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Abstract

We describe a geometric method for formulating planar curve evolution equations which are invariant
under certain transformation group. The approach is based on concepts from the classical theory of
differential invariants. The flows we obtain are geometric analogues of the classical heat equation,
and can be used to define invariant scale-spaces. We give a "high-level" general procedure for the
construction of these flows. Examples are presented for viewing transformations.

1 Introduction
Curve evolution theory has recently become a major topic of research, and indeed has appeared in such
diverse fields as differential geometry [13, 14, 21, 25], parabolic equations theory [3], numerical analysis
[19], computer vision [16, 17, 23], viscosity solutions [7, 8, 11}, and image processing [2, 24]. In particular,
evolution equations which are geometric non-linear versions of the classical heat equation have received
much attention, since these equations have both theoretical and practical importance.

In what follows, we describe a "high-level" general procedure for obtaining invariant geometric heat
fi ows, and related invariant evolution equations. The approach is based on concepts from the classical
theory of differential invariants. The obtained flows can be used for the definition of invariant geometric
multiscale representation of planar shapes, from which we may derive invariant hierarchical shape repre-
sentations (see [1, 17, 23]). As examples, we describe the corresponding flows for the Eucidean and affine
groups. We show that the theory holds for any Lie group as well. For details see [21, 22, 23, 25].

2 Invariant Flows: A General Approach
In this section, a general approach for formulating invariant flows is described. Hence, given a certain
transformation (Lie) group £, we show how to obtain the corresponding invariant geometric heat flow.
We also show how to formulate this flow just in terms of Eudidean parameters such as the Eudidean
curvature. This formulation permits us to employ already existing results and techniques for the analysis
of such flows.

This paper is a short version of the work presented in [25].
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2.1 Differential Invariants
We present now basic concepts of differential geometry and invariant theory which are necessary in the
sequel.

Let C : 51 , R2 denote a (parametrized) closed plane curve. We take p to be the plane curve
parameter. We assume throughout this paper that all of our mappings are sufficiently smooth, so that all
the relevant derivatives may be defined. We also assume that our curves are embedded, and so have no
self-intersections. C can be written in Cartesian coordinates as C(p) = [x(p), ()]T, where x(.) and y(.)
are maps from S1 to R.

Next recall that an invariant descriptor [9] is a property of an object, which does not change when
the object undergoes certain transformations. More precisely, a quantity Q is called an invariant of a Lie
group C if whenever Q transforms into Q by any transformation L E £, we obtain Q = OQ , where 0 is a
function of L alone. If 0 1 for all L E £, Q is called an absolute invariant [9]. What we call "invariant"
here is sometimes referred to in the literature as "relative invariant." (For more detailed and rigorous
discussions, see [9, 15].)

A special class of invariants is given by the differential invariants, which are based only on local
information. The theory of differential invariants is classical and goes back at least to the work of Gauss
on Eucidean geometry. The texts of Wilczynski [28] and Blaschke [4] contain extensive treatments of
projective and affine invariants respectively. These invariants were found to be very useful for invariant
shape representation and recognition under partial occlusions [6, 12].

In order to separate the geometric concept of a plane curve from its parametric description, it is useful
to consider the image (or trace) of C(p), denoted by Img[C(p)]. Therefore, if the curve C(p) is parametrized
by a new parameter w such that w = w(p), > 0, we obtain

Img{C(p)] = Img[C(w)].

In general, the parametrization gives the "velocity" of the trajectory. Given a transformation group £,
the curve can be parametrized using what is called the group arc-length. This parametrization, which is
an invariant of the group, is useful for defining differential invariant descriptors [15]. In order to perform
this re-parametrization, the group metric is defined. This group metric, which we denote by g, must be a
differential invariant of the group. The group arc-length r is then obtained via the relation (after fixing
an arbitrary initial point)

r(p) := fg(e)d, (1)

and the re-parametrization is given by C o r. We have of course,

Img[C(p)] = img[C(r)].

For example, in the Eucidean case we have

9C
geuc :=fI — , (2)

and the Eucidean arc-length is given by

p 9C
v:=j IIIId.
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This parametrization is Eudidean invariant (since the norm is invariant), and implies that the curve C(s)
is traversed with constant velocity ((I II 1). For examples of other groups, see Section 4 and [15, 28].

Based on the group metric and arc-length, the group curvature x is computed. (Note that g, r, and
x can be computed using the Cartan method [15].) The group curvature, as a function of the arc-length,
is defined as the simplest non-trivial differential invariant of the group. General theorems [15] show the
exact number of derivatives involved in the curvature as a function of the number of group parameters.

For example, in the Eudidean case, since

OC

IIov Il_i.
we have that C,, I C,,, and the Eucidean curvature is defined as

K :=tI C II.

Ic is also the rate of change of the angle between the tangent to the curve and a fixed direction. The
corresponding invariants of the affine group will be presented below in Section 4.1.

2.2 Geometric Invariant Flow Formulation
We are now ready to describe the type of evolution equation that will be the main mathematical object
of study in this paper.

First let C(p, t) : S1 x [0, r) —+ R2 be a family of smooth curves, where p parametrizes the curve and t
the family. (In this case, we take p to be independent of t.) Assume that this family evolves according to
the following evolution equation:

( 8C(p,t) _ E12C(p,t)

, at — 0p2 ' (3)
I C(p,O)=Co(p),

which is the classical heat equation. IfC(p, t) = [x(p, t), y(p, t)]T, then [x(p, t), y(p, t)J satisfying (3) can also
be obtained by convolution of [xo(p), Yo(P)] with a Gaussian filter whose variance depends on t. Equation

(3) has been studied by the computer vision community, and is used for the definition of a linear scale-space

for planar shapes [29, 30].
Assume that we want to formulate an intrinsic geometric heat flow for plane curves which is invariant

under certain transformation group C. Let r denote the group arc-length. Then, the invariant geometric
heat flow is given by

I 0C(p,t) _ a2C(p,t)
4! 0t 8r2 '
t C(p,0)=Co(p).

If C acts linearly, then it is easy to see that since r is an invariant of the group, so is Cr,.. More precisely,
if L{.] represents a group transformation, and "" stands for the transformed curve (e.g., C = L[C]), then

C,.,. = OC, (5)

where 0 is a function of L[.]. C,.,. is called the group normal. If the group normal is an absolute invariant

(0 1 for all L{.] E £ in (5)), then C and C satisfy exactly the same flow (4), and the flow is absolutely
invariant in this sense. Otherwise, the velocity C,.,. in (4) is multiplied by a constant, depending only on
the specific L[.], making the flow relatively invariant. Of course, this doesn't change the basic geometry
of the flow.
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When i: acts nonlinearly, then the flow (4) is still geometrically invariant even though the parametriza-
tion may not be invariant [18, 25, 24]. This follows form the fact that the differential Dr with respect to
the group arc-length is a differential invariant of the group action in the sense of [18, 25, 24J. By change
of parametrization, such flows may be made equivariant as well [18, 25, 24]. Once again, this does not
change the basic geometry of the flow.

We have just formulated the invariant geometric heat flow in terms of concepts intrinsic to the group
itself, i.e., based on the group arc-length. For different reasons, which we will explain shortly, it is useful to
formulate the group velocity Cr,. hi terms of Eudidean notions such as the Eucidean normal and Eucidean
curvature. In order to do this, we need to calculate

< Crr,N>,
where R is the Eucidean unit (inward) normal, and < , . > is the standard inner product in R2. In this
way, we will be able to decompose the group normal C,.,. into its Eucidean unit normal N and Eudidean
unit tangential T components, and to re-write the flow (4) as

=a&+i3A7. (6)

In order to calculate a and /3, assume for the moment that the curve C is parametrized by the Eucidean
arc-length v. Then,

02c__ 1o2c gt9C
Or2 g2 0v2 g3 tv ' (7)

where g is the group metric defined in Section 2.1. (In this case, g is a function of v.) Now, using the
relations

cvv = icR,

we obtain

g
o=—, /3=-i. (8)

In general, g(v) in (8) is written as a function of ic and its derivatives (see Section 4).
The importance of the formulation (6) can be seen from the following:

Lemma 1 ([10]) Let /3 be a geometric quantity for a curve, i.e., afunction whose definition is independent
of a particular parametrization. Then a family of curves which evolves according to

= a+/3ft1
can be converted into the solution of

c =

for any continuous function a, by changing the space parametrization of the original solution. Since,@ is
a geometric function, /3 = 8 when the same point in the (geometric) curve is considered.

In particular, the above lemma shows that Img[C(p, t)] = Img[t(w,t)], where C(p, t) and (w, t) are
the solutions of
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ci =

and

Ct =

respectively. For proofs of the lemma, see {1O, 23].
In other words, Lemma 1 says that if the normal component of the velocity is a geometric function of the

curve, then Img[C] (which represents the "geometry" of the curve) is only affected by its normal component.
The tangential component affects only the parametrization, and not Img{C] (which is independent of the
parametrization by definition). Therefore, assuming that the normal component fiof 9 (the curve evolution
velocity) does not depend on the curve parametrization, we can consider the evolution equation

=/3R, (9)

where /3 =< i7, ., > , i.e., the projection of the velocity vector in the Eucidean normal direction. Since
Crr 5 a geometric quantity, equation (6) can be reduced to (9).

The formulation (4) gives a very intuitive formulation of the invariant geometric heat flow. On the
other hand, the formulation given by equation (6), together with (8), gives an Eudidean-type flow which
also allows us to simplify the flow using the result of Lemma 1. This type of analysis is crucial, since it
allows one to understand the partial differential equation underlying the flow and to study its essential
properties (such as short and long term existence, convergence, etc.). This will be a key technique when we
study affine invariant flows in Section 4. Finally, reduction of equation (4) to (9) allows one to numerically
implement the flow on computer. In fact, there is now available an efficient numerical algorithm due to
Osher and Sethian [19] to do this.

The flow given by (4) is non-linear, since the group arc-length r is a function of time. This flow gives the
invariant geometric heat-type flow of the group, and provides the invariant direction of the deformation.
More general invariant flows are obtained if the group curvature x is incorporated to the flow:

I C(p,t) _ pi \ a2C(p,t)' at — 'X) 8r2 10
I (P°)= 0(P),

where iji(.) is a given function. (We discuss the existence of possible solutions of (10) in [25].) Since the
group arc-length and group curvature are the basic invariants of the group transformations, it is natural
to formulate (10) as the most general geometric invariant flow.

Since we have expressed the flow (4) in terms of Eudidean properties (equations (6), (8)), we can
do the same for the general flow (10). All what we have to do is to express x as a function of K and it
derivatives. This is done by expressing the curve components x(p) and y(p) as a function of K, and then
computing x.

3 Euclidean Group
We now show how to use the general theory presented in previous section, for the computation of the
invariant heat flows corresponding to the Eudidean group. In the next section, we will discuss the affine
group.

A general Eucidean transformation in the plane is given by

X=RX+V,
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where X E R2 , R is a 2 x 2 rotation matrix, and V is a 2 x 1 translation vector. The Eucidean
transformations constitute a group, and give some of the basic shape deformations which appears in
computer vision applications.

We proceed to find, based on the above developed method, an Eucidean invariant geometric heat
equation. From (4), we obtain that the Euclidean geometric heat flow is given by

I ct=c, 11
1 C(p,O)=Co(p).

(Recall that v is the Eucidean arc-length.) The Eudidean metric is defined by equation (2), and if the
curve is already parametrized by arc-length, then of course geuc(v) E 1. Therefore, using equation (8) we
obtain

euc 0, f3euc = 1.

Then, the "Eucidean type" equation equivalent to (11) is (see equation (6))

. (12)

Equation (12) has a large research literature devoted to it. Gage and Hamilton [13] proved that any
smooth, embedded convex curve, converges to a round point when deforming according to it. Grayson
[14] proved that any non-convex embedded curve converges to a convex one. Hence, any simple curve
converges to a round point when evolving according to the Euclidean geometric heat equation. The flow
is also known as the Euclidean shortening flow, since the Eucidean perimeter shrinks as fast as possible
when the curve €tvolves according to (12) [14]. Equation (12) was also found to be very important for
image enhancement applications [2, 24].

Euclidean Constant Motion

There is a second flow which has been found to be very useful is computer vision applications, and especially
for shape theory [5, 17]. Assume now that in (10), (i) = (we take r v here). Then, combining
equations (10) and (12), we obtain the Euclidean constant motion flow:

J Ce—N,
13

C(p,0)=Co.

This classical flow models the Hüygens principle. As is well-known, an initial smooth curve can develop
singularities (shocks) when evolving according to (13). The question is how to continue the evolution
after the singularities appear. The natural way is to choose the solution which agrees with the Hüygens
principle [26]. Tithe front is viewed as a burning flame, this solution is based on the entropy condition
that once a particle is burnt, it stays burnt [26, 27].

4 Affine Invariant Flows
In this section, we present the affine flow corresponding to equation (4) [21, 22, 25]. We first make some
remarks about classical affine differential geometry.
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4.1 Basic Concepts in Affine Differential Geometry
An affine transformation, transforms disks into effipses, and rectangles into parallelograms. The general
affine transformation in the plane (R2) is defined by

X=AX+B, (14)

where X E R2 is a vector, A E GL(R) (the group of invertible real 2 x 2 matrices with positive deter-
minant) is the affine matrix, and B R2 is a translation vector. It is easy to show that transformations
of the type (14) form a real algebraic group A, called the group of proper affirie motions. We will also
consider the case of when we restrict A E SL2(R) (i.e., the determinant of A is 1), in which case (14) gives
us the group of special affine motions, A3.

In the case of Eudidean motions (in which case A in (14) is a rotation matrix), we have that the
Eucidean curvature ii of a given plane curve, is a differential invariant of the transformation. In the case
of general affine transformations, in order to keep the invariance property, a new definition of curvature
is necessary. In this section, this affine curvature is presented [4, 15, 21]. See [4] for general properties of
affine differential geometry.

As above, let C : S1 —p R2 be an embedded curve with parameter p (where S denotes the unit circle).
We now make the invariant re-parametrization of C(p) by defining a new parameter s such that

[CS,CSS] = 1, (15)

where [X, Y] stands for the determinant of the 2 x 2 matrix whose columns are given by the vectors
x, y E R2. This relation is invariant under proper affine transformations, and the parameter s is the
affine arc-length. Setting

gj(p) := [C,CJ1/3, (16)

the parameter S iS explicitly given by
'p

s(p) = J gajj()d. (17)
0

Note, we have assumed (of course) that gaff (the affine metric) is different from zero at each point of
the curve, i.e., the curve has no inflection points. In general, affine differential geometry is defined just
for convex curves [4, 15]. In Section 4.2, we will show how to overcome this problem for the evolution of
non-convex curves.

By differentiating (15) we obtain that the two vectors C3 and C333 are linearly dependent and so there
exists such that

C333+C3=O. (18)

The last equation implies

= [C83,C333], (19)

and i is the affine curvature, i.e., the simplest non-trivial differential affine invariant function of the curve
C [4]. Moreover, one can easily show [21] that ds, C3, C33, , and the area enclosed by a closed curve, are
absolute invariants of the group A3 of special affine motions and relative invariants of the group A of
proper affine motions.
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4.2 Affine Geometric Heat Equation
With s the affirie arc-length, the affine-invariant geometric heat flow is given by [21, 25]

I Ct = C33,
(20

1 C(p,0)=Co(p).

Since s is only defined for convex curves, the flow (20) is defined a priori for such curves only. However,
in fact the evolution can be extended to the non-convex case, in the following natural manner. Observe
that if C is parametrized by the Eudidean arc-length, then

gaff(v) = {C,C]113 = [,,]1/3
and we obtain

I 1/3\)v i2 1/3aff — — , Paff

Using Lemma 1, we obtain that the following flow is geometric equivalent to the affine invariant flow (20):

C = K1/3fj (21)

If we extend the evolution (20) to [22, 25]

C — J non-inflection points, 22t —

1 0 inflection points,

we obtain an affine invariant flow which is also well-defined for non-convex curves [22] (the inflection points
are affine invariant). Since ic = 0 at inflection points, the Eucidean-based geometric flow equivalent to
(22) is also given by equation (21). Hence, we obtain that the flow given by (21) is an affine invariant flow.
Note that the flow of the geometric curves Img[C] is affine invariant, not the one of the parametrized curves.
We should also add that recently Alvarez et al. [1] derived (21) using a completely different approach.

In summary, despite the fact that we cannot define the basic differential invariants of affine differential
geometry on non-convex curves, nevertheless an affine invariant heat-type flow can be formulated. This is
possible due to the possibility to "ignore" the tangential component of the deformation velocity, together
with the invariant property of inflection points. Also note that C3 contains three derivatives, but its
normal component contains only two. This allows one to write the geometric affine heat flow as a function
of,.

We conclude this section by pointing out that in [21], we proved that any simple convex curve converges
to an ellipse when evolving according to the affine heat flow (20). In [22] (see also [25]) we extended the
results for non-convex curves using the flow (22) (or (21)). We showed that as in the Eudidean case, a
non-convex curve deforms into a convex one, and from there into an effipse according to the results in [22].
Figure 1 presents an example of curves, related by affine transformations, evolving according to the affine
geometric heat flow.

Remark. Despite the above results for the affine and Eucidean groups, it is important to note that the
flow (4) may not be a diffusive smoothing process relative to an arbitrary Lie group. In fact, in [25] we give
examples of scale-invariant flows which actually develop singularities. (Some key scale-invariant groups
are the Eucidean similarity group, full affine group, or SL3(R)).
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5 Multiscale Representations
Multiscale descriptions of signals have been studied for several years already. In computer vision, they
have been employed in connection with the problem of representing the shape of a planar curve that has
been extracted from an image.

A possible formalism for this topic comes from the idea of multiscale filtering which was introduced by
Witkin [29], and developed in several different frameworks by a number of researchers in the past decade.
The idea of scale-space filtering is very simple and can be formulated as follows: Given an initial signal
o(X) : R' —+ Rm, the scale-space is obtained by filtering it with a kernel 1&C(X ,t) : R —+ Rm, where
t E R+ represents the scale. In other words, the. scale-space is given by (X, t) defined as

(1,t) := X(J?,t)[O(X)], (23)

where IK(.,t){] represents the action of the filter K(., t). Larger values of t correspond to signals at coarser
resolutions.

A famous example of a kernel is the Gaussian kernel. In this case, the scale-space is linear, and the
filter in (23) is just defined by convolution. The Gaussian kernel is one of the most studied in the theory
of scale-spaces. It has some very interesting properties, one of them being that the signal obtained from
it, is the solution of the heat equation (with as initial condition) given by

at

Therefore, equation (3) gives a Gaussian (linear) scale-space for plane curves. One of the key facts
that can be gleaned from the Gaussian example, is that the scale-space can be obtained as the solution of
a partial differential equation called an evolution equation. This idea was developed in a number of papers
[1, 2, 16, 17, 23] for evolution equations different from the classical heat equation.

In general, a number of properties are required in a scale-space. One of these is the causality crite-
non. , which means that "information" is not added when moving from a finer to a coarser scale. The
"information" is in general characterized by zero-crossings, extremum, and so on. The causality criteria is
usually also related to the semi-group property. Alvarez et al. [1] give a characterization of the evolution
equations for which these and other properties hold.

In general, equation (10) will define a scale-space or multiresolution representation of signals. (For
examples when it does not define a scale-space, at least in its classical definition, see [25].) Since the scale-
space is obtained as the solution of a PDE, the original signal is obtained for t = 0, and the semi-group
property (causality criterion) holds. Other properties hold depending on the function 'I', and principally
on the number of spatial derivatives involved in the flow. It is important to note that the scale-spaces
obtained via (10) are geometric, invariant, and intrinsic to the curve properties.

Important examples of scale-spaces obtained via (10) are the Eudidean heat flow (11) and the affine
heat flow (22). (The affine heat flow, as a scale-space, is studied in depth in [23].) In this case, the evolving
curves also preserve inclusions, i.e., if an initial curve Co is included in an initial curve Co, the same is true
for the corresponding evolving curves [1, 23]. These flows perform invariant curve smoothing, and permit
us to obtain invariant hierarchical representations. Scale spaces obtained from (10) can be implemented
using the numerical algorithms for curve evolution developed by Osher and Sethian [19]. Figure 2 presents
an example of two noisy effipses, related by an unimodular affine transformation, evolving according to
the affine heat flow.

Another important scale-space derived from (10) is the Eucidean constant motion (13) [20]. As pointed
out in Section 3, a curve can develop singularities when evolving with constant Eucidean velocity. This
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singularities give the medial axis representation, first defined by Blum [5], and frequently used in different
computer vision problems as pattern recognition and geometric image coding.

Kimia et al. [16, 17] studied the combination of the Eudidean shortening flow with the Eudidean
constant motion, i.e., l'(i'c) = (i + ) in (10). Based on this flow, they defined a reaction-diffusion
scale-space, where the smoothing property of the Eudidean heat equation competes with the Eudidean
constant motion, which develops the curve toward singularities. Further, the authors presented (among
other topics) a geometric segmentation of plane curves.

6 Discussion and Concluding Remarks
In this note, we have presented a general approach for the formulation of invariant curve evolution flows.
The approach is based on basic concepts of the classical theory of differential invariants. The equations
which are obtained are geometric versions of the classical heat equation and can be used for the definition
of invariant multiscale representations. We presented examples for the Eucidean and affine groups. For
other groups of interest, see [25, 24].

Two related frameworks for the flow were presented. The first one is based just on the group arc-length
and group curvature, and is very intuitive. This gives the notion of "geometric" heat equation. Based on
this formulation, a second one, equivalent to it, was derived. This second formulation is based only on
concepts of Eudidean differential geometry. The necessity for this formulation is that the properties of
the underlying partial differential equation can be analyzed using techniques such as those described in
[3, 8, 14, 19].

In conclusion, the theory presented here not only unifies the underlying structure of invariant geometric
flows and their corresponding multiscale representation, but it also allows one to define new and useful
invariant evolutions using similar ideas.
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