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SUMMARY 

 

Determining the relative roles of top-down vs. bottom-up forces in controlling the 

structure of ecological communities is of primary importance because anthropogenic 

nutrient loading, overharvesting of consumers, and potential interactions of these bottom-

up and top-down forces are pervasively changing ecosystems throughout the world.  In 

my dissertation, I take advantage of both field experimentation and meta-analyses of 

existing data to address the top-down and bottom-up forces that control the structure of 

benthic marine communities.  Specifically, I investigate the role of predators in 

controlling community composition, the relative roles of herbivores vs. nutrient 

enrichment in controlling the abundance of benthic primary producers, and the influence 

of herbivore diversity on the community structure of coral reefs.  

In Chapter 1, I show that release from predation by large fishes and invertebrates 

via exclusion cages allows population increases in the gorgonian-eating gastropod 

Cyphoma gibbosum.  Increased densities of C. gibbosum lead to more intense grazing on 

gorgonian corals consistent with other studies showing cascading effects of removing top 

predators from communities.  Chapter 2 tests the role of herbivores vs. nutrient 

enrichment in controlling the abundance of primary producers in benthic marine 

communities.  I used factorial meta-analysis of 54 field experiments that orthogonally 

manipulated herbivore pressure and nutrient loading to quantify consumer and nutrient 

effects on primary producers in benthic marine habitats.  Herbivores consistently had 

stronger effects than did nutrient enrichment for both tropical macroalgae and seagrasses.  

For temperate macroalgae and benthic microalgae, the effects of top-down and bottom-up 



 xvii

forces were context dependant, varying as a function of the inherent productivity of the 

ecosystem.  Overall, I show that the influence of herbivory and nutrients on marine 

primary producers is context dependant, varying with latitude, the type of primary 

producer, and the nutrient status of the system. 

In Chapters 3 and 4, I address how herbivore diversity influences the role of top-

down pressure on coral reef communities.  In Chapter 3, I use manipulative field 

experiments to show that Caribbean reefs change dramatically as a function of 

herbivorous fish diversity.  Higher herbivore diversity caused lowered macroalgal 

abundance, reduced coral mortality, and increased coral growth when compared to 

treatments with lower herbivore diversity.  Complementary feeding by different fishes 

drove these patterns because macroalgae were unable to effectively deter feeding by 

fishes with different attack strategies.  To further address the role of herbivore diversity 

in affecting coral reef communities, Chapter 4 addresses the effects of two separate years 

of experiments manipulating herbivore diversity on a coral reef.  In Year 1, I used the 

redband parrotfish (Sparisoma aurofrenatum) and the ocean surgeonfish (Acanthurus 

bahianus) to generate the treatments while in Year 2 I used the redband parrotfish and the 

princess parrotfish (Scarus taeniopterus).  I show strong effects of herbivore diversity on 

community structure due to feeding differences among herbivores both years of the 

experiment.  In Year 1, ocean surgeonfish and redband parrotfish synergistically 

suppressed upright macroalgae by feeding on dissimilar species thereby decreasing 

facilitating crustose coralline algae and coral cover while decreasing coral mortality.  In 

Year 2, redband parrotfish and princess parrotfish fed on different algal functional groups 
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in that redband parrotfish fed mostly on upright macroalgae while princess parrotfish fed 

mostly on filamentous, turf algae thus facilitating crustose coralline algae when these 

fishes were combined.  When all treatments were compared across both years of the 

experiment, despite being morphologically and taxonomically distinct, princess parrotfish 

and ocean surgeonfish had more similar effects on macroalgal community structure than 

did the two morphologically and taxonomically similar species of parrotfish.  These data 

suggest that these three fishes play functionally diverse roles in the herbivore guild and 

that their complementary effects of algal communities are important to the structure and 

function of coral reefs. 
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CHAPTER 1 

PREDATOR RELEASE OF THE GASTROPOD CYPHOMA GIBBOSUM 

RESULTS IN INCREASED PREDATION ON GORGONIANS 

  

Abstract 

The gastropod Cypohoma gibbosum is a principle predator of gorgonian corals on 

Caribbean coral reefs.  However, little is known about how C. gibbosum populations are 

regulated or about how C. gibbosum affects gorgonian populations.  We used 4 m2 cages 

to exclude large, predatory fishes and invertebrates from natural areas of a coral reef in 

the Florida Keys and assessed the role of predators in affecting C. gibbosum densities and 

their damage to gorgonians.  After 10 months, C. gibbosum was up to 50X more 

abundant in predator exclosures than in uncaged areas.  Gorgonians in predator 

exclosures were grazed 2.5X as often and exhibited 8.4X more recent damage from C. 

gibbosum predation than gorgonians in uncaged areas where gastropod predators were 

not excluded.  The most abundant gorgonian, Pseudopterogorgia americana, had 8.6X 

more grazing damage inside predator exclosures than in uncaged areas.  These data 

suggest that predators suppress populations of C. gibbosum and that overfishing of 

gastropod predators such as the hogfish, Lachnolaimus maximus, or Caribbean spiny 

lobster, Panuliris argus, could lead to release of C. gibbosum and increased predation on 

gorgonians. 

 

Introduction 

Gorgonian corals are common on most Caribbean coral reefs and are often the 

dominant benthic invertebrate in some areas (Lasker & Coffroth 1983, Yoshioka & 
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Yoshioka 1989).  Predation on gorgonians is assumed to be minimal because gorgonians 

are poor food due to their effective chemical and morphological defenses (Pawlik et al. 

1987, Van Alstyne & Paul 1992, O'Neal & Pawlik 2002).  Consequently, little emphasis 

has been placed on predation as an important force structuring populations of gorgonians, 

and more emphasis has been placed on reproduction (Lasker 1991, Lasker et al. 1996), 

recruitment (Yoshioka 1996, Lasker et al. 1998), disturbance (Yoshioka & Yoshioka 

1987, Witman 1992), and disease (Jolles et al. 2002, Kim & Harvell 2004) as key factors 

regulating the dynamics of gorgonian populations.  The majority of work on the 

relationships between gorgonians and their predators has focused on identifying patterns 

of gorgonian anti-predator defenses (Pawlik et al. 1987, Harvell et al. 1993, O'Neal & 

Pawlik 2002). 

The gastropod Cyphoma gibbosum is often the primary consumer of gorgonians 

on Caribbean coral reefs (Birkeland & Gregory 1975, Gerhart 1986) with the polychaete 

worm Hermodie carunculata (Vreeland & Lasker 1989) and some butterflyfishes 

(Chaetodontidae) (Lasker 1985) also feeding on gorgonians.  Although C. gibbosum 

feeds on a wide range of gorgonian species (Lasker et al. 1988), most studies have 

focused on the distribution and movement of C. gibbosum among gorgonians (Gerhart 

1986, Lasker & Coffroth 1988, Gerhart 1989) with less emphasis on the effects of C. 

gibbosum on gorgonian populations in the field. 

There are few investigations of predator effects on Cyphoma gibbosum 

populations.  The mantle tissue of C. gibbosum is unpalatable to some fishes (Gerhart 

1986) suggesting that C. gibbosum may sequester secondary metabolites from its 

gorgonian prey, thus using host defenses to deter its own predators as do other gastropods 
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(Sammarco et al. 1983), but no work has documented patterns of predation on C. 

gibbosum or their response to being released from predation.  However, a large-scale 

survey of C. gibbosum abundance in the Florida Keys suggests that C. gibbosum may be 

more abundant in areas where large, molluscivorous fishes have been extensively 

harvested (Chiappone et al. 2003).  Removal of top predators often results in the release 

of their prey (i.e. herbivores or mid-level predators) and can have cascading indirect 

effects on plants or other animals two links away in the food chain (i.e. a trophic cascade 

or mesopredator release) (Hairston et al. 1960, Paine 1980, Crooks & Soule 1999, 

Silliman & Bertness 2002).  If predators have strong top-down effects on C. gibbosum 

populations, then removal of these predators may allow increases in C. gibbosum 

abundance and thus increased predation on gorgonians.  Here we report results from a 

caging experiment that excluded large predators from areas of a Caribbean coral reef to 

test the effects of releasing C. gibbosum from predation and the subsequent effects of C. 

gibbosum predation on gorgonians.   

 

Materials and Methods 

Experimental setup and maintenance 

 In November 2003, we used NOAA's Aquarius, a self-sufficient 

underwater research laboratory offshore of Key Largo, FL to perform an experiment on 

Conch Reef (24°57’N/80°27’W) designed to test the effects of herbivorous fish diversity 

on the community structure of coral reefs.  As part of the experiment we constructed 32 

cages (2.5 cm mesh size) measuring 2 m x 2 m x 1 m tall (covering 4 m2 of the reef 

bottom).  Different combinations of herbivorous fishes were maintained within these 
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cages to test for the effects of herbivore diversity on coral reef community structure; 

however, the cages also excluded large gastropod predators such as fishes, lobsters, and 

large crabs that could not pass through the 2.5 cm mesh.  Cages thus served as a refuge 

from predation for gastropods such as Cyphoma gibbosum.   

The experiment was located at depths of 16-18 m on a spur and groove reef 

formation with the spurs rising 1-2 m from a sandy bottom.  Cages were made of 0.6 cm 

steel bar and covered with PVC-coated, galvanized chicken wire attached to the cage 

frame with cable ties.  We attached the cages to the reef by wiring the frames to 30 cm 

galvanized nails that had been hammered into the reef substrate.  A 30 cm flange of 

chicken wire extended from the base of the cage and was conformed to the reef substrate 

and affixed using galvanized fencing nails.  This barrier prevented larger fishes and 

invertebrates from escaping or entering the cage, but the mesh size allowed small fishes 

and invertebrates to enter and exit at will.  Zinc anodes attached to the chicken wire and 

the cage frame prevented corrosion.   

The benthic community inside the cages consisted of unmanipulated populations 

of macroalgae, corals, sponges, gorgonians, and other common reef invertebrates.  

Treatments within the cages for the herbivore diversity experiment consisted of: (1) two 

redband parrotfish, Sparisoma aurofrenatum, (2) two ocean surgeonfish, Acanthurus 

bahianus, (3) one redband parrotfish and one ocean surgeonfish, or (4) no large fish (n = 

8 for each treatment and n = 32 total for the caged areas).  We also monitored uncaged 

areas of equal size as controls (n = 8).  Four cages and an uncaged area were blocked as 

closely as the reef configuration allowed in one general area, and the fish treatments were 

allocated randomly among each of the four cages.  Thus, we had eight blocks each 
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containing one replicate each of the five experimental treatments.  Cages were scrubbed 

inside and out every 4-6 weeks to remove fouling organisms and prevent shading.  

Grazing by fishes (surgeonfishes and juvenile parrotfishes) kept cages relatively free of 

fouling organisms between scrubbings. 

 

Data collection and analysis 

We surveyed each caged and uncaged area for the presence of Cyphoma 

gibbosum in August 2004 (after 10 months of caging).  We identified all gorgonians in 

each caged and uncaged area to genus or species as was practical under field conditions, 

and noted which gorgonians hosted C. gibbosum.  To assess C. gibbosum predation on 

gorgonians, we sampled the gorgonians in each uncaged area and in one caged area 

chosen from the same block of treatments as each uncaged area (n = 8 for uncaged and 

caged areas).  We chose the caged area within each block of treatments at random.  To 

quantify C. gibbosum damage to each gorgonian in the uncaged and caged areas, we 

measured the total length of the live main axes of each gorgonian and then measured the 

total length of the main axes that had been stripped of its coenenchyme by C. gibbosum 

feeding.  For estimates of damage by C. gibbosum, we measured only those areas where 

the gorgonian skeleton was not fouled by epiphytic algae or invertebrates and did not 

include areas of exposed gorgonian skeleton that had been fouled.  Although these areas 

were probably also the result of previous grazing by C. gibbosum that subsequently had 

been colonized by fouling organisms (Gerhart 1990), we did not include them in our 

analysis as they could not be unambiguously attributed to predation by C. gibbosum.  We 

did not include gorgonians that were within 10 cm of the cage in the estimates of grazing 
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damage as these gorgonians could have been damaged by wave action abrading them 

against the cage.  

We tested for differences in the abundance of gorgonians between caged and 

uncaged areas using t-tests and for differences in Cyphoma gibbosum abundance between 

caged and uncaged areas using a Mann-Whitney U-test which is a non-parametric 

equivalent to a t-test (Sokal & Rohlf 1995).  We analyzed the percentage of gorgonians 

damaged by C. gibbosum in each treatment and the average grazing damage per 

gorgonian scaled to main axis length in each treatment using paired one-tailed, t-tests that 

paired each caged and uncaged area from an experimental block.  We used one-tailed t-

tests based on the hypothesis that caged areas that had more C. gibbosum would also have 

more damage to gorgonians from C. gibbosum.  Data for average grazing damage per 

gorgonian were log transformed to achieve homogeneity of variances as evaluated with 

Cochran’s test (Underwood 1997).   

 

Results 

 Pseudopterogorgia americana was the most abundant gorgonian in caged and 

uncaged areas (Table 1.1; Figure 1.1) representing 83% of gorgonians in the caged areas 

and 84% of gorgonians in the uncaged areas.  Briareum asbestinum, Eunicea spp., and 

Pseudoplexaura spp. were also common in both the caged and uncaged areas (Figure 

1.1), each representing ≤ 7% of the total gorgonian density.  Gorgonia spp., 

Pseudopterogorgia acerosa, and Plexaurella spp. were present but rare.  Densities did 

not differ between caged and uncaged areas for any of the gorgonian species (Figure 1.1).   
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Table 1.1.  Cyphoma gibbosum.  Their abundance and the abundance of their gorgonian 
hosts within the cages.  The distribution of C. gibbosum on the gorgonians differed 
significantly from what would be expected given the gorgonian abundance data (P < 
0.001, G = 83.909; G-test).  
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Figure 1.1.  Density of gorgonians (means ± SE) for caged (black bars; n =32) and 
uncaged areas (gray bars; n = 8).  There were no differences in gorgonian densities 
between caged and uncaged areas for total gorgonians or for any gorgonian species or 
genus as evaluated with t-tests. 
 

 

Gorgonian 
# 

indiv. 

% of total 

gorgonians 

# C. 

gibbosum 

% of total 

C. gibbosum 

C. 

gibbosum 

per 

gorgonian 

Pseudopterogorgia americana 553 82.9 21 40.5 0.04 

Briareum asbestinum 33 4.9 0 0 0 

Eunicea spp. 32 4.8 20 38.6 0.63 

Pseudoplexaura spp. 31 4.7 9 17.4 0.29 

Pseudopterogorgia acerosa 10 1.5 2 3.5 0.20 

Gorgonia ventalina 5 0.8 0 0 0 

Plexaurella spp. 3 0.4 0 0 0 

Total 667 100 52 100 0.08 
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Cyphoma gibbosum were more abundant in the caged areas than in uncaged areas 

when scaled to either area (0.61 ± 0.14 vs. 0.03 ± 0.03 snails/m2 [mean ± SE] 

respectively; P < 0.001; Figure 2.2A) or to gorgonian abundance (0.21 ± 0.07 vs. 0.004 ± 

0.004 snails/gorgonian respectively; P < 0.001; Figure 2.2B).  Of the 52 C. gibbosum 

found in the caged areas, 41% of individuals were found on the most abundant gorgonian, 

Pseudopterogorgia americana (Table 1.1).  The remaining C. gibbosum were found on 

Eunicea spp. (39% of individuals), Pseudoplexaura spp. (17%) and Pseudopterogorgia 

acerosa (4%) (Table 1.1).  The distribution of C. gibbosum on gorgonian hosts differed 

significantly from what would have been expected given the abundances of the different 

gorgonians (P < 0.001, G = 83.9; Table 1.1).  The single C. gibbosum found in the 

uncaged areas was on P. americana. 

Cyphoma gibbosum could be observed feeding on gorgonians and were often at or 

near areas stripped of tissue.  The damaged areas of gorgonian we observed were 

consistent with those previously described as due to C. gibbosum feeding (Gerhart 1984, 

Harvell & Suchanek 1987) and inconsistent with damage done by Hermodice 

carunculata (Vreeland & Lasker 1989), the only other major gorgonian predator that 

could have been present in the caged areas.  Further, H. carunculata was rarely observed 

inside the caged areas and was never observed feeding on gorgonians.  Thus, all 

indications are that the damage we found was due to C. gibbosum feeding.  The vast 

majority of grazing damage removed all soft tissue and exposed the gorgonian skeleton;  
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Figure 1.2.  Cyphoma gibbosum.  Individuals (means ± SE) (A) per m2 or (B) per 
gorgonian in caged and uncaged areas.  n = 32 for caged and n = 8 for uncaged areas.  P-
values are from Mann-Whitney U-tests. 

 

 

 

 

 

 

 



 10 

superficial removal of gorgonian tissue was rare but occurred on species with a thicker 

coenenochyme (i.e. Pseudoplexaura spp.).   

The percentage of all gorgonians with grazing scars was greater in the caged vs. 

the uncaged areas (P = 0.043; Figure 1.3A).  The same trend was evident for the most 

abundant gorgonian Pseudopterogorgia americana (P = 0.085; Figure 1.3B).  The 

amount of grazing damage per gorgonian showed dramatic differences between the caged 

and uncaged areas.  When gorgonians were considered as a group, 8.9 ± 2.6% (mean ± 

SE) of the main axes of each gorgonian in the caged areas had been damaged by 

Cyphoma gibbosum vs. 1.1 ± 0.7% in the uncaged areas (P = 0.004; Figure 1.3C).  The 

most abundant gorgonian species, P. americana, had 11.5 ± 4.2% of its main axes 

damaged per individual in the caged areas vs. 1.3 ± 0.8% damage per individual in the 

uncaged areas (P = 0.001; Figure 1.3D).  When we considered only those gorgonians that 

had grazing damage, the gorgonians that had been grazed in the caged areas had 2.5X 

more damage than the gorgonians that had been grazed in uncaged areas (58.1 ± 6.8% vs. 

23.7 ± 7.8% [mean ± SE] respectively; P = 0.01, t-test ). 

 

Discussion 

Exclusion of predatory fishes and invertebrates led to a 50X increase in the 

abundance of Cyphoma gibbosum and a >8X increase in damage to gorgonians by C. 

gibbosum (Figures 1.2 & 1.3).  Gorgonians in predator exclusions were 2.5X more likely 

to be grazed by C. gibbosum than gorgonians in uncaged areas (Figure 1.3A).  Damage to 

individual gorgonians from C. gibbosum was 8.4X greater in caged as opposed to 

uncaged areas (Figure 1.3C) when averaged across all gorgonian species.  Damage to the  
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Figure 1.3.  Cyphoma gibbosum and Pseudoterogorgia americana.  Percentage (means ± 
SE) of (A) all gorgonians or (B) P. americana with grazing scars or percentage of each 
gorgonian’s main axes damaged by C. gibbosum (means ± SE) for (C) all gorgonians or 
(D) P. americana in caged and uncaged areas (n = 8 for all comparisons).  P-values are 
from paired t-tests.  
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most abundant gorgonian, Pseudopterogorgia americana, was 8.6X greater in the caged 

as opposed to uncaged areas (Figure 1.3D).  Thus, predators typically keep C. gibbosum 

populations in check and prevent heavy grazing on gorgonians.   

The average density of Cyphoma gibbosum in the caged areas, 0.61 ± 0.14 

snails/m2, was 10X greater than the maximum density found in the Florida Keys by 

Chiappone et al. (2003) (which was in a subset of the actively fished areas that they 

surveyed) and >2X the maximum density found in Panama by Lasker and Coffroth 

(1988).  Fish predation on C. gibbosum at our field site could be high as it is part of a 

Special Protection Area within the Florida Keys National Marine Sanctuary.  Commercial 

and recreational fishing is prohibited, but enforcement is less than complete and we 

commonly found fishing gear hooked in, and broken off on, our cages and the adjacent 

coral formations.  So fishing does occur.  However, we commonly observed predators 

such as hogfish (Lachnolaimus maximus), pufferfishes (Tetraodontidae), and Caribbean 

spiny lobsters (Panulirus argus) that commonly consume gastropods (Randall & Warmke 

1967, Turingan 1994, Cox et al. 1997).  On one occasion we witnessed a hogfish 

consume a C. gibbosum (D.E.B. pers. obs.).  At the end of the experiment (August 2004), 

the caging material was removed from all cages, which allowed gastropod predators full 

access to the previously caged areas.  When the formerly caged and uncaged areas were 

surveyed for C. gibbosum eight weeks later, none were found.  Thus, C. gibbosum were 

either consumed after cages were removed or they dispersed so widely that none were 

evident when the areas were resurveyed (40 areas of 4 m2 or 160 m2 total).  

Given our data, we cannot differentiate between a demographic response of 

Cyphoma gibbosum as a result of predator release or the aggregation of individuals to 



 13 

predator-free areas.  However, we did notice the presence of several juvenile C. gibbosum 

in the caged areas, suggesting an increase in population size as a result of escaping 

predation. Feeding by the increased density of C. gibbosum in cages did not change 

gorgonian desnsity during the 10 month experiment (Figure 1.1), but gorgonians in 

predator exclusions were attacked more frequently (Figure 1.3A) and more damage was 

done to them when attacked (Figures 1.3C & 1.3D).  Over longer periods, C. gibbosum 

densities may have increased further and their grazing damage may have accumulated to 

change gorgonian density rather than just extent of damage.  

Most Cyphoma gibbosum were found on the gorgonians Pseudopterogorgia 

americana and Eunicea spp. (>75% of the individuals).  However, when corrected for 

gorgonian density, C. gibbosum was found less often on P. americana but more often on 

both Eunicea spp. and Pseudoplexaura spp. than would be expected given their 

abundance (Table 1.1).  Data from Harvell and Suchanek (1987) generally supported this 

pattern, but Lasker et al. (1988) found that Pseudopterogoria spp. was among the most 

preferred and Eunicea spp. among the least preferred hosts for C. gibbosum (Lasker et al. 

1988).  Lasker et al. (1988) also suggested that C. gibbosum fed less intensely on P. 

americana than on several other gorgonians species, yet the most extensive damage in 

our study was on P. americana (Figure 1.3D) and Eunicea spp. (D.E.B. pers. obs.).   

Predation by Cyphoma gibbosum typically results in only partial consumption of 

the gorgonian colony possibly due to physical defenses (i.e. spicules) or induced 

chemical defenses in the gorgonians (Gerhart 1986, Harvell & Suchanek 1987).  

However, C. gibbosum completely removed all of the tissue from several small (~0.2 m 

in height) Pseudopterogorgia americana and ~75% of the tissue from a 0.8 m tall 
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Eunicea calyculata (this individual was completely dead two months later).  Thus, the 

intense feeding from high densities of C. gibbosum that resulted from predator release 

may have overwhelmed gorgonians’ capacities to mount effective induced defenses that 

may usually keep predation to low levels and prevent runaway consumption of the host.  

These data suggest that C. gibbosum could have strong effects on the population structure 

of gorgonians if released from predators as they can completely kill both small and large 

colonies.   

Our estimates of Cyphoma gibbosum damage to gorgonians are conservative in 

that we only quantified C. gibbosum damage that was recent (i.e. not overgrown with 

fouling organisms).  Yet, fouling of the exposed gorgonian skeleton following C. 

gibbosum predation is common (Gerhart 1990), happens within only a few weeks, and 

would have increased the estimates of C. gibbosum damage had such damage been 

included.  Gorgonians that are fragmented as a result of being fouled often have reduced 

fecundity (Wahle 1983).  Thus, damaging effects to the gorgonians by C. gibbosum in 

our study probably exceeded the mere removal of tissue and also impacted the 

reproductive capacity of damaged colonies.   

Although gorgonian diseases were not noticed at our field site, Cyphoma 

gibbosum could potentially act as a vector for the spread of diseases such as the fungal 

epizootic aspergillosis (Smith et al. 1996, Kim & Harvell 2004) as they feed on multiple 

species of gorgonians (Birkeland and Gregorgy 1975, Lasker et al. 1988, this study) and 

frequently move among different colonies (Gerhart 1986).  Although the potential of C. 

gibbosum as a vector for aspergillosis has not been investigated in depth, C. gibbosum 

were shown to be more abundant on diseased Gorgonia spp. than on healthy ones 
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(Nagelkerken et al. 1997) suggesting a link between C. gibbosum and disease.  Similarly, 

the corallivorous gastropod Coralliophila abbreviata is a vector for the transmission of 

white band disease among individuals of the coral Acropora cervicornis in the Caribbean 

(Williams & Miller 2005).   If the same relationship exists between C. gibbosum and 

gorgonians, increases in the abundance of C. gibbosum following overfishing of 

gastropod predators potentially could increase the prevalence of aspergillosis. 

Predators often exert strong top-down control on communities (Terborgh et al. 

1999), and their removal frequently results in cascading, indirect effects on these 

communities (Crooks & Soule 1999, Duffy & Hay 2000, Silliman & Bertness 2002).  

Removing predators from coral reefs often results in large cascading effects such as 

increases in coral-eating starfish and decreases in coral cover (Dulvy et al. 2004) or 

increases in sea urchins and the erosion of reef structure (McClanahan & Muthiga 1989).  

Here we show that releasing the gastropod Cyphoma gibbosum from large predators 

allows an increase in their abundance which increases their predation on gorgonians.  

Thus, overfishing of gastropod predators could have large cascading effects on Caribbean 

coral reefs by releasing C. gibbosum from predator control, allowing it to heavily damage 

gorgonians, and thus potentially altering the structure and abundance of gorgonian 

populations. 
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  CHAPTER 2 

HERBIVORE VS. NUTRIENT CONTROL OF MARINE PRIMARY 

PRODUCERS: CONTEXT-DEPENDANT EFFECTS 

 

Abstract 

We know little about how the strength of bottom-up versus top-down forces 

differs across different types of habitats, ecosystems, or primary producers.  However, 

understanding such context-dependency is becoming critical due to anthropogenic 

nutrient loading, overharvesting of consumers, and potential interactions of these bottom-

up and top-down forces.  We used factorial meta-analysis of 54 field experiments that 

orthogonally manipulated herbivore pressure and nutrient loading to quantify consumer 

and nutrient effects on primary producers in benthic marine habitats.  Across all 

experiments and producer types, herbivory and nutrient enrichment both significantly 

affected primary producer abundance and also interacted to create greater nutrient effects 

in the absence of herbivores.  The significant interaction suggests that a decrease in 

herbivore populations can result in more dramatic effects of nutrient loading on marine 

ecosystems.  Herbivores consistently had stronger effects than did nutrient enrichment for 

both tropical macroalgae and seagrasses.  The strong effects of herbivory but limited 

effects of nutrient enrichment on tropical macroalgae suggest that suppression of 

herbivore populations has played a larger role than eutrophication in driving the phase 

shift from coral- to macroalgal-dominated reefs in many areas, especially the Caribbean.  

For temperate macroalgae and benthic microalgae, the effects of top-down and bottom-up 

forces were context dependant, varying as a function of the inherent productivity of the 
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ecosystem.  For these algal groups, nutrient enrichment enhanced producer abundance in 

both low and high productivity systems, but herbivores exerted a top-down force only in 

low productivity systems.  Effects of herbivores vs. nutrients also varied among algal 

functional groups (crustose coralline algae, upright macroalgae, and filamentous algae) 

and also varied within a functional group between temperate and tropical systems.  The 

influence of herbivory and nutrients on marine primary producers is context dependant, 

varying with latitude, the type of primary producer, and the nutrient status of the system. 

 

Introduction 

A key question regarding the forces structuring communities is the relative 

influence of consumers (top-down) versus resources (bottom-up) in controlling 

community composition, structure, and function (Hairston et al. 1960, Oksanen et al. 

1981, Leibold et al. 1997). Understanding the relative effects of these forces is becoming 

increasingly important as humans alter ecosystems by removing consumers (Jackson et 

al. 2001, Duffy 2003) and increasing nutrients (Smith et al. 1999) over large spatial 

scales.  For example, the recent switch from coral-dominated to algal-dominated reefs in 

many areas, especially the Caribbean, may be via an interaction of decreased herbivore 

pressure and increased nutrient loading that reduces the ability of coral reefs to rebound 

in the face of disturbance (McCook 1999, Hughes et al. 2003, Bellwood et al. 2004).  

Such large scale changes in community structure and in top-down and bottom-up forces 

are now widespread in  many marine ecosystems (Valiela et al. 1997, Estes et al. 1998, 
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Smith et al. 1999, Steneck et al. 2004), making it critical to understand how alterations to 

these top-down and bottom-up forces cascades through the community.   

Many marine ecosystems are typified by primary producers like kelps and 

seagrasses that are the foundation species that facilitate whole ecosystems (Bertness et al. 

2001).  Other primary producers, such as coral reef macroalgae that can overgrow and 

kill corals (McCook et al. 2001), are pivotal interactors that strongly impact foundation 

species fundamentally changing the physical and ecological structure of the entire 

ecosystem.  Thus, knowing how consumers and resource availability affect primary 

producers is critical for understanding how marine ecosystems function.  Benthic marine 

communities are commonly regulated by consumers (Estes et al. 1998, Duffy and Hay 

2001).  However, broad-scale oceanographic features such as nutrient availability and 

larval recruitment are influential bottom-up forces that also influence benthic 

communities (Menge et al. 1997, Nielsen and Navarrete 2004).  These multiple forces are 

not mutually exclusive and may rarely act in isolation (Leibold et al. 1997), making it 

important to identify when and where they interact (or fail to interact) as drivers of 

community organization.  Given the context-dependent nature of most ecological 

interactions (Hay et al. 2004), it is unlikely that any single experiment can address this 

general question.  A quantitative synthesis of the experimental data investigating the 

interactions of herbivores and nutrient loading on the abundance of primary producers 

(e.g. Miller et al. 1999, Smith et al. 2001, Thacker et al. 2001, McClanahan et al. 2003) is 

needed to critically evaluate the relative roles of herbivores vs. nutrients in controlling the 

abundance of primary producers and mediating phase shifts.   
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Recent meta-analyses have shown complex interactions between herbivores and 

nutrients in controlling the species diversity of primary producers (Worm et al. 2002) and 

in affecting periphyton abundance (Hillebrand 2002) suggesting that these interactions 

might be important for controlling primary producer abundance across a variety marine 

ecosystems and environmental conditions and for different types of producers.  We used 

factorial meta-analysis (Gurevitch et al. 2000) to synthesize the results of 54 field 

experiments that orthogonally manipulated nutrient availability and herbivore pressure in 

benthic marine ecosystems representing a wide diversity of habitats and primary producer 

types.  This approach allowed us to quantitatively assess the effects of herbivore removal, 

nutrient enrichment, and their interaction on the abundance of primary producers.  We 

assessed the effects of herbivore removal and nutrient enrichment on: (1) marine primary 

producers pooled across all habitats and producer types, (2) different types of producers 

(i.e. macroalgae vs. seagrasses vs. microalgae), (3) producers in different habitats (i.e. 

oligotrophic vs. eutrophic environments or temperate vs. tropical systems), and (4) 

producers in different functional groups (i.e. encrusting coralline algae vs. upright 

macroalgae).  Instead of debating the role of bottom-up vs. top-down forces, we focus 

instead on the types of primary producers responding to these forces and the conditions 

under which their relative roles change – i.e. the context-dependant nature of the answer 

to this debate.  
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Materials and Methods 

We found studies by searching the ISI Web of Science database (1945-2005; 

search terms included herbiv* and marine, herbiv* and nutrient, nutrient and marine, etc.) 

for field experiments manipulating both herbivory and nutrients.  We also searched the 

reference lists of papers identified by this search.  Studies had to satisfy three criteria to 

be included in our analyses: (1) experimentally manipulate nutrient availability and 

herbivore presence orthogonally in a field setting, (2) measure the abundance of primary 

producers in response to these treatments, and (3) report abundance means, error 

measurements, and sample sizes for experimental treatments.  All studies that satisfied 

criteria 1 and 2 also satisfied criterion 3. 

We found 23 published studies with a total of 50 experiments and also included 

three unpublished studies for a total of 26 studies with 54 experiments (Table 2.1).  

Twenty-one experiments were on benthic microalgae, 15 on tropical macroalgae, 14 on 

temperate macroalgae, 3 on seagrasses, and 1 on the marsh grass Spartina alterniflora.  

Benthic microalgae consisted primarily of diatoms and cyanobacteria.  Common species 

in the tropical macroalgal communities were Dictyota spp. Lobophora variegata, 

Sargassum spp. Dasycladus vermicularis, Jania spp., Amphiroa spp., and several species 

of cyanobacteria.  Filamentous turf algae and crustose coralline algae were rarely 

identified to genus or species.  In temperate macroalgal communities, the common 

perennial algae were Fucus spp., Ascophyllum nodosum, and Sargassum spp., whereas 

the common annual algae were Pilayella littoralis, Enteromorpha intestinalis, Ulothrix 

flacca, Callithamnion tetragonum, and Cladophora spp.  Thalassia testudinum and 
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Table 2.1.  Details of studies used in meta-analysis 
 

Note: 
One experiment was excluded from the McGlathery (1995) study on seagrasses because 
non-target herbivores (fishes) fed preferentially on a subset of the treatments confounding 
the herbivore and nutrient effects. 
 

 
Abbreviations:   Exp  # - Experiment number in that study 

Day - Experimental duration in days 
Biovol. - Biovolume 

 

       

 

  

Authors Year 
Primary 
producers 

Location 
Major 
herbivores 

Exp 
# 

Day 
Size 
(m

2
) 

Nutrient 
status 

Metric 

Armitage and 
Fong 

2003 Microalgae 
California, 

USA 
Snails 1 56 0.250 NA Chl. a 

Armitage and 
Fong 

2003 Microalgae 
California, 

USA 
Snails 2 56 0.250 NA Chl. a 

Armitage and 
Fong 

2003 Microalgae 
California, 

USA 
Snails 3 56 0.250 NA Chl. a 

Armitage and 
Fong 

2003 Microalgae 
California, 

USA 
Snails 4 56 0.250 NA Chl. a 

Armitage and 
Fong 

2003 Microalgae 
California, 

USA 
Snails 5 56 0.250 NA Chl. a 

Armitage and 
Fong 

2003 Microalgae 
California, 

USA 
Snails 6 56 0.250 NA Chl. a 

Armitage 
et al. 

2006 Seagrass Florida, USA 
Fishes 
Urchins 

1 90 0.250 NA Biomass 

Belleveau and 
Paul 

2002 
Tropical 
macroalgae 

Guam Fishes 1 35 0.026 NA Biomass 

Belleveau and 
Paul 

2002 
Tropical 
macroalgae 

Guam Fishes 2 35 0.026 NA Biomass 

Burkepile and 
Hay 

unpub 
Tropical 
macroalgae 

Florida Keys 
USA 

Fishes 1 280 0.080 NA % cover 

Burkepile and 
Hay 

unpub 
Tropical 
macroalgae 

Florida Keys 
USA 

Fishes 1 180 0.080 NA % cover 

Diaz and 
McCook 

2003 
Tropical 
macroalgae 

Australia 
Barrier Reef 

Fishes 1 40 0.160 NA Density 

Hatcher and 
Larkum 

1983 
Tropical 
macroalgae 

Australia 
Barrier Reef 

Fishes 1 20 0.025 NA Biomass 

Hatcher and 
Larkum 

1983 
Tropical 
macroalgae 

Australia 
Barrier Reef 

Fishes 2 12 0.025 NA Biomass 



 22 

       

 

  

Authors Year 
Primary 
producers 

Location 
Major 
herbivores 

Exp 
# 

Day 
Size 
(m

2
) 

Nutrient 
status 

Metric 

Hatcher and 
Larkum 

1983 
Tropical 
macroalgae 

Australia 
Barrier Reef 

Fishes 3 20 0.025 NA Biomass 

Hatcher and 
Larkum 

1983 
Tropical 
macroalgae 

Australia 
Barrier Reef 

Fishes 4 12 0.025 NA Biomass 

Hatcher and 
Larkum 

1983 
Tropical 
macroalgae 

Australia 
Barrier Reef 

Fishes 5 150 0.025 NA Biomass 

Hillebrand and 
Kahlert 

2001 Microalgae 
Sweden 

Baltic Sea 

Molluscs 
Amphipods 
Isopods 

1 31 0.023 low Biovol. 

Hillebrand and 
Kahlert 

2001 Microalgae 
Sweden 

Baltic Sea 

Molluscs 
Amphipods 
Isopods 

2 38 0.023 low Biovol. 

Hillebrand and 
Kahlert 

2001 Microalgae 
Sweden 

Baltic Sea 

Molluscs 
Amphipods 
Isopods 

3 28 0.023 low Biovol. 

Hillebrand and 
Kahlert 

2001 Microalgae 
Sweden 

Baltic Sea 

Molluscs 
Amphipods 
Isopods 

4 36 0.023 low Biovol. 

Hillebrand 
et al. 

2000 Microalgae 
Germany 
Baltic Sea 

Molluscs, 
crustaceans 

1 23 0.063 high Biovol. 

Hillebrand 2002 Microalgae 
Nova Scotia 
NW Atlantic 

Molluscs 
Amphipods 
Isopods 

1 21 0.063 low Biovol. 

Hillebrand 2002 Microalgae 
Nova Scotia 
NW Atlantic 

Molluscs 
Amphipods 
Isopods 

2 21 0.063 low Biovol. 

Hillebrand 2002 Microalgae 
Nova Scotia 
NW Atlantic 

Molluscs 
Amphipods 
Isopods 

3 21 0.063 low Biovol. 

Hillebrand 2002 Microalgae 
Nova Scotia 
NW Atlantic 

Molluscs 
Amphipods 
Isopods 

4 21 0.063 low Biovol. 

Lever and 
Valiela 

2005 Microalgae 
Mass. 
USA 

Snails 
Shrimp 

1 300 0.053 low Chl. a 

Lever and 
Valiela 

2005 Microalgae 
Mass. 
USA 

Snails 
Shrimp 

2 300 0.053 high Chl. a 

Lever and 
Valiela 

2005 Microalgae 
Mass. 
USA 

Snails 
Shrimp 

3 300 0.053 high Chl. a 

Lotze et al. 2000 
Temperate 
macroalgae 

Germany 
Baltic Sea 

Molluscs 
Amphipods 
Isopods 

1 330 0.063 high Density 

Lotze et al. 2000 
Temperate 
macroalgae 

Germany 
Baltic Sea 

Molluscs 
Amphipods 
Isopods 

2 330 0.063 high Density 

Lotze et al. 2001 
Temperate 
macroalgae 

Germany 
Baltic Sea 

Molluscs 
Amphipods 
Isopods 

1 30 0.063 high Density 

Lotze et al. 2001 
Temperate 
macroalgae 

Nova Scotia 
NW Atlantic 

Molluscs 
Amphipods 
Isopods 

2 30 0.063 low Density 

Lotze et al. 2001 
Temperate 
macroalgae 

Nova Scotia 
NW Atlantic 

Molluscs 
Amphipods 
Isopods 

3 30 0.063 low Density 



 23 

       

 

  

Authors Year 
Primary 
producers 

Location 
Major 
herbivores 

Exp 
# 

Day 
Size 
(m

2
) 

Nutrient 
status 

Metric 

Lotze et al. 2001 
Temperate 
macroalgae 

Nova Scotia 
NW Atlantic 

Molluscs 
Amphipods 
Isopods 

4 30 0.063 low Density 

Lotze et al. 2001 
Temperate 
macroalgae 

Nova Scotia 
NW Atlantic 

Molluscs 
Amphipods 
Isopods 

5 30 0.063 low Density 

McClanahan 
et al. 

2003 
Tropical 
macroalgae 

Belize Fishes 1 49 0.250 NA Biomass 

McGlathery 1995 Seagrass Bermuda Urchins 2 70 0.785 NA Biomass 

Miller and Hay 1996 
Temperate 
macroalgae 

N. Carolina 
USA 

Fishes 
Urchins 

1 83 0.075 low Biomass 

Miller et al. 1999 
Tropical 
macroalgae 

Florida Keys 
USA 

Fishes 1 60 0.045 NA % cover 

Nielsen 2001 
Temperate 
macroalgae 

Oregon USA Molluscs 1 540 0.126 low Biomass 

Nielsen 2001 
Temperate 
macroalgae 

Oregon USA Molluscs 2 540 0.126 low Biomass 

Russell and 
Connell 

2005 
Temperate 
macroalgae 

S. Australia Molluscs 1 76 0.360 low % cover 

Silliman and 
Ziemann 

2001 Spartina 
Virginia 

USA 
Snails 1 120 1.000 NA Biomass 

Smith et al. 2001 
Tropical 
macroalgae 

Hawaii 
USA 

Fishes 1 180 0.120 NA Biomass 

Sotka and Hay unpub 
Tropical 
macroalgae 

Florida Keys 
USA 

Fishes 1 142 0.045 NA % cover 

Thacker 
et al. 

2001 
Tropical 
macroalgae 

Guam Fishes 1 120 0.250 NA Biomass 

Valentine and 
Heck 

2001 Seagrass 
Florida 
USA 

Urchins 1 116 1.000 NA Biomass 

Wootton 
et al. 

1996 Microalgae 
Washington 

USA 
Molluscs 1 85 0.018 low Biomass 

Wootton 
et al. 

1996 Microalgae 
Washington 

USA 
Molluscs 2 135 0.018 low Biomass 

Wootton 
et al. 

1996 Microalgae 
Washington 

USA 
Molluscs 3 50 0.018 low Biomass 

Worm et al. 2002 
Temperate 
macroalgae 

Nova Scotia 
NW Atlantic 

Molluscs 
Amphipods 
Isopods 

1 330 0.063 low % cover 

Worm et al. 2002 
Temperate 
macroalgae 

Germany 
Baltic Sea 

Molluscs 
Amphipods 
Isopods 

2 330 0.063 high % cover 

Worm et al. 2000 
Temperate 
macroalgae 

Germany 
Baltic Sea 

Molluscs 
Amphipods 
Isopods 

1 250 0.063 high % cover 
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Halodule wrightii were the primary seagrasses.  Experiments in tropical macroalgal 

communities typically manipulated herbivorous fishes, and experiments in seagrass beds 

manipulated fishes and urchins.  Gastropods and crustaceans were the dominant 

herbivores in temperate macroalgal, benthic microalgal, and Spartina communities 

(Table 2.1).  Urchins were common in only one of the experiments in temperate 

macroalgal communities. 

Herbivore removal was typically accomplished via physical barriers preventing 

access to experimental plots (i.e. cages or anti-fouling paint).  Nutrient enrichment was 

generally accomplished via nutrient reservoirs that continually released nutrients to the 

water-column except for two studies that used reservoirs to enrich sediment pore water.  

The most common nutrient treatment was combined nitrogen + phosphorus enrichment 

although some experiments enriched with nitrogen alone.  When a single study enriched 

at multiple nutrient concentrations or with both a nitrogen + phosphorus and a nitrogen-

only treatment, we used data from the nitrogen + phosphorus treatment at the highest 

concentration tested; this maximized our ability to detect a nutrient enrichment effect.  

The majority of studies monitored nutrient levels to ensure significant nutrient 

enrichment of the water column or sediment pore water.  When data were reported as a 

time series, we used the data from the final sampling period.  Primary producer 

abundance was measured as biomass (20 experiments), absorbance of chlorophyll a (a 

proxy for microalgal biomass) (9 experiments), biovolume (9 experiments), primary 

producer density (8 experiments), or percent cover (8 experiments).  We did not analyze 

effects on species diversity or richness because such metrics were rarely reported. 
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We performed meta-analyses on the total, pooled data set and then separately on 

tropical macroalgae, temperate macroalgae, benthic microalgae, and seagrasses.  Because 

effects of herbivory and nutrient availability may differ depending on the inherent 

productivity of the ecosystem (Hillebrand 2002, Worm et al. 2002, Nielsen and Navarrete 

2004), we divided the studies on temperate macroalgae and benthic microalgae into those 

conducted in either low vs. high productivity habitats (Table 2.1).  The nutrient status of 

the system (productivity) was often reported in different measure (i.e. dissolved vs. total 

nutrients or nitrogen vs. phosphorus) making thresholds for classification difficult to 

define.  Consequently, we used designations by the authors or in other publications 

related to the study area to classify the experiments into low or high productivity 

categories in the convention of Worm et al. (2002).  Studies where productivity 

designations could not be obtained were excluded from these analyses.  We did not 

divide tropical macroalgal or seagrass studies into low vs. high productivity studies 

because all studies were performed in areas of similar productivity.   

Because different algae may respond differently to experimental treatments 

(Pedersen and Borum 1996), we used functional group designations from Steneck and 

Dethier (1994) to lump algae from tropical and temperate macroalgal studies into three 

categories:  (1) crustose coralline algae, (2) filamentous turf algae, and (3) upright 

macroalgae.  Too few studies reported enough data to perform analyses on each 

functional group as listed by Steneck and Dethier (1994).  The crustose coralline algae 

category includes the functional group crustose algae (i.e. Lithothamnion, Neogonolithon, 

Peyssonnella, etc.).  The filamentous turf algae include the functional groups (1) 
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filamentous algae (i.e. Cladophora, Ectocarpus, and Piayella) and (2) foliose algae (i.e. 

Ulva and Porphyra).  The upright macroalgae include the functional groups (1) corticated 

foliose algae (i.e. Dictyota, Padina, and Lobophora), (2) corticated macrophytes (i.e. 

Chondrus, Acanthophora, Sargassum, and Gigartina), (3) leathery macrophytes (i.e. 

Fucus and Ecklonia), and (4) articulated calcareous algae (i.e. Halimeda and Amphiroa).  

Not all studies reported data for the abundance of specific algal functional groups so our 

sample sizes were not consistent for all analyses across functional groups.  

We used factorial meta-analysis (Gurevitch et al. 2000) that calculates the mean 

effect of the major factors as well as how the two main factors interact to determine the 

response variable (conceptually similar to a two-factor ANOVA).  This allowed us to 

compare the mean effects of herbivore removal, nutrient addition, and their interaction.  

In addition, we calculated the individual effects of herbivore removal under ambient and 

enriched nutrient status and of nutrient enrichment in the presence and absence of 

herbivores (See Figure 2.1 for an outline of experimental treatments and their use in 

computing effect sizes).  These calculations are based on Hedges’ d (Gurevitch and 

Hedges 1993), which measures the difference between treatment and control means 

divided by a pooled standard deviation from the treatment and control and multiplied by a 

correction factor to account for differences in sample size among studies.  For the 

analyses of algal functional groups from temperate vs. tropical habitats, we used the 

response ratio [rr  = ln(xt/xc) where xt is the treatment mean and xc is the control mean] 

(Hedges et al. 1999) as the metric because it does not require error measurements for its 

calculation (as does Hedges’ d), and many studies did not report error measurements for 
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Figure 2.1.  The figure shows the four treatments present in all orthogonal manipulations 
of herbivore pressure and nutrient availability.  Mean effects refer to the average effect of 
herbivore removal or nutrient addition.  Individual effects refer to the effects of nutrient 
enrichment in the absence and presence of herbivores and the effects of herbivore 
removal in the absence and presence of nutrient enrichment.  The effect size calculations 
are represented by the addition or subtraction of the number labels for each treatment in 
the figure.  These equations represent the numerator in the effect size calculation 
equations as in Gurevitch et al. (2000).   
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functional group response variables.  However, using the response ratio precluded using 

factorial meta-analysis, allowing us to calculate only the individual effects for the 

analyses of functional groups.   

Means, error measurements, and sample sizes used to calculate effect sizes were 

obtained from tables or extracted from graphs using Grab It! XP (Datatrend Software, 

Raleigh, NC).  Error measurements reported as standard errors were converted to 

standard deviation for use in effect size calculations.  Calculations of effect sizes were 

performed as outlined in Gurevitch et al. (2000) for factorial analysis with Hedges’ d, and 

Hedges et al. (1999) for the response ratio using workbooks in Microsoft Excel.  We 

performed unweighted, mixed effect model meta-analyses with MetaWin 2.0 (Rosenberg 

et al. 2000).  Confidence intervals (95%) were calculated using a bias-corrected 

bootstrapping technique with 9999 sampling iterations (Adams et al. 1997).  Effect sizes 

were considered significant if 95% confidence intervals did not cross zero.  Effect sizes 

within analyses (e.g. herbivore removal effect vs. nutrient enrichment effect) were 

considered different from each other if their 95% confidence intervals did not overlap. 

To facilitate comparison of treatment effect sizes, we constructed our calculations 

so that the effects of both nutrient enrichment and herbivore removal were positive.  

Thus, we tested (1) the effect of removing herbivores from the system, not the effect of 

adding herbivores to the system and (2) the effect of nutrient enrichment.  A positive 

effect size for herbivore removal or nutrient enrichment means that these manipulations 

enhance the abundance of primary producers.  A positive effect size for the interaction 

term means that nutrient enrichment has a larger effect in the absence of herbivores than 
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in their presence.  For factorial analyses, mean effect sizes are designated d++ whereas 

individual effect sizes are designated d+.  Response ratio effect sizes in the analyses of 

algal functional groups are designated rr. 

To determine if effect sizes were either negatively or positively correlated with 

experimental duration or experimental plot size, we used least squares linear regression to 

compare effect sizes with the log-transformed duration (in days) or the log-transformed 

experimental plot size (in m2) of each experiment.  Regressions were performed only for 

mean effects and were performed for all studies pooled and for each primary producer 

type except for seagrasses due to low sample size (n = 3).   

 

Results 

Factorial meta-analysis across all experiments showed that both nutrient 

enrichment (d++ = 0.98) and herbivore removal (d++ = 1.55) strongly affected abundance 

of primary producers (Figure 2.2A).  There was also a significant interaction (d++ = 0.42), 

indicating that nutrient enrichment had a greater effect in the absence of herbivores.  

Further, herbivore removal in the presence of enrichment (d+ = 1.84) had a much greater 

effect than enrichment when herbivores were not removed (d+ = 0.51) (Figure 2.2B).    

 For tropical macroalgae (Figure 2.2C), nutrient enrichment (d++ = 0.90), herbivore 

removal (d++ = 2.84), and their interaction (d++ = 0.60) were all positive.  Nutrient 

enrichment enhanced tropical macroalgae in the absence of herbivores (d+ = 1.37) but not 

in their presence (d+ = 0.28) (Figure 2.2D).  In contrast, herbivore removal had a strong, 

positive effect both with (d+ = 3.23) and without (d+ = 2.15) enrichment; the effects of 
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Figure 2.2.  Results of meta-analyses on mean and individual effects (left panel and right 
panel respectively) for all primary producers (A&B), tropical macroalgae (C&D), and 
seagrasses (E&F).  Effect sizes are Hedges' d ± 95% confidence intervals. Effects are 
statistically significant (P < 0.05) if confidence intervals do not overlap d = 0.  A positive 
d indicates an increase and a negative d a decrease in primary producer abundance.   
Letters designate differences among categories within an analysis as based on 95% 
confidence intervals, i.e. data points with different letters do not have overlapping 
confidence intervals.  Graphs with no letters had no significant differences among data 
points.  Note different scales on Y-axes.   
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herbivore removal were greater under either nutrient regime than were the effects of 

nutrients in the presence of herbivores (Figure 2.2D).  

Seagrass communities (Figure 2.2E) showed no effect of nutrient enrichment (d++ 

= 0.09), a positive effect of herbivore removal (d++ = 0.97), and no interaction (d++ = 

0.08).  Nutrient enrichment did not affect seagrass abundance either in the presence (d+ = 

0.01) or absence (d+ = 0.17) of herbivores (Figure 2.2F).  In contrast, herbivore removal 

strongly affected seagrass abundance both in the absence (d+ = 0.83) and presence (d+ = 

0.99) of added nutrients.  These analyses suggest that herbivores have strong effects 

while nutrients have limited effects on seagrass abundance, but the low sample size (n = 

3) constrains these conclusions. 

Temperate macroalgae (Figure 2.3A) were positively affected by both nutrient 

enrichment (d++ = 1.06) and herbivore removal (d++ = 1.27).  The effect size for the 

interaction term was positive (d++ = 0.40, CI = -0.03/0.93) but not significant (the 

confidence intervals slightly overlapped zero).  The nutrient enrichment effect was 

significant both in the presence (d+ = 0.61) and absence (d+ = 1.37) of herbivores (Figure 

2.3B).  Herbivore removal had a significant positive effect in the presence of added 

nutrients (d+ = 1.56), but without added nutrients the effect size was smaller (d+ = 0.80) 

and slightly overlapped zero, making the effect non-significant.    

Herbivore removal and nutrient enrichment differentially affected temperate 

macroalgae as a consequence of the background nutrient status of the ecosystem.  In low 

productivity environments, both nutrient enrichment (d++=0.75) and herbivore removal 

(d++ = 2.06) had positive effects (Figure 2.3C).  The interaction effect was marginally 
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Figure 2.3.  Results of meta-analyses on mean and individual effects for temperate 
macroalgae all studies (A&B), studies in low productivity areas (C&D), and studies in 
high productivity areas (E&F). Symbols and analyses as in Figure 2.2.    
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non-significant (d++=0.42, CI = -0.03/1.10).  However, analyses of individual effects 

showed that nutrient enrichment significantly enhanced algal abundance only in the 

absence of herbivores (d+ = 1.10; Figure 2.3D).  Herbivore removal effects were strong in 

the absence (d+=1.52) and presence (d+ = 2.31) of enrichment.  In high productivity areas, 

there was a positive nutrient enrichment effect (d++ = 1.48) but no herbivore removal 

effect (d++ = 0.22) or interaction (d++ = 0.37; Figure 2.3E).  The enrichment effect 

appeared strong in both the presence and absence of herbivores (d+ = 1.29 and 1.99 

respectively; Figure 2.3F) but was statistically significant only with herbivores present 

despite the effect size being larger without herbivores.   

For benthic microalgae, the nutrient enrichment (d++ = 0.64), herbivore removal 

(d++ = 0.76), and interaction effects (d++ = 0.21) were positive (Figure 2.4A). 

Additionally, nutrient enrichment was significant in the presence (d+=0.40) and absence 

(d+ = 0.80) of herbivores, and herbivore removal was significant both in the absence (d+ = 

0.51) and presence (d+ = 0.91) of nutrient enrichment (Figure 2.4B).  In low productivity 

areas, the effects of nutrient enrichment (d++ = 0.35), herbivore removal (d++ = 1.01), and 

their interaction (d++ = 0.28) were significant (Figure 2.4C).  Individual effects showed 

significant nutrient enrichment effects only in the absence of herbivores (d+ = 0.59), but 

herbivore removal effects were significant both with (d+ = 1.21) and without (d+ = 0.68) 

nutrient additions (Figure 2.4D).  Studies in high productivity areas showed a strong 

nutrient enrichment response (d++ = 1.33) but no herbivore removal response (d++ = 0.47) 

or interaction (d++ = 0.32; Figure 2.4E).  Individual effects for high productivity areas 

showed a positive response to enrichment in both the presence (d+ = 0.95) and absence 
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Figure 2.4.  Results of meta-analyses on mean and individual effects for benthic 
microalgae all studies (A&B), studies in low productivity areas (C&D), and studies in 
high productivity areas (E&F).  Symbols and analyses as in Figure 2.2.     
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(d+ = 1.54) of herbivores, but no herbivore removal effect regardless of nutrient 

enrichment (Figure 2.4F). 

When we divided temperate and tropical macroalgae into functional groups, 

effects of herbivore removal and nutrient enrichment depended on algal type and latitude.  

For crustose coralline algae in temperate systems (Figure 2.5A), enrichment in the 

presence of herbivores decreased abundance, but this was the only significant result and 

should be viewed with caution due to very low sample size (n = 2).  Crustose corallines 

in tropical systems (Figure 2.5B) were modestly enhanced by nutrient enrichment, with 

this being significant in the absence of herbivores (rr = 0.57).  However, herbivore 

removal strongly decreased crustose corallines in the absence (rr = -2.36) and presence 

(rr  = -2.23) of nutrient enrichment.   

For upright macroalgae, nutrient enrichment had no effect in either temperate or 

tropical habitats (Figures 2.5C & 2.5D), but herbivore removal increased macroalgal 

abundance in both temperate (rr = 0.60 in the absence of nutrient enrichment; Figure 

2.5C) and tropical communities (rr = 3.13 and rr = 2.81 in the absence and presence of 

nutrient enrichment; Figure 2.5D).  Filamentous algae in temperate systems were 

enhanced by nutrient enrichment (rr = 1.22 and rr = 1.11 in the presence and absence of 

herbivores, respectively) but not by herbivore removal (Figure 2.5E).  In tropical systems, 

nutrient enrichment decreased abundance of filamentous algae in the presence of 

herbivores (rr = -1.02) (Figure 2.5F) while other treatments had no significant effects. 

Regressions comparing effect sizes and experiment duration showed relationships 

for only 2 of the 12 comparisons (i.e. the herbivore removal and interaction effects for 
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Figure 2.5.  Results of meta-analyses on individual effects for crustose coralline algae, 
upright macroalgae, and filamentous algae in temperate and tropical ecosystems.  Effect 
sizes are response ratio ± 95% confidence intervals.  Symbols and analyses as in Figure 
2.2.     
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benthic microalgae) (Table 2.2).  Experiments lasted on average 119.2 ± 17.8 d (mean ± 

SE) with a range of 12-540 d.  Regressions comparing effect sizes and experimental plot 

size showed no significant relationships for any of the comparisons (Table 2.3).  Mean 

experimental plot size was 0.14 ± 0.03 m2 (mean ± SE) with a range of 0.023-1 m2.  

Therefore, combining experiments of different durations and sizes rarely confounded 

effect size with experimental characteristics and would have had little effect on most 

analyses. 

 

Discussion 

When averaged across all the benthic marine systems in our study, herbivore 

pressure and nutrient availability both played significant roles in determining abundance 

of primary producers (Figures 2.2A & 2.2B).  The positive interaction terms for the 

overall analysis (Figure 2.2A), for tropical macroalgae (Figure 2.2C), and for benthic 

microalgae (Figure 2.4A) demonstrate that effects of nutrient enrichment are magnified in 

the absence of herbivores and that simultaneous alterations to biotic and abiotic forces 

can have synergistic effects on communities (Scheffer et al. 2001, Worm et al. 2002).  

Further, context-dependent patterns of top-down and bottom-up regulation were evident 

when comparing temperate vs. tropical macroalgae (Figures 2.2D & 2.3B), low vs. high 

productivity systems (Figures 2.3 & 2.4), and different algal functional groups (Figure 

2.5). 
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Table 2.2.  Results of regression analyses testing for relationships between mean effect 
size and experimental duration.  Seagrasses were not included due to low sample size (n 
= 3). 

 

 

 
Table 2.3.  Results of regression analyses testing for relationships between mean effect 
size and experimental plot size.  Seagrasses were not included due to low sample size (n 
= 3). 

 

 

Primary producer Effect type n slope r
2
 P 

Overall Herbivore 54 -0.026 0.001 0.972 
Overall Nutrient 54 -0.157 0.001 0.812 
Overall Interaction 54 0.778 0.017 0.817 
Tropical macroalgae Herbivore 15 0.008 0.0 0.634 
Tropical macroalgae Nutrient 15 -1.093 0.051 0.482 
Tropical macroalgae Interaction 15 -2.609 0.120 0.202 
Temperate macroalgae Herbivore 14 0.323 0.005 0.820 
Temperate macroalgae Nutrient 14 0.315 0.015 0.679 
Temperate macroalgae Interaction 14 1.790 0.251 0.068 
Microalgae Herbivore 21 -1.070 0.270 0.015 
Microalgae Nutrient 21 -0.698 0.109 0.145 
Microalgae Interaction 21 -1.500 0.285 0.013 

      

Primary producer Effect type n slope r
2
 P 

Overall Herbivore 54 -0.184 <0.001 0.783 
Overall Nutrient 54 0.766 0.012 0.208 
Overall Interaction 54 -0.010 <0.001 0.977 
Tropical macroalgae Herbivore 15 0.480 <0.001 0.805 
Tropical macroalgae Nutrient 15 -1.280 <0.001 0.404 
Tropical macroalgae Interaction 15 -1.060 <0.001 0.381 
Temperate macroalgae Herbivore 14 -2.700 <0.001 0.427 
Temperate macroalgae Nutrient 14 -2.230 0.053 0.213 
Temperate macroalgae Interaction 14 -0.440 <0.001 0.732 
Microalgae Herbivore 21 -0.375 <0.001 0.366 
Microalgae Nutrient 21 0.691 0.091 0.099 
Microalgae Interaction 21 -0.028 <0.001 0.922 
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The analyses of tropical macroalgae show a modest effect of nutrient enrichment only 

when herbivores are first excluded but a consistently strong effect of removing herbivores 

regardless of nutrient enrichment (Figure 2.2D). Although both the decline of herbivores 

(Hughes 1994, Hughes et al. 1999) and eutrophication (Lapointe 1997, 1999) have been 

emphasized as the primary mechanism driving the transition of many reefs from coral- to 

macroalgal-dominated ecosystems, our analyses suggest that reduced herbivory is the 

primary factor driving increased macroalgal abundance but that nutrient enrichment 

significantly interacts with reduced herbivory to magnify these effects (Figures 2.2C & 

2.2D).  This interaction between herbivory and nutrient availability in driving macroalgal 

abundance has been emphasized in recent conceptual models of the decline of coral reef 

health (McCook 1999, Bellwood et al. 2004) as well as experimental manipulations 

addressing this problem (e.g. Miller et al. 1999, McClanahan et al. 2003).  These 

interactions likely make reefs less resilient and less likely to recover from the effects of 

climate change and disturbance (Hughes et al. 2003) as reduced herbivore populations 

would be less likely to keep open space caused by coral bleaching, hurricanes, and 

disease epidemics free of algae and allow recolonization of corals (Aronson et al. 2005), 

and eutrophication would likely accelerate the transition from coral- to algal-dominated 

communities via increased growth rates of algae.  Additionally, excess nutrients also 

increase the severity of coral diseases (Bruno et al. 2003), decrease coral growth rates 

(Koop et al. 2001), and increase bioerosion of reef substrate (Carreiro-Silva et al. 2005), 

all of which decrease the resilience of reefs.   
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Removal of herbivores on reefs dramatically depressed the abundance of crustose 

corallines (Figure 2.5B) but dramatically increased the abundance of upright macroalgae 

(Figure 2.5D).  Many corals preferentially recruit to crustose coralline algae (Heyward 

and Negri 1999) but have their recruitment and survival suppressed by upright 

macroalgae (Lewis 1986, McCook et al. 2001) making herbivores crucial to reef health 

because they indirectly facilitate coral recruitment and survival by promoting crustose 

corallines and by suppressing upright macroalgae.  However, the effects of herbivores on 

tropical crustose coralline algae (Figure 2.5B) and nutrients on temperate crustose algae 

(Figure 2.5A) may not reflect actual changes in crustose coralline abundance but in 

apparency as crustose corallines are often overgrown but not killed by macroalgae 

(Steneck and Dethier 1994).  Because these studies measured percent cover of crustose 

coralline algae instead of biomass, crustose algae may have been present but obscured by 

a fleshy algal canopy making them less visible and decreasing their relative abundance 

but not decreasing their absolute abundance.  However, this decrease in apparency in 

response to herbivore removal still would be significant for coral reefs in that the 

preferred settlement sites for corals (i.e. crustose coralline algae), would be obscured by 

turf or upright macroalgae thereby decreasing recruitment success of corals and the 

regenerative capacity of reefs. 

Although we showed little effect of scale on the experimental effect sizes (Table 

2.3), the maximum plot size for these experiments was 1 m2 which is far smaller than the 

kilometer-wide scale that may represent anthropogenic effects on ecosystems.  This 

smaller scale may diminish the effects of nutrients but magnify the effects of herbivores 
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on producer communities.  For example, nutrient enrichment in the presence of 

herbivores did not show an effect for tropical systems which could be the result of highly 

mobile fishes concentrating their feeding efforts on a small patch of very nutritious algae 

(Burkepile and Hay unpub. data).  This interaction could explain the depression of turf 

algae under nutrient enrichment in the presence of herbivores (Figure 2.5F).  Yet, 

experimental nutrient enrichment on coral patch reefs averaging 253 m2 also showed no 

effect of enrichment on algal abundance in the presence of fish (Koop et al. 2001) while 

exclusions of herbivores on reefs of 50-230 m2 (Sammarco 1982, Lewis 1986) have 

shown dramatic increases in macroalgal abundance similar to our analyses (Figures 2.2C 

& 2.5B).  Although, these “large-scale” experiments are still far smaller than what might 

be expected from overfishing of herbivores or anthropogenic eutrophication, their results 

suggest that the processes regulating tropical macroalgae on the scale of <1m2 are similar 

to those on the scale of 100’s of m2.   

For temperate macroalgae and benthic microalgae the relative importance of 

herbivores and nutrients differed between areas of low vs. high productivity.  In low 

productivity areas, both herbivore removal and nutrient enrichment were significantly 

positive (Figures 2.3C & 2.4C), but nutrient enrichment was significant only when 

herbivores were absent (Figures 2.3D & 2.4D).  In contrast, for high productivity areas, 

the effects of nutrient enrichment were significant whereas the effects of herbivore 

removal were not (Figures 2.3E, 2.3F, 2.4E, & 2.4F).  However, all of the studies for 

temperate macroalgae in high productivity systems were conducted in the same area of 

the Baltic Sea, and the analyses of benthic microalgae in high productivity areas had a 
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low sample size (n = 3) meaning that this effect could be a region-specific pattern rather 

than a general phenomenon.  Yet, Hillebrand (2002) also showed that varying the level of 

background productivity in the system alters the interaction between herbivore vs. 

nutrient control of benthic microalgae in freshwater and marine systems, although the 

differences among areas of differing productivity were modest.  Worm et al. (2002) 

showed even more dramatic effects of background productivity on the role of herbivores 

vs. nutrient availability in controlling species diversity in aquatic communities.  Nutrient 

enrichment in low productivity systems increased diversity but herbivores decreased 

diversity, whereas nutrients in high productivity systems decreased diversity and 

herbivores increased diversity.  Further, the comparison of our analyses with those of 

Worm et al. (2002) suggests that the effects of herbivores and nutrients are more complex 

than merely changing overall abundance of primary producers.  For example, herbivores 

could facilitate the replacement of palatable macroalgae with unpalatable macroalgae 

with little effect on actual primary producer abundance (Lubchenco and Gaines 1981, 

Lotze et al. 2001).  Thus, our measure of producer abundance almost certainly 

overlooked important changes in species composition in response to herbivores and 

nutrients.  Further comparison of these three meta-analyses (Hillebrand 2002, Worm et 

al. 2002, this study) suggest that consumers in high productivity areas have little effect on 

the overall abundance of primary producers but a large effect on community composition 

whereas nutrient enrichment increases abundance and decreases diversity.  In low 

productivity areas consumers depress both the abundance and diversity of producers 

while nutrient enrichment increases diversity but not abundance.       
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For temperate macroalgal communities, these patterns for low and high 

productivity studies may stem, in part, from the types of algae present in these systems.  

Large, perennial macroalgae tend to dominate low productivity intertidal areas, while 

ephemeral, filamentous macroalgae become more abundant as productivity increases 

(Worm et al. 2000, Bracken and Nielsen 2004).  Studies of nutrient uptake dynamics 

indicate that perennial macroalgae absorb nutrients more slowly than filamentous algae 

(Pedersen and Borum 1996), suggesting that perennial macroalgae may respond less 

quickly to nutrient pulses than would filamentous algae.  Our analyses agree with these 

physiological studies and show that upright macroalgae in temperate systems are more 

strongly affected by herbivores than by nutrient availability (Figure 2.5C) while the 

abundance of filamentous algae is more strongly affected by nutrient availability with 

herbivores having minimal influence (Figure 2.5E).  Thus, primary producer abundance 

in high productivity areas may show strong responses to nutrient enrichment because 

dominant, filamentous algae rapidly respond to nutrient pulses and more easily 

compensate for losses to herbivores with rapid growth.  Similarly, laboratory studies have 

shown that the same density of grazers has a smaller effect on the recruitment of the 

annual alga Enteromoprha intestinalis as nutrient enrichment increases (Lotze and Worm 

2002).  Producer abundance in low productivity areas may be more strongly affected by 

herbivores because upright macroalgae are less influenced by fluctuations in nutrient 

availability (Pfister and Van Alstyne 2003) and grow more slowly making them more 

susceptible to herbivores than are fast-growing filamentous algae in high productivity 

areas even though these perennial macroalgae may be less preferred food than annual 
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algae.  Further, these patterns could be confounded if herbivores were consistently less 

abundant in high as opposed to low productivity areas.  Although few studies in our 

analysis measured herbivore abundance making quantitative comparisons difficult, Lotze 

et al (2001) found the highest herbivore densities at their high productivity site but 

showed little effect of herbivore removal on producer abundance further suggesting that 

algae in high productivity areas can grow fast enough that they essentially escape control 

by grazers. 

A limitation of the analyses for temperate macroalgae is that all of the studies 

come from rocky intertidal or shallow subtidal systems where herbivores may be large 

(i.e. urchins or gastropods) relative to the primary producers (filamentous algae and small 

to medium-sized macroalgae).  Our dataset did not included experiments from large kelp 

communities (i.e. Macrocystis spp.).  These large, perennial macroalgae can respond 

strongly to pulsed inputs of nutrients (Dean and Jacobsen 1986) and suffer extensive die-

offs when faced with nutrient-poor water for extended periods (Dayton et al. 1992) 

showing that nutrient availability plays a strong role in affecting their abundance, a 

pattern contrary to the one we show for perennial macroalgae (Figure 2.5C).  Further, 

herbivores can have effects on kelp communities that range from weak (Sala and Graham 

2002) to strong (Estes et al. 1998) emphasizing the need for more in depth experimental 

work addressing the relative roles of herbivores and nutrient availability in affecting kelp 

communities.   

Nutrient enrichment in the presence of herbivores significantly suppressed both 

temperate crustose corallines (Figure 2.5A) and tropical filamentous algae (Figure 2.5F).  
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Nutrients never suppressed any other primary producers in our other analyses (Figures 

2.2-2.5).  The studies we analyzed did not address these effects and our analyses cannot 

rigorously assess the mechanisms involved, but herbivores are commonly nitrogen 

limited (Mattson 1980) suggesting that dominant herbivores in these systems selectively 

attack algae with enriched levels of nitrogen.  Fishes on tropical reefs will selectively 

attack filamentous algae growing on plots with elevated nutrients (Burkepile and Hay 

unpub. data) and individual macroalgae that have been subjected to nutrient enrichment 

(Boyer et al. 2004).  This aspect of nutrition and fish behavior could explain why 

filamentous algae in temperate areas with few herbivorous fishes are enhanced by 

nutrients while those in tropical areas with abundant fishes are significantly suppressed 

by nutrient additions only when herbivores are present (Figure 2.5F).  Similarly, 

gastropods in the temperate intertidal commonly enhance coralline abundance by grazing 

competing filaments and microalgae more heavily than encrusting corallines (Steneck 

and Dethier 1994), but increased nutrients may enhance the value of crustose corallines 

and result in them being targeted by these grazers.  However, as discussed earlier, the 

pattern for crustose coralline algae may reflect changes in relative as opposed to absolute 

abundance and not result directly from grazing by herbivores.     

 

Conclusions 

Both herbivores and nutrients significantly affected the abundance of primary 

producers across all habitats we examined.  These data suggest that human alteration of 

food webs and nutrient availability will have demonstrable, often compounded, effects on 
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primary producers but that the effects will depend on context and vary among latitudes, 

primary producers, and the inherent productivity of ecosystems.  Further, herbivory and 

nutrient availability have complex and interactive effects on both overall abundance and 

diversity of primary producers making the mechanisms that drive these patterns fruitful 

areas of future research.  The small scale of most of these experiments underscores to the 

need for creative experimentation that analyzes the effects of top-down and bottom-up 

forces on larger spatial and temporal scales that more closely resemble the effects of 

anthropogenic stressors on these ecosystems.  Further, tests on how the patterns from 

these small-scale experiments extrapolate at larger scales are required to continue to 

address productively the effects of top-down and bottom-up forces on marine 

communities. 
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CHAPTER 3 

REVIVING CARIBBEAN REEFS: THE CRITICAL ROLE OF 

 HERBIVORE DIVERSITY 

 

 

Abstract 

 
Herbivory is crucial for healthy coral reefs, but reef function may depend as much on 

herbivore diversity as on the intensity of herbivory.  Using manipulative field 

experiments, we show that Caribbean reefs change dramatically as a function of changing 

herbivorous fish diversity.  Higher herbivore diversity caused lowered macroalgal 

abundance, reduced coral mortality, and increased coral growth when compared to 

treatments with lower herbivore diversity.  Complementary feeding by different fishes 

drove these patterns because macroalgae were unable to effectively deter feeding by 

fishes with different attack strategies.  Maintaining diversity of herbivorous fishes is 

critical for conserving and restoring healthy coral reefs. 

 

Introduction 

Coral reefs are imperiled worldwide because of the compounding effects of 

multiple stressors (Hughes et al. 2003a, Bellwood et al. 2004).  The decline of reefs is 

particularly evident in the Caribbean where coral cover has decreased by 80% in recent 

decades (Gardner et al. 2003) and may drop further as reefs fail to rebound from 

increased coral bleaching and disturbances (Gardner et al. 2005, McWilliams et al. 2005).  

During this decline there has been considerable scientific focus on determining and 

debating causes of coral loss (Aronson et al. 2003, Hughes et al. 2003a, Hughes et al. 
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2003b, Pandolfi et al. 2003a, 2003b), but minimal focus on ecologically sustainable 

solutions to enhance reef recovery (Pandolfi et al. 2005).  Here, we focus on a 

prescription for reef recovery by demonstrating that herbivorous fish diversity positively 

impacts Caribbean reef function and could serve as a management tool for reviving coral 

reefs. 

At previous historic densities, herbivorous fishes and urchins kept reefs free of 

macroalgae that can overgrow and kill established corals (Lewis 1986) as well as prevent 

coral recruitment (McCook et al. 2001).  The removal of these herbivores via overfishing 

and disease led to macroalgal blooms and dramatic loss of corals on many reefs (Hughes 

1994, Jackson et al. 2001).  Despite the clear role of herbivory as a critical process for 

maintaining reef health, we know little about the effects of herbivore diversity on the 

function of coral reefs.  Herbivore diversity should benefit reefs as a more diverse 

herbivore assemblage should include herbivores with varied attack strategies, which in 

turn should increase the efficiency of macroalgal removal because particular macroalgal 

species are unlikely to be well defended against all types of herbivores (Lubchenco and 

Gaines 1981, Schupp and Paul 1994). 

To address the role of herbivore diversity on coral reefs, we enclosed equal 

densities of single species and mixed species groups of herbivorous fishes in large, 

replicate cages on a reef in the Florida Keys, USA.  We used the redband parrotfish, 

Sparisoma aurofrenatum, and the ocean surgeonfish, Acanthurus bahianus to generate 

our experimental treatments.  We chose these two fishes because videotaping of reef 

macroalgae showed that these were the major grazers of macroalgal species that 

commonly overgrow coral reefs (M.E. Hay unpub. data).  Additionally, these two fishes 
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also differ in their adaptations for herbivory as redband parrotfish have robust 

mouthparts, a pharyngeal mill that mechanically breaks algal cells, and no differentiated 

stomach, while ocean surgeonfish lack robust mouthparts and a pharyngeal mill, but have 

an acidic stomach that lyses algal cells (Horn 1989).  Over the 10 month duration of the 

experiment, we monitored changes to macroalgal abundance and species composition and 

to coral health and cover in response to the treatments and assessed feeding preferences 

of the herbivores for common macroalgae.   

 

Materials and Methods 

Experimental setup and maintenance 

In November 2003, we used NOAA's Aquarius, a self-sufficient underwater 

research laboratory at a depth of 16 m offshore of Key Largo, FL to set up the 

experiment.  The experiment was located on a spur and groove reef formation at depths 

of 16-18 m on Conch Reef (24°57’N/80°27’W).  The cage frames were constructed from 

0.6 cm steel bar and covered with PVC-coated, galvanized chicken wire (2.5 cm mesh 

size) attached to the cage frame with cable ties.  Chicken wire of this mesh size has been 

used in previous experiments and imparts minimal caging artifacts (Miller et al. 1999).  

Cages measured 2 m X 2 m X 1 m tall and covered 4 m2 of the reef bottom.  We attached 

the cages to the reef by wiring the frames to 30 cm galvanized nails that had been 

hammered into the reef substrate.  A 30 cm flange of chicken wire extended from the 

base of the cage and was conformed to the reef substrate and affixed using galvanized 

fencing nails.  This barrier prevented larger fishes from escaping or entering the cage, but 

the mesh size allowed small fishes to enter and exit at will.  One half of the cage top was 
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secured with bungee cords instead of cable ties to allow easy access to the inside of the 

cages for routine maintenance and data collection.  Zinc anodes were attached to the 

chicken wire and the cage frame to prevent corrosion.  Two 25 cm X 10 cm PVC tubes 

were attached to the inside of the cage frame as refuges for the enclosed fish.    

The benthic community inside the cages consisted of unmanipulated populations 

of macroalgae, corals, sponges, gorgonians, and other common reef invertebrates.  

Treatments within the cages consisted of: (1) two redband parrotfish, (2) two ocean 

surgeonfish, (3) one redband parrotfish and one ocean surgeonfish, and (4) no enclosed 

fish.  We also monitored uncaged areas of equal size with n = 8 for each treatment and 

for the uncaged areas.  Our treatments achieved equal density of grazers within the cages 

(0.5 fish/m2) and also did not differ in fish biomass as parrotfish and surgeonfish within 

treatments did not differ in biomass (142.7 ± 11 g vs. 137.4 ± 4.6 g respectively [mean ± 

SE]; t = 0.45, P = 0.66, df = 13).  Four cages and an uncaged area were blocked as closely 

as the reef configuration allowed in one general area and treatments were allocated 

randomly among each of the four cages.  Thus, we had eight blocks each containing all 

five experimental treatments.  We caught fishes with hand nets and barrier nets and 

placed them inside the cages.  Every 4-6 weeks, we surveyed fishes inside the cages and 

replaced missing fishes to maintain treatments.  Four replicates were not included in the 

data analyses due to persistent predation on the treatment fishes by moray eels resulting 

in n = 6 for the parrotfish-only and the parrotfish/surgeonfish treatments.   We scrubbed 

the cages inside and out roughly every 4-6 weeks to remove fouling organisms and 

prevent shading.  Between scrubbings, grazing by reef fishes (especially surgeonfishes 

and juvenile parrotfishes feeding on filamentous algae) kept the cages relatively clean of 
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fouling organisms.  Macroalgal abundance and community structure at the start of our 

experiment did not differ among our treatments (Table 3.1).  The experiment ran for 10 

months between November 2003 and August 2004.   

 

Data collection and analysis 

Every 8-10 weeks, we monitored macroalgal cover and species composition on 

the benthos inside the cages and in uncaged areas.  Using a 1.5 m X 0.75 m quadrat 

containing 50 stratified random points, we sampled two areas within each cage for a total 

of 100 points and identified the organisms under each point to the lowest taxonomic level 

possible under field conditions.  For some species that grew as easily identifiable separate 

individuals (i.e. Halimeda tuna and Sargassum spp.), we counted numbers within each 

cage as well as recording percent cover.  We avoided taking data from the outer 10cm 

border within each cage to minimize cage effects because the cage itself could have 

impeded fish from feeding in close proximity to the edges.  Cover or density data from 

the end of the experiment (August 2004) were used for all analyses.  We used one-factor 

analysis of variance (ANOVA) followed by Tukey’s multiple comparisons to determine 

differences among treatments within an analysis.  Even though our experiment was 

designed with eight blocks each containing a replicate of each treatment, we did not use a 

blocking factor in our ANOVA’s because eel predation on the treatment fish necessitated 

the removal of four cages from the experiment resulting in n = 6 for the parrotfish-only 

and the parrotfish/surgeonfish treatments.  The loss of these replicates invalidated our 

blocked design.  Data were subjected to Cochran’s test for homogeneity of variance 

(Sokal and Rohlf 1995) and transformed when necessary to meet the variance 
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Table 3.1.  One-way ANOVAs assessing differences among treatments in macroalgal 
cover at the beginning of the experiment.   
 

Macroalgal type F P 

Dictyota spp. 1.24 0.315 

Halimeda tuna 0.89 0.415 

Lobophora variegata 0.79 0.539 

Articulted coralline algae 0.68 0.611 

Turf algae 0.74 0.571 

Coralline algae 1.41 0.252 

Upright macroalgae 2.01 0.115 

 

 

 

 homogeneity assumptions of ANOVA.  We used the nonparametric Kruskal-Wallis test 

followed by multiple comparisons for Sargassum spp. because no transformation 

satisfied the data assumptions for ANOVA. 

To more completely address the effects of herbivore diversity on the abundance of 

upright macroalgae as a group, as well as specific groups or species of macroalgae, we 

calculated a difference metric (D) comparing single species treatments to the diversity 

treatment.  To calculate D, we used the formula D = (Oi – E)/E where E is the average of 

the two single species treatments combined (the expected value) and Oi is the observed 

value for one of the replicates in the diversity treatment.  D was calculated for each 

diversity treatment replicate.  This metric is similar to Dmax that is used to detect 

overyielding in studies of how plant diversity affects ecosystem function (Loreau 1998).  

If D < 0, then abundance of that macroalgal group is lower in the diversity treatment than 

the average single species treatment; if D > 0 then the diversity treatment facilitates that 

macroalgal group.   
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We monitored the condition and growth of corals within the treatments using 

digital photography.  We took digital photographs of each coral colony in situ within 

each replicate of all treatments at the beginning (November 2003) and end (August 2004) 

of the experiment.  The camera was mounted on a quadrapod frame to allow consistent 

positioning of the camera above each coral.  Corals were individually mapped onto 

detailed drawings of the benthos of each treatment.  We did not include corals that were 

growing in areas that were difficult to photograph such as on the tops of large coral 

aggregates or vertical reef structure.  To measure loss or gain of live area for each colony, 

we used the computer imaging program Image J to outline each coral in the photographs 

and calculate colony area.  We did this for each coral at the beginning and end of the 

experiment.  To calculate the change in coral area over the course of the experiment, we 

used the following formula:  (end coral area - beginning coral area)*100/beginning coral 

area.  Measuring coral colony area using photographs is a good method for estimating 

coral growth when corals are mounding or encrusting (Tanner 1995). Since this 

photographic method does not work well for branching corals such as Porites porites, 

they were not included in the analysis, but branching corals represented <5% of colonies 

within the cages so our sample size was not significantly diminished by excluding them.  

The most common mounding and encrusting corals found in the treatments were 

Siderastrea siderea (45% of all corals), Porites astreoides (19%), Agaricia spp. (16%), 

and Stephanocoenia michelini (10%).   

To assess coral mortality for each treatment, we calculated the percentage of 

corals from each replicate that died and tested for significant mortality in each treatment 

by testing for difference from zero using a one-tailed, t-test.  Change in coral area was 
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analyzed using a nested, one-way ANOVA on the rank transformed data with individual 

corals nested within a fish treatment replicate followed by Tukey’s test for multiple 

comparisons.  Additionally, we used linear least squares regression to investigate the 

relationship between total macroalgal abundance in each replicate for each treatment and 

change in coral area for that replicate.  For regression analysis, the average change in 

coral area was regressed against total macroalgal cover.      

 

Fish feeding preferences for common macroalgae 

To determine feeding preferences of redband parrotfish and ocean surgeonfish for 

macroalgae that were present in the various treatments, we offered macroalgae to the 

parrotfish and surgeonfish housed in the single species treatments.  We used Dictyota 

menstrualis, Halimeda tuna, Sargassum fillipendula, Lobophora variegata, Kallymenia 

westii, and Haloplegma duperryi as these species were common in some of the 

treatments.  In the lab, pieces of macroalgae (3.0 ± 0.3 g pieces for H. tuna and 2.0 ± 0.2 

g pieces for other macroalgae) were blotted dry with a paper towel, weighed to the 

nearest 1 mg, and then entwined into a three-stranded polypropylene rope (one species 

per rope).  Ropes of each macroalgal species were placed in the parrotfish-only, 

surgeonfish-only, and exclosure cages.  Fish were allowed to feed on the macroalgae for 

24-30 h before the ropes were collected.  Remaining pieces of macroalgae were then 

blotted dry and weighed to the nearest 1 mg to get the final weight.  The beginning and 

final weights were used to calculate the percent of the macroalgae removed.  To 

determine if the parrotfish and surgeonfish consumed significant quantities of these 

macroalgae, change in mass of the macroalgae in the parrotfish and surgeonfish 
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treatments were compared individually to changes in mass in the exclosures using one-

tailed t-tests.  We used one-tailed t-tests based on the prediction that more macroalgal 

biomass would be removed in cages enclosing large herbivores than cages excluding 

large herbivores. 

 

Analyses of possible confounding factors 

To determine if the patterns of macroalgal abundance and coral growth could 

have been the result of factors that were confounded with the experimental treatments, we 

quantified the weight:length ratios of enclosed treatment fishes, the feeding rates of 

enclosed treatments fishes, and the use of different treatments by small fishes that could 

pass through the mesh (i.e. damselfishes and juvenile parrotfishes).  If caged fish weighed 

less per unit length than free-roaming fish it would suggest that caging these species had 

reduced their food intake potentially biasing our results.   To determine weight:length 

ratios for redband parrotfish and ocean surgeonfish, all fish were removed from the cages 

at the end of the experiment, their standard length was measured to the nearest 0.1 cm, 

and each fish was weighed to the nearest 1 g using a spring scale.  Several fish were lost 

during the underwater transfer and weighing process.  This decreased our sample size of 

caged fish.  We also caught free-roaming redband parrotfish and ocean surgeonfish in the 

vicinity of our cages and measured their weight and length as described.  We compared 

the weight:length relationships of caged to free-roaming fishes using t-tests.   

Small fish (i.e., damselfish and juvenile parrotfish) could easily pass through our 

cages and could potentially graze preferentially within different treatments and alter 

community composition, potentially confounding our treatments.  In order to quantify 
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small fish abundance inside our treatments, divers swam above a cage, picked one of the 

four 1 m2 sections of the cage (as delineated by the cage frame when looking down on the 

cage from above), and identified the number and species of small fishes present within 

that section of cage.  These counts were repeated 10 times for each cage to get an average 

small fish density for each replicate.  Small fish abundances were log transformed and 

analyzed using one-way ANOVA followed by Tukey’s multiple comparison test.       

To determine bite rates within treatments, we monitored fish feeding by hovering 

in the water column 3-4 m above each cage and counting the bites the treatment fish took 

from the benthos within the cage and from the surface of the cage itself over 10 minutes.  

In uncaged controls, bites by all adult fishes were counted.  Bites by juvenile fishes were 

excluded from the uncaged controls to facilitate direct comparison of grazing rates by 

adult fishes within treatments.  Bite rates were also determined on a nearby shallow reef 

site to compare bite rates within our cages to feeding rates on a shallow reef as fish 

herbivory is often more intense on shallow reefs than on deeper reefs (Hay 1984, 

Morrison 1988) where our experiments were located.  Bite rates were analyzed with one-

way ANOVA followed by Tukey’s multiple comparisons.   

 

Results and Discussion 

At the end of the experiment, cover of upright macroalgae was a significant 2.7-

5.9X higher in the single species treatments than in the diversity treatment (Figure 3.1A).  

Parrotfish depressed the abundance of Lobophora variegata, articulated coralline algae, 

and Halimeda tuna relative to the surgeonfish-only treatment (Figures 3.1C – 3.1E).  

Parrotfish also depressed Sargassum spp. relative to the exclosure while surgeonfish did 
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not (Figure 1F).  Surgeonfish depressed the abundance of Haloplegma duperreyi (Figure 

3.1G) as compared to the parrotfish-only treatment and completely eliminated 

Kallymenia westii (Figure 3.1H).  Our results underestimate the cover of upright 

macroalgae in the parrotfish-only and exclosure treatments because wave action from 

Hurricane Charley (early August 2004) removed most of the large, bladed, but poorly 

attached macroalgae such as K. westii which had reached up to ~15% cover in these 

treatments before the storm (data not shown).  Thus, herbivore diversity directly 

depressed upright macroalgal abundance.     

When we calculated the D statistic as a further measure of the effect of herbivore 

diversity, increasing herbivore diversity significantly affected the majority of common 

macroalgal types in our study (Figure 3.2).  Herbivore diversity depressed upright 

macroalgae as a group as well as the common species Lobophora variegata, Dictyota 

spp., articulate coralline algae, Halimeda tuna, Haloplegma duperreyi, and Sargassum 

spp.; herbivore diversity facilitated crustose coralline algae and filamentous turf algae 

(Figure 3.2).  Of particular interest are the results for upright macroalgae, crustose 

coralline algae, and turf algae.  On coral reefs with healthy herbivore communities and 

intense grazing, the primary producer community is typically dominated by crustose 

coralline and turf algae, while upright macroalgae are rare (Steneck 1988, Hay 1997).  

Turf algae are preferred food for many reef herbivores and their high productivity fuels 

much of the herbivore production on coral reefs (Carpenter 1986).  Crustose coralline 

algae are important to the health of coral reefs as many coral larvae recruit preferentially 

to crustose coralline algae (Heyward and Negri 1999).  However, both turf algae and 

crustose coralline algae are poor competitors and are often replaced by upright  
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Figure 3.1.  Percent cover or density (mean ± SE) of (A) total upright macroalgae and (B-
H) macroalgal types.  P-values are from one-way ANOVA.  Letters above bars designate 
significant groupings according to Tukey’s multiple comparison test.  P = parrotfish, S = 
surgeonfish.  n is designated in brackets next to each treatment’s label on the X-axis. 
Note different scales for Y-axes.   
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Figure 3.2.  Difference statistic (D) (mean ± SE) for total macroalgae and different 
macroalgal types. D measures the difference between the diversity treatment and the 
average of the single species treatments.  If D < 0 then abundance is lower in the diversity 
treatment than the average single species treatment; if D > 0 then the diversity treatment 
facilitates that macroalga.  *P < 0.05, **P < 0.01.  P-values are from t-tests. n = 6 for all 
comparisons.   
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macroalgae when rates of herbivory are low (Steneck 1988).  Thus, herbivore diversity 

generates a macroalgal community that most resembles that found on a healthy coral reef.   

The patterns of abundance for macroalgae in the diversity and single-species 

treatments can be explained by the complementary feeding preferences of redband 

parrotfish and ocean surgeonfish.  When common macroalgae were fed directly to the 

fishes, parrotfish consumed Dictyota menstrualis, Halimeda tuna, Lobophora variegata, 

and Sargassum filipendula while surgeonfish ate Dictyota menstrualis, Kallymenia westii 

and Haloplegma duperryei (Figure 3.3).  Thus, complementarity in diet breadth for these 

two herbivores led to near elimination of upright macroalgae and facilitation of crustose 

coralline and filamentous algae in the treatment with increased herbivore diversity.   

Although herbivore diversity strongly suppressed macroalgae (Figures 3.1 & 3.2), 

it is critical to determine whether macroalgal suppression enhanced coral health.  When 

we assessed coral cover and mortality using digital photographs from the beginning and 

end of the experiment, significant coral mortality occurred in the exclosure and in the 

single species treatments (Figure 3.4A), but no mortality occurred in the uncaged areas or 

in the diversity treatment.  The exclosure and single-species treatments all experienced 

mean losses of coral cover (Figure 3.4B).  In contrast, the diversity treatment experienced 

a net 20% increase in coral cover in only 10 months.  This change was significantly 

greater than in either single-species treatment.  This increase did not differ significantly 

from the change in the uncaged areas to which all herbivores had access, but the mean 

growth was 20% as opposed to 10% in uncaged areas, suggesting that reef management 

to enhance these two herbivorous fishes might enhance coral growth and recovery in  
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Figure 3.3.  Percentage (mean ± SE) of the mass of macroalgae removed when placed 
into cages with (A) redband parrotfish and (B) ocean surgeonfish or into the exclosures in 
the field.  *P < 0.05 and **P < 0.01 as determined using one-tailed, t-tests.  A significant 
difference between treatment and control shows that more macroalgal mass was removed 
in the cages with herbivores (gray bars) as compared to the exclosure cages without large 
herbivores (black bars). 
 

 

 

 

 



 62 

Upright macroalgal cover (%)

0 10 20 30 40 50 60 70 80

C
h

a
n

g
e
 i

n
 c

o
ra

l 
a
re

a
 (

%
)

-80

-60

-40

-20

0

20

40

60

80
C

U
nca

ged
 (8

)

Exc
lo

su
re

 (8
)

P
/P

 (6
)

P
/S

 (6
)

S
/S

 (8
)

C
h

a
n

g
e
 i

n
 c

o
ra

l 
a

re
a

 (
%

)

-40

-20

0

20

40

CD

AB

BC

A

D

B
P < 0.001

C
o

ra
l 
m

o
rt

a
li

ty
 (

%
)

10

20

30

40 A

**

*

P = 0.001

r
2
 = 0.299

*

 

 

Figure 3.4.  Results of experimental treatments on (A) coral mortality (mean ± SE), (B) 
coral growth (mean ± SE), and (C) the relationship between macroalgal cover and coral 
cover. Statistical analyses were via (A) t-tests testing for a difference from zero * P < 
0.05, ** P < 0.01, (B) one-way ANOVA as in Fig. 1, and (C) linear least squares 

regression.  For (C) symbols are ■ Uncaged, ● Exclosure, ▲P/P, ▼ P/S, and ♦ S/S. 
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areas dominated by upright macroalgae.  Further, coral cover decreased as macroalgal 

cover increased when examined over all treatments (P = 0.001, r2 = 0.299) (Figure 3.4C).  

Together, these data show that having a diverse herbivore assemblage not only depressed 

macroalgal abundance but also decreased coral mortality and increased coral cover.   

Analyses of potential confounding factors show that these factors do not explain 

the experimental patterns that we show and that suppression of macroalgae and 

facilitation of crustose coralline algae and corals is driven by changing herbivore 

diversity and complementary feeding between fishes.  The weight:length ratios of fishes 

within our treatments at the end of the experiment did not differ from those of free-

roaming fishes (Figure 3.5), suggesting that the fishes in our cages grew as well as 

uncaged fishes that were free-roaming and thus free to graze from a wider variety of 

habitats, surfaces, or species.  Small fishes in general and juvenile parrotfishes in 

particular were most abundant in uncaged controls but there were no differences in fish 

density among other treatments (Figures 3.6A & 3.6B, respectively).  Furthermore, small 

fishes such as juvenile parrotfish that entered the cages typically fed on fouling 

organisms that were growing on the cages themselves as opposed to organisms growing 

on the benthos.  There were also no differences among treatments in damselfish density 

(Figure 3.6C) which could have confounded our treatments as they are territorial 

herbivores that can have strong effects on macroalgal communities (Hixon and Brostoff 

1996).  These data suggest that differences in small or juvenile fish abundance were not 

driving the patterns of macroalgal abundance within our treatments.  Finally our 

estimates of bite rates inside the cages show that the bite rate in the diversity treatment 

did not differ from the single species treatments (Figure 3.7).  Although the bite rates in 
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Figure 3.5.  Weight:length ratios (mean + SE) for free-ranging and caged redband 
parrotfish and ocean surgeonfish at the end of the experiment.  P-values are from t-tests.  
Inset boxes give sample sizes. 
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Figure 3.6.  Abundance (mean ± SE) for (A) all small fish, (B) juvenile parrotfish, and 
(C) damselfish within each treatment.  P-values are from one-way ANOVA.  Letters 
above bars designate significant groupings according to Tukey’s multiple comparison 
test.  P = parrotfish, S = surgeonfish.  n for each treatment is designated in brackets next 
to each treatment label on the X-axis.  Note different scales for Y-axes.   
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Figure 3.7.  Bite rates for adult fishes (mean ± SE) inside treatments at Conch Reef and 
for uncaged areas nearby.  P-value is from one-way ANOVA.  Letters above bars 
designate significant groupings according to Tukey’s multiple comparison test.  X-axis as 
in Figure 3.6. 
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some of the treatments may be higher than those on our study reef (although we could not 

detect significant differences in post-hoc tests), the bite rate on a shallow reef (6-8 m) in 

the Upper Florida Keys was 1.6 - 5.1X greater than those inside any of our treatments on 

Conch Reef.  These data suggest that the bite rates inside our treatments are well within 

the levels normally seen on shallow reefs in the Florida Keys.  The fact that the 

surgeonfish-only treatments had grazing rates over 2X that of the parrotfish-only 

treatments (Figure 3.7) yet had over 2X as much upright macroalgae (Figure 3.1A) 

indicates that bite rates per se do not equal overall grazing, or impact, for these two 

species.  Both visual observations of algal length removed per bite (ME Hay, personal 

observation) and the more robust mouthparts of redband parrotfish, indicate that they 

remove considerably more macroalgal biomass per bite than do ocean surgeonfish.  

Given this difference, the lower bite rates in the parrotfish-only treatments will not 

necessarily reflect lower rates of macroalgal consumption.  In sum, we are confident that 

our results reflect the effects of herbivore diversity and not some other covariate.  

Herbivores are critical drivers of ecosystem function on coral reefs because they 

keep reefs free of macroalgae and facilitate the recruitment, growth, and resilience of 

corals (Lewis 1986, Hughes 1994, Hay 1997, McCook et al. 2001, Bellwood et al. 2004), 

the foundation species that support the entire ecosystem.  We experimentally show that 

herbivore diversity is crucial for ecosystem health because complementary feeding by 

herbivorous fishes suppresses upright macroalgae (Figures 3.1 & 3.2), facilitates crustose 

corallines and turfs (Figure 3.2), and promotes coral growth (Figure 3.4).  Practical 

constraints of erecting large enclosures at depth constrained our test of herbivore 

diversity effects to only two species.  However, our results should be conservative in that 
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the 3 species of surgeonfishes and 12 species of parrotfishes in the Caribbean should have 

even more complementarity in diet overlap thereby enhancing the effect of diversity on 

macroalgae.  Yet, the redband parrotfish vs. ocean surgeonfish contrast may have focused 

on a contrast producing a striking diversity effect.  If so, the contrast is nonetheless 

ecologically important because these two fishes are among the most common species of 

herbivorous fishes at many sites in the Caribbean (Lewis and Wainwright 1985, Lewis 

1986, Mumby and Wabnitz 2002) and have been identified as important consumers of 

many macroalgae (Lewis 1985).  Furthermore, the differential effects we documented 

were strong despite caging fishes in restricted areas, which could have forced them to eat 

some macroalgae that they might normally avoid.  In addition, ongoing experiments 

comparing multiple species of parrotfish show similar, though less dramatic, effects of 

herbivore diversity on macroalgal communities (Burkepile and Hay, unpub. data). 

As food webs become simplified via human-mediated extinction of strongly 

interacting consumers (Jackson et al. 2001, Duffy 2003), understanding the role of 

consumer diversity in driving ecosystem function will become increasingly imperative 

(Duffy 2002).  This understanding is critical on coral reefs where widespread overfishing 

and removal of important trophic linkages has caused reef collapse in some areas 

(Hughes 1994, Jackson et al. 2001) and threatens the collapse of reefs world-wide 

(Bellwood et al. 2004).  The dismal state of many Caribbean reefs may require proactive 

measures to facilitate coral reef recovery rather than simply  creating marine preserves 

(Pandolfi et al. 2005).  We suggest that maintaining or restoring herbivore diversity is a 

critical step in attaining healthy reefs as it promotes a coral-dominated rather than a 

macroalgal-dominated system.  Thus, the establishment of marine reserves coupled with 
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proactive enhancement of particular herbivorous fish populations may be a more 

effective restoration technique than the attempt to conserve without proactive 

management focused on herbivore diversity.  Further appreciation for the roles of 

consumers and consumer diversity in ecosystem function will not only allow us to better 

protect the important drivers of ecosystems but also to identify ways to proactively 

manage degraded ecosystems back to health via consumer-driven restoration (Soule et al. 

2003). 
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CHAPTER 4 

FUNCTIONAL DIVERSITY OF HERBIVOROUS FISHES ON A  

CARIBBEAN CORAL REEF 

 

 

Abstract 

Consumers commonly drive community patterns and ecosystem processes, yet we 

know far less about the role of consumer diversity as opposed to producer diversity in 

ecosystem function.  This understanding is critical on coral reefs where consumers, 

particularly herbivores, are strong drivers of ecosystem function but are under imminent 

threat of overharvesting worldwide.  In two experiments, over the course of two years, 

we enclosed equal densities of single-species and mixed-species groups of herbivorous 

fishes in large (4 m2), replicate cages on a reef in the Florida Keys, USA to evaluate the 

effects of herbivore diversity on community composition.  In Year 1, we used the 

redband parrotfish (Sparisoma aurofrenatum) and the ocean surgeonfish (Acanthurus 

bahianus) to generate the treatments while in Year 2 we used the redband parrotfish and 

the princess parrotfish (Scarus taeniopterus).  We show strong effects of herbivore 

diversity on community structure due to feeding differences among herbivores both years 

of the experiment.  In Year 1, ocean surgeonfish and redband parrotfish synergistically 

suppressed upright macroalgae by feeding on dissimilar species thereby decreasing 

facilitating crustose coralline algae and coral cover while decreasing coral mortality.  In 

Year 2, redband parrotfish and princess parrotfish fed on different algal functional groups 

in that redband parrotfish fed mostly on upright macroalgae while princess parrotfish fed 

mostly on filamentous, turf algae.  Consequently, turf algae dominated redband-only 

treatments while upright macroalgae dominated princess-only treatments.  In both years, 
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increasing herbivore diversity facilitated crustose coralline algae, which is crucial for 

coral recruitment on reefs.  Feeding assays with common macroalgae corroborated the 

community patterns in the cages showing that redband parrotfish and ocean surgeonfish 

had complementary feeding preferences for upright macroalgae while princess parrotfish 

fed on hardly any upright macroalgae.  When all treatments were compared across both 

years of the experiment, despite being morphologically and taxonomically distinct, 

princess parrotfish and ocean surgeonfish had more similar effects on macroalgal 

community structure than did the two morphologically and taxonomically similar species 

of parrotfish.  Our data suggest that these three fishes play functionally diverse roles in 

the herbivore guild and that their complementary effects of algal communities are 

important to the structure and function of coral reefs.    

 

Introduction 

Widespread overfishing and the alteration of important trophic linkages has 

caused severe degradation of coral reefs world-wide (Jackson et al. 2001, Pandolfi et al. 

2003, Bellwood et al. 2004).  Herbivores, in particular, are crucial to reef health because 

their intense grazing removes the majority of upright macroalgae that can directly 

overgrow and kill corals (Lewis 1986, Jompa and McCook 2002), prevent recruitment of 

juvenile corals (McCook et al. 2001), and facilitate coral disease (Nugues et al. 2004).  

Herbivores also provide ecosystem resilience in the face of disturbances such as 

hurricanes or outbreaks of coral disease by keeping disturbed areas free of macroalgae 

and allowing corals to reestablish (Aronson et al. 2005).  Macroalgae become abundant 

and the health of coral reefs declines when herbivores are removed from the system via 
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caging (Carpenter 1986, Lewis 1986, Morrison 1988), disease (Carpenter 1988, Lessios 

1988), or overfishing (Hughes 1994).   

Because consumers drive community and ecosystem processes on coral reefs 

(Glynn 1990, Hay 1997, Bellwood et al. 2003, Burkepile and Hay in press), consumer 

diversity may play a large role in ecosystem function.  Yet, the effects of consumer 

diversity per se have rarely been experimentally addressed for coral reefs, and, in general, 

we know far less about the effects of consumer diversity than of producer diversity on 

ecosystem function (Duffy 2002, Hooper et al. 2005).  This disparity should be redressed 

given the critical role of consumers in community organization and ecosystem function 

(Naiman 1988, Paine 2000, Duffy and Hay 2001) and the disproportionate impact that 

humans have on upper trophic levels (Pauly et al. 1998, Jackson et al. 2001, Duffy 2003).  

Understanding the role of consumer diversity will not only allow a better plan to conserve 

ecosystems by protecting crucial biotic interactions (Soule et al. 2003) but will also allow 

scientists and conservation practitioners to identify particularly useful species or mixes of 

species that could be used to leverage degraded ecosystems to desired states of health or 

function.  This research is critical for coral reefs, especially Caribbean reefs, where reef 

health continues to decline (Gardner et al. 2003, McWilliams et al. 2005) and food webs 

are degraded because strongly interacting consumers have been removed and are at 

continued high risk of exploitation (Bascompte et al. 2005).   

Fishes and sea urchins are typically the dominant herbivores on coral reefs 

(Ogden and Lobel 1978).  In the Caribbean, several studies have examined the 

differential effects of herbivory by fishes and the urchin Diadema antillarum (Hay 1984a, 

Carpenter 1986, Morrison 1988) and their potential competition for resources (Hay and 
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Taylor 1985, Carpenter 1988, 1990, Robertson 1991).  However, herbivorous fishes 

became the single, dominant herbivore group on most reefs (Carpenter 1990) after the 

Caribbean-wide mass mortality of D. antillarum in the early 1980’s (Lessios 1988).  Yet, 

there has been little research on the differential effects of different species of large 

herbivorous fishes on reef community structure in the Caribbean.  Observational studies 

have revealed differences in foraging patterns among different species of herbivorous 

fishes (Bruggemann et al. 1994, McAfee and Morgan 1996) and important impacts of 

particular species of herbivorous fish by comparing reefs with differential fishing 

pressure (Mumby et al. 2006).  However, controlled experiments have not been employed 

to investigate the role of herbivore diversity in driving reef health or the species-specific 

effects of different herbivorous fishes on reef community structure.    Herbivore diversity 

should benefit reefs because a more diverse herbivore assemblage should include 

herbivores with varied attack strategies, which in turn should increase the efficiency of 

macroalgal removal because particular macroalgae are unlikely to be well defended 

against all types of herbivores (Lubchenco and Gaines 1981, Hay 1984b, Schupp and 

Paul 1994). 

Instead of focusing on the effects of herbivorous fishes as a group, we asked 

specific questions about how herbivore diversity, and particular common species of 

herbivores, impacts the structure and function of Caribbean coral reefs.  In two 

experiments, over the course of two years, we enclosed equal densities of single-species 

and mixed-species groups of herbivorous fishes in large, replicate cages on a reef in the 

Florida Keys, USA.  In Year 1, we used the redband parrotfish (Sparisoma aurofrenatum) 

and the ocean surgeonfish (Acanthurus bahianus) to generate experimental treatments 
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with equal densities but different diversity of herbivores (Burkepile et al. in review).  In 

Year 2 we used the redband parrotfish and princess parrotfish (Scarus taeniopterus) to 

produce similar treatments.  Over the 7-10 month duration of each experiment, we: (1) 

monitored changes to macroalgal abundance and species composition and coral health 

and cover in response to the treatments, (2) assessed feeding preferences of the 

herbivores for common macroalgae, and (3) documented differential resource use by 

free-ranging herbivorous fishes by removing the cages in Year 1 and allowing 

herbivorous fishes access to the macroalgal communities that had been generated by the 

experimental treatments.  These experiments allowed us to address: (1) the effects of 

herbivore diversity on coral reef communities, (2) the differential effects of parrotfishes 

vs. surgeonfishes on community structure, and (3) the functional overlap of different 

herbivore species we investigated.   

 

Materials and Methods 

Experimental setup and maintenance 

In November 2003, we used NOAA's Aquarius, a self-sufficient underwater 

research laboratory at a depth of 16m offshore of Key Largo, FL to set-up Year 1 of the 

experiment.  The experiment was located on a spur and groove reef formation at depths 

of 16-18m on Conch Reef (24°57’N/80°27’W), approximately 5km off the coast of the 

upper Florida Keys.  The reef is a spur and groove formation with the spurs rising 1-2 m 

from a sandy bottom.  We constructed 32, 4 m2 cages made of steel bar and plastic coated 

chicken wire to house the different fish treatments.  In Year 1, we tested the effects of 

herbivore diversity on community structure using redband parrotfish (Sparisoma 
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aurofrenatum) and ocean surgeonfish (Acanthurus bahianus) to generate the treatments: 

(1) two redband parrotfish (R/R), (2) two ocean surgeonfish (S/S), (3) one redband 

parrotfish and one ocean surgeonfish (R/S), (4) no enclosed fish, and (5) an uncaged 

control.  We monitored changes in macroalgal abundance and species composition as 

well as coral mortality and change in coral cover in response to the different treatments. 

The Year 1 experiment with redband parrotfish and ocean surgeonfish showed 

dramatic effects of herbivore diversity on macroalgal abundance and coral health 

(Burkepile et al. in review).  However, the redband parrotfish vs. ocean surgeonfish 

contrast may have focused on a contrast producing a striking diversity effect given that 

the two species differ considerably in their adaptations for herbivory (Horn 1989).  In 

Year 2 of the study, we chose redband parrotfish and princess parrotfish (Scarus 

taeniopterus) for experimental manipulations because they have similar adaptations to 

herbivory (Horn 1989, Bellwood 1994), but preliminary data from videotaping 

consumption of macroalgae in the field suggested that princess parrotfish feed primarily 

on turf and crustose coralline algae while redband parrotfish feed primarily on upright 

macroalgae (D. Burkepile unpub. data).   

In November 2004, we again used NOAA's Aquarius to set up Year 2 of the 

experiment at the same location on Conch Reef.  We used the same experimental setup, 

cage construction, and cage locations as in Year 1 to enclose the different fish treatments.  

We constructed 32, 2 m X 2 m X 1m tall cages made of 0.6 cm steel bar and covered with 

PVC-coated galvanized chicken wire (2.5 cm mesh size).  Chicken wire of this mesh size 

has been used in previous experiments near this site and imparts minimal caging artifacts 

(Miller et al. 1999).  We attached the cages to the reef by wiring the frames to 30 cm 
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galvanized nails that had been hammered into the reef substrate.  A 30 cm flange of 

chicken wire extended from the base of the cage and was conformed to the reef substrate 

and affixed using galvanized fencing nails.  This barrier prevented larger fishes from 

escaping or entering the cage, but the mesh size allowed small fishes to enter and exit at 

will (i.e. juveniles of many species as well as adult wrasses and many damselfishes).  

Zinc anodes were attached to the chicken wire and the cage frame to prevent corrosion.  

The benthic community inside the cages consisted of the natural assemblage of 

macroalgae, corals, sponges, gorgonians, and other common reef invertebrates.   

Treatments in Year 2 consisted of: (1) two princess parrotfish (P/P), (2) two 

redband parrotfish (R/R), (3) one princess parrotfish and one redband parrotfish (P/R), 

and (4) no enclosed fish.  We also monitored uncaged areas of equal size (n = 8 for each 

treatment and uncaged areas).  We did not use partially caged treatments to test for the 

effects of the cages themselves because partial cages often attract large predators (i.e. 

groupers) that alter the use of the partial cages by herbivorous fishes.  Thus, using partial 

cages to test for cage artifacts may confound the effect of the cages with the effect of 

having large predators present.  Four cages and an uncaged area were blocked as closely 

as the reef configuration allowed in one general area and treatments were allocated 

randomly among each of the four cages.  Thus, we had eight blocks of the five 

experimental treatments.  We caught fishes with hand nets and barrier nets and placed 

them inside the cages.   

Princess parrotfish can attain larger size (35 cm total length) than redband 

parrotfish (28 cm total length) and adult princess parrotfish on Conch Reef appeared to be 

larger on average than adult redband parrotfish.  For our treatments, we used fishes 
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approximately 15-22 cm (standard length).  However, adult princess parrotfishes were 

less abundant than redband parrotfish at our field site, and at the beginning of the 

experiment (November 2004-February 2005) we used some princess parrotfish that were 

approximately 22-26 cm (these lengths are estimations as we did not measure each fish 

that was used in the treatments).  Over the course of the experiment, these larger princess 

parrotfish were replaced with ones that fell within the 15-22 cm range.  To determine if 

we were potentially confounding fish treatments with biomass of fish, we determined the 

weight:length ratios for free-ranging redband parrotfish and princess parrotfish in the size 

class that we were using in our cages.  We caught free-ranging, adult redband parrotfish 

and princess parrotfish in the vicinity of our cages and measured their standard length to 

the nearest 0.1 cm and their weight to the nearest 1 g using a spring scale.  We compared 

the weight:length relationships of redband and princess parrotfish using a t-test.  We did 

not measure the weight:length ratio of the fishes inside our cages at the end of Year 2 of 

the experiment in order to compare them to free-ranging fishes because Hurricane Dennis 

destroyed the experiment before these data could be obtained. 

The size range of fishes we used in the experiment included smaller terminal 

phase males for the redband parrotfish, but not for the princess parrotfish.  We did use 

terminal phase male redband parrotfish in the experiment, but rarely noticed aggressive 

interactions between redband parrotfish in the same cage.  We removed terminal phase 

males that became aggressive when placed inside the cages and replaced them with an 

intermediate phase fish.  Aggressive interactions between princess parrotfish individuals 

or between princess parrotfish and redband parrotfish within the cages were rarely 

observed.   
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We surveyed fishes inside the cages every 4-6 weeks and replaced missing fishes 

to maintain treatments.  Cages were scrubbed inside and out every 4-6 weeks to remove 

fouling organisms and prevent shading.  Between scrubbings, grazing by reef fishes 

(especially surgeonfishes and juvenile parrotfishes feeding on filamentous algae) kept the 

cages relatively clean of fouling organisms.   

We are confident that there were no lasting treatment effects from Year 1 that 

biased the community patterns at the beginning of Year 2.  At the end of the Year 1 

experiment (August 2004), we removed the mesh from each cage allowing access to all 

herbivorous fishes which rapidly fed upon the macroalgae within the previously caged 

areas.  All experimental plots had open access to all grazing fishes for >10 weeks before 

setting up Year 2 of the study, and treatments for Year 2 were assigned at random to 

cages within each block of treatments.  Analysis of variance (ANOVA) showed no 

differences in macroalgal abundance among the treatments at the inception of the 

experiment (Table 4.1). 

 

Data collection and analysis 

The experiment in Year 1 ran from November 2003 until August 2004 when we 

took final data points and removed the mesh from the cage frames.  In Year 2, the 

experiment ran from November 2004 until July 2005 when wave surge from Hurricane 

Dennis destroyed the cages and ended the experiment.  In both years, we used the same 

methods to monitor macroalgal cover and species composition on the benthos inside the 

cages and uncaged control.  Every 6-10 weeks we used a 1.5 m X 0.75 m quadrat 

containing 50 stratified random points to sample two areas within each cage for a total of 
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Table 1.  One-factor ANOVAs assessing among treatment differences in macroalgal 
cover at the beginning of Year 2 of the experiment.   
 

Macroalgal type df F P 

Dictyota spp. 4, 35 0.63 0.642 

Halimeda tuna 4, 35 1.50 0.223 

Lobophora variegata 4, 35 1.91 0.131 

Articulated corallines 4, 35 0.48 0.753 

Turf algae 4, 35 2.21 0.088 

Cyanobacteria 4, 35 0.96 0.444 

Coralline algae 4, 35 0.07 0.990 

Upright macroalgae 4, 35 0.35 0.842 

 

 

 

100 points.  We identified the organisms under each point to the lowest taxonomic level 

possible under field conditions.  For some species that grew as easily identifiable, 

separate individuals (i.e. Sargassum spp.), we counted numbers of individuals within 

each cage as well as recording percent cover.  We avoided taking data from the outer 10 

cm border within each cage to minimize cage effects because the cage itself could have 

impeded fish from feeding in close proximity to the edges.   

One-factor ANOVA followed by Tukey’s multiple comparisons were used to 

determine differences in macroalgal abundance among treatments within an analysis.  

Moray eel predation on the treatment fish necessitated the removal of four cages from 

Year 2 of the experiment resulting in n = 7 for the princess/redband treatment and n = 5 

for the redband-only treatment.  Thus, we did not use a blocking factor in the ANOVA’s.  

Data were transformed when necessary to meet the variance homogeneity assumptions of 

ANOVA as examined with Cochran’s test (Underwood 1997).   
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We assessed fish bite rates within treatments vs. uncaged areas to see if fishes 

confined to cages were feeding differently than free-ranging fishes.  We monitored fish 

feeding by hovering in the water column 3-4 m above each cage and counting the bites 

the treatment fish took from the benthos inside the cage and from the surface of the cage 

itself over 10 minutes.  In uncaged areas, bites by all adult fishes were counted.  Bites by 

juvenile fishes were excluded from the uncaged areas to facilitate direct comparison of 

grazing rates by adult fishes within treatments.  Bite rates were also determined on a 

nearby shallow reef site to compare bite rates within our cages and in our uncaged 

treatment on this deeper reef to feeding rates on a shallow reef, as herbivory by fishes is 

often more intense on shallow than on deeper reefs (Hay 1984a) where our experiments 

were located.  We also quantified bite rates for free-ranging fishes for redband parrotfish, 

princess parrotfish, and ocean surgeonfish on Conch Reef to determine natural feeding 

rates.  A diver haphazardly selected an adult fish of one of the three species and followed 

that fish for five minutes counting the number of bites the fish took from the benthos.  If 

fishes were lost while following them, the time at which the fish was lost was recorded 

and the bite rate was scaled to the amount of time that fish was followed.  Bite rates for 

caged and free-ranging fishes were log transformed and analyzed with one-factor 

ANOVA followed by Tukey’s multiple comparisons.   

To further analyze the effects of herbivore diversity on the abundance of total 

upright macroalgae, as well as specific macroalgal species or groups, we calculated a 

difference metric (D) comparing the average of the single species treatments to the 

diversity treatment.  To calculate D, we used the formula D = (Oi – E)/E where E is the 

average of the two single species treatments combined (the expected value) and Oi is the 
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observed value for one of the replicates in the diversity treatment.  D was calculated for 

each diversity treatment replicate.  This metric is similar to Dmax that is used to detect 

overyielding in studies of how plant diversity affects ecosystem function (Loreau 1998).  

If D < 0, then abundance of that macroalgal group is lower in the diversity treatment than 

the average single species treatment; if D > 0 then the diversity treatment facilitates that 

macroalgal group.  We used one-sample t-tests to determine if D was significantly 

different from zero for each macroalgal group in both Year 1 and Year 2.  In addition, we 

took an average value for D for each macroalgal group across both years of the 

experiment.  We also compared richness of macroalgal genera in each treatment for Year 

1, Year 2, and for the uncaged, exclosure, single-species, and diversity treatments as 

averaged across both years of the study using one-factor ANOVA. 

We also assessed the effects of herbivore treatments on the health and growth of 

corals.  In Year 1, we monitored the condition and growth of corals within the treatments 

using digital photography (Burkepile et al. in review).  At the beginning (November 

2003) and end (August 2004) of the experiment, we took in situ digital photographs of 

each coral colony within each replicate of all treatments and analyzed the area of each 

coral at the beginning and end of the experiment using the computer imaging program 

Image J.  We assessed coral mortality, change in coral cover, and the relationship 

between total macroalgal abundance and change in coral cover for all treatments.  For 

Year 2, comparisons of the effects of fish treatments on coral survivorship and growth 

were planned, but Hurricane Dennis removed the markers used to identify corals for 

photographic documentation thus eliminating the possibility of evaluating effects of the 

treatments on coral growth as had been done in Year 1. 
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Fish feeding preferences for common macroalgae 

In both years of the experiment we determined feeding preferences of the 

treatment fishes by offering macroalgae to the parrotfish and surgeonfish housed in the 

single species treatments.   To redband parrotfish and ocean surgeonfish in Year 1, we 

offered Dictyota menstrualis, Halimeda tuna, Sargassum fillipendula, Lobophora 

variegata, Codium taylori, Kallymenia westii, and Haloplegma duperryi because these 

species were common in some of the treatments.  In Year 2, for redband parrotfish and 

princess parrotfish, we used D. menstrualis, H. tuna, S. fillipendula, L. variegata, and C. 

taylori.  K. westii and H. duperryi were not used in Year 2 because they were rare in all 

treatments.  In the lab, pieces of macroalgae (3.0 ± 0.3 g pieces for H. tuna and 2.0 ± 0.2 

g pieces for other macroalgae) were blotted dry with a paper towel, weighed to the 

nearest 1mg, and then entwined into a three-stranded polypropylene rope (one species per 

rope).  Ropes of each macroalgal species were placed in the single-species and exclosure 

cages.  Fish were allowed to feed on the macroalgae for 24-30 h before the ropes were 

collected.  The beginning and final weights were used to calculate the percent of the 

macroalgae removed.  To determine if the fishes consumed significant quantities of these 

macroalgae, change in mass of the macroalgae in the fish treatments were compared 

individually to changes in mass in the exclosures using one-tailed t-tests because we were 

predicting that more biomass would be removed in cages enclosing large herbivores than 

cages excluding large herbivores.  For Year 2, we directly compared feeding by redband 

parrotfish and princess parrotfish on each macroalgal species using a two-tailed t-test. 
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Comparisons between Year 1 and Year 2 

To compare the effects of the fish treatments across both years of the experiment, 

we combined data from the both Year 1 and 2 for analyses.  Comparing treatment effects 

during Year 1 with those from Year 2 potentially confounds treatment effects with 

temporal effects (i.e. differences between years due to differences in macroalgal 

recruitment, physical conditions, or other parameters).  We tested for effects of year for 

the exclosure, uncaged, and redband-only treatments using MANOVA since these 

treatments were present in both years of the study.  If MANOVA detected significant 

differences between years, we used t-tests to test for differences between years for each 

macroalgal group within each fish treatment.  For these post-hoc t-tests, we used the 

Dunn-Sidak method (Sokal and Rohlf 1995) to control for the experimentwise error rate 

which yielded a significance level of α = 0.005 for each between-year macroalgal 

comparison.   

Although MANOVA did detect significant differences between years of the 

experiment, we felt that the value of comparing the effects of fish treatments across years 

offset some of the potential difficulties, such as confounding temporal differences with 

treatment effects, especially due to the labor-intensive nature of conducting these studies.  

We used cluster analysis to quantify similarities between treatments to compare 

macroalgal community structure in response to the experimental treatments across both 

years of the study.  We used the average linkage unweighted pair-group method using 

arithmetic means (UPGMA) that is one of the most common methods for cluster analysis 

(McGarigal et al. 2000) and has been used to assess similarities of the effects of different 

predators on prey communities (Kurzava and Morin 1998).  For the cluster analysis, we 
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used the mean percent cover for each macroalgal species or group (i.e. crustose coralline 

algae) as the variables used to describe similarity of the macroalgal community.  For 

treatments that were present in both years of the experiment, data were averaged across 

both years.  Given the significant differences between years of the study, the results from 

the cluster analysis should be interpreted with caution. 

 

Responses of herbivorous fishes to experimental macroalgal communities 

 To compare differences in resource use among different species of free-ranging 

fishes, we removed the mesh from the cages at the termination of Year 1 of the 

experiment (August 2004) and videotaped the free-ranging fishes feeding on the 

macroalgae inside the cages.  This analysis could not be done for Year 2 as Hurricane 

Dennis destroyed the cages before these data could be gathered.  We videotaped fish 

feeding after mesh removal for only the five blocks of cages that had all four fish 

treatments intact [(1) two redband parrotfish (R/R), (2) two ocean surgeonfish (S/S), (3) 

one redband parrotfish and one ocean surgeonfish (R/S), (4) no enclosed fish] in an 

attempt to control for spatial differences in fish abundance and feeding intensity.  We did 

not include data from the uncaged areas as fish rarely fed in these plots when the 

previously caged areas were available.  After we removed the mesh from each cage, we 

placed a 1 m X 1 m quadrat on the benthos inside the cage frame and focused a super hi-8 

video camera, mounted on a tripod on the quadrat.  We then started the camera and 

removed the quadrat from the area being filmed.  The video cameras ran for 1.25-2 h to 

record feeding behavior of herbivorous fishes in response to the macroalgal communities 

that had previously been enclosed inside the cages.   
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To quantify fish feeding, we played the videos on a television monitor.  We used 

a dry erase marker to trace the outline of the quadrat on the monitor screen.  When an 

herbivorous fish took bites from the benthos within the area delineated by the quadrat, we 

recorded the species of fish and number of bites taken by that fish.  We counted only 

bites by adult fishes as juvenile fishes were often obscured by corals and sponges which 

made their behavior and bite rates difficult to quantify.   We did not quantify the number 

of visits by herbivorous fishes to the cage because there were often 10-20 fishes in the 

frame at the same time for the cage removal videos making it difficult to identify 

individual fishes and determine when they left and entered the frame.  Data on bite rates 

were transformed when necessary to meet assumptions of ANOVA and analyzed using a 

blocked, one-factor ANOVA followed by Tukey’s multiple comparisons to determine 

differences among treatments within an analysis.  We also performed cluster analysis to 

quantify similarities in herbivorous fish feeding among the experimental fish treatments.  

The analysis was run using the mean values of bites per hour by common herbivorous 

fish species after removal of the cage mesh. 

 

Results 

At the end of Year 2 of the experiment, cover of upright macroalgae was 66% 

greater in the fish exclosures than in uncaged areas (Figure 4.1A).  Upright macroalgae in 

both the redband-only and diversity treatments was significantly lower than in the 

princess-only treatment which did not differ significantly from either the exclosure or the 

uncaged treatments (Figure 4.1A).  Relative to the exclosure, redband parrotfish 

depressed articulated coralline algae (Figure 4.1D), Lobophora variagata (Figure 4.1E), 
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Halimeda tuna (Figure 4.1F), and Sargassum spp. (Figure 4.1H), but facilitated turf algae 

(Figure 4.1C).  Princess parrotfish tended to depress turf algae significantly relative to the 

uncaged areas but not relative to the exclosure (Figure 4.1C); they also tended to increase 

crustose coralline algae significantly relative to the exclosure but not to the uncaged areas 

(Figure 4.1B).  L. variegata, Sargassum spp. and Codium spp. were abundant in the 

princess-only treatment, with princess parrotfish facilitating Codium spp. when compared 

to the exclosure (Figure 4.1G).  The diversity treatment facilitated the abundance of 

crustose coralline algae when compared to any of the other treatments (Figure 4.1B).   

Analyses of fish bite rates showed no differences among the treatments (Figure 

4.2A), but this was probably a result of low statistical power as the bite rates in the 

princess-only treatment had a mean that was >2.3X higher than either the redband-only 

treatment or the diversity treatment.  Further, when we compared the bite rates of free-

ranging fishes, princess parrotfish bit the bottom 2.9X more often per minute than 

redband parrotfish and in similar frequency to ocean surgeonfish (Figure 4.2B) 

suggesting that the higher feeding rates of princess parrotfishes in the cages reflect their 

natural feeding behavior and is not an artifact of being caged.  Bite rates for ocean 

surgeonfish were also greater than those for redband parrotfish.  The bite rates of fishes 

inside the cages were slower than those of free-ranging fishes because the caged fishes 

also fed on algae that grew on the cages so they bit the benthos less frequently than did 

free-ranging fishes.  Although the bite rates in some of the treatments may be higher than 

those on our study reef (although we could not detect significant differences in post-hoc 

tests), the bite rate on a shallow reef (6-8 m) in the Upper Florida Keys (21.9 bites/min in 

4 m2) was 1.9 – 4.6X greater than those inside any of our treatments on Conch Reef.   
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Figure 4.1.  Percent cover or density (mean ± SE) at the end of Year 2 of the experiment 
for (A) total upright macroalgae and (B-H) macroalgal species or groups.  P-values are 
from one-factor ANOVA.  Letters above bars designate significant groupings according 
to Tukey’s multiple comparison test.  P = princess parrotfish, R = redband parrotfish.  n 

for each treatment is designated in brackets next to each treatment label on the X-axis. 
Note different scales for Y-axes.   
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Figure 4.2.  Bite rates (mean ± SE) for (A) adult fishes inside treatments and in the 
uncaged area at Conch Reef and (B) free-ranging princess parrotfish, redband parrotfish, 
and ocean surgeonfish on Conch Reef.  P-values are from one-factor ANOVA.  Letters 
above bars designate significant groupings according to Tukey’s multiple comparison 
test.  P = princess parrotfish, R = redband parrotfish.  n for each treatment is designated 
in brackets next to each treatment label on the X-axis.   
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These data suggest that the bite rates inside our treatments are well within the levels 

normally seen on shallow reefs in the Florida Keys.   

When we calculated the weight:length ratios for princess parrotfish and redband 

parrotfish, we found no difference between the two fishes (9.34 ± 0.76 vs. 8.66 ± 0.43 

g/cm for princess and redband parrotfish respectively; P = 0.450, df = 14; t-test).  

Therefore, it is unlikely that we systematically biased our results by using fish of 

differing size in the treatments.  Additionally, had there been an undetected bias, it would 

most likely be due to greater biomass in the princess-only vs. redband-only treatments, 

but the redband-only treatment tended to decrease algae to a greater extent (Figure 4.1).  

Thus, the differences between fish treatments should be due to the effects of feeding by 

the different fishes and not to differences in intensity as a result of having larger fishes in 

a subset of the treatments. 

Herbivore diversity significantly affected the majority of common macroalgal 

types as assessed with the D statistic.  In year 1, herbivore diversity depressed upright 

macroalgae as a group as well as the common species Lobophora variegata, Dictyota 

spp., articulate coralline algae, Halimeda tuna, Haloplegma duperreyi, and Sargassum 

spp.; herbivore diversity facilitated crustose coralline algae and filamentous turf algae 

(Figure 4.3A).  In Year 2, the effect of diversity was significant only for crustose 

coralline algae, L. variegata, and Sargassum spp. (Figure 4.3B).  Overall macroalgal 

cover, Dictyota spp., H. tuna, articulated coralline algae, or turf algae were not 

significantly affected by herbivore diversity.  However, the trends for Year 2 were the 

same as Year 1, and the effect for overall macroalgal cover was marginally non-

significant at P = 0.067.  The overall pattern represented by pooling the D statistic across  
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Figure 4.3.  Difference statistic (D) (mean ± SE) for all upright macroalgae and different 
macroalgal species or groups for (A) Year 1, (B) Year 2, or (C) average of Year 1 and 
Year 2.  D measures the difference between the diversity treatment and the average of the 
single species treatments.  If D < 0 then abundance of that macroalga is lower in the 
diversity treatment than the average single species treatment; if D > 0 then the diversity 
treatment facilitates that macroalga.  *P < 0.05, **P < 0.01.  P-values are from t-tests.  
NA designates that this macroalga was not abundant enough to calculate the statistic. 
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both years of the study, resembled the pattern for Year 1; upright macroalgae as a group 

and all common species except H. tuna and cyanobacteria were significantly affected by 

herbivore diversity (Figure 4.3C).  

Analyses of the richness of macroalgal genera showed that there were fewer 

genera present when large herbivorous fishes were present than in their absence (Figure 

4.4).  In Year 1, both single-species treatments had higher richness than the diversity 

treatment, but the redband-only and surgeonfish-only treatments did not differ from each 

other (Figure 4.4A).  This same pattern was not evident for the diversity treatment in 

Year 2 of the study as there were no significant differences between the single-species 

and diversity treatments (Figure 4.4B).  But, when the single-species and diversity 

treatments were averaged across both years of the study, the diversity treatment had 

lower generic richness of macroalgae than the single-species treatments (Figure 4.4C). 

When offered common macroalgae inside the cages, redband parrotfish consumed 

Dictyota menstrualis, Halimeda tuna, Sargassum fillipendula, Lobophora variegata, and 

Codium taylori (Figure 4.5A).  Princess parrotfish could be demonstrated to feed only on 

H. tuna (Figure 4.5B).  Further, redband parrotfish ate significantly more of each 

macroalgal species than did princess parrotfish, including H. tuna which was the only 

macroalgal species that princess parrotfish significantly consumed (data not shown).  

When approximately the same suite of macroalgae was offered to ocean surgeonfish 

during Year 1 of the experiment, they consumed D. menstrualis, C. taylori, Kallymenia 

westii, and Haloplegma duperryi but not H. tuna, S. fillipendula, or L. variegata (Figure 

4.5C).  Redband parrotfish did not consume K. westii or H. duperryi when offered during  
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Figure 4.4.  Genera of upright macroalgae (mean ± SE) for (A) Year 1, (B) Year 2, and 
(C) the uncaged, exclosure, single-species, and diversity treatments averaged across both 
years of the study.  P-values are from one-factor ANOVA.  Letters above bars designate 
significant groupings according to Tukey’s multiple comparison test.  P = princess 
parrotfish, R = redband parrotfish, S = ocean surgeonfish.  n for each treatment is 
designated in brackets next to each treatment label on the X-axis. 
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Figure 4.5.  Mass (mean ± SE) of macroalgae removed by (A) redband parrotfish, (B) 
princess parrotfish, or (C) ocean surgeonfish.  *P < 0.05 and **P < 0.01 as determined t-
test.  A significant difference between treatment and control shows that more macroalgal 
mass was removed in the cages with herbivores (gray bars) as compared to the control 
cages without large herbivores (black bars).  n = 5-8 for each comparison.  NA designates 
that this macroalga was not offered to this fish species.  Kallymenia westii and 
Haloplegma duperyii were offered to redband parrotfish in Year 1 not Year 2 but are 
included here to facilitate comparisons with ocean surgeonfish. 
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Year 1 (Figure 4.5A).  We did not offer K. westii or H. duperryi directly to princess 

parrotfish inside the cages since neither alga was common during Year 2. 

MANOVA showed that there were significant effects of year on experimental 

treatments for both the exclosure and uncaged treatments but not for the redband-only 

treatment (Figure 4.6).  For the exclosure, post-hoc t-tests showed that crustose coralline 

algae and cyanobacteria were more abundant in Year 1 while Lobophora variegata was 

more abundant in Year 2 (Figure 4.6A).  For the uncaged treatment, Dictyota spp. and 

cyanobacteria were more abundant in Year 1 while L. variegata and articulated corallines 

were more abundant in Year 2 (Figure 4.6B). 

When we combined data from both years (Figure 4.7) and used cluster linkage 

analysis to compare the similarities in macroalgal community structure among 

treatments, the analysis showed that the three fish species created different macroalgal 

communities (Figure 4.8).  The princess parrotfish treatment was more similar to the 

ocean surgeonfish treatment than to the redband parrotfish treatment.  The ocean 

surgeonfish treatment most closely resembled the exclosure.  The three treatments that 

included redband parrotfish (redband/ocean surgeonfish, redband/princess parrotfish, and 

redband/redband) clustered more closely to each other than to any of the other treatments.  

The uncaged treatment clustered most closely to the princess parrotfish treatment, but 

similarity was very low indicating that none of our 1-2 species experimental treatments 

resulted in macroalgal communities that closely resembled the natural community, which 

is impacted by many more herbivore species.   

When we analyzed data on fish feeding following cage removal in Year 1 in order 

to assess differences in resource use among species, herbivorous fishes took 1.8-2.6X  
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Figure 4.6.  Percent cover (mean ± SE) of upright macroalgae and macroalgal types for 
(A) exclosure, (B) uncaged, and (C) redband parrotfish only treatments across both years 
of the experiment.  Results of MANOVA for each treatment type comparing effects for 
Year 1 and Year 2 are inset for each treatment.  Significant P-values show that the 
macroalgal communities were different between years for that treatment.  The upright 
macroalgal category was not used in the MANOVA as it encompasses the majority of the 
algal species but is provided in the graph only as reference.  For MANVOA’s that 
showed significant between year effects, we performed post-hoc ANOVA’s testing for 
between year differences for each macroalgal category within a fish treatment.  * denotes 
a significant difference between years for a specific macroalgal group test that was 
significant (at P = 0.005 as determined using the Dunn-Sidak method for controlling 
experimentwise error rate).  
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Figure 4.7.  Percent cover, or number of plants for Sargassum spp. (mean ± SE) of all 
macroalgal groups for (A) redband parrotfish, (B) ocean surgeonfish (C) princess 
parrotfish, (D) redband parrotfish/ocean surgeonfish, (E) redband parrotfish/princess 
parrotfish, (F) fish exclosure, or (G) uncaged treatments.  For treatments that were in both 
years of the experiment (i.e. redband-only, fish exclosure, and uncaged treatments), 
means represent data averaged across both years.  Means for each macroalgal species or 
group from these graphs were used for the cluster linkage analysis in Figure 8 except for 
the macroalgae category which encompasses the majority of the upright macroalgal 
species and is provided in the graph only as reference. 
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Figure 4.8.  An average linkage cluster analysis using the mean values of abundance for 
macroalgal species or groups in the different herbivore treatments to describe the 
similarity of effects of herbivores on macroalgal community structure.  Abundance data 
for the Exclosure, Uncaged, and Redband treatments were averaged across both years of 
the experiment.  See Figure 7 for data used in this analysis. 
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more bites per hour in the exclosures than in the other fish treatments (Figure 4.9A).  

When averaged across all species, parrotfish fed more in the exclosure than in either of 

the treatments holding redband parrotfish while the exclosure and the surgeonfish-only 

treatment did not differ (Figure 4.9B).  Parrotfish in the genus Sparisoma fed 4.8-6.1X 

faster in the exclosures and surgeonfish-only treatments than in either treatment including 

redband parrotfish (Figure 4.9C).  Similar patterns were evident for the three common 

species in the genus Sparisoma: (1) redband parrotfish (Sp. aurofrenatum), (2) redtail 

parrotfish (Sp. chrysopterum), and (3) stoplight parrotfish (Sp. viride) (Figures 4.9D-F).  

Parrotfish in the genus Scarus fed up to 2.8X faster in the exclosures and in the 

parrotfish-only treatments as compared to the surgeonfish-only treatment, but neither 

differed from the diversity treatment (Figure 4.9G).  Feeding by princess parrotfish (Sc. 

taeniopterus) drove this pattern, as this species comprised ~80% of all bites by Scarus 

spp. (Figure 4.9H).  No pattern was evident for striped parrotfish (Sc. croisensus) (Figure 

4.9I).   When averaged across all species, surgeonfishes (Acanthurus spp.) fed 2.2-5.3X 

more rapidly on the exclosures than on either treatment that included an ocean 

surgeonfish (Figure 4.9J).  Feeding by Acanthurus spp. was also lower in the surgeonfish-

only treatment than in the parrotfish-only treatment but not the diversity treatment.  These 

patterns were driven by feeding patterns of ocean surgeonfish (A. bahianus) (Figure 

4.9K) as there were no differences in feeding by the blue tang (Acanthurus coerelus) 

(Figure 4.9L), the other abundant acanthurid at our field site. 

Cluster analysis testing for similarities in fish feeding among treatments following 

cage removal after Year 1 showed significant separation among the treatments (Figure 

4.10).  The redband-only and the diversity treatments clustered most closely, showing the 
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Figure 4.9.  Bites per hour (mean ± SE) by common herbivorous fishes after removal of 
the cage mesh at the end of Year 1.  P-values are from blocked, one-factor ANOVA.  
Letters above bars designate significant groupings according to Tukey’s multiple 
comparison test.  R = redband parrotfish, S = ocean surgeonfish.  n = 5 for each graph.  
Note different scales for Y-axes.   
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Figure 4.10.  An average linkage cluster analysis to describe the similarity of herbivorous 
fish feeding on the macroalgal communities inside the experimental fish treatments at the 
end of Year 1.  The analysis was run using the mean values of bites per hour by common 
herbivorous fish species after removal of the cage mesh.  
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most similarity in fish feeding.  The fish exclosure clustered next showing low similarity 

to the redband-only and the diversity treatments.  The ocean surgeonfish treatment 

clustered last showing little similarity to any of the other treatments. 

 

Discussion 

Herbivory is critical to coral reef health as it keeps reefs free of most upright 

macroalgae (Steneck 1988, Hay 1997), facilitates corals (McCook et al. 2001, Jompa and 

McCook 2002) and provides ecosystem resilience in the face of disturbance (Nystrom 

and Folke 2001, Hughes et al. 2003, Aronson et al. 2005).   Using manipulative field 

experiments, we show that diversity of herbivores is important for this ecosystem process 

because increasing herbivore diversity depresses upright macroalgae (Figures 4.3 & 4.4) 

and facilitates both crustose coralline algae (Figures 4.1B & 4.3) and coral cover 

(Burkepile et al. in review) as compared to low diversity treatments.  The effects of 

diversity were strong across both years of the study despite caging fishes in restricted 

areas, which could have forced them to eat some macroalgae that they might normally 

avoid.  In fact, the diversity treatments in both years generated macroalgal communities 

that closely resembled those of Caribbean reefs with abundant herbivorous fishes in that 

they were dominated by crustose coralline algae and algal turfs with low cover of upright 

macroalgae (Lewis and Wainwright 1985, Lewis 1986, Williams and Polunin 2001, 

Mumby et al. 2006).   

Consumer diversity can have significant effects on communities by changing the 

abundance and species composition of primary producers (Sommer et al. 2004), 

facilitating primary and secondary production (Naeem et al. 2000, Duffy et al. 2003), and 
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altering the strength of trophic cascades (Finke and Denno 2004, Bruno and O'Connor 

2005).  These effects of diversity often stem from complementary resource use by 

consumers (Naeem et al. 2000, Duffy et al. 2003, Sommer et al. 2004) or differential 

susceptibility to predation (Duffy et al. 2005).  Both years of the experiment showed 

effects of herbivore diversity due to differential feeding between the major herbivores.  

When we used the difference statistic (D) to quantify the effect of herbivore diversity on 

different macroalgal groups, the abundance of upright macroalgae and most macroalgae 

species or groups were significantly affected by increasing herbivore diversity in Year 1  

(Figure 4.3A; Burkepile et al. in review).  However in Year 2, the effect of herbivore 

diversity was less striking as D showed significant effects for only facilitation of crustose 

coralline algae and suppression of Lobophora variegata and Sargassum spp. (Figure 

4.3B).  D was negative and marginally non-significant (P =0.067) for upright macroalgae 

in Year 2.  When D was pooled across both years, the effect of herbivore diversity was 

evident for upright macroalgae and for most macroalgal species or groups (Figure 4.3C).  

Analyses of generic richness of macroalgae across both years of the experiment showed 

similar patterns to those for the D statistic (Figure 4.4).  The stronger effect of herbivore 

diversity on upright macroalgal abundance and generic richness in Year 1 probably stems 

from the strong diet complementarity of redband parrotfish and ocean surgeonfish 

(Figure 4.5).  However, redband parrotfish feed primarily on upright macroalgae (Figure 

4.5A) while princess parrotfish feed primarily on filamentous turf algae (Figure 4.1C & 

4.5B), and we saw no overall effect of diversity in reducing the richness of macroalgae 

for the Year 2 contrast (Figure 4.4B).  Thus, the redband parrotfish and ocean surgeonfish 

showed complementary feeding on different species of upright macroalgae while redband 
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parrotfish and princess parrotfish showed complementary feeding on different functional 

groups of algae (i.e. upright macroalgae vs. turf algae). 

Differences in feeding preferences between fishes showed the potential for strong 

indirect effects on the reef community.  In both years, increasing herbivore diversity 

facilitated crustose coralline algae (Figure 4.1B & 4.3).  Since the larvae of many corals 

preferentially recruit to crustose coralline algae (Heyward and Negri 1999), its facilitation 

could have positive impacts on the rates of coral recruitment and survival.  Further, in 

Year 1, herbivore diversity prevented coral mortality and facilitated a net 20% increase in 

coral cover as compared to the single-species treatments which had significant coral 

morality and net decreases in coral cover (Burkepile et al. in review).  Although 

Hurricane Dennis prevented us from quantifying the effects of the different fish 

treatments on corals during Year 2, we suggest that the same pattern for the single-

species vs. diversity treatments may have existed had the experiment run its course.  The 

princess-only treatment was dominated by upright macroalgae such as Lobophora 

variegata, Sargassum spp., and Codium spp. (Figure 4.1) which commonly overgrow and 

harm corals (Lewis 1986, Tanner 1995, Lirman 2001, Jompa and McCook 2002).  The 

redband-only treatment was dominated by filamentous turf algae (Figure 4.1C) which can 

also directly overgrow corals as well as trap sediment next to coral tissue exacerbating 

the effect of overgrowth (Nugues and Roberts 2003).  In contrast, the diversity treatment 

was dominated by crustose coralline algae (Figure 4.1B) and had low levels of both 

upright macroalgae (Figure 4.1A) and filamentous turf algae (Figure 4.1C); high cover of 

crustose corallines and small filamentous algae are associated with healthy reefs 

supporting active coral growth (Steneck 1988).  Thus, corals in the diversity treatment 
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would have been relatively free from competing upright macroalgae and filamentous 

algae which should have increased their growth rates and reduced colony mortality.  The 

strong direct and indirect effects of increasing herbivore diversity in both years of the 

experiment suggests that this is a robust pattern.  The positive effects of feeding 

complementarity that we show suggests that further research is needed on these groups of 

Caribbean herbivores to determine how much functional diversity or redundancy exists 

within the genera Sparisoma, Scarus, and Acanthurus not only for use of resources but 

also for life history traits that influence response diversity in the face of disturbances such 

as overfishing or habitat destruction (Folke et al. 2004).        

Most studies of how herbivores affect Caribbean reefs have focused on the role of 

herbivores as a group or on comparing herbivory by fishes and urchins (Hay 1984a, Hay 

and Taylor 1985, Carpenter 1986, Foster 1987, Morrison 1988) rather than the 

differential role of different species or functional groups of herbivores (Bellwood et al. 

2004).  Our study is unique in that it uses experimental manipulations of fishes to address 

the effects of different herbivore species on reef communities as opposed to previous 

mensurative studies of herbivore feeding behavior (Bellwood and Choat 1990, 

Bruggemann et al. 1994) or comparisons of reefs with and without different herbivore 

species (Bellwood et al. 2003, Mumby et al. 2006).  Although mensurative and 

comparative studies provide insight on the community-wide effects of large-scale 

processes such as overfishing that are hard to manipulate experimentally, manipulative 

studies allow clearer assessment of the effects of different species (and diversity of 

species) and allow more rigorous assessment of the ecological mechanisms affecting the 

structure and function of communities.   
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Large herbivorous fishes on Caribbean reefs are generally limited to parrotfishes 

and surgeonfishes which are often considered as functionally different groups.  

Parrotfishes have robust mouthparts and scrape the benthos whereas surgeonfish have 

weaker mouthparts and crop algae but do not scrape the benthos (Steneck 1988).  

However, the parrotfishes can be further divided into excavators, scrapers, and browsers 

based on jaw morphology and feeding habits (Bellwood and Choat 1990, Bellwood 1994, 

Streelman et al. 2002).  Excavators typically have robust jaws with heavy musculature, 

feed on epilithic algal turfs, and scar the substrate as they remove (excavate) portions of 

the reef matrix with each bite.  Scrapers have less robust jaws and more gracile 

musculature than do excavators, but they also feed on algal turfs removing little inorganic 

reef matrix during feeding.  Browsers exhibit jaws that have more well defined teeth than 

either browsers or scrapers and typically feed on turf algae, upright macroalgae and 

seagrasses without scarring or scraping the substrate.  However, these groups are 

somewhat plastic as species can exhibit traits of multiple groups as do some species in 

the genus Sparisoma that browse upright macroalgae and seagrasses but also excavate 

live coral (Bernardi et al. 2000).   

The two parrotfishes used in this study, the redband parrotfish and princess 

parrotfish, would be considered a browser and a scraper, respectively.  Although they 

have similar feeding morphologies (i.e. both have robust jaws and a pharyngeal mill), 

there are interesting differences in jaw structure.  In princess parrotfish (and Scarus spp. 

in general), the upper jaw closes over the lower jaw while in redband parrotfish (and 

Sparisoma spp. in general) the lower jaw closes over the upper jaw (Bellwood 1994).  

For princess parrotfish, the upper and lower jaws have teeth coalesced into uniform 
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cutting edges while redband parrotfish have obvious individual teeth on both upper and 

lower jaws.  The two species also have different foraging behaviors.  Princess parrotfish 

take small, quick bites in rapid succession from the benthos while redband parrotfish take 

fewer bites in a given time period resulting in princess parrotfish having a bite rate that is 

2.9X higher than redband parrotfish (Figure 4.2B).  Princess parrotfish also take more 

bites per feeding foray while redband parrotfish often take only one or two bites per foray 

before moving to a different patch (D. Burkepile pers. obs.).   

Although princess and redband parrotfish have somewhat different jaw 

morphologies and feeding behaviors, both species can, and will feed, on tough, calcified 

macroalgae such as Halimeda tuna (Figures 4.5A & B), and both species depressed 

articulated coralline algae and H. tuna to similarly low levels but with redband parrotfish 

suppressing articulated corallines significantly more than princess parrotfish (Figures 

4.1D & F).  Yet, overall, princess parrotfish and redband parrotfish had significantly 

different diet preferences (Figure 4.5) and different effects on macroalgal communities 

(Figures 4.1 & 4.8).  When offered macroalgae directly, princess parrotfish consumed the 

tough calcified macroalgae, but would not eat softer macroalgae that redband parrotfish 

would normally consume such as Dictyota menstrualis, Lobophora variegata, Sargassum 

fillipendula, and Codium taylorii (Figure 4.5B).  The patterns from the macroalgal 

communities also differed significantly with the redband-only treatment suppressing 

upright macroalgae and facilitating filamentous, turf algae while the princess-only 

treatment suppressed turf algae but had an abundance of upright macroalgae, specifically 

L. variegata, Codium spp. and Sargassum spp. (Figure 4.1).  Thus, redband parrotfish and 
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princess parrotfish have different effects on the macroalgal community despite their 

obvious morphological similarities. 

In contrast to redband parrotfish, ocean surgeonfish have different feeding 

morphologies but similar feeding behavior to princess parrotfish.  Ocean surgeonfish lack 

the robust jaws of parrotfishes and generally avoid calcified and tough macroalgae 

(Figure 4.5C).  However, free-ranging individuals of princess parrotfish and ocean 

surgeonfish showed similar feeding behavior in that they both took small, successive 

bites in rapidity from the benthos (Figure 4.2B).  Despite their contrasting morphology, 

these two fishes generated similar macroalgal communities in the single-species 

treatments (Figure 4.8).  Princess parrotfish and ocean surgeonfish had similar overall 

levels of upright macroalgae (49.5 ± 5.4% vs. 48.3 ± 4.0% respectively), Lobophora 

variegata (27.3 ± 4.2%  vs. 19.7 ± 3.0% respectively), and Sargassum spp. (5.4 ± 1.8  vs. 

3.9 ± 1.6 plants/cage respectively) (Figures 4.7B & C).  Thus, these taxonomically and 

morphologically distinct fishes generated macroalgal communities that were more similar 

to one another than were those generated by two taxonomically and morphologically 

similar species, the redband parrotfish and princess parrotfish.  These patterns suggest 

that consumers with similar traits or taxonomic relationships can have more dissimilar 

effects on prey communities than do consumers with limited functional or taxonomic 

relatedness (Purcell and Bellwood 1993, Chalcraft and Resetarits 2003, this study).   

The MANOVA of effects between years showed significant differences for the 

exclosure and uncaged treatments but not for the redband-only treatment.  The between-

year difference for crustose coralline algae in the exclosure (Figure 4.6A) may reflect an 

artifact of Hurricane Charley (early August 2004) which passed within 150 miles of the 
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field site before final data were collected for Year 1.  Wave action from the hurricane 

removed some of the large, but poorly attached macroalgae, such as Kallymenia westii, 

Dictyota menstrualis, and some L. variegata, from the exclosure treatment exposing 

crustose coralline algae that had been overgrown by these upright macroalgae.  This 

hurricane effect also resulted in an underestimate of the effect of removing large 

herbivorous fishes on upright macroalgae in Year 1 (i.e. compare the upright macroalgal 

data for the exclosure vs. uncaged treatments in both years; Figures  4.6A & B).  The lack 

of a between-year difference in Dictyota spp. and the greater abundance of L. variegata 

in Year 2 for the exclosure may also partially reflect artifacts of Hurricane Charley.  

However, L. variegata was the most abundant upright macroalga in the uncaged 

treatment in Year 2 suggesting that L. variegata was more abundant overall in Year 2 vs. 

Year 1.  Further, dominance by L. variegata in Year 2 represented a shift in the dominant 

macroalga as Dictyota spp. was the most common upright macroalgae in Year 1 (Figure 

4.6B).  However, the between-year differences in the dominant species did not appear to 

change the overall abundance of the major macroalgal groups (i.e. upright macroalgae, 

turf algae, and crustose coralline algae) which were similar across years in the uncaged 

areas (Figure 4.6B).  Despite the between-year differences in species composition for the 

exclosure and uncaged areas, there were no detectable differences in community structure 

for the redband-only treatment suggesting that the effects of redband parrotfish were 

similar in both years despite differences in the dynamics of the macroalgal community at 

the site itself.  Thus, the differences seen among fish treatments (i.e. redband parrotfish 

vs. princess parrotfish vs. ocean surgeonfish) in the cluster analysis may be less 
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influenced by inherent differences in the macroalgal community between years than are 

differences seen for the exclosure or uncaged treatments.    

Videotaping of fishes feeding on the macroalgal communities generated by the 

Year 1 treatments showed significant separation in resource use among parrotfishes and 

surgeonfishes.  On average, parrotfishes in the genus Sparisoma fed more slowly in cages 

that had previously held redband parrotfish as opposed to those that did not (Figure 

4.9C).  This pattern held for the three common Sparisoma spp. at our field site (Figures 

4.9D-F).  As redband parrotfish appear to have the broadest diets of species in the genus 

Sparisoma (McAfee and Morgan 1996), they probably exhausted most of the macroalgae 

that would have been attractive to other Sparisoma spp.   If other Sparisoma species with 

different feeding modes would have been used in the treatments instead of redband 

parrotfish [e.g. Sparisoma viride is an excavator which includes more live coral and turf 

algae in its diet (Bruggemann et al. 1994)], this pattern may not have been as striking 

because different Sparisoma sp. may have generated a different macroalgal community.  

Use of macroalgal resources following cage removal in Year 1 suggests that princess 

parrotfish and ocean surgeonfish may have significant dietary overlap because: (1) both 

species fed rapidly in the redband-only treatment (Figures 4.9H & K), (2) princess 

parrotfish fed more slowly in the surgeonfish-only treatments than in other treatments 

(Figures 4.9H), and (3) princess parrotfish and ocean surgeonfish generated similar 

macroalgal communities inside the cages (Figures 4.7B, 4.7C, 4.8).  Further, macroalgal 

composition in the exclosure and the surgeonfish-only treatments were very similar 

(Figures 4.7B, 4.7F, 4.8), but princess parrotfish fed more rapidly in the exclosures than 

in the surgeonfish-only treatments (Figure 4.9H) suggesting that surgeonfish lower the 
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abundance of algae that are attractive to princess parrotfish.  Feeding assays show, 

however, that ocean surgeonfish feed on upright macroalgae that princess parrotfish 

avoid (Figures 4.5B & C) which may moderate competition between these two 

herbivores.  Blue tangs (Acanthurus coereleus), the other common acanthurid at our field 

site, showed no distinct patterns of preferred grazing after cage removal (Figure 4.9L) 

possibly due to low numbers of blue tangs feeding in the experiment and the resulting 

low power to rigorously document preference patterns.  But, the higher mean in the 

exclosure suggests that this species focused on treatments that had not previously held 

fishes and that both redband parrotfish and ocean surgeonfish may remove algae that blue 

tangs prefer.  

When we analyzed the similarity of fish feeding in the different experimental 

treatments following cage removal in Year 1, cluster analysis showed that the redband-

only and diversity treatment were the most similar among the treatments (Figure 4.10).  

The exclosure clustered next with the redband-only and diversity group while the ocean 

surgeonfish treatment showed little similarity to the other treatments.  This result is 

somewhat surprising given that the exclosure and surgeonfish-only treatments showed 

high similarity in terms of macroalgal community structure (Figures 4.7B, 4.7F, 4.8).  

However, the feeding rate by all fishes was 75% higher in the exclosure than in the 

surgeonfish-only treatment.  In addition, two of the herbivores that exhibited the highest 

feeding rates, the princess parrotfish and the ocean surgeonfish, fed more in the exclosure 

than the surgeonfish only treatment (Figures 4.9H & K).  The redband parrotfish showed 

the same pattern but the two treatments were not different statistically (Figure 4.9D).  The 

Sparisoma species that fed most intensely after cage removal, the stoplight parrotfish, 
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showed the opposite pattern by feeding more in the surgeonfish-only treatment than in 

the exclosure, although there was no statistical difference (Figure 4.9F).      

The differences in feeding preferences and effects on community structure seen 

among these three herbivores may be especially useful for managing fish populations as a 

method for reviving Caribbean reefs.  For reefs that are heavily overgrown with 

macroalgae, Sparisoma spp. seem important for denuding stands of macroalgae and thus 

opening substrate for crustose coralline algae and coral recruitment; clearly, adding 

princess parrotfish to a reef overgrown by macroalgae will have little positive effect 

relative to adding redband parrotfish.  In both years of this study, when redband 

parrotfish were present in the treatments they appeared to control macroalgal community 

composition relative to the other fishes present (Figures 4.7 & 4.8).  Thus, they may be 

particularly influential herbivores for reefs with an abundance of macroalgae.  For reefs 

that are dominated by filamentous turf algae such as reefs with high sedimentation, 

Scarus spp. such as princess parrotfish will be important to graze down thick turfs to 

prevent them from hindering coral recruitment and survival.  The complementary feeding 

of redband parrotfish and ocean surgeonfish suggests that surgeonfishes will be important 

for decreasing overall upright macroalgal cover as they remove species that may be 

avoided by other herbivores (Figure 4.5C).  However, parrotfishes may have stronger 

overall effects on macroalgal abundance than do surgeonfishes (Ogden and Lobel 1978, 

Steneck 1988).  Williams and Polunin (2001) showed that for nineteen areas throughout 

the Caribbean biomass of both parrotfishes and surgeonfishes was negatively correlated 

with macroalgal abundance (i.e. as grazer biomass increases macroalgae decrease) but 

that the correlation for parrotfishes appeared stronger.  Further, Mumby et at. (2006) 
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showed that recovery of large parrotfish (Scarus spp.) in protected areas of the Bahamas 

dramatically reduced macroalgal abundance.  Thus, efforts to facilitate parrotfish may 

have strong impacts on macroalgal abundance but promoting herbivore diversity should 

benefit overall macroalgal removal. 

Given that biotic interactions strongly influence the structure and dynamics of 

ecosystems (Naiman 1988, Chapin et al. 1997), the conservation of strongly interacting 

species may be critical to preserving natural areas (Soule et al. 2003).  Because fishes are 

numerous, have high metabolic rates, can rapidly move to areas with increased algal 

production, and are the most abundant herbivores in many areas of the Caribbean (but see 

Carpenter and Edmunds (2006) for a description of Diadema antillarum recovery in the 

Caribbean), developing conservation strategies that directly involve the enhancement of 

critical species of herbivorous fishes with an emphasis on promoting herbivore diversity 

should facilitate the management and restoration of reef health.  Although the 

establishment of marine protected areas has resulted in an increase in large predatory 

fishes and herbivorous fishes and a reversal of coral reef decline in some areas (Mumby 

et al. 2006), many reefs may be so impacted that the mere establishment of protected 

areas may not be sufficient to reverse the downward spiral of reefs (Pandolfi et al. 2005).  

Thus, the combination of protected areas and active management of herbivorous fish 

stocks may be a step in the right direction of reestablishing the herbivores and herbivore 

diversity that is a critical part of the resiliency of coral reef ecosystems. 
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