negotiation,
the coordinator can proceed to reserve the room and overhead projector. In the meantime, it is
essential to guard the group’s consensus slots from failures and competing coordinators who may
try to grab these slots. Also, a negotiating coordinator can allow a colleague to cooperate either

by concurrently reserving a room, or rejecting a meeting based on the unavailability of the room.

If the scheduling task with the many negotiation phases is modelled as an atomic transaction,
locks held on the unwanted slots at the end of each negotiation phase might prevent other co-
ordinators from progressing till all the phases complete. Furthermore, intermediate states like a
consensus achieved among the meeting participants without involving the equipment (e.g., overhead
projector) cannot be reliably saved. Also, cooperating coordinators cannot freely access shareable
resources like the meeting room. Each negotiation phase (releasing the unacceptable and compro-
mise slots) can be modelled as an atomic transaction; however, this option does not guard against

concurrent access of compromise slots by competing coordinators between two phases.

2.3 Requirements of Robust Collaboration

From the preceding discussion, we conclude that robustness guarantees, primarily facilitated by
atomic transactions of course, are desirable in collaborative applications; however, the following

extensions and relaxation, of the serializability correctness criterion [10], can be beneficial:



1. enhancing concurrency through early committal of select data items and releasing the asso-
ciated locks,

2. reducing loss of data due to failures through periodic checkpoints of a subset of accessed data
items,

3. providing flexible functionality whereby interleaved resource sharing (cooperation) is feasible
among robust computations.

3 Related Work

We now investigate how well existing techniques for maintaining consistency in distributed systems
satisfy the requirements of robust collaboration; the goal of this discussion is to highlight the lack

of support for robust, long-lived and cooperative computations in any one distributed system.

Low-level mechanisms used directly for flexible concurrency control in collaborative applications,
like triggers, reservations and tickle locks, have been surveyed by Greif and Sarin [16]. Many systems
that facilitate non-serializable executions, e.g., Locus [32], Profemo [22], Nexus [30] and Arjuna [29],
provide mechanisms that relax the atomic transaction model in certain ways. However, none of these
systems support a variety of user-level facilities that help realize robust, collaborative applications
easily and flexibly. It is possible to design ad hoc techniques at the user level for relaxing view
as well as failure atomicity. However, the burden of validating the resulting executions then lies
on the application programmers. We next explore several systematic approaches with well-defined,

but flexible, consistency semantics that could provide a unifying paradigm for robust collaboration.

DistEdit [19] - a group editor - uses the Isis toolkit [5] which supports process groups and
associated broadcast protocols that update the state encapsulated by processes corresponding to
different users. Failure notification and message ordering guarantees provided by the Isis system
can ensure consistency of information shared among the users. Process groups facilitate forward
progress by preserving consistency of replicated data items; however, without additional mecha-
nisms, they cannot efficiently maintain the integrity of a collection of updates to persistent data
items as a whole in the presence of failures. A team of coauthors can encapsulate their computa-
tions in one process group so as to view an update by a single author in a consistent manner across
the group whereas each coauthor can structure a set of updates he/she performs more naturally as
an atomic transaction. This is mainly because of the orthogonality of the underlying correctness

criteria - virtual synchrony vs. serializability and failure atomicity [4].



Our basic premise is that atomic transactions, a powerful abstraction that ensures consistency of
a sequence of accesses to persistent data items, simplifies the structuring of robust computations. In
addition, techniques that enhance the atomic transaction model can provide the flexible consistency
semantics that is needed by robust CSCW applications. Simple extensions of the atomic transaction
model like nesting and type-specific concurrency control do not address all the problems associated
with the basic model. We first discuss these techniques and then outline our approach for robust

collaboration.

Nesting of atomic transactions [24] localizes failures by making the ancestor transactions respon-
sible for the permanence of data items manipulated by their descendants. This technique protects
a transaction from its children’s failure, but a child transaction’s changes are vulnerable to the
parent’s failure. Also, a parent transaction might force its siblings to wait longer for accessing its
children’s resources. Moreover, the hierarchical structuring does not promote cooperation among
the atomic subactions. Atomic transactions alternatively can exploit opearation semantics associ-
ated with the data items [28, 31, 1] for enhanced concurrency and hence improved performance. All
transactions invoking the particular object methods can cooperate using this technique. It is how-
ever not suitable for applications where such object methods cannot be statically determined and

dynamic sharing of resources among only a few transactions, representing select users, is desired.

We narrow down our search, for techniques that support robust collaboration, to extended
transaction models [9], because such models extend and/or relax the serializability correctness
criterion selectively at run-time. The models were developed by database researchers to address
the needs of advanced engineering applications such as CAD and software development. Composite
models that combine the desirable features from many simpler models are now being proposed,
e.g., Cooperative Transaction Hierarchies [25], NT/PV model [21], and Flexible Transaction Model
[18]. Generalized correctness semantics advocated by such models could very well accommodate
the requirements of robust collaboration. However we prefer a set of simple models because they
can be implemented efficiently using existing system mechanisms and an application can choose a

combination of such models to avoid the specific limitations associated with atomic transactions.

We have found that a combination of split [26] and cooperating [13] transaction models readily
match the requirements of robust collaborative applications that were identified earlier. We exploit
these models to structure long-lived and cooperative computations common in such applications.

We already have a proof-of-concept prototype system for implementing multiple transaction models

-~



on the same software platform [6]. Low-level mechanisms that support many transaction models
have been investigated in other systems like ASSET [3] and TSME [15]; however, they focus on

advanced database applications and not on distributed applications from the CSCW domain.

In summary, we employ a combination of extended transaction models to address the limitations
of flat and nested atomic transactions. Such an approach more naturally fits the paradigm in which
users requently interact among themselves by manipulating shared, persistent data. A computation
in our system is spawned originally as an atomic transaction; however it remains flexible since it
can dynamically change its structure using one or more extended transaction models. We refer to
such active entities in a distributed application as robust computations since they - despite failures

- preserve the well-defined consistency semantics dictated by the various transaction models.

4 Extended Transaction Models Match CSCW Applications’ Needs

We now focus on two extended transaction models, and the abstract application characteristics
they are suitable for. We describe in a generic fashion how the robust collaboration requirements
are met through extensions and relaxation to the serializability correctness criterion, allowed by
split [26] and cooperating [13] transactions respectively, without violating application-specific data
consistency. In the next section, we illustrate these desirable features by showing how concrete

examples from groupware exploit the multiple transaction models.

Dirty reads and lost updates are two common problems cited to motivate the atomic transaction
model which prohibits a transaction from reading its peer’s uncommitted results as well as writing
onto them. However, such unconstrained sharing is desirable in CSCW applications to enhance
concurrency and promote cooperation. In that case, a dependency set can be formed for each
concurrent transaction to regulate the consequent side-effects; a dependent transaction T5 is one that
can read or write some data items manipulated by the depended-upon transaction T;. If T5 is alive
after T aborts, atomicity of T could be violated since T3 could propagate the uncommitted results
of failed 7Tj. In traditional database applications (e.g., banking and air-line reservation) where
atomicity is necessary, such violation could lead to cascading aborts of dependent transactions like

T3 when the transaction 7} abnormally terminates.

Cascading aborts, on the otherhand, could be costly in the CSCW domain due to its inherently

long-lived and cooperative computations. Many extended transaction models obviate cascading



aborts in a systematic manner; the models clearly identify the application characteristics that make
the transactions independent of one another despite sharing uncommitted results. We will now
explore, in particular, how split and cooperating transactions alleviate the restrictions associated
with atomic transactions for robust collaboration as well as avoid the overhead of keeping track of

and aborting dependent transactions.

4.1 Enhancing Concurrency - Independent Split Transactions

A robust computation, structured originally as an atomic transaction 77, can dynamically split itself
into many independent components, say 17; and T2, divide its resources (data items as well as
associated locks) into disjoint partitions, and make one atomic transaction component responsible
for each resource partition. Due to the lack of a priori knowledge of the resource partitions and
transaction components, the option of using separate atomic transaction for each resource partition
initially itself is not possible. The split transaction 7T7; can be committed or aborted independent of
Ty5 thereby making its resources available for other transactions without making such transactions

wait for 179 to complete.

Thus, the independent split transaction 77, enhances concurrency through early committal of a
subset of data items originally owned by T} and releasing the associated locks. This is not possible
if T remains atomic without any restructuring. The resources that 77, and T, access are disjoint,
hence failure of T; does not affect Ti5 and vice-versa. Since these newly created transactions still
remain atomic, there is no danger of other transactions sharing their uncommitted results. However,
the set of eventually committed transactions (777 and T33) need not be the same as that existed
initially (7%) since the creation of transactions is dynamic through the splitting of original atomic

transactions. Early committal of a few of these newly created transactions enhances concurrency.

4.2 Reducing Data Loss - Serial Split Transactions

The transaction components created dynamically by splitting the original atomic transaction can
become related if the resources they access are not disjoint. They are defined as serial split trans-
actions and can be used to periodically save some or all of the data items accessed by an atomic
transaction. The atomic transaction 73 can split itself into two transaction components 177 and

T4, delegate all or some of its resources to both the components, make one component 775 depen-



dent on the other component 771, commit the effects of the depended-upon component Tj{, and

allow the dependent component 175 to proceed concurrently.

Failure of the dependent split transaction 775 does not affect the changes made by the depended-
upon transaction 171, already committed as a checkpoint. If T} had remained atomic as structured
originally, on its failure even the changes committed by 777 in the new structure could have been
lost. Thus, the serial split of T} into 777 and Tpo reduces data loss through a checkpoint by T7;.
Since T71 is committed immediately after the split, there is also no danger of aborting its dependent
transaction Ty later. The application semantics might require that Tiq, till its completion, does
not release the locks that it inherited from 771 so as not to affect the correctness of other concurrent
transactions. If 179 should fail, however, a concurrent transaction 75 could obtain its locks and

thereby even undo the changes made by its depended-upon transaction 77;.

4.3 Accommodating Interleaved Resource Sharing - Cooperating Transactions

An application could have a group of cooperating computations whose results are made visible to
the external world only after the whole group completes its assigned task. Each such computation
can be encapsulated in a transaction and thus the application is programmed as a collection of
transactions. In the CSCW domain, transactions that belong to a certain group of users are treated
as peers and need to cooperate among themselves. In particular, a computation encapsulated by a
transaction 77 may need to selectively allow its peers (say T3) to access (read or write) its resources

even before T, or one or more of its split components Ty, 119, etc. complete.

If the cooperating computation T3 fails, its results may have to be undone; however, the
application-specific knowledge about cooperation might avoid cascading aborts across the groups,
or even among group members when the transactions interact only in a certain manner. The
need for this execution behaviour, that allows violations to concurrency atomicity but not fail-
ure atomicity, was first identified by Garcia Molina who introduced cooperating transactions [13].
The following restrictions are enforced on such seemingly non-recoverable schedules - that permit

accesses to uncommitted data and still avoid cascading aborts [20]:

1. only those reads which do not affect any further writes are allowed,

2. only writes into disjoint fragments of data items which do not change the previous uncom-
mitted writes are permitted.
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Thus cooperating transactions permit interleaved resource sharing between computations like
those encapsulated by T and T5. This flexible behaviour could not have been possible if T; and T3
had remained atomic. If a cooperating transaction 75 belonging to a group member reads another’s
(17) results, but does not use the results for further modifications, none of the cooperating compu-
tations need to be aborted. If uncommitted results do lead to further modifications, compensating
transactions [14] could avoid cascading aborts. Similarly, the two group members 7} and T might
exploit the information that they will be concurrently modifying disjoint fragments of a shared

workspace, or if the fragments overlap they will adopt a merging policy on completion.

4.4 Systematic Approach for Flexible Robustness

Extended transaction models thus add flexibility to the traditional notion of atomicity, potentially
without sacrificing consistency in certain application domains. The scenarios under which they can
be used are well-defined, and hence application programmers can use the models without worrying
about the undesirable side-effects of failures and concurrency. Each model alleviates a certain
limitation associated with atomic transactions and hence we rely upon a combination of these

transaction models for supporting robust collaboration.

5 Programming Support for Robust Groupware

We now show how a combination of extended transaction models simplify the task of programming
CSCW applications. We present code fragments from robust collaborative editor and scheduler
applications discussed earlier. A variant of C++, the extensions being highlighted through boldface
fonts, is employed for this purpose. We will first describe the run-time scenario in terms of the
objects and transactions that model each application. Then, we walk the reader through the code
describing the program behavior. We conclude the program description with a discussion of the
ease of mapping application scenarios to well-defined execution behaviours of extended transaction
models. In particular, we highlight the need for multiple transaction models, so as to exploit their

unique virtues, in each of the applications.

'"We assume that a session manager, a standard service in collaborative applications, provides the end users with
transaction and resource identifiers at run-time. This service, in turn, may need to consult with the corresponding

users and operating system services for ensuring coordination and cooperation.

11



Class Document{
typedef struct Resource{
Data Section;
Lock SectLock;

public:
write();
Document: :Write()
TransactionId! Coauthor, System, Reincarnation, Reviewer;
Resourceld CommonSections, CheckPointSections,
FinishedSections, ToBePolishedSections;
Cooperate(CommonSections, Coauthor)
If (Reviewer is not ready))
SerialSplit (CheckpointSections, System, Reincarnation)
else
IndependentSplit(FinishedSections, ToBePolishedSections, Reviewer, Reincarnation)

Figure 2: Robust Collaborative Editing

5.1 Collaborative Editor

We have shown the code for a collaborative editing session in Figure 2. The document file is an
object Document with an array of disjoint data fragments Section and a single operation Write.
All the transactions in the editor application are spawned by invoking the object method Docu-
ment::Write(). The editing task of accessing multiple sections of the document by a single author
starts as an atomic transaction Author which interacts with concurrent transactions Reviewer and
Coauthor, representing a reviewer and coauthor respectively. Author can restructure itself dynami-

cally as another transaction Reincarnation for periodic checkpoints and releasing unwanted locks.

The robust editing task, which the Author transaction encapsulates, can share only the desired
sections CommonSections with the cooperating transaction Coauthor in conflicting modes (e.g.,

read-write). If actual conflicts do arise, they can eventually be resolved through user intervention.
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Also, the Author transaction can save its most recent changes CheckpointSections on stable storage
without relinquishing control, by delegating the corresponding data items to System which can be
viewed as the root transaction and locks to the serial split transaction Reincarnation. Alternatively
upon request from a reviewer, the Author transaction can divide its resources into disjoint partitions
FinishedSections and ToBeFinishedSections, among the independent split transactions Reviewer and

Reincarnation.

Now, we will describe why the robust collaborative editing task needs to exploit multiple trans-
action models for accessing various resources. The editing transaction Author has to share Com-
monSections in an interleaved manner with Coauthor. Also, Author needs to delegate the sections
that it has completed, FinishedSections, to Reviewer. Cooperating transactions allow the sharing
between Author and Coauthor whereas independent split transactions facilitate the delegation from
Author to Reviewer. The two distinct types of interaction, exemplified by the above scenarios, can-
not be implemented using either cooperating or split transactions alone. For example, it is not
natural to use cooperating transactions for delegating FinishedSections from Author to Reviewer,
because Author may not be willing to cooperate with Reviewer since any potential conflicts between
them cannot be resolved as easily as those between coauthors. Similarly, split transactions do not
capture interleaved resource sharing between Author and Coauthor. The editor application thus
should foresee many such scenarios and facilitate authors to choose dynamically a combination of

transaction models.

5.2 Meeting Scheduler

We have shown the code for the meeting scheduler program in Figure 3. The scheduler application
can be programmed as an object Calendar that encapsulates a particular meeting. The Calendar
object has many constituent objects of type Diary belonging to various participants, and a sin-
gle operation Negotiate visible to the users trying to coordinate appointments. The diary objects
themselves consist of the data items Slot corresponding to the many hourly slots in a single day
and synchronization variables SlotLock protecting against concurrent access. We consider the ap-
plication scenario in which concurrent transactions FirstPhase, LastPhase and ResourceSchedule,
representing the various phases of a scheduling task, are initiated by a coordinator (secretary).
These transactions interact with each other and the Colleague transaction belonging to another co-

ordinator. All the transactions are spawned by invoking the object method Calendar::Negotiate().
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Class Calendar {

Diary diary[NumParticipant];
public:

Negotiate();

Class Diary{
typedef struct Resource{
Data Slot;
Lock SlotLock;
}
Resourceld AppSlot[NumSlots];
protected:
Schedule();

Calendar: :Negotiate()

{
Transactionld System, LastPhase, ResourceSchedule;
Resourceld UnAvailable[], Available[];

// asynchronously invoke Diary::Schedule() method for each

// participant and consult for the availability of desired slots

If(no consensus yet)
IndependentSplit(UnAvailable, Available, System, LastPhase)
else

SerialSplit (Available, System, ResourceSchedule)

Diary::Schedule()
{
Transactionld Colleague;
For each desired slot i obtained as input
Cooperate(AppSlot[i], Colleague)
decide whether AppSlot[i] is available and output the status

Figure 3: Robust Meeting Scheduling
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The robust computation FirstPhase consults the individual diary objects and partitions its orig-
inal resources into unwanted and compromise time slots. It then delegates the compromise slots
Available to the independent split transaction LastPhase. The unwanted time slots UnAvailable are
released to any other coordinator wanting them through the root transaction System. The nego-
tiation transaction LastPhase reaches a consensus among the group members. It then saves the
groups’s consensus slots on permanent storage through the System transaction and entrusts the
associated locks to the serial split transaction ResourceSchedule. The ResourceSchedule transac-
tion cooperates with another coordinator transaction Colleague only on the desired resources - the

hourly slots for the meeting room, through a nested invocation of the corresponding object method

Diary::Schedule().

Now, we will examine why the robust meeting scheduling task needs to employ multiple trans-
action models for flexibility. On the completion of the negotiation transaction FirstPhase, the
compromise slots Available have to be passed to the LastPhase transaction. On the otherhand,
ResourceSchedule and Colleague transaction share the resources AppSlot - belonging to the diary
object of the meeting room - in an interleaved manner. Independent split transactions facilitate the
delegation of Available from FirstPhase to LastPhase. Cooperating transactions cannot model the
interaction between FirstPhase and LastPhase because of the lack of application-specific knowledge
to resolve any potential conflicts. However, cooperating transactions naturally model the shar-
ing between ResourceSchedule and Colleague transactions. Such sharing cannot be implemented
using independent or serial split transactions; because even though split transactions can share
resources, only one of the transactions actively executes whereas the other one should commit its
results immediately. Thus, the scheduler application could exploit the various transaction models

for accessing different resources.

5.3 Ease of Programming

The key task in programming robust collaborative applications thus is to identify scenarios that
befit a certain transaction model. We believe that application programmers familiar with such
scenarios can exploit the corresponding well-defined consistency semantics of a variety of extended
transaction models. Thus, they can easily choose the particular model that satisfies their unique
needs. System designers for robust collaboration, in turn, should appreciate the need for, and

provide, many such transaction models on a single software platform.
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6 System Mechanisms for Implementing Extended Transactions

Our goal in this section is to outline an implementation of multiple transaction models using only
low-level system mechanisms. However, the desired flexibility requires a few minor modifications to
such primitive mechanisms that are already provided by existing systems. This design decision to
tailor existing low-level facilities arises from efliciency considerations of providing minimal system
support for robust applications. OQur approach is simple also, because it requires no major changes
to the basic abstractions provided by common operating systems. We only add a few additional

operations or enhance the semantics of a few existing ones.

Objects provide an attractive structuring paradigm in system and application software, particu-
larly in a distributed environment [8]. For implementing extended transaction models, we assume a
system in which a thread corresponds to a computation structured using a transaction, and objects
encapsulate passive data and code. Objects are made of a lower level abstraction called segment.
A thread has to invoke an operation defined by the object and execute its code to manipulate the
data encapsulated by the object. Multiple threads can concurrently execute in the same object.
We introduce a low-level abstraction synchronizer which encompasses multi-mode locks used for

coordinating such concurrent threads.

Two major functions: recovery and concurrency control, need to be supported by the system
mechanisms for flexible robustness. We describe below the primitive operations for segments and
synchronizers which can be used to implement multiple transaction models. These operation can
be built on top of virtual memory and file system support provided by the Unix operating system.
Light-weight recoverable virtual memory [27] is one instance of such a recovery manager. We have
however implemented this functionality at the OS level [6] since it was more natural to do so in the
context of our testbed, the Clouds operating system. We next show how these mechanisms simplify

implementing multiple transaction models.

6.1 Recovery Control

To deal with failures, we allow segments to have multiple versions. Versions can reside on volatile
or permanent storage. A segment can be initialized by copying the contents of another segment
to it using the clone call. Multiple segments can be atomically committed (copied) to another set

of segments using the delegate call. Clone and delegate calls facilitate recovery control needed
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to implement many transaction models by helping avoid in-place data modification. These calls
can be used to establish relationships between the versions of a segment, e.g., a segment can be
cloned from and delegated to different versions. Creation of such relationships is dictated by the
encapsulating transaction model and enforced by choosing appropriate parameters for these calls.

Thus our system does not assume any particular transaction model.

6.2 Concurrency Control

Acquire and release operations allow the synchronizers to be transferred between threads. These
operations can be performed tentatively on specification; acquired locks need to be released when a
robust thread fails, and locks are not released till the outcome of the thread is determined. A thread
may obtain a synchronizer in a conflicting mode with other threads specified through the acquire
operation. ResilientSyncBegin call can be used to specify the coordinator thread that should
commit or abort the synchronization operations performed by a robust thread. SyncCommit
and SyncAbort operations respectively can be used by the coordinator to make the tentative
synchronization operations performed by the cohort thread permanent on its success, or to undo

the operations on its failure.

6.3 An Implementation of Extended Transactions

The code in Figure 4 shows the skeletons of an implementation of split and cooperating transactions
using the proposed system mechanisms. For brevity, we have omitted the code executed by the
Coordinator thread which commits or aborts the synchronization effects of the robust computation
depending on its outcome. An application programmer has to specify just the extended transaction
model that dictates the particular resource access, not the system calls that manipulate the data
items and synchronization variables. The run-time library and preprocessor support for implement-
ing many extended transaction models we have proposed earlier [7] thus simplify the programmer’s

task by making the underlying system primitives for recovery and concurrency control transparent.

We assume that the object RobustObj, as shown in Figure 4, has data segments CoopSeg,
DepSeg and IndepSeg protected by the synchronizers CoopSync, DepSync and IndepSync respectively.
The acquire call is used for obtaining the lock CoopSync, even if the Cooperator thread holds

the lock in a mode that conflicts with CoopHoldMode. Next, the segment SourceSeg used for
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RobustObj: :method(){
// We assume a system service, thread manager, that keeps track of these identifiers
// Segment CoopSeg, DepSeg, IndepSeg;
// Synchronizer CoopSync, DepSync, IndepSync;
// Thread Coordinator, Cooperator, Dependent, DependedUpon, Independent;

ResilientSyncBegin ([CoopSync,DepSync, IndepSync] ,Coordinator) ;
/* Cooperate */
acquire(CoopSync,ReqMode, [Cooperator, CoopHoldMode]);
SourceSeg = HasSegment(Cooperator, CoopSeg);
clone(SourceSeg, CurrentSeg);
/* method code */
/* SerialSplit */
release(DepSync, Dependent, Deplode)
DepDestSeg = HasSegment(DependedUpon, DepSeg);
/* IndependentSplit */
release(IndepSync, Independent, IndepMode)

IndepDestSeg = HasSegment(Independent, IndepSeg);

delegate(DepSeg, IndepSeg, DepDestSeg, IndepDestSeg);}

Figure 4: Object Being Invoked as a Robust Computation

initializing a version of the data segment CoopSeg is determined. This is used in the clone call.
The transient segment CurrentSeg, thus created, can be manipulated by the robust computation. On
completion, the computation, structured originally as an atomic transaction, uses the release call
to propagate the lock DepSync to the serial split transaction Dependent and checkpoints the changes
in the corresponding data segment DepSeg by delegating it to its counterpart DependedUpon. The
lock IndepSync is released as well as the corresponding data segment IndepSeg is delegated to the

independent split transaction Independent.

Thus, we have basically decomposed the traditional transaction manager calls as follows: Be-
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ginTransaction is split into primitives for acquiring the relevant synchronization variables (ac-
quire) and initializing data versions (clone). EndTransaction consists of releasing the synchro-
nization variables (release) and committing the corresponding data versions (delegate). This
separation of concurrency and recovery control mechanisms necessitates specifying a coordina-
tor transaction (ResilientSyncBegin) responsible for reliably making the executing transaction’s

synchronization effects permanent (SyncCommit), or void (SyncAbort), on its termination.

6.4 Data Sharing among Flexible Robust Computations

We now provide a new perspective on data sharing among flexible, robust computations so as
to clearly distinguish the salient features of the extensions and relaxation of the serializability
correctness criterion. This discussion should show the simplicity and efficiency of our system

mechanisms for implementing extended transactions.

A flat atomic transaction shares its changes to all the manipulated data items with the external
world, only upon its committal, by releasing the corresponding locks. A nested transaction on
the other hand allows such changes to be selectively shared among its subactions. Type-specific
concurrency control facilitates sharing among all the transactions invoking particular methods of
an object. However, it is desirable only a few such cooperating transactions share data in an inter-
leaved fashion. A serial split transaction promotes data sharing between its dynamically spawned
dependent and depended-upon split transactions. Independent split transactions conversely divide

shared data into disjoint partitions.

Based on these data sharing patterns in extended transaction models, we can now justify the
design rationale for our system primitives. The acquire system call facilitates select interleaved
resource sharing among cooperating transactions. Independent split transactions exploit the del-
egate and release primitives, that split and entrust the ordinary variables and associated syn-
chronization variables accessed by a transaction atomically to multiple transactions. Serial split
transactions call for the separation of the release and delegate primitives since sometimes it is

necessary to maintain concurrency atomicity, but not failure atomicity.
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7 Conclusion

We summarize the main contributions of this paper as follows:

1. identifying the characteristics of collaborative applications - long duration and cooperation -
that cannot be accommodated by the atomic transaction model,

2. trace the evolution of transaction models that match the advanced application needs,

3. show how collaborative applications need more than one extended transaction model and a
combination of split and cooperating transactions simplifies their programming,

4. illustrate the applicability of low-level system mechanisms for implementing multiple trans-
action models.

Thus we have developed flexible support for realizing robust groupware in a systematic manner.
We have not provided any measurements from our prototype system; because such metrics which
quantify the virtues of extended transaction models are not obvious yet. One of our future directions
is to identify such parameters and compare performance gains through modelling, and to validate

our results using experimentation.
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