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SUMMARY 

This dissertation considers the problem of control of dynamical 

systems operating in the presence of uncertainty. A control procedure 

is presented in which uncertainty, which may be either a deterministic 

function of time or a stochastic process, is described by only its 

bounds. No statistical modeling is used for§this noise. The systems 

under consideration are described by a set of nonlinear differential 

equations. These equations are linearized about a specified nominal 

trajectory resulting in a linearized perturbation model. The region 

around the nominal trajectory containing the perturbed state is described 

by bounding ellipsoids. Using the trace of these ellipsoids as a per­

formance index, this index is minimized subject to a constraint which 

is an ellipsoid generation algorithm. This minimization procedure re­

sults in a control algorithm. 

In order to evaluate the control algorithm the procedure is applied 

to the problem of a vehicle re-entering earth's atmosphere. The re-entry 

problem fits the class of problems under consideration in this work be­

cause it is described by a set of nonlinear differential equations and 

the uncertainty is unknown but bounded. The control algorithm is de­

veloped for this example and the re-entry is simulated on the digital 

computer. The re-entry is simulated using deterministic perturbations, 

Gaussian white noise, and uniform noise. The ellipsoidal bounding region 

is generated and by comparison with the statistical techniques is shown 

to be a conservative bound. The character of the bounding ellipsoid and 
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the sample variance, however, are very similar. The bounding ellipsoid 

is computationally more efficient to compute than the statistical bound 

and can therefore be recommended as a tool, to obtain qualitative infor­

mation about the performance of a given closed-loop control system. 

The major contribution of this research is an alternate design 

approach to the control of systems operating in the presence of uncer­

tainty. This design procedure yields a time-varying controller that is 

a linear function of the system state. The controller is implemented 

on-line by using a digital computer to store the nominal trajectory, 

nominal control, and the controller gains. The system state is measured 

and compared to the nominal state, thus giving the perturbed state. 

The perturbation control can then be generated using the appropriate 

gain matrix. This perturbation control and the nominal control form 

j 
the on-line system control. 



CHAPTER I 

INTRODUCTION 

Motivation 

The basic problem in control systems engineering involves the 

control of a physical process in the presence of uncertainty. This un­

certainty can take many different forms such as lack of knowledge about 

the process itself, unknown inputs to the process, or errors in attempt­

ing to measure the true state of the system. By far, the most widely 

used technique of representing this uncertainty in the mathematical 

system model is to consider the uncertaint}^ as a stochastic process with 

known statistics. Frequently, the uncertain parameters are modeled as 

white Gaussian noise. In many problems the uncertainty may be adequately 

represented by Gaussian noise processes. There are, on the other hand, 

many physical systems in which the disturbances cannot be accurately 
c 

characterized in this manner. For example, in the guidance and control 

of aircraft, ships, rockets, and space stations the external forces such 

as updrafts, wind gusts, waves, ocean currents, gravity gradients, and 

crew motion are not Gaussian in nature. In many adversary situations 

resulting in the game theory type of problem formulations, the tracker 

has no a priori knowledge of the evasive pattern of the target. The 

movement of the target reflects itself as an unknown disturbance input 

to the tracker which is not likely to be Gaussian. In any case, a 

priori statistics are not available. However, bounds on the magnitude 
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of the disturbances can frequently be estimated. Another example is the 

control of a system subjected to a random bias disturbance. In all of 

these control problems it is reasonable to seek an alternative to the 

white Gaussian model. One such alternative, although relatively undevel­

oped, is to model the uncertainty as a set-constrained process. In this 

approach the unknown disturbance is regarded as a stochastic or determin­

istic process that is contained within a specified region. No statistical 

properties are assumed to be known about the process. 

Another aspect of the general control problem which is related to 

the disturbance characterization is the overall function of the controller 

In such problems where control in the presence of an unknown disturbance 

is required, a possible method of approach is to require that the control 

action result in acceptable performance for any possible disturbance. 

That is, in many control problems it is imperative that the control action 

be such that the state of the system be confined to a bounded region in 

the state space. Guaranteed performance is more important than on the 

average" performance in these problems. 

Therefore it is the objective of this dissertation to develop and 

evaluate a controller which results in guaranteed performance in the. face 

of disturbances which are characterized only in terms of absolute ampli­

tudes. 

Background 

The two distinct modeling techniques mentioned above make it con­

venient to classify the historical background into two areas: Stochastic 

Control Theory and Set Constrained Control Theory. 



Stochastic Control Theory 

The basic approach in stochastic control theory is to represent 

the disturbances or uncertainties in the system to be controlled as sto­

chastic processes. These processes can be described mathematically in 

many different ways; but the characterization that has proven most usefu 

is to treat the stochastic process as a white Gaussian noise process. 

The control of linear plants or processes subjected to Gaussian disturb­

ances has been the subject of much past and present research and is com­

monly referred to as the Linear-Quadratic-Gaussian Problem (LQG)[l], 

Because this dissertation also considers a linear process model, this 

background material on stochastic theory will focus on just the LQG 

problem. 

The LQG design approach can be summarized as follows [l]. The 

deterministic nominal trajectory for a process to be controlled is deter 

mined, uncertainty in the process is modeled as Gaussian white noise, an 

the system equations are linearized about the nominal. Next the deter­

ministic optimal control is generated. This control is optimal in the 

sense that it minimizes an artificial cost functional that depends qua-

dratically on the state deviation. Now because all of the state vari­

ables are generally not available for measurement and because the ones 

that are available usually are considered corrupted by noise, a Kalman-

Bucy filter is employed to estimate the system state [4,5]. The filter 

is driven by the output of the system and furnishes an estimate of the 

system state as output. The control structure is then specified using 

the deterministic optimal controller gain acting on the estimated state 

vector as indicated by the well known Separation Theorem [6], A paper 
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by Witsenhausen [7] pulls together the many results relating to separation 

of estimation and control in discrete time stochastic control theory. 

The separation principle provides a complete solution to the problem from 

a theoretical viewpoint. From a practical viewpoint, however, there is 

still a lot of work to be done with regard to system modeling. 

To implement the design resulting from the separation principle, 

the engineer must know the mean and covariance matrices of the random 

variables modeling the plant: initial state, and the mean and covariance 

matrices of the measurement noise. In addition, the state variable 

weighting matrix and control variable weighting matrix to be used in the 

quadratic performance criterion must be selected. There is no systematic 

procedure available to use in the selection of these matrices. The de­

signer, of course, must also be concerned about the accuracy of the plant 

or process model and whether or not the plant and measurement noises are 

actually white and Gaussian. 

Some research has been done on these problems. It has been ob­

served that after an extended period of operation of the Kalman-Bucy 

filter, the errors in the state estimates eventually diverge from the ex­

pected error values. This phenomenon is known as divergence. In a 

definitive paper by Fitzgerald [8], model mismatch, incorrect selection 

of process and measurement noise matrices, process bias, measurement bias, 

and numerical inaccuracies are all considered as causes of filter diver­

gence. The most commonly accepted solution for the divergence problem is 

to increase the intensity of the process noise assumed in the model. 

Fitzgerald shows that this fix may or may not correct the divergence. 

Additional work on the filter divergence, problem has been done by Sage 
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and Melsa [9] and Jazwinski [lO], 

In the LQG design problem, application of the separation theorem 

is generally interpreted to mean the following: the optimal feedback gain 

matrix of the deterministic linear regulator and the optimal filter are 

designed separately and then the filter and gain are cascaded for optimal 

system performance. In a recent paper by Mendel [ll] it is claimed that 

this procedure generally leads to an unsatisfactory design due to the 

fact that the optimal stochastic control law is a function of the esti­

mated state. The estimated state contains the true state as well as an 

estimation error term. When the loop is closed this estimation error 

term appears as an unknown disturbance to the plant. Mendel's solution 

to this problem adds another step to the LQG design procedure. This ad­

ditional step consists of selecting the quadratic criterion weighting 

matrixes such that some meaningful performance measure is optimized. 

This results in a separate optimization problem. 

In summary then, a satisfactory LQG design is still heavily de­

pendent on Monte Carlo simulations, and on the designer's engineering 

experience. If the assumption on linearity of the system or the Gaussian 

noise or the quadratic criterion is withdrawn there is no unified approach 

to the stochastic control problem. Therefore, if the noise is in reality 

non-gaussian, the designer usually has to make the "Gaussian assumption, 

proceed with an LQG design and then tune the Kalman filter to give the 

desired results. 

Set Constrained Control Theory 

An alternative approach for problems where the noise is not white 

and Gaussian is afforded by recently developed techniques for modeling 



the disturbance as a set constrained process. A set constrained process 

is represented by only its bounds. No statistical properties are assumed 

to be known about the process. This representation for the disturbance 

has been used by several investigators in their work. The following 

paragraphs describe the results to date. 
C 

Witsenhausen [12] considered the worst-case design of controllers 

for a linear differential system subjected to a bounded control and a 

bounded disturbance,. The viewpoint in this paper is that given a control 

law, there is a maximum cost over all perturbations, the guaranteed per­

formance for this control law. An algorithm is developed to find the 

minimum of this number over all control laws. Delfour and Mitter [l3] 

considered the problem of reachability for control processes operating in 

the presence of set constrained disturbances. Specifically they consid­

ered the problem of finding the best open loop control in the presence of 

the worst disturbance. 

In a 1968 paper by Schweppe [14.1 an approach also based on the 

ideas of reachability and set constrained disturbances was taken. In 

this paper a method for estimating the state of a linear dynamic system 

using noisy observations was developed. The input to the system and the 

observation errors were completely unknown except for bounds on their 

magnitude or energy. The state estimate was actually a set in state 

space rather than a single vector. This set was bounded by a time-

varying ellipsoid which was generated with a recursive algorithm. This 

algorithm was based on the concept of reachability. Bertsekas and 

Rhodes [l5], using a set-membership description of uncertainty, also 

developed a recursive state estimator. This estimator was very similar 



to Schweppe's with one exception; the gain matrix in the algorithm was 

independent of the observations and therefore precomputable. This fea­

ture made their algorithm look very similar to the corresponding sto­

chastic linear minimum-variance estimator (Kalman filter). 

Bertsekas and Rhodes [l6] also examined the problem of keeping the 

state trajectory in a specified target tube. Necessary and sufficient 

conditions for reachability of a target set and a target tube are given 

in the case where the system state can be measured exactly. Their re­

sults [16J give sufficient conditions for reachability for the case when 

only disturbance corrupted output measurements are available. An al­

gorithm is suggested that leads to linear control laws. Unfortunately, 

these control laws will fail for certain bounded disturbances and the 

exact relationships that lead to the failure are not specified. Glover 

and Schweppe [17] also formulated the problem of keeping the state of a 

linear system in a specified region of the state space. Again the un­

certainties were constrained to be in specified sets. A bounding ellip­

soid algorithm was developed and two arbitrary control laws were sug­

gested. 

The above mentioned work by Witsenhausen and by Delfour and Mit-

ter developed control strategies but were not applied to any specific 

problem. Furthermore, the techniques outlined appear to be applicable to 

only scalar systems. Thus their results are interesting but strictly 

theoretical in nature. The papers by Schweppe [14] and by Bertsekas and 

Rhodes [16] are of a more, practical nature but again the control strate­

gies are not specifically evaluated. Furthermore, an arbitrary and con­

sequently not very appealing procedure for selecting the control is 
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embodied in these results. Therefore, the control schemes set forth in 

the literature on set constrained disturbances still remain to be thor­

oughly evaluated. 

In summary then, it appears that while the LQG design approach is 

applicable to many control problems there are large classes of problems 

for which the set constrained theory is possibly a more realistic approach. 

The LQG approach, however, has received a great deal of attention from re­

searchers and consequently offers to the control engineer a much more 

systematic design procedure than the set constrained theory does. It is 

possible, however, that additional research in the bounded disturbance 

area can make the solving of this problem much more systematic and, 

therefore, allow the designer to choose from the two approaches, the ap­

proach most appropriate to the problem at hand. 

The Problem 

The problem investigated in this research is the development and 

evaluation of a controller for a noisy dynamical system. The mathematical 

c 
model for the system is a set of nonlinear differential equations with an 

additive noise term 

k = K2£>H) + N (1.1) 

No statistical information is assumed regarding N. Rather, the noise, N, 

is modeled as a function of time with known' bounds. The noise is modeled 

in this manner for several reasons. First, in many problems a probabilis­

tic noise description is not as readily available as the bounds are. 

Second, this noise treatment offers an alternative to the designer faced 
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with a non-gaussian problem. And third, in many problems a system must 

be confined to a critical region or specified tolerances must be met with 

certainty so the bounds on the driving noise are the critical factors. 

The basic objective of the controller to be developed is to keep 

the state, x, of the system (1.1) close to a specified nominal or desired 

trajectory. If the state of the system is confined to a region around 

the nominal trajectory, a valid mathematical representation of the system 

is obtained by expanding f:(x,u) in a Taylor Series about the nominal tra­

jectory and truncating the higher order terms. This resulting linearized 

perturbation model is then used to represent the system and a perturbation 

controller is developed for this model. In an effort to make the con­

troller implementation reasonable, it is assumed that the control can be 

realized as a linear function of the state,, Because the major thrust 

here is the development and evaluation of the controller, the problem of 

noisy measurement is not considered. 

It is useful in this thesis to think of the space containing the 

state of the system as a region or tube centered about the nominal tra­

jectory. This region is described mathematically by a set of bounding 

ellipsoids. The desired controller, therefore, is the one that minimizes 

this bounded region and thus meets the objective of keeping the state 

close to the nominal trajectory. Selection of this minimizing control 

thus specifies the desired controller. 

The evaluation of the controller is performed by applying it to 

the re-entry problem. The problem of spacecraft re-entering the earth's 

atmosphere is chosen because it is of current research interest. Also, 

the problem is one in which it is imperative that the state of the system 
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be confined to a region or tube centered about the nominal trajectory. In 

addition, the disturbances or uncertainties present such as vehicle char­

acteristics, winds, and atmospheric density are unknown but estimated 

bounds can be determined from physical considerations. 

Approach to the Problem 

Because of this unknown but bounded disturbance representation as­

sumed in this research, it is clearly impossible to derive a controller 0 

that can maintain the state of the system exactly on the nominal trajec­

tory. An approach alternative to the best "average" control determined 

by the separation principle approach is used in this research. In this 

approach it is recognized that since the controller cannot keep the state 

of the system exactly on the nominal trajectory, the real purpose of the 

controller is to keep the system "close" to the desired trajectory for 

all possible disturbances. Minimization of a performance index is a 

secondary consideration. The controller sought here, then, is the one 

that minimizes the region around the nominal trajectory in which it is 

possible for the state to lie. This is analogous to seeking directly a 

"guaranteed performance" controller rather than the usual average con­

troller. To realize this controller, then, this region or tube around 

the trajectory must be formulated. This region at any point in time may 

be thought of as two concentric sets in state space. The first set is 

the set of reachable states. The second set is made up of the additional 

states the system can reach if the worst case noise disturbs the system. 

Once a description is obtained for these sets an optimization technique 

is applied that directly minimizes this region or tube. The controller 
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results from this optimization step. The detailed mathematical formula­

tion of this approach is presented in Chapter II. 
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CHAPTER II 

DEVELOPMENT OF THE CONTROLLER 

Introduction 

It is the objective of the first phase of this research to develop 

a controller for a dynamical system operating in the presence of uncer­

tainty. This uncertainty is mathematically modeled by only its bounds. 

No statistical modeling is used. 

Before the algorithms describing the controller can be presented, 

several preliminary ideas are developed. First the class of system for 

which the control scheme is applicable is described. Then, the region 

or tube around the nominal trajectory containing the system state is 

characterized. Control algorithms are then defined by finding the control 

which minimizes this region. 

Problem Formulation 

Consider the plant modeled by the nonlinear vector differential 

equation 

k(t) = I(x(t),u(t)) , x<0) (2.1) 

where x(t) is the n-dimensional plant state vector with components x (t) , 

x9(t), . . ., x (t) , u.(t) is the m-dimensional control vector with com­

ponents u.. (t) , u9(t), . . . , u (t) , x(0) is the initial state vector at 

t = 0 and .f (x(t),u(t)) is a nonlinear function with components 
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f (x(t),u(t)), f (x(t),u(t)), . . ., f (x(t),u(t)). This function 
i L — — n ~ — 

f(x(t),u(t)) is assumed to be continuous and at least twice differentiable 

with respect to x(t) and u(t). The notation x(t) is defined to be 

d/dt x(t). The model of this system is shown in Figure 1. 

x = f(x,u) X 

Figure 1. Deterministic Model 

If a systematic approach, using nonlinear deterministic optimal 

control theory, is applied to this plant, an optimal control u, (t) and 

resulting trajectory x (t) can be determined. This control is optimal in 

the sense that it minimizes a given performance criterion of the form 

J = (0T(x(T)) + | L(x(t),u(t))dt 
'0 

where the interval 0 to T is the duration of the trajectory. The deter­

mination of this optimal control u,(t) is, in general, a non-trivial prob­

lem in its own right and will not be considered in this research. It is 

assumed, however, that the control term u,(t) and the state x,(t) are 

defined and represent the desired control and trajectory. It is recog­

nized, however, that the true trajectory x(t) of the system will not 

coincide identically with x.(t). This is true both because of errors in 
-̂d 

attempting to model the physical process and because of unknown disturbance 
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inputs acting on the process or plant. Therefore, a more realistic model 

of the process is 

x = f(x,u) + N(t) (2.2) 

where N(t) represents the uncertainty in the plant and the external dis­

turbances. The uncertainty vector N(t) may be a deterministic function 

of time, a stochastic process, or a constant. The only characteristic 

that is assumed known about N(t), ..however, is that it is contained within 

a specified bound. That is., N(t) is contained in the set QN(t) . No 

probability distributions or statistics are assumed known. 

In the presence of these disturbances it is still assumed desirable 

to maintain the trajectory of the system "close" to the desired or nominal 

trajectory x^(t). In fact, in many problems it is mandatory that the 

state be confined to a specified region of the state space. To do this a 

control correction term must be generated. This term can then be added 

to the nominal control term to generate the real-time control function 

which will drive the state of the system closer to the nominal state. 

XjU). 

Expanding the nonlinear function _f (x(t),u(t)) in a Taylor Series 

about the known desired trajectory and control gives [22] 

bf f(x,u) = f(xd,ud) + — 

^d 

(x - x,) + ££ 
v- —d' ftu 

(u - u.) + R (2.3) 

^d 

where R represents the higher order terms in the Series. For a scalar 

case the remainder term in the Series is given by [ 23] 
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, .n+1 
(X - X , ) / -, \ 

T, d ^ ( n + 1 ) / N 
R = —(nnyy~ f w x d < c < x 

where n = 1. For the vector case comparable terms can be formed. 

It is assumed at this point the available control u(t) maintains the 

true state of the system close to the nominal state x,(t). That is, 

||x(t) - XJC*1)!! is small, in which case the control correction term 

||u_(t) - Uj(t)|| is small. Under this assumption, the motion of the system 

may be represented by the linear terms in the expansion (2.3). Defining 

6x = x - x (state perturbation vector) 

(control correction vector) 6u = u 
" S d 

A ( t ) - M 
hx 

^ 
u . ^•d 

B(.t) .m 
bul ^ x n - d 

I . 
-d 

and substituting into (2.3) gives 

6x = A(t)6x + B(t)6u + N + R (2.4) 

The remainder term, R, from the Taylor Series is bounded and so is N„ 

Therefore, it is reasonable to combine these two terms into a term of the 

form G(t)w(t). Therefore (2.4) becomes 

6x = A(t)6x + B(t)6u + G(t)w(t) (2.5) 
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where A, B, and G are known matrices of proper dimension. Because the 

solution of the control problem considered here involves a digital com­

puter, this linearized model is discretized and takes the form 

6x(n+l) = 0(n)6x(n) + H(n)6u(n) + G(n)w(n) (2.6) 

This is the perturbation model for which the controller will be developed. 

The sample size for the discrete model is obtained by examination of the 

eigenvalues or transient frequencies of A(t). The sample size selected 

must be small compared to the corresponding time constant of the highest 

frequency present in the system (2.5). 

Before the control scheme is developed, however, the region around 

the nominal trajectory containing the perturbed state 6ic(n) will be de­

scribed mathematically. After this region is characterized, the control 

scheme will be developed by minimizing this region with respect to a se­

lected performance index. The following sections, then, describe the 

region or tube around the nominal trajectory, justify the selection of a 

performance criterion, and develop the control algorithms. 

The Bounding Ellipsoids 

The purpose of the controller that is to be developed for the 

system (2.2) is to keep the state of the system close to the nominal or 

desired trajectory. That is, at any point in time the state must be 

contained in a certain region around the nominal trajectory. The control 

scheme to be developed is based on the idea of minimizing this region 

around the trajectory. Before this minimization can be performed, however, 



17 

this region or tube must be formulated mathematically. First this region 

will be described for the linearized, deterministic, unforced system 

under consideration here (2.7). Then the region will be described for 

the more general case--the system with an input. After these regions or 

sets of states have been formulated, it will be possible to select a per­

formance criterion and perform a minimization with respect to this cri­

terion that will result in the desired controller. 

Consider, first, a description of the region surrounding the nominal 

trajectory that will contain the state of the unforced perturbation 

6x(n+l) = 0(n)6x(n) (2.7) 

If the initial state, 6x(0), is known, then in one time increment there 

is only one state the system can reach. However, if the initial state is 

only known to lie within a certain region, there is a set of states the 
'i 

system can reach. From a practical point: of view it is important that 

this reachable set be characterized by a finite set of numbers.. One way 
i 

to do this is to specify the initial condition region to be an ellipsoid. 

An ellipsoid can be completely described by its center and a weighting 

matrix. With this description of the initial state region, then, the set 

of reachable states for the system (2.7) is also an ellipsoid. The follow­

ing example illustrates these ideas. 

Example: 

Given: the system - 6x(n+l) = 0(n)6x(n) 

6x(0) e Qx(0) 

where 



and 

Q (0) = {6x «: R2: (6x(0))TT_1 (0)6x(0) £ 1} 
X X 

X 

1 0 

0 1 

6x, 

e 
r 

nx(o) 

6x, 

Determine: the region the state of the system is in at the next 

time increment. At n = 0 the state is contained in 

(6x(0))Tr"1(0)6x(0) < 1 (2.8) 

Now 6x(l) = 0(O)6x(O) 

or 6x(0) = 0~1(O)6x(l) 

substituting into (2.8) gives 

(0"1(O)6x(l))Tr-1(O)(0_1(O)6x(l)) ^ 1 

or 
(6x(l))VT(O)r'1(O)0"1(O)(6x(l)) £ 1 

(6x(l))Tr"1(l)(6x(l)) ̂  1 

where 

and 

r ' V ) = 0~T(o)r~1(o)0'1(o) 

r(i) = 0(o)r(o)0i(o) 
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Therefore a t n = 1 the s t a t e i s in the region 

6 x ( l ) £ n ( l ) = [ 6 x £ R2: ( 6 x ( l ) ) T r " 1 ( l ) ( 6 x ( l ) ) < 1} 
X X 

In general for the unforced perturbation system model 

6x(n+l). = 0(n)6x(n) 

with initial state known to be contained in the region 

iV1 

-x - - .. _ - • _ _x - - <• - - • _ _x 

6x(0) ffi(0)= [6x € R
n: (6x - c_ (0))Tr"1(0) (6x - c (0)) ̂  l] 

the system state will be contained in the region 

6x(n) e fi (n) = {6x <£ RD : (6x - c ( n ) ) T r " 1 ( n ) (6x - c (n)) <: l ] (2 .9) 
— x — — x ~x 

where 

r (n+l) = 0 (n ) r (n)0 T (n) 
X X 

c (n+l) = 0 (n)c (n) 
-̂ x —x 

r (n) is positive definite, and symmetric. 

With this formulation it is possible now to extend these ideas to 

the forced system and thus characterize the region around the nominal for 

the system (2.7) under consideration here. 

If an input is applied to the perturbation model, the model is of 

the form 

6x(n+l) == 0(n)6x(n) + G(n)w(n) (2.10) 
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Again it is assumed that the initial state 6x(0) is contained in an 

ellipsoid and in addition it is assumed that the input w(0) is known to 

be contained in an ellipsoid. The state of the system 6x(n) can be bounded 

by an ellipsoid by making use of the following information [17]. Given 

two sets described by 

Q 
•k T -1 ' = [z £ Rn: (z - c^T'^z - c^ ^ 1} 

T -1 
Q2 = [z 6 R

n: (z - c^T'^z - c£) < 1} 

The sum of these two sets is contained in the ellipsoidal set 

Qg = [z a Rn: (z - (c1+c2))
Tr-1(z - ( c ^ ) ) < 1} 

whereT is given by 

r = 7 ri + "T7T ro ° < P < l 
s 6 1 1-6 2 K 

and r.., T9, r are positive definite symmetric nxn matrices, p is a 

scalar parameter. 

By adding dynamical characteristics to these ellipsoids, as was 

done in the unforced case, the bounding ellipsoid containing the state 

6x(n) is 

rx(n+l) = - ^ ^ y 0(n)rx(n)0(n)
T + ̂ y G(n)Q(n)GT(n) (2.11) 

6x(n) € Q (n) = [6x € Rn: (6x - ̂ ( n ) ) ^ 1 ^ ) (6x - £^n) ) < 1} (2.12) 
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where 

6x(0) £ CI (0) = {6x £ Rn: (6x - c (0))Tr_1(0) (6x - c (0)) <: 1} 

and 

w(n) € 0TT(n) = [w £ R": (w - c (n)')
TQ"1(w - c (h)) £ 1} 

W — —"W — ~"W 

c (n+1) = ̂ (n)_c (n) + G(n)c (n) 
X. 2i. W 

At this point the region containing the state 6x(n) has been char­

acterized. After the performance criterion is selected in the next sec­

tion, it will be possible to develop the control scheme by minimizing thi 

region described by the bounding ellipsoid (2.11). 

The Performance Criterion 

To minimize the region around the nominal trajectory in which the 

system state can lie, a performance criterion must be chosen. This cri­

terion must be a reasonable mathematical representation of the region as 

well as be mathematically tractable. For these reasons, the trace of the 

appropriate ellipsoid matrix is chosen as the performance index. The 

following paragraph relates the trace to the space to be minimized. ' 

At any point in the trajectory, the state will lie in a region de­

scribed by "̂  

Q (n) = {6x ^ Rn: (6x - c (n)Tr "l(n)(6x - c ) < 1} 

where T (n) is the nxn positive definite symmetric weighting matrix of 

an ellipsoid. By rotation of the co-ordinate system (similarity trans­

formation) the matrix A shown below can be obtained from the matrix T. 



A = 

\x o oo 
0 X 0- 0 0 

o o x 

, A' 

~ o oo 
^1 
0 r̂ - 0 0 
. X2 

o o -^ 
A. n 

This rotation results in an ellipsoid in so-called standard form. The 

eigenvalues of T are. assumed to be distinct. This assumption is not re­

strictive and does not effect the idea being explained here. If this 

rotated ellipsoid is expanded it takes the form 

T -1 1 2 1 2 6Z A 8 Z = — 6yL + — 6y2 + . • + r 1 «yf s I 
A. n n 

with no loss in generality by assuming c (n) = 0. Therefore, the axes 

of the ellipse are the square roots of the eigenvalues. Furthermore, the 

trace of a square matrix is equal to the sum of its eigenvalues. 

Trace [r] = Trace [A] = X. 

i=l 

For purposes of illustration consider a two dimensional example, 

6y_T A"1 6y_ = —- 6y7 + ~- 6y: <: 1 
2 _J_ 
1 + Xn 
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-fl 

6y2 

fT0 

-A 

&y, ZZ2\Ai_-i 

From this discussion and example it is seen that the trace of the 

ellipsoid T is a measure of the region to be minimized. The trace is 

also easy to compute and does lead to reasonable control laws as shown 

in the next sections. 

Development of the Control Algorithms 

The previous sections of this chapter have described the model 

under consideration in this thesis, the ellipsoidal region containing 

the state, and a performance criterion that measures the size of this 

region. It is now possible to formulate the control problem being con­

sidered and to proceed to develop the control algorithms for the problem. 

The linearized discrete time perturbation model being considered 

here is 

6x(n+l) = 0(n)6x(n) + H(n)6u(n) + G(n)w(n) (2.13) 

The perturbation controller for this model is assumed to be a linear 

function of the state 

6u(n) = L(n)6x(n) (2.14) 



and the initial state 6x(0) is in the region 

6x(0) € 0 ( 0 ) = {6x e Rn: [6x - c (0) j V V ) [6x - c (0) ] ^ 1} 
X. X X X 

and the noise is contained in 

w(n) * Q (n) = [w 6 R£: [w - c (n)]TQ_1[w - c (n) ] <: 1} 
W W *"W 

The problem, therefore, is to determine the perturbation controller, 

L(n), for n = 0,1,...N that minimizes a measure of the size of the ellip­

soidal region bounding the state x(n). This problem is solved in the 

following manner. Substitution of (2.14) into (2.13) gives 

6x(n+l) = 0(n)6x(n) + H(n)L(n)6x(n) + G(n)w(n) 

or 

6x(n+l) = [0(n) + H(n)L(n)]8x(n) + G(n)w(n) (2.15) 

Defining 

0(n) = 0(n) + H(n)L(n) 

(2.15) becomes 

6x(n+l) = 0(n)6x(n) + G(n)w(n) 

From the previous section on the bounding ellipsoids it is seen that 

6x(n) is contained in the region 

0 (n) = {6x 6 Rn: [6x - x (n) j V ' V ) [6x - c (n) ] <; 1} 
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described by the ellipsoid 

Tx(n+1) = Y ^ y ^(n)rx(n)^
T(n) + ̂ y G(n)Q(n)GT(n) (2.16) 

c (n+1) = 0(n)c (n) + G(n)c (n) 
^x ^x -w 

0 < 0(n) < 1 

At this point the matrix L(n) that minimizes the performance cri­

terion of T(n) must be determined. This is analogous in the vector case 

to determining the control u(n) that minimizes a performance index of 

the state variables, x(n). The problem has now been formulated so that 

the Matrix Minimum Principle (Appendix I) may be applied to determine the 

controller. This is done in the following manner. 

The performance index is 

N-l 

J = Tr[F(N)]+ ^ Tr[r(n)] (2.17) 

n=0 

with the constraint 

r(n+l) = Y^- [0(n) + H(n)L(n)]r(n)[0(n) + H(n)L(n)]T (2.18) 

+ ± G(n)Q(n)GT(n) 

The Hamiltonian is 

H = Tr[r(n+l)PT(n+l)] + Tr[r(n)] (2.19) 
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where the elements, p.., of P are the c?b-state variables corresponding to 

the element x.. of T. Now 
ij 

r(n+l) = - ^ (0(n)r(n)0T(n) + H(n)L(n)r (n)0T(n) (2.20) 

+ 0(n)r(n)(H(n)L(n))T + H(n)L(n)r(n)(H(n)L(n))T 

+ j G(n)Q(n)GT(n) 

substituting (2.20) into the Hamiltonian (2.19) yields 

H = Trl * I, v 0(n)r(n)0T(n)PT(n+l) 
Ll-B(n) J 

+ Tr 
1 H(n)L(n)r(n)0T(n)PT(n+l) 

_l»|3(n) 

+ T{1_p(n)0(n)r(n)(H(n)L(n))
TPT(n+l)_ + Tr 

•l-B(n) 
H(n)L(n)r(n) 

X (H(n)L(n))TPT(n+l) •+ Tr 
LB(n) 

1 G(n)Q(n)GT(n)PT(n+l) + Trtr(n)] 

Application of the Matrix Minimum Principle requires that, for the 

optimum controller 

bH 
&L(n) 

= 0 

m. &T(n) 
= P(.n) 

with P(N) = I 

(2.21) 

(2.22) 

(2.23) 

Using the relations in Appendix 1̂  the following relationships can be 

obtained. 
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or 

^M-y = P(n) = (0T(n)PT(n+l)0(n))T + (0T(n)PT(n+l)H(n)L(n))T 

+ (LT(n)HT(n)PT(n+l)0(n))T + (LT(n)HT(n)PT(n+l)H(n)L(n))T + I 

P(n) = (0(n) + H(n)L(n))TP(n+l)(0(n) + H(n)L(n))(j~) + I (2.24) 

T 
and that P = P . 

Now 

or 

^ y = • 0 = HT(n)P (n+l)0(n)rT(n) + HT(n)PT(n+l)0(n)r (n) 

+ HT(n)P(n+l)H(n)L(n)rT(n) 4- HT(n)PT(n+l)H(n)L(n)r(n) 

HT(n)P(n+l)0(n)r(n) + HT(n)P(n+l)H(n)L(n)r(n) = 0 (2.25) 

T(n) is positive definite and symmetric so T (n) exists. Equation (2.22) 

can then be written 

HT(n)P(n+l)0(n) + HT(n)P(n+l)H(n)L(n) = 0 

solving for L(n) 

L(n) = - (HT(n)P(n+l)H(n))"1HT(n)P(n+l)0(n) (2.26) 

T 
The quantity H (n)P(n+l)H(n) is a scalar. The matrix Ricatti equation 

(2.24) with initial condition (2.23) can be solved backwards in time and 

thus specify the controller 

6u(n) = L(n)6x(n) 



28 

As expected, the resulting controller is of the Ricatti form. In par­

ticular, this controller is the same as the Ricatti controller with 

quadratic performance matrices R = R, Q = 0, where R is the weight on 

the state and Q is the weight on the control. In the procedure presented 

here, however, the performance index is the weighted trace of the ellip­

soid that bounds the system state. Changing R can therefore be thought 

of as changing the size of the tube containing the state. This design 

procedure is therefore an alternate approach for this control problem. 

This control scheme can be implemented as shown in Figure 2. 

w (n) 
u ( n ) 

I M ­ PLANT 

u d ( n ) 

L (n ) 

COMPUTER 
x d ( n ) , u d ( n ) 3 , L ( n ) 

x ( n ) 

y + 

Q. + *"(*> <^\^->—S*M<Q 

XjCn) 

Figure 2. Controller Implementation 

This scheme works as follows. 

The matrix L(n), the nominal trajectory x,(n), and the nominal 

control u,(n) are stored in the computer. When the state x(n) is measured 

the appropriate nominal state x,(n) is referenced and 6x(n) is generated. 
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This perturbation vector 6x(n) is then multiplied by L(n) giving the 

perturbation control 6u(n). The nominal control u,(n) is then added to 

6u(n) to form the control u(n) that"is applied to the plant. 

In this section the control scheme for the perturbation model was 

developed. The basic idea in this development is the concept of main­

taining the state in a region or tube around the nominal trajectory. This 

region is described by a set of bounding ellipsoids and the controller is 

assumed to be a linear function of the state. The objective of the con­

troller therefore is to minimize this region containing the state and thus 

keep the state close to the nominal trajectory. This minization is per-

formed using the Matrix Minimum Principle with the trace of the bounding 

ellipsoid as a performance index. The resulting control scheme is com­

puted off-line and stored in a computer for use on-line as shown in 

Figure 2. 

Selection of the Parameter [3 (n) 

In the previous sections on the bounding ellipsoids and the de­

velopment of the control algorithms, the parameter |3(n) appeared in the 

algorithm that generated the ellipsoids. This parameter is free within 

the range 0 < |3 (n) < 1. However, this parameter does affect the size of 

the bounding ellipsoid at each step in time. Therefore, it is desirable 

that |3(n) be selected in some optimal manner. In this research the 

following technique is used. 

The bounding ellipsoid is given by 

r(n+l) = Y ^ O ^(n)r(n)^(n) + j~^y G(n)Q(n)GT(n) (2.27) 



By letting 

C;(n) = #(n)r(n)$T(n) 

and D(n) = G(n)Q(n)GT(n) 

(2.25) becomes 

r(itl) = i i ) c ( " ) + ^ i w 

Because the trace of T(n+1) is equal to the sum of the eigenvalues of 

T(n+1), the parameter 8 (n) is chosen so as to minimize the trace of 

T(n+1) at each step. This is done in the following manner. 

Tr[r(n+1)] = 3 ^ ( c u + c22 + ... + C n n ) + I (d^ + ^ + ... + d^) 

JO- H-

Tr[r(n +l)]=- r^();c i i) +i(^d i i) (2.28) 

i=l i=l 

At B = 1,0 the trace is a maximum. This implies there is a minimum be­

tween 0,1. Differentiating (2.28) with respect to B gives 

dTr[r(n+l)] = 
de (1-B")1 ^g^11' " P2 i=i ±±J 

**^mi. p2 ( i C i i ) . (1.p)2 ( i d i i ) . o 
i=l i=l 

n n n n 

• P2 ( I c u " I diO + ^ ( I dii) " I d i i" ° 
i=l i=l i=l i=l 

Solving for B gives 
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-t^ [(Iew)2 + (1 dii)(S-ii- hJ\ 
p = i=l + —1=1 _ l z l izl £=i 

\ ZJ i i Z. i i / \ A ' i i L i i / 
i= l i = l i = l i = l 

n 

- I-dii±L(IdiiXI,fiJ 
i=l i=l i=l 

\ ZJ ii ZJ ii 
i=l i>l 

(2.29) 

Because 0 < |3 < 1, the positive sign is used. Therefore, at each step 

p(n) is calculated using (2.29). 

In the generation of the ellipsoid that bounds the state, any $ in 

the range 0 < |3 < 1 can be used. However, to obtain the most conserva­

tive estimate possible of the region containing the state, |3 (n) is 

chosen using the relationship (2,29). 

Summary 

In summary this chapter has presented the class of systems under 

consideration in this thesis., the idea of bounding the state space with 

ellipsoids, and the developmemt and implementation of the system con­

troller. The control procedure is applicable to systems described by 

nonlinear differential equations that operate in the presence of uncer­

tainty. To use this procedure the system equations are linearized about 

a known nominal trajectory and the bounds on the noise or model uncer­

tainty are specified. The controller is developed to minimize the region 

around the nominal trajectory that contains the system state. In this 
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work this region is described by ellipsoids and the controller minimizes 

the trace of the ellipsoids. The resultant controller is specified by a 

linear time-varying gain matrix and is computed off-line. This controller 

matrix, the nominal trajectory, and the nominal control are stored in a 

digital computer for use in on-line systems control. The controller 

operation is shown in Figure 2. 



CHAPTER III 

THE RE-ENTRY CONTROL PROBLEM 

Introduction 

To evaluate the controller developed in Chapter II, the problem 

of control of a vehicle re-entering the earth1s atmosphere is con­

sidered. The mathematical model for this problem is described by a set 

of nonlinear differential equations and the uncertainty in the problem 

is most readily described as unknown but bounded. Therefore, the re­

entry problem is in the class of problem described in Chapter II and 

in this chapter it is so formulated that the control scheme developed 

in the previous chapter can be applied. The controller structure is 

determined and re-entry of the controlled vehicle is then simulated on 

the digital computer. This simulated performance is used to evaluate 

the controller. 

Background 

There are many problems associated with sending a vehicle into 

space and returning it to earth. The most critical problem, however, 

is the guidance and control of the spacecraft while it is re-entering 

the earth's atmosphere. For a vehicle to successfully re-enter the 

earth's atmosphere and land, its trajectory must stay within certain 

bounds or tolerances. The general form of this bounded region or tube 

is shown in Figure 3 [18]. The skip-out boundary defines the region 



34 

where the vehicle is traveling too fast and too high ands therefores will 

skip out of the atmosphere uncontrolled. The recovery boundary defines 

the region where the vehicle is traveling too high and too slowly. In 

this area the vehicle will soon dive into a steep trajectory which will 

exceed the deceleration boundary. The lower boundaries keep the vehicle 

from traveling at too high a speed for a given altitude. In this instance 

the dense atmosphere causes excessive heating or excessive deceleration. 

a) 

4-1 
•H 
4J 

Skip-out Recovery Ceiling 

-UjU-LJ-J---^ 

Controlled 
\ Trajectory 

\ 
\ 

Heating 
Limit " > 

Acceleration 
Limit 

V 
\ 

Velocity 

Figure 3. Re-entry Bounding Region 

The prime consideration in re-entry guidance, therefore, has to 

be to keep the vehicle confined to a certain region at all times. This 

must be done in the presence of external disturbances acting on the 
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vehicle as well as uncertainty concerning the vehicle's characteristics. 

The vehicle's characteristics are generally not measured very accurately 

prior to flight and, in fact, can actually change during the flight. 

Therefore, the uncertainty is characterized by a priori bounds. 

Re-entry Model 

In this section the nonlinear system of equations describing the 

motion of the spacecraft are presented [18,1.9], These equations assume 

that the vehicle is approaching a non-rotating, spherical earth and that 

the motion of the vehicle is planar. The inertial coordinate system is 

shown in Figure 4. During the re-entry, the major forces acting on the 

craft are gravity and aerodynamic effects. The force due to the earth's 

gravity acts towards the center of the earth. The resistance of the 

atmosphere to the motion of the vehicle is aerodynamic drag (D). The 

aerodynamic force which tends to deflect the vehicle from its velocity 

direction is lift (L). These forces are shown acting on the vehicle in 

Figure 4. The gravitational acceleration is denoted by g, m is the 

vehicle mass, L and D are the lift and drag accelerations, R is the ' o ' o 

radius of the earth, h is the altitude of the vehicle measured from the 

earth's surface, and V is the vehicle velocity. The angles are defined 

in Figure 4. If the forces acting on the vehicle are summed using the 

Cartesian inertial coordinates, the following equations are obtained 

F = - D cos 0 + L sin 0 - mg sin i]/ = m — * — ^ ° S *' (3.1) 

F = L cos 0 + D sin 0 - mg cos i|r = - m —^—-=-—"- (3.2) 
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Lift 

local hor, 

inertial velocity 

Figure 4. Vehicle Inertial Coordinate System 
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By resolving these forces in the velocity direction and recognizing that 

9 = 0 - \|f, (3.1) and (3.2) become 

- D + mg sin 9 = m ~ (3.3) 
dt 

L - mg cos 9 = - m J T sin 0 - mV cos 0 4^ 
d t dt 

Now 

d 0 _ d e . d ^ = d e _ v cos e 
dt " dt dt dt R +.h 

o 

so (3.3) becomes 

/de v cos e 
L - mg cos 9 = - mV ( — + R + h 

o 

The equations of motion are, therefore 

fi = - V sin 6 
at 

m — = mg sin G - D 
dt 

,7 d 0 A TT fV C O S Q \ T 

mV ̂  = rag cos 9 - mV ^ R + h J - L 

or 

4^ = - V sine (3.4) 
dt 

dV . nl —— = g sin 6 - D/m 
dt 

de _ g cos 9 V cos e _ _L_ 
dt ~ V " R + h " m V 

The lift (L) and drag (D) are dependent on the atmospheric density, 

velocity of the vehicle relative to the air, and the physical character-
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istics of the vehicle. This dependency is 

1 2 
L = ± V p C S 

D = ~ V 

2 . H _L 

1 „2 P C D S 

where p is the density of the air, S is the wing plan-form area, and 

C and C are the lift and drag coefficients. 
Li D 

In this work an exponential model is used for the atmosphere. 

p = PQ exp(ph) 

p is the air density at sea level. r o 

The lif̂ t and drag coefficients are functions of velocity, vehicle 

shape, and the angle of attack, a. The angle of attack is the angle 

between the direction of velocity and the direction of the zero lift axis 

of the vehicle. The vehicle is controlled by varying this angle. It is 

assumed here that these coefficients are functions only of the angle of 

attack. The lift-drag polar used here is 

C = C sin a cos a 
L LO 

2 
C^ == c ™ + crvr sin a D DO DL 

Substitution of these expressions into (3.4) gives 

77 = - V sin 9 (3.5) 
dt 

f " 8 Bin 9 - £ V2 p o e p h S(C D 0 + CDL s i n 2 * ) 

;je . fi cos 9 . V cos 8 . l v e ? h S ( C T n s i n a cos a ) 
d t V R + h 2m ^o LO 



These are the deterministic equations that describe the motion of the 

vehicle. That is, these equations describe the vehicle motion if all 

assumptions in their derivation are satisfied and if the parameters are 

exactly known. 

In reality, however, these parameters are not known exactly. For 

example, consider the vehicle characteristics. The lift and drag coef­

ficients are seldom established very accurately prior to flight and can 

undergo significant changes while the vehicle is re-entering the atmos­

phere [21]. The atmospheric density affects the vehicle motion and is 

known to vary from day to day as well as month to month. All of these 

uncertain elements must somehow be reflected in the system equations 

(3.5). Therefore, as an effort to more accurately model the vehicle's 

motion during the re-entry, the equations must have a term added to them 

that mathematically reflects these unknown effects acting on the system. 

This is the purpose of the terms n1(t) and n«(t) in the equations shown 

below. 

d h ,T • A ^ - - V sin 0 

f - g sin 9 - £ V2 po e^
hS(CD0 + C ^ sin

2*) + n^t) 

de _ g cos e v cos e 1 v ^ h q 
dt V FTh" " 2m- V Po e S<CL0 Sin a C ° S "> + n 2 ( t ) 

o 

Now the question of how to model n- (t) and n,?(t) remains. They are cer­

tainly not deterministic functions of time. On the other hand, they may 

or may not be stochastic processes. If they are stochastic processes., 



the statistics are not generally known a priori. However, these two 

terms representing the uncertainty in the re-entry process do share two 

common characteristics. They are unknown but can be bounded by the de­

signer. Available to the designer are published data and information 

that can be used to determine these bounds. Using [20] as a guide, it 

is seen that ± 10 percent density variations can be used to bound this 

source of uncertainty. The available literature [21] indicates that a 

vehicle's characteristics can be determined to within ± 10 percent of 

their true value. Therefore, the uncertainty in the re-entry problem is 

treated as a set constrained process. That is, only the bounds on the 

disturbances are assumed to be known. 

Re-entry Controller 

Before the controller developed in Chapter II is applied to the 

re-entry system model developed in the previous section, several steps 

must be taken. First the state variables must be selected, second the 

nominal or desired trajectory and control must be specified, third the 

nonlinear system of equations must be linearized about this nominal tra­

jectory, and fourth the resulting linearized equations must be discre-

tized. 

In this problem the state variables are the altitude, h, of the 

vehicle measured from the earth's surface; the velocity, V, of the ve­

hicle; and the angle, 9, between the velocity direction and the local 

horizontal. The control variable is the angle of attack which is the 

angle, between the direction of velocity and the direction of the zero 

lift axis of the vehicle. 
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are 

or 

Letting x = h, x~ = V, x~ = 0 , and u = a, the motion equations 

x, = 

X~ = 

x„ -

- x^ sin xr (3.6) 

P*. 
g sin x3 - ̂  x2 pQ e 

g cos x 

"S(CDO + C D L S i n u ) + n l ( t ) 

px. 

X, 

3 x2 c o s x3 1 r"l 
R +x. ' 2^ X2 Po e S(CL0 S l n " C ° S U ) + n 2 ( t ) 

o 1 

x = f(x»u) + n 

This system of equations (3.6) can now be linearized by expanding 

in a Taylor Series abouta given nominal trajectory. The difficult prob­

lem of calculating or selecting this trajectory and control is not con­

sidered here. It is assumed the nominal trajectory and control are 

specified. The expansion is: 

x = f.(x,u) + n = _f(x,,u,) + 
bf 
bx 

-—d 
Ud 

(x - x j + — 
— —d Ou 

(u - u.) + R + n 

^d 

where R represents the higher order terms in the Series. 

Defining 

6x = x - x, — — —a 

6x = x - x, — — -tf. 

6u = u - u 

A(t) - P 
' 6x 

2d 
ud 

(continued) 
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B(t) = T = 
b| 

bu 
*-d 

and performing the indicated operations gives: 

6f. 
Ai i = x — = ° 11 bx 

A1 „ = - — = - sin x_ 12 bx„ 3 

A 5 f l 

A1 _ = = - x0 cos x 
13 6x 2 3 

bf2 x 2
 pxl 2 

V l = ^ = - 2 ^ X
2 P o ^ S(CD0 + CDL Sin U ) 

bf2 x pxx 2 

A „ = - — = - - x0 p e S(C + C sin' u) 
22 bx,, m 2 Ko nrv ™ 'DO DL 

bf2 
A23 = b ^ = g C O S X3 

bf3 x2 cos x |3x 
A31 = bx" = 71 " 2m X2 ?o P e S(CL0 Sin U C O S u ) 

1 (Ro + xx) 

l32 

bf~ , g cos x cos x 1 px1 
= = - ( 5 + -—; + ~ P e S(C

Tn
 sin u c o s u) 

hx„ \ 2 R + xn 2m ro LO 
2 x„ o 1 

bf~ g sin x x sin x„ 
A - _ - _ + 
33 bx. R + xn o 1 

11 bu = 0 

(continued) 
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bf. 
B _ = 
21 bu 

- bf 3 

B31 ~ "ST 

1 2 P x l 
- — x 9 p^ e s(Cr»T s i n u c o s u) m 2 Ho 

px. 1 r 'lcp , 2 . 2 . 
TT- x 0 p e SC (cos u - sin u) 
2m 2 "o LO 

and 

6 * 1 

' • 

6x? = 

.6X3„ 

- A 
11 12 

A 

21 22 

L31 A32 

- . 

13 6 x i 
Bn 

23 
6x,? + B21 

33_ 6x B3lJ 

6u + n + R 

where the A and B matrices are evaluated at x = x, and u = u, and are, 
— —d d 

therefore, functions of time. The bounded disturbance term and the Taylor 

Series remainder term can be combined to give 

6x = A(t)6x + B(t)6u + N (3.7) 

Next the linearized system (3.7) is discretized. The linear con­

tinuous system model 6x = A(t)6x + B(t)6u must be represented by 

the discrete model 

6x(n+l) = 0(n)6x(n) + H(n)6u(n) (3.8) 

The computation of the discrete model is performed on the digital com­

puter. 

At this point the discrete perturbation model (3.8) is recognized 

as the same model (2.6) for which the controller in Chapter II was de­

veloped using the performance criterion (2.17). Therefore, the re-entry 

system (3.8) is controlled such that the performance measure of the 
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bounding ellipsoids containing the state is minimized. This performance 

criterion is 

N-l 

J = Tr[r(N)] + J Tr[r(n)] 

n=0 

where T (n) is the weighting matrix describing the ellipsoid that con­

tains the re-entry state. The re-entry controller for the system (3.8) 

is given by 

6u(n) = L(n)6x(n) (3.9) 

where 

L(n) = - (HT(n)P(n+l)H(n))"1HT(n)P(n+l)0(n) (3.10) 

and P(n) = (0(n) + H(n)L(n))TP(n+l)(0(n) + H(n)L(n)) + I (3.11) 

P(N) = 1 (3.12) 

The relationships (3.9 - 3.12) specify the re-entry control scheme. 

With the re-entry controller specified, the re-entry process can 

now be simulated on the digital computer. The details of the simulation 

and the results are presented in the next chapter. 
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CHAPTER IV 

RE-ENTRY CONTROLLER PERFORMANCE 

Introduction 

At this point the controller for the re-entry problem has been 

developed. The important practical consideration of how well the controlled 

spacecraft performs must now be considered The controlled system is eval­

uated by simulating the re-entry on the digital computer. The re-entry is 

simulated under several different conditions. The details of the simula­

tions, the results, and the analysis of the results are presented in this 

chapter. 

As noted in Chapter III, controller development requires that the 

nonlinear system model (3.5) be linearized and then discretized. To, 

linearize the model for a simulation requires the knowledge of certain 

constant and vehicle parameters as well as a nominal trajectory and control 

about which to linearize. Since the re-entry is into the earth's atmos­

phere the following constants are known; 

earth's radius R = 2.09 X 10 feet 
o 

gravity constant g = 32.2 ft/sec 

-4 2 4 air density at sea level p = 2.70 X 10 lb - sec /ft 
r o 

The vehicle parameters for these simulations are taken to be [19]: 

2 
mass of vehicle m = 250 lb - sec /ft 

2 wing-plan form area S = 66.5 f t 
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lift-drag polar parameters C = 0.274 

SL = 1-8 

Cw = 1.2 

The nominal trajectory and control that is needed is shown in Table 1 1.19] 

Using these constants, vehicle parameters, and Table 1, the linear­

ized system matrices A(t) and B(t) are evaluated. This is done in the 

following manner. Table 1 is linearly interpolated over five second in­

tervals and these resulting values are substituted into A(t) and B(t). 

This gives a model sample size of 0.5 second. 

With the A(t) and B(t) matrices known, the discrete model 

6x(n + 1) = 0(n)6x(n) +H(n)6u(n) 

is generated in the computer. A sample time of T = .05 seconds is used 

to compute the discrete model. Using 0(n) and H(n), the control algo­

rithms developed in Chapter II are used to generate the control for the 

vehicle. • 

A weighting matrix is used in the generation of the controller for 

the linearized re-entry model. This linearized model is obtained from 

truncation of second-order and higher terms in a Taylor Series expansion 

of the nonlinear system equations. Therefore, the weighting matrix is 

chosen to reduce the effects of this truncation. The second derivations 

— T —, of the nonlinear system are: 
bxZ 

l 



Table 1. Nominal Tra jec to ry and Control 

Time A l t i t u d e - x , Ve loc i ty -x 9 F l i g h t angle-x. . Control 

(seconds) ( f e e t ) ( f t / s econd) (degrees) (degrees) 

0 221227.00 35677.00 5.83 40.12 

5 204219.00 35177.00 5.11 35.72 

10 190269.00 34396.00 4.00 29.35 

15 180462.00 33437.00 2.57 22.60 

20 175244.00 32469.00 1.06 16.99 

25 174163.00 31611.00 - .02 12.78 

30 176240.00 30915.00 -1.22 9.37 

35 180421.00 30385.00 -1.85 6.02 

40 185795.00 2996.00 -2.18 2.13 

45 191652.00 29704.00 -2.28 - 2.42 

50 197493.00 29470.00 -2.22 - 7.21 

55 203015.00 29267.00 -2.08 -11.64 

60 208085.00 29081.00 -1.90 -15.38 

65 212671.00 28911.00 -1.72 -18.40 

70 216794.00 28754.00 -1.55 -20.81 

75 220498.00 28611.00 -1.40 -22.74 

80 223829.00 28479.00 -1.27 -24.28 

85 226831.00 28359.00 -1.15 -25.54 

90 229542.00 28248.00 -1.04 -26.58 

95 231997.00 28146.00 - .95 -27.45 

100 234223.00 28051.00 - .86 -28.20 

105 236244.00 27963.00 - .79 -28.83 

110 238080.00 27880.00 - .72 -29.38 

115 239747.00 27803.00 - .65 -29.86 

120 241260.00 27729.00 - .59 -30.28 
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52f. 

bxi 
= 0 (4.1) 

52f, 

^ : 

1 K 1 2 
- p e S(C™ + C^Tsin u) m ro DO DL 

62f. g cos x^ x„ cos x~ 

x0 R + xn 2 o 1 

The terms in the matrix are chosen to be inversely proportional to these 

second derivations. Substituting typicaL values in (4.1) the matrix is 

R 

1 0 0 

0 1000 0 

0 0 1 

(4.2) 

The values are inversely proportional because T (n) is used in the per­

formance index and T~ (n) is the bounding ellipsoid matrix. Experimenta­

tion with several other weighting matrices indicates that (4.2) gives the 

most satisfactory performance. Figure 5 gives a flowchart for generating 

the re-entry controller. 

Using the constants, nominal trajectory, and the controller de­

scribed in the preceding paragraphs, the re-entry process is simulated on 

the digital computer. The simulations can be classified as deterministic 

and stochastic. The performance of the system and the bounding ellipsoid 

is studied for both types of simulations. 



Read in nominal trajectory, 

control, and parameters 

i 
Discretize the 

linearized model 

i 
1 

• " " 

Generate the control 

6u(n) = L(n)6x(n) -

' 

6x(n 

Close the loop 

+ 1) = [0(n) + H(n)L(n)]6x(r 0 

Figure 5. Computation of Re-entry Controlle 
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Deterministic Performance 

The re-entry is first simulated assuming that no noise is acting 

on the system. The purpose of this simulation is to study the transient 

and steady-state response of the controlled system. The simulation is 

performed in the following manner. With the model 

6x(n + 1) = 0(n)6x(n) + H(n)fiu(n) (4.3) 

and control 

6u(n) = L(n)6x(n) (4„4) 

o 

stored in the computer, the loop is closed by substituting (4.4) into 

(4.3) to obtain 

6x(n + 1) = [0(n) + H(n)L(n)]6x(n) (4.5) 

or 

6x(n + 1) = ?(n)6x(n) (4 .,6) 

where 0*(n) = 0(n) + H(n)L(n) 

By selecting initial conditions, 6x(0), the deterministic re-entry process 

(4.6) is simulated. A representative trajectory is shown in Figure.6. 
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In this simulation, the following observations are made. First the 

re-entry perturbation controller developed in Chapter III does work. 

That is, the closed-loop system reduces deviations from the nominal tra­

jectory to zero. Second the transient response is reasonable, in that, 

there are no undue oscillations on the one hand while on the other the 

perturbed state variables reach zero in a reasonable time. 

While these observations apply to the re-entry problem developed 

in the previous chapter and simulated in this chapter, there are broader 

implications. The re-entry problem is a practical and difficult control 

problem. The design procedure developed in Chapter II is applied to this 

problem in a straightforward manner and results in a workable control 

scheme. That is, the concept of finding the linear controller that mini­

mizes directly the region around the nominal trajectory results in a 

valid design procedure. Because this procedure works for a difficult 

problem, the re-entry problem, it is reasonable to assume it can be ap­

plied to many other control problems. 

Bounding Ellipsoid Performance—Deterministic Case 

It was shown in Chapter II for the deterministic case that the 

state of the system 

6x(n + 1) = 0(n)6x(n) 

where <fi\n) = 0(n) + H(n)L(n) 

and initial state 
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&x(0)£ Q (0) = {6x c Rn: (6x - c (0»T _i(0) (6x - c (0)) <: 1} 
X X X X 

is contained in the region 

T„-l 
Q (n) = {6x £ Rn: (6x - £ (n))^'. (n) (6x - c (n)) £ 1} 
A X X . ^J± 

described by the ellipsoid F (n). 

To determine the performance of this bounding ellipsoid, T (n) 

is generated using 

T (n + 1) = 0(n)T (n)F(n) 
X X 

(4.7) 

where 0(n) is the closed-loop re-entry system matrix. The trace ofT (n) 
X. 

is used to give a measure of the ellipsoid performance and the region 

0 (n) containing 6x(n) during re-entry. Shown in Figure 7 is a plot of 

the trace ofT (n) versus time into the trajectory. The trace initially 

increases and then decays to zero. This implies that the bounding ellip­

soid also increases and then decreases to essentially a point. 

The deterministic ellipsoid performs in this manner because of the 

following reasoning. The ellipsoid is generated from (4.7). Let T (0)& be 

y l l 
0 0 

r (0) = 
X 

0 y 2 2 
0 

0 0 y 33 
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If the eigenvalues of 0(n) are real and distinct, the state coordinate 

A 

system can be rotated such that 0(n) is similar to 

A(n) = A1(a) = 

0 X 

Then the e l l i p s o i d a t the f i r s t time increment i s 

r (i) -
X 

X 0 0 

o x2 o 

0 0 X. 

y u 0 0 

0 y22 ° 

0 0 y 
33 

xx o 

0 X 

0 

2 

0 X 

T (1) = x 

xfrn ° 
2y22 

0 ^3 y 33 

The \X . (n) | < 1 for a l l n = 0 , 1 , 2 , 

system a re as fo l lows : 

,N so the t r a c e s in the r o t a t e d 

Tr [T(0 ) ] = y 1 1 + y 2 2 + 7 3 3 

Tr[r ( 1 ) ] = X 1 y 1 1 + X2y22 + X3y33 

T r [ r ( l ) ] < Tr [T(0) ] 



In two dimensions the ellipsoids look like 

6xTr"1(0)6x < 1 x 

6xTr_1(l)6x < 1 
x 

X2 /*2? 

Q (0) 
x 

fill 6X1 

a (l) 
X 

i fn 6xi 

If the eigenvalues are complex and distinct the same reasoning as 

above can be followed, but it is a little more difficult to illustrate 

graphically. The initial trace is 

Tr[r(0)] = y n + y22 + y^ 

and 

T r [ r ( D ] = > ^ y n +\1y22 +x2
2y 22 
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where A- and A1 a r e complex c o n j u g a t e s . The m a g n i t u d e of t h e t r a c e i s 

L r r / n l i 1.2 *2 , 2 i . 2 i i *2 i i 2 

|Tr[r( l ) ] |= |x i y i l + Ax y22 + A ^ I ^ A ^ I +| X± Y^^y 

* 
L e t t i n g A. = a + j b t h e n A-, - a - j b 

i i i *i . / T l and |x |=|x | = /a >b <: 1 

221 

2i i * ? i i 2 i 
X l ' = l X l "i- X ' 1*2^ X 

Therefore Tr[f(l)]| < | Tr[T (0) ] | and the trace in this case also decays 

to zero as shown in Figure 7. 

Monte Carlo Simulations 

An important consideration in the re-entry problem is the perform­

ance of the controller in the presence of noise. For the nominal trajec­

tory used in this problem, the principle source of noise is parameter 

uncertainty. This uncertainty can be represented mathematically by 

x = f_(x,a,u) (4.8) 

where a_ is the vector of parameters containing the uncertainty. If (4.8) 

is expanded in a Taylor Series about the nominal characteristics and is 

truncated after the linear terms, (4.8) becomes 



The uncertain parameters are the lift coefficient, CT, and the drag 
4., Li 

c o e f f i c i e n t , C . That i s , 

so the •*— i s 

ba 

L 
2m" p X 2 S 

1 2 Q 

to p X 2 S 

0 

Typical values for these parameters give 

b| 

0 0 

0 50 

002 .0 

Using a 10 percent change in the nominal characteristics ± .1 CL,. and 

± .1 C results in 

Ml 
£>£ a = 

0 

± 5 

± .0001 



This is the basis for letting the noise distribution matrix be 

G = 

0001 

With this G matrix and the 0(n) matrix, the system model is 

6x(n + 1) = 0(n)6x(n) + Gw(n) 

where w(n) is a stochastic process. 

Two different noise models are used in these Monte Carlo simula­

tions. In the first simulation white Gaussian noise with zero mean and 

a variance of one is used as input: In the second simulation uniform 

noise with a mean of zero and variance of one is the input. One hundre 

runs are made using each noise model. The performance of the system in 

this environment is shown in Figures 5 to 11. Figures 5 and 6 are the 

sample mean versus time and Figures 7 and 8 are the sample variances 

versus time. The sample mean and variance are calculated using 

N 

6x. 
I N Li i 

i= l 
N N 

2 
6x. 

l i = l 
- (k y ^ 

i= l 

where N = 100 

$ 
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In these stochastic simulations, it is evident from Figures 5 and 

6 that the sample mean and the deterministic trajectories look very 

similar. 

The sample variance graphs are very interesting. The variance 

increases initially and then begins to decrease. At approximately 45 

seconds into the trajectory, however, the variance increases sharply, 

decreases somewhat and then continues to increase. The explanation for 

this behavior is obtained from an examination of the nominal trajectories 

shown in Table 1. From 0 to 45 seconds the flight angle, x~, is decreas­

ing. At 45 seconds the nominal x„ stops decreasing and starts to in­

crease. The system is sensitive to changes in this angle and this is 

reflected in the graphs of the variances. 

Bounding Ellipsoid Performance--Stochastic Case 

For the stochastic re-entry system model 

6x(n + 1) = 0(n)6x(n) + Gw(n) 

i t was shown in Chapter I I t ha t with the i n i t i a l s t a t e 

6x(0) € Q (0) = ( 6 x 6 Rn: (<5x - c (0) ) V " 1 (0) (6x - c (0)) < 1} V1 

X.' ' ' X ' ' " — —X 

the s t a t e 6x(n) i s conta ined in the region 

ft (n) - [ 6 x 6 Rn: (6x - c ( n ) ) ^ " 1 (n) (6x - c (n)) < 1} x — — —x x — —x J 
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described by the ellipsoid 

Fx<n + X ) = rrW) 0MTK(n)f(n) + j ^ GQGT 

where w (n) < Q 

The ellipsoid described by T (n) is generated on the computer and again 

the trace of r (n) is used as a measure of the region containing §x(n) 

during re-entry. In Figure 12 the trace of T (n) for this noisy case is 

shown versus time. 

The shape of this trace plot is similar to the shape of the vari­

ance plots shown in Figures 10 and 11. The trace increases initially, 

decreases and then at approximately 45 seconds begins to increase again. 

This is explained by examining the algorithm used to generate the bounding 

ellipsoid. The algorithm is 

rx< n + X> = T ^ W ®(n>r<n>3V> + p^y GQGT 

and if this is written out in detail for this problem it becomes 

r(i) i - p(o) 

r 2 "" 

Vn 
0 

0 
2 

X2 y22 

0 
0 

2 
+ P'(n) 

0 0 X 3y33 

0 
2 
g2 

S2S3 

goS-
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r( i ) = 

1 2 
1-P lyll 

_L 2 , 3 2 
1-P X2y22 p S2 

fi 
S2S3 

P S2S3 

1 2 . 5 2 
1-P A3y33 p S3 

and 

Tr[r(l)] = YZTf ^l^ii + X2y22 + X3y33) + (B (g2 + g 3 } 

2 2 2 
As was shown previously, the term X̂ y-- + Ly„„ + ̂ voo is smaller than 

y-- + y._ + y__ because |x_. | < 1. |3(n) is generated using the relation­

ship developed in Chapter II and is a small number 

P(n) « 1 

so 

1 - P(n) 

and the first term in the Tr[r(l)] is approximately the same as in the 

Tr[r(l)] for the deterministic case. Here, however, is the additional 

0 2 2 
term -7-7 (g„ + g0) which increases Tr[r(l)1. If the eigenvalues, A.."s, $(n) v&2 bV L \ / J & x 

are small it is still possible for the trace to decrease with time. On 

the other hand if the eigenvalues are close to one, the trace increases. 

This is the reason the trace varies as shown in Figure 12. 

In Figure 13 is plotted the ratio of the semi-axis of the bounding 

ellipsoid to 3a where o is the standard deviation obtained from the 

Gaussian re-entry simulation. From examinations of this graph several 
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points are evident. First, the bounding ellipsoid is very conservative. 

Second, there is a region where the ellipsoid performs reasonably well. 

This region is the 20 to 30 second interval on the graph. This is also 

approximately the same interval where the variance (Figure 10) for the 

Gaussian simulation is very small. It appears, therefore, that the 

ellipsoid bound is quite good if the variance is small and extremely 

conservative if the variance is large. 

Ellipsoid Parameter g 

In the computer runs that are used to generate the ellipsoids and 

the ellipsoid traces, the parameter p(n) is calculated using the relation­

ship (2.29) developed in Chapter II. A plot of |3 versus time is shown 

in Figure 14. 

' • . i . ••' ' ; 

Sensitivity to Model Parameters 

In the introduction to this chapter the nominal values for the 

model constants and parameters were specified. These are the values used 

in the re-entry simulations and in generating the bounding regions r (n). 

If the re-entry controller is to be useful it must not be sensitive to 

variations in these mathematical model parameters. This is because these 

parameters are not known exactly prior to the re-entry. Therefore it is 

worthwhile to vary them and study the effect they have on the re-entry 

process. Accordingly, the lift coefficient', CL , the drag coefficient, C , 

and the vehicle mass, m, are varied one at a time in the linearized model. 

The discrete model is computed and the bounding ellipsoid is generated 

using 
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T (n + 1).= 0(n)r (n)0T(n) 
x x 

The control used in closing the loop is generated using nominal values 

of CL ,C , and m and is not changed. The trace of r (n) versus time for 

the different cases is shown in Figures 15, 16, and 17. 

In Figure 15 is shown the variation in performance due to changes 

in the drag coefficient. As the drag coefficient is increased this allows 

more control to be applied to the velocity equation so deviations from 

the nominal are reduced to zero faster. This effect is shown in Figure 

15. When the lift coefficient is increased more control can be applied 

to the flight angle. This tighter angle control is shown in Figure 16. 

The perturbations from the nominal are reduced to zero in the same time 

interval with less flare in the performance. The effect of varying the 

lift and drag coefficients together is shown in Figure 17. The increased 

drag coefficient reduces perturbations to zero faster and the increased 

lift coefficient reduces the flare. 

The re-entry controller, therefore, performs as predicted and is 

not overly sensitive to vehicle parameter variations. This is a very 

desirable characteristic in any controller not just the re-entry con­

troller. Once again these results have a broader implication. That is, 

the controller developed in Chapter II is not sensitive to parameter 

variations in the system model. 

Summary 

In this Chapter the performance of the re-entry controller is 

studied by performing various simulations on the digital computer. These 
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simulations assumed both a deterministic re-entry process and a noisy 

re-entry process. The results of the simulations are presented in 

Figures 6 to 17. These results are interpreted in terms of just the re­

entry problem. Many of these results, however, have much broader impli­

cations than this one example. The following chapter discusses the 

implied results. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Conelus ions 

This thesis has considered the control of dynamical systems 

operating in the presence of uncertainty. These systems are described by 

x = £ (x,u) + N 

where N represents any uncertainty in the plant and external disturbances 

acting on the plant. The only characteristic assumed known about N is 

that it is contained within a specified bound. No statistical modeling 

is used, 

It is assumed that the purpose of the controller for this system 

is to maintain the state of the system close to a given or specified 

trajectory. With this objective in mind it is reasonable to expand the 

nonlinear function, f(x,u)., in a Taylor Series about the known nominal 

trajectory and truncate the higher order terms in the Series. This step 

results in the linearized perturbation model 

6x = A(t)6x + B(t)6u + N 

This linearized model is discretized on the digital computer. This step 

results in the linearized, discrete-time, perturbation model 
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6x(n + 1) = 0(n)6x(n) + H(n)6u(n) + G(n)w(n) 

The controller is assumed to be of the form 

6u(n) = L(n)6x(n) 

which leads to the model 

6x(n + 1) = [0(n) + H(n)L(n)]6x(n) + G(n)w(n) (5.1) 

At this point the region around the nominal trajectory containing 

6x(n) must be characterized. In this work, this region is described by 

the bounding ellipsoids 

T -1 
6x (n)r (n)6x(n) < 1 

That is, the state 6x(n) is always contained within the ellipsoid described 

by the positive definite weighting matrix r (n). These ellipsoids are 

generated using the algorithm 

r(n + 1) = YTIT^O ^n)r(n)2T(n) + |^jy GQGT (5.2) 

where 0 = 0 + HL is the closed-loop system matrix, (3 (n) is a free param­

eter selected according to the relationship developed in Chapter II, and 

Q is the bound on the noise. 
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Using the model (5.1) and the ellipsoidal bounded state space, 

the general approach to this control problem is to find the controller 

that minimizes this bounded region that the state 6x(n) can lie in. In 

more specific terms, in this research the trace of T(n), the bounding 

ellipsoid, is taken as a measure of the "size" of the region containing 

the state of the system. With this performance measure the control 

problem can be stated as follows. Determine the control matrix L(n) that 

minimizes the performance index 

N-l 

J = Tr[r(N)] + Y Tr[r(n)] 
n=0 

subject to the constraint 

r(n + 1) = XTJ(S)" ^ (n ) r ( n > ^ n ) + pTnT G^T 

This basic control problem formulation allows the Matrix Minimum 

Principle to be applied. In this matrix, formulation the elements of the 

control matrix, JL ., play the role of the control variables in the standard 

vector form of the Minimum Principle and the elements of the bounding 

ellipsoid, y.., correspond to the components of the state vector. The 

result of applying the Matrix Minimum Principle is a control algorithm, 

or in other words, the result is the specification of the control matrix, 

L(n), for all n = 0,1,2,. . .,N, and consequently the controller 

6u(n) = L(n)6x(n). This control is calculated off-line and stored for 

use in an on-line environment as shown below. 
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n Plant 

Or-^Sh-^O 
Hd t + 

Computer 

*d 

To evaluate this control scheme, a specific control problem was 

selected and the controller was developed as outlined above. The problem 

selected was the re-entry problem. This controlled re-entry process was 

simulated on the digital computer. This problem was selected because it 

is a member of the class of systems to which this procedure applies and 

because it is an interesting problem. The re-entry system dynamics are 
r-. 

described by a set of nonlinear differential equations and the uncertainty 

in the modeling is unknown but bounded. This system was linearized about 

a known nominal re-entry trajectory. The performance index for this ap­

plication was weighted and took the form 

N-l 

J = Tr[r (N) ] + ^ Tr[RT (n) ] (5.3) 

n=0 

where R was selected to minimize the effects of truncating the Taylor 

Series expansion of the nonlinear re-entry dynamics. This weighting 

matrix adds flexibility to this design process. In a different control 

problem, in all likelihood, a different weighting matrix would be selected 



based on physical considerations. With this performance index (5.3), 

the controller for the re-entry problem was calculated on the digital 

computer. The bounding region containing the state of the system was 

calculated using the ellipsoid generation algorithm. The shape of this 

bounding region can be varied by the weighting matrix R. 

In summary, then, given a nonlinear system operating in the pre­

sence of uncertainty the following procedure is followed to generate the 

system control. A nominal trajectory for the system must be specified 

and the system linearized about this trajectory. The bounds on the noise 

must be specified and the weighting matrix in the performance index must 

be selected. The control and the bounded region containing the state can 

then be generated. If desirable, at this point the shape of the bounded 

region can be changed by changing the weighting matrix. 

These simulations showed that the control scheme developed in 

Chapter II is a valid scheme. The re-entry problem is a difficult and 

demanding control problem. It is believed therefore, that the control 

scheme can be applied to many other problems,. 

Both the deterministic and stochastic simulations showed the re­

entry to be well controlled. In the stochastic runs the sample variance 

indicated that tighter control should be generated in certain intervals 

of the trajectory. This could be accomplished by using a time-varying 

weighting matrix in the performance index. 

The performance of the bounding ellipsoid was interesting. The 

bounding ellipsoid algorithm generated a bound for the re-entry system 

operating in the presence of noise. This bound was generated using a 



deterministic algorithm and while the bound was conservative in absolute 

magnitude the character of the bounding region was the same as the 

statistically generated bound---the sample variance. The sample variance 

was generated from the Monte Carlo simulations consisting of 100 separate 

passes through the trajectory. The bounding ellipsoid with one pass 

through the trajectory also suggested the generation of tighter control 

in certain intervals. Therefore the deterministic bounding ellipsoid 

can be used to give qualitative, information about the performance of a 

given closed-loop control system. 

E le c omme nda t i on s 

There are several areas associated with this thesis research 

that are recommended for further study. The first area is the technique 

used for describing the region that bounds the state. In this work 

ellipsoids were used to bound the state. This is a straightforward 

technique but an approximate technique. The simulation results indicate 

that it is also a very conservative technique. There needs to be an 

error analysis performed on this ellipsoidal bounding technique. Another 

suggestion in this same area is the method of describing the bounded 

region containing the state. Ellipsoids were used in this work, but it 

is quite possible another technique might yield an algorithm that gen­

erates the exact bounding surface. For example if the initial condition 

sets are polyhedra then a polyhedral algorithm can be used to describe 

the region. 

In this research the performance index used in the controller 
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derivation was the trace of the bounding ellipsoid. It is quite possible 

other performance indices will yield the same or different controllers. 

Therefore in future work the formulation of different indices could lead 

to new and interesting results. 
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APPENDIX I 

A systematic notational approach for the problem dealing with the 

time evolution of matrices is available in terms of the Matrix Minimum 

Principle [24]. The purpose of this appendix is to present the pertinent 

information from [24] that: is used in this research. 

The Hamiltonian for a problem can be written 

n n 

H = F[r(n),L(n)] + J I y,.(n+l)p. (n+1) (A.l) 

i=l j=l 

where P..(n+1) is the costate variable associated with v..(n+1). This 
ij ij 

Hamiltonian can also be written as 

H = F[r(n),L(n)] + Tr [r (n+l)PT(n+l) ] 

where P(n+1) is the costate matrix associated with the state matrix 

T(n+1). That is, y.. and p.. are the elements of T(n+1) and P(n+1), 
ij ij 

respectively. 

The key to the Matrix Minimum Principle [24] is in the use of gra­

dient matrices. A gradient matrix is defined as follows: f(r) is a 

scalar-valued function of the elements y.. of T. The gradient matrix of 
ij 

f(r) is denoted by 

Mr) 
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and the ijth element is given by 

'5fCT)1 = bf(D 
.b(r)J.. by.. 

IJ IJ 

With this definition, the costate equations associated with the 

Hamiltonian H 

6H 
p. .(n) = v 
^ij by i-j 

can be written as 

P(n) = bH 
br(n) 

Using this notation the necessary conditions for optimality can be 

stated for matrix problems. 

P(n) = 

r(n+l) = 

bH = 

bL(n) 

bH 
br(n) 

bH 
bP(n+l) 

0 

The gradient matrices needed in this work are given below. 



• ^ Tr[AXB] = A ' B ' (A.5) 
ox — — — 

^ 7 Tr[AX'B] = BA . (A.6) 
ox — 

r | r Tr[AX] = A (A. 7) 

bX T
 Tr[AX'] = A1 . (A.8) 

-^T TrtAXB] = BA (A. 9) 
OA 

- ^ Tr[AX'B] = A ' B ' (A. 10) 
OX -

7^. Tr[XX] = 2X* (A. 11) 
OX — — 

-^r Tr[XX*] = 2X (A.12) 
o x ••• — — 

^ r Tr[Xn] = n ( X n ~ V > (A. 13) 
OA 

n - 1 

rp^r A V 1 1 ! - ( 

&X 
^ • Tr[AXn] = ( £ X 1 ; ^ - 1 " 1 ) ' (A. 14) 

i = 0 

^ Tr[AXBX] = A ' X ' B ' + B ' X ' A ' (A, 15) 
OA — — 

T^T Tr[AXBX'] = A'XB' + AXB (A.16) 
OX 

The reader is cautioned that in making these gradient computations 

the element x.. of X must be assumed independent. 
ij 
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