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SUMMARY

This dissertation considers the problem of control of dynamical
systems opegating in the presence of uncertainty, A control procedure
is presented in which uncertainty, which may be either a deterministic
function of time or a stochastic érocess, is described by only its
bounds. No statistical modeling is used for this noise. The systems
under consideration are described by a set of nonlinear differential
equations. These equations are linearized about a specified nominal
trajectory resulting in a liﬁearized perturbation model, The region
around the nominal trajectbry containing the perturbed state is described
by bounding ellipsoids. Using the trace of these ellipsoids as a per-
formance index, this index is minimized subject to a @onstraint which
is an ellipsoid generation algorithm. This minimization procedure re-
sults in a control algorithm,

In order_to evaluate the control algorithm the procedure is applied

to the problem of a vehicle re-entéring earth's atmosphere. The re-entry

problem fits the class of problems under consideration in this work be-
cause it is described by a set of nonlinear differential equations and
the uncertainty is unknown but bounded, The control algorithm is de-
veloped for this example and the re-entry is simulated.on thé digital
computer, The re-entry is simulated using deterministiec perturbations,
Gaussian white noise, and uniform noise, The ellipsoidal bounding region
is generated and by comparison with the statistical techniques is showm

to be a conservative bound. The character of the bounding ellipsoid and
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" the on-line system control.

viii

the sample variance, however, are very similar, The bounding ellipsoid
is computationally more efficient to ﬁompute than the statistical bound
and can therefore be recommended as a tool to obtain qualitative infor-
mation about the performance of a given closed-loop control system,

The major contribution df this research is an alternate design
approach to the control of systems operating in the presence of uncer-
tainty. This design procedure yields a time-varying controller that is
a linear function of the systeﬁ state, I.The controller is implemented
on-line by using a digital computer to store the nominal trajectory,
nominal control, and the controller gains. The system state is measured
and compared to the nominal state, thus giving the perturbed state.

The perturbation control can then be generated using the appfopriate

gain matrix. This perturbation control and the ncominal control form
J




CHAFTER 1
INTRODUCTION

ﬁptivation
The basic problem in control systems engineering involves the
control of a physical process in the presence of uncertainty. This un-
certainty can take many different forms such as lack of knowledge about
the process itself, unknown inputs to the process, or errors in attempt-
ing to measure the true state of the system. By fér, the mbst widely
used technique of répresenting this uncertainty in the mathematical

system model is to consider the uncertainty as a stochastic process with

- known statistics. Frequently, the uncertain parameters are modeled as

"

white Gaussian noise. In many problems the uncertainty may be adequately

represented by Gaussian noise processes. There are, on the other hand,

-many physical systems in which the disturbances cannot be accurately

{
characterized in this manner. For example, in the guidance and contrel
of aircraft, ships, rockets, and space stations the external forces such

as updrafts, wind gusts, waves; ocean currents, gravity gradients, and

crew motion are not Gaussian in nature. In many adversary situations

resulting in the;game theory.type of problem formulations, the tracker
has no a priori knowledge of the evasive pattern-of the target. The:
movement of the target reflects itself as an unknown disturbance input
to thé tfacker which is nbf likely to be éaussian. In_any case, a

priori statistics are not available. However, bounds on the magnitude
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of the disturbances can frequénﬁly be estimated. Another example is the
control of a sYstem’subjected to a random bias disturbance. In all of
these control problems it is feasonable_to seek an alternative to the
white Gauséian model. One such alternative, although relatively undevel-
oped, is to model the uncertainty as a set-constrained'process. In this
approach the unknown disturbance is regarded as a stochastic or determin-
istic proceés that is contained within a spécified region. No statistical
properties arélassumed to be known about the process.

Another aspect of the general control problem which is related to
the disturbance characterization is the overall function of the controller.
In such problems where control in the presence of an unknown disturbance
is required, a possible method of approach is to reqﬁire that the control
action result in acceptable performance for any possible disturbance.

That is, in many contreol problems it is imperative thaf the control action
be such that the state of the systeﬁ\be confined to a bounded region in
the state space. Guaranteed performance is more important than "on the
average" perforﬁance in these problems. |

Therefore it is the objective of this dissertation to develop and
evaluate a controller which results in guaranteed performance in the face

of disturbances which are characterized only in terms of absolute ampli-

tudes.

Background

The two distinct modeling techniques mentioned above make it con-
venient to classify the historical background into two areas: Stochastic

Contrel Theory and Set Constrained Control Theory.

B et Elt R i St 3




Stochastic Control Theory
The basic approach in stochastic contrel theory is to represent
the disturbances or uncertainties in the system to be controlled as sto-

chastic processes., These processes can be described mathematically in

- many different Ways;_but the characterization that has proven most useful

is to treat the stochastic process as a white Gaussian noise process,

The control of linear plants or processes subjected to Gaussian disturb-

ances has been the subject of much past and present research and is com-

monly referred to as the Linear-Quadratic-Gaussian Problem (LQG)[1].
Because this dissertation also comsiders a linear process model, this
background material on stochastic theory will focus on just the LQG
problem, :

The LQG design approach can be summarized as follows [1]. The
deterministic nominal trajectory for a érocess to be controlled is deter-
mined, uncertainty in the process is modeled as Gaussian white noise; and
the system equations are linearized about the nominal. Next the deter-

ministic optimal control is generated. This control is optimal in the

sense that it minimizes an artificial cost functional that depends qua-
L

dratically on the state deviation. Now because all of the state vari-

ables are_generally not available for measurement and because the ones
that are available usually are considered corrupted by noise, a Kalman-
Bucy filter is employed to estimate the system state [4,5]. The filter
is driven by the output of the system and furnishes an estimate of the
system state as. output. The control structure is then specified using
the deterministic optimal controller gain acting on the estimated state

vector as indicated by the well known Separation Theorem [6]. A paper




by Witsenhausen [7] pulls together the many resulté relating to separation
of'estiﬁation and control in discrete time stochastic control theory.

The separation principle provides a complete solution to the.problem from
a theoretical viewpoint. From a practical viewpoint, h?wever, there is
still a lot of work to be done with regard to system modeling.

To implement the design resulting from the éeparation principle,
the engineer must know the mean and covariance matrices of the random
variables modeling the plant initial state, and the mean and covariance
matrices of the measurement noise, 1In addition, the state variable
weighting matrix and control variable weighting matrix to be used in the
quadratic performance criterion must be selected. There is no systematic
procedure available to use in the-selection of thése matrices. The de-
signer, of course, must also be concerned about the accuracy of the plant
or process model and whether or not the plant and measurement nolses are
actually white and Gaussian. .

Some research has been done on these, problems., 1t has been ob-
served that after an extended period of operation of the Kalman-Bucy
filter, the errors in the state estimates eventually diverge from the ex-

' Ina

pected error values. This phenomenon is known as "divergence.'
definitive paper by Fitzgerald [8], model mismatch, incorrect selection
of. process and measurement noise matrices, process bias, measurement bias,
and numerical inmaccuracies are all considered as causes of filter diver-
gence. The most commonly accepted solution for the divergence problem is
to increase the intensity of the process noise assumed in the model.

Fitzgerald shows that this fix may or may not correct the divergence.

Additional work on the filter divergence problem has been done by Sage

oy S




and Melsa [9] and Jazwinski [10].

In the LQG design problem, application of the separation theorem
is generally interpreted to mean the following: the optimal feédback gain
matrix of the deterministic linear regulator and the optimal filter are
designed separately and then the filter and gain are cascaded for optimal
system performance. In a recent paper by Mendel [11] it is claimed that
this procedure generally leads to an unsatisfactory design due to the
fact that the optimal stochastic control law is a function of the esti-
mated state. The estimated state contains.the trdé state as well as an
estimation error term. When the loop is closed this estimation error
term appears as an unknown disturbance to the plant. Mendel's solution
to this problem adds another step to the LQG design procedure. ‘This ad-
ditional step consists of selecting the quadratic criterion weighting
matrixes such-that some meaningful performance méasure is optimized.

This results in a separate optimization problem.

In summary then, a satisfactory LQG design is still heavily de-
pendent on Monte Carlo simulations, and on the designeris engineering
experience. If the assumption on linearity of the systém or the Gaussian
noise or the quadratic criterion is withdrawn there is no unified approach
“to the stochastic control problem, Therefore, if the noise is in reality
non-gaussian, the designer usually has to make the "Gaussian assumption, '
proceed with an LQG design and then tune the Kalman filter to give the
desired results. ‘

Set Constrained Comtrol Theory

An alternative approach for problems where the noise is nmot white

and Gaussian is afforded by recently developed techmiques for modeling




" formance for this control law. An algorithm is developed to find the’

the disturbance as a set constrained proéess. A set constrained process’
is represented by only its bounds. No statistical properties are assumed
to be known about the process. This representation for the disturbanqe
has béen used by several investigatérs in their work. The following

paragraphs describe the results to date.

-
n

Witsenhausen [12] considered the worst-case design of controllers
for a linear differential system subjected to a bounded control and a
bounded disturbance. The viewpoint in this paper is that given a control

law, there is a maximum cost over all perturbations, the guaranteed per-

minimum of this number over all control laws. Delfour and Mitter [13]

considered the problem of reachability for control processes operating in

the presence of set constrained disﬁurbances. Specifically they consid-
ered the problem of finding the best open loop control in the presence of
the worst disturbance. -

In a 1968 paper By Schweppe [14] an approach also based on the
ideas of reachability and set constrained disturbances was taken. In
this paper a method for estimating the state of a linear dynamic system
using noisy observations was developed. The input to the system'and the
observationlerrors were completely unknown except for bounds on their
magnitude or energy. The state estimate was actually a set in state
space rather than a single vector. This set was bounded by a time-
varying ellipsoid which was generated with a recursive algorithm. This
algorithm was based on the concept of reachability. Bertsekas and
Rhodes [15], using a set-membership description of uncertainty, also

developed a recursive state estimator. This estimator was very similar




to Schweppe's with one exception; the gain matrix in the algorithm was
independent of ;he observations and therefore precomputable, This fea-
ture made their algorithm look very similar to the corresponding sto-
chastic linea; minimum~variance estimator (Kalman filter).

Bertsekas and Rhodes [16] also examined the problem of Reeping the

state trajectory in a specified target tube. Necessary and sufficient

conditions for reachability of a target set and a target tube are given

in the case where the'system state can be measured exactly. _Their re-
sults [16] give sufficient conditions for reachability for the case when
only disturbance corrupted output measurements are available. An al-
gorithm is suggested that leads to linear control laws. Unfortunately,
these control laws will fail for certain bounded disturbances and the
exact relationships that lead to the failﬁre are not specified. Glover
and Schweppe [17] also formulated the problem of keeping the state of a
linear system in a specified region of the state space. Again the un-
certainties were constrained to be in specified sets, A bounding ellip-
goid -algorithm was developed and two arbitrary control laws were sug-
gested. |

The above mentioned work by Witsenhausen and by Delfour and Mit-
ter developed control strategies but were not applied to any specific
problem. Furthermore, the techniques outlined appear to be applicable to
only scalar systems, Thus their results are interesting but strictly
theoretical in nature. The papers by Schweppe [14] and by Bertsekaé and
Rhodes [ 16] aré ﬁf a more practical nature but again the control strate-
gies are not specifically evaluated. Furthermore, an arbitrary.and con-

sequently not very appealing procedure for selecting the contrel is

e e mme o i e e ———— R [




embodied in these results. Therefore, the control schemes set forth in
the literature on set constrained disturbances stiil remain to be thor-
oughly evaluated,

In summary then, it appears that while the LQG design approach is
applicable to many control problems there are large classes of problems

for which the set constrained thedry is possibly a more realistic approach.

' The LQG approach, however, has received a great deal of attention from re-

searchers andICDnsequeqtly.offgrs to the contrel engineer a much more
systematic design procedure than thé set constrained theory does., It is
possible, however, that additiogal research in the bounded disturbance
area can make the'solving of this problem much more systematic and,
therefore, allow the designer to choose from the two approaches, the ap-

proach most appropriate to the problem at hand.

The Problem
The problem investigated in this research ié the deﬁelbpment and
evaluation of a contreller for a noisy dynamical system;:'The mathematical
model for the system is a set of nonlinear differential equations with an

additive nolse term

£(x,u) + N (1.1)

EX
i

No statistical information is assumed regarding N. Rather, the noise, N,

is modeled as a function of time with known bounds. The neise is modeled

in thislmanner fér several reasons. First, in many problems a probabilis-
tic noise description is not as readily available as the bounds are;

Second, this moise treatment offers anm alternative to the designer faced




with a non-gaussian problem. And third, in many problems a system must
be confined to a critical region or épecified tolerances must be met with
certainty so the bounds on the driving noise are the critical factors,

The basic objective of the controller to be developed is to keep
the state, x, of the system (1.1) close tc a specified nominal or desired
trajectory. If thé state of the system is confined to a region afound
the nominal trajectory, a valid mathematical representation of the system
is obtained by expanding f(x,u) in .a Taylor Series about the nominal tra-
jectory and truncating the higher order terms. This resulting linearized
perturbation model is then used to represent the system and a perturbation
controllexr is developed for thié moedel. In an effort to make the con-
troller implementation reasonable, it is assumed that the control can be
realized as a linear function of the state. Because the major thrust
here is the development énd evaluation of the controller, the problem of
noisy measurement is not considered.

It is ugseful in this thesis to think of the space containing the
state of the system as a region or tube centered about the nominal tra-
jectory. This region is described mathematically by a éet of bounding
ellipsoids. The desired controller, therefore, is the one that minimizes
this bounded region and thus meets the objective of keeping the state
close to the nominal trajectory. Selection of this minimizing control
thus specifies the desired controller.

The evaluation of the controller is performed by applying it to
the re-entry problem. The problem of spacecraft re-entering the earth's
atmosphere is chosen because it is of current research interest. Also,

the problem is ome in which it is imperative that the state of the system
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be confined to a region or tube centered about the nominal trajectory. 1In
addition, the disturbances or uncertainties present such as vehicle char-
acteristics, winds, and atmospheric density are unknown but estimated

bounds can be determined from physical consideratioms.

Approach to the Problem

Because of this unknowm but bounded disturbance representation as-
suﬁed in this research, it is clearly impossible to derive a controller |
that can maintain the sta£e of fﬁé system exactly on the n&minal trajec-
tory. An approach alternative to the best "average" control determined
py thg separation principleapproach is used in this reéearch; In this
approach it.i; recognized that ‘since the coﬁtroller cannot keep the étate
of the system exactly on the nominal trajectory, the real purpose of the
controller is to keep the system "close" to the desired trajectory for
all possible disturbances. Minimization of a performance index is a
secondary consideration. The controller sought here, then, is the one
that minimizes the region around the nominal trajectory in which it is
possible for the state to lie. This is analogous to seeking directly a
"guaranteed performance’ controller rather than the usual "average” con-
troller. To realize this controller, then, this region or fube argund -
the trajectory must be formulated. This region at any point in time may
be thought of as two concentric sets in state space, The first set is
the set of reachable states. The second set is made up of the additional
states the system can reach if the worst case noise disturbs the system.

Once a description is obtained for these sets an cptimization technique

is.applied that directly minimizes this region or tube. The controller
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results from this optimization step. The detailed mathematical formula-

tion of this approach is presented in Chapter II.
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CHAPTER 11

DEVELOPMENT OF THE CONTROLLER

" Introduction

It is the objective of the first phase of this research to develop
a controller for a dynamical system operating in the presence of uncer-
tainty. This uncertainty is mathematically modeled by only its bounds.
No statistical modeling is used. |
Before the algorithms describing the controller can b; presented,
several preliminary ideas are developed. First the class‘of system for
which the control scheme is applicable is described. Then, the region
or tube aroqnd the nominal trajectory containing the system state is
characterized. Control algorithms are then defined by finding the control

which minimizes this region.

1
Problem Formulation

Consider the plant modeled by the nonlinear vector differential

equation

x(E) = £(x(t),u(t)) , x(0) (2.1)

where x(t) is the n-dimensional plant state vector with components xl(t),
xz(t); v e ey kn(t), u(t) is the m-dimensional control vector with com-

pohents ui(t), u2(t), S e, um(t), x{0) is the initial state vector at

£ =0 and £(x(t),u(t)) is a nonlinear function with components




"lem in its own right and will not be comsidered in this research. It is
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£ &(0),u(0), £, ,u0), . . ., £ (x(t),u(t)). This function
E@&(t),u(t)) is assumed to be continuous and at least twice differentiable
with respect to x(t) and u(t). The notation é(t) is defined to be

d/dt x(t). The model of this system is shown in Figure 1,

|5

x = £(z,w

u
e ———————A

Figure 1. Deterministic Model

If a systematic approach, using nonlinear deterministic optimal
control theory, is applied to this plant, an &%timal control Ed(t) and
resulting trajectory 5d(t) can be determined. This control is optimal in

the sense that it minimizés a given performance criterion of the form

I .
3= Fxm) + [ L@ u)a
l'.-O

where the interval 0 to T is the duration of the trajectory. The deter-

mination of this optimal control Ed(t) is, in general, a non-trivial prob-

assumed, however, that the control term Ed(t) and the state zd(t) are

defined and represent the desired control and trajectory. It is recog-
nized, however, that the true trajectory x(t) of the system will not
coincide identically with gd(t). This is true both because of errors in

attempting to model the physical process and because of unknown disturbance
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inputs acting on the process or plant. Therefore, a more realistic model

of the process is

= £(x,u) + N(t) ' (2.2)

[F

where N(t) represents the uncertainty in the plant and the externmal dis-
turbances. The uncertainty vector N(t) may be a deterministic function
of time, a stochastic process, or a constaﬁt. The only characteristic
that %s assumed known about N(t),.however, is that it is contained within
a specified bound, That is, N(t) is contained in the set QN(t). No
probability distributions or statistics are assumed known.

In the presence of these disturbances it is still assumed desirable
to maintain the trajectory of the system "close"” to the desired or nominal
trajectory gd(t). In fact, in many broblems it is mandatory that the
state be confined to a specified region of the State space, To do this a
control correction term must Pe generated. This term can then be added
to the nominal control term to generate the real-time control function
which will drive the.state of the system closer to the ﬁominal state
§d(t)°

Expanding the nonlinear function f(x(t),u(t)) in a Taylor Series

about the known desired trajectory and control gives [22]

£ df
£ = £Qxpup) + 33| @ -xp +35] @-uy) +R (2.3)
=y, Bx, ,
= =

where R represents the higher order terms in the Series. For a scalar

case the remainder term in the Series is given by [23]
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(x - Xd)n¥l el . :
R = -—T;:T$T—— i () X, <o <X

where n = 1. For the vector case comparable terms can be formed.

It is assumed at this point the available control u(t) maintains the

true state of the system close to the nominal state §d(t)' That is,

[|x(t) - gd(t)H is small, in which case the control correctioh term

u(t) - Hd(t)“ is”smgll. Under this assumption, the motion of the system

may be represented by the linear terms in the expansion (2.3). Defining

6X = X - Xy (state perturbation vector)
éu =u - uy {control correction vector)
£
AdL) = 2
X %ﬂ
—d 1
of
B(t) = B:‘
o
=d

and substituting into (2.3) gives

6x = A(t)x + B(t)éu + N + R L (2.4)

The remainder term, R, from the Taylor Series is bounded and so is N.
Therefore, it is reasonable to combine these two terms into a term of the

form G(t)w(t). Therefore (2.4) becomes

6x = A(t)6x + B(t)ou + G(t)w(t) (2.5)
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where A, B, and G are known matrices of proper dimension. Because the
solution of the control problem conmsidered here involves a digital com-

puter, this linearized model is discretized and takes the form-

6x(n+l) = ﬁ(n)ag(n) + H(n)éu(n) + G(n)w(n) (2.6)

This is the perturbation model for which the controller will be develqped.
The sample size for the discrete model is obtained by examination of the
eigenvalues or transient frequencies of A(t). The sample size selected
must be small compared to the corresponding time constant of the highest
frequency present in the system (2.5).

Before the control scheme is developed, however, the region around
the nominal trajectory containing the perturbed state &x(n) will be de-
scribed mathematically. After this repion is characterized, the control
scheme will be developed by minimizing this region with respect to a se-
lected performance index. The following secticns, then, describe the
region or tube around the nominal trajectory, justify the selection of a

performance criterion, and develop the control algorithms.

The Bounding Ellipsoids

The purpose of ghe controller that is to be developed for the
system (2.2) is to keep the state of the system close to the nominal or
desired trajectory., That is, at any point in time the state must be
contained in a certain region around the nominal trajectory. The control
scheme to be developed is based on the idea of minimizing this region

around the trajectory. Before this minimization can be performed, however,
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this region or tube must be formulated mathematically. First this region
will be described for the linearized, deterministic, unforced system
under consideration here (2.7). Then the regionm will be described for
the more general case--the system with ap input. After these regions or
sets of stateé have been formulated, it will be possible to select a per-
formance criterion and perform a minimization with respect to this cri-
terion that will result in the desired controller.

Consider, first, a description of the region surrounding the nominal
trajectory that will contain the state of the unforced perturbation

6x(n+l) = @(n)ox(n) (2.7)

I

If the inmitial state, 8x(0), is known, then in one time increment there
is only one state the system can reach.’ However, if the initial state is
only known to lie within a certain region, there is a set of states the
system can reach. From ; practical point of view it is important that
this reachable set bz characterized by a finiée set of pumbers.» One'way
to do this is to specify the initial condition region to be an ellipsoid.
An ellipsoid can be completely described by its center and a weighting
matrix. With this description of the initial state region, then, the set
of reachable states for the system (2.7) is also an ellipsoid. The follow-
ing example illustrates these ideas.

Example:

Given: the system - §x(n+l) = @(n)sx(n)

5x(0) ¢ 0, (0)

" where
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0 (0) ={6x € R*: (6x(0)) T (0)8x(0) < 1}

_ | 1 1 0
and T (0 = :

o

5x

1

d

0, (©)

5x1

\

2
ol
¥

Determine: the regiom the state of the system is in at the next

time increment. At n = 0 the state is contained in

x0T ©08x0) < 1

Now 5x(1) = @#(0)8x(0)

or ' 5x(0) = d-l(O)é

substituting into (2.8) gives

x(1)

(2.8)

@1 ©5x1) 7o) @ O)ex(1)) < 1

or :
ez Tortog o) exa)) <1
GxNT W ex@) <1

where -1 T -1 -1
T () = ¢ r (0)¢

and

r(L) = @O ©)g* (o)
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Therefore at m = 1 the state is in the region

bx(1) € 0 (1) = {6x € Kt (6x(1)T;H ) (6x(1)) < 1]

In general for the unforced perturbation system model
sx(n+l) = () 6x(n)

with initial state known to be contained in the region
62(0) € 0, (0) = {6x ¢ R™: (6% - ¢ (ON'T7(0) (6 - ¢ (0)) = 1}

the system state will be contained in the region
x(n) € O (n) = {6x & R": (6x - ¢ (@) T ') (ox - ¢ (m) = 1} (2.9)
- X - - 4 - =X

where

T (1) = Gr )4 ()

g (o+l) = g(n)e (n)

Fx(n) is positive definite and symmetric.

With this formulation it is possible now to extend theﬁe ideas to
the forced system and thus characterize the region around the nominal for
the system (2.7) under consideration here.

If an input is applied to the perturbation model, the model is of

the form

8x(n+l) = Qf(n)ég:_(n) + G(n)w(n) (2.10)
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Again it is assumed that the initial state 65(0) is contained in an
ellipsoid and in addition it is assumed that the input w(0) is known to

be contained in an ellipsoid, The state of the system 8x(n) can bz bounded
by an ellipsoid by making use of the following information.[17]. Given

two sets described by
: n -1 |
Ql={z£R. (z-cl)I[‘l (z-cl)sl]-

_ n_ T.-1
52'22—{Z¢ER.(z-ar:.z)l"2 (z-cz)sl}

The sum of these two sets is contained in the ellipsoidal set
0 ={ze R": (z - (c.reNT Nz - (c,4c,)) < 1}
5 ’ 1 72 5 172

where'rs is given by

' =

s Tl * Fz 0<p<<1

1
1-8

o | =

and Fl, Fz, FS are positive definite symmetri§ nxn matrices. B is a
scalar parameter.

By adding dynamical éharacteristics to these ellipscids, as was
done in the unforced case, the bounding ellipsoid containing the state

6x(n) is

I (otl) = I-Bﬁ ‘J(n)l"x(n)ﬁ(n)T + B(t) G(n)Q(n)GT(n) (2.11)

5x(n) € Qx(n) = {8x € R (6% - gx(n))TF;l(n)(ﬁg - gx(n)) < 1} (2.12)
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where
5x(0) € ,(0) = {6x & K": (6% - ¢ (ONT™1O) (6% - ¢ (@) = 1]
and

win) € ﬂw(n5 = fw e R’e:.'(g - gw(n)')TQ-l(E - ¢, (M) < 1}

¢ (1) = Blm)e, () + G(m)g, (n)

At this point the region containing the state 6x(n) has been char-
acterized. After the performance criterion is selected in the next sec-
tion, it will be possible to develop the control scheme by minimizing this

region described by the bounding ellipsoid (2.11).

The Performance Criterion

To minimize the region around the nominal trajectory in which the
system state can lie, a performance criterion must be chosen. This cri-
terion must be a reasonable mathematical representation of the region as
well as be mathematically tractable. For these reasons, the trace of the
appropriate ellipsoid matrix is chosen as the pefformance index. The
following paragraph relates the trace to the space to be minimized. '

At any point in the trajectory, the state will lie in a region de-

scribed by N

Qx(n) = {6x € R": (6x - Ex(n)fo-l(n)(éz - Ex) < 1}

where F;l(n) is the nxn positive definite symmetric weighting matrix of
an ellipsoid. By rotation of the co-ordinate system (similarity trans-

formation) the matrix A shown below can be obtained from the matrix I'.,

i
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) i
« s s amaas — LI N I R, 0
ll 0 q 0 i 0 0
0 R 0....'00 0 —1"0..00..'00
2 -1 Ao -
A= , A = 1"
0.--.--.--..01 Ooooooooco.t--[}hL
) - n. N . n
| . I

This rotation results in an ellipsoid in so-called standard form. The

eigenvalues of I' are assumed to be distinct. This assumption is not re-
;

strictive and does not effect the idea being explained here. If this

rotated ellipsoid is expanded it takes the form

T ,h -1 1 .2 1,2 1 .2
Sy A §X = hl 6yl + hz 5y2 ... + Rn 6yn =1

with no loss in generality by assuming Cx(n) = 0, Therefore, the axes

of the ellipse are the square roots of the eigenvalues. Furthermore, the

trace of a square matrix is equal to the sum of its eigenvalues.

- .
Trace [['] = Trace [A] = y ?\i

i=1

For purposes of illustration consider a two dimensional example.
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From this discussion and example it is seen that the trace of the
ellipsoid I' is a measure of the region to be minimized. The trace is
also easy to compute and does lead to reasonable control laws as showm

in the next sections.

Development of the Control Algorithms

The previous sections of this chapter have described the model
under consideration in this thesis, the ellipsoidal region containing
the state, and a performance criterion that measures the size of this
region. It is now possible to formulate the control problem being con-
sidered and to pfoceed to develop the control algorithms for the problem.

The linearized discrete time perturbation model being considered
here is

8x(n+l) = P(n)sx(n) + H{n)du(n) + G(n)w(n) . (2.13)

The perturbation contreoller for this model is assumed to be a linear

function of the state

du(n) = L(n)éx(n) (2.14)
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and the initial state 6x(0) is in the region
n ' I%-l
6x(0) € 0 _(0) = {6x ¢ R: [b%x - ¢ (01T "(0)[8x - ¢ (O] = 1}

and the noise is contained in

2 T.-1. '
¥n)eQ (n) ={wekR: [w-c (m]Q [w-¢c(m]=<l
The problem, therefore, is to determine the pertﬁrbation controller,
L{n}), for n = 0,1,,..N that minimizes a measure of the size of the ellip-
soidal region bounding the state x(n). This problem is solved in the

following manner, Substitution of (2.14) into (2.13) gives

8x(n+l) = H(n)sx(n) + H(n)L(n)sx(n) + G{(n)w(n)
or

6x(nt+l) = [P(n) + H(n)L(n)}sx(n) + G(n)u(n) (2.13)

Defining

B(n) = B(n) + H(n)L(n)
{2,15) becomes

§x(n+l) = P(n)sx(n) + G(n)u(n)

From the previous section on the bounding ellipsoids it is seen that

5x(n) is contained in the region

Q_(n) = {6z € R™: [6x - zx(n)]TI‘;l(n) [6z - ¢ ()] = 1}
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described by the ellipsoid

1 oA T 1 T
I (41) = Ty B, () () + 275 6(m)Qn)6’ (n) @.16)
e (m41) = Ba)e (n) + Gln)e (n)
0< B(n) < 1

At this point the matrix L(n) that minimizes the performance cri-
terion of I'(n) must be determined. This is analogous in the vector case
to determining the Zontrol u(n) that minimizes a performance index of
the state variables, x(n). The problem has now been formulated so that
the Matrix Minimum Principle (Appendix I) may be applied to determine the

controller. This is done in the following manner.

The performance index is

N=-1
J = Tr[(N)+ 2: Tr [ {n)] (2,17)
n=0
with the constraint
Fatl) = {55 (0@) + HL@ T () [A@) + HL@I  (2.18)

\

+ -;— G(n)q(n)C (n)

The Hamiltonian is

H = Tr[l (n+1)PL(n+l)] + Tr(l (n)] (2.19)

e e pe e e . e — —

3l
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where the elements, pij’ of P are the &-state variables corresponding to

the element x.. of I'. Now
1]
I(n+l) = i}_p (BT ()P (n) + H(n)Lm)T ()P (n) (2.20)

+ BT (m) HE@L@)" + B@)L@T () HL@))T

+ % G(n)Q(n)G" (n)

substituting (2.20) into the Hamiltonian (2.19) yields

T T 1 T T '
H= Tr[i:étgj ﬂsn)r(n)ﬂ (n)P (n+1)] + Tr[i:ETET H(n)L ()T (n)@" (n)P (ﬂ+15] _

E T{T_;m'.ﬁ(n)f” (n) (L (n)L(n) )TPT(n+1)_-_| + n[l—_é(T) H(n)L(n)T (n)

% (H(n)L(n))TPT(n+1)J +'Tr[§?%3 G(n)q(n)GT(n)pT(¢+1)] + Telr (n) ]

Application of the Matrix Minimum Principle requires that, for the

optimum contreoller

QH _ _
iy = © | (2.21)
D _ .
Ty = F® (2.22)
with ' P(N) = I (2.23)

Using the relations in Appendix I, the following relationships can be

obtained.
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a% = Pm) = @ (PT )@NT + @ m)PTMHHE@LM))T
+ WXL P )om)T + @ Fmnt I ) EmILm)) T +1
or

P(n) = (ﬁ(n) + H(n)L(n))IP(n+1)(¢(n) + H(n)L(n))(i%E) +1 (2.24)

and that P = PT.
Now
Nbf(ln) = 0 = BL ()P (n+1)B () () + HE (n)PL(n+1)B(n)F (n) |
T ' T T T
+H ()P (n+1)H(M)L()T (n) -+ H (a)P" (o+1)H(n)L(n)T (n)
or )
HT(n)P(n+1)0(n)P(n) +-HT(n)P(n+1)H(n)L(n)r(n) =0 (2,25)

I'{n) 1s positive definite and symmetric so Fﬁl(n) exists. Equation (2,22)

can then be written
4T ()P (n+1)#(n) + HL(n)P (@+H(n)L{n) = O
solving for L(n)
L(n) = - (EE(@P D)) BT (n)B (aH )b (n) (2.26)
The quantity B ()P (0+1)H(n) is a scalar. The matrix Ricatti equation

(2.24) with initial condition (2.23) can be solved backwards in time and

thus specify the controller

du(n) = L(n)sx(n)
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As expected, the resulting controller is of the Ricatti form. In par-
ticular, this controller is the same as the Ricatti controller with
quadratic performance matrices R = R, @ = 0, where R is the weight on

the state and Q is the weight on the control. In the procedure preéented
here, however, the performance index is the weighted trace of the ellip-
sold that bounds the system state. Changing R can therefore be thought
of as changing the size of the tube containing the state., This design
procedure is therefore an alternate approach for this control problem,

This control scheme can be implemented as shown in Figure 2,

x(n)

w(n)

PLANT

r +
(\r buy ] 6x(n p
T
4 ,k ‘
L(n)
u,(n) x4 (n)
COMPUTER '
xq(0),u4(n),L(n)

Figure 2. Controller Tmplementation

This scheme works as follows.
The matrix L(n), ;he nominal tfajectory gd(n), and the nominal
control gd(n) are stored in the cdmputer. When the state x(n) is measured

the appropriate nominal state Ed(n) is referenced and 6x(n) is generated.

~

ey

R nE = e
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This perturbation vector 8x(n) is then multiplied by L(n) giving the
perturbation control Su(n). The nominal control u (n) is then added to
Su(n) to form the control g(n) that is applied to the plant.

In this section the control scheme for.the pertﬁrbation model was
develbped. The basic idea in this development is.the concept of main-
taining the state in a fegion or tube around the nominal trajectory. This
region is described by a set of bounding ellipsoids and the controller is
assumed to be a linear function of the state., The objective of the con-
troller therefore is to minimize this region containing the state and thus
keep the state close to the nominal trajectory. This minization is per-
formed using the Matrix Minimum Pgiﬁciple with the trace of the bounding
ellipsoid as a performance index. The resulting control scheme is com-
puted off-line and stored in a computer for use on-line as shown in

Figure 2,

Selection of the Parameter B(n)

In the previoué sections on the bounding ellipsoids and the de-
velopment of the control algorithms, the parameter f(n) appeared in the
algorithm that generated the ellipsoids. This parameter is free within
the range 0 < f{(n) < 1. However, this parameter does affect the size of
the bounding ellipsoid at each step in time, Therefore, it is desirable
that ﬁ(n) be selécﬁéd in some optimal manner, In this research the
following technlque is used |

The bounding e111p501d is given by

[ () = B (0)8 (n) YY) ) G(n)Q(n)G (n) (2.27)

1
1@

ok e




30

By letting
c(n) = B)r )p ()
and - o 5(n) = Gf;)Q(n)GT(n)
(2.25) becomes
[ (a+l) = l-Bl(n) C(n) + —— B( — Do)

Because the trace of I'(n+l) is equal to the sum of the eigenvalues of
I'(ntl), the parameter g(n) is chosen so as to minimiZe the trace of

I'(ntl) at each step, This is done in the following manner.

e[l (nbl)] = ﬁ (cyp + Sy vrr t ) +% () +dyy + aen +4 )
. 1 o
T (a+1)] = 75 (2 ) +5 ( ldii) (2.28)
i=1 i=

At B8 = 1,0 the trace is a maximum. This implies there iz a minimum be-

tween 0,L. Differentiating (2.28) with respect to R gives

. n n
\ dTr[Ic*lB(nﬂ)] . (1-3) (Z ) 5_15 1214 1) =0
L] - o7 (zn' eyy) - -m)* ( i d453) = 0
i=1 i=1
X a a n ; n
=P (Zcu' Zdii)-'-za(}_.dii) ) Zdii=0
i=1 i=1 i=1 i=1

Solving for E gives
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B

- Je (GGl

Because 0 << g < 1, the positive sign is used. Therefore, at each step

B(n) is calculated using (2.29).

In the generation of the ellipsoid that bounds the state, any £ in

the range 0 << B < 1 can be used., However, to obtain the most conserva-
tive estimate possible of the region containing the state, B{n) is

chosen using the relationship (2.29).

Sunmary

In summary this chapter has presented the class of systems under
consideration in this thesis, the idea of bounding the state space with
ellipsoids, and the development and implementation of the system con-
troller. The control procedure is applicable to systems described by
nonlinear differential equations that operate in the presence of uncer-
tainty. To use this procedure the system equations are linearized about

a known nominal trajectory and the bounds on the noise or model uncer-

tainty are specified. The controller is developed to minimize the region

around the nominal trajectory that contains the system state. In this

(Feww Lo

T o e T
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work this region is described by ellipsoids and the ccn;roller ninimizes
the frace of the ellipsoids. The resultant controller is specified By a
linear time-varying gain matrix and .is computed off-line., This controller
matrix, the nominal trajectory, and the nominal control are.stored in a
digital computer for use in on-line systems control. The controller

operation is shown in Figure 2.
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CHAPTER III
THE RE-ENTRY CONTROL PROBLEM

‘ Introduction

To evaluaté the controller developed in Ghapfer II, the problem
of control of a vehicle re-entering the earth's atmosphere is con-
sidered, The mathematical model for this problem is described by a set
of nonlinear differential equations and the uncertainty in the problem'
is most readily described as unknown but bounded, Therefore, the re-
entry probleﬁ is in thé class of problem described in Chapter IT and
in this chapter it is so formulated that the control scheme developed
in the previocus chapter can be applied. The controller structure is
determined and re-entry of the controlled vehicle is Fhen simulated on
the digital computer. This simulated performance is used to evaluate

the controller,

Background

' There are many problems associated with sending a vehicle into
space and returning it to earth, Tﬁe most critical problem, however,
is the guidance and control of the spacecraft while it is re-entering
the earth's atmosphere. For a vehicle to successfully re-enter the.
earth's atmosphere and land, its trajectory mﬁst stay within certain
bounds or Eolerances. The general form of this bounded region or tube

is shown in Figure 3 [18]. The skip-out boundary defines the region
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where the vehicle is traveling too fast and too high and, therefore, will
skip out of the atmosphere uncontrolled, The recovery boundary defines
the region where the vehicle is traveling too high and too slowly. In
this area the vehicle will soon dive into a steep trajectory which will
exceed the deceleration boundary. The lower boundaries keep the vehicle
from traveling at too high a sﬁeed for a given altitude, In this instance

the dense atmosphere causes excessive heating or excessive deceleration.

Skip-out  Recovery Ceiling

Limit Ly, 00

Controlled
_ Trajectory

] —

=

3 \

ia

e

u Y

';E Heating e

Limit \
Acceleration :
Limit
Velocity
o Figure 3, Re-entry Bounding Region

The prime consideration in re-entry guidance, therefore, has to
be to keep the vehicle confined to a certain region at all times, This

must be done in the presence of external disturbances acting on the
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vehicle as well as uncertainty concerning the vehicle's characteristies,

The vehicle's characteristics are generally not measured very accurately
prior to flight and, in fact, can actually change during the flight.

Therefore, the uncertainty is characterized by a priori bounds,

Re-entry Model

In this section the nonlinear system of equations describing the
motion of the spacecraft are presented [18,19]. These'equations assume
that the vehicle.is approaching a non-rotating, spherical earth and that
the motion of the vehicle is planar. The inertial coordinate system is’
shown in Figure 4, During the re-entry, the major forces acting on the
craft are gravity and aerodynamic effects. The force due to the earth's
gravity acts towards the center of the earth. The resistance of the

atmosphere to the motion of the vehicle is aerodynamic drag (D). The

- aerodynamic force which tends to deflect the vehicle from its velocity

direction is 1ift (L). These forces are shown acting on the vehicle in
Figure 4. The gravitationmal acceleration is denoted by g, m is the
vehicle mass, L apd D are the lift and drag accelerations, Ro is the
radius of the earth, h is the altitude of the vehicle measured from the
earth's surface, and ﬁ is the vehicle velocity. The angles are defined
in Figure 4, If the forces acting on the vehicle are summed using the

Cartesian inertial coordinates, the following equations are obtained

Fx =-Dcos P+ Lsin@® -mg sin ¢ =m 212,3%5_91 (3.1)
F =Lcos@+Dsinfp-mgcosy =~ Klé&!_gzg_ﬂl {3.2)

v dt




Drag Lift

Figure &,

local hor.

inertial velocity

Vehicle Inertial Coordinate System
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By resolving these forces in the velocity direction and recognizing that

¢ -y, (3;1) and (3.2) become

g =
. ' dv
-D <+ g = —_— .3
mg sin m g (3.3)
- - dv d
L-mgcosd=-m ¢ sin - oV cos § E% ;
Now
dg _de dy _de , Vcos 6
dt dt dt dt R,+Hh
so (3.3) becomes
doe V cos §
L-mgcos 8=~ mV (EE + Ro4ih
The equations of mofion are, therefore
g% = -V sin 8
m g% =mg sin 6 - D
do _ V cos 8Y _
v T mg cos § - mV (—ngrir) L
or
% =- V sing :_ (3.4)
g—:’;-—- g sin & - D/m

do _gcos® V. cosd . L

dt v R0 + h mv

The lift (L) and drag (D) are dependent on the atmospheric density,

velocity of the vehicle relative to the air, and the physical character-




istics of the vehicle. This dependency is

VZ p C. 8

L L

H

1
2
1.2
5
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where p is the density of the air, § is the wing plan-form area, and

CL and CD are the lift and drag coefficients.

In this work an exponential model is used for the atmosphere,

P =P, exp(ph)

I is the air density at sea level,

-
1

The lifit and drag coefficients are functions of velocity, vehicle

shape, and the angle of attack, . The angle of attack is the angle

between the direction of velocity and the direction of the zero lift axis

of the vehicle. The wvehicle is controlled by varying this angle. It is

assumed here that these coefficients are functions only of the angle of

attack, The lift-drag polar used here is
C. =2¢C sin o cos o
, 2
C.=6C__ +C sinw

D Do DL

Substitution of these expressions into (3.4) gives

dh _

ac V sin 8

a _ 12 Bh . 2
ac — 8 sin a 5=V pg € S(CDO + CDL sin'@)

de _gcos 8 Vecosop 1

de v R Fh 2m

(3.5)

-V Po eﬁhS(CLO sin & cos &)
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These are the deterministic equations that describe the motion of the
vehicle, That is, these equations describe the vehicle motion if all.
assumptions in their derivation are satisfied and if the parameters are
exactly knowm.

In reality, however, these parameters are not known exactly. For
example, consider the wvehicle characteristics. The lift and drag coef-
ficients are seldom established very accurately prior to flight and can
undergo significant changes while the vehicle is re-entering the atmos-
phere [21]. The atmospheric density affecfs the vehicle motion and is
known to vary from day to day as well as month to mﬁnth. All of these
uncertain elements must somehow be reflected in the system equations

(3.5). Therefore, as an effort to more accurately model the vehicle's

motion during the re-entry, the equations must have a term added to them

that mathematically reflects these unknown effects acting on the system,

"This is the purpose of the terms nl(t) and nz(t) in the equations shown

below.l
dh
dt=-VsinB
@ _ . gh v a2
5 = 8 sin Q > v P, @ S(CDO + LDL sinw) + nl(t)

de _gcos B8 Veosp 1 Bh :
at v Rb T 2m’V Py © S(CLo sin o cos o) + nz(t)

Now the question of how to model nl(t) and nz(t) remains, They are cer-
tainly not deterministic functions of time. On the other hand, they may

or may not be stochastic processes. If they are stochastic processes,




40

the statistics are not geénerally known a priori. Howevef, these two
terms representing the uncertainty in the re-entry process do share two
common characteristics, They are unknown but can be bounded by the de-
signer, Available to the designer are published data and information

that can be used to determine these bounds. Using [20] as a guide, it

is seen that = 10 percent density variations can be used to bound this

soufce of uncertainty, The available literature [21] indicates that a
vehicle's characteristics can be determined to within £ 10 percént of
their true value. Therefore, the uncertainty in the re-entr& problem is
treated as a set constrained process. That is, only the bounds on the

disturbances are assumed to be knowmn.

Re-entry Controller

Before the controller developed in Chapter II is applied to the
re-entry system model developed in the previous section, several steps
must be taken. First the state variables must be selected, second the
nominal or desired trajectory and control must be specified, third the
nonlinear system of equations must be linearized about this nominal tra-
jectory, and.fourth the resulting linearized equations must be discre-
tized,

In this problem the state wvariables are the altitude, h, of the
vehiclé measured from the earth's surface; the velocity, V, of the ve-
hicle; and the angle, 9, 5etween the velocity‘direction and the local
horizontal, The control variablé is the angle of attack which is .the
angle.between the direction of velocity and thé direction of the zero

1lift axis of thé vehicle.
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Letting %, = h, X, = v, X3 = 8, and u = @, the motion equations

1

are

él =-x,sinxg ' | | (3.6)

: . 1 2 Px 2

X, = g sin X3 - 3-%, 0 _ e S(CDO + CDL gsin u)} + nl(t)

. g cos Xy Xy €OS Xq 1 pxl )

Xy = %, - Ro e “TmXp g e S(CLD sin u cos u) + nz(t)
or

x = £(z,u) +1n

This system of equations (3.6) can now be linearized by expanding
in a Taylor Series about{; given nominal trajectory., The difficult prob-
lem of calculating or selecting this tréjectory and control is not con-
sidered here, It is assumed the nominal trajectory and control are

specified. The expansion is:

o

. df £ '
§=.f__(§,u)+g=£(§d,ud)+gz (z-zd)ﬂ“b—u-x (a-uy) +R+n

=4 S
Yq

afd?

where R represents the higher order terms in the Series.

Defining

o
"
[}
1%«
1

o
E
I
(1]
1

Su=u - u

A(t)

{continued)
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11

of
B(t) = Sﬁ

aF

the_indica

ted operations gives:

bfl
1
of
=B~;;=-sinx3
=Ef—l=-x CoOS8 X
bx3 2 3
of px, . _
_ 2 _ 1 1., .
= S;I = - 50 %, P, B e S(CDO + CDL sin u)
of Bx
- 2__1 1 ;
Tx, ' m Xy pp & S(Cpg + Oy sin'w)
222 os
= bx3 = g COS Xq4
of X, €COS X Bx
__ 3 2 3 1 1 .
el 37 3 Xy Py B e S(CLO sin u cos u)
1 (R0 + xl)
Of  g cos X cos X Bx
_ 3 _ 3 3 1 1 . )
=t = - ( 5 F R e Y Im P © S(CLD sin u cos u)
2 X, o 1
. bf3 _ g sin X3 . %, sin X3
be X,y R0 + %Xy
)
=30 =

(continued)}
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bf2 1 2 Bx
321 =35 TR X0, S(CDL sin u cos u)
. df Bx
3 1 1 2 . 2
B31 = —E;:l— = - E x2 po e SCLO(COS a - S51n U)
and .
8% A Az A B B
6*2 = A21 A22 A23 §x + 321 $u + n + E
5% Ay Bgy  Aggl [8x B3

where the A and B matrices are evaluated at x = .9 and u = Uy and are,

therefore, functions of time. The bounded disturbance term and the Taylor

Series remainder term can be combined to give

6x = A(t)8x + B(t)bu + N 3.7

Next the linearized systém (3.7) is discretized. The linear con-
tinuous system model Gi = A(t)éx + B(t)bu must be represented by

the discrete model

8x(n+l) = d(n)éﬁ(n) + H(n)&ﬁ(n) (3.8)

The computation of the discrete model is performed on the digital com-
puter.

At this point the discrete perturbation model (3.8) is recognized
as the same model (2.6) for which the controllgr in Chapter II was de-
veloped using the performance criterion (2.17). Therefore, the re-entry

system (3.8) is contrcolled such that the performance measure of the
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bounding ellipsoids containing the state is minimized. This performance
criterion is
N-1
J=TelF (W] + 51 Tr[I' (n)]
n=0
-1
where I' "(n) is the weighting matrix describing the ellipsoid that con-

tains the re-entry state. The re-entry controller for the system (3.8)

is given by

su(n) = L(n)éx(n) C(3.9)

where
L(n) = - (H (n)P(n+1)H(n)) " 1HT (n) P (n+ 1)@ () (3.10)
and P(n) = (P(n) + H(n)L(n))TP(n+1)(¢(n) + H@)L({n)) + I (3.11)
P(N) = I (3.12)

The relationships (3.9 - 3.12) specify the re-entry control scheme.
With the re-entry controller specified, the re-entry process can
now be simulated on the digital computer. The details of the simulation

and the results are presented in the next chapter.
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CHAPTER IV

RE-ENTRY CONTROLLER PERFORMANCE

Introduction

At this point the controller for the re-entry problem has been
developed. The impdrtant practical consideration of how well the contrelled
spacecraft performs must now be considered The controlled system is eval-

uwated by simulating the re-entry on the digital computer. The re-entry is
simulated under severgl different condipions. The details of the simula-
tions, the_results, and the analysis of the results are presented in this
chapter.

" As noted in Chapfer iII, controller development requires that the
nonlinear system model (3.5) be linearized and tﬁen discretized. To;
linearize the model for a simulation requires the knowledge of certain
constant and vehicle parameters as well as a nominal trajectory and control
about which to linearize. Since the re-entry is into the earth's atmos-

phere the following constants are known:

"

earth's radius R

o 2.09 x 10? feet

32.2 ft/sec
&

i

gravity constant g
air density at sea level Po = 2.70x 107" 1b - secszt4

The vehicle parameters for these simulations are taken to be [19]:

H

250 1b - sec2/ft

66.5 ft2

mass of vehicle m

Il

wing-plan form area S
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lift-drag polﬁr parameters CDO = 0.274
Cpp = 1.8
Co = 1.2

The nominal trajeétory and control that is needed is shown in Table 1 [19].
Using these consgtants, vehicle parameters, and Table 1, the linear-

ized system matrices A(t) and B(t) are evaluated. This is done in the

following manner., Table 1 is linearly.interpolated over five second in-

tervals and these resulting values are substituted into A(t) and B(t).

This gives a model sample size of 0.5 second.

With the A(t) and B(t) matrices known, the discrete model
ex(n + 1) = @(n)sx(n) + H(n)bu(n)

is generated in the cbmputer;_ A sample time of T = .05 seconds is used
to compute the discreté model. Using @(n) and H{(n), the control algo-
rithms}developed in Chapter II are used to generate the control for the
vehicle. |

A weighting matrix is used in the generation of the controller for
the linearized.re-entry model. This linearized model.is qbtained from
truncation of second-order and higher terms in a Taylor Series expansion
of the nonlinear system equations. Therefore, the weighting ﬁatrix is
chosen to reduce the effects of this.truncation. The second derivations
f.

i
bxi

, of the nonlinear system are:
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Table 1. Nominal Trajectory and Control
Time Altitude-xl Velocity-ic2 Flight angle-x3 Control
(seconds) (feet) (ft/second) (degrees) (degrees)
221227.00 35677.00 5.83 40.12
204219,00 35177.00 5.11 35.72
10 190269 .00 34396 .00 4.00 29.35
15 180462.00 33437.00 2,57 22.60
20 175244 .00 32469 .00 1.06 16.99
25 174163.00 31611.00 - .02 12.78
30 176240.00 30915.00 -1.22 19,37
35 . 180421.00 30385.00 -1.85 6.02
40 185795.00 2996 .00 -2.18 . 2.13
45 191652.00 ~ 29704.00 -2.28 - 2.42
; 50 197493.00 29470.00 -2.22 - 7.21
f 55 203015.00 . 29267.00 -2.08  -11.64
: 60 20808500 29081.00 -1.90 -15.38
65 212671, 00 28911.00 -1.72 -18.40
70 216794 .00 28754.00 -1.55 -20.81
75 22049800 28611.00 -1.40 -22.74
80 223829.00 28479.00 -1.27 ~24.28
85 226831.00 28359.00 -1.15 -25.54
90 229542.00 28248.00 -1.04 -26.58
95 " 231997.00 28146 .00 - .95 -27.45
100 234223.00 28051.00 - .86 -28.20
105 236244.00 27963 .00 - .79 -28.83
110 238080.00 = 27880.00 - .72 -29.38
115 239747,00 27803.00 - .65 ~-29.86

120 241260.00 27729.00 - .59 : -30.28

uh
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of,
— = 0 _ 4.1)
bx1

2

O f Bx

2 _ 1 1 . 2

= " T R° S(CDO + CDLs:Ln u)
tMZ

Pt

3_ § COS Xq . X, €08 X4
2 X R + =
x3 2 0 1

The terms in the matrix are chosen to be inversely propertional to these

second derivations. Substituting typical values in (4.1) the matrix is -

1 0 0
R= |0 1000 0 (4.2)
0 0 1

The values a?e inversely proportional because Fx(n) igs used in the per-
formance index and F;l(n) is the bounding ellipscid matrix. Experimenta-
tion with severai other weighting matrices indicates that (4.2) gives the
most satisfactory performance. TFigure 5 gives a flowchart for generating
the re-=entry controller.

Using the constants, neminal trajectory, and the controller de-
scribed in the preceding'paragiaphs, thé.re-entrf proéess is simulated on
the digital computef. Tﬁe simulations can be classified as deterministic
and stochastic. The performance of the system and the bounding ellipsoid

is studied for both types of simulations.




Read in nominal trajectory,

control, and parameters

Y

Discretize the

linearized model

Y

Generate the control

tu(n) = L(n)éx(n)

Y

Close the loop

sx(n + 1) = [6(n) + B(n)L(n) 16x(n)

Figure 5. Computation of Re-entry Controller
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Deterministic Performance

The re-entry is first simulated assuming that no noise is acting
on the system. The purpose of this simulation is to study the transient
and steady-state response of the controlled system. The simulation is

performed in the following manner. With the model
bx(n + 1) = #(n)8x(n) + H(n)bu(n) (4.3)
and control

Su(n) = L(n)bx(n) (4.4)

]

stored in the computer, the loop is closed by substituting (4.4) into

(4.3) to obtain

bx(n + 1) = [8() + R@LE) Jxte) 4.5)
or

bx(n +1) = P(n)sx(n) S (4.6)
where By = ﬁ(ﬁ) + H(n)L(n)

-

By selecting initial conditions, 6x(0), the deterministic re-entry process

(4.6) is simulated. A representative trajectory is shown in Figure 6,
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Figure 6. Deterministic Perturbations
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In this simulatiom, the fplloﬁing observations are made. First the
re-entry perturbatioh contrﬁller developed in Chapter III does work.

That is, the closed>loop system reduces deviations from the nominal tra-
jectory to zero, Second_fhé_traqsient response is reasonable, in that,
there are no undue oscillations on the one hand while o; the other the
perturbed state variables reach zero in a reasonable time.

While these observations apply tb the re?entry problem'developed
in the previous chapter énd simulated in this chapter,'therg are broader
implications. The re-entry problem is a practical and difficult control
problem. The design procedure developed in Chapter II is applied to this
problem in a straightforward nmnner:énd results in a workable control
scheme. That is, the concept of finding the linear con;roller that mini=-
mizes directly the region aroun& the nominal trajectory results in a
valid design procedure. Because this procedure works for a difficult
problem, the re-entry problem, it is reasonable to assume it can be ap-

plied to many other control problems.

Bounding Ellipsoid Performance--Deterministic Case

It was shown in Chapter II for the deterministic case that the

state of the system .

‘ §x(n + 1) ﬁ(n) 8x(n)

Il

where Bn) = d(n) + H()L(n)

and initial state
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8x(0) e 0 _(0) = {sx € R": (6x -'EK(O).)Ir;(O) ¢x - ¢ (0)) = 1}

is contained in the region
Q_(n) = {6x € B": (6x - ¢ ()T 1) (6x - ¢ () = 1)
X = R 4 x = ==

described by the ellipsoid[‘;l(n).
To determine the performance of this bounding ellipsoid,l‘x(n)
is generated using

B

@+ D= @y @ m “.7)

where a(n) is the closed-loop reientry system matrix., The trace ofI‘x(n)
is used to give a measure of the ellipsoid performanée and the region
C)x(n) containing 8§ x(n) during re-entry. Shown in Figure 7 is a plot of
the trace ofI‘x(n) versus time into the trajectory, The trace initially
intreases and then deea&s.to zero. This implies that the bounding ellip-
soid also increases and then decreases to essentially a point,

The deterministic ellipsoid performs in this manner because of the

following reasoning. The ellipsoid is generated from (4.7). Let F%(Ol be

Fx(@ =10 Y22
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_ o _
If the eigenvalues of #(n) are real and distinct, the state coordinate

M
system can be rotated such that #(n) is similar to

?\1 0 0
‘ T
An) = A7€n) = (0 ?\2 Q
-0 0 ?x:i

vy o o]y, o o f[r o o
ry=fo 1, offo vy, o ffo 1, o

_0 0 K3 I 0 0 Y33 0 ] 7\3'

- 2

A ° 0

- | 2
Te1) =10 oYy O
2
N 0 M 3¥33
The |7\i(n)| <1 for all n = 0,1,2, . . . ,N so the traces in the rotated

system are as follows:

TP (00 = yy) +,, + Y33

' 2 2. 2
el (D] =hyyyy *A5¥5, *h3Y3;

e[l (1) J< T2l (0)]
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In two dimensions the ellipsoids look like

. / &x
Y99 2 :
. | ' Q )
ﬁxtf;l((})ﬁx <1 | \/Iﬁ'_ll °%)
- - rg 22
6xT M (1)6x < 1 o | v SELY %

If the eigenvalues are complex and distinct the same reasoning as

above can be followed, but it is a little more difficult to illustrate

graphically. The initial crace is

Te[C(0)] = yi) + ¥y, + Vg

T

and

2

2 * 2
TrC (1) = 2jyy) +2 g Y22 tA 5795

ey e e e S e e e s e —— PR
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* .
where 11 and Rl are complex conjugates. The magnitude of the trace is

2 *2 2 2 *2 2
|Tr[r(1)][=lhly11 Ay Vg * 12y22|5|11Y11|+|11 Yzz|+|"zyzzl

*
Letting 3\.1 = a + jb then )Ll =a - jb

" I N
and l=ag] = Ya%® <1

2 *2 2
l}‘llzlll <1, II"Lzl5 1

Therefore Tr[l'(1)]| < |Tx[r(0)]] and the trace in this cagse also decays

to zero as shown in Figure 7,

Monte Carlo Simulations

An important consideration in the re-entry problem is the perform-
ance of the contreller in the presence of noise. For the nominal trajec-
tory used in this problem, the principle source of noise is parameter

uncertainty. This uncertainty can be represented mathematically by
x = £(x,a,u) - (4.8)

where a is the vector of parameters containing the uncertainty. If (4.8)
is expanded in a Taylor Series about the nominal characteristics and is

truncated after the linear terms, (4.8) becomes

on
I
Il
oo
ol
o
P
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The uncertain parametefs are the lift coefficient; ¢, , and the drag'

LJ
coefficient, CD. That is,
a= CL
W CD
df
so the = ia
0 0
0f 1 2
-gi— = 0 m px23|
1
Et—n. prS 0
A -
Typical values for these paraﬁeters give
-
0 0
£
£ o w
N |.o02 0

Using a 10 percent change in the nominal characteristics £ .1 CLN‘aﬁd

.1 CDN results in

I+

0
N £ .0001
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This is the basis for letting the noise distribution matrix be

K

A : ' '
With this G matrix and the @#(n) matrix, the system model is
. n _
sx(n + 1) = B(n) ex(n) + Gu(n)

where w(n) is a stochaétie proceés.

Two different noise models are used in these Monte Carlo simula-
tions. In.the first simulation white Gaussian noise with zero mean and
a variance of one is used as input In the second simulation uniform
noise with a mean of zero and variance of one is the inmput. One hundred
runs are made using each ncise model., The performance.of the system in
| this environment is shown in'Figures 5 to 11. Figures_S.and 6 are the
sample mean versus time and Figures 7 and:S are the sample varlances

versus time. The sample mean and variance are calculated using

L &
6xi = E y 6x’i
i=1
N N 2
2 _1 2 (1Y 3
x. N 5 o=, - (N L %)
1 i=1 iél

where N = 100.
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In these stochastic simulations; it is evident from Figures 5 and
6 that the sample mean and the deterministic trajectories 100# very
similar.

The sample variance graphs are very interesting. The variance
increases initially and then begins to de‘créase. At approximaﬁeiy 45
seconds into the trajectory, howaver, the variance increases sharply,
decreases somewhat and then cogtinués to increase. The explanation for
this behavior is Obﬁaihed from an examination of the nominal trajectories
shown in Table 1, From O to 45 seconds the flight angle, x3,'is deéreas-
ing. At 45 seconds the noniinal xs s';ops decreasing and starts to iﬁ-
crease. The system is sénsitivé t6 changes in this angle and this is

reflected in the graphs of the variances.

Bounding Ellipsoid Performance--Stochastic Case

For the stochastic re-entry system model

"~

bx(n + 1) = B(n)6x(n) + Gw(n):

it was shown in Chapter II that with the initial state

Y

55(0)é Q_(0) = {sx e R': (6x - Ex(O))IF;I(O)(Gg - %(0)); 13

the state 8x(n) is contained in the region

a (a) = (sx € K" (ox - ¢ T @) (6% - ¢ @) < 1]
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described by the ellipsoid
1 A T 1.1
Ty(e + 1) = 75y $@T, @8 (0) + g3 6oe
2
where w {n) =Q

The ellipsoid described by Fx(n) is generated on the computer and again
the trace of F&(u) is used as a measure of the region containing O (n)
during re-entry. In Figure 12 the trace of r%(n) for this noisy case is
shown versus time,

The shape of this trace plot is similar to the shape of the vari-
ance plots shown in Figures 10 and 11. The trace increases initially,
decreases and then at approximately 45 seconds begins to increase again.
This is explained by examining the algorithm used to generate the bounding

ellipsoid. The algorithm is
1 A T 1 ..T
Ty + 1) = T gy BT mP () + 5y 608

and if this is written out in detail for this problem it becomes

Riyll 0 0 0 0 0
ra) = ———|o A%y 0 e £,8
1 - 800) 2¥22 D) 2 3
0 0 A3¥33 0 8y85 83
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1 .2
1-p *1711 0 0
1 2 2
ray = 0 TFn R 8 § 528
) S N Q
0 B 8283 1-p "33 v g 83

and

1 2 2 2 Q.2 .2

As was shown previoqs iy, the term R%yn + kgyzz + 1§y33 is smaller than

Y11 + Y99 + Y33 because Ihil < 1l, g(n) is generated using the relation-

ship developed in Chapier I1 and is a small number
f(n) <1

80

1

- e L

and the first term in the Tr[T{(1)] is'approximately the same as in the

Tr{(1)] for the deterministic case. Here, however, is the additional

term —£LT (gz + gg) which increases Tr[T(1)]. If the eigenvalues, Ki s,

B(n
are small it is still possible for the trace to decrease with time, On
the other hand if the eigenvalues are close to one, the trace increases.

This 1s the reason the trace varies as shown in Figure 12.

In Figure 13 is plotted the ratio of the semi~axis of the bouﬁding

ellipsoid to 30 where ¢ is the standard deviation obtained from the

Baussian re-entry simulation. From examinations of this graph several
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points are evident. First, the bounding ellipsoid is very gonservative.
Second, there is a region where the ellipsoid performs reasonably well.
This region is the 20 to 30 second interval on the graph. This is also
approximately the s;me interval where the variance (Figure 10) for the
Gaussian simulatio? is very small, It appears, therefore, that the
ellipsoid bound is quite good if.the variance is small and extremely

conservative if the variance is large.’

Ellipsoid Parameter B

In the computer runs that are uvsed to generate the ellipsoids and
the ellipsold traces, the parameter B(n} is calculated using the relation-
ship (2.29) developed in Chapter IL. A plot of B versus time is shown

in Figure 14.

i

. S R
Sensitivity to Model Parameters

In the introduction to this chapter the nominal values for the
model constants and parameters wexe specified. These are the values used
in the re~entry simulations and in generating the bounding regions Fx(n).
If the re~entry controller is to be useful it must not be sensitive to
variations in these mathematical model parameters. This is because these
parameters are net known exactly prior to the re-entry. Therefore it is
worthwhile to vary them and study the effect they have on the re-entry
process. Accordingly, the lift coefficient, CL’ the drag coefficient, C_,
and the vehicle mass, m, are varied one at a time in the linearized model.

The discrete model is computed and the bounding éllipsoid is generated

using

N
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T (n+1)= ﬁ(u)rx(n)aT(u)

The control used in closing the loop is generated using nominal values
o£ CL’CD’ and m and is not changed., %The trace of Fx(n) versus time for
the different cases is shown in Figures 15, 16, and 17,

In FPigure 15 is shown the variation in performance due to changes
in the drag coefficient. As the drag coefficient is increased this allows
more control to be applied to the velocity equaﬁion'so deviations from
the nominal are reduced to zero faster. This effect 1s shown in Figure
15. When the 1lift coefficient is increased more control can be applied
to the_flight angle., Thisg tighter angle control is shown in Figure 16.
The perturbations from the nominal are reduced fo zero in the same time
interval with less flare in the pérformauce. The effect.of varying the
lift and drag coéfficients together is shown in Figuré 17. The increased
drag coefficient reduces perturbations to zero faster and the increased
lift coefficient reduces the flare.

The re-entry controller, therefore, performs as predicted and is
not overly sensitive to wvehicle parameter variﬁtions. This 1s a very
desirable characteristic in any controller not just the re—eﬁtry con=~
treller. Once again these results have a broader implication. That is,
the controller developed in Chapter II is not sensitive to parameter

variations in the system model,

Summary

In this Chapter the performance of the re-entry contreller is

studied by performing various simulations on the digital computer, These
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simulations assumed both a deterministic re-entry process and a noisy
‘re-entry process. The results of the simulations are presented in
Figures 6 to 17. These results are interpreted in terms of just the re-
entry problem. Many of these results, however, have much broader impli-
cations than this one example. The following ¢hapter discusses the

implied results,
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CHAPTER V'
CONCLUS IONS AND RECOMMENDATIONS

Conclusions
This thesis has considered the control of dynamical systems

operating in the presence of uncertainty. These systems are described by
x= £(x,u) +N

where N represents any uncertéinty in the plant and external disturbances
acting on the planf. The only characteristic assumed known about N is
that it ié contained within a specified bound. No sﬁatistical modeling
is used.

It is assumed that the purpose of the controller for this system
is to maintain the state of the system close to a given or specified
trajectory. With this objective in mind it is reasonablé to expand the
nonlinear function, g(g,gj, in a Taylor Series about the known nominal
trajectory and truncate the higher order terms in the Series. This step

results in the.linearized perturbation model
6_55 = A(t)sx + B(t)su + N

This linearized model is discretized on the digital computer. This step

results in the linearized, discrete-time, perturbation model
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8x(n + 1) = B(n)sx(n) + H(n)bu(n) + G(n)u(n)
The contrecller is assumed to be of the fofm
Su(n) = L(n)éx(n)

which leadé to the model

L]

bx(n + 1) = [B(n) + H(R)L(n) 1ox(n) + G(mu(n) (5.1)

At this point the region around the ndominal trajectory confaining
6x(n) must be characterized. In this work, this region is described by

the bounding ellipsoids
bxt ()T T (n) bx(n) = 1

That is, the state 8x(n) is always contained within the ellipsoid described
by the positive definite weighting matrix F-l(n). These ellipsoclds are

generated using the algorithm
ra + 1) = 7=y S@r@bm + g cee’ (5.2)

where 6 =@ + HL is the‘closed-loop system matrix, B(n) is a free param-
eter selected according to the relationship developed in Chapter II, and

Q is the bound on the noise.
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Using the model (5.1) and the ellipsoidal bounded state space,
the general approach to this control problem is to find the controller
that minimizes this bounded region that the state 8x(n) can lie in. In
more gpecific terms, in this research the trace of I'(n), the bounding
ellipsoid, is taken as a measure of the "size" of the region containing
the state of the system. With this performance measure the control
problem can be stated as follows. Determine the control matrix L(n) that
minimizes the performance index
N-1
I= Tdr] + S Tr(n)]

n=0

subject to the constraint

1

F'{n +1) = FREEYTY) 6(nﬁ‘(n)6r(n) +-ﬂg£) GQG?

This basic control problem formula;ion allows the Matrix Minimum
Principle to be applied. In this matrix formulation the.eleﬁents of the
control matrix, Ei, play th? role of the contrel variables in the standard
vector form of the Minimum Principlé and the elements of the bounding
ellipsoid,;yij, correspon& to the compone;ts of the §tate vector. The
result of applying the Matrix Minimum Principle is a caontrel algorithm,
.or in other words, the result is the specification of the control matrix,
t(n), for alt n=0,1,2,. . .,N, and consequently the controller

du(n) = L(n)sx(n). This control is calculated off-line and stored for

use in an on-line environment as shown below.
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Computer

To evaluate this control scheme, a specific control probiem was
selected and the controller was developed as outlined above. The problem
selected was the re-entry problem. '_L'his controlled re-entry process was
simulated on the digital computer. This problem was selected because it
is a member of the class of systems to which this procedure applies and
because it is an interesting problem. The re-entry system dynamics are
described by a set of nonlinear differential equations and the uncertainty
in the modeling is unknown but bounded., This system.was linearized.about
a known nominal re-entry trajectory. The performance index for this ap-
plication was weighted and took the form

N-1
J=Te[r ()] + E Te(RT (n) ] (5.3)

n=0

© where R was selected to minimize the effects of truncating the Taylor
Series expangion of the nonlinear re-entry dynamics. This weighting
matrix adds flexibility to this design process. In a different control

problem, in all likelihood, a different weighting matrix would be selected
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based on physical cﬁﬁsiderations. With this performance index (5.3),.
the controller for the re-entry problem was calculated on the digital
computer, The bounding region containing the state of the system was
calculated using the ellipsoid generation algorithm. The shape of this
boundiné fégion can be varied by the weighting matrix R.

In summary, then, given a ﬂOnliﬁear system operating in the pre-
sence of uncertainty the following procedure is followed to generate the
system control. A nominal trajectory fér the system must be specified
and the system linearized about this trajectory. The bounds on the noise
must be specified and the weighting matrix in the performéﬁce index must
be selected. The control and the bounded region containing the state can
then be generated. 1If desirabie, at this point the shape of the bounded
region can be changed by changing the weighting matrix,

These_simulations showed that the coutrol scheme developed in
Chapter II is a valid scheme. The re-entry problem is a difficult and
demanding control problem. It is believed therefore, that the countrol
scheme can be applied to-many other problems.

.Both the deterministic and stochastic simulations showed the re-
entry to be well controlled. 1In the étochastic runs the sample variance
indicated that tighter control should be generated in certain inﬁervals
of the trajectory. This could be accomplished by using a time-varying
weighting matrix in the performance index.

The performance of the bounding ellipsoid was interesting. The
bounding ellipsoid algorithm generated a bound for the re-entry system

operating in the presence of noise, This bound was generated using a
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deterministic algorithm and while the bound was conservative.in absolute
nmagnitude the character of the bounding region was the same as the
statistically generated bound--the sample variance. The sample variance
was genérated frqm the Monte Carlo simulations consisting of 100 separate
passes through the trajectory. The bounding ellipsoid with one pass
through the trajectoryralso suggested the generation of tighte: control
in certain intervals. Therefore the detefministic béunding ellipsoid
can be used to give qualitative information about the performance of a

given closed~loop control system.

Recommendations .

There are several areas associated with this thesis research
Ehat are recommended for further study. The first area is the technique
used fof describing the reglon that bounds the state. In this wdrk
ellipseids were used to bound the state, This is a straightforward
technique buﬁ én approximate technique. The simulatibﬁ results indicate

that it is also a very conservative technique. There needs to be an

error énalysis performed on this ellipsoidal bounding techanique, Another

suggestion in this same area is the method of describing the bounded
region containing the state. Ellipsoids were used in this work, but it

is quite possible ancother technique might yield an algorithm that gen-

erates the exact bounding surface. For example if the initial condition

 gets are polyhedra then a polyhedral algorithm can be used to describe

the region.

In this research the performance index used in the controller

—————
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derivation was the trace Q% the bounding ellipsoid. It is quite possible
other performance indices will yield the same or different controllers.

Therefore in future work the formplation of different indices could lead

to new and interesting results.
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APPENDIX I

A systematic notational approach for the problem deéling with the
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time evolution of matrices is available in terms of the Matrix Minimum

Principle {24]. The purpose of this appendix is to pfesent the pertinent

informatioﬁ_from [24] that is used in this research,

The Hamiltonian for a'problem can be written

n n

- B =Frm),L@] +--§1 5? yij(n+1)pij(n+l) (A.1)

i=1 j=1

where Pij(n+1) is the costate variable associated with yij(ﬁ+1). This

Hamiltonian can also be written as
H = FID(),L{n)] + Tr[F(n+l)PT(n+1)]

where P(n+l) is the costate matrix associated with the state matrix
T(n+1). That is, yij and Pij are the elements of T'(n+l) and P(n+l),

respectively.

The key to the Matrix Minimum Principle [24] is in the use of gra-

dient matrices. A gradient matrix is defined as follows: £(T) is a

scalar-valued function of the elements yij of ' The gradient matrix of

£() is denoted by
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and the ijth element is given by

Qﬁiﬁl] - )
() i3 byij

With this definition, the costate equations associated with the

Hamiltonian H

' H
p . (n) = —l—
ij byij
can be writéen as
oy _ OH
P} = ol (n)

Using this notation the necessary conditions for optimality can be

stated for matrix problems.

__oB
PO = 3rem
H
F{(n+l) = P (ntl)
_oH _ .
Lin) 0

The gradient matrices needed in this work are given below.

-5% Te(¥] = 1 (A.2)
§g Trlax] = A' (4.3)
% T.r[g'] = A | (A.4)
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2 rolaxs) = a'®t (A.5)
2 relax'l = BA A.6
X TrlAX'Bl = BA _ - (A.6)
20 relax] - | (4.7
px7 rhesd T2 . -7
Lo pelax'] = A ' B (A.8)
oy Trlaxtlo=at o | .
=2+ Telaxs] - Ba (A.9)
g% Te[AX'B) = A'B' (A.10)
= Texx] = 2% (A1)
B%":Tr[g'] = 2X - (4.12)
Lol = @ h - (A.13)
n-1
” L omelax™ = () xtaxm 1) (4.14)
: = i=0
2 e{axmx] = A'K'B' + B'E'A" (,15)
Bbi Tr[AXBX'] = A'XB' + AXB (A.16)

The reader is cautioned that in making these gradient computations

the element x,, of X must be assumed independent.

i}




:
i
£
H

1.

10.

11.

12,

13,

86

BIBLIOGRAPHY

‘M. Athang, Special Issue on Linear-Quadratic-Gaussian Problem,

IEEE Transactions on Automatic Control, December, 1971.

M. Athans, "The Role and Use of the Stochastic Linear-Quadratic-

‘Gaussian Problem in Control System Design,' IEEE Transactions on

AutomatiCIantrol December, 1971, pp. 529- 552,

M. Athans and P, L. Falb, Optimal Contfol, McGraw-Hill, 1966,

R. E. Kalman, "A New Approach to Linear Filtering and Prediction .
Problems," Transactions ASME, Series D, Journal of Basic Engineer-

ing, Vol 82, March 1960, pp. 35-45.

"R. EJ Kalman and R. S. Bucy, “New Results in Linear Filtering

and Prediction Theory,' Transactions ASME, Series D, Journal of
Basic-Engineering, Vol. 83, March, 1961, PP- 95-107.

P. D. Joseph and J, T. Tou, "On Linear Control Theory," AIEE

Transactions (Applications and Indugtry), Vol 80 Septembar, 1961,
pp. 193-196.

H. S. 'Wltsénhausen, "Separation of Estimation and Control for
Discrete Time Systems," Proceedings of the IEEE, November, 1971,
pp. 1557-1566.

R. J;'Fitzgérald,'"Divergence of the Kalman Filter," IEEE Trang-
actions on Automatic Control, December, 1971, pp. 736=747.

A. P. Sage and J. L. Melsa, Estimation Theory with Applications to

Communications and Control, McGraw- Hill, 1971, pp. G12-417.

A. H. Jazwinski, Stochastic Processes and Filtering Theory,
Academic Press, 1970,

J. M. Mendel, "On the Need for and Use of a Measure of State

Estimation Errors in the Design of Quadratic-Optimal Control Gains,"

IEEE Transactions on Automatic Control, October, 1971, pp. 500-503.

H. S. Witsenhausen, "A Minimax Control Problem for Sampled Linear
Systems,’ IEEE Transactions on Automatic Control, February, 1968,
pp. 5-21.

M. C. Delfour and. §. K. Mitter, "Reachability of Perturbed Systems .

_and Min Sup Problems," SIAM Journal on Control, Vol. 7, No. 4,

November, 1969, pp. 521-533.




14,
| 15.
'16f
'-17..
18.
19.

. 20.

21,

22,
23,

24,

87

BIBLIOGRAPHY (Concluded)

F. C. SéhWeppe,'"Recursive State Estimation: Unknown but Bounded
Errors and System Inputs,"” IEEE Transactions on Automatic Control,

_February, 1968 pp. 22-28.

D. P, Bertsekas and I. B. Rhodes, "Recursive State Estimation for
a Set~Membership Description of Uncertainty," IEEE Transactions

~ on Automatic Contxol, April, 1971, pp. 117-128,

D. P. Bertsekas and I, B. Rhodes, 'On the Minimax Reachability of
Target Sets and Target Tubes," Automatica, Vol. 7, March, 1971,
pp. 233-247. .

J. D. Glover and F. C. Schweppe, "Control of Linear Dynamic Systems

with Set Constrained Disturbances,'" IEEE Transactions on Automatic
Control, October, 1971, pp. 411-423. '

T. L. Gunckel, "Guidance of Reentry and Aerospace Vehicles,"
Advances in Control Systems, edited by C. T. Leondes, Vol. 3,
1966, pp. 1-68.

J. A. Payne, '"Computational Methods in Optimal Control Problems,™
Advances in Contyol Systems, edited by C. T. Leondes, Vol. 7,
1969, pp. 74-164, '

U, §. Standard Atmosphere Supplemeﬁts, 1966, . S. Government

Printing Office, Washington, D. C., 1966.

W. C. Hoffman,'J. Zvara, and A. E. Bryson, Jr., "A Landing Approach
Guidance Scheme for Unpowered Lifting Vehicles," J. Spacecraft and
Rockets, Vol. 7, February, 1970, pp. 196-202,

Robert C. K. Lee, Optimal Est1mat1on, Identiflcatlon, and Control,
Research Monograph No. 28, M. I. T. Press. : :

" Handbook of Mathematical Functions., edited by Abramowitz and Stegun,

U, S. Dept. of Commerce, May, 1968, p. 880.

- M. Athans and F. C. Schweppe, “Gradient Matrices and Matrix Calcu-

lations,"” M. I. T. Lincoln Lab. Tech. Note 1965-53 (unpublished),
1965, Lexington, Massachusekts,




88

VITA

Péter Derek Bergstrom was born in'Jacksonﬁille, Florida. He
 received his B.E.E, (Co—ﬁp) in 1960 and M.S;E.E._in 1963, both from
Ehe:Geo'fgia'Inétitute of Techmology. He -was.employed by the General.
Eléctrié Comp§nyf§ Cﬁﬁpqtef Department from 1960 to 1962 and again from
- 1963 to 1955.”hfrom i965 te 1967 he was employed by IBM.

'in 196? he joined the faculty.of the Electrical Engineering
Schoql.at deorgia Téch as an Insfrucfor. He is to complete the re-
quirémentéifor his Ph.D. in Electrical Engineering in the field of

automatic cpntroi systems in 1973.




