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SUMMARY 

 

 

 

A hybrid model approach to Carroll’s hierarchy of preference models (1972) is 

presented to 1) provide a more parsimonious fit for preference judgments, 2) minimize 

the number of anti-ideal points that typically arise from External Multidimensional 

Unfolding (EMDU) models, and 3) guarantee that all model terms are statistically 

significant. The term “hybrid model” refers to situations in which the optimal regression 

model within Carroll’s hierarchy has terms that are not all statistically significant, and 

consequently, such terms are eliminated. This elimination of terms from Carroll’s 

original models leads to hybrid models in which alternative representations of preference 

may operate across stimulus dimensions. This is in stark contrast to Carroll’s original 

models which assume that preference operates identically across all dimensions. This 

methodology was grounded in the idea that there may be a few interpretable anti-ideal 

points in an EMDU solution, but they should account for a statistically significant amount 

of variation in the preference responses. The new approach was applied to self-similarity 

judgments in the context of facial affect. Specifically, photos depicting facial emotions 

were scaled using multidimensional scaling of pairwise similarity judgments among 

photos, and then 1,564 subjects were located jointly in that same emotion space using 

single-photo, self-similarity judgments. When the optimal model was selected for each 

subject, more than 95% of these models were hybrids rather than traditional models. 

Additionally, this new approach reduced the number of anti-ideal points by 

approximately 25% by allowing these points to become vectors in the group space. The 

results of this research illustrate that a hybrid approach to EMDU is an intuitive extension 
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of Carroll’s hierarchy that can provide more parsimonious fit, reduce the number of anti-

deal points, and represent preferences across stimulus dimensions in a less “all-or-none” 

fashion.
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CHAPTER 1 

INTRODUCTION 

 

 

 

External multidimensional unfolding (EMDU) is a method used to jointly 

represent participants and stimuli in the same multidimensional space. This is achieved 

by first generating a stimulus space using multidimensional scaling (MDS) techniques 

and then analyzing preference judgments about the stimuli to place participants jointly 

onto the same space. MDS techniques allow researchers to reveal a hypothetical spatial 

“structure” based on the perceived similarity among stimuli. Individual preference 

judgments are then modeled using the locations of stimuli from the resulting MDS space.  

The most common EMDU technique involves the implementation of Carroll’s 

hierarchy of preference models (1972): the general Euclidean model, the weighted 

Euclidean model, the simple Euclidean model, and the vector model. Each of the four 

models in this hierarchy utilizes a different regression equation for calculating subject 

parameter estimates. Four different joint spaces are possible depending on which 

regression model is used. An optimal model is selected for an individual’s preferences 

based on the fit of the model relative to the other three (assessed traditionally using a 

series of F-tests). Three of Carroll’s models are Euclidean “unfolding” models. In these 

models, an individual’s preference is assumed to form an ideal position in the 

multidimensional space (otherwise known as an ideal point), and the degree to which a 

given stimulus is preferred is a function of its proximity to that ideal point in the space. 

Carroll’s fourth model is a cumulative, vector model in which an individual’s preference 

is expected to take the shape of a vector moving through the space. An individual is 
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expected to prefer stimuli that are located farther along on the vector within the stimulus 

space. 

The most highly parameterized model in Carroll’s (1972) hierarchy is the general 

Euclidean model. The general Euclidean model is a nonlinear distance model which 

allows for preference ratings to possess nonmonotonic properties. This model estimates a 

subject’s ideal point coordinate on each dimension utilizing the following formula: 

            (1) 

where: 

 

 

 

 

 

 

 

 

  

Fitting the general Euclidean model via OLS regression yields estimates of these 

parameters along with a measure of fit, the multiple correlation coefficient RG. This 

model allows for an individual to orthogonally rotate and then weight dimensions in the 

group space to create their own personal space. The remaining three models are 

successively constrained versions of Equation 1, and thus, they form a nested hierarchy 
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of models. For example, if the subject interaction parameters (rikk’) are set to zero, the 

model becomes identical to the weighted Euclidean model:  

                                     (2) 

In this case, subjects may weight dimensions in the group space, but they may no 

longer orthogonally rotate the space in an individualized manner. If, in addition to 

constraining the subject interaction parameters, the subject weights (w2
ik) are constrained 

to be identical across K dimensions, then the model becomes what Carroll referred to as 

the simple Euclidean model. 

               (3) 

Consequently, subjects may no longer weight each dimension differently in the 

group space, and all dimensions are presumed to be equally salient to a given subject. In 

order to obtain the linear vector model, the simple Euclidean model must be further 

deconstructed. By squaring the parenthetical expression and rearranging the terms, an 

alternative formula for the simple Euclidean model is obtained: 

              (4) 

By defining  as 

                        (5) 

and defining  as 

                       (6) 

We may reparameterize the simple Euclidean model as follows: 

                     (7) 

By setting the remaining subject weight to zero ( ) we obtain the linear vector model: 

                 (8) 
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In this model, subject preferences are mapped as vectors projecting through the 

multidimensional space. 

Over the past five decades, several researchers have scaled emotion stimuli using 

MDS and these efforts suggest that the emotion space is a multidimensional concept 

(Roberts & Wedell, 1994; Russell, 1980). Russell’s emotion circumplex (1980) proposed 

a two-dimensional emotion space that consisted of a pleasure-displeasure dimension and 

a level of arousal dimension. Other researchers have suggested a similar representation 

derived from non-MDS techniques (Heller, 1990; Schlosberg, 1952; Shaver, Schwartz, 

Kirson, & O’Connor, 1987). It appears that, despite a lack of common labels for the 

dominant dimensions in these studies, there is a common thread in that valence and 

activation both appear to account for a notable amount of variance in perceptions of 

emotion stimuli. Later studies on the scaling of emotion have suggested the existence of a 

third dimension. Russell and Bullock (1985) added on to Russell’s (1980) original 

circumplex and suggested a third “assertiveness” or “boldness” dimension. Roberts and 

Wedell (1994) have suggested a three-dimensional space with “potency” as the third 

dimension which, among other things, distinguishes between anger and fear. They argued 

that this dimension was necessary because these two basic emotions would otherwise 

occupy similar positions on the emotion circumplex since they reflect approximately 

equal levels of both valence (negative) and activation (high). 

While there is substantial evidence for a multidimensional emotion space based 

on previous research using MDS techniques, jointly placing an individual’s perceived self 

on a multidimensional map of emotion has not previously been done. The possibility of a 

joint space using facial emotion stimuli may have applications in a number of applied 
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research areas within the domain of psychology, such as providing an alternative method 

of assessing the emotional state of individuals who are unable to complete tasks requiring 

written or oral directions or responses (e.g., individuals who are illiterate or have been 

diagnosed with an Autism Spectrum Disorder). In this case, individuals may rate the 

degree to which emotion stimuli are similar to their own feelings at a given point in time. 

Such ratings might be binary (“this is like me”) or graded in nature. Ratings of the 

similarity between a subject’s own emotional state and a given emotion stimulus (i.e., 

self-similarity) are expected to function like traditional preference ratings in the EMDU 

domain. More specifically, the subject’s emotional state is expected to form an ideal 

position in the emotion space, and the degree to which a given stimulus judged as similar 

to that ideal point should be related to its proximity to that ideal point in the space. 

This author’s earlier pilot research in which EMDU techniques were used to map 

self-similarity judgments onto a scaled multidimensional space of emotion faces resulted 

in large numbers of both ideal points and “anti-ideal” points for individuals who fit an 

unfolding model. Carroll (1972) describes anti-ideal points as being coordinates that 

indicate the location of an individual’s least preferred stimuli on the associated 

dimension(s). These anti-ideal points occur when the weight parameters in the unfolding 

models (Equations 1, 2 or 3) are negative. Carroll (1972) believes that anti-ideal points 

are as interpretable as ideal points. Specifically, the individual prefers (or in this case, 

feels more similar to) stimuli that are more and more distant from the anti-ideal point in 

any direction on the corresponding dimension. While some may argue that the negative 

weights in the models are cause of concern, Carroll argues that it is not necessary to 

constrain these weights to be positive (Davison, 1983; Srinivasan & Shocker, 1973). This 
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opinion is also supported in Green and Carmone (1970) who contend that there are real 

world situations that can be represented with anti-ideal points. 

 Carroll’s acceptance of anti-ideal points has been the subject of debate and 

criticism among quantitative psychologists. For example, Davison (1983) argues that 

anti-ideal points should not be included in EMDU models. He states that the existence of 

negative weights leads to “unrealistic results,” and he developed a quadratic 

programming approach that allows the option of constraining dimensional weights to be 

nonnegative (Davison, 1976). Other opponents of Carroll’s incorporation of anti-ideal 

points in preference models include Srinivasan and Shocker (1973). Their answer to the 

anti-ideal point argument was to develop a model that allows the existence of multiple 

ideal points (rather than a single point) from which preferences emanate (Srinivasan & 

Shocker, 1973). Another proposed solution to anti-ideal points is to force subjects with 

anti-ideal points into cumulative models to remove the notion of ideal points altogether 

(Schiffman, Reynolds, & Young 1981). 

 Unfortunately, there has been no resolution to the argument for or against the 

inclusion of anti-ideal points in EMDU models. Many textbooks that reference EMDU 

typically mention the argument without proposing guidelines for researchers (Borg & 

Groenen, 2005; Cox & Cox, 2001). Therefore, the decision is left up to the researcher as 

to whether or not to allow anti-ideal points in his or her preference models. Although the 

appropriateness of anti-ideal points in such models is debatable, there is a substantial 

amount of agreement that the presence of anti-ideal points makes the interpretation of the 

joint space much more complicated (Davison, 1983; Green & Carmone, 1970; Srinivasan 
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& Shocker, 1973). Therefore, it seems wise to avoid them to the extent that they are not 

truly required to adequately represent preference or self-similarity data.  

In the case of emotion measurement, it is tenable that self-similarity judgments 

may take the form of either anti-ideal points or ideal points in a multidimensional space. 

Anti-ideal points may exist on one dimension of the space, but possibly not for a second 

dimension (resulting in a function that takes the shape of a saddle point). One example of 

a potential instance of an anti-ideal point in an emotion space would be a scenario in 

which a participant reports feeling both happy and calm. In Russell’s circumplex model, 

happy is a positive, active emotion, whereas calm is a positive, inactive emotion. 

Consequently the stimuli are not in the same quadrants of the emotion space, and an 

individual who reports feeling both happy and calm might be represented by a point 

between these two emotions such that the weight is positive for valence (i.e., an ideal 

point coordinate) and negative for activation (i.e., an anti-ideal point coordinate). It has 

been suggested that emotions appear to lack definitive borders that differentiate one 

particular emotion from another (Russell & Fehr, 1994). Additionally, most individuals 

tend to report feeling more than one positive emotion at one time (Watson & Clark, 

1992). It is likely that in these instances anti-ideal points between positive stimuli are 

interpretable. A different example arises when an individual reports being both angry and 

afraid. Roberts & Wedell (1994) found that these two emotions were similar with respect 

to both valence (negative) and activation (positive), but were on opposite ends of a third 

dimension which they identified as potency. Thus, an individual who experienced both 

anger and fear within a short span of time might be represented by an anti-ideal point 

located between these emotions on the third dimension. Nonetheless, there are also many 
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cases where interpretation of anti-ideal points is difficult. Indeed, such interpretational 

difficulties have led some researchers to dismiss anti-ideal points as relevant 

psychological phenomena and prevent them from occurring (Davison, 1976; Srinivasan 

and Shocker, 1973).  

In addition to anti-ideal points, one may encounter other results from Carroll’s 

hierarchy of preference models that are difficult to interpret. One such condition is when 

extreme ideal points are encountered. Coombs (1950) suggested that if estimated ideal 

points (or anti-ideal points) are far outside of the range of stimuli, then corresponding 

preferences could be fit equally well with a vector model as compared to an unfolding 

model. Following this logic, if an individual’s location falls far outside of the stimulus 

range for one dimension but is located in a more moderate position with respect to a 

second dimension, then a vector model from Carroll’s hierarchy (1972) may hold for the 

first dimension while an unfolding model might be appropriate for the other dimension. 

This would result in what may be best described as an “ideal line” where an individual’s 

preferences are best fit by a vector model on one dimension, but a weighted Euclidean 

model on a second dimension. Such a model would no longer conform to Carroll’s 

hierarchy of preference models, because his modeling scheme requires preferences to 

operate the same way across all dimensions. In other words, if a vector model is used to 

model preferences on one dimension, then a vector model must be implemented across all 

dimensions. The scenario described above would not fit well within Carroll’s framework, 

but would instead be a type of “hybrid” model in which preference follows different 

models in Carroll’s hierarchy (i.e., vector, simple Euclidean, etc.) for different 

dimensions of the space. These hybrid solutions may be more appropriate for modeling 
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the multitude of ways individual’s experience and perceive emotion. As an example of 

this hybrid model, suppose a subject was asked to indicate his or her ideal emotional 

state. It is easy to imagine an ideal emotion that is extremely positive (more is better), but 

is moderate with respect to activation (there is an ideal amount that is neither too high nor 

low). More generally, one can think of preferences in other contexts which might 

function in this manner. For example, when choosing among ideal jobs, preference may 

follow a vector model with respect to compensation (more is better), but may follow 

some type of unfolding model with respect to other dimensions (e.g., there is an ideal 

amount of intellectual challenge, administrative activities, managerial activities, etc.). In 

short, it is easy to envision variants of Carroll’s modeling hierarchy which include 

hybrids formed by mixing his original four models across dimensions in a meaningful 

way.  

In the context of Carroll’s method, the term “hybrid model” will be used to refer 

to situations in which the optimal regression model within his hierarchy has terms that are 

not all statistically significant. When these non-significant terms are weights from the 

general or weighted Euclidean models, or interaction effects from the former model, then 

the functional process underlying preference can change across dimensions when such 

terms are removed. The implications of the statistical significance of parameters 

incorporated in Carroll’s hierarchy of models have not been addressed previously in the 

literature; however, the interpretation of these models could drastically change if non-

significant terms are eliminated from his basic models. Again, the examples pertaining to 

ideal emotional states and preferences for ideal jobs illustrate the types of interpretational 

changes that may result from eliminating model terms that are not statistically significant.  
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One might argue that hybrid models are not necessary because parameters in any 

of Carroll’s models that are not statistically significant will function as though they were 

zero. This is not true for at least two reasons. First, when the standard error of a 

parameter is high, then the parameter value may be noticeably different from zero even 

though it is not statistically significant. Moreover, it is the value of the parameter that is 

subsequently used to construct the joint space with no regard to the corresponding 

standard error. The second reason relates to the notion of anti-ideal points. Such points 

arise when weights in either the simple, weighted or general Euclidean model are 

negative. If a weight is not statistically significant, then it is not statistically different 

from zero, but may fluctuate around the value of zero randomly according to the form of 

its sampling distribution. Thus, it may randomly assume positive or, more importantly, 

negative values. A negative weight that is not statistically discernable from zero must be 

interpreted as an anti-ideal point if it is left in the model. This leads to a very different 

interpretation of the very same point than if the weight had assumed a positive value that 

was not statistically significant from zero. There is a qualitative difference in the type of 

conclusion that is reached, yet from a statistical perspective, neither conclusion is 

justified because the weight may be equal to zero in the population. In instances of a 

statistically non-significant interaction term, a given subject’s preference/self-similarity 

space may appear rotated from the group space orientation in cases where there is no true 

rotation required. This leads to yet another interpretation of the solution that may 

erroneously represent an individual’s preferences when the ideal points generated from 

this solution are mapped onto a group space. To summarize this logic, if a statistically 

non-significant weight parameter is eliminated from one of Carroll’s (Euclidean) models, 
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then 1) a subject’s preference (or self-similarity) judgments can be represented by a 

vector running in the direction of the associated dimension(s) and 2) this statistically 

limits the emergence of an anti-ideal point that is due simply to chance. With respect to 

the second point, the hybrid model will mitigate the emergence of anti-ideal points 

statistically as opposed to an estimation method that would not allow them to occur at all 

like that proposed by Davison (1976). In addition to the elimination of statistically non-

significant weight parameters, the removal of statistically non-significant interaction 

parameters from Carroll’s general Euclidean model will avoid unjustified individual 

rotations of the preference/self-similarity space.  

In this author’s previous pilot research, a three-dimensional MDS solution of 

emotion using NimStim faces was constructed. A total of 835 subject responses were fit 

to this solution using EMDU. Each subject was fit to one of Carroll’s four models by 

comparing Akaike’s information criterion (Akaike, 1973) across each of the models. 

From this analysis, several statistically non-significant parameters were discovered. 

These included many negative weights corresponding to anti-ideal points, and thus, the 

resulting joint space of individuals and emotion stimuli was not easily interpretable. This 

research addresses the anti-ideal points found in emotion data using Carroll’s unfolding 

models and utilizes a different method to limit the emergence of anti-ideal points and 

statistically nonsignificant model parameters. This is accomplished using stepwise 

regression techniques to obtain hybrid models from Carroll’s hierarchy in which all 

model parameters are statistically significant. 
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CHAPTER 2 

METHOD 

 

 

 

2.1 Participants 

A total of 2001 undergraduate students participated in this study. Participants 

consisted of currently enrolled students attending the Georgia Institute of Technology 

who were 18 years old or older. Participation in the Psychology subject pool is required 

by all introductory psychology courses offered in the School. These data were collected 

in an ongoing, multi-year study conducted in the Psychometric Research and 

Development Laboratory. 

2.2 Materials 

 The NimStim set of facial expressions developed by Tottenham, Tanaka, Leon, 

McCarry, and Nurse (2009) features images of actors from different ethnicities modelling 

a range of emotions from eight different categories (happy, sad, disgusted, fearful, angry, 

surprised, neutral, and calm). All photographs of the models were taken under identical 

conditions and each emotion was modelled using open- and close- mouthed variations of 

each expression. Three faces from each emotion category were selected for this study. 

Each of these sets features at least one European American model and at least one 

minority model (African American, Asian American, or Latin American). If two minority 

models were chosen, the ethnicities of the models had to be different. Each set of 

emotions included at least one male and at least one female model and no models were 

repeated to avoid the same model appearing twice during the pairwise comparison 

portion of the study. Faces depicting closed mouths were excluded for the happy, angry, 
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and fearful emotion categories as Tottenham et al. (2009) found those emotion faces had 

higher validity with open mouths. In contrast, sad faces had higher validity with closed 

mouths, therefore sad emotion faces with open mouths were excluded.  

2.3 Procedure 

 Data were collected across multiple sessions of up to five participants at a time 

using separate computers with a divider between each workstation. After the completion 

of the consent form, the researcher read instructions detailing the four phases of the study 

(paired comparisons, attribute ratings acquisition, single stimulus ratings, and the 

demographic survey). The paired comparisons phase of the study and the single stimulus 

response phase of the study were presented in a random order; however, the attribute 

ratings phase of the study consistently followed the paired comparisons phase to ensure 

that it did not prime subjects to discriminate among stimuli along any predetermined 

dimensions. 

2.3.1 Paired Comparisons 

Participants were presented with a pair of faces. The task for the participants was to rate 

how similar the emotions depicted in the two faces were to each other. Participants rated 

the similarity of the stimuli using a 9-point scale (where 1 represented very dissimilar and 

9 represented very similar stimuli). Stimuli were assigned “photo numbers” which were 

displayed in pairs according to a previously established Ross ordering (Ross, 1934). The 

assignment of stimuli to photo numbers was randomized independently for each 

participant. Participants made a total of 276 paired comparisons during this portion of the 

study. At the end of these trials, 10 comparisons were repeated so that test-retest 

consistency could be examined for each subject. 
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2.3.2 Attribute Ratings 

Attribute ratings were acquired by asking participants to rate the degree to which 

each stimulus exhibits a given characteristic (happy, sad, angry, afraid, surprised, 

disgusted, calm, submissive, dominant, bored, or energetic). Participants rated a given 

face on a 9-point scale (where 1 represents the lowest degree and 9 represent the highest 

degree of a given attribute). Participants made a total of 264 attribute ratings during this 

portion of the experiment (11 attributes x 24 stimuli) and each attribute was randomly 

selected and presented with all 24 stimuli in succession. The order of the 24 stimuli was 

determined randomly for each subject. 

2.3.3 Self-Similarity Ratings 

The next portion of the study asked participants to recall the emotional state they 

were in the previous evening. Participants were then presented with single stimuli and 

asked to rate how similar the emotion depicted in the face was to the emotional state they 

were experiencing the previous evening. Similarity judgments were made using a 6-point 

scale (where 1 represented an emotion that was very dissimilar to how they felt and 6 

represented an emotion that was very similar to how they felt). This part of the study 

consisted of 24 unique trials and presented each of the NimStim faces in a randomized 

order. After these trials, five comparisons were repeated for the purposes of examining 

test-retest reliability for each subject. 

2.3.4 Demographics 

In the final phase of the study, participants answered demographic questions 

regarding gender, age, ethnicity, and social aspects of their lives such as their type of 
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schooling, family life, and number of friends. These questions were always presented 

after all other types of data collection were completed. 

2.4 Design 

2.4.1 Multidimensional Scaling 

An analysis of the pairwise similarity data collected from this study was first 

obtained in SPSS using the PROXSCAL procedure (Busing, Commandeur, & Heiser, 

1997). Responses used in this analysis were limited to those that passed a test-retest 

reliability check (r > 0.6) where participant responses were correlated across the 10 

repeated stimulus pairs. As multidimensional scaling uses dissimilarity judgments to 

approximate distances between stimuli, the similarity data were transformed into 

dissimilarities by the program before the analysis was performed (Kruskal & Wish, 

1978). 

This analysis provided the group-level emotion space coordinates for the stimuli. 

A Procrustes rotation (Schonemann & Carroll, 1970) of the initial solution was 

completed to better align the resulting MDS axes to those that are traditionally presented 

(i.e., valence and activation; Russell, 1980). Following this, 11 multiple linear regressions 

were performed using the mean response of the attribute ratings for each stimulus as the 

dependent variable and the MDS coordinates of each stimulus as the independent 

variables. The regression weights from each equation were normed to produce direction 

cosines for each attribute. These cosines provided the coordinates of vectors that illustrate 

which direction in the space best represents each attribute.  
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2.4.2 External Multidimensional Unfolding 

After examining the test-retest reliability of the responses to the self-similarity 

portion of the study (by correlating  responses to five repeated trials), the data from 

participants with reliable (r > 0.6) responses were analyzed using Carroll’s four proposed 

models as well as stepwise regression variants of those models. Specifically, each of 

Carroll’s models served as the starting point for the stepwise regression procedure. The 

relative fit of all starting and resulting models was compared. In some cases, the resulting 

model was not one of Carroll’s four models because some of the terms were missing. 

These cases will be referred to as hybrid models. These models were fit independently for 

each subject and implemented using SAS software. SAS gives the user the option to 

choose between forward selection regression, backward elimination regression, and 

stepwise regression. Of these three options, backward elimination regression was 

implemented for the purposes of this study. Backward elimination regression begins with 

every predictor specified in the model. The predictor with the least contribution to the 

model (i.e., the predictor with the largest p-value) is removed during each successive step 

and this process continues until no further predictors are non-significant. In this case, 

after a predictor is removed from the regression model, it will not be included in the 

following steps. The backwards elimination method is preferred to other techniques for 

exploratory analyses (Kleinbaum et al., 2008). Backwards elimination typically results in 

more saturated models, and in comparison to forwards selection or stepwise techniques, 

there is less risk of making a Type II error by excluding predictors involved in suppressor 

effects (Field, A., Miles, J., & Field, Z., 2012). Suppressor effects refer to instances 

where more error variance in the model is accounted for by a parameter that does not 
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have a significant relationship to the criterion variable, but to another parameter in the 

model (Field et al., 2012). It was theorized that the backwards elimination procedure 

would provide solutions that tend to favor Carroll’s unfolding Euclidean models over his 

vector model because these are more highly parameterized models, and the backwards 

elimination model begins with the most parameterized model and eliminates terms in 

succession. Therefore, the backwards elimination procedure does not inadvertently 

preclude an unfolding model simply due to the methodological steps involved in this 

regression approach. Given that an unfolding mechanism is presumed to underlie at least 

some self-similarity judgments, this strategy seemed prudent. 

2.4.2.1 Fit Indices 

Carroll (1972) suggested that F-tests be used for comparing the fit of his four 

proposed models; however, these F-tests are only plausible when the models are nested. 

Therefore, it is no longer appropriate to use these techniques when using stepwise 

regression techniques resulting in hybrid models. Other measures of model fit that were 

examined were Akaike’s information criterion (Akaike, 1973), Schwarz’s Bayesian 

information criterion (Schwarz, 1978), the consistent Akaike’s information criterion 

(Bozdogan, 1987) (commonly referred to as AIC, BIC, and CAIC, respectively), and the 

adjusted R-squared index, which has been used in previous research to compare 

preference models (Cooper & Nakanishi, 1983). These measures each include a penalty 

function that is based on the number of parameters in the model. The particular form of 

the penalty function varies across indices with adjusted R-squared penalizing the least 

and CAIC penalizing the most. The penalty for the general Euclidean model would be 

larger than the penalty for the weighted Euclidean model because the general model 
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includes K*(K-1)/2 more parameters, where K is the number of dimensions. Similarly, 

the penalty for the weighted Euclidean model would be larger than that for the simple 

Euclidean model which, in turn, would be larger than that for the vector model. As might 

be expected, these indices did not generally favor the same model due to the number of 

parameters having an impact on how the indices were calculated. Additionally, there was 

no discernable way to interpret whether or not there were substantial differences between 

models using AIC, CAIC, and adjusted R-squared, which makes it more difficult to 

assess relationships present in the data. As it is hypothesized that there may be both 

solutions with up to nine parameters as well as solutions with zero parameters, it was 

necessary to compare the measures of fit to ascertain which of the indices allowed for 

both of these types of solutions. After a comparison of the different fit indices that were 

explored here, the BIC index was chosen as the most favorable index to use for the 

present analysis as this index did not tend to heavily favor either unfolding or vector 

models while still minimizing the total number of negative weights in a chosen model. 

Following the selection of an optimal backwards elimination regression model, 

individuals’ self-reported emotions were mapped onto a group preference stimulus space 

using their resulting model.  

2.4.2.2 Ideal Point Calculation 

The individual-level coordinates were computed for each dimension. When the 

BER approach is used, preferences can be modeled as either cumulative or unfolding on 

any given dimension. Thus, it was necessary to generalize Carroll’s original solutions for 

ideal points and vectors to this more general case. 
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2.4.2.2.1 Carroll’s original method 

A traditional MDS analysis results in a (J x K) matrix X that gives the locations 

for the jth stimulus on K dimensions (i.e., the coordinates of stimuli in the 

multidimensional space). For the general Euclidean model, it is assumed that both the 

known  matrix of stimulus coordinates and the unknown (K x 1) matrix of ideal point 

coordinates for the ith subject (denoted as matrix Y) are rotated in the K dimensional 

space by an orthogonal (K x K) transformation matrix (denoted matrix T). These new 

axes are then stretched or shrunk in scale by a diagonal (K x K) weight matrix . The 

squared distance between person i and stimulus j is computed from the resulting 

transformed values: 

             (9) 

By defining Ri* as 

                   (10) 

and allowing  to represent the last term in Equation 9, Carroll reparameterizes the 

squared distance as: 

                   (11) 

Let  be the self-similarity judgment (or preference judgment as the case may be) from 

person i to stimulus j after reverse scoring the judgment so that higher numbers reflect 

less similarity (or less preference). In each of his Euclidean models, Carroll assumes that 

 is a linear function of the associated squared distance: 

              (12) 
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where  and  are arbitrary constants and  is an error term. It is possible to solve for 

the K ideal point coordinates for the ith individual by substituting in Equation 11 and 

simplifying so that:  

              (13) 

where:  

 ,               (14) 

  ,               (15) 

and  

                    (16) 

Equation 13 is a re-parameterized version of the general Euclidean model 

previously defined in Equation 1. It illustrates the quadratic relationship that is assumed 

to operate between preference ratings and MDS stimulus coordinate values. The values of 

Ri and Bi can be estimated using a simple multiple regression technique. As an example, 

 can be regressed on the K coordinate locations for stimulus j, the K squared 

coordinate locations, and the K(K-1)/2 cross-products of coordinate locations as follows: 

        (17) 

The regression weights from Equation 17 can be used to complete matrices Ri and Bi. 

Specifically, the K values of b1k can be used to form the rows of column vector Bi, and 

the K values of b2k can be placed on the main diagonal of the square, symmetric matrix 

Ri.., The off-diagonal elements of Ri are then set to one-half of the corresponding b3kk’ 

estimates. Once Ri and Bi have been set to fixed values, it is then possible to solve for the 

ideal point coordinates of each subject using the following equation: 

.                     (18) 



 

21 

 

In Carroll’s (1972) paper, he mentions that the weighted Euclidean, simple 

Euclidean, and vector models are nested within the general Euclidean formula and can 

easily be obtained by following the different assumptions previously discussed for each 

model. For example, in the case of the weighted Euclidean model, the orthogonal 

transformation matrix Ti is constrained to be an identity matrix for each individual. 

Consequently, the Ri matrix is simply the Wi matrix mentioned in Equation 14. The 

simple Euclidean model is a special case of the weighted Euclidean model where each 

dimension is weighted the same amount. For this model, the weights on the diagonal 

matrix Wi are identical across dimensions, and, again, matrix Wi is equal to matrix Ri. 

However, in the solution for the vector model, Carroll explains that any quadratic terms 

included in the regression equations for the unfolding models are effectively set to zero, 

and he also removes the -1/2 term included Equation 18. Operationally, this amounts to 

setting Wi, and hence Ri, equal to a null matrix. Carroll then presents a linear regression 

equation to solve for vector coordinates: 

             (19) 

 Clearly, a solution for individual vector coordinates cannot be derived from Equation 18 

without some redefinition of terms. However, one can easily solve for either individual 

ideal point or vector coordinates using a slight modification of Carroll’s original formula: 

 ,            (20) 

where: 

Qi is a KxK diagonal matrix with elements equal to (-1/2)U on the main diagonal, 

U is a dummy variable that is equal to 0 in the case of a vector model and 1 when 

a solution for a  
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    Euclidean model is required, and 

Hi is set equal to an identity matrix in the case of a vector model, otherwise it is 

set to a null matrix.  

In the case of a vector model, Wi is null matrix and Hi is an identity matrix, as is 

. Additionally, Qi is equal to an identity matrix. If a solution to one of 

Carroll’s Euclidean models is desired, then Wi contains the appropriate weights, Hi is a 

null matrix, and Qi has elements equal to -1/2 on the main diagonal. When this alternative 

equation is used along with Carroll’s original definitions for Ti and Wi, one can easily 

derive individual coordinates for either a Euclidean or vector model with a single 

equation. 

2.4.2.2.2 Extending Carroll’s method to a hybrid approach 

Recall that Carroll’s original technique required that one of his four preference 

models must operate across all K dimensions from the MDS solution. In contrast, the 

hybrid approach described in this thesis explicitly allows for preference models to differ 

across dimensions. Solving for individual parameters in Yi that vary in nature (i.e., 

represent a vector coordinate or a Euclidean coordinate) across dimensions is easily 

accomplished using Equation 20 along with more general definitions of Qi and Hi. 

Specifically, let: 

Uk be a dummy variable that is equal to 0 if the coordinate on dimension k refers to a 

vector model coordinate and 1 if it refers to a Euclidean model coordinate, 

, and            (21) 
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 .             (22) 

 Note that the preceding definitions are equal to those following Equation 20 in the case 

of Carroll’s four original models. However, the nature of Wi is more complicated. For a 

vector model dimension, the corresponding diagonal element in Wi is equal to zero, 

whereas it is nonzero for a Euclidean model dimension. In the case of a hybrid model, 

matrix Ri is built from regression coefficients and any missing coefficients are treated as 

zero. In order to add Hi to Wi, it is necessary to decompose Ri into eigenvectors and 

eigenvalues so that: 

               (23) 

where: 

E is a KxK matrix of eigenvectors 

Λ is a KxK diagonal matrix of eigenvalues 

Following this decomposition, matrix Hi can be added to Wi as in Equation 20 and the 

individual coordinates for Yi can be calculated. By creating one equation that subsumes 

the four traditional models as well as any combination of hybrid models, the 

computational demands for calculating ideal point coordinates are streamlined and more 

efficient. 
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CHAPTER 3 

RESULTS 

 

 

 

3.1 Multidimensional Scaling 

3.1.1 Analysis of Pairwise Similarity Judgments 

Out of 2001 subject responses, 1357 reliable subject responses met the criterion (r 

> 0.6) to be used in this analysis. The initial analysis of pairwise data resulted in the 

normalized raw stress values for configurations of up to six dimensions. The plot of the 

normalized raw stress index from each dimension suggests a point of diminishing returns 

around the third dimension (see Figure 1). This suggests that a three-dimensional solution 

optimally minimizes normalized raw stress and adding more dimensions would not 

substantially decrease the raw stress value. The normalized raw stress value for the third 

dimension was equal to 0.00779 (see Table 1). There is no standard cut off for 

normalized raw stress; however, it is notable that minimized Stress-I values of less than 

.1 are traditionally acceptable. The Stress-I value, though not minimized by PROXCAL, 

dropped below .1 to 0.08828. It is interesting to note that there appears to be a local 

maximum on the sixth dimension, as the normalized raw stress value increases by 

approximately 0.0004. A secondary PROXCAL analysis was run using a Torgerson 

starting configuration. This configuration eliminated the presence of the local maximum 

yielded from the Simplex configuration and also suggested that a three-dimensional 

solution was appropriate for these data. 
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Table 1 

MDS Stress Values for Six Dimensions  

Number of Dimensions Normalized Raw Stress Stress-I 

1 0.23198 0.48164 

2 0.04982 0.22322 

3 0.00779 0.08828 

4 0.00370 0.06081 

5 0.00141 0.03750 

6 0.00187 0.04327 

 

 

 

 

Figure 1. Normalized raw stress measures corresponding to the dimensionality of MDS 

configurations 
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Another analysis using PROXCAL was completed to extract only a three-

dimensional solution using a Simplex starting configuration. This analysis yielded a 

normalized raw stress value of 0.00621 and a Stress-I value of 0.07883. These values 

differ from the initial analysis because PROXCAL begins estimating coordinates for the 

configuration with the highest dimensionality and then uses these estimates as initial 

values for configurations with a successively smaller number of dimensions. Therefore, 

the two analyses had differing starting values. In addition to the stress values, the plot of 

the transformed proximities by the distances yielded a linear pattern with small residuals, 

suggesting that this three-dimensional solution was a good fit for the data (see Figure 2).  

 

 

 

 

Figure 2. Transformed proximities vs. estimated distances 
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This analysis provided the final common space coordinates for the three-

dimensional emotion space. To further validate the configuration produced from Simplex 

starting values, a three-dimensional solution was extracted using Torgerson starting 

values. The coordinates yielded from this configuration were nearly identical to the 

configuration extracted using Simplex starting values. Therefore, the coordinates yielded 

from the Simplex configuration were used for this study. A Procrustes rotation 

(Schonemann & Carroll, 1970) of the first two dimensions of the solution was completed 

to better align the resulting MDS axes to those that are traditionally presented (i.e., 

valence, activation; Russell, 1980). This increased the interpretability of the 

configuration. The final rotated coordinates are listed in Table 2. Because a three 

dimensional map of the clusters of face stimuli appears convoluted and difficult to read 

(see Figure 3), three two-dimensional maps have been provided in Figures 4, 6, and 8 for 

ease of interpretation. These two-dimensional maps ignore one of the three coordinates in 

the three-dimensional solution.  

Following this, a total of eleven multiple linear regressions were performed using 

the three-dimensional MDS coordinates of each stimulus as the independent variables 

and the mean response of the attribute ratings for each stimulus as the dependent variable. 

The regression weights from each equation were normed to produce direction cosines for 

each attribute (see Table 3). As one proceeds in this direction through the space, stimuli 

along that direction will reflect more of the given attribute. These direction cosines were 

plotted as vectors overlaid on the MDS stimulus space in Figures 5, 7, and 9. 
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Table 2 

Final Coordinates for the MDS Solution 

Final Coordinates 

Face Dimension 

  1 2 3 

Angry1 -0.327 0.061 -0.707 

Angry2 -0.312 0.061 -0.718 

Angry3 -0.298 0.054 -0.738 

Calm1 0.449 -0.442 0.034 

Calm2 0.419 -0.464 0.022 

Calm3 0.376 -0.524 0.060 

Disgusted1 -0.606 0.041 -0.193 

Disgusted2 -0.590 0.128 -0.072 

Disgusted3 -0.519 0.243 -0.200 

Afraid1 -0.346 0.360 0.326 

Afraid2 -0.308 0.448 0.314 

Afraid3 -0.233 0.449 0.358 

Happy1 0.799 0.204 -0.163 

Happy2 0.796 0.165 -0.175 

Happy3 0.784 0.165 -0.135 

Neutral1 0.191 -0.577 0.096 

Neutral2 0.309 -0.560 0.055 

Neutral3 0.306 -0.550 0.066 

Sad1 -0.436 -0.360 0.364 

Sad2 -0.510 -0.374 0.317 

Sad3 -0.416 -0.388 0.388 

Surprised1 0.212 0.615 0.224 

Surprised2 0.125 0.615 0.246 

Surprised3 0.133 0.630 0.234 
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Figure 3. Three-dimensional MDS configuration with stimulus clusters labeled 

 

 

 

happy 
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Table 3 

Attribute Vectors from the MDS Solution 

Attribute Vector Length R2 X-coordinate Y-coordinate Z-coordinate 

Happy 0.955 0.872 0.978 0.208 -0.017 

Sad 0.963 0.855 -0.564 -0.657 0.500 

Afraid 0.824 0.716 -0.424 0.616 0.664 

Surprised 0.925 0.851 0.025 0.914 0.406 

Angry 0.946 0.885 -0.484 -0.107 -0.869 

Disgusted 0.729 0.557 -0.954 0.235 -0.186 

Calm 0.901 0.894 0.606 -0.781 0.155 

Submissive 0.960 0.922 0.001 -0.580 0.815 

Dominant 0.942 0.896 0.257 -0.185 -0.949 

Energetic 0.985 0.882 0.565 0.758 -0.325 

Bored 0.857 0.774 0.260 -0.941 0.218 

 

 

 

3.1.2 Interpretation of MDS Solution 

The plot of dimensions 1 and 2 (Figure 4) reveals a configuration with dimensions 

of positive-negative affect and degree of arousal. This plot strongly resembles Russell’s 

emotion circumplex (1980). Russell’s emotion circumplex (1980) displays all emotions 

in the shape of a circle. More positive emotions (e.g., happy and calm) are located farther 

on the positive end of the X-axis and negative emotions (e.g., disgusted, angry, sad, etc.) 

are found farther on the negative end of the X-axis. In addition, more aroused emotions 

(e.g., surprise) follow the positive end of the Y-axis and less aroused emotions (e.g., 

bored) follow the negative end of this axis. In this plot, angry was found to be closer to 

the center of this circle (Figure 4). However, this is due to the fact that the solution is 

multidimensional, and the cluster of angry stimuli is better represented as protruding 

outward in a sphere-like shape due to the third dimension. 

Figure 5 shows the eleven attribute vectors mapped onto the plot of dimensions 1 

and 2. The vectors for emotions with positive and negative valence very clearly point in 
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different directions on the horizontal axis. It is also of note that attributes that would be 

described as “fast” (i.e., energetic and surprised) point in one direction on the vertical 

axis, while “slow” attributes point in the opposite direction. The vectors for the attributes 

angry, submissive, and dominant are relatively short in this configuration, implying that 

the first two dimensions of the MDS solution do not account for these attributes as well 

as the others. 

The dimensions of positive-negative affect and submissiveness are portrayed in 

the plot of dimensions 1 and 3 (Figure 6). Once again, we see dimension 1 teasing apart 

valence. Most of the clusters of emotion faces are gathered towards the center of the axis 

on dimension 3 with the exception of angry, which is on the extreme end of the axis. The 

attribute vectors for dominant and submissive help define the axes on the third 

dimension. Although they do not perfectly align on the axis, these attribute vectors do 

appear to be what is defining this dimension (Figure 7). Moreover, it is clear that, among 

other things, this dimension distinguishes between anger and fear. 

The plot of dimensions 2 and 3 reveal the dimensions of degree of arousal and 

submissiveness (Figure 8). Once again, dimension 3 distinguishes anger and fear. 

Dominant and submissive attribute vectors are still on opposing sides of the axis, and in 

this configuration angry and afraid are also on opposing sides of this third dimension 

(Figure 9). On the horizontal axis, which represents degree of arousal (i.e., activation), it 

can be seen that angry and afraid stimuli differ in their levels of activation. Afraid 

appears to be a more active emotion relative to anger. Interestingly, it can be noted that 

the dominant and submissive vectors which also define the third dimension differ in 

levels of activation. Dominant and angry vectors are in similar locations on the activation 
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Figure 4. Plot of stimulus coordinates for dimension 1 (valence) and dimension 2 

(activation) of the three-dimensional configuration with stimulus clusters labeled  

 

 
 

 
Figure 5. Plot of stimulus coordinates for dimension 1 (valence) and dimension 2 

(activation) of the three-dimensional configuration with labeled attribute vectors 
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Figure 6. Plot of stimulus coordinates for dimension 1 (valence) and dimension 3 

(submissiveness) of the three-dimensional configuration with stimulus clusters labeled 

 

 
 

 
Figure 7. Plot of stimulus coordinates for dimension 1 (valence) and dimension 3 

(submissiveness) of the three-dimensional configuration with labeled attribute vectors 
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Figure 8. Plot of stimulus coordinates for dimension 2 (activation) and dimension 3 

(submissiveness) of the three-dimensional configuration with stimulus clusters labeled 

 

 
 

 
Figure 9. Plot of stimulus coordinates for dimension 2 (activation) and dimension 3 

(submissiveness) of the three-dimensional configuration with labeled attribute vectors 
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dimension, whereas submissive and afraid vectors are on two different sides of the 

dimension. Whereas afraid appears to be a more active emotion, the submissive vector 

seems to characterize less active emotions. These four vectors, along with the surprised 

and sad attribute vectors, are primarily defining the vertical axes, whereas the remaining 

attribute vectors are more concentrated along the horizontal axis. 

3.2 External Multidimensional Unfolding 

A total of 1564 participants provided reliable (r > 0.6) responses to the self-

similarity portion of the study. These responses were analyzed using both Carroll’s four 

proposed models as well as backwards elimination (stepwise) regression variants of those 

models. Cases in which the resulting model was not one of Carroll’s four models (as 

some of the terms were missing) will be referred to as hybrid models.  

3.2.1 Non-Significant Parameters 

The number of non-significant parameters removed using the backwards 

elimination regression (BER) approach was compared to the number of non-significant 

parameters retained in the traditional model approach. These results are presented in 

Table 4. By removing parameters that do not account for a significant amount of 

variance, it is possible to see previously non-significant parameters become significant 

due to less multicollinearity and larger error degrees of freedom within a resulting model. 

For example, when all subjects were fit with a traditional general Euclidean model, there 

was a total of 1109 models in which all three interaction terms were not significant. By 

implementing the BER approach, this number dramatically dropped to 421 non-

significant interaction terms. The BER approach often produced more significant  
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Table 4 

Frequency of Significant Parameters for Traditional EMDU and BER EMDU 

Approaches 

Model Comparison All  

Non-

significant 

Some 

Significant 

All 

Significant 

Traditional General Euclidean Model 

     Location Parameters 643 862 59 

     Weight Parameters 1287 192 85 

     Interaction Parameters 1109 428 27 

Traditional Weighted Euclidean Model 

     Location Parameters 117 1265 182 

     Weight Parameters 678 540 346 

Traditional Simple Euclidean Model 

     Location Parameters 55 1226 283 

     Weight Parameter 911 n/a 653 

Traditional Vector Model 

     Location Parameters 60 1381 123 

BER General Euclidean Model 

     Location Parameters 104 1162 298 

     Weight Parameters 362 934 268 

     Interaction Parameters 421 1024 119 

BER Weighted Euclidean Model 

     Location Parameters 60 1249 255 

     Weight Parameters 328 808 428 

BER Simple Euclidean Model 

     Location Parameters 50 1217 297 

     Weight Parameters 875 n/a 689 

BER Vector Model 

     Location Parameters 63 1378 123 

 



 

37 

 

parameters by allowing non-significant ones to drop out of the model, and this occurred 

more often with highly parameterized models from Carroll’s hierarchy.  

3.2.2 Anti-Ideal Points 

A large proportion of anti-ideal points were discovered in earlier research on this 

self-similarity data. Additionally, several of these anti-ideal points had non-significant 

weight parameters, which unnecessarily complicated the interpretation of the model 

coordinates. By ensuring that all parameters were significant and allowing for a hybrid 

model solution, the number of anti-ideal points greatly decreased. The results presented 

in Table 5 show that the overall number of both ideal points and anti-ideal points 

decreased across all three unfolding models as a result of the BER approach, and this 

resulted in a larger number of vector models on a given dimension.  

3.2.3 Model Selection 

An optimal BER model was selected for each individual by identifying the model with 

the minimum BIC value. In the case of ties, the most parsimonious model was selected as 

the optimal model. For example, if an individual had the same BIC value for the simple 

Euclidean starting model and the vector starting model, the vector model would be 

selected over the simple Euclidean model. It was discovered that approximately 7% of 

the individuals included in this analysis yielded results that suggest the self-similarity 

between a given emotion stimulus and their reported emotion is equally well represented 

by a BER approach to any of Carroll’s four models. These BER models all resulted in 

identical vector model solutions, and consequently, the BIC values were identical. 

Identical solutions across all four starting models is ideal from a consistency standpoint, 

though this can only occur when the resulting solution is a vector model.
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Table 5 

Comparison of the Frequency of Ideal Points and Anti-Ideal Points for Traditional EMDU and BER EMDU Approaches 

      Traditional BER 

Model Dimension Weight Frequency Percent Frequency Percent 

General Valence Ideal Point 840 53.71% 391 25.00% 

    Anti-Ideal Point 724 46.29% 418 26.73% 

    Missing n/a n/a 755 48.27% 

  Activation Ideal Point 879 56.20% 322 20.59% 

    Anti-Ideal Point 685 43.80% 243 15.54% 

    Missing n/a n/a 322 63.87% 

  Submissiveness Ideal Point 888 56.78% 525 17.39% 

    Anti-Ideal Point 676 43.22% 272 49.04% 

    Missing n/a n/a 767 33.57% 

Weighted Valence Ideal Point 844 53.96% 432 27.62% 

    Anti-Ideal Point 720 46.04% 442 28.26% 

    Missing n/a n/a 690 44.12% 

  Activation Ideal Point 985 62.98% 516 32.99% 

    Anti-Ideal Point 579 37.02% 269 17.20% 

    Missing n/a n/a 779 49.81% 

  Submissiveness Ideal Point 939 60.04% 527 33.70% 

    Anti-Ideal Point 625 39.96% 277 17.71% 

    Missing n/a n/a 760 48.59% 

Simple Sum Ideal Point 769 49.17% 380 24.30% 

    Anti-Ideal Point 795 50.83% 309 19.76% 

    Missing n/a n/a 875 55.95% 
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Optimal models were crosstabulated in Table 6 with respect to the starting BER model 

and the resulting model. Models with interaction terms were referred to as general 

Euclidean models or as hybrid general Euclidean models depending on whether all of 

Carroll’s original terms were present in the resulting equation. Any models that did not 

have interaction terms but had unique dimensional weight terms were referred to as either 

weighted Euclidean models or as hybrid weighted Euclidean models. Models that 

retained the summed dimensional weight term were referred to as simple Euclidean 

models or hybrid simple Euclidean models, and any other models which only retained 

location parameters were referred to as vector Euclidean models or hybrid vector 

Euclidean models. In most cases, the chosen BER model for an individual determined its 

resulting model classification. For example, many individuals whose self-similarity 

judgments were classified as fitting best with the BER general Euclidean starting model 

yielded solutions that included at least one interaction parameter. However, nine of the 

856 individuals fit best with this BER model did not yield solutions including interaction 

parameters; although these starting models may have been the general Euclidean model, 

the resulting models were classified as hybrid weighted Euclidean models. 

The results presented in Table 6 also further illustrate the importance of 

implementing a hybrid EMDU approach. Out of a sample of 1564, only 59 sets of self-

similarity judgments resulted in a traditional EMDU model solution. Every other 

resulting model was a hybrid variation that cannot be obtained using traditional 

techniques. However, it is of note that 15 out of 205 individuals had empty solutions 

where the only remaining parameter was the intercept. While these resulting models are 

not explicitly beyond the definition of what qualifies a hybrid vector model, these  



 

 

 

Table 6 

Starting BER Model against Resulting Model Classification 
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General Euclidean 6 841 0 9 0 0 0 0 0 856 

Weighted Euclidean 0 0 12 393 0 0 0 0 0 405 

Simple Euclidean 0 0 0 0 24 74 0 0 0 98 

Vector 0 0 0 0 0 0 17 173 15 205 

Total 6 841 12 402 24 74 17 173 15 1564 
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individuals’ preferences were located at the origin for all three dimensions as no one 

dimension was salient for that individual. It is tenable these 15 individuals reported self-

similarity judgments that cannot be represented using EMDU techniques or that they 

made a preponderance of  irrelevant  judgments that passed the consistency check. To 

conclude, a substantially high number of starting BER models resulted in hybrid models 

as opposed to traditional EMDU models. Further, the resulting models obtained using this 

BER approach were typically hybrid variants of the starting BER model as opposed to 

variations of a nested model. These results not only demonstrate the value of a hybrid 

model approach, but also the importance of an individual-based model selection process.   

3.2.4 Assessment of BER/EMDU Solution 

Following the selection of an optimal BER model for each individual, the 

resulting optimal models were used to place respondents on a joint map of persons and 

stimuli. Coordinates for placement were derived with Equation 20. Figures 10-15 show 

the resulting map two dimensions at a time using all possible pairs of axes (in order to 

avoid portraying a 3-dimensional configuration on a 2-D substrate). Figures 10-12 show a 

cropped view of the solution that eliminates individuals with coordinate values 

substantially beyond the stimulus range of the MDS solution. Figures 13-15 portray all 

coordinates, including those cropped from the previous three plots. These plots depict 

whether or not a certain point corresponds to an ideal point, an anti-ideal point, or the 

head of a vector along a given dimension. As there are a total of nine different types of 

coordinates for each two-dimensional plot, coordinates have been assigned a particular 

shape and color to distinguish them from one another. The shape of a coordinate 

represents the type of point along the vertical dimension and the color of a coordinate 



 

 

 

 
Figure 10. Plot of stimulus coordinates for dimension 1 (valence) and dimension 2 (activation) of the three-dimensional configuration 

with jointly mapped individual preferences (Note: the coordinate color in the legend corresponds to the valence dimension. The 

coordinate shape corresponds to the activation dimension)
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Figure 11. Plot of stimulus coordinates for dimension 1 (valence) and dimension 3 (submissiveness) of the three-dimensional 

configuration with jointly mapped individual preferences (Note: the coordinate color in the legend corresponds to the valence 

dimension. The coordinate shape corresponds to the submissiveness dimension) 



 

 

 

 
Figure 12. Plot of stimulus coordinates for dimension 2 (activation) and dimension 3 (submissiveness) of the three-dimensional 

configuration with jointly mapped individual preferences (Note: the coordinate color in the legend corresponds to the activation 

dimension. The coordinate shape corresponds to the submissiveness dimension) 
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Figure 13. Plot of all calculated individual preferences for dimension 1 (valence) and dimension 2 (activation) (Note: the coordinate 

color in the legend corresponds to the valence dimension. The coordinate shape corresponds to the activation dimension) 
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Figure 14. Plot of all calculated individual preferences for dimension 1 (valence) and dimension 3 (submissiveness) (Note: the 

coordinate color in the legend corresponds to the valence dimension. The coordinate shape corresponds to the submissiveness 

dimension) 
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Figure 15. Plot of all calculated individual preferences for dimension 1 (valence) and dimension 3 (submissiveness) (Note: the 

coordinate color in the legend corresponds to the activation dimension. The coordinate shape corresponds to the submissiveness 

dimension) 
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represents the type of point along the horizontal dimension for a given plot. Specifically, 

an ideal point, an anti-ideal point, or a vector coordinate on the vertical dimension is 

represented by a square, a circle or a triangle, respectively. Correspondingly, an ideal 

point, an anti-ideal point, or a vector coordinate on the horizontal dimension is portrayed 

by a symbol color of violet, blue or orange. For example, a coordinate that is an anti-ideal 

point on the horizontal dimension and an ideal point on the vertical dimension is 

represented by a blue square. A coordinate that is an anti-ideal point on the horizontal 

dimension and the head of a vector on the vertical dimension is represented by a blue 

triangle. 

The different coordinate combinations presented in the plots each uniquely 

represent an individual’s reported emotion, and more importantly, how they are expected 

to respond to stimuli throughout the joint space. A point consisting of ideal point 

coordinates on both dimensions, for example, may be visually depicted as a two-

dimensional parabolic shape with a maximum at the point represented by the two 

coordinates. This point best represents an individual’s reported emotion. The self-

similarity of an individual to a point in the emotion space decreases in any direction away 

from this point. In contrast, a point consisting of two anti-ideal point coordinates is 

represented by a two-dimensional parabolic shape with a minimum, where emotion self-

similarity increases in any direction away from the identified point. If a point consists of 

an ideal point coordinate on one dimension and an anti-ideal point coordinate on the 

other, then the self-similarity surface on the two dimensions takes the shape of a saddle 

point, where self-similarity contains a maximum on one dimension, but a minimum on 

the other. Vector/vector coordinate combinations represent the magnitude of an 
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individual’s emotion self-similarity in a given direction in the emotion space. Self-

similarity is represented by a vector emanating from the origin of the space in the 

direction of a given point. The further one travels along the vector the more accurately 

one represents an individual’s reported emotion. 

One potential limitation of this hybrid model approach is the difficulty of 

interpreting the final two coordinate combinations: ideal/vector and anti-ideal/vector 

points. In instances where there is an anti-ideal point coordinate or an ideal point 

coordinate on one dimension and a vector coordinate on another, it becomes cumbersome 

to illustrate these coordinates and to interpret these points. Ideal/vector points are best 

described visually as an “ideal line” projecting through the space from one of the 

coordinate axes. An “ideal line” is represented by a parabolic shape with a maximum 

traveling through the space in the direction of the vector coordinate. The paraboloid tilts 

upwards in the direction of the vector such that preference increases as one travels along 

a given dimension. For example, the individual represented by a violet triangle point at 

approximately (0.30, -0.55) in Figure 10 (Valence by Activation) has an ideal coordinate 

along the valence dimension. This individual may have been reporting an emotion with 

moderately positive valence. Along the activation dimension, the individual’s reported 

emotion self-similarity has been modeled with a vector. This implies that this individual’s 

reported emotion is better described the further one travels down a vector towards less 

active emotions. Therefore, it may be concluded that this individual was reporting an 

emotion similar to neutral or calm. The vector that extends to this point on the second 

dimension would emanate from approximately 0.30 on the valence axis, as opposed to 

the origin, which is seen in traditional EMDU, as self-similarity on the valence axis is 
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defined by an ideal point coordinate. It should be emphasized that this example does not 

include the third dimension. To truly interpret an individual’s emotion in a three-

dimensional solution, his or her location on the third dimension would need to be 

ascertained and interpreted along with the other two dimensions.  

Similarly, anti-ideal/vector points are best described visually as an “anti-ideal 

line” projecting through the space. An “anti-ideal line” is represented by a parabolic 

shape with a minimum (with either end of the shape best representing an individual’s 

highest self-similarity on that given dimension) traveling through the space towards the 

vector coordinate. For example, the individual with an orange circle point on the Valence 

by Activation plot (Figure 10) around (-0.4, 0.05) has a vector along the valence 

dimension and an anti-ideal point along the activation dimension. Given only these two 

dimensions, one may interpret that this individual was reporting a negative emotion (e.g.., 

angry, disgust, sad) and that this individual’s reported emotion is best represented by any 

place in the stimulus range away from emotions that are neutral along the activation 

dimension. From these coordinates, it may be ascertained that this individual was 

reporting an emotion similar to either afraid or sad. Though interpretations are more 

difficult in these situations, a BER model approach still offers the possibility of a more 

parsimonious representation of an individual’s reported emotion. 

In Figures 13-15, there are a large number of points that fall beyond the range of 

emotion stimuli. It has been proposed that ideal points falling outside the range of stimuli 

are better modeled using a vector model (Coombs, 1950). With this in mind, it is 

advantageous for this hybrid model approach to minimize the total number of undesirable 

ideal points and anti-ideal points falling outside of the stimulus range. As can be seen 
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across the figures, many of the coordinates outside the range of emotion stimuli are 

vector coordinates (represented by orange triangles). Specifically, the number of outlying 

ideal point or anti-ideal point coordinates on any dimension is minimal, with 105 

coordinates falling out of the range of stimuli for the valence dimension (approximately -

0.7 to 0.8), 42 falling out of the range of stimuli for the activation dimension 

(approximately -0.6 to 0.7), and 122 falling out of the range of stimuli for the 

submissiveness dimension (approximately -0.8 to 0.4). This is a clear improvement over 

the number of ideal point or anti-ideal point coordinates falling outside of the stimulus 

range when using Carroll’s traditional EMDU approach, where 232 coordinates were out 

of the stimulus range for the valence dimension, 165 were out of the stimulus range for 

the activation dimension, and 213 were out of the stimulus range for the submissiveness 

dimension. Although the current methods did not perfectly eliminate the appearance of 

these extreme anti-ideal points or ideal points, this improvement over traditional methods 

suggests that the hybrid BER approach is a superior alternative to minimizing these 

undesirable anti-ideal and ideal points in the extreme regions of the configuration. 

Figures 10-12 show several points that fall on the coordinate axes. If a point falls on an 

axis, then an individual’s emotion self-similarity falls at that point if both coordinates are 

ideal point coordinates, but if both coordinates are vector coordinates, an individual’s 

preference falls along that dimension’s axis and the opposing dimension is not salient for 

that individual. In vector/ideal or vector/anti-ideal cases where the vector coordinate falls 

at zero on a given dimension it is not possible to draw a vector to illustrate an 

individual’s reported emotion, as the vector both starts and stops at that point. While an 

individual’s emotion self-similarity can be represented with an ideal point on one 
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dimension, preference neither increases nor decreases regardless of the direction traveled 

along the other dimension. In instances where there are vector coordinates on both 

dimensions and one vector coordinate falls along one of the coordinate axes, a vector 

may be drawn from the origin to this point such that emotion self-similarity increases the 

farther one travels along the axis. In both cases it may be concluded that one dimension is 

not salient for an individual.  

3.2.4.1 Trends in the BER Solution 

This BER/EMDU approach resulted in trends in the types of coordinates that 

appear across the two-dimensional plots. For the Valence by Activation plot (Figure 10), 

one can see the prevalence of a large cluster of violet square points (corresponding to 

ideal point coordinates for both dimensions) in the fourth quadrant of the plot. This may 

suggest that it is easier for individuals to relate to a more positive, though less active 

emotion stimulus (i.e., bored or calm) than it is the other emotion stimuli in the plot. The 

anti-ideal points on both dimensions that linger in the center of the plot do not offer much 

useful information to the researcher as to what emotion an individual reported feeling, as 

one could theoretically go in any direction from these anti-ideal points. It is tenable that 

in a study with more stimuli featuring a larger range of emotions these individuals would 

rate their emotions as being similar to a particular group of stimuli. It is also notable that 

there are a large number of triangle-shaped coordinates around and outside of the range 

of emotion stimuli and relatively few other shapes in these areas. This is anticipated, as 

this implies that these points include vector coordinates for at least one dimension. 

Additionally, though there is a clear presence of blue triangle points (corresponding to an 

anti-ideal point coordinate on the valence dimension and a vector coordinate on the 
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activation dimension) across the plot, it appears as though many of these points fall on 

the valence axis on the positive end of the valence dimension. The simplest interpretation 

of these points is that many individuals reported feeling “anything but” emotions with 

positive valence (such as surprised, happy, or calm) and different levels of activation in 

the stimuli were not salient to these individuals based on their self-similarity judgments. 

The trends prevalent in the Valence by Activation plot do not hold for the Valence 

by Submissiveness plot (Figure 11). Here, there are different types of clusters that appear 

in the fourth quadrant of the plot. The fourth quadrant is filled with a large number of 

blue circle points (corresponding to anti-ideal point coordinates for both dimensions) and 

violet square points (corresponding to ideal point coordinates for both dimensions), with 

a limited number of vector coordinates inside the stimulus range in this quadrant. It is 

possible that a large number of the anti-ideal points prevalent on the valence axis in 

Figure 10 are teased apart by the submissiveness dimension in Figure 11, which may 

explain the prevalence of blue circle coordinates in the fourth quadrant of the plot. In this 

case, individuals with these anti-ideal points were frequently reporting negative, 

submissive emotions. Interestingly, the largest number of violet square (ideal/ideal) 

points appears to pass through the second and the fourth quadrant of the plot in a 

somewhat decreasing pattern from left to right. This may relate to the shape of the 

stimulus space in this plot which seems to follow a similar pattern. Additionally, similar 

to Figure 10, there appears to be a large number of vector coordinates around and outside 

the range of emotion stimuli; however, there are more instances in this plot where anti-

ideal and ideal point coordinates fall outside the range of stimuli relative to Figure 10. 

The Activation by Submissiveness plot (Figure 12) does not appear to show explicit 

clusters of points as clearly as the previous two plots; nonetheless, it should be noted that 
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the largest amount of ideal-ideal points appears to fall to the left of the origin. This is, 

perhaps, the most interesting trend prevalent across the plots, as these ideal points are 

falling approximately in the center of the stimulus space (to the left of the origin in this 

plot) making them difficult to interpret. It is tenable that in a three-dimensional plot these 

coordinates would show more of a spread throughout the space. Also, the largest number 

of anti-ideal point coordinates fall in the fourth quadrant around the “disgusted” and 

“happy” emotion stimuli. Without knowing the valence of these individuals’ reported 

emotions, the interpretation of these coordinates becomes difficult. A rotatable, three-

dimensional plot of these stimuli would assist in the ease of interpretation of points in the 

space, particularly in these instances.  
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CHAPTER 4 

DISCUSSION 

 

 

 

This thesis has proposed a new method to conduct EMDU that 1) provides a more 

parsimonious fit for preference or self-similarity judgments, 2) minimizes the number of 

anti-ideal points that typically arise from EMDU models, and 3) guarantees that all model 

terms are statistically significant, which leads to stronger interpretations of the solutions. 

The foundations for the methodology of this study were grounded in the idea that there 

may be a few interpretable anti-ideal points in any EMDU solution for an emotion space, 

but they should account for a statistically significant amount of variation in the 

preference responses. The hybrid models that may emerge from the BER technique give 

researchers additional flexibility in mapping preferences by allowing alternative models 

in Carroll’s hierarchy to represent each dimension. The flexibility proposed by this BER 

model approach can provide a more parsimonious fit of preference (or self-similarity) 

data relative to traditional models, and can reduce the number of extreme ideal points that 

may emerge when preferences are primarily cumulative. The BER model approach to 

Carroll’s original models reduced the number of anti-ideal points by approximately 20-

25% by allowing these points to become vectors in the group space. 

This technique is not without its flaws, however. One, it is not possible to include 

the simple Euclidean model in the starting general Euclidean or weighted Euclidean 

models as the simple Euclidean model contains a summed weight parameter not included 

in the parameterizations of the other models. If this parameter was included in the general 

and weighted Euclidean models, this method would be capable of better representing 
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preferences or self-similarity than the current technique. This is theoretically feasible 

with a re-parameterization of the general Euclidean and weighted Euclidean models. For 

example, for a three-dimensional solution it may be feasible to include the average of the 

X, Y, and Z weights as a predictor along with the Y weight and Z weight such that all 

three individual weights as well as the sum weight can be mathematically extracted from 

the resulting model through an accumulation of the regression terms. For example, b1*(X 

+ Y + Z) + b2*Y + b3*Z = b1*X + (b1 + b2)*Y + (b1 + b3)*Z. 

Although stepwise regression is useful for exploratory analyses, it is not preferred 

in quantitative research in which hypothesis tests are sought due to its lack of Type I error 

rate control. The future development of this hybrid model method will rely on the 

exploration of other techniques to achieve similar results. Though this analysis has 

demonstrated the benefits of utilizing a hybrid approach, the techniques employed should 

be refined as opportunities to apply new techniques to this method become available. For 

example, the general monotone model (GeMM) model developed by Dougherty and 

Thomas (2012) serves as an alternative to stepwise regression by utilizing a genetic 

algorithm to model data that are either monotonic or linear. 

One area for future research is to investigate an internal multidimensional 

unfolding model that uses only the self-similarity responses to jointly map both stimuli 

and individuals. Such models have been difficult to use in the traditional MDU contexts 

because of solutions that pervasively degenerate. However, an MDU model can be 

formed in the context of item response theory, and the additional information provided by 

the inherent probability function may be enough to avoid degenerate solutions. An 

example of such an approach is the Multidimensional Generalized Graded Unfolding 
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Model (MGGUM) developed by Roberts and Shim (2010). Internal models such as the 

MGGUM would drastically reduce the experimental effort in that paired comparison data 

would not be required. Furthermore, the model parameters do not include subject-level 

weights, so the resulting solution would be free of anti-ideal points.  

It may also be interesting to explore the emotion circumplex with other EMDU 

models that allow for the possibility of multiple ideal points. Srinivasan and Shocker 

(1973) suggested a multiple ideal point model in which weight parameters are restricted 

to be positive. They hypothesized that anti-ideal points may be the unintended result of 

the preference judgments that are determined by more than one ideal point for a given 

individual. The model can account for multiple ideal points by completely eliminating the 

possibility of anti-ideal points. Such a solution might be expected from some individuals 

when responding to emotional stimuli. For example, it is easy to think of an individual 

who is both happy and calm, although the positions associated with these two emotions 

are quite distinct on the circumplex. 

One of the potential values of this study is that it will open up discussion on 

EMDU and ideal points and bring to light questions about the influence of statistically 

non-significant model parameters that have not previously been mentioned in the 

psychometric literature. Hybrid “unfolding” models allow researchers to model 

preferences in a more tailored fashion in which a single individual can respond to 

stimulus dimensions in a less consistent manner than the all or none models that Carroll 

(1972) proposed. Modeling preferences using stepwise methods that optimally represent 

an individual’s preferences in a multidimensional space is a straightforward means to 

achieve these ends. 
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