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Abstract

Linear latent variable models such as statistical factor analysis (SFA) and probabilistic
principal component analysis (PPCA) assume that the data are distributed according to a mul-
tivariate Gaussian. A drawback of this assumption is that parameter learning in these models
is sensitive to outliers in the training data. Approaches that rely on M-estimation have been in-
troduced to render principal component analysis (PCA) more robust to outliers. M-estimation
approaches assume the data are distributed according to a density with heavier tails than a
Gaussian. Yet, these methods are limited in that they fail to define a probability model for the
data. Data cannot be generated from these models, and the normalized probability of new data
cannot evaluated. To address these limitations, we describe a generative probability model that
accounts for outliers. The model is a linear latent variable model in which the marginal density
over the data is a multivariatet, a distribution with heavier tails than a Gaussian. We present a
computationally efficient expectation maximization (EM) algorithm for estimating the model
parameters, and compare our approach with that of PPCA on both synthetic and real data sets.

1 Introduction

In recent work, principal component analysis (PCA) has been expressed in a probabilistic formu-
lation as a Gaussian latent variable model [18, 19]. The probabilistic formulation offers several
advantages. The normalized probability of new data can be evaluated. Maximum likelihood (ML)
parameters can be estimated efficiently using an expectation maximization (EM) algorithm. The
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Figure 1: Thet distribution has heavier tails than a Gaussian. (a) At distribution with meanµ= 0,
varianceσ2 = 1, and degrees of freedomν = 3 is shown with a solid line. When the degrees of
freedom equals oneν = 1, we obtain a Cauchy distribution shown by the dashed line. Asν → ∞
thet distribution approaches a Gaussian shown as a dotted line. (b) The heavy tails of the Cauchy
and thet distribution can be seen more clearly on a log scale.

models also permit application of Bayesian methods. The probabilistic PCA (PPCA) model is
closely related to statistical factor analysis (SFA) [1, 7]. In the factor analysis model, the noise is
no longer constrained to be the same for each dimension of the data vector. Yet, SFA and PPCA are
defined as Gaussian models which are known to be sensitive to the presence of outliers in training
data [17, 15].

Several approaches have been proposed to render PCA and SFA robust to outliers. The methods
rely on robust estimation, particularly M-estimation methods [8]. M-estimation departs from the
assumption that the data are normally distributed. Rather, the approach assumes that the data are
distributed according to a heavy tailed distribution. Consequently, maximum likelihood solutions
need not be least squares solutions and are more robust to outliers. In [20], a robust version of
PCA is introduced in the context of computer vision, using a Geman-McClure function as a robust
error function. Implicit in this definition is the assumption that the image data is generated from
a heavy tailed distribution. In [16], the calculation of the data covariance is replaced with with a
minimum covariance determinant (MCD) estimator. MCD’s theoretical influence function, which
describes the effect of outliers on an estimator, has been shown to be more robust to outliers [15].
Even though M-estimation has a probabilistic interpretation and is effective in practice, it does not
yield normalized probabilities or define a generative model for the data.

To address these limitations, we describe a robust generative subspace model in which the
marginal density over the data is a multivariatet, a distribution with heavier tails than a Gaus-
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sian (see Figure 1).t distributions are commonly used in robust regression [4, 17]. They have
also been shown to be effective in modeling constraints found in images [22]. ML estimation of
the parameters of at distribution using EM has been detailed in [12, 13], and ML estimation of
mixtures oft distributions is described in [14]. Variational methods have also been applied to mix-
tures oft distributions [2]. However, these methods do not provide a probabilistic mechanism for
dimensionality reduction.

In this paper, we introduce a generative subspace model which we call the Subspacet distribu-
tion. The model provides a robust probabilistic mechanism for dimensionality reduction and can
be utilized to efficiently model high dimensional data. The model is more general than PPCA and
SFA. Both PPCA and SFA can be shown to be limiting cases of the Subspacet distribution, ob-
tained when the the degrees of freedom approach infinity (as in Figure 1). We present an efficient
EM algorithm for learning model parameters [6]. Finally, we show the robustness of the Subspace
t distribution on a simulated data set with background noise and set of images in which several
have been corrupted by noise.

2 The Model

2.1 Linear Latent Variable Models

A linear latent variable model ford-dimensional data vectorst is given by

t = µ+Wx+n

whereµ is the mean of the data,x is aq -dimensional vector of latent variables, the columns ofW
containd-dimensional factors, andn is a vector of additive noise. In SFA the noisen is assumed
normally distributed with a diagonal covariance matrixΨ, which makes the observed variablesti
conditionally independent given the latent variablesx [19]. In PPCA, the residual variancesΨi are
constrained to be equal.

In many applications the data may contain outliers. Normally distributed noise is an inappro-
priate choice because outliers are typically not normally distributed. A learning algorithm that
estimates the model parameters must either eliminate outliers from the data, or the outliers must be
modeled explicitly. We take the latter approach because it yields a generative probabilistic model.

2.2 The Subspacet Distribution

To obtain robustness to outliers, the generative subspace model we propose includes an additional
random variable called ascaling u, as shown in Figure 2. The scaling randomly expands the noise
variance and the effect of the factor loadings. Specifically, the model for ad-dimensional data
vectort is

t = µ+Wx+n
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Figure 2: (a) shows the Bayes net for the SFA and PPCA models. (b) Subspacet distribution
introduces a single random variable, the scalingu, to account for outliers. The scaling randomly
expands the noise variance and the effect of the factor loadingsx.

whereµ is a robust mean of data, and where the latent variablesx and the noisen are distributed as

x|u∼ N

(
x;0,

Iq
u

)
(1)

n|u∼ N

(
n;0,

Σ
u

)
(2)

with Σ a diagonal covariance. Additionally, the variance in the Subspacet distribution may be
constrained to be identical along each dimension that isΣ = Idσ2 .

The robustness to outliers arises when we additionally assume that the scalingu is distributed
according to a Gamma distribution. Specifically,

u∼ Gamma(ν/2,ν/2)

P(u) =
(ν/2)ν/2

Γ(ν/2)
uν/2−1exp(−ν

2
u) (3)

Under that assumption, it can be shown (see Appendix) that the marginal density over the data
vectorst is a multivariatet distribution [12, 14, 13]:

t ∼ T
(
t;µ,WWT +Σ,ν

)
(4)

whereT (µ,Σ,ν) has the density function
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Figure 3: By adjusting the gamma distribution over the scalingu through the degrees of freedom
parameterν, the thickness of the tails of the corresponding Student’st distribution increases or
decreases. In (a) we plot several gamma distributions. In (b) we plot the corresponding Student’s
t distribution. The dashed line showsν = 1, the solid line showsν = 3, and the dotted line shows
ν = 12.

f (t;µ,Σ,ν) = (νπ)−d/2|Σ|−1/2Γ
(ν+d

2

)
Γ(ν/2)

(
‖t−µ‖2

Σ
ν

+1

)− ν+d
2

where we use the following notation for the squared Mahalanobis distance:

‖t−µ‖2
Σ

∆= (t−µ)TΣ−1(t−µ)

The plot of the Gamma distribution over the scalingu is for several values of the degrees of freedom
ν is shown in Figure 3(a). The correspondingt distribution with the same degrees of freedom is
shown in Figure 3(b). As the the probability over scalings less than one decreases, the tails of the
thet distribution begin to flatten.

Given the scalingu, it is easily seen that the conditional density ont is a normal density with a
scaled covariance matrix

t|u∼ N
(

t;µ,
WWT +Σ

u

)
If additionally the values for the latent variablesx are known, the conditional densityP(t|x,u) is
also normal:

t|x,u∼ N
(

t;µ+Wx,
Σ
u

)
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Sampling in this hierarchical model can be done most efficiently by first sampling fromu, then
from x|u and finally fromt|x,u.

2.3 Inference

As with PPCA, it is of interest to infer the joint posterior densityP(x,u|t) over the latent variablesx
andu, given an observed data vectort. This will also be used below to learn the model parameters
through EM.

It is easily seen from (1) and (2) that, givenu, the posterior densityP(x|u, t) onx is normal

x|t,u∼ N
(

s,
R
u

)
where

s= RWTΣ−1(t−µ) (5)

is the projected data, and
R= (WTΣ−1W+ Iq)−1 (6)

is the unscaled covariance of the factor loadings.
It can be shown that, given the model (4), the marginal posterior densityP(u|t) over the scaling

[12] is given by

u|t ∼ Gamma

(
ν+d

2
,
ν+m

2

)
(7)

where we definem to be the squared Mahalanobis distance for the data pointt:

m
∆= ‖t−µ‖2

WWT+Σ (8)

Note thatm can be computed efficiently by applying an inversion lemma

yT(WWT +Σ)−1y = yTΣ−1y−yTΣ−1WRWTΣ−1y

where we definey
∆= t−µ.

In summary, the joint posterior densityP(x,u|t) over the latent variablesx andu is given by

P(x,u|t) = P(x|u, t)P(u|t) = N
(

x;s,
R
u

)
Gamma

(
u;

ν+d
2

,
ν+m

2

)
(9)
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3 Learning

We can learn the model parametersθ = {µ,W,Σ,ν} from data using the expectation-maximization
(EM) algorithm. The complete log-likelihoodLθ is defined as follows

Lθ = log
N

∏
n=1

P(xn, tn,un|θ) = log
N

∏
n=1

P(tn|xn,un,µ,W,Σ)P(xn|un)P(un|ν)

After some manipulation and omitting any terms that do not depend onθ we obtain

Lθ = −1
2

N

∑
n=1

−N
2

log|Σ|− 1
2

N

∑
n=1

un‖tn− (µ+Wxn)‖2
Σ

+
Nν
2

log
ν
2
−N logΓ

(ν
2

)
+
(ν

2
−1
) N

∑
n=1

logun−
ν
2

N

∑
n=1

un

3.1 Expectation Maximization

In the E-step we compute the expected log-likelihood

Q(θ|θi) ∆= E[Lθ|{tn},θi ]

with respect to the joint distribution∏N
n=1 p(un,xn|tn,θi) over the latent variables. In the M-step,

we re-estimate all parameters by maximizingQ(θ):

θi+1 = argmax
θ

Q(θ|θi)

This is explained in detail below for each of the parameters in turn.

Mean µ

Setting the derivative ofQ(θ|θi) with respect toµ to zero

∂Q(θ|θi)
∂µ

=
N

∑
n=1

〈
unΣ−1(tn−µ−Wxn)

〉
= 0

we readily obtain

µi+1 =
∑N

n=1〈un〉 tn−Wi ∑N
n=1〈unxn〉

∑N
n=1〈un〉
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The expectations〈un〉 and〈unxn〉 are computed in the E-step using the parametersθi . As shown in
Section 2.3, the scaling parameterun|tn follows the Gamma distribution (7), and its mean is

〈un〉
∆=

νi +d
νi +mi

n

wheremi
n is defined as in (8). To compute〈unxn〉 we make use of (9) and obtain

〈unxn〉
∆= E

[
unxn|tn,θi]

= E
[
unE

[
xn|un, tn,θi] |tn,θi]

= E
[
unsi

n|tn,θi]
= 〈un〉si

n (10)

wheresi
n is defined as in (5), and the last equality follows becausesi

n does not depend onun.

Factor Loading Matrix W

In order to re-estimateW, it is convenient to write the Mahalanobis distance as follows:

‖tn− (µ+Wxn)‖2
Σ = tr

(
Σ−1ynyT

n

)
−2xT

nWTΣ−1yn + tr
(
WTΣ−1WxnxT

n

)
whereyn = tn−µ. If we then compute and set the derivative equal to zero, we have

∂Q(θ|θi)
∂W

=
N

∑
n=1

[
d

dW

〈
unxT

nWTΣ−1yn−
1
2

untr
(
WTΣ−1WxnxT

n

)
+C

〉]
0 =

N

∑
n=1

[
Σ−1yn〈unxn〉T −Σ−1W

〈
unxnxT

n

〉]
where we made use of the trace derivative [5]:

∂tr(XTAXB)
∂X

= 2AXB

We solve forW and obtain an update that closely resembles the one used in [19, 7] respectively for
PPCA and factor analysis:

Wi+1 =

(
N

∑
n=1

yn〈unxn〉T
)(

N

∑
n=1

〈
unxnxT

n

〉)−1
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Here〈unxn〉 is given by (10), whereas in order to calculate
〈
unxnxT

n

〉
we first compute

E
[
xnxT

n |un, tn,θi] = COV
[
xn|un, tn,θi]+E

[
xn|un, tn,θi]E[xn|un, tn,θi]T

=
Ri

un
+ 〈unxn〉〈unxn〉T

and then

E
[
unxnxT

n |tn,θi] = E
[
unE

[
xnxT

n |un, tn,θi] |tn,θi]
= E

[
un|tn,θi]snsT

n +E

[
un

R
un
|tn,θi

]
= 〈unxn〉

(
si
n

)T
+Ri

whereRi is computed according to (6) andsi
n is computed as in (5) using the current parametersθi .

Covariance Matrix Σ

We use a similar approach forΣ and collect all of the terms containing this variable

∂Q(θ|θi)
∂Σ

=
N

∑
n=1

[
d

dΣ

〈
−1

2
log|Σ|− 1

2
untr

(
Σ−1ynyT

n

)
+unxT

nWTΣ−1yn−
1
2

tr
(
WTΣ−1WunxnxT

n

)〉]
0 =

N

∑
n=1

[
−Σ−1 + 〈un〉Σ−1ynyT

n Σ−1−2Σ−1W 〈unxn〉yT
n Σ−1 +Σ−1W

〈
unxnxT

n

〉
WTΣ−1]

where we made use of the trace derivatives [5]:

∂tr(X−1A)
∂X

=−X−1ATX−1

∂tr(ATX−1B)
∂X

=−X−TABTX−T

Consequently, we can update the diagonal covariance according to

Σi+1 =
1
N

N

∑
n=1

diag
[
〈un〉ynyT

n −2Wi 〈unxn〉yT
n +Wi 〈unxnxT

n

〉(
Wi)T]

The diag indicates that the computation of the outer products need only be performed along the the
diagonal. When the noise variance is assumed to be identical along each dimension, we average
all of the variance terms computed along the diagonal(

σ2)i+1
=

1
d

tr
[
Σi+1]
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Degrees of Freedomν

The update for the degrees of freedomν follows

νi+1 = argmax
ν

[
Nν
2

log
ν
2
−N logΓ

(ν
2

)
+
(ν

2
−1
) N

∑
i=1

〈logun〉−
ν
2

N

∑
i=1

〈un〉

]

In this we need (see [12, 14])

〈logun〉
∆= E
[
logun|tn,θi]= Ψ

(
νi +d

2

)
− log

(
1
2

(
νi +mi

n

))
whereΨ(x) is the Digamma function. In the M-step, we findνi+1 using 1-d non-linear maximiza-
tion.

3.2 Summary

Below we describe the principal steps of the EM learning algorithm:

1. E-step:
Using the current set of parametersθi = {µi ,Wi ,Σi ,νi}, compute the following expected
values for all data pointsn = 1. . .N.

(a) 〈logun〉= Ψ
(

νi+d
2

)
− log

(1
2

(
νi +mi

n

))
(b) 〈un〉= νi+d

νi+mi
n

(c) 〈unxn〉= 〈un〉si
n

(d)
〈
unxnxT

n

〉
= 〈unxn〉

(
si
n

)T +Ri

2. M-step:
Re-estimate the parameters as

(a) µi+1 = ∑N
i=1〈un〉tn−Wi〈unxn〉

∑N
i=1〈un〉

(b) Wi+1 =
(

∑N
n=1yn〈unxn〉T

)(
∑N

i=1

〈
unxnxT

n

〉)−1

(c) Σi+1 = 1
N ∑N

n=1diag
[
〈un〉ynyT

n −2Wi 〈unxn〉yT
n +Wi

〈
unxnxT

n

〉(
Wi
)T]

If the noise variance is identical for each dimension, update it according to:(
σ2
)i+1 = 1

d tr
[
Σi+1

]
10



(d) Findνi+1 such that

νi+1 = max
ν

[
Nν
2

log
ν
2
−N logΓ

(ν
2

)
+
(ν

2
−1
) N

∑
i=1

〈logun〉−
ν
2

N

∑
i=1

〈un〉

]

using 1-d non-linear maximization.

3. Repeat until convergence criteria are met.

4. Resolve any rotational ambiguity in the estimatedW by computing the singular value de-
composition (SVD) ofWWT = RSVT and rotatingW according toRW.

The EM algorithm has the following intuitive interpretation: in the E-step we fix the subspace
spanned by columns ofW and compute the moments of hidden factor loadingsx by projecting all
of the datat into subspace and weighting according the the robustness parameterν and the distance
the current guess of the meanµ. In the M-step the we fix the distributions over the hidden factor
loadings and update the subspace to minimize robust reconstruction error of the data points. The
robustness parameterν is adjusted to account for the distances of the data points from the mean.

4 Examples

In experimental studies it is often difficult to assure that data is free of background noise due to
irregularities in the measurement process. Consequently, we considered a simulated 2-d data set

in which we sampled 100 data points from from a Gaussian with meanµ =
[

0
0

]
and covariance

Σ =
[

10 7
7 3

]
with background noise generated by sampling 30 data points from uniform distri-

butions over the range of -30 to +30 along each dimension. It is clear from Figure 4 that PPCA
attempts to model the background noise and incorrectly selects the first principal component. In
this comparison, it is possible to improve the performance of PPCA by modeling the data as a
mixture between PPCA and a uniform model. However, this approach makes a strong assumption
about the background noise and cannot be expected to work as well as the Subspacet distribution
in situations where the noise is not uniform.

Similarly, in real world applications of computer vision training data may include artifacts due
to occlusions, illumination, noise, and errors underlying collection of the data [20]. Problems
in erroneous data collection are prevalent in tracking methodologies where a model of a target’s
appearance is updated in an EM algorithm [10, 21]. Temporary failures in tracking may introduce
images that do not include the tracked target into the training data set. To simulate this effect
we compiled an image set containing several corrupted images (see Figure 5(a)). As shown in
Figure 5(b) and 5(c) the effect the corrupted images on the eigen-images of the learned Subspace
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Figure 4: The PPCA model is sensitive to outliers. A data set was generated from a uniform
distribution and a 2 component Gaussian for which the 2.296 standard deviation contour is shown
as a solid oval. The dashed oval shows the 2.296 standard deviation contour of the Gaussian
estimated by a 1-component PPCA model and the dashed line shows the incorrectly estimated first
principal component. The thick oval shows the 2.296 standard deviation contour of the studentt
estimated by a 1 component Subspacet distribution with identical noise along each dimension and
the thick line shows the correctly estimated first principal component. The model correctly down
weights the outliers producing a better estimate of the covariance and first principal component.
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(a)

(b)

(c)

Figure 5: (a) We compiled a training image set containing 100 images of the antLeptothorax
albipennis. Ten corrupted images were also added to the training data set. (b) shows the mean
image (left) and the four first principal components estimated by the Subspacet distribution with
identical variance for each dimension from the training image set. (c) shows the mean image and
the first four principal components estimated by PPCA. The Subspacet distribution estimates a
more robust mean and set of principal components. The estimated components obtained for PPCA
incorrectly model the corrupted images.
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t distribution is substantially less than that observed in the PPCA learned model. In an adaptive
tracking framework, the Subspacet distribution might substantially improve tracking in approaches
that use subspace representations in modeling target shape or appearance [3, 11, 9].

5 Conclusions

The Subspacet distribution offers a robust alternative to PPCA and SFA. It retains the advan-
tages of the SFA and PPCA models. We list some of the important advantages of the Subspacet
distribution below:

• The model yields a normalized probability. An experimenter can correctly ask whether or
not a new data point came from a Subspacet distribution or another probability model.

• Bayesian methods can be applied in such a model. Priors on parameters can be included in
learning. The Subspacet distribution may be included in Bayesian model selection methods.
Variational methods may also be applied to inference in such models.

• The Subspacet distribution is robust. Strong assumptions about the distribution of the noise
are not necessary.

• A single Subspacet distribution can be used in a mixture model.

• SFA and PPCA are limiting cases of the Subspacet distribution obtained when the the de-
grees of freedom approach infinityν → ∞.
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Appendix

The Student’st distribution in (4) can be derived by noting this useful definition of a gamma
function

∫ ∞

0
e−(αt)β

tγdt =
Γ
(

γ+1
β

)
βαγ+1

We assume that the datat given the the covariance scalingu is distributed according to a Gaussian

t|u∼ N
(

t;µ,
Σ
u

)
The scaling has the effect of “broadening” the covariance whenu < 1. Hence, it models possible
outliers. To derive thet distribution we assume thatu is distributed according to a

u∼ Gamma
(ν

2
,
ν
2

)
whereGamma(α,β) has the density function

f (u;α,β) =
βαuα−1

Γ(α)
exp(−βu)

for u > 0 andα,β > 0.
Thet distribution can be thought of an infinite mixture of Gaussian distributions centered atµ

wherep(u) is the weight of a mixture component. We can obtain a studentt by marginalizing over
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all values ofu (with m defined as before in Equation 8)

p(t) =
∫ ∞

0
p(t|u)p(u)du

= k
∫ ∞

0
ud/2exp

[
−u

2
m
]
×u

ν
2−1exp

(
−ν

2
u
)

du

= k
∫ ∞

0
u

ν+d
2 −1exp

[
−u

(
1
2

m+
ν
2

)]
du

= kΓ
(

ν+d
2

)(
1
2

m+
ν
2

)− ν+d
2

= kΓ
(

ν+d
2

)
ν
2

− ν+d
2
(m

ν
+1
)− ν+d

2

= k′
(m

ν
+1
)− ν+d

2

which has the form of a t distribution withν degrees of freedom, with

k′ = (νπ)−d/2|Σ|−1/2Γ
(ν+d

2

)
Γ(ν/2)
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