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SUMMARY 

 The initiation of heterogeneity within a population of phenotypically identical 

progenitors is a critical event for the onset of morphogenesis and differentiation patterning. 

Information flow between adjacent cells informs cell fate decisions and can occur by a 

number of mechanisms. Gap junction communication within multicellular systems 

produces complex networks of intercellular connectivity that result in heterogeneous 

distributions of intracellular signaling molecules. In this work, we investigated the 

emergent systems-level behavior of the intercellular network within embryonic stem cell 

(ESC) populations and the corresponding spatial organization during early neural 

differentiation.  

 An agent-based computational model of ESC collective behavior was designed to 

prompt the state change of individual cells through intracellular accumulation of molecular 

drivers of differentiation throughout a colony. Transfer rates in the intercellular network 

were defined from experimentally-determined parameters, with cell cycle modulation of 

gap junctions stimulating dynamic connectivity. The model yielded complex, dynamic 

transport networks for delivery of differentiation cues between neighboring cells, 

reproducing the distribution and variety of observed morphogenic trajectories that result 

during retinoic acid–induced mouse ESC differentiation. Furthermore, the model correctly 

predicted the delayed differentiation and preserved spatial features of the morphogenic 

trajectory that occurs in response to perturbation to intercellular communication.  These 

findings suggest an integral role of gap junction communication in the temporal 

coordination of emergent patterning during early differentiation and neural commitment of 

pluripotent stem cells.  

 The relationship between intercellular communication and neural differentiation 

was further interrogated through the CRISPRi-mediated knockdown of connexin43 

(Cx43), the predominant gap junction protein in pluripotent cells. The selective removal of 

Cx43 during the differentiation of human induced pluripotent cells (hiPSCs) reiterated the 
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role of intercellular communication in the temporal control of differentiation by delaying 

neural commitment. Furthermore, it was discovered that in both mESC and hiPSC the loss 

of pluripotency was concomitant with transient, localized increases in Cx43 expression. 

These results suggest that the coordination of differentiation events within a multicellular 

population involves the dynamic regulation of gap junction communication. 

 While this work considered intercellular communication in isolation, there is 

significant cross-talk between the various modes of cellular communication present within 

multicellular systems. The diffusion and binding of extracellular molecules can modulate 

production of intracellular molecules that are able to diffuse through gap junction channels 

[1]. Even more complicated, some intracellular molecules can be both secreted 

extracellularly and diffuse intercellularly, while modulating the secretion and production 

of other extracellular and intercellularly-diffusing molecules [2-4]. Furthermore, molecules 

that diffuse intercellularly can have a significant impact on gene expression [5], cell cycle 

progression [6], and even apoptosis [7]. As such, there is a need for tools that are able to 

integrate multiple modes of communication and decipher their interactions in a spatial 

context.    

 To facilitate future studies of emergence in multicellular systems, a multiscale 

communication agent-based model generator (MsCAMgen) was developed in Python.  

MsCAMgen provides a framework for modeling various spatial aspects of a multicellular 

network without requiring explicit programming by the user. Each model is capable of 

accounting for cell division and growth, state changes between different cell types, 

extracellular diffusion of molecules that are secreted and consumed by cells, intercellular 

communication of small molecules between neighboring cells, and intracellular 

gene/protein networks. The ability to quickly add and remove these features at the 

discretion of the user makes MsCAMgen an ideal platform for investigating emergence in 

biological systems. Furthermore, the ease of simulating diverse morphological structures 
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that can include and integrate each of these processes distinguishes MsCAMgen as a 

uniquely suited tool for optimizing the design of engineered living systems.  

 In summary, cell cycle state was coupled with intercellular transport rates and 

incorporated into an agent-based model capable of replicating and predicting 

spatiotemporal trajectories of differentiation. This mode of intercellular communication as 

a driver of differentiation was validated with small molecule inhibitors as well as CRISPR 

interference targeting of connexins. In addition, we developed a graphical user interface 

for generating agent-based models containing various modes of communication. This 

platform provides a tool to interrogate the spatial aspects of information transfer within 

multicellular systems and facilitates accelerated design of engineered living systems such 

as organoids by enabling the analysis of multiscale communication within cell populations 

of any morphology or organization. 
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CHAPTER 1 INTRODUCTION     

 The spatial organization of heterogeneous cells within multicellular systems, such 

as tissues and organs, is a primary determinant in deriving their respective functionality 

[8]. Understanding the processes and mechanisms that contribute to the spatial arrangement 

of cells within such systems is a vital step towards the creation of in vitro replica. Although 

developmental biology has focused intensely for decades on understanding the role of 

reaction-diffusion morphogens in driving cell fate decisions, one often overlooked 

mechanism when considering pattern formation is the intercellular communication 

between cells. The ability to directly couple the cytosolic compartment between two cells 

is a fast and effective way to exchange information and allow coordination amongst local 

cells. At a global scale, this local coordination can enable the propagation of signals across 

a population of cells at a significantly faster time scale than the secretion and diffusion of 

extracellular signaling molecules.  As such, elucidating the dynamics of intercellular 

communication would provide significant insight into how signaling progresses across a 

multicellular system. However, these processes not only need to be understood as separate 

entities but also as interactive units during the development of multicellular systems. 

Computational modeling provides an elegant solution for handling the complexity of this 

task. In particular, agent-based models are adept at the integration of various processes and 

the study of their dynamics. The main objectives of this research were to 1) identify the 

role of intercellular communication in differentiation patterning and 2) facilitate advances 

in the development of engineered living systems. These objectives were addressed by the 

following three aims: 

1.1. Research Objectives and Specific Aims 

Aim 1: Investigate the influence of cell cycle state on gap junction communication and 

differentiation patterning in pluripotent colonies. This aim sought to model intercellular 

communication within a multicellular population using cell cycle to regulate gap junction 
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permeability. The working hypothesis was that intercellular transport governed by the 

natural asynchrony of the cell cycle could generate intracellular gradients capable of 

directing fate decisions. Intercellular transport rates were quantified at the single-cell level 

and the distribution of calculated transport rates was linked to cell cycle state. The garnered 

single-cell transport information was incorporated into an agent-based model and the 

resultant intracellular gradients used to instigate differentiation. Spatial patterns were 

quantified and compared between simulations and pluripotent colonies differentiated in 

vitro.  

Aim 2: Evaluate the effect of intercellular perturbation on differentiation potential 

and the emergence of differentiation patterns. In this aim, the intercellular model from 

Aim 1 was used in tandem with perturbation experiments to assess the role of intercellular 

communication in pattern formation during differentiation. The working hypothesis was 

that perturbations to the intercellular network would alter the spatiotemporal trajectory of 

differentiation within a pluripotent colony. Small molecules were used to modulate (i) the 

production of an intracellular molecule and (ii) gap junction connectivity over the course 

of differentiation. Furthermore, the effect of knocking down the predominantly expressed 

connexin in pluripotent cells was assessed.  The inhibited intercellular network was found 

to have a strong temporal delay but minimal influence on spatial patterning during early 

differentiation events.  

Aim 3: Develop a graphical interface for constructing diverse agent-based models 

applicable to other biological systems. This aim sought to produce an easy-to-use 

application for generating biologically related agent-based models with a myriad of 

features that was not limited by the programming knowledge of the user. The working 

hypothesis was that the modular nature of agent-based models would enable the selection 

and removal of features from a graphical interface. An application was developed in 

Python that allows a user to designate the cellular organization and morphology of a cell 

population. The user can specify whether extracellular and/or intercellular transport is 
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occurring within the system and how each of those factors affect state change. Furthermore, 

an intracellular system of non-transportable molecules can be included that is solved 

independently for each cell. The user-defined model can be compiled and run within the 

application, with real-time updates on the morphology and organization of cell types within 

the population.  
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CHAPTER 2 BACKGROUND 

2.1. Embryonic Stem Cells 

 Embryonic stem cells (ESCs) are derived from cells originating in the inner cell 

mass of a blastocyst during development [9, 10]. These pluripotent cells are unique in their 

ability to differentiate into the three germ lineages and thus any somatic cell of the fully 

developed organism. Furthermore, ESCs are capable of undergoing self-organization and 

forming organ-like structures when differentiated under specific conditions. Therefore, 

ESCs also provide an invaluable tool for studying the mechanisms that regulate pattern 

formation during morphogenesis [11, 12]. The ability to recapitulate these naturally arising 

cellular processes in vitro is essential in order to design more intricate, multicellular 

systems. As such, ESCs have potential for two types of therapeutics: (i) as a replacement 

source of a specific cell type, and (ii) as a system for deriving tissue-engineered constructs. 

The stem cell field, in past and present, has predominantly focused on the establishment of 

differentiation protocols that can efficiently convert pluripotent cells into nearly 

homogenous populations of a desired cell type, but has generally ignored the trajectory of 

differentiation and the spatial patterns that transpire during the transition of phenotype. 

While current methodologies provide a framework for achieving efficient differentiation, 

usually towards a single phenotype, they do not explore how initial fate decisions affect 

future pattern emergence. 
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2.2. Morphogenesis 

Morphogenesis is the complex chain of biological processes with which cellular 

populations self-organize, in a reproducible manner, into predetermined structures or 

patterns. It involves a multitude of mechanisms and systems and is governed by signal 

transduction across various spatial and temporal scales. In addition to evident outward 

patterning events, such as the formation of stripes on a tiger’s back or the regular spacing 

of hairs or feathers, morphogenesis encompasses all molecular processes that convert a 

fertilized egg cell into a blastula, then into an embryo with germ layers that have their 

unique roles, and ultimately into a functional organism. It has been known for some while 

that the numerous simultaneous events during this journey, such as the development of 

fingers out of a limb bud or the organization of neurons into functional networks in the 

brain, involve fundamental processes of cell migration and differentiation, but it is 

extraordinarily difficult to ascertain and characterize the molecular, mechanistic 

underpinnings guiding these processes and allowing the often complicated structures to 

form.  

Notwithstanding these challenges, the fact that an extremely complex organism 

evolves out of a single cell or a seemingly homogeneous group of cells is very intriguing, 

and it is hardly surprising that the biological and chemical study of morphogenesis 

eventually coalesced with mathematical—and later computational—approaches that 

attempted to distill the essence of pattern formation out of the overall complex 

developmental process. While the first mathematical approaches relied on simple diffusion 

gradients and biochemical reactions, the emergence of unprecedented computer power and 

its wide accessibility increasingly permitted more complicated and realistic simulation 

studies, which have culminated by now in sophisticated agent-based models (ABMs). 

These models are uniquely qualified for spatially and functionally representing the 

complexity of a system that is the collective result to a multiplicity of well-timed, fine-

tuned cues. This review summarizes the development of morphogenetic models from 
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relatively simple reaction-diffusion models to today’s complex ABMs and places particular 

emphasis on proliferation, migration, and differentiation as the main mechanisms for 

pattern formation.  

The history of morphogenetic observations and investigations goes back a long 

time, but theory-based explanations were not proposed until the 20th Century. A landmark 

was D’Arcy Thompson’s work On Growth and Form [13], in which he described 

similarities between mechanical and physical systems and the shapes of biological 

organisms. Due to severe limitations with respect to both theoretical analysis and 

experimental validation, his observations and calculations were purely hypothetical, as he 

freely acknowledged. Nevertheless, they marked the beginning of an illustrious scientific 

development. A decade later, Alan Turing proposed in his treatise The Chemical Basis of 

Morphogenesis [14] a mechanistic explanation that dominated the field for several decades. 

The core concept of this theoretical explanation was the by now widely accepted reaction-

diffusion (RD) mechanism, in which, under the right conditions, a two-molecule reaction 

system is capable of producing periodic patterning through diffusion instability. 

Specifically, a fast-diffusing global inhibitor interacts with a slow-diffusing local 

activator, and their functional coupling can be shown to exhibit non-linear reaction 

dynamics that can generate repetitive patterns, such as spots or stripes. For instance, the 

inhibitor prevents features, such as hair follicles from forming too close to each other, an 

important and wide-spread effect sometimes called lateral inhibition [15]. 

The RD patterns produced by the inhibitor and activator gradients can be 

considered chemical pre-patterns that act as templates for future differentiation. Thus, the 

apparent initial homogeneity of an egg or cell cluster morphs into spatially distinct profiles 

of “invisible” high and low concentration regions, which later guide the implementation of 

cellular fate decisions and the emergence of visible shapes and forms. Importantly for the 

field of computational morphogenesis, Turing’s RD mechanism demonstrated that it is 

feasible to represent morphogenetic patterns using a simple, biochemically plausible 
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system governed by simple mathematical rules. Alas, while the theory was conceptually 

convincing, it did not gain significant traction in the field for almost five decades.  

In another landmark publication, two decades after Turing’s proposal, Lewis 

Wolpert introduced the conceptual framework of positional information (PI) as a 

mechanism of pattern formation during morphogenesis [16]. This theoretical framework 

was inspired by old observations during the morphogenesis of sea urchins, which Hans 

Driesch had made as early as 1891 [17]. According to the tenets of PI, a cell is able to 

determine its assigned fate from its position relative to other parts of the organism [18, 19]. 

The position, in turn, is characterized by the concentration of a morphogen. Thus, a cell 

senses its positional value by interpreting a morphogen concentration and makes a fate 

decision based on this local information. It is assumed that the cell interprets the position 

based on its genetic make-up and its developmental history, but a central claim of PI is that 

there is no pre-pattern in the embryo. A reasonable biological implementation of positional 

information could be a morphogen source leading to a spatial morphogen gradient that 

gradually decreases with the distance from the source, thereby providing positional 

information. The concept of PI is quite intuitive and was quickly accepted in the field, 

partly because experimental findings corroborated its existence [20]. For instance, 

numerous experiments, especially in the field of limb development, regeneration and 

transplantation, clearly suggested that cells indeed possess characteristic information 

regarding their position, which may be acquired through dedicated regulatory programs 

involving genes such as sonic hedgehog, hunchback and Hox (e.g., [21]).  

In spite of the intuitive appeal of PI and intense research over several decades, it 

remains to be unclear even today how the necessary gradient is established, how the cell 

senses it, and how a cell correctly interprets it. Diffusion comes to mind, but diffusion 

processes are not particularly reliable, precise or robust toward external perturbations, and 

one must wonder how interactions between morphogens and their environment would be 

realized in terms of effective molecular events [22]. Furthermore, while sensing of a 
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morphogen by a cell is easy to imagine in principle, the cells along a gradient would have 

to be able to distinguish very subtle concentration differentials [23]. As Wolpert [19] 

himself recently stated: “There is no good evidence for the quantitative aspects of any of 

the proposed gradients and details of how they are set up.” Thus, to summarize PI, many 

experiments have convincingly suggested that positional information exists, but it is not 

clear how it is implemented in living organisms. Finally, one should note that PI and RD  

are not mutually exclusive but in fact complementary (e.g., [24]).   

The advent of the digital computer, and its eventual widespread availability, 

drastically accelerated research on morphogenesis. Computational modeling permitted 

additional complexity to be considered with minimal effort and effectively decreased the 

limitations caused by mathematical tractability. In particular, the RD mechanism 

experienced burgeoning interest [25-27], and the Turing paradigm was successfully put to 

the test with sophisticated differential equation modeling and improved experimental 

techniques. Ultimately, research in recent years has substantiated the role of RD 

mechanisms alongside PI mechanisms during development [28-31], despite their slow 

start. In addition to the two prominent morphogen-based mechanisms, newer approaches 

to understanding morphogenesis with computational means have also taken mechanical, 

electrical, and environmental cues into account [22, 32-35]. However, similar to the 

treatment of chemical mechanisms, both mechanical and electrical cues have typically been 

investigated independently. This is a clear shortcoming, as these factors often act 

simultaneously and presumably synergistically. Thus, in moving forward, it seems wise to 

pay attention to the multiscale nature of morphogenesis and to the integration of the diverse 

signals that control it.  
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2.2.1 Mathematical and Computational Approaches to Morphogenesis 

2.2.1.1 Reaction-Diffusion Strategies 

 The original reaction-diffusion system proposed by Turing was comprised of two 

partial differential equations (PDEs). In generalized format, these equations read 

∂A

∂t
= DA∇

2A + F(A, B), 

𝜕𝐵

𝜕𝑡
= 𝐷𝐵∇

2𝐵 + 𝐺(𝐴, 𝐵), 

where the -terms represent diffusion and F and G are the nonlinear functions representing 

the reaction kinetics. For this system to achieve diffusion driven instability, the nonlinearity 

of the reactions is obligatory, and the diffusivities between the two species must be 

different. Various particular reaction formats have been analyzed as pattern generators 

using the RD paradigm. The first examples satisfying these requirements were proposed 

several decades ago, for instance, by Gierer and Meinhardt [36] and by Schnakenberg [37]. 

At the time of these studies, computers did not have the bandwidth or speed for realistic 

simulation studies, which mandated mathematical solution by hand, which quickly became 

very laborious, given the sensitivity of the RD mechanism to parameter values and initial 

conditions. An important “trick” toward solving the equations was the transformation, or 

scaling, of the equations into a non-dimensional format. The resulting dimensionless 

equations maintain continuity between diffusion and reaction terms of both species, but 

retain the feature of being quite general with respect to parameter values and also simplify 

the visualization of the admissible parameter space. Murray provided solutions for this set 

of non-dimensional reaction-diffusion systems and describes a methodology to isolate the 

Turing space, which consists of the range of parameter values that successfully generate 

patterns [38].   

 Structurally, the RD approach has not changed much since its inception: It is still 

mostly driven by two interacting molecules and uses PDEs, inspired by continuum 

mechanics, on a predefined 2D grid. A few cases have extended the physical space to 3D-
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domains to represent morphological features more realistically, while others have resorted 

to growing domains that can account for expanding cell populations [39-42]. A notable 

variation of the generic model is the inclusion of additional species and also of immobile 

environmental factors. This extension broadens the Turing space of the corresponding two-

molecule system while simultaneously removing the requirement of differential 

diffusivities [43]. The potential of immobile factors for enhancing RD pattern formation 

had been suggested previously [44, 45], but was particularly highlighted by Macron et al. 

[43] who introduced a sophisticated automated mathematical analysis that directly 

identified these network topologies along with their respective parameter constraints. 

2.2.1.2 Positional Information 

 In contrast to the RD mechanism, there is no universal mathematical representation 

of positional information. The reason is that PI is a phenomenological concept describing 

the capacity of a cell to interpret its location from its immediate  environment [18]. The 

original theory focused solely on the interpretation of morphogen signals for differentiation 

by defining threshold values that separate the concentration ranges associated with 

specified fates. The premise of PI, that cells can ascertain their location within developing 

tissue, has been fundamental to the current understanding of morphogenetic patterns and 

confirmed in experiments, as discussed before. However, no formalism has been 

established and generally accepted that can be used to verify PI, and PI has therefore mostly 

been applied as a qualitative descriptor [46, 47]. Some developing systems seem to suggest 

that the time spent by a cell in a certain position is critical [48]. Specifically, if a signal is 

restricted to the front end of a growing domain, the duration of exposure to that signal can 

be inferred as PI. Taken together, PI has not been strictly tethered to morphogen gradients 

but instead has encompassed a range of mechanisms for designating fate decisions via cell 

positions.  
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For instance, there has been a recurring theme of local cell-cell interactions 

contributing to the acquisition of PI. These interactions could be mediators of PI with 

varying degrees of influence. At one end of the spectrum, cell-cell interactions were used 

as noise modulators, providing a spatial averaging effect that enhanced detection of 

morphogen signaling [49, 50]. At the other end, patterning was derived from a localized, 

secreted factor affecting cell-cell interactions, without evoking the use of global positional 

information from a morphogen [51]. To what degree cell-cell interactions play an 

absolutely necessary role in the interpretation of PI is unclear, but the fact that such 

interactions appear to play a role in various systems suggests that computational 

approaches are likely to benefit from an implementation at a cellular resolution. 

2.2.1.3 Agent-Based Models 

RD models employ relatively simple PDEs, which are sufficient for generic 

analyses of morphogen gradients and their interactions. However, as soon as the target of 

morphogenetic modeling is a more realistic, complex space, such as a cell, a blastula, or a 

developing limb bud, the use of PDEs becomes cumbersome. In fact, it seems almost 

impossible for analytic PDE models to account for genuinely heterogeneous milieus, in 

which cells or organisms develop. 

An alternative that emerged for such purposes over the past three or four decades 

is the use of agent-based models (ABMs). The main ingredients of ABMs are autonomous 

agents that represent some type of entity, such as a molecule, cell or person. An agent can, 

in theory, be anything; generically, it is a definable, active or responsive element.  The 

dynamics of an agent may consist of a variety of actions, which must adhere to rules that 

govern the behavior of the agent. All agents independently make rule-based decisions as 

they interact with other agents or their simulated environment. Usually these decisions are 

probability-based as described in later sections below. ABMs are extremely flexible in their 

execution and provide an exceptionally powerful framework for the creation of multiscale 
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models. In particular, they permit the integration of processes across time scales. By their 

nature, ABMs are particularly adept at capturing spatial phenomena. For example, in a RD 

system modeled with PDEs, an identical set of equations is solved at each point of an 

equally spaced grid. Since the reactions are usually cell-mediated, it is implied that each 

grid point is a cell. This rigidity makes it a difficult task to define a system of equations 

that account for heterogeneity in a cell distribution, heterogeneous environmental features, 

or the inclusion of more than one phenotypic state. In contrast, biologically based ABMs 

easily represent the system at the resolution of the cell. The properties and history of each 

cell can be monitored, multiple cell states are readily implemented, and movement does 

not have to be constrained to a grid. This flexibility of ABMs permits unlimited options 

for exploring the dynamics of a complex system. Of importance here is that the ABM 

framework is very well equipped to simulate morphogenetic events in molecular and 

cellular detail, and to investigate the role of PI in developmental cell fate decisions. The 

following sections first review generic features of ABMs and then focus on various 

properties and capabilities that pertain specifically to morphogenesis. 
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Figure 1: Overview of the two most popular theories for pattern formation during 

morphogenesis - reaction-diffusion (RD) systems and positional information (PI) - as well as 

common features of agent-based models (ABMs) for morphogenesis(A) Archetypal Turing-

RD system with an activator and inhibitor generating repetitive patterns from differential 

diffusivities and non-linear reaction terms. The RD system depends on the concept of a 

chemical pre-pattern developing in advance of cell-fate decision, and emphasizes the ability 

to induce pattern formation from an allegedly homogeneous initial state. (B) Wolpert’s PI 

theory proposes an interpretation step based on concentration thresholds that alleviates the 

need for a morphogenetic pattern to match the chemical pre-pattern. In PI, a cell is capable 

of multiple fate decisions from a single molecular gradient by discerning subtle variances in 

concentration along the gradient. (C) AB modeling provides a framework capable of 

implementing features from both theories. Cell-agents can act as the sources of activators 

and inhibitors, permit localized reactions, and make autonomous decisions in response to 
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their local environment. In addition to the generation of static patterns, AB modeling allows 

for the investigation of dynamic, spatio-temporal patterning. 

 

2.2.1.3.1 Generic Features of Agent-Based Models 

 The dynamic system represented by an ABM is a collection of constituent parts and 

rules. For example, in an immunological model, the agents might be various T-cells, B-

cells, and cytokines. In general, the designation of agents is mostly a question of whether 

the selected parts are capable of replicating the behavior and/or structures of the examined 

system. This question is directly related to the dominant size scale of the system, which in 

turn tends to be tied to the time scale of the system. Agents can be portrayed as 

computational entities in a variety of ways, and the choice of representations is important 

as it can affect interactions with other agents and movements throughout the environment. 

Typical agent representations for cell-based models are illustrated in Figure 2. In the 

simplest models, agents are simply grid points on a two-dimensional (2D) or three-

dimensional (3D) lattice that have defined properties. Movement occurs only to 

neighboring grid points. The somewhat more complex Cellular Potts Model (CPM) allows 

agents to consist of often irregularly shaped clusters of grid points that share the same or 

similar properties. The movement of such a cluster is governed by forces and energy. Some 

of the newer, more flexible models do not rely on lattices anymore. A cell is often 

represented as a compressible sphere or a centroid, which corresponds to the geometric 

center of a shape, and a sophisticated algorithm determines movements while avoiding the 

overlapping of agents.  

The rules governing the dynamics of the agents can vary in their degree of 

abstraction, both across and within models, but within a single model there is usually a 

focus on either mechanistic or phenomenological descriptions. For instance, a rule may 

dictate what happens if two agents encounter each other. Such mechanistic rules are 
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established based on empirical data or mathematical representations. An example of the 

latter might be a random walk model to describe the motion of a molecule by diffusion. In 

contrast, phenomenological rules are utilized either to mimic an observed behavior or to 

condense a cluster of mechanistic events into a single representative behavior. For 

example, cell migration involves a cascade of intracellular signaling, cytoskeleton 

remodeling, and numerous adhesion forces, but is typically modeled as a direct movement 

response [52]. ABMs that predominantly consist of mechanistic as opposed to 

phenomenological rules are deemed “bottom-up” as opposed to “top-down” models, 

respectively. In either case, additional rules can be defined in a manner that the system is 

able to learn and evolve as a function of past behavior. Thus, agents can become “smarter” 

in their actions and may exhibit new behaviors as a result of past behaviors and experience.  

The agents of an ABM typically move in an artificial environment that represents 

the biological space of interest in a simplified manner. The simulated environment of an 

ABM can be as simple or as complex as the research questions demand or the modeler 

chooses. In the simplest cases, agents move and interact on a 2D grid space within a plane. 

They may also diffuse through a 3D grid representing a fluid or viscous solution. The 

environment may be static and passive, in which case the agents interact only with each 

other, or it can dynamic, in which case the environment can have an effect on the actions 

of the agents and/or the agents can change the environment. An example is a predator-prey 

system, where the environment could be constant or provide the prey with a feed source 

that dynamically grows and is being grazed up. 
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Any additional complexity in model design requires extra rules, definitions, and 

caveats. For instance, in an interactive environment, constant updates are necessary to 

resolve interactions with agents. Movements and interactions in a 3D system require more 

attention to the physical properties of the system. Clearly, the computational cost rises 

significantly for 3D simulations, especially if the entire space needs to be assessed at every 

iteration of the simulation. As a partial remedy, it is often beneficial to design an ABM in 

a phased manner: One might begin with a representation of only the most essential features, 

and later add complexity step by step, as soon as the dynamics and the repertoire of possible 

behaviors of the current model becomes clear. 

A hallmark feature of ABMs is their potential to (re)produce emergent behavior. 

Expressed differently, the collective decisions of independent agents within a multi-agent 

Figure 2: The three most common physical representations of cells in ABMs. Lattice models 

are generally the least complex, given the constraints to movement and interaction, while 

both CPM and Lattice-Free models possess varying degrees of complexity depending on the 

features included in the model. Miniature depictions of the respective images will be placed 

beside each subsection discussing morphogenetic ABMs in later sections to designate the 

types of models described. 
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simulation may result in realistic complexity and behaviors that are not predictable from 

the governing rules. In effect, the system in such a case exhibits a synergistic response that 

emerges from the cumulative interactions of its various components. This emergent 

behavior is not always intuitive or even explainable a priori, especially when the rules are 

intricate or adaptive. In these cases, simulations are often the only means for identifying 

and characterizing emergent phenomena within the system [53].  

Other benefits of ABMs derive from the realistic nature of autonomous agents and 

their flexibility, which imposes very few limitations. The autonomy is very important for 

the definition of rules, because autonomous agents control their own behavior and react to 

local factors without needing to know the global environment. At the same time, the 

autonomous agent representation permits heterogeneity, both with respect to agents and 

rules. The flexibility of ABMs is immense: agent behavior, types of agents, agent 

interactions, agent adaptation, variability in agent scales, stochasticity, and environmental 

factors are all unlimited in scope and easily manipulated through corresponding settings of 

parameter values.  

2.2.2 Agent-Based Models for Morphogenesis 

One hallmark of morphogenesis is the coexistence of different types of cells, such 

as stem cells and differentiated cells. ABMs for morphogenesis use different agents to 

represent such cells, or various other phenotypes, and study how they organize into the 

targeted patterns. ABM models for morphogenesis fall coarsely into three methodologies 

for detailing interactions that make use of the three agent representations depicted in Figure 

2, namely: they may be points on a rigid 2D or 3D lattice, clusters according to a Cellular 

Potts Model (CPM), or entities that operate without a lattice. The lattice-based 

representation is the simplest and computationally cheapest; not surprisingly, it is also the 

most limited in terms of mechanistic features and details of cell movement. The CPM is 

the most flexible for representing irregular cell shapes and movements, and it is also the 
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most computationally intensive model, as it requires forces to be converted to energy. The 

lattice-free models are well-suited for generating 3D organizations and emulating 

deformations, but require more up-front effort for defining realistic details of collision and 

movement events. As so often is the case in modeling, the “best” representation depends 

on the questions to be asked, the context of the model, and the availability of data.  

The specific models to be discussed in this review have been organized into three 

main categories that denote the predominant mechanism for generating the targeted 

morphology or type of anticipated pattern in each model: Proliferation, migration, and 

differentiation (Figure 3). As a caveat to this categorization one must note that there is 

certainly overlap and that models frequently employ two or all three mechanisms.   

Proliferation models place their main focus on differential division rates and on 

volume exclusion to produce patterns (Figure 3a). Furthermore, the patterns are frequently 

defined by the organization of cell types relative to each other, i.e., the clustering of Cell 

Type X surrounded by Cell Type Y. To generate discernible patterns, these models 

typically require at least two distinct cell types and/or a method for identifying unique 

populations. The discussion of proliferation in the next section is divided into subsections 

based on biological mechanisms that can affect morphological patterning.  

Migration models can be classified by the inclusion of directed cellular movement 

and their emphasis on the gain of cell polarity. A further criterion is the desired 

morphological pattern of these models in comparison to other patterns. Specifically, the 

shape and growth of the entire network or system is often more important than the relative 

location of cell types within the network (Figure 3b). For example, when assessing the 

formation of the vascular network, one might use the degree of branching and 

interconnected vessels as a metric, rather than the arrangement of cells within each vessel. 

The discussion of migration models is therefore split into two subsections representing 

extracellular factors that can induce migration. 
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 Differentiation models consider systems that are derived from a single cell type but 

produce patterns or morphologies that contain two or more cell phenotypes. In all cases 

but one, the system is initially homogeneous with respect to phenotype and gradually gains 

heterogeneity from differentiation events (Figure 3c). The exception to this strategy is an 

initialization with heterogeneity, which subsequently requires differentiation into multiple 

lineages to maintain the desired morphology. Therefore, patterns from this class are 

described by the relative organization of cell types, which all originate from a stem cell. 

The subsections highlight two differentiation events that are integral for development: the 

loss of pluripotency and the gain of heterogeneity in tissue.  

 

 

Figure 3: Classification used to categorize three types of agent-based models for 

morphogenesis. Each model class describes the primary mechanism that induces pattern 

formation. (A) Proliferation models depend on the differential division of cells, either 
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between cell types with variable growth rates, between cell generations, or as an alternative 

to cell death. The illustration depicts volume exclusion of Cell Types A and B when Cell 

Type C has a fast division rate. (B) Migration models concentrate on directional movement, 

both in a purely migrational sense and in terms of polarized growth. The patterning of 

migration models is typically centered on overall morphology, such as the branched 

network of a vascular network. (C) The focus of differentiation models is on patterning that 

is reliant on fate change, in most cases following a hierarchy of lineage commitments. The 

interactions between the various cell types are major determinants for the resultant 

behavior. 

 

 If an ABM is designed in a phased manner, the model complexity increases with 

each sequential phase. As a case in point, the classification into proliferation, migration, 

and differentiation models itself follows a sequential increase in complexity due to the way 

cell-cell interactions are involved in these events and how they are encoded. Proliferation 

models place their main attention on individual cell behavior (division, apoptosis, etc.). 

Therefore, the most complicated rules that are to be defined only affect the agent 

performing the rule. Such rules governing individual agent behavior are the easiest to 

implement because they are self-contained and straightforward to interpret. Migration 

models account for two additional aspects, namely the sensing of environmental factors 

and appropriate responses to such factors. As a consequence, rules are required that 

describe how an environmental signal is perceived and converted into movement, and how 

this movement is coordinated with neighboring cells. Cell-cell and cell-environment 

interactions both involve repeated activity updates and, for migration, a balance between 

adhesion and motility. Differentiation models typically combine the features of 

proliferation and migration models and additionally introduce differentiation mechanisms 

which are usually regulated by environmental factors and/or more complex cell-cell 

interactions. Thus, the level of detail increases from one section to the next.  
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2.2.2.1 ABMs Focused on Proliferation 

 The key feature of ABMs in this category is their capability to specify unique 

growth rates for each cell type within a simulation. In a developmental context, this 

variability in proliferation can occur through numerous mechanisms, but the most 

archetypal instances involve inherent differences in division times between cell types. As 

a case in point, consider the transition from a pluripotent stem cell to a multipotent 

progenitor: the genetic distance between the two cell types is relatively short but the 

difference between their cell cycle lengths is significant [54]. This fluidity in growth rate 

as a function of phenotype creates a vast potential for unique spatial organizations that form 

dynamically over time, even if one only accounts for cell division and the original spatial 

orientation of each cell type. ABMs provide an optimal mechanism for investigating the 

effects of proliferation and cellular densities or arrangements during morphological 

processes.  

2.2.2.1.1 Generational Patterning 

 The first class of proliferation ABMs makes heavy use of cellular invasion 

waves, which arguably provide the best example for illustrating the capacity of 

proliferation–based patterning. The phrase ‘cellular invasion’ undoubtedly brings to mind 

tumorigenesis, but cellular invasion is also an integral part of normal, physiological 

processes, such as wound healing and morphogenesis [55]. Invasion waves contain two 

actions, namely cell migration (the invasion), which is followed by proliferation of those 

cells (the wave). Of particular importance here is the ‘wave’ that occurs after the ‘invasion’.  

As a specific example, the development of the enteric nervous system (ENS) 

involves the migration of enteric neural crest cells to the foregut where they proceed as an 

‘invading wave’ that colonizes the entire gastrointestinal tract [56-58]. Initially, it seems 

intuitive that the invading wave of cells will maintain an equal composition of progeny 

from the original population as it grows. However, clonal dominance during ENS 
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colonization has been observed [59, 60]. Experimentally, a single GFP-labelled ENC cell 

was added to a population of (~8,000) unlabeled ENC cells and fused with gut tissue before 

the start of colonization [60]. After colonization, large variability was observed in the 

number of GFP-positive cells contributing to the ENS across experiments, and in one case 

one-third of the entire ENS was composed of GFP-positive cells. To characterize this 

appearance of clonal dominance in a population of phenotypically identical cells, a cell 

invasion ABM was devised that was capable of tracking cell lineage and generation [60]. 

The agents were placed on a 2D grid with equal growth rates and with equal ability to move 

stochastically (in the form of a random walk), but only if grid space was available. It is 

easy to imagine that a cell with a faster division time than others within the initial 

population would have a competitive advantage and ultimately dominate. However, in this 

case all cells were assigned exactly the same division time. Intriguingly, tracking cell 

generations within this model revealed that 50% of the final population could be attributed 

to the progeny of only a few cells (‘superstars’) from the initial population. In other words, 

despite the identical division time for each agent, a few cells were able to monopolize the 

available space and create a spatially distinct distribution of their progeny. Analysis of the 

model mechanics yielded the following: (1) location within the initial population affects 

the probability of a cell becoming a superstar but it is not the sole contributing factor; and 

(2) stochastic competition via volume exclusion is a sufficient mechanism for instigating 

clonal dominance. Specifically, an accumulation of stochastic movement and daughter cell 

placement events allows the progeny of a single cell to preclude the growth of other cells 

by preventing access to grid space. This competitive advantage is reflected in many 

proliferation models that demonstrate domination through volume exclusion [61-66].  

2.2.2.1.2 Models of Balanced Growth and Death: Apoptosis and Homeostasis 

Apoptotic events are integral and necessary for shaping tissue during development; 

two excellent examples are the formation of limb buds and the blastocyst [67, 68]. 
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Combined with proliferation, the balance between cell-specific apoptosis and proliferation 

allows organisms to maintain morphological homeostasis while at the same time enabling 

the formation of heterogeneously organized structures.  

A popular model system that is highly dependent on apoptotic signals is the 

formation of small cavities, called acini, in the mammary gland during epithelial 

morphogenesis of this gland. Several ABMs have investigated acini formation [69-71], but 

the most recent model stands out because it was implemented on a three-dimensional grid 

[72]. 2D model representations of actual 3D systems are informative, but a higher level of 

abstraction is required for implementing the projection, which often makes model results 

more difficult to interpret. A good example for this situation is the comparison of 

proliferation rates: One can easily show that a 2D model requires a slower rate of 

proliferation than a 3D model to create the same cross-sectional structure. As a thought 

experiment demonstrating this difference, imagine either a circle or a sphere full of cells. 

In the former, the maximum number of cells is proportional to Circle-radius2/Cell-radius2, 

while for the latter it is Sphere-radius3/Cell-radius3. As a consequence of the different 

powers, the same cell doubling time allows the circle to grow faster than the sphere. 

The recent 3D acini ABM [72] begins with a single cell type that expands into the 

external basement membrane with a designated proliferation potential. As the acinus 

grows, cells that are not adjacent to the basement membrane receive a signal that triggers 

apoptosis with a set probability. As cells die over the course of a simulation, the space they 

occupied becomes part of the acinus lumen. Of particular note from a modeling point of 

view is that a minimalistic rule set is sufficient to capture the dynamics of normal and 

aberrant acini morphologies. This rule set slightly modulates the balance between 

proliferation and apoptosis. It is also important to mention that this delicate growth-death 

balance only leads to the correct production and maintenance of patterning if two 

requirements are met: (1) The signals must be relatively equal in magnitude at the 
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population level; and (2) at least one of the signals must be effective in a spatially distinct 

manner.  

The colon crypt is another system that establishes a dynamic steady state between 

cellular growth and death. The bottom of the crypt is inhabited by a small number of adult 

stem cells, identifiable by the Lgr5 marker gene [73], that give rise to a large population of 

proliferative cells. These proliferative cells both self-renew and produce terminally 

differentiated cells that make up the majority of the crypt. The patterning capability, which 

is based on high turnover rates of cells within the intestine, is probably one reason that 

intestinal and colon crypts have been a popular target system for ABMs. Furthermore, 

monoclonal conversion, which is synonymous with clonal dominance, is commonly found 

in crypt systems [74]. 

Several of the following sections cover a variety of crypt models that illustrate how 

the same phenomenon may be approached with different types of representations 

governing the mechanics within the system. Figure 4contrasts the representations of some 

of these models. The first crypt ABM was designed on a simple 2D lattice, with cell growth 

and death defined probabilistically as functions of two pre-set gradients [75]. The two 

gradients in this model (termed Divide and Die) are not associated with specific molecules 

but instead used to provide positional information. The probability of a cell transitioning 

from a quiescent cell to a proliferating cell and then to a terminal cell increases as a cell 

moves down the Divide gradient. The Die gradient runs in the opposite direction, with the 

highest probability of cell death occurring at the top of the crypt. Cell movement up the 

column is defined as a function of cell death, with cells moving upwards to fill any 

unoccupied space. Similar to the mammary gland acini model, discussed before, the growth 

and death signals are balanced to maintain crypt size but are also spatially distinct to 

preserve the cellular organization.  
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Figure 4: Comparison of three crypt model implementations and agent descriptions. (A) 

Cells are defined on a continuous 2D lattice such that a cell moving off the right edge of the 

grid reappears on the left edge. Divide and Die gradients are used to describe the behavior 

of different cell states in the crypt while movement up the crypt is the result of apoptosis. 

(B) A centroid model may be employed to investigate the role of crypt geometry on the 

location of anoikis within a crypt. The proliferative state of a cell is defined by pre-specified 

regions along the crypt and cell-death is solely dependent on the occurrence of anoikis. (C) 

Centroid model that includes differentiation and dedifferentiation between the four main 

phenotypes present in an intestinal crypt. Wnt signaling is defined by position within the 

crypt while Notch signaling is determined by the phenotype of the cell and its neighbors. 

2.2.2.1.3 Models Accounting for External Proliferation Cues 

Numerous diffusible factors in the extracellular environment can influence the 

proliferation of a cell. These factors range from something as simple as the availability of 

nutrients to growth-specific proteins that are aptly termed growth factors. Indeed, many 

growth factors have been classified as morphogens due to their ability to promote 

proliferation and modulate differentiation potential during development [76, 77]. Many 

examples of ABMs rely on such morphogens.  
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The development of the genital tubercle (GT) provides a clear example for the 

critical role of morphogens. GT development is identical in males and females until stage 

E15.5 of embryogenesis when the male GT is exposed to androgens. The androgen signal 

promotes proliferation of both mesenchymal and endodermal cell types in the GT, resulting 

in sexual dimorphism. An ABM of GT morphogenesis was implemented in the software 

CompuCell3D using a cellular Potts model that captured adequate movement and 

interaction dynamics [26, 78]. A simple signaling network was integrated into the model 

to account for the three principal morphogens that direct GT development: SHH, FGF10, 

and androgens. SHH and FGF10 induce growth in mesenchymal and endodermal cells, 

respectively, while androgens enhance sensitivity of urethral plate endoderm and preputial 

mesenchyme to FGF10. In the model, SHH was secreted by endodermal cells at a constant 

rate, thus stimulating the secretion of FGF10 in mesenchymal cells in a concentration-

dependent manner. Androgens were assumed to permeate the system at a set time point 

(E15.5), causing an instantaneous change to the FGF10 sensitivity in all affected cells. The 

model was initialized with an idealized geometry of the tubercle at E13.5, containing five 

distinct cell types. Simulations using this model were able to recapitulate the sexual 

dimorphism that occurs during GT development by modulating proliferation in response 

to androgen signaling. 

During puberty, the mammary gland undergoes extensive proliferation and ductal 

morphogenesis [79]. Previous studies had shown that exposure to ionizing radiation before 

or during puberty significantly increases the risk of developing breast cancer in women by 

causing an increase in the mammary stem cell population [80]. To test the mechanisms 

eliciting the morphogenetic changes observed after puberty, an in vitro and an in silico AB 

model were defined [62]. The in vitro model identified TGF as a major activator of growth 

during ductal morphogenesis while the in silico model addressed the mechanism by which 

radiation could modulate the TGF-induced growth to produce a larger stem cell 

population. The ABM was contained on a 2D grid and included three cells types: bi-potent 
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progenitor cells, terminal basal cells, and terminal luminal cells. The progenitors had the 

option to divide symmetrically or asymmetrically, producing two stem cells or one stem 

cell and one basal or laminal cell, respectively. Furthermore, a dedifferentiation mechanism 

allowed terminal cells to convert back to bi-potent progenitors. The model parameters 

associated with the probabilities that these events occurred were fit using experimentally 

determined distributions of the cell types as the objective metric. These experimental 

distributions were obtained from the in vitro model using TGF to stimulate growth, with 

and without irradiation. By comparing the calculated best-fit parameters between these 

conditions, the likely mechanism precipitating the increased stem cell population was 

identified as enhanced self-renewal in response to TGF.  

Interestingly, while differentiation was an important component of this model, it 

played a less vital role than the proliferation rates for yielding the desired patterning. 

Specifically, the majority of daughter cells actually originated from a parent of the same 

phenotype rather than via differentiation of a progenitor cell. This situation arose because 

differentiation in the model was coupled to cell division, with the consequence that the rate 

of differentiation could never surpass the rate of cell growth. Furthermore, because growth 

could only occur where space was available, the growth of progenitor cells was quickly 

hindered by other cell types through competition due to volume exclusion.  

2.2.2.1.4 Models of Growth Directed through Mechanical Forces 

Mechanical forces are involved in nearly every aspect of morphogenesis, albeit 

with varying degrees of influence. At the macroscopic scale, mechanical forces can shape 

and organize tissue in response to the cumulative effect of numerous forces at the 

microscopic scale [81]. In particular, cell adhesion molecules allow cells to bind together 

and to their environment, and these adhesion forces affect how the population expands 

outwards as cells divide.  
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Up to this point, the ABMs discussed have been constrained to lattices and, in many 

cases, division was only allowed to occur when space was available. While lattice 

structures are useful and computationally efficient, they offer limited spatial resolution and 

lack the ability to describe intercellular forces. Furthermore, the division constraints are 

contextual and require scrutiny: a constraint could represent contact inhibition or 

quiescence, but it also frequently creates an artificial scenario where mitosis is restricted 

to the edge of a cell cluster. Centroid models overcome these limitations by allowing 

lattice-free movement. A centroid model represents each cell as a central point that is 

connected to neighboring cells by stiff springs. If a cell comes within the confines of 

another cell, whether by movement or division, a collision occurs. The collision produces 

a force that moves both cells to prevent overlap and, if necessary, propagates this 

movement through the population.  

An effective demonstration of a centroid model is again a colon crypt model [82]. 

This particular ABM sought to probe the mechanisms behind crypt anoikis, i.e., 

programmed cell death in response to detachment from the basement membrane. In this 

ABM, cellular agents grow and move freely along a 3D rendering of the crypt membrane, 

experiencing cell-cell collisions and an attachment force to the membrane. In the biological 

system, anoikis typically occurs at the top of the crypt, and the authors hypothesized that 

the crypt geometry and attachment forces were the crucial factors for simulating the 

process. Intriguingly, by modulating the attachment forces, the localization of anoikis 

events could be replicated, and the system was able to self-regulate the rate of anoikis, 

thereby maintaining homeostasis. Results like these highlight the advantage of lattice-free 

models for investigating behavior that emerges as a function of interaction forces, 

especially within complex geometries.  

When pondering mechanical forces during proliferation, one might also consider 

the effects of external resistance. It is known that the extracellular matrix (ECM) can act 

as a scaffold for growth; a pertinent example is the basement membrane of the second crypt 
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model. The ECM can also act as a boundary or an anchoring point [83]. The stiffness and 

elasticity of ECM are highly variable, and these properties influence the response of cells 

and their organization during growth.  

An example is adipose tissue, which consists of adipocytes clustered into distinct 

lobules by ECM, with variable morphologies. Using a lattice-free ABM platform, the self-

organization of adipose tissue was investigated with adipose cells modeled as growing 

spheres and ECM fibers as short lines that could cross-link together. Each ECM fiber had 

a defined, constant unit strength, with larger strands of cross-linked fibers able to exert 

more force on neighboring adipose cells through the fiber network. Additionally, the 

adipose cells were able to exert pressure on the ECM network to prevent compression as 

the available space for growth decreased. To explore the dynamics of lobule formation, the 

linking-unlinking frequency (d) of the fibers was investigated, which revealed that 

adjustments of this quantity could result in three distinctive morphologies. Since 

modulation of d was representative of the degree of ECM restructuring, the three 

morphologies were regarded as consecutive ‘phases’ that developed over time.  

2.2.2.2 ABMs Focused on Migration 

Migration events are commonplace throughout development and pivotal for the 

morphogenesis of numerous tissues [84]. The forces behind cell motility are predominantly 

mechanical, but the signals that trigger and direct migration can be mechanical, chemical, 

electrical, or all three. As mentioned previously, cells in vivo are experiencing a multitude 

of forces from the environment and neighboring cells. Furthermore, expansion of a cell 

population can lead to passive movement of the cells in response to physical interaction 

effects (collisions, boundaries, etc.). In contrast to passive movement, migration involves 

the active generation of forces by a cell to induce movement, usually in response to an 

external stimulus. Concurrently, cell polarity accords directionality by establishing a 

leading or front edge during movement. The ABMs discussed in this section emphasize 
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two key mechanisms whereby heterogeneous environmental factors can direct and 

coordinate cell movement.  

2.2.2.2.1 Extracellular Matrix Influence on Migration 

Cell migration during development exhibits a collective form of organization 

whereby cell populations are able to traverse long distances as coordinated groups. The 

emergence of this behavior requires one or more environmental cues that guide the 

migration of each cell. One source of directional information for migrating cells is the 

variable composition of adhesion and signaling proteins within the ECM [85]. The 

organization of ECM components is dynamically modulated by local cells that can secrete 

and degrade ECM macromolecules [86]. The resultant remodeling of the ECM can bias 

migration [87] and even reinforce specific migration paths [88]. 

The gastrulation in amphibians provides a representative example of collective 

migration that is dependent on an ECM component: fibronectin (Fn) is essential for 

mesendoderm cells to migrate as a sheet-like cluster across the inner surface of the 

blastocoel [89, 90]. As the cells progress, they bind to the ECM and exert traction forces 

via integrin-Fn interactions, which restructure the ECM in the wake of the first migratory 

cells [91, 92]. In addition, mesendoderm cells exhibit ‘shingling’ behavior: cells overlap 

each other and maintain cell-cell adhesion, mediated by cadherins, during movement.   

An ABM, reminiscent of a standard CPM, was developed to investigate the 

capability of these interactions to guide coordinated migration [93]. Specifically, each cell 

is represented by a 3x3 grid on a 2D lattice of Fn, where the center represents the cell body 

and its Moore neighborhood the cell’s “edges.” The edges of adjacent cells are allowed to 

overlap and produce an adherence force that mimics shingling behavior. In the model, the 

Fn matrix is initialized with randomly distributed concentrations along the x-axis but with 

a mild gradient along the y-axis. The restructuring of the matrix is modeled by a decrease 

in Fn concentration each time a cell moves through it. To determine the magnitude and 
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direction of movement, the Fn gradient is calculated along each edge, with larger forces 

being generated by larger Fn differentials. A similar force is calculated for each pixel 

overlapped by another cell, and the net force vector is computed as the sum of both forces. 

This customized framework is able to achieve cellular movement along the Fn gradient but 

cannot capture the observed, coordinated sheet-like clustering. In particular, the balance 

between integrin and cadherin turns out to be disproportionate along the edge of the cell 

colony. To remedy the situation, the authors introduced an intracellular feedback network 

based on Wnt/B-catenin signaling, whereby integrin binding triggers cadherin production, 

which in turn equalizes the integrin and cadherin forces and allows a sheet-like migration 

to occur.    

 A second representative example in this category is the development of the 

neocortex, which involves an interesting pattern of migration from the intermediate zone 

(IZ) towards the marginal zone (MZ) [94-96]. The neocortex consists of six distinct layers 

of pyramidal neurons. The migrating cells form a growing cortical plate (CP) between the 

IZ and MZ, one layer at a time. Cortical layer VI is the first layer of cells to form and is 

positioned closest to the migration source (IZ), with each sequential layer migrating over 

previous layers in an inside-out manner and increasing cortical thickness [88]. Reelin is an 

ECM glycoprotein that is essential for the proper formation of the neocortex [97-99]. In 

fact, the cortical layers in a Reelin-null mutation mouse (reeler mouse) are inversed, with 

layer VI becoming the most superficial layer [100]. However, the exact function of Reelin 

and its effect on migration through the CP have been debated [94]. To explore the different 

hypotheses regarding the role of Reelin during cortical development, a set of migration 

ABMs was generated with various rule sets to reflect each proposed mechanism [101]. It 

is unnecessary to describe each individual rule combination but, in general, the following 

held for these models: each layer of cells was introduced to the system independently and 

uniquely colored, one row at time; furthermore, cell movement and the conversion to an 

immotile state were defined as functions of Reelin. Extensive model testing revealed that 
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it is possible to isolate a rule set that very closely mimics the biological system. This 

inference of rules was accomplished by comparing the model output (i.e., the colored cell 

distributions of CP) against the known behavior in reeler mutants and in a Reelin-

dependent mutant, Dab1 [102]. Other ABMs involving ECM-mediated migration include 

[103-105].   

2.2.2.2.2 Models Accounting for Chemotactic Cues 

A widespread mechanism driving morphogenesis is a branching process. Indeed, 

this process can be found across multiple organ systems, including the lungs, kidneys, and 

vasculature [106-109]. In each of these tissues, the branched morphology is achieved 

through the recurrence of three events affecting the bud or vessel: formation, extension, 

and splitting. The branching morphogenesis in each of these organ systems is sensitive to 

the spatial distribution of a key morphogen, namely, FGF10, GDNF, and VEGF for lungs, 

kidneys, and vasculature, respectively. Multiple mechanisms have been proposed for 

initiating the spatial distribution of each morphogen, including ligand-receptor-based 

Turing mechanisms for the lung and kidney systems [31, 110]. In these cases, the 

morphogen induces expression of its receptor which correspondingly increases sensitivity 

to the morphogen. This receptor-ligand cooperativity creates regions of high receptor 

density with enhanced morphogen activity that are interpreted as locations for branching 

events. A more common approach for modeling branching events is the consideration of a 

morphogen as both an inducer of proliferation and as a chemoattractant. High 

concentrations of the chemoattractant polarize the tip of a growing bud or vessel and cause 

proliferation in the respective direction. As the network expands, the vessel/bud cells 

consume the morphogen and establish a gradient that directs future growth and branching 

events.  

A Cellular Potts model of a ureteric bud in the kidney was compiled to determine 

the relative influence of mechano-chemical factors on the observed branching morphology 
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[111]. Specifically, this model assesses the factors affecting a single splitting event within 

the kidney. Model analysis revealed that the morphology is most strongly influenced by 

two model parameters representing the strength of chemotaxis and the proliferation rate. 

In fact, if chemotaxis and proliferation are perfectly balanced, the physiological 

morphology is achieved, whereas skewing the ratio leads to pathological morphologies.  

 A different role of branching morphogenesis can be found at the network level. A 

good example is a recently published 3D model of vasculogenesis that delves deep into the 

mechanical aspects of these branching processes [112]. In contrast to what one might 

expect, the morphogen (VEGF) is not implemented in the model as a direct activator of 

proliferation. Rather, VEGF acts exclusively as a chemoattractant that stimulates migration 

of vessel tip cells. Nonetheless, proliferation is important in this ABM. It is stimulated 

through mechanical stretch forces generated by the ‘pull’ force of chemotactically 

migrating cells, which has indeed been experimentally observed in vascular endothelial 

cells. The mechanism by which the stretch affects proliferation in these experiments 

consisted of upregulating the VEGF receptor. The ABM for this system uses a lattice-free, 

centroid description of two cell types: tip cells and vessel cells. Both cells types are subject 

to multiple local forces that govern their behavior. Tip cells experience: a chemotactic force 

along a VEGF gradient; a persistent force that results in the tendency of cells to continue 

moving in the same direction; an environmental drag force; and interaction forces from 

neighboring cells. The vessel cells are exposed to: interactions forces; environmental drag 

forces; and an angular persistence force that stabilizes and corrects possible buckling 

caused by cell division. Furthermore, mechanical stretch and compression of vessel cells 

are used to regulate proliferation and sprouting events, respectively. The complex rule set 

of this ABM is unique compared to other models of branching morphogenesis, which 

typically assume chemical dominance in extension and splitting events. The topics of 

angiogenesis and vasculogenesis have been extensively researched and reviewed 

previously [113], with copious AB models for both phenomena [109, 114-123].  
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2.2.2.3 ABMs Focused on Differentiation 

Morphogenesis and differentiation are highly interdependent. All organs and 

tissues are composed of heterogeneous assemblies of cells, and the acquisition of 

phenotypic heterogeneity through differentiation often occurs concurrently with the gain 

of organization. Thus, while differentiation is not as directly involved in shaping tissue as 

proliferation and migration, it is clearly essential for morphogenetic events.  The following 

describes representative ABMs that focus is on: (1) Initial differentiation from the 

pluripotent state; and (2) differentiation within tissues.  

2.2.2.3.1 Gain of Organization during Loss of Pluripotency 

The loss of pluripotency at the beginning of development prefaces nearly all 

instances of morphogenesis. As development proceeds, pluripotent cells differentiate into 

the three germ layers and eventually every somatic cell type. These initial fate decisions 

are crucial for embryogenesis and require coordination between the processes that maintain 

pluripotency or designate cell fate [124]. The transcription factors governing the 

pluripotent state can be reduced to a ‘core’ network consisting of Oct4, Sox2, and Nanog 

[125-128]. These key transcription factors dynamically regulate their own expression and 

have essential roles in directing self-renewal and fate specification [129-132]. The self-

renewal aspect is of particular importance for the study of pluripotent cells in vitro. 

Pluripotent cells are only transiently present in vivo and they quickly acquire germ layer 

fates. Therefore, sustaining expression of the key transcription factors associated with self-

renewal is necessary for the culturing of pluripotent cells in vitro. Typically, this task is 

accomplished by the addition of exogenous factors such as leukemia inhibitory factor 

(LIF), which indirectly activates Sox2 and Nanog expression in mouse embryonic stem 

cells [133, 134]. Since the discovery of means for maintaining pluripotent cells in vitro [9, 

10, 135, 136], the opposite has become very alluring as well: harnessing the specific organ 

and tissue forming potential of these cells.  
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Aggregates of pluripotent embryonic stem cells (ESCs) can serve as powerful in 

vitro platforms for studying morphogenesis and early differentiation events, both 

experimentally and with ABMs. In a landmark study, White and colleagues found that 

spontaneous differentiation of these aggregates produces transitional patterns as 

pluripotency is gradually lost [137, 138]. Specifically, spontaneous differentiation was 

instigated by culturing the cell aggregates in the absence of LIF. The transition out of the 

pluripotent state was monitored by collecting representative images of the pluripotency-

regulating transcription factor Oct4 expression within the aggregates over the course of 

differentiation.  

 To investigate the emergence of patterns, a 3D ABM utilizing the centroid schema 

was constructed. The ABM simulations considered two cell types (Oct4+ and Oct4-), with 

the initial population consisting entirely of Oct4+ cells. Three mechanisms for triggering 

state change were explored: stochastic processes, juxtacrine signaling, and paracrine 

signaling. In total, seven unique rule sets for governing differentiation were formulated and 

compared. In general, for both juxtacrine and paracrine signaling the Oct4+ cells were 

modeled as the source of inhibitory factors while Oct4- cells acted as the source of 

differentiation activators. To compare the experimental and simulation results, network 

metrics were extracted from a training set of computationally generated pattern classes. 

Principal component analysis (PCA) was applied to the multivariate set of metrics 

calculated from the training set networks and mapped onto a dimensionally-reduced latent 

space. By applying the same PCA transform to metrics calculated from the experimental 

and simulation data, spatial patterns of Oct4 expression could be evaluated as a function of 

proximity to each pattern class within latent space. This strategy facilitated a direct and 

quantitative comparison between the simulation results and the experimental data, thus 

identifying the state-change mechanism best able to describe the observed patterning.  
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Figure 5: Overview of the analysis of spatial features using a combination of network 

analysis and dimensional reduction techniques. A set of metrics is calculated or extracted 

from a series of pattern classes that depict typical cell organizations within the system; here, 

using the defined pattern classes from [137, 138]. The selected metrics should be equally 

represented in the simulated and experimental systems. Dimensional reduction techniques 

allow the multivariate data to be condensed to a few axes, ideally separating the defined 

pattern classes into distinct regions of the latent space. A transform function trained on the 

pattern class data can then be applied to metrics calculated from experimental and 

modeling results, mapping both into latent space and compared to the locations of the 

pattern classes. 

 

 As with other studies, this model investigation faced a generic challenge of AB 

modeling, namely the unbiased quantification of results. Here, model validation was 

approached by assessing population-based and phenotype-specific metrics that were able 

to quantify spatial features rather than relying on visual comparison. In fact, the specific 

methodology of this study may serve as a generic means of validating ABMs by 
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comparison of spatial characteristics, which is particularly important in morphogenetic 

studies. For example, the same network-based analysis was used to examine the evolution 

of spatial patterning during cichlid gastrulation in vivo [138]. Figure 5 provides an 

overview of this approach for comparing spatial patterning between simulation and 

experimental systems.  

ABMs have been used to elucidate another aspect of early differentiation in vivo, 

namely the loss of pluripotency and the concomitant morphogenesis of a blastocyst [139]. 

This process of blastocyst formation is remarkably robust and entirely self-contained, 

receiving no external maternal information. Rather than attempt to delineate every signal 

and interaction, the authors of this ABM decided to define overarching rules in a top-down 

approach. The question was simple: What is a minimalist set of rules that can adequately 

capture the complexity of blastocyst formation. Extensive exploration of various ABM 

implementations suggested that four rules, derived from four main regulatory events, were 

sufficient to recreate the structuring of the blastocyst. The first rule targets polarity at E3.0, 

thereby establishing the inner cell mass (ICM) with trophectoderm cells along the 

periphery. The second rule mimics FGF signaling at E3.5 and creates a salt-and-pepper 

distribution of epiblast (Epi) and primitive endoderm (PrE) cells. The third rule causes 

lineage segregation of the Epi and PrE cells through differential adhesion. Finally, the 

fourth rule causes apoptosis of any PrE cells that were not segregated properly from the 

Epi cells. The model was defined as lattice-free and implemented in 2D, where the success 

rate for achieving correct blastocyst formation using these four rules was 79%. In a slight 

modification, the model was also validated in 3D with minor changes to account for 

differences in the number of nearest neighbors.  

 Several biological insights related to the FGF/ERK pathway emerged from this 

work. First, the specification of Epi and PrE cells in a salt-and-pepper pattern resembles a 

Turing-like mechanism. Second, FGF4 is secreted by ICM and Epi cells and inhibits 

Nanog. Third, Nanog and Gata6 mutually inhibit each other, which effectively creates a 
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positive feedback loop outside the steady state. The consequence is a local intracellular 

amplification mechanism which, in conjunction with a global inhibitor, produces a spot 

pattern. Furthermore, the initiation of FGF/ERK signaling appears to be invariant to the 

number of cells within the embryo and is instead dependent on the time since fertilization. 

As experimental validation, scaling experiments were conducted whereby mouse embryos 

at the 8-cell stage, before trophectoderm specification, were merged into 16-cell and 24-

cell embryos. Blastocyst formation proceeded normally in these double- and triple-

embryos, albeit with approximately 2- and 3-fold more final cells, respectively. Of 

important note, the ratio of PrE to Epi cells was maintained within the ICM despite the 

scaling, indicating that the patterning mechanism does not rely on—nor is sensitive to—

the quantity of cells within the ICM. Experimental evidence of the time-dependence was 

provided by the response to transient inhibition of ERK: the PrE/Epi ratio decreased in 

proportion to the duration of inhibition. The model predicts that the time-dependence of 

these initial fate decisions is due to a necessary accumulation of FGF, or a similar signaling 

component, from the onset of fertilization to the point of activation.  

2.2.2.3.2 Multi-phenotypic Tissue Models 

As a representative ABM in this category, we return again to crypts, but focus here 

on intestinal crypts, which share the same physiological structure with the colon crypt but 

contain an additional cell type, called Paneth cells [140]. In the previous colon crypt 

models, cell types were not explicitly defined beyond their proliferation capacity. Here, the 

individual cell types are considered along with their type-specific interactions; they 

include: undifferentiated (stem-like) cells, secretory-progenitors, secretory-Goblet cells, 

secretory-Paneth cells, and enterocyte progenitors. The model has some similarities with 

the second crypt model discussed before in that it is a centroid model where each cell 

experiences adherence forces to the basement membrane. In addition, the model here 

includes active migration, extracellular signaling, intercellular signaling, and 
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differentiation. Migration is implemented as a constant upward movement for all cell types, 

except for Paneth cells that migrate downwards. The extracellular signaling molecule, Wnt, 

is considered to be a function of local crypt curvature. As a consequence, Wnt exhibits a 

constant gradient, with the highest concentrations at the bottom of the crypt. Intercellular 

signaling is defined to be a function of Notch, where undifferentiated- and enterocyte 

progenitor cells produce the receptor, and secretory lineage cells produce the ligand. In 

addition, Notch signaling acts as an inhibitory signal for secretory cell differentiation in 

neighboring cells. Therefore, the secretory cells inhibit the differentiation of nearby cells 

into secretory cells in a process termed lateral inhibition [15]. The various lineage 

progressions between cell types, including dedifferentiation, are summarized in Figure 4c. 

The complex model is capable of replicating numerous biological phenomena reported in 

the literature, such as recuperation of the undifferentiated cell population after ablation, 

and predicts that a similar recovery is possible for each functional cell type within the crypt. 

This prediction reflects the primary focus of the model to emphasize the role of cell-

environment interactions in establishing the functional phenotype of a cell. Specifically, it 

stresses that fate decisions are fluid and progenitors are capable of interconverting or 

dedifferentiating if exposed to the right set of cues. 

Many morphogenetic events include populations with diverse sets of transitioning 

phenotypes and cell-type specific interactions. As the number of interactions expand, it 

becomes more difficult to intuit the role of any single interaction within the system. The 

capability of ABMs to capture the emergence of system-level features in response to the 

addition or removal of single interactions is a potent tool for probing developmental events. 

Indeed, other differentiation-focused ABMs have explored a myriad of developmental 

processes, such as somite formation [141], establishment of the germline in C. elegans 

[142, 143], and others [144-149]. 
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2.2.2.4 Manipulation of Morphogenesis Based on ABMs 

While morphogenesis has been studied for over a century, a modern goal of 

morphogenesis research has become the manipulation of developmental mechanisms for 

purposes of targeted tissue engineering. Specifically, the short-term goal is to achieve 

functioning organ systems by replicating environmental conditions that regulate the 

targeted morphogenetic events in vivo. This modern line of research fundamentally asks 

questions regarding the number and character of conditions that are sufficient to emulate 

the morphogenesis of any given tissue. ABM provides a unique platform for mimicking 

realistic single-cell behavior at the tissue level in response to spatially and temporally 

diverse signals. Indeed, AB modelers hope that it is possible to derive the necessary 

conditions and interactions by iteratively simulating organogenesis from its inception 

under slightly altered rules and conditions. An excellent illustration of this pursuit is the 

modeling work of Setty et al. on early pancreatic organogenesis [150]. Their ABM consists 

of three main components: a reactive system engine for running the model, a front-end 

animation, and a GUI for mathematical analysis. The reactive system engine permits user 

interactions during runtime, such as pausing a simulation or adding or removing stimuli. 

In parallel, the front-end provides a 3D animation of the model during runtime, and the 

GUI analyzes the system. This implementation permits real-time analysis and manipulation 

of the simulated system. The obvious advantage of this approach is its ability to gauge the 

impact of specific conditions as they emerge.  

The agents in this ABM consist themselves of three interacting components: the 

cell itself, a nucleus, and a membrane. The cell component makes growth and fate 

decisions, using information from the nucleus and membrane. The nucleus contains a set 

of genes that may be expressed or silent as a function of the environment and the cell state. 

The membrane responds to environmental factors, such as the binding or releasing of 

extracellular molecules, which triggers cell movement. The various features of the model 

are defined in a statechart, which designates the cell types and their independent rules for 
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cell-cell and cell-environment interactions. With these methodological settings, the model 

is able to recapitulate 2D histological features of the developing pancreas with high fidelity 

and generates results that are visually similar to 3D histology samples. While quantifiable 

validation is limited, the model is capable of creating tissue-scale morphological features 

that depend solely on single-cell decisions in response to environmental cues. Thus, with 

appropriate caution, this type of model can be a useful tool for determining and fine-tuning 

conditions that are necessary for deriving complex tissue structures in vitro.  

2.2.2.5 Limitations of ABMs for Morphogenesis 

 Like all modeling approaches, ABMs have clear strengths, but also germane 

weaknesses. The description of ABMs in the previous sections has demonstrated that a 

particular strength of ABMs is the relative ease with which specific hypotheses can be 

explored and tested. Thus, a typical question for an ABM is: Is this hypothesized 

mechanism sufficient to generate an observed pattern in time and space? While such a 

question can often be answered, a seemingly similar question is comparatively very 

difficult to assess with ABMs: Is this hypothesized mechanism actually driving the 

biological phenomenon and/or are there other mechanisms that are operating in parallel? 

More generally, “forward simulations,” which mimic “what-if” scenarios, are natural for 

ABMs, while it is difficult to address “inverse” questions, which attempt to determine 

feature representations from high-level data. For instance, it is difficult to infer the 

mathematical format of a mechanism, such as a growth or migration process. It is similarly 

difficult to answer questions such as “how many steady states can this system have?” or to 

characterize such steady states, especially if they are unstable. Along the same lines, it is 

sometimes difficult to answer questions like “is it possible for this system to exhibit a 

particular behavior?” Nonetheless, it is not entirely infeasible to characterize ABMs with 

rigorous mathematical analysis. For instance, a very thorough analysis of CPMs 

demonstrated some shortcomings with the depiction of cells with subcellular parts [151]. 
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While a significant portion of the analysis was dependent on the infrastructure of CPMs, 

the approach itself highlights the potential for applying mathematical and model theory 

from other fields to answer some of these questions on an individual model basis.   

A second complex of challenges pertains to fitting parameters. In particular, the 

designation of rules does not always lend itself to parameters that can be directly measured. 

In some cases, parameter values may be inferred from experimental data, if they are 

independent of other parameters, but when multiple parameters are interdependent, they 

have to be fit simultaneously. However, ABMs are not naturally amenable to parameter 

estimation algorithms, and the typical steepest-descent methods or genetic algorithms face 

issues with ABMs. Two factors that further complicate the situation are the stochastic 

nature of ABMs and the phenomenon of emergence, which can lead to high parameter 

sensitivities, that is, they can lead to large fluctuations in system behaviors in response to 

small changes in parameter values. As a consequence, typical parameter estimation 

techniques would require very large numbers of iterations for each parameter set, which 

would incur significant computational costs. Addressing these difficulties, new methods 

for parameter estimation in ABMs have begun to appear [106, 152].  

Specifically with respect to morphogenesis, the usual output from an ABM is a set 

of agent-objects that contain spatial and state information at a cellular resolution. However, 

the patterns and morphological structures that are being targeted are formed at the cell 

population level. It is quite easy to qualify similarities between experimental observations 

and simulation results by visual comparison, but some form of quantification is necessary 

for model validation and the ability to make definitive claims. The derivation of such 

quantifiable metrics, especially those that characterize spatial features, is a non-trivial task. 

Spatial metrics need to be able to classify the same types of often irregular features, and 

denote them with similar representative values, for both experiments and simulations. Due 

to difficulties associated with this task, the use of spatial metrics for validation has been 

relatively rare, which is surprising for models targeting morphogenetic events. Instead, it 
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has been more common to attempt model validation through easily quantified population-

based metrics. While population metrics do provide some connection between the 

simulations and the true system, they are not optimal for models that are designed to explain 

or predict pattern formation.  

Two methods that are used most frequently for evaluating pattern formation are 

image analysis and network analysis. In the former, the simulated agents are converted into 

images that match the experimentally obtained images, whereas in the latter, the 

experimentally obtained images are converted into digital networks that have the same 

format as the agents. In both scenarios, representative features are extracted from data or 

calculated. For instance, cell locations are determined by identifying nuclei in the 

experimental images. If the critical features cannot easily be identified, customized 

algorithms are needed that allow pattern classification without the need of explicitly 

defined metrics [153, 154]. The acini model, for example, demonstrates the use of image 

analysis for model validation, with images acquired at multiple z-planes for 3D 

comparisons [72]. An excellent example of validation per network analysis can be found 

in the ESC aggregate model [138]. Finally, the combination of a dimensionality reduction 

technique, such as PCA, with either of these analysis methods can be an effective way to 

visualize dynamic changes in patterning in addition to quantification (see Figure 5). Here, 

we apply this methodology of network analysis in conjunction with PCA for exploring 

spatial pattern progression during early neural differentiation. 

The functionality of ABMs in morphogenetic research has greatly improved 

recently through technological improvements, with one example being GPU-

parallelization [155-157]. An evident advantage of parallelization is the ability to simulate 

much larger cell populations without compromising computational time. Thus, more 

realistic tissue scale models can be produced even on regular desktop computers. An added 

benefit is that models simulating fewer cells can run faster, thereby potentially eliminating 

some of the issues regarding parameter estimation. However, parallelization requires 
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certain constraints that can either limit functionality entirely or limit certain functionality 

based on the user’s programming knowledge. At this point, ABMs seem to be gaining the 

capacity to model tissue-level morphogenetic events but given the paucity of specific 

examples so far it is hard to predict how the various interactions will translate into a parallel 

infrastructure. 

2.2.2.6 Summary and Application to Current Work 

 Morphogenesis is a paradigm for the benefits of merging traditional, reductionist 

biology with some of the newer concepts of experimental and computational systems 

biology. Clearly, understanding morphogenesis requires the very detailed elucidation of 

individual processes, but it also depends critically on solid knowledge of the dynamic 

interactions among these processes. ABMs are unique in their ability to investigate and 

integrate combinations of processes and their respective dynamics. Here, the process of 

intercellular communication is explored through experimental and computational means 

by integrating single-cell, experimentally-derived parameters into an agent-based model of 

differentiation at the population-scale.  

ABMs are useful even for the exploration of poorly studied systems that lack 

sufficient data. They can be developed initially with rather coarse, top-down, behavioral-

driven rule sets that ultimately generate hypotheses regarding those processes that are most 

influential for producing a given morphology or pattern. These hypotheses can in turn 

guide the design of laboratory experiments that increase the likelihood of identifying key 

events or pathways within the system. Even if model predictions are not entirely correct, 

the insights gained can be used to adjust, refine or alter the model or a previously posed 

hypothesis, for instance, by accounting for mechanistic features suggested by experimental 

data. In this alternation of experimental and computational methods, one side informs and 

fertilizes the other and, iteratively, both often improve.  
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As with any computational modeling strategy, it is important to note that clear goals 

and questions are needed up front, because they will determine the implementation details 

for the ABM. As a case in point, some early ABMs in biology lacked a unique objective 

and emphasized the replication of a biological phenomenon rather than the discovery of 

new characteristics or behaviors of a system. An early mesendoderm migration model, for 

instance, was framed around the functional incorporation of various elements into a model. 

These rather vague objectives can in retrospect be attributed to the fact that ABMs were 

relatively new in the field and that it was necessary to gain experience with exploring 

specific model features and the role of synergism among processes and rules. Since these 

early days of ABMs in biology, the field has substantially matured, and most modern 

ABMs are crisply focused on specific questions surrounding a particular application, as 

they should be.  

One of the primary advantages of designing models for a specific application is that 

it becomes possible to simplify extraneous features. For example, the ABM developed here 

primarily considers intercellular communication as the mechanism of differentiation in 

pluripotent cells. While various factors contribute to cellular fate decisions, the inclusion 

of these factors would add complexity without providing additional information about the 

mechanism of interest.  

 While the history of ABMs is quite short, trends suggest that these models are 

quickly becoming mainstream tools in biology. Not long ago, they simply tried to replicate 

what biologists were observing. In their next phase of development, they began to explain 

the roles of hypothesized mechanisms and their interactions. The field is now at the 

threshold of using ABMs for predictions of scenarios that had never been tested in the 

laboratory. Such predictions will not only help with the formulation of novel, testable 

hypotheses, but may become a foundation for manipulating developing systems in a 

targeted manner, which will be fundamental to tissue engineering and regenerative 
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medicine and possibly the creation of “tissue factories” that permit the production of pure, 

valuable organic compounds.  

2.3. Gap Junctions and Intercellular Communication 

 A gap junction is a channel that connects the cytosol of two neighboring cells, 

allowing transport of ions and small molecules below 1 kDa in size [158]. Gap junctions 

are comprised of two connexons located in the plasma membrane of adjacent cells, with 

each connexon being composed of a hexamer of connexin proteins. The permeability of a 

single gap junction channel to specific molecules is dependent on the connexin subunits 

that form the gap junction [158, 159]. With 21 known isoforms in the human connexin 

family, the permutations of different connexin combinations results in high variability in 

gap junction transport potential [160]. The overall rate of intercellular transport is the 

cumulative diffusion across every open gap junction channel formed between two cells. 

Whether a gap junction is in an open or closed conformation is a function of various 

intrinsic factors, such as membrane potential [161], pH [162], calcium concentration [163], 

and the phosphorylation state of connexin subunits[164]. Each of these factors is of 

particular importance as ions and secondary messengers freely diffuse through gap 

junctions, allowing signals to propagate and creating a dynamic intercellular network. 

2.4. Connexins Structure and Function 

 All connexins contain four transmembrane domains connected by two extracellular 

loops with both N- and C- termini located in the cytosol. The connexin isoforms differ 

mainly by the length of the cytoplasmic loop and carboxy-terminal domain. The C-

terminus is particularly interesting as it is involved in trafficking, localization, and gap 

junction turnover rates[160]. Furthermore, it contains the phosphorylation and 

ubiquitination regions affecting open and closed configurations, and degradation of gap 

junction channels, respectively. The C-terminus of connexin43 (Cx43) is 146 amino acids 

long and has been extensively studied in response to being the most ubiquitously expressed, 
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as well as involved in cell signaling[165] and proliferation[166]. Separate domains of the 

Cx-43 C-terminus have been implicated as necessary for correct assembly, transport to the 

membrane from the Golgi apparatus, and degradation of Cx43-composed gap 

junctions[160, 167]. In contrast, Cx26 has a small 10 amino acid C-tail with minimal post-

translational modification potential. As such, these two connexins require different 

environmental conditions to affect their transport, with the short C-terminus of Cx26 not 

having as many domains to be affected compared to the C-terminus of Cx43. Therefore, 

between the large variability in gap junction configuration and connexin-specific 

sensitivities to environmental factors, the gap junction-mediated network is highly 

adaptable.  

Additionally, connexons can form functioning channels independent of their ability to 

form gap junctions. When an adjacent cell is not present a connexon can form an open 

hemichannel to the extracellular environment [163, 168, 169]. These hemichannels result 

in an outward flux of cytosolic molecules, particularly ATP and glutamate [170], and an 

influx of larger membrane-impermeable metabolites [168]. Therefore, a cell that is adjacent 

to only a few cells has a higher probability of interacting with the extracellular space since 

it has more undocked connexons that can act as hemichannels. The phenomenon of opening 

hemichannels has predominantly been studied in astrocytes[163, 170] and lens epithelial 

cells[171, 172], but isolating connexon-mediated transport is challenging under 

physiological conditions where multiple channels can contribute. For a colony of cells this 

could result in spatial differences in the mechanism of transport for cells along the 

perimeter of the colony compared to cells centrally located. Therefore, if this occurs, cells 

along the periphery can interact with the extracellular space to a larger degree than 

centrally-located cells, with the potential for releasing or accumulating molecules that can 

stimulate differentiation.   
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2.5. Connexins and Differentiation 

 The differentiation of a cell is defined by significant phenotypic changes, including 

morphologic and proteomic [173]. Most cell phenotypes have a corresponding set of 

connexin isoforms that are typically expressed [174], providing a mechanism for selective 

communication between cell types that are proximally located, with distinct transport rates 

for each unique channel composition. For example, the brain’s neural network is comprised 

of three main cell types: astrocytes, oligodendrocytes, and neurons, all of which arise from 

a common neural progenitor stem cell lineage[175]. An astrocyte can form a gap junction 

channel with any other astrocyte, whereas oligodendrocytes do not form channels with 

other oligodendrocytes but only astrocytes. Neurons form electrical synapses composed of 

gap junction channels between other neurons but are not directly connected to astrocytes 

or oligodendrocytes. However, astrocytes can release glutamate through connexon 

hemichannels which creates a stimulatory response in the neuron network. The ability of 

these three neural cell lineages to selectively interact is a function of the different connexin 

profile that each phenotype expresses. The complexity of interaction in the neural system, 

and the derivation of three terminal phenotypes from a common progenitor make it an 

appealing lineage for studying intercellular dynamics. Table 2 outlines the specific 

connexins expressed by each cell type and the cell-to-cell interactions that occur.   
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Table 1: Cell types present in nervous system and their corresponding connexins and 

interactions. 

Cell Type Expressed 

Connexins 

Cell Interactions 

Astrocyte (A) 

[176] 

Cx26, Cx30, Cx43 

 

Intercellular Communication: A/O, A/A 

Glutamate Release 

 

Neuron (N) 

[170, 177, 178] 

     Cx36, Cx45 Electrical Synapse: N/N 

Intercellular Communication: A/N * 

Glutamate Activation  

 

Oligodendrocyte (O) 

[178] 

Cx29, Cx32, Cx47 Intercellular Communication: A/O 

 

* Cells decouple as neurons mature 

Regulation of cell-to-cell communication consequently means that connexins can 

modulate differentiation potential [165, 179-184] and can lead to disease states [184-189]. 

Mutations in Cx32 cause one variation of Charcot-Marie-Tooth (CMT) disease, where the 

Cx32 distribution in Schwann cells is functionally necessary for proper myelination to 

occur [185]. Directed knockouts of genes during murine development revealed that Cx26 

is embryonically lethal [186], Cx32 generated susceptibility to liver tumors [187], Cx37 

lead to female infertility [188], and Cx43 produced lethal cardiac abnormality after birth 

[189]. The effect of atypical connexin function during development led to controlled in 

vitro studies with specific modifications to intercellular communication. In an embryonic 

stem cell model system, non-specific gap junction inhibitors and siRNA targeting Cx43 

were employed to establish the involvement of intercellular communication in maintaining 

pluripotency [190]. In both cases the cells lost their ability to maintain pluripotency and 
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transitioned to a more differentiated morphology. Interestingly, if the inhibitors were 

removed within 24-hours the cells regained their pluripotent state.   

2.6. Connexins and Cell Cycle 

 During the cell cycle, a highly conserved pathway involving the interaction of 

numerous proteins, there is a significant loss in gap junction connectivity [191]. Gap 

junctions containing Cx43 become internalized, decreasing intercellular communication to 

nearly negligible levels in cells that rely on this connexin. The isolation from intercellular 

diffusion from neighboring cells allows the cell to maintain tighter control over specific 

molecules necessary for cell cycle progression. Cyclic AMP (cAMP), for example, is a 

secondary messenger that is both able to pass through gap junctions and can inhibit cell 

proliferation at high concentrations [6, 192, 193]. Specifically, the expression of G1 cyclin, 

a necessary protein for transitioning from G1 to S phase, is inhibited by high cAMP levels. 

Only gap junctions and connexons composed of Cx26 are able to remain open during the 

cell cycle[6]. This results in redistribution of cAMP levels throughout the population of 

cells, preventing cell division. In comparison, Cx43 and Cx50 have more direct effect on 

cell proliferation. Rather than acting as channels for a separate molecule, these two 

connexins promotes the ubiquitination of another protein, Skp2 [166, 183]. Focusing on 

Cx43, in the presence of high levels of Cx43 there is an increased degradation rate of Skp2, 

preventing the role of Skp2 in ubiquitinating the cyclin-dependent kinase inhibitor p27. 

Thus, Cx43 causes a direct increase in p27 when the Skp2 gene is present which inhibits 

the transition from G1 to S phase of the cell cycle. The effect of Cx43 on cell cycle also 

partially explains why Cx43 accumulates, without forming functional channels, in the 

plasma membrane of cells undergoing cell division: it would prevent the ability of Cx43 to 

promote ubiquitination of Skp2 and also allow immediate channel formation upon 

completion of the cell cycle [191]. 
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CHAPTER 3 CHARACTERIZATION OF MULTISCALE 

INTERCELLULAR COMMUNICATION DURING EARLY 

NEURAL DIFFERENTIATION 

3.1. Introduction 

 During embryogenesis, pluripotent cells migrate and differentiate to form complex 

multicellular structures in a reliable and reproducible manner. An incomplete 

understanding of the dynamic signaling mechanisms that affect differentiation and 

morphogenic patterning limits faithful and accurate replication of emergent behavior in 

vitro. To create more sophisticated engineered living systems (ELS), it is necessary to 

elucidate the collective impact of the numerous processes that shape multicellular 

constructs during normal development. Embryonic stem cells (ESCs) are an excellent 

model system for mimicking aspects of embryonic morphogenesis and investigating the 

various modes of communication amongst pluripotent populations [194]. The process of 

secretion, diffusion, and uptake of molecules is a well-established mechanism of 

biochemical communication across tissues, with the formation of extracellular morphogen 

gradients providing positional information that instructs cell fate decisions during 

differentiation, both in vitro and in vivo [195-197]. However, emerging evidence in recent 

years suggests that direct cell-cell communication plays an equally significant role in 

pattern formation during morphogenesis [32, 33, 198-200]. Ascertaining the role of 

intercellular communication as a regulator of differentiation is crucial for deciphering the 

diversity of spatial cues present during developmental processes and for the future 

derivation of more complex ELS. 

 Gap junction communication (GJC) provides direct channels that facilitate 

intercellular diffusion of small molecules (<1 kDa) between the cytosol of adjacent cells. 

Gap junctions assemble from hemichannels of connexin proteins present in the plasma 

membrane of adjacent cells and the connexin composition of each channel dictates the 
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permeability of specific metabolites [201]. Furthermore, the transcription and translation 

of connexin isotypes is regulated by cellular phenotype, allowing cells to exercise 

considerable dynamic control over intercellular connectivity during differentiation and 

tissue development [175]. The collective GJC across a population of cells produces an 

intercellular network of cells with fluid connectivity. The versatility of GJ-connectivity 

creates vast potential for the development of intracellular gradients of small molecules - 

such as cAMP, ATP, and serotonin - that influence many downstream metabolic and 

transcriptional processes governing cell-fate decisions [5, 6, 192, 202, 203]. Unfortunately, 

accurately interpreting molecular gradients within a network of differentiating ESCs is 

challenging due to the close-packed density of epithelial cells and development of gradients 

across various length scales. While some sensors are capable of discerning concentration 

gradients of small molecules, many rely on FRET-based detections and have noted 

limitations [204]. Specifically, bleed through of the FRET-donor can skew measurements 

and an inherently low signal-to-noise ratio severely limits the sensitivity of these sensors. 

Furthermore, while several techniques exist for characterizing GJ transport [205, 206], they 

typically offer limited capability to quantify fluctuations in connectivity at a single-cell 

resolution simultaneously with the transport behavior at the population level. The difficulty 

of quantifying the influence of individual cells on the intercellular network is compounded 

when considering connectivity that can both modulate and be modulated by dynamical 

differentiation processes occurring throughout the population. For such instances, 

computational modeling offers an attractive approach, in combination with single-cell 

transport data, to investigate the dynamics of multicellular GJ communication and its 

relationship with differentiation.  

 Here, intercellular transport rates were quantified from single cells within ESC 

colonies, the cell cycle state was identified as a significant modulator of these rates, and 

this knowledge was used to construct a computational model of intercellular transport in a 

multicellular system. This agent-based model, regulated by cell cycle and considering 
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growth, division, and differentiation, generated a complex, dynamic network topology of 

communication that was capable of predicting spatiotemporal perturbations of Oct4 

expression during early neural commitment. Spatial patterns were quantified through 

dimension reduction techniques using derived network metrics to directly and 

quantitatively compare experimental results and simulation data; this approach enabled the 

development of accurate computational models for investigating communication within 

multicellular systems. This work highlights the importance of asynchronous cell division 

in establishing molecular gradients across tissue-scale systems and provides a framework 

for investigating the spatial evolution of differentiation within multicellular systems.  

3.2. Methods 

3.2.1 Experimental Methods 

3.2.1.1 Cell Culture 

 The murine embryonic stem cell line (D3) was cultured at 37 °C in monolayer on 

100-mm tissue culture plates coated with 0.1% gelatin (Millipore EmbryoMax) in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 15% fetal bovine 

serum (FBS) (Atlanta Biologicals, Atlanta, GA), 2 mM L- glutamine (Lonza), 100 U/ml 

penicillin, 100 μg/ml streptomycin, and 0.25 μg/ml amphotericin (MP Biomedicals), 1x 

MEM nonessential amino acid solution (Corning), 0.1 mM 2-mercaptoethanol (Sigma-

Aldrich), and 103 U/ml leukemia inhibitory factor (LIF) (EMD Millipore). Cells were 

passaged every 2–3 days, using 0.05% trypsin (Corning) to dissociate cells, centrifuged at 

200 rcf for 5 minutes, and plated at a density of 20000 cells/cm2. 

3.2.1.2 Differentiation Protocol 

 Cells were plated at a density of 10000 cells/cm2 on Ibidi μ-slides coated with a 

0.1% gelatin, 0.05% fibronectin solution. Cells were allowed to grow under regular cell 

culture conditions described earlier for 24 hours before being transitioned to N2B27 
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medium containing 1 μM retinoic acid (Sigma-Aldrich). The N2B27 medium was 

composed of 50% DMEM/F12 (Thermo Fisher Scientific) and 50% Neurobasal Media 

(Thermo Fisher Scientific), supplemented with 0.5% N-2(100x) (Thermo Fisher Scientific) 

and 1% B-27(50x) (Thermo Fisher Scientific). Every 24 hours, the medium was replaced 

with fresh N2B27 medium containing 1 μM retinoic acid.  

3.2.1.3 Immunofluorescence  

 For staining of Oct4 and Sox2, cells were fixed in 4% paraformaldehyde (Thermo 

Fisher Scientific) for 5 minutes and then permeabilized with 0.1% Triton X100 for 15 

minutes. Samples were blocked with 2% normal donkey serum (NDS) (Sigma-Aldrich) for 

1 hour and then incubated overnight at 4°C with the following primary antibodies in 2% 

NDS: goat polyclonal Oct-3/4 (Santa Cruz, 1:200) and rabbit polyclonal Sox-2 (Thermo 

Fisher Scientific, 1:200). After washing, samples were incubated in a 2% NDS secondary 

antibody solution of donkey anti-goat Alexa Fluor 568 (Thermo Fisher Scientific, 1:200) 

and donkey anti-rabbit Alexa Fluor 647 (Thermo Fisher Scientific, 1:200) for 45 minutes 

before counterstaining with Hoechst 33342 (1:1000) in DI water. All images were collected 

on a PerkinElmer UltraVIEW VoX spinning-disk confocal microscope with a sCMOS 

camera at 20X magnification.  

For Cx43 and Oct4 staining, the same procedure was utilized but with the following 

changes: The duration of fixation was increased to 15 minutes, the primary antibodies were 

goat polyclonal Oct-3/4 (Santa Cruz, 1:200) and rabbit polyclonal Cx43 (Sigma, 1:400), 

and the images were collected at 60x magnification.  

3.2.1.4 GAP-FRAP 

 To form colonies, mouse (m)ESCs were plated at a density of 10000 cells/cm2 on 

Ibidi μ-slides, coated with a 0.1% gelatin, 0.05% fibronectin solution, for 24 hours. A 1 

mM calcein-AM (Thermo Fisher Scientific) stock solution in DMSO was diluted into 100 

μL DMEM media and vortexed. The diluted calcein-AM solution was added to each well 
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of the Ibidi μ-slide to a final concentration of 1 μM for 40 minutes at 37°C. After 40 

minutes, Alexa Fluor 647–conjugated wheat germ agglutinin (WGA) (Thermo Fisher 

Scientific) was added to each well to a final concentration of 10 μg/mL, for 5 minutes at 

37°C. Each well was rinsed once before phenol red–free DMEM (Corning) medium was 

added for imaging. Images were acquired with a Zeiss NLO 710 confocal microscope, 

using built in software for photobleaching individual cells. Bleaching was initiated after 

acquiring three images, then maximum laser intensity was pulsed for 30 iterations before 

measuring fluorescence intensity in the photobleached cell every 3.8 seconds. For 

identifying mitotic cells, Hoechst 33342 was added with the WGA for 5 minutes at a 1:1000 

dilution. When quantifying nocodazole-treated cells, each well was treated with 100 ng/mL 

of nocodazole (Sigma-Aldrich) for 4 hours before replacing with new DMEM medium 

containing 1 μM calcein-AM and incubating for 40 minutes at 37°C, followed by 5 minutes 

with WGA, then changing to phenol red–free DMEM for imaging.  

 From each GAP-FRAP experiment, the measured fluorescence intensity value in 

the photobleached area was compiled as a function of time, setting t=0 as the time point 

with the minimum intensity value after bleaching. The intensity values were normalized to 

the maximum intensity after bleaching and fitted to an exponential function of the form 

𝐼 = 1 − exp(−
𝑡

𝑅𝑐
) where Rc is the recovery constant. The recovery constant was then 

normalized to the maximum fluorescence intensity before bleaching. In a few cases, it was 

also possible to quantify the recovery lost from neighboring donor cells (Figure 6).  
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Figure 6: Quantifying the loss of fluorescence in the cells adjacent to the photobleached cell 

during gap-FRAP. In the circumstance where the change in intensity of primary neighbors 

is sufficient to measure, the relative transport of those cells can be quantified in a similar 

manner to typical FRAP experiments. Interpretation of these transport rates is colony 

specific because non-photobleached cells are experiencing both a loss of fluorescence into 

the photobleached cell and a gain of fluorescence from other adjacent cells. 

 

 However, the context of the intercellular transport is different for the neighboring 

cells compared to the photobleached cell. Specifically, the photobleached cell only 

experiences a net influx of unbleached calcein whereas the neighboring cells have both a 

loss of calcein to the photobleached cell and an influx from secondary neighbors. As such, 

measurements from secondary cells are not included in any of the distributions for 

characterizing transport rates in Figure 13.    

3.2.1.5 Flow Cytometry 

 For quantifying differentiation progression, cells were grown for 24 hours on 100 

mm tissue culture plates coated with 0.1% gelatin. Each plate was rinsed with PBS then 
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differentiated using our previously stated differentiation protocol, with samples taken at 0, 

24, 48, and 72 hours from the start of the protocol. Each sample was dissociated using 

0.05% trypsin, centrifuged for 5 minutes at 200 rcf, and fixed using 4% paraformaldehyde 

for 10 minutes. Cells were permeabilized by centrifuging at 200 rcf with 5% Triton X100 

for 5 minutes. To prevent non-specific binding, cells were incubated for an hour in 10% 

NDS before being treated with primary antibodies Oct-3/4 (Santa Cruz, 1:200) and Sox-2 

(Thermo Fisher Scientific, 1:200) in 10% NDS for 1 hour. Cells were washed 3 times then 

incubated for 30 minutes in 10% NDS containing the following secondary antibodies: 

Donkey anti-goat Alexa Fluor 488 (Thermo Fisher Scientific, 1:200) and Donkey anti-

rabbit Alexa Fluor 647 (Thermo Fisher Scientific, 1:200).  

 For cell cycle analysis, the same protocol was used but with incubation in Hoechst 

33342 (1:1000) for 15 minutes instead of primary and secondary antibody staining. All 

flow cytometry measurements were collected on a BD LSR Fortessa flow cytometer.   

3.2.2 Computational Methods 

3.2.2.1 Agent-Based Model 

 An agent-based model was developed for simulation of pluripotent colonies by 

refining a python-based custom platform first described in White et al [137]. Here, each 

cellular agent with a set of properties of cell radius, spatial coordinates, division time, cell 

type, and intracellular concentration. Cell radius was set at 6.5 µm based on previous data 

collected in our lab for D3 cells, with cells modeled as rigid bodies. Spatial coordinates 

were initially set using a digitized set of coordinates from an experimental colony, 

assuming 100% pluripotent cells. Division time is randomly distributed between 0 and 18 

hours for each cell and is defined as the time since the cell last divided, with pluripotent 

cells dividing every 18 hours and differentiated cells dividing every 51 hours. As the colony 

grows it is restricted to a 2D-plane, with a collision detection algorithm optimizing cellular 

movement to prevent overlap of cells in the model. The asymmetrical growth of the colony 
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is accomplished by preferential movement of cells away from the central mass of the 

colony when resolving overlap during collision detection. The initial intracellular 

concentration of each cell is randomly selected between 0.6 and 0.65, with a nascent 

permeability, production rate, and degradation rate specific to each cell type (Pluripotent, 

Differentiated). Table 3 presents parameter values for each cell type.  

Table 2: Cell type specific parameters used in ABM of intercellular communication 

Cell Type Pluripotent Differentiated 

Cell Radius (r) 6.5 6.5 

Cell Cycle Length (CCL) 18 hours 51 hours 

Nascent Permeability (PMn) 0.45 0.85 

Production Constant (vp) 4.89E-6 6.0E-6 

K50 0.03 0.04 

Degradation Constant (Kd) 1.3E-7 1.3E-7 

 

 The intercellular network is determined at each time step by calculating the 

intercellular distance between every cell, and if the cell membranes are within 2 microns 

(2xradius +2 um) then they are “connected”. Since the resistance to diffusion is 

significantly higher at the gap junction interface, we consider the intracellular compartment 

to have instantaneous mixing after every diffusion time step. The flux between each cell 

follows Fick’s first law, accounting for the individual permeability of the connected cells 

(function of cell cycle and cell type, Equation 1-6.   

 

 

 

tDiv: Currentdivisiontime, between0andCCLforcurrentcell  

PMmax: Maximum permeability, the maximum flux between any two cells if all gap 

junctions were open  
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[1]DTnorm = 𝐴𝑏𝑠 (tDiv − (
𝐶𝐶𝐿

4
))  

DTnorm is a transform function, shifting the minimum value forward by ¼ of the cell-cycle 

length (Figure 7).  

 

Figure 7: Comparison of cell cycle time and the respective DTnorm transform. 

 

This shift decreases the steep transition in cell-cycle time that is seen in tdiv when a cell 

starts a new division cycle (@18 hours simulation time), while maintaining individual 

regions of minimum and maximum values per period.  

 

[2]𝐶𝑒𝑙𝑙𝐶𝑦𝑐𝑙𝑒𝐸𝑓𝑓𝑒𝑐𝑡(𝐶𝐶𝐸) =
1

1+(
𝐷𝑇𝑛𝑜𝑟𝑚

𝐶𝐶𝐿
)
2 +

0.69𝑡Div
6

tDiv
6+𝐶𝐶𝐿6

  

 

 The cell-cycle effect function is defined such that maximum transport would occur 

during the first few hours of a new division cycle when a cell would be in G1-phase, 

followed by a decline throughout S-phase to reach a minimum transport value near the end 

of a division cycle when a cell would be undergoing mitosis.    

  

[3]PMn,eff = 𝑃𝑀max(𝐶𝐶𝐸𝑐𝑒𝑙𝑙1 ∗ 𝑃𝑀𝑛,𝑐𝑒𝑙𝑙1)(𝐶𝐶𝐸𝑐𝑒𝑙𝑙2 ∗ 𝑃𝑀𝑛,𝑐𝑒𝑙𝑙2)  

 

 The effective permeability between any two cells is equal to the maximum 

permeability adjusted by the product of the nascent permeability of the adjacent cells. The 
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nascent permeability is defined by cell type (differentiated or undifferentiated) and 

regulated by the Cell cycle effect function. 

[4]𝑃𝑟𝑜𝑑 =
vp

1+Ct/𝐾50
  

[5]𝐷𝑒𝑔 = −𝑘𝑑𝐶𝑡  

[6]𝐹𝑙𝑢𝑥 = 𝑃𝑀𝑛,𝑒𝑓𝑓∆𝐶 + 𝑃𝑟𝑜𝑑 + 𝐷𝑒𝑔  

 

 Production, degradation, and flux in and out of a cell are calculated every 3 seconds, 

or 1200 times per differentiation time step, with a continuously updating intracellular 

concentration. For the production function, we use an inhibitory Hill function with an n-

value of 1 to represent decreased production when intracellular concentrations are high. A 

simple degradation function is used with the degradation constant the same for both cell 

types. Diffusive flux between adjacent cells is calculated as the product of the effective 

permeability and the concentration gradient between each neighboring cell. The final 

concentration at the end of every hour is used to determine the probability of 

differentiation, as per Equation 7. 

 

[7]𝑃(𝑑𝑖𝑓𝑓) =
tCn

tCn+Kth
n                         

 

ThresholdConcentration(Cth): 0.74 

tC: Thresholdcount, numberoftimestepsacellisoverCth 

       𝑖𝑒. 𝑰𝑭𝐶 > 𝐶𝑡ℎ: 𝑡𝐶 = 𝑡𝐶 + 1𝑬𝑳𝑺𝑬: 𝑡𝐶 = 𝑡𝐶 − 1 

Kth = 2 

n = 4  

A stochastic differentiation term is incorporated to represent external factors affecting 

differentiation that are not mechanistically captured by our intercellular diffusion module. 

Since the main external factor was the addition of retinoic acid, which was replaced every 
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24 hours, the stochastic term is made oscillatory to correspond with RA-addition. 

Specifically, differentiation potential increases for 12 hours after RA-addition then 

decreases back to the base differentiation potential, with this repeating every 24 hours (Eq 

8). 

[8]𝑃(𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐) = 0.002 + 𝐴𝑏𝑠[0.001 ∗ sin (
𝑡𝑠𝑖𝑚

8
)]  

where tsim is the simulation time.   

3.2.2.2 Image Analysis 

 To convert our experimental images into digital networks, we used a CellProfiler 

(http://cellprofiler.org/) pipeline (Figure 8). The pipeline uses the blue channel (Hoechst) 

to identify nuclei within the image, and then uses propagation to define cellular boundaries. 

Both red and green channels, representing Sox2 and Oct4 respectively, first use a local 

MCT threshold to separate high expressers from low expressers and background noise. 

After thresholding, the red and green channels are converted to masks and applied to the 

cell objects identified using the blue channel. This data is exported to a CVS file and 

imported into Python, where it is represented in an analogous format as our simulation 

data.  

http://cellprofiler.org/
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Figure 8: CellProfiler pipeline used to convert experimentally imaged colonies to digital 

networks synonymous with model outputs. (A) Conversion of a single image using Sox2 and 

Oct4 staining into a digital colony. (B) Experimental images, with digitally enhanced Oct4 

stain for ease of comparison, before conversion to CellProfiler representations and 

respective digital networks. 

3.2.2.3 Latent Space Analysis 

 We computationally generated 2D pattern classes defined for embryoid body 

differentiation. Each pattern class was produced using a previously digitized experimental 

network, resulting in 120 unique colony structures. To better distinguish spatially localized 

clusters, the differentiation status of a cell was also a function of the differentiation status 

of neighboring cells. Specifically, if the percent of differentiated neighbors is greater than 

the average number of differentiated neighbors for every cell in the population, it is 

classified as differentiated. From each network, seven metrics were extracted as 

represented in Figure 9.  
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Figure 9: The seven selected metrics used to quantify the spatial patterning within colonies. 

Each metric is represented by a single numerical value and every sample (experimental & 

computational) is depicted by the same seven metrics. Colony-based metrics: (1,2,3,5), 

Cluster-based metrics: (4,6,7). 

 

  After collecting these metrics for every pattern class generated in our training set 

(7 metrics x 120 networks), the data is mean centered, scaled to unit variance, then 

transformed using Principal Component Analysis (PCA). The same metrics were extracted 

from both simulation and experimental data, scaled/normalized in an identical fashion to 

our training set, and transformed into latent variable space using the previously trained 
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PCA transform. The average trajectories for simulations were calculated by averaging the 

data points at each specific time. 

3.3. Results 

3.3.1 Spatially organized differentiation occurs during retinoic acid treatment 

 To evaluate spatial patterning during neural differentiation, monolayers of murine 

ESC colonies were treated for 72 hours with retinoic acid (RA, 1 μM), a potent 

morphogenic promoter of neural progenitor cells that emerge during hindbrain 

development [207]. A 2D monolayer system was selected to enable a more comprehensive 

link between the patterning produced and intercellular communication between 

neighboring cells. In particular, ESCs are known to secrete paracrine factors that can 

accumulate within the confines of an aggregate and affect differentiation in a spatial 

manner [124]. The 2D system minimizes this potential for environmental heterogeneity 

and consequently allows heterogeneity caused by intercellular mechanisms to be studied 

in a less confounded context. The progression of differentiation was assessed based on 

expression of the two pluripotency factors, Oct4 and Sox2. The Oct4+Sox2+ state has been 

well characterized to reflect the pluripotent state of ESCs, whereas Sox2 expression alone 

(in the absence of Oct4) is associated with a neural ectoderm fate, indicating that the Oct4-

Sox2+ phenotype is the initial neural progenitor state after loss of pluripotency [129, 131, 

132].  

 As differentiation proceeded, a transient, patterned loss of Oct4 was observed while 

Sox2 expression was maintained, as expected for neural progenitors (Figure 10a). The 

majority of the cell population (70±4%) assumed an Oct4-Sox2+ neural progenitor state 

within 48 hours of RA treatment. In contrast, spontaneous differentiation induced by LIF-

withdrawal from serum-containing media resulted in a decrease in both Oct4 and Sox2 

expression, associated with primitive endoderm and mesoderm specification (Figure 10b,c, 

Figure 11) [208].  
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Figure 10: Loss of Oct4 and maintenance of Sox2 expression during retinoic acid–induced 

differentiation. Oct4 expression begins to decline after 24-hour exposure to retinoic acid (1 

μM), with the main transition to an Oct4- state occurring between 24 and 48 hours of RA 

treatment. After 72 hours, ~ 70% of the population retain an Oct4-Sox2+ phenotype (A,C). 

A schematic depicting the change in gene expression in ESC populations towards the 

predominant progenitor state during two differentiation protocols: LIF-withdrawal in 

serum-containing media and retinoic acid addition (B). Quantification of flow cytometry 

data in (A) demonstrates the maintenance of the Oct4-Sox2+ state between 48 and 72 hours 

of RA treatment (C), n=9 (3 biological replicates, 3 technical replicates for each biological 

replicate). 
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Figure 11: Sox2 and Oct4 concomitant loss through LIF withdrawal in the presence of 

serum containing media characterized by flow cytometry. (B) Schematic representing the 

change in gene expression towards the predominant progenitor state in ESC populations 

during two differentiation protocols, LIF-withdrawal in serum containing media and 

retinoic acid addition. (C) Quantification of flow cytometry data in (A), with a large 

population of Oct4-Sox2- progenitors accumulating between 24 and 72 hours in addition to 

a smaller population of Oct4-Sox2+ cells, n=9 (3 biological replicates, 3 technical replicates 

for each biological replicate). 

 

 RA-accelerated differentiation was used hereafter in this study due to the selective 

commitment of ESCs to the neural lineage. The selectivity provides a robust system for 

studying the emergence of spatial organization during the transition of a cell population 

from a pluripotent to a largely homogenous neural progenitor state. 
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3.3.2 Differentiation causes a transient redistribution of Cx43 and increased 

permeability for communication between neighboring cells 

 The gap junctional intercellular network has been implicated as a regulator of 

spatial patterning during the development of neural networks [199, 209]. As such, we 

examined whether RA treatment initiated spatial remodeling of the intercellular network 

by assessing the membrane localization of connexin43 (Cx43), the primary connexin 

isotype expressed by ESCs [210]. Cx43 expression in untreated colonies (0 hours) was 

concentrated at the cell-cell interfaces, usually as a series of punctate spots (Figure 13a). 

In contrast, mitotic cells typically had diffuse Cx43 spread across their membrane that was 

not limited to cellular interfaces (Figure 12). This diffuse Cx43 ‘ring’ pattern has 

previously been found to coincide with mitosis-specific phosphorylation of Cx43 that 

causes decreased plaque formation [191].  

 

Figure 12: Consistent Cx43 stain throughout membrane in mitotic cells. A confocal z-stack 

shows a diffuse ‘ring’ structure at each focal plane in the membrane of mitotic cells while 

non-mitotic cells display a more punctate staining profile. 
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 After 24 hours, distinct clusters of cells with enhanced Cx43 staining between cells 

were observed (Figure 13b). Each Cx43-enhanced cluster also showed diminished Oct4 

expression (Figure 13d), implying that the loss of pluripotency is concomitant with an 

increase in intercellular communication.  After 24 hours, distinct clusters of cells with 

enhanced Cx43 staining between cells were observed (Figure 13b). Each Cx43-enhanced 

cluster also showed diminished Oct4 expression, implying that the loss of pluripotency is 

concomitant with an increase in intercellular communication. A similar increase in Cx43 

signal was apparent in clusters of differentiated cells after 48 hours, but with fewer cells 

per cluster compared to the 24-hour time point, indicating that the change was transient 

(Figure 13c). Furthermore, the clusters at 48 hours also displayed an accumulation of Cx43 

in the cytoplasm. Interestingly, a similar accumulation of Cx43 is present in the Golgi 

apparatus of proliferative neural progenitor cells that is temporarily lost during 

differentiation [211]. Thus, ESCs exhibit a transient increase in Cx43 localization to their 

membranes as they undergo differentiation towards a neural progenitor state in response to 

RA-treatment.  
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Figure 13: Cx43 signal (green) increases during retinoic acid–induced differentiation, with 

compartmentalization of transitioning cells between 24 and 48 hours. Mitotic cells are 

prevalent in pluripotent colonies (A) and show a diffuse ‘ring’ of Cx43 in the membrane, 

designated by an asterisk, that is typical of Cx43 not forming GJ plaques. After 24 hours of 

RA treatment (B), Cx43 noticeably increased between clusters of cells with low Oct4 

expression (red), characterized in (D). At 48 hours of treatment (C), cells that have low (but 

non-zero) Oct4 expression have large expression of Cx43 in the cytoplasm. Previous studies 

have linked an accumulation of Cx43 expression in the cytoplasm to localization in the 

Golgi apparatus, specifically in proliferative neural progenitor cells. The average Oct4 

intensity was calculated for cells that were inside and outside the clusters displaying 

enhanced Cx43 at 24 hours (D). Cells within the Cx43 enhanced clusters at 24 hours 

exhibited a significant lower Oct4 expression compared to cells outside of the cluster with 

low Cx43 signal. 
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3.3.3 Intercellular transport as a function of cell cycle 

 Given the capability of the cell cycle to modulate GJ connectivity and the rapid 

cycling time of pluripotent cells, we hypothesized that the cell cycle was a source of 

dynamic heterogeneity within the pluripotent-intercellular network. To characterize the 

degree of influence, intercellular transport rates were quantified at each stage of the cell 

cycle. The various cell cycle stages were distinguished by treatment with nocodazole to 

cause cell cycle arrest at G2/M-phase followed by the removal of nocodazole and 

subsequent recovery [212]. Sampling before (Async), immediately after (NOC), and 45 

minutes after nocodazole (NOC45) treatment yielded three conditions: an asynchronous 

population, a synchronized population of G2/M-phase cells, and a recovered population 

containing both G1- and G2/M-phase cells (Figure 14a,b). In lieu of the NOC condition, 

Hoechst-mediated identification (HMI) of M-phase cells in an asynchronous population 

was adopted for quantification purposes. Hoechst treatment enabled the distinct DNA 

configurations of M-phase cells to be visually distinguished and provided data that was 

more representative of communication in the naturally asynchronous multicellular 

environment. The GAP-FRAP technique was used to establish distributions of intercellular 

transport rates from the three conditions: Async, HMI, and NOC45. Briefly, GAP-FRAP 

monitors the diffusive transport of an intracellular fluorophore (calcein) into a single 

photobleached cell from neighboring interconnected cells (Figure 14c)[213]. Recovery 

constants were mathematically derived using the perturbation-relaxation equation 

described in [213] and have an inverse relationship with the functional transport rate of a 

cell.  
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Figure 14: Analysis of intercellular transport rates as a function of cell-cycle state. (A) 

Asynchronous cell population (Async) shifted to G2-phase after nocodazole treatment 

(NOC), and after 45 minutes of recovery (NOC45)  the population shifted to G1-phase. (B) 

The population distribution averages from (A) were calculated for the Async, NOC, and 

NOC45 treatment conditions. (C) An illustration of the GAP-FRAP technique for 

quantification of relative diffusion rates between adjacent cells. (D) A histogram of recovery 

time constants collected using gap-FRAP in the Async population, where high and low 

recovery constants represent slow and fast transport rates, respectively. (E)The 

distributions of recovery constants for Hoechst-identified mitotic cells and NOC45 were 

shifted to the right and left of the Async population, respectively, indicating slower and 
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faster transport in these populations. (F) A projection of each cell cycle state onto the Async 

distribution using information from (A) and (E), as described in Figure 15. 

 

 The Async population yielded a unimodal distribution of recovery rates, 

predominantly representing S-phase cells (~60%)(Figure 14a,d). The HMI population had 

significantly larger recovery constants on average (~50%, p<1e-5) than that of the Async 

population, indicating slower transport for mitotic cells which is consistent with the 

literature [191]. In contrast, the NOC45 population primarily exhibited low recovery 

constants and fast intercellular transport. Since the NOC45 population consists mostly of 

G1- and G2/M-phase cells (Figure 14b) and analysis of the HMI population showed mitotic 

cells with slow transport, it was deduced that G1-phase was associated with the observed 

fast transport. As a secondary validation, morphological analysis of the NOC45 tested cells 

showed that the rounded morphology typical of M-phase cells accompanied each case of 

slow transport in the distribution. Therefore, by establishing that G1-phase and G2/M-

phase produce fast and slow transport rates, respectively, the asynchronous distribution 

could be divided according to the proportion of each cell cycle state (Figure 14b,f,Figure 

15).  
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Figure 15: Defining the asynchronous distribution of recovery constants by cell cycle 

state.  Through identification of mitotic cells using Hoechst-staining, it was discovered that 

the recovery constants of G2/M phase cells cluster along the right tail of the asynchronous 

distribution. Similarly, performing GAP-FRAP on a nocodazole-recovered (NOC45) 

population yielded a cluster along the left tail of the asynchronous population and a few 

cells with slower transport. Since the NOC45 population consists predominantly of G1- and 

G2/M-phase cells (see Fig 14a) and G2/M-phase were shown to have decreased transport 

rates, we can associate the cluster along the left tail with G1-cells. Using the distribution of 

cells in each cell cycle state within an asynchronous population, the recovery constants can 

be divided by: 21.7% of the fastest transporting cells were in G1-phase, 20.1% of the 

slowest transporting cells were in G2/M-phase, and the remaining 58.2% were in S-phase. 
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3.3.4 Cell-cycle dynamics generate intercellular network heterogeneity and system 

complexity 

 To further understand the collective effect of cell cycle heterogeneity on spatial 

patterning, we implemented intercellular diffusion as a conduit for initiating differentiation 

into an agent-based computational model in which individual cells divide, differentiate, 

and modulate their connectivity to neighboring cells according to state-specific rules [137]. 

The overall permeability between two cells was defined as the product of the individual 

base permeability (PMn) of each cell, reflecting the underlying biological mechanism of 

gap junction channel formation from neighboring connexon hemichannels [167]. To assess 

phenotypic differences in permeability, GAP-FRAP was performed on randomly selected 

cells within the differentiating populations after 24 and 48 hours of RA exposure. In 

agreement with the increased Cx43 signal detected after RA-treatment (Figure 14), there 

was a significant increase in the intercellular transport at both time points (Figure 16). As 

such, a higher base permeability was assigned to differentiated cells in the model (Figure 

17a). The base permeability of each cell type was modulated by cell cycle state, with G1-

phase having the highest permeability (100% PMn) and mitotic cells having the lowest 

(30% PMn). The degree of modulation was defined from the asynchronous distribution of 

recovery constants (Fig 3d) and cell cycle length previously established [137].   

 Differentiation was initiated via two means: a) through a stochastic process, or b) 

when a small (<1 kDa), diffusible molecule accumulated within a cell past a specified 

threshold. The small molecule was assumed to be produced by both cell types and to be 

capable of intercellular transport via concentration gradients. A higher production rate of 

the small molecule was assigned to differentiated cells to reflect a possible neuro-inductive 

positive feedback in their local environment. The variability in transport potential was 
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extensive with these differentiation and intercellular transport mechanisms implemented in 

the model. 

 

Figure 16: Comparison of recovery constants collected over the first 48 hours of retinoic 

acid (RA) exposure that were calculated from GAP-FRAP results. The measured cells were 

randomly selected within the populations at each time point. At both 24 and 48 hours of 

RA-treatment, there was a statistically significant (p < 1e-5) increase in the rate of 

intercellular transport compared to the pluripotent population, denoted by the decrease in 

the recovery constant. By 48 hours, the recovery constants showed less overall variance in 

comparison to the pluripotent and 24 hour RA populations. Box plots show the median, the 

25th and 75th percentiles, Tukey whiskers (median ± 1.5 times interquartile range), and 

outliers (+).  

 

  Unique intercellular transport profiles were produced as a function of time from 

cells dynamically interacting with adjacent cells at various stages of the cell cycle and 

differentiation states (Figure 17b). In contrast, a nearly uniform intracellular distribution 

within the population occurred when cell cycle was synchronized in the model, followed 

by rapid differentiation with no pattern formation. While this result is exaggerated by the 

model constraints (i.e. intercellular communication as the primary differentiation 

mechanism), it emphasizes the role of the cell cycle in producing intercellular 
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heterogeneity within cell populations. Indeed, a cell cycle gating mechanism is sufficient 

for generating a dynamic intercellular network that is capable of pattern formation. 

 

 

Figure 17: Computational analysis of cell-cycle modulation on intercellular communication. 

(a) Each cell type (P, pluripotent; d, differentiated) has a base permeability, representing 

the average percent of gap junction hemichannels open at a cell-cell interface, with the total 

percent of open channels being the product of the two base permeabilities. (b) A function 
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for cell-cycle modulation over time was defined based on the transport trends noted in Fig 

3, with a convolution of all possible transport profiles that two cells could experience over 

time for P-P, P-D, and D-D. (c) The intercellular transport model was implemented within 

an agent-based model and compared to digitized experimental colonies over time.  

3.3.5 Intercellular diffusion dynamics generate spatiotemporal trajectories of 

differentiation 

 The structure of the intercellular gap junction network rapidly established a non-

uniform distribution of the small diffusing molecule in the model, starting from a relatively 

homogenous population of pluripotent cells randomly distributed throughout different 

phases of the cell cycle in the same ratio as an asynchronous population. Differentiation 

began in regions of the cellular network that accumulated high levels of the small diffusing 

molecule. The differentiated cells further modulated the intercellular network by having 

longer division times, thus longer G1- and S-phases, and instigated future differentiation 

patterns. Visually, the differentiation patterns produced by the model appeared similar to 

those observed in an experimental data set of time-lapse digitized images of Oct4 

immunofluorescence (Figure 17c). To quantitatively compare similarities in the spatial 

patterning, representative metrics were extracted from both experimental and model data 

for dimension reduction by principal component analysis (PCA).  

 A training set of 2D patterns classes that occur during ESC differentiation were 

computationally produced for pattern classification and to define descriptive metrics 

(Figure 18a) [137]. An original set of 15 potential network metrics, where each metric 

represented a physical or spatial characteristic of the colony, were calculated from the 960 

computationally defined patterns (8 patterns x 120 colony structures). PCA was performed 

on the set of network metrics, condensing the multivariate characterization of each pattern 

class into latent variables and conferring a unique ability to visualize similarities and 

relationships between the patterns. Seven of the metrics were found to be the most capable 

of separating the various pattern classes into discrete clusters when plotting the principal 
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component (PC) loadings (Figure 18b, Figure 9).  Furthermore, the three PCs derived from 

the seven selected metrics each represent a particular property of the differentiation within 

a colony. Specifically, PC1 represents the extent of differentiation, with each pattern 

effectively being separated by the percent of differentiated cells in the colony. PC2 reflects 

the relative spatial organization, ranging from the Random pattern class to highly 

organized, single cluster patterns, such as Inside-Out and Outside-In. PC3 illustrates the 

locale of differentiation, or whether Oct4- cells tend to cluster on the periphery of a colony 

or in central regions with high cell density. The first three components accounted for ~88% 

of data variance (PC1: 59%, PC2: 15%, PC3: 14%) and provided a quantitative means of 

describing the spatiotemporal properties of differentiating cell populations. 

 The previously mentioned time-lapse images and simulation data of differentiating 

cell populations were converted to latent space by applying the trained-PCA transform, 

which is an effective means for analyzing dynamic morphogenic trajectories (Figure 18c) 

as we have previously reported [137, 138]. Our experimental data exhibited a temporal 

trajectory as it transitioned from an undifferentiated to a differentiated fate along PC1. 

Although there was large variability in patterning at 24 hours along PC2, with colonies 

spread across multiple pattern classes, the simulation data indicated that this phenomena 

represented a transitional state in the spatial organization of differentiation. Specifically, 

each simulation showed a slow accumulation of spatially heterogeneous differentiation 

within the population followed by a fast differentiation event, occurring ~24 hours, that 

forms clusters of differentiated cells. Differentiation preferentially occurred along the 

edges of colonies, as indicated by the data and trajectory approaching the Outside-In 

pattern class (Figure 18c, PC3). In addition to differentiation initially advancing along the 

outside of a colony, loss of Oct4 also tended to propagate between differentiated cells. The 

manifestation of this behavior became apparent at 48 hours where nearly every 

differentiated cell was connected as a single cluster. For example, in Figure 18c the edges 

of the experimental colony are almost entirely differentiated and strands of differentiated 
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cells form through the center to connect the edges. A similar pattern occurs within the 

intercellular diffusion model where paths of high concentration form and propagate 

differentiation between already differentiated cells. Thus, our model was able to accurately 

recapitulate the trajectory of differentiation using the intercellular network to inform cell 

fate decisions in a spatially organized fashion.  

 

Figure 18: Quantification of spatial patterning during RA differentiation. (a) The 

computationally generated pattern class structures used to train the principle component 
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analysis, derived from [137], were applied to 120 experimental colony structures. (b) The 

seven selected metrics were calculated from each of the training set pattern classes (8 classes 

x 120 colony structures) and transformed into latent variable space through principal 

component analysis. PC1 represents extent of differentiation (temporal), and PC2 and PC3 

represent organization/stochasticity and spatial locale, respectively (spatial characteristics). 

(c) The same metrics were calculated from experimental images of 0- (n=24), 24- (n=113), 

48- (n=139), and 72-hour (n=22) RA-treated colonies and transformed into latent variable 

space. The average simulation trajectory was capable of capturing the spatiotemporal 

trajectory of the experimental data. At 24 hours there is a steep transition along both 

spatial axes, indicating that there is a gain in random differentiation and that it propagates 

along the edges of colonies. By 48 hours, the majority of differentiated cells are connected 

within a single, asymmetrical cluster.   

 

3.4. Discussion 

 In this work, we characterize the spatial organization that occurs during early neural 

differentiation of pluripotent mESC colonies. Differentiation initiates a redistribution of 

Cx43 within the population and increased connectivity between differentiating cells. In 

addition to phenotypic changes, intercellular heterogeneity is modulated by cell cycle state. 

The pro-differentiation molecular gradients driving intercellular transport, as a function of 

cell cycle and phenotype, result in dynamic Oct4 patterning in our computational model 

that recapitulates the spatiotemporal trajectory of differentiation during early neural 

commitment. 

 We find that the intercellular network gains complexity as neural commitment 

occurs. Most cell types express a unique profile of connexin isotypes and, as differentiation 

occurs, both the composition and proportion of Cxs within the cell can change. 

Furthermore, Cx isotypes each have distinct permeabilities for diffusing molecules and 

capacity for forming channels with other isotypes. The result is an intercellular network 
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capable of phenotypic-compartmentalization, opposing gradients of small molecules, and 

even unidirectional transport [175, 201]. Also, most Cxs are susceptible to post-

translational modifications that affect GJ formation, degradation, and permeability [214]. 

As such, intercellular transport can be modulated during differentiation both as a function 

of transcription and Cx activity. The rapid and sequential gain and loss of Cx43 membrane 

localization between 24 and 48 hours of RA treatment suggests that the increased 

connectivity in Oct4-diminished clusters was predominantly due to a redistribution rather 

than a change in expression of Cx43. We hypothesize that enhanced assembly of Cx43 via 

cAMP/PKA activation, which has been linked with RA treatment, produced the 

redistribution [215]. In terms of the cytoplasmic accumulation of Cx43, the locale and 

staining pattern agrees with previous studies demonstrating localization in the Golgi 

apparatus [211]. Since Cx43 connexons are formed in the Golgi network before being 

trafficked to the membrane [211, 214], an accumulation in the Golgi network would agree 

with enhanced assembly. Despite the decreased number of cells at 48 hours displaying 

enhanced Cx43 signal, a faster intercellular transport rate was maintained compared to 

pluripotent cells (Figure 13). Therefore, it is possible that either Oct4- cells transcribe a 

separate Cx isotype or that the prolonged cell cycle associated with differentiation masks 

the decreased Cx43 expression relative to the Oct4-diminished cells. Specifically, the 

extended G1/S-phase relative to M-phase associated with differentiation would also cause 

the mean transport rate to be faster.  

 We developed a multicellular model that describes cell fate transitions coupled with 

intercellular communication that is regulated by the dynamics of connexins as a function 

of the cell cycle. Although previous computational models of intercellular communication 

have included the biophysics of gap junction transport, they have primarily focused on 

small molecule diffusion through individual channels [216, 217]. One notable multicellular 

model that focused on ion transfer relied upon membrane potential to regulate intercellular 

connectivity [218]. While capable of examining the development of intracellular gradients 



 82 

at a multicellular level, the bioelectric model is constrained to a static system. A primary 

advantage of our selected framework is its ability to investigate the impact of dynamic 

intercellular topologies on a multicellular system that includes growth, division, and 

differentiation. The dynamic network facilitates the study of evolving spatial organization 

and the resultant effect on the formation of intracellular gradients.  

 Interestingly, a recent paper proposed an alternative, hidden Markov model 

framework that explored the role of stochasticity during early neural differentiation, but 

without consideration of spatial organization and cell-cell communication [219]. While the 

mechanistic framework is different from the work presented here, they share several 

similarities. In particular, both models consider differentiation to be an autonomous process 

with discrete state changes that are probabilistic. The probability of a state transition in our 

model, however, is dependent on the accumulation of an intracellular metabolite within a 

cell rather than the purely stochastic progression through microstates. The description of 

microstates typically considers gene and protein expression patterns, but in the present 

work the metabolic profile of a cell also impacts susceptibility to differentiation signals 

[220, 221]. The cellular communication integrated within our model via gap junction-

mediated transport leverages both stochastic state transitions (consistent with Stumpf et al.) 

and the higher-order collective behavior of the multicellular system, suggested by our 

observations of pattern propagation within pluripotent colonies. Therefore, our model both 

complements this prior modeling study while also advancing the description of spatial 

organization effects on the emergence and propagation of micro- and macrostates during 

early neural differentiation. 

 The superposition in latent variable space between experimentally derived results 

and agent-based simulations is a powerful feature of the analysis pipeline presented here. 

The extraction of network metrics is particularly necessary for the accurate quantification 

of systems with variable and asymmetrical structures, such as during unconstrained 

monolayer growth (Figure 17c). Since each colony structure can have a unique 
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configuration, the spatial characteristics used to distinguish pattern classes need to be 

independent from the underlying morphology. Network metrics accomplish this by 

evaluating relationships between neighboring nodes/cells and colony-wide. Furthermore, 

the transformation of each multivariate set of metrics to latent space enables visual and 

numerical comparison between individual colonies. The training set of artificially 

generated colony patterns provides the ability to directly map regions of latent space to 

specific spatial organizations (e.g. the “random” cloud versus a highly organized “outside-

in” or “inside-out” cloud). Accordingly, transformed sets of colony metrics from both 

experimental and computational sources can be delineated according to their proximity to 

each mapped pattern class in latent space. Computational models therefore can be designed 

to replicate morphogenic trajectories in a quantifiable manner and elucidate the factors that 

influence specific pattern formations.  

 In summary, a computational model for investigating multiscale intercellular 

communication was produced that demonstrates intercellular heterogeneity can be 

generated by dynamic fluctuations in GJ permeability via the cell cycle. The resultant 

dynamic intercellular network is capable of producing similar spatial patterning to that 

observed during early neural differentiation and provides a means for predicting the 

influence of intercellular perturbation on spatial patterning.. Ultimately, identifying the 

effect of molecular regulators of differentiation at a multicellular scale is an initial step 

towards replicating morphogenic events in vitro and successfully directing the emergence 

of desired engineered multicellular structures.  
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CHAPTER 4 THE EFFECT OF INTERCELLULAR PERTURBATION 

ON DIFFERENTIATION POTENTIAL   

4.1. Introduction 

Intercellular communication has the capacity to form a rich variety of intracellular 

gradients, but it is unknown to what extent these gradients affect pattern formation relative 

to other forms of communication. The deletion of both Cx43 and Cx45 in mouse ESCs was 

reported to disrupt the formation of primitive endoderm within differentiating aggregates 

[198]. In a more extreme example, the inhibition of GJ channels caused decapitated 

planarian flatworms to regenerate with head and brain morphologies that were similar to 

other flatworm species [33],  emphasizing the potential of intercellular communication to 

alter morphological features. With that in mind, exploring the capacity of intercellular 

communication to modulate differentiation could lead to significant control over patterning 

events. By understanding the influence of a given cell on neighboring cells, it could be 

possible to direct differentiation in a spatially localized manner. Such a feat would have 

significant implications for the derivation of defined multicellular systems 

 In this Chapter, the intercellular communication of pluripotent cells was perturbed 

during neural differentiation using various methods. A small molecule was used to inhibit 

adenylyl cyclase and prevent cAMP production. While this perturbation has effects beyond 

influencing differentiation or intercellular transport, there was strong evidence for cAMP 

involvement during neural differentiation. A different small molecule was used to globally 

inhibit gap junctions. The non-specific inhibition of gap junctions was a necessary 

perturbation because if intercellular communication was affecting differentiation then the 

complete prevention of communication should have a significant impact, with the caveat 

being that adaptation to the inhibitor could occur. Lastly, Cx43 was knocked-down using 

a CRISPRi system. The advantage of this approach was the specificity of the target 
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compared to the small molecule perturbations. Computational modeling was used in 

conjunction with the small molecule perturbations to study intercellular communication as 

a differentiation mechanism, which allowed intercellular communication to be studied in 

isolation from other types of communication. Overall, this work emphasizes the role of 

intercellular communication during differentiation. We report the previously unrecognized 

capability of intercellular communication to delay differentiation.    

4.2. Methods 

4.2.1 Experimental Methods 

4.2.1.1 Mouse ESC Perturbation Experiments 

 For both cell lines, D3 and RW4, the same plating and differentiation protocols 

were used as described in the Chapter 3 Methods but with minor adjustments. The 

concentration of retinoic acid was decreased to 0.3 μM and either β-glycyrrhetinic acid 

(Sigma-Aldrich) or SQ22536 (R&D Systems) was added to a final concentration of 50 μM 

or 100 μM, respectively. The DMSO concentration for each condition and the vehicle 

control was set at 0.1%. The media was changed every 24 hours with the inhibitors added 

immediately prior to ensure proper concentrations and activity. The same 

immunofluorescence and image analysis methods were used here as described in Chapter 

3 Methods. 

4.2.1.2 Human Induced Pluripotent Stem Cell Culture 

A human induced pluripotent stem cell (hiPSC) line, LBC2-GJA1, was derived from the 

WTC11 cell line, courtesy of Ashley Libby and David Joy at UCSF. The LBC2-GJA1 line 

has constitutive expression of GFP-Lamin B and a CRISPRi system targeting the GJA1 

(Cx43) gene. hiPSCs were cultured in 6 well plates coated with growth-factor reduced 

Matrigel® (Corning) in mTeSR™1 (STEMCELL Technologies) media and passaged 
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every 3-4 days upon reaching ~70% confluency. For passaging, cells were washed with 

PBS followed by disassociation with Accutase (EMD Millepore) for 5 minutes. The 

Accutase-cell mixture was diluted 1:5 in PBS and centrifuged for 3 minutes at 200g. The 

cells were seeded at a 10000 cell/cm2 density in mTeSR™1 with 10 μM of the Rho-

associated protein kinase inhibitor (Ri), Y-27632 (Selleck Chemicals). The media was 

changed every 24 hours with mTeSR™1 not containing Ri.  

4.2.1.3 Immunofluorescence   

For staining of Oct4 and Pax6, cells were fixed in 4% paraformaldehyde (Thermo Fisher 

Scientific) for 15 minutes and then permeabilized and blocked with 0.3% Triton X100 in 

5% normal donkey serum (NDS) for 60 minutes. Samples were incubated overnight at 4°C 

with the following primary antibodies in 5% NDS: goat polyclonal Oct-3/4 (Santa Cruz, 

1:200) and mouse monoclonal Pax6 (DSHB, 1:20). After washing, samples were incubated 

in a 5% NDS secondary antibody solution of donkey anti-goat Alexa Fluor 568 (Thermo 

Fisher Scientific, 1:200) and donkey anti-mouse Alexa Fluor 647 (Thermo Fisher 

Scientific, 1:200) for 45 minutes before counterstaining with Hoechst 33342 (1:1000) in 

DI water for 10 minutes. All images were collected on a PerkinElmer UltraVIEW VoX 

spinning-disk confocal microscope with a sCMOS camera at 10X magnification.  

For Cx43 and Oct4 staining, the same procedure was utilized but with the following 

changes: The primary antibodies were goat polyclonal Oct-3/4 (Santa Cruz, 1:200) and 

rabbit polyclonal Cx43 (Sigma, 1:400), and the images were collected at 20x 

magnification.  

4.2.1.4 hiPSC Neural Differentiation 

Dual-SMAD inhibition was utilized to differentiate the hiPSCs towards the neural lineage. 

The LBC2-GJA1 cells were seeded at a 10000 cell/cm2 density in mTeSR™1 with 10 μM 

Ri on ibidi 8-well μ-slides coated with growth-factor reduced Matrigel®. The media was 

changed every 24 hours with mTeSR™1 not containing Ri. After 3 days, the media was 
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supplemented with 10 μM SB431542 (Sigma-Aldrich) and 2 μM dorsomorphin (Sigma-

Aldrich). Differentiation proceeded for 6 days following the addition of the two inhibitors. 

To induce knockdown of the GJA1 gene, the media was supplemented with 2 μM 

doxycycline (Sigma-Aldrich) throughout the entire protocol, from seeding to fixation.   

4.2.2 Computational Methods 

4.2.2.1 Image Analysis 

For all cell lines, mESC and hiPSC, the same image analysis was used as described in 

Chapter 3. However, for the hiPSC cell lines the red channel represented Pax6 rather than 

Sox2. 

4.3. mESC Results 

4.3.1 Selected Perturbations  

 Nocodazole synchronization was originally proposed as a fundamental perturbation 

to test the predictive capability of the intercellular differentiation module. However, this 

proved to be technically unfeasible since cell cycle asynchrony is regained rapidly after 

short-term nocodazole treatment and long-term nocodazole treatment decreases the 

expression of pluripotency markers at a similar time scale as RA treatment [222]. Instead, 

two other perturbations were selected: (i) inhibition of the production of an abundant small 

molecule that could be represented by the generic diffusible molecule in the computational 

model, and (ii) global inhibition of gap junction channels.    

4.3.1.1 Adenylyl Cyclase Inhibition  

 Cyclic AMP (cAMP) is a canonical secondary messenger that has been directly 

associated with creating spatially diverse intracellular distributions as a function of 

intercellular communication [6]. It was hypothesized that the distribution of cAMP plays a 

role in the spatial aspects of RA-accelerated differentiation since RA treatment can activate 
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PKA, a cAMP dependent kinase [215]. While cAMP is involved in multiple cellular 

processes, the availability of reagents to perturb intracellular cAMP levels makes it an 

attractive molecular target for investigating GJ-mediated communication and testing the 

validity of our model. Adenylyl cyclase (AC) was inhibited with SQ22536 (SQ) to prevent 

the conversion of ATP to cAMP, and consequently decrease the intracellular cAMP 

concentration [223].  

4.3.1.2 Gap Junction Inhibition  

A few molecules with different mechanisms of action have commonly been used 

to globally inhibit gap junction channels within cell populations. Some molecules, such 

as heptanol, cause GJ channels to uncouple by inducing changes in the structure of the 

lipid membrane. The insecticide lindane initiates an acute internalization of GJ channels 

followed by a longer delayed-onset inhibition, both mediated by oxidative stress. In 

contrast, 12-O-tetradecanoylphorbol-13-acetate (TPA) and β-glycyrrhetinic acid (β-GA) 

modulate the phosphorylation state of connexins and affect the localization and assembly 

of gap junctions. The small molecule β-GA was deemed the least harsh of these chemical 

treatments and was selected as the means for GJ inhibition.  

4.3.2 Perturbations to the D3 mESC Cell Line 

 The initial perturbation studies were conducted with the D3 mESC cell line that the 

model parameters were derived from. Therefore, computational simulations were used 

iteratively with experiments to gain insight both about the biological system and the model. 

Specifically, due to the abstraction of differentiation potential into a single intercellular 

molecule, the degree of experimental perturbation does not correspond exactly with the 

degree of perturbation within the model. A simple example would be considering two 

intercellular molecules that equally affect differentiation: if only a single molecule is 
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inhibited, the other molecule still exerts its influence. Therefore, full inhibition of the 

molecule in the biological system only maps to 50% inhibition in the model. As such, the 

model was originally able to provide coarse predictions of expected behavior followed by 

more detailed information from refining the degree of modulation to fit the experimental 

data. To implement cAMP inhibition, the production constant (defined in Section 3.2.2.1) 

was decreased by 14% in differentiated cells. The reason it was only decreased in the 

differentiated cells was also in response to the abstraction. The base production constant 

for pluripotent cells was set such that the steady state concentration within a cell would be 

below the differentiation threshold by a specific margin. This steady state concentration 

can be interpreted as representing the “naïve” pluripotent state and it becomes “primed” as 

it approaches the differentiation threshold. Therefore, in this abstraction, decreasing the 

production rate in pluripotent cells would be equivalent to an increase in pluripotency, 

which seemed unlikely in the biological system. To simulate GJ inhibition, the nascent 

permeability (defined in Section 3.2.2.1) was decreased by 9% for both cell types. The 

coarse prediction for inhibition of cAMP production was that SQ treatment will decrease 

the rate of differentiation and, depending on the extent of its influence, an increased 

residence time in the ‘Random’ pattern class. Simulations of GJ inhibition by -GA yielded 

a similar delay in the differentiation rate and minimal variation in the spatial organization 

or locale of differentiation, comparable to the results from inhibiting cAMP production. 

The data clouds for experimental and fit simulations are depicted in Figure 20 with the 

average values shown in Figure 21.  
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Figure 19: Experimental colonies of D3 mESC cell line at 24 and 48 hour time points of 

retinoic acid treatment Averages of these values are illustrated in Figure 21. 
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Figure 20: Simulation colonies at 24 and 48 hour time points of retinoic acid treatment for 

the Vehicle control (n=75), SQ-treatment (n=30), and GA-treatments (n=30 converted 

into latent space. Averages of these values are illustrated in Figure 21. 
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 The stochasticity and peripheral differentiation in SQ-treated colonies increased 

slightly at 24 hours compared to the vehicle DMSO control. Furthermore, SQ-treated 

colonies showed significantly delayed differentiation between 24 and 48 hours, retaining a 

large proportion of pluripotent cells. The simulation of SQ-treatment in the model resulted 

in similar dynamic changes and comparable distributions of spatial patterns at 24 and 48 

hours relative to the experimental data (Figure 22a).  

 

Figure 21: Perturbation to the intercellular network of a multicellular D3 ESC population 

affects RA-accelerated differentiation in a temporal manner.  At 24 hours, neither adenylyl 

cyclase (AC) inhibition (a, SQ-treatment) nor gap junction (GJ) inhibition (b, β-GA-

treatment) induced a significant change in spatial or temporal characteristics of 

differentiation compared to the vehicle control. By 48 hours, a temporal shift along PC1 is 

observed for both treatments (a,b), depicting a decrease in the rate of differentiation. The 

intercellular model accurately predicted these dynamics, represented by average values for 
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SQ-treatment (Exp: n=87, Sim: n=30) and GA-treatment (Exp: n=62, Sim: n=30) 

compared to the vehicle control (Exp: n=87, Sim: n=75) (a,b). 

  

 To test the degree of influence from the intercellular network, we investigated the 

effect of gap junction inhibition during differentiation. The experimental perturbation to 

GJ-channels by β-GA resembled the outcome predicted by the simulations, with 

differentiation delayed at 48 hours in a manner similar to, but less potent than, AC-

inhibition (Figure 21b).  

 Collectively, these results lead to several conclusions: i) delaying differentiation by 

SQ-treatment implies that cAMP has a role in stimulating neural differentiation during RA-

treatment; ii) the ability of the model to capture the temporal change indicates that this role 

is at least partially mediated by the intercellular network; and iii) the minor spatial changes 

upon perturbation reflect that the topology of the gap junction network remains the same 

despite the slower differentiation rate.  

4.3.3 Perturbations to the G-Olig2 RW4 mESC Cell Line 

 As further validation, both perturbations were applied to ATCC G-Olig2 cells, 

derived from the RW4 ESC line (Figures 22-24). In both conditions, the temporal delay 

was recapitulated, with β-GA having a slightly more significant effect than the SQ-

treatment. Interestingly, the intercellular model was able to accurately predict each 

condition from the 19- and 43-hour time points of the D3 simulations, indicating that the 

RW4 cells are either inherently more pluripotent than D3 cells or that they are less sensitive 

to RA-treatment.  
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Figure 22: Experimental colonies of RW4 mESC cell line at 24 and 48 hour time points of 

retinoic acid treatment Averages of these values are illustrated in Figure 24. 
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Figure 23: Simulation colonies at 19 and 43 hour time points of retinoic acid treatment for 

the Vehicle control (n=75), SQ-treatment (n=30), and BGA-treatments (n=30 converted into 

latent space. Averages of these values are illustrated in Figure 24. 
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Figure 24: Perturbation to the intercellular network of a multicellular RW4 ESC 

population affects neural differentiation in a temporal manner. Similarly to Fig 21, neither 

adenylyl cyclase (AC) inhibition (a, SQ-treatment) nor gap junction (GJ) inhibition (b, 

GA-treatment) induced a significant change in spatial or temporal characteristics of 

differentiation compared to the vehicle control at 24 hours. By 48 hours, a temporal shift 

along PC1 was observed for both treatments (a,b), but with a more significant decrease in 

the differentiation rate for GJ-inhibition. Furthermore, GJ-treatment at 48 hours produced 

an increase in stochasticity compared to the vehicle and SQ-treatment groups. In 

comparison to Fig 22, the RW4 tended to differentiate in a more “inside-out” manner than 

the noted ‘outside-in’ differentiation of the D3 ESC line. Interestingly, the intercellular 

model suggests that RW4 cells differentiate slower than D3 cells in response to RA, as 
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indicated by the accurate prediction of both treatments at the simulated 19 and 43 hour 

time points. (Veh: n=59, SQ: n=49, BGA: n=46) 

 

 

 A few other notable differences between the cell lines became apparent in our 

analysis. For instance, the RW4 colonies appeared to be less specific for initiating 

differentiation along colony edges. However, the propagation of differentiation between 

clusters remained a prominent spatial feature, as demonstrated by the frequent emergence 

of the ‘Snaked’ pattern class (Figure 25a). Also, GJ inhibition by β-GA induced a 

pronounced morphological change in RW4 colonies at the 48 hour time point (Figure 25b). 

Specifically, a web-like pattern consisting of strands that were 1-2 cells thick formed and 

was interpreted in latent space as an increase in stochasticity.  

 

Figure 25: RW4 colony patterning and morphology after 24 and 48 hours of retinoic acid 

exposure, respectively, with adenylyl cyclase or gap junction inhibition compared to the 

vehicle control. At 24 hours, obvious examples of the snaked pattern class emerge 
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(demonstrated by dotted lines). (b) At 48 hours, both the Vehicle and SQ colonies tend to 

form larger cell clusters with a few smaller extensions between clusters (indicated by white 

arrows). In contrast, after GJ inhibition the majority of cells in the population form a 

network of branching extensions and develop numerous circular pockets. Oct4: Green, 

Blue: Hoechst. 

 

 

4.4. hiPSC Results 

4.4.1 Connexin43 Knockdown 

 To selectively perturb the intercellular network, Cx43 was knocked down in an 

hiPSC cell line prior to neural differentiation through a doxycycline-induced CRISPRi 

system [224]. For ease of reading, the LBC2-GJA1 and LBC2-GJA1+Dox conditions will 

be referred to as WT and Cx43-KD, respectively. Differentiation was initiated by dual-

SMAD inhibition after the cell culture had reached 80-90% confluency, which increases 

the efficiency of neural differentiation [225]. As such, the collected images are not of 

individual colonies but rather a number of individual frames collected from one large 

population. Oct4 and Pax6 were selected as markers of the differentiation status in this set 

of experiments. We observed divergence of expression in these markers between the WT 

and Cx43-KD cells, with the Cx43-KD maintaining a high level of Oct4 cells compared to 

the WT at Days 4 and 5 (Figure 26). The WT showed significant and increasing expression 

levels of Pax6 that peaked at Day 6, whereas the Cx43-KD had minimal Pax6 expression 

until Day 6 with regions of Oct4+ cells still present.  
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Figure 26: Dual-SMAD inhibition in the hiPSC line LBC-GJA1 with and without 

doxycycline for days 4 through 6. 

  

 

 

 To quantify this observation, the images were analyzed in CellProfiler as described 

in 3.2.2.2 and the average number of Oct4 and Pax6 positive cells within each image was 

calculated. Comparing the means for each day confirmed the image observations, with the 

Cx43-KD exhibiting a statistically significant delay in differentiation compared to the WT 

(Figure 27).  
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Figure 27: Average Oct4 and Pax6 expression over 6 days of dual-SMAD inhibition in the 

hiPSC line LBC2-GJA1 with (Cx43-KD) and without (WT) doxycycline.  

 

 In parallel with these experiments, the expression of Cx43 within the populations 

was assessed to validate the knockdown over the course of differentiation (Figure 28). At 

every time point examined, the Dox treatment very effectively knocked down the 

expression of Cx43 to nearly negligible levels (<2%). Interestingly, at Day 2, the WT cells 

exhibited a similar increase in expression of Cx43 as was observed in mESCs in Figure 13. 

Also in agreement with the mESC Cx43 expression data was that the increased Cx43 

appeared to be occurring in cells with diminished Oct4 and was eventually lost. In fact, by 

Day 6 there is an apparent decrease in Cx43 in the WT population.  
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Figure 28: Cx43 expression during dual-SMAD inhibition in the hiPSC line LBC-GJA1 

with (Cx43-KD) and without (WT) doxycycline for days 0, 2 and 6. 

 

    

4.5. Discussion 

 While the ability to direct differentiation is undeniably an essential step in the goal 

of generating ELS, it could be argued that inhibiting the propagation of undesirable 

differentiation plays an equally important role. In this work, we find that perturbing 

intercellular communication by disruption of GJ formation, inhibiting levels of a critical 

molecule transported via GJCs, or directly inhibiting a specific connexin protein can delay 

the propagation of differentiation. Furthermore, this temporal modulation was consistent 

across three different cell lines, two different species, and three different mechanisms of 

perturbation. There are several potential mechanisms that could be behind this modulation. 
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The most obvious mechanism involves the transfer of an intracellular species, possibly 

cAMP, that acts as a pro-differentiation cue. The similarity in response to the two small 

molecule inhibitors can be attributed to the decreased intracellular accumulation of this 

pro-differentiation molecule caused by limiting the intercellular transport, either by 

decreasing the number of active channels (β-GA) or by decreasing the concentration in 

each cell and the gradient between cells (SQ) (Figure 29).  

 

Figure 29: A schematic diagram of our proposed mechanism for the influence of AC and GJ 

inhibition on differentiation potential. Specifically, both AC and GJ inhibition are suggested 

to decrease the intercellular flux between cells but via separate mechanisms: modulating the 

concentration gradient and the number of open channels for AC and GJ inhibition, 

respectively.  

 

Other interactions exist between cAMP and Cx43 that could also explain the similarity. 

For instance, the PKA/cAMP pathway is directly involved in the enhanced assembly of 

Cx43. In this case, cAMP inhibition would indirectly cause GJ inhibition. Hence, the 
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mechanism would still be reliant on the diffusion and spatial gradient of a pro-

differentiation molecule, but cAMP would predominantly affect the transport rather than 

the differentiation. Another possibility is that the loss of GJ connectivity induces a 

morphological rearrangement, similar to that observed in the RW4 cells after β-GA 

treatment (Figure 25). By changing the cell-cell arrangement, sensitivity to extracellular 

signaling cues can change in response to receptor localization, akin to the TGFβ receptor 

lateralization in densely packed hiPSC colonies [226]. However, morphological 

differences were not observed in the colony morphology of the Cx43-KD cells or to any 

significant extent in the GJ-inhibited D3 cells. Therefore, changes in the morphological 

arrangement are unlikely to be the primary cause of the delayed differentiation, but they 

may have been a secondary factor in the RW4 cell line.  

The repeated phenomenon of enhanced Cx43 expression during early differentiation of 

mESCs and hiPSCs suggests that increased intercellular communication is a typical feature 

as pluripotency is lost. We had originally proposed that the increased Cx43 in mESCs was 

due to enhanced assembly, with the hypothesis that retinoic acid was activating the 

cAMP/PKA pathway. However, since neither of the SMAD inhibitors are known to cause 

PKA activation, an alternative mechanism must exist. The concomitance with the loss of 

Oct4 in both scenarios, despite different treatments and cell lines from different species, 

suggests that the change is genetic. Although, it is unknown whether this transient 

transcription of Cx43 is a ubiquitous feature of early differentiation or if it is specific to 

early neural commitment. In either case, these results indicate that early differentiation 

events involve dynamic regulation of gap junction communication. A later stage of neural 

differentiation has also been linked to dynamic modulation of intercellular communication 

[211]. Interestingly, transport rates were found to transiently decrease in the first day of 

neural progenitor differentiation then increase rapidly in the following days of 

differentiation. Therefore, the regulation of intercellular communication during 
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differentiation appears to be a general mechanism of coordination not limited to pluripotent 

cells.  
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CHAPTER 5 MODULAR COMMUNICATION IN AGENT-BASED 

MODELS 

 Within an evolving multicellular system, there are numerous opportunities for 

spatial patterns to emerge across a variety of scales. From macro to micro scales, spatial 

features can occur in the overall morphology of the cell population, the organization of 

cells within the population, gradients of extracellular molecules, and even intracellular 

gradients between neighboring cells. Furthermore, heterogeneity at any one of these scales 

can influence the development of spatial variability at the other scales. Consequently, it 

can be difficult to ascertain the role of these factors, both individually and in tandem, in 

the initiation and progression of spatial patterning within a multicellular system. Here, we 

present a graphical user interface (GUI) for producing agent-based models that are capable 

of exploring these various facets of pattern formation. Agent-based models are unique in 

their ability to integrate combinations of heterogeneous processes and investigate their 

respective dynamics, especially in the context of spatial phenomena. However, while 

ABMs are an ideal tool for studying spatial characteristics, the required programming 

knowledge and initial time investment can be daunting. Other interfaces for developing 

agent-based models exist but the user must explicitly code the agents, their properties, their 

interactions, and the environment. For example, NetLogo [227] and CompuCell3D [26] 

both provide an interface for the creation of agent-based models but the possible 

complexity of the generated models in these interfaces is constrained by the users 

knowledge of the respective programming languages.   

 The GUI application presented here avoids these requirements by allowing the user 

to add or remove hard-coded features considered essential processes for studying pattern 

formation. While this may initially seem to limit flexibility, the ABMs produced can be 

modified to include any additional processes, as the user sees fit. The primary advantage 

of this infrastructure is the ability to quickly iterate through different combinations of 
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processes, cell organizations, and morphologies. Various designs for engineering living 

systems (ELS) can be investigated and optimized in silico to accelerate the production of 

in vitro systems. Alternatively, current ELS can be modeled and improved upon by testing 

variations in the designs or conditions. Ultimately, we provide a tool that facilitates the 

study of multiple modes of cellular communication in a spatial manner that can be applied 

to a wide variety of biological questions.  

5.1. Multiscale Communication Agent-Based Model Generator 

 A multiscale communication agent-based model generator (MsCAMgen) was 

developed in Python 2.7 to provide a framework for modeling various spatial aspects of a 

multicellular network without requiring explicit programming by the user. Each model is 

capable of accounting for cell division and growth, state changes between different cell 

types, extracellular diffusion of molecules that are secreted and consumed by cells, 

intercellular communication of small molecules between neighboring cells, and 

intracellular gene/protein networks (Figure 30). For simplification, the small molecules 

that are transported between cells are called “intercellular molecules” to differentiate them 

from the non-transportable species in the intracellular networks.  

 

Figure 30: Overview of the primary features and forms of communication of MsCAMgen 

across different timescales. Each cell type can be assigned a cell cycle length, allowing 
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growth and division of cells over the course of multiple hours. Intracellular gene/protein 

networks interact with extracellular and intercellular molecules, updating every hour. 

Extracellular and intercellular transport are both updated every second, with intercellular 

molecules typically diffusing significantly faster. 

 The application is open-source and installation involves installing Python from the 

official website www.python.org, followed by simple instructions to download additional 

modules. Upon installation, the user runs the start_GUI.py script (by double-clicking) and 

is ready to design a model. The application has 5 tabs/frames that the user proceeds through 

from left to right: Network Creation, Model Parameters, State-Change Mechanism, State-

Change Parameters, and Compile & Run. The following sections will detail the various 

features available in each tab.  

5.1.1 Network Creation  

 The first frame focuses on the macro aspects of the model: the hierarchy of cell 

types, the initial morphology of the colony, and the organization of cells within that colony 

(Figure 31). At the top of the frame are the five tabs a user will progress through, left to 

right. Moving forward, there will be a linear progression through the choices that a user 

has and a suggested order for making those decisions, however any step could be ignored 

along the way and the model would instead use the default settings. These default values 

are not suggested to be used for actual model analyses, but they allow a user to quickly test 

features and learn how MsCAMgen works.  

 Within the panel in Figure 31, the large white space in the center is an area for 

drawing a cell colony or inputting an image, where on the far right side one can select 

which cell type to draw. On the bottom right, the user specifies properties for each cell 

type. Once the network is drawn, the user clicks the “Create Network” button for the drawn 

region to be converted to a cloud of cells. On the right, the purple Boundary button lets the 

user specify a growth boundary that prevents cellular movement. 

 

http://www.python.org/
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Figure 31: The first frame “Network Creation” and initial window that appears upon 

launching MsCAMgen.  

  The first consideration is the hierarchy of cell types because it influences multiple 

input options during the model design. Four options are included, as shown in Figure 32. 

Briefly, there is a simple transition between two cell types, a linear progression between 

three cell types, a multipotent cell type capable of divergent fates, or two cell types capable 

of transitioning to the same state. The first three options are relatively common hierarchal 

schemes but the fourth is more context specific and can represent different biological 

phenomena. For instance, the two initial cells could represent a mutant and wildtype of the 

same cell type or the final state could represent an apoptotic state of the two initial cell 

types.   
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Figure 32: The four possible cell transition hierarchies. Option 1 is a simple transition 

between two cell types. Option 2 depicts a linear progression between three cell types, where 

A transitions to B followed by B transitioning to C. Option 3 represents a multipotent cell 

(A) that can transition into two different states, B and C. Option 4 covers special cases such 

as mutant cells (B is a mutant of A) or apoptosis (C is an apoptotic cell).   

 

 After selecting the state change options, the user draws the desired shape of their 

system on the large white canvas. On the top right side of the frame are buttons that depict 

each cell type, with the black outline indicating which button is selected. Once satisfied 

with the morphology and cellular organization, clicking the button labelled “Create 

Network” will convert the filled in area into a cluster of cells. To change the relative size 

of each cell type within the network, the user can change the value for the cell radii in the 

“Cell Type Parameters” table on the bottom right of the frame. If a random mixture of cells 

is required, on the bottom left is the option to create a random distribution of two cell types 

once the network is created. Furthermore, an image can be uploaded using the ‘Upload 

Image’ button. The image is overlaid on the white canvas and can be drawn over in the 

same way as the canvas. In this way, it is possible to coarsely mimic the morphology and 

organization of an experimental system in a generated model, as illustrated by Figure 33.  

 Lastly, by clicking on the purple “Boundary” button, a growth boundary can be 

specified around the cell network that cells cannot pass beyond. An experimental 
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equivalent of this type of growth boundary is the use of micropatterning, which has been 

used for a number of differentiation studies [226, 228, 229]. To account for the limited 

growth space, each cell agent has a compression value calculated from the degree of 

overlap with other cells that prevents cell division if the local cell density is too high. An 

example of the growth boundary is shown in the next section when the different growth 

dynamics are discussed (Figure 35). 

 

Figure 33: Using an experimental image as a template for the morphology of the cell 

network in MsCAMgen. An uploaded image can be drawn over, using the different colors 

to designate cell type, and converted into a network of cells with similar morphology and 

cellular organization.  

5.1.2 Model Parameters  

 The second tab/frame of MsCAMgen mostly consists of selecting the transportable 

and non-transportable molecules within the system, but also contains options for selecting 

the type of growth dynamics (bottom left of Figure 34). Along the top, the number of 

extracellular and intercellular molecules can be specified with their associated parameters, 

such as their diffusion constants and production/degradation rates for each cell type. At the 

bottom left, the growth dynamics can be selected and on the bottom right, a system of 

ODEs can be inputted for non-transportable intracellular species.  

 As illustrated in Figure 35, there are three colony growth choices: symmetrical, 

condensed asymmetrical, and expanding asymmetrical growth.  
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Figure 34: The second frame "Model Parameters" of MsCAMgen.  

 The symmetrical growth type produces colonies with equal cell densities and 

uniform expansion along each edge. Typically, a rather circular colony will result from the 

symmetrical growth type over time. The condensed asymmetrical growth type exhibits a 

high-density region at the center of the colony while cells along the edges spread outwards 

in an asymmetrical fashion. A similar phenomenon occurs in pluripotent colonies where 

cells pack closely together and become less dense approaching the edges [228]. The 

expanding asymmetrical type depicts motile cells that create low-density and highly 

asymmetrical morphologies. Expanding asymmetrical growth was implemented for the 

intercellular model, described in Chapter 3, to mimic the cellular extensions out of the 

mESC colonies that occurred during neural differentiation. 
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Figure 35: The three types of colony growth dynamics available in MsCAMgen. 

Symmetrical growth has equal density and minimal spread of the colony edges. Condensed 

asymmetrical maintains a highly dense center of cells while the edges expand outwards. 

Expanding asymmetrical has low density throughout the colony and develops asymmetrical 

extensions from the colony. On the right is an example of using a star-shaped growth 

boundary, with cells unable to move out of the specified region.   

 

 Along the top of the second frame (Figure 34), the user can select and parameterize 

up to two extracellular and/or intercellular molecules. Once the number of each type of 

species is decided, clicking the “Update” button will add or remove those molecules. The 

parameters for each species include the diffusion constant, a production rate, a degradation 

rate, and an initial concentration either within the cell or in the extracellular space. The 

chosen molecules will become options when assigning the state-change mechanism in the 

next section.  
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 Additionally, up to eight non-transportable intracellular species can be defined as a 

set of ordinary differential equations (Figure 36). First, the user can choose the number of 

intracellular molecules, followed by clicking the “Create Species” button. A number of 

entry boxes will appear for naming the respective species and assigning initial 

concentrations of each of those species within the different cell types. Clicking the “Create 

Equations” button instantiates another set of entry boxes for defining the respective 

differential equations. The equations can include any transportable or non-transportable 

species, represented by their associated shorthand Xn, En, or In for the intracellular, 

extracellular and intercellular species, respectively. Constants can be typed directly into 

the equations or they can be defined using the shorthand Cn, where n is an integer between 

0 and 99. If using the shorthand constants, then once the equations are finalized, the “Set 

Constants” button can be clicked. An entry box for each constant that was defined in the 

equations will appear and values can be assigned. Later, when the model is compiled, all 

of the equations and initial values will be extracted, parsed into their respective variables, 

and compiled in the correct syntax within the model.  
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Figure 36: Defining non-transportable intracellular species and their respective differential 

equations. Starting from the top, the user selects how many species and clicks “Create 

Species”, followed by giving names and initial concentrations to those species before 

clicking “Create Equations”. A series of entry boxes will appear for each intracellular and 

extracellular species where the differential equations can be typed. The equations can 

include any transportable or non-transportable species and constant values can be defined 

and assigned values by clicking “Set Constants”.  

5.1.3 State-Change Mechanism & Parameters 

 The third frame centers on describing the cell interactions with the various 

molecules/species in the system and their influence on state transitions (Figure 37). Along 

the top are descriptions of the two mechanisms, Direct Interaction and Phenotypic 

Expression. Selecting either option will change the “State-Change Parameters” frame to 

reflect the different mechanism. At the bottom, interactions can be assigned by selecting 
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the molecule from the drop-down list, the effect that molecule has, and the pathway it 

affects.  

 There are two possible mechanisms for inducing state change: direct interaction or 

phenotypic expression. The direct interaction method allows for molecules to directly 

affect the probability of a state change occurring. Any defined molecule can behave as an 

activator or an inhibitor in a concentration-dependent manner and the state change 

probability for any particular cell is the cumulative effect of every interacting molecule the 

cell is exposed to. In contrast, the phenotypic expression method assumes that each cell 

type can be represented by a unique steady state of the non-transportable intracellular 

species. For example, if the pluripotency gene network was considered then cell type A 

and B could represent Oct4+ and Oct4- cells, respectively. Since the fourth frame “State-

Change Parameters” is dependent upon the selected mechanism, this section will be split 

into two subsections for each mechanism that will also discuss the respective parameter 

options.  
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Figure 37: The third frame “State-Change Mechanism” of MsCAMgen.  

 

5.1.3.1 Direct Interaction Mechanism 

 For direct interaction, at the bottom of the third frame there are three drop-down 

menus labelled “[Molecule]”, “[Effect]”, and “[Pathway]”. Using these three drop-down 

menus, the user can specify which molecules can activate or inhibit the probability of one 

cell type converting to another. The molecule list will include the given or default names 

of each non-transportable species as well as the shorthand notations for the extra- and 

intercellular molecules, En and In respectively. An example is shown in Figure 38, “I1 

Activates A -> B”. When the “Add Interaction” button is clicked a representation of I1 

with a green activation arrow appears above the A to B transition. The same procedure can 

be repeated for every other interaction that is occurring in the system. Furthermore, all 
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interactions can be reset or removed one at a time using the “Interaction to Remove” drop-

down list.  

 

Figure 38: Setting up a direct interaction mechanism in MsCAMgen. Transportable 

molecules are represented by squares while the non-transportable species are hexagons. 

The Molecule, Effect, and Pathway drop-down lists at the top right are selected as I1, 

Activates, and A -> B, respectively.  

 

 Moving on to the fourth frame “State-Change Parameters”, there is a tab for each 

pathway i.e. A -> B (Figure 39a).  Each tab has the same layout, with the top left having a 

list of all molecules that affect the pathway. At the bottom of the frame, for each tab, each 

molecule has a set of parameters that define its probability function. A positive and 

negative Hill function were used to represent the probability function for activation and 

inhibition, respectively. A threshold can also be set which shifts the origin of the Hill 

function to that value, effectively making any concentrations below the threshold have no 

influence on the transition. The Weight parameter is a multiplier that changes the 

magnitude of the probability function. As a visualization, if the same molecule is selected 

for the x- and y-axes in the Plot Variables box followed by clicking the “Update Plot” 

button then the probability function is plotted on the top right. To change the scale or only 

look at a specific concentration range, the x- and y-limits can be modified for the plot. In 
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addition to visualizing a single probability function, if two different molecules are selected 

in the Plot Variables box then a probability landscape is generated (Figure 39b). 

Specifically, a heatmap of the cumulative probability from the two selected molecules 

within the concentration ranges set in x- and y-limits.   

 

Figure 39: The fourth frame "State-Change Parameters” for Direct Interaction in 

MsCAMgen. (a) The top right of the frame shows a plot of the probability function for I1 

with the associated parameter values in the box on the bottom left. (b) The probability 

landscape using the parameter values in (a) for I1 vs TF2.  
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5.1.3.2 Phenotypic Expression Mechanism 

 The layout for phenotypic expression is nearly identical to direct interaction, with 

the main difference being that instead of an “[Effect]” drop-down there is a “[Transition]” 

drop-down to represent whether the concentration of the species increases or decreases 

during the transition. The same procedure as described for Direct Interaction is used to 

Add, Remove, and Reset the interactions.  

 

Figure 40: Setting up a phenotypic expression mechanism in MsCAMgen. Non-

transportable species are depicted by miniature plots that either increase (green) or 

decrease (red). Additionally, the species are labelled underneath each cell type with a plus 

or minus sign to illustrate whether it is starting at a higher or lower concentration than the 

cell type it is transitioning towards. 

 

 The only State-Change Parameters required for the phenotypic expression 

mechanism are threshold concentration values (Figure 41). At every time point (hour 

increments by default), the intracellular concentrations are updated according to their 

differential equations and compared to the thresholds. If all assigned threshold conditions 

are met then there is a 20% chance for the cell to change states. A probability was 

implemented to minimize the effect of fluctuations initiating a state change, but the 
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assigned 20% was arbitrarily selected during the development of MsCAMgen. A future 

version will allow the user to choose this probability value for each transition pathway. 

  

 

Figure 41: The fourth frame "State-Change Parameters” for Phenotypic Expression in 

MsCAMgen. For a transition to occur, a cell must simultaneously meet the threshold 

requirements for each species. If the requirements are met then the cell has a set 20% 

probability of changing state.  

5.1.4 Compile & Run  

 In the final frame, all of the previously input information is extracted from other 

frames and compiled (Figure 42). Specifically, template model scripts have insertion points 

where different parameters and/or functions are written. Therefore, each model is generated 

in real-time in a minimalistic form that does not contain numerous conditional statements. 
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The advantage of this tactic is that readability of the model code is enhanced and variables 

can be dynamically written. The “Compile Model” button formulates a new agent-based 

model in the same folder as the start_GUI.py script using the parameters from the other 

frames. Once compiled, the user can select or type in a directory for saving simulation files 

and then click “Run Model” to begin. During runtime of the simulation, the central region 

of the frame is updated to show the evolution of the morphology and organization of the 

colony. 

 Once started, a new folder is created in the provided directory that contains a copy 

of the model code. As the model runs, files containing the simulation data for each hour 

time point are added to the folder. The “network.gpickle” files contain all the information 

about the cell-agents, while other saved files are named after the extracellular molecules 

and contain the respective concentrations in the extracellular space, represented by a 

discrete grid. All of this information can be extracted and either independently analyzed or 

converted into images using scripts provided with the generated model.  
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Figure 42: The fifth frame "Compile & Run" for MsCAMgen.A real-time update on the 

colony morphology is shown in the window and a progress bar fills as the simulation 

proceeds. 

 

5.2. Application Example of MsCAMgen 

 As a proof of concept, MsCAMgen was used to recapitulate a recently published 

model on the radial self-organization of the three germ layers [226]. During gastrulation, 

epiblast cells differentiate into the three germ layers in a spatially defined manner. A 

similar patterning can be achieved in vitro by growing hESCs in the presence of bone 

morphogenetic protein 4 (BMP4) within a circular micropattern [228]. The confined 

geometry of the micropattern in conjunction with the BMP4, mimicking BMP4 secreted 

by extraembryonic tissue, creates a radial pattern of the three germ layers with 
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trophectoderm forming the outermost ring. The formation of this radial pattern is largely 

dependent on the spatial distribution of pSMAD1 activation in response to BMP4, which 

occurs along the outer edge of the colony. In the paper, Etoc et al. demonstrated the 

importance of high cell density for attaining this pSMAD1 localization [226]. As the cell 

density was decreased, larger regions in the center of the colony became pSMAD1 positive. 

The model they developed used the cell density and distance from the center of the colony 

to estimate pSMAD1 localization. Here, MsCAMgen was used to simulate PSC colonies 

of varying density constrained by a circular growth boundary. A single extracellular 

molecule, representing BMP4, was included with a constant degradation rate for each cell 

in the simulation. In this way, a pSMAD1 patterning could be attained that was similar to 

the model and experimental data (Figure 43).     

 

Figure 43: Simulated BMP4 activity, indicated by pSMAD1, as a function of cell density 

using a MsCAMgen generated model. 

5.3. Discussion 

 Biological systems and their respective processes are inherently complex and 

consist of multiple coordinated systems. In many cases, the functionality of these systems 
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would be impossible to intuit from knowledge of only the individual parts. To study the 

emergence of this behavior and identify the interactions involved requires a tool such as 

AB modeling that allows for the integration of various processes in a single simulation. 

However, biologists are not typically exposed to any substantial amount of programming 

or computational modeling. As such, there is a need for software that can allow biologists 

to study these emergent phenomena without requiring a significant amount of time 

deciphering computational syntax.  MsCAMgen is a simple solution that provides 

biologists with a method of studying emergence in a large variety of contexts and with a 

significantly lower time investment. 

 The novelty of MsCAMgen over existing tools is that it was designed as an 

interface for generating models rather than an environment for model development. The 

distinction is important because an environment for model development merely provides a 

set of tools and instructions on their independent use. It is the responsibility of the user to 

implement these tools correctly and to organize their interactions in the form of a working 

model. Therefore, to develop a model, the user must become comfortable with the syntax 

of the respective programming language, define and code the order of operations, and 

validate that the implemented processes behave appropriately. In contrast, MsCAMgen 

generates a working model that incorporates pre-coded and pre-validated features. The user 

can add or remove these features within the graphical interface without requiring prior 

knowledge of the Python language and the model will be compiled correctly at the click of 

a button. This format provides multiple advantages over a typical framework for model 

development. Every model is created independently of previous models which prevents the 

possibility of a single error propagating throughout model versions. Furthermore, the 

addition or removal of features is automatically accounted for within every model script, 

effectively removing any requirement for debugging during model design. The only 

drawback, in terms of user difficulty, associated with the addition of features is an increase 

in the number of parameter values. However, there are constraints in the utility of 
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MsCAMgen. Models are currently constrained to 2D and simulations with over 1000 cells 

can slow down dramatically when extra- or intercellular transport is being considered. As 

such, MsCAMgen is mostly applicable for analyzing smaller niche environments.   

 The plug-and-play nature of MsCAMgen is a unique feature that not only 

significantly increases accessibility but also makes the addition or removal of model 

complexity a trivial task. The provided framework contains a plethora of options for 

studying largely variable systems. For example, tumors have vast heterogeneity in their 

composition and behavior. Using MsCAMgen, any 2D structure, such as that obtained from 

a histological section, can be drawn and converted into a cellular network within seconds. 

The discussed example illustrated the ease of modulating cell density but just as easily one 

could modulate the colony size, colony asymmetry, or cell heterogeneity. Overall, 

MsCAMgen is an adaptable tool that can provide insight into these highly variable systems.  

 Finally, the successful design of ELS relies on the coordination of multicellular 

populations to achieve functionality. However, as ELS aspire to higher functionality they 

also require tighter control over the cell-environmental and cell-cell interactions within 

their designs. To optimize these systems necessitates an iterative process. MsCAMgen 

facilitates an accelerated design method by enabling the analysis of multiscale 

communication within cell populations of any morphology or organization. The 

acceleration is unique to the presented interface because the implementation of these 

various changes to the format and design of a model introduce no potential for errors or 

time consequence. Furthermore, the tool described in this chapter could be coupled with 

other ABM optimization schemes, such as described in [154, 230], to determine the 

biologically relevant parameters that are best targeted to achieve desired macro-level 

features.  
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CHAPTER 6 CONCLUSIONS AND FUTURE DIRECTIONS  

6.1. Conclusions 

 In this work, I have explored the role of intercellular communication in neural 

differentiation. Building upon prior work in the Kemp and McDevitt labs that established 

transitions between discrete pattern classes during stem cell differentiation [137], the 

mechanism of non-secreted molecular transfer across membranes of adjacent cells was 

investigated in the context of morphogenic pattern trajectories through latent space. An 

agent-based model developed from experimentally-derived parameters was able to 

recapitulate and predict spatiotemporal trajectories of differentiation by using intercellular 

communication as the differentiation mechanism. Aided by computational simulations, I 

demonstrated that intercellular communication was modulated by the cell cycle to yield 

complex, dynamic networks of molecular information transmission. Heterogeneity 

emerged within the network in response to the natural asynchrony of cell cycle states within 

a population. Furthermore, this work identified a transient gain in intercellular connectivity 

as a typical feature during the loss of pluripotency. Perturbation to the intercellular network 

through chemical and genetic methods elucidated a strong temporal delay in differentiation 

in response to the decreased connectivity. In addition, a graphical user interface was 

developed for the production of multiscale communication agent-based models that 

provides a new resource for biological researchers. This platform allows for hypothesis 

testing of how emergent features arise in multicellular systems and will provide 

bioengineers the opportunity to iterate designs for engineered living systems.    

 

Cell Cycle Modulation of Intercellular Transport 

 The initial goal of this work was to characterize intercellular communication in the 

context of multicellular systems. Previous work had established that cell-cell interactions 

could accurately depict the differentiation and patterning of mESC aggregates using a top-
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down modeling approach. The question was posed whether a mechanistic representation 

of intercellular transport would be capable of manifesting spatial patterns in a similar 

manner. In answer, the model framework from White et al.[137] was adapted to include 

intercellular communication. Our quantification of intercellular transport rates identified 

the cell cycle as a potent source of heterogeneity in the intercellular network. Diffusion 

typically acts as an equalizer and, for spatial heterogeneity to be maintained, there needs 

to be a source that can disrupt the equalizing influence of the diffusion. In a reaction-

diffusion system, the disruption is caused by the non-linear reactions. Here, the oscillations 

in GJ permeability caused by the cell cycle were sufficient to cause spatial heterogeneity 

in the diffusion patterns. In fact, this heterogeneity was a significant factor in producing 

the spatial patterning that was obtained in Chapter 3. Therefore, our results indicate that 

accounting for the influence of cell cycle asynchrony is important to accurately depict 

intercellular communication at a multicellular level.  

 

Spatial Analysis of Neural Differentiation 

 We combined network analysis and dimension reduction techniques to assess the 

progression of differentiation patterning. In this way, we were able to characterize temporal 

and spatial aspects of the differentiation using three latent variables. We found that neural 

differentiation begins with individual cells across the colony in a relatively random pattern. 

However, once a critical number of cells differentiate, there is a rapid gain of organization 

as clusters of differentiated cells form. These clusters predominantly occurred along the 

outside of the colony before propagating inwards. The intercellular model, gated by cell 

cycle, was able to mimic this spatiotemporal trajectory and visualize the similarities in 

latent space.  
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Delaying Differentiation via Intercellular Communication  

 In this work, we analyzed the effect of multiple perturbations to intercellular 

communication on differentiation. In a remarkably consistent manner, each perturbation to 

the intercellular network caused a delay in the rate of differentiation.  The consistency in 

this response, across multiple cell lines and species, suggests that intercellular 

communication has a vital role in the differentiation process. The capacity for intercellular 

communication to slow the rate of differentiation has interesting implications for directing 

differentiation. In one potential case, the blockade of intercellular communication 

decreases the rate of differentiation generically for all cell types. In that scenario, we can 

use an analogy to a feedback controller where intercellular communication is the “gain” of 

the differentiation process. By inhibiting intercellular communication, it takes more time 

to reach the target phenotype (i.e. the set point) but the control is more precise.  In another 

case, decreased intercellular communication only decreases the rate of differentiation 

towards a subset of lineages. Therefore, it would specifically act as an inhibitory agent for 

those lineages and indirectly promote differentiation towards the unaffected lineages.  

Additionally, we found that two neural differentiation protocols performed in two different 

pluripotent cell lines from different species both caused an increase in the level of Cx43 

during the early stages of differentiation. The ability of different protocols, which enhance 

neural differentiation through separate mechanisms, to produce a similar modulation of 

Cx43 suggests that the effect is an underlying feature of the state transition rather than a 

product of the treatments. The concurrence with the loss of Oct4 in both species, despite 

differentiation occurring at different rates, further corroborates the hypothesis of a genetic 

mechanism. When considered in combination with the delayed differentiation from the 

perturbation studies, these results suggest that the increased connectivity is involved in the 

propagation and coordination of differentiation within the population. Thus, intercellular 

communication has a vital role during differentiation and the propagation of differentiation 

signals.  
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MsCAMgen as a Design Tool  

 We developed a graphical interface for the generation of agent-based models 

containing various modes of communication. The interface, MsCAMgen, has unique 

applications for enhancing the design of engineered living systems. The spatial distribution 

of a secreted molecule could be simulated for a set design, the optimal seeding density of 

two cell types with different growth rates could be determined, or the effect of mixing a 

wildtype cell with a mutant. For example, MsCAMgen could create an intercellular model 

for the hiPSC system and simulate a mixed population of WT and knocked down cells. 

Experimentally this system has significant degrees of freedom: both cell density and time 

of inhibition can be adjusted. It would be painstaking and time consuming to attempt every 

combination but can be tested computationally with relative ease. To further illustrate the 

benefit of MsCAMgen, I will provide a simple comparison. The original intercellular 

model for mESC differentiation optimistically took one year to design. A synonymous 

model for the hiPSC system could be generated in less than one hour and parameterized in 

one week if data were available.  

6.2. Future Directions 

6.2.1 Agent-Based Bioelectricity 

 Various molecules can be transported through gap junction channels. In this work, 

we presented an intercellular diffusion framework both in the differentiation model in 

Chapter 3 and later as a module of MsCAMgen in Chapter 5. While the framework is 

capable of modeling any designated molecule, large diffusion constants have a significant 

computational cost, even when optimized as a C-compiled function. In most circumstances 

this is not an issue because the majority of molecules of interest diffuse at about the same 

rate as cAMP, but ionic diffusion is significantly faster. Additionally, it is usually desired 

to model multiple ions simultaneously to gauge membrane potential. Therefore, to model 
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ionic diffusion and bioelectricity, a tactic other than discrete diffusion would have to be 

employed. One amazing template for this is the BioElectric Tissue Simulation Engine 

which depicts cells using a Voronoi representation [218]. Transport is designated at each 

interface and is solved as a set of linear equations. At first glance this may seem 

incompatible with the dynamics of an agent-based simulation. However, given the 

exceptionally fast diffusion of ions compared to cellular movement it is possible to assume 

it is a static system that reaches steady-state at each time point. The Voronoi connections 

would need to be updated and other perturbations accounted for at each time point as well. 

The inclusion of bioelectricity seems a natural progression because membrane potential is 

a common GJ gating mechanism [32]. It would be interesting to see if bioelectricity and 

cell cycle effects would produce similar or divergent intracellular patterns.  

6.2.2  Computational Improvements  

6.2.2.1 MsCAMgen Spatial Analysis  

 In this work, we described a pipeline for analyzing spatial patterns within our 

intercellular agent-based model. A similar pipeline could be directly coupled to the 

MsCAMgen interface that allows the user to select from a list of network metrics and 

perform PCA on generated models to visualize the spatiotemporal trajectory. The extension 

would include three options: (i) a training set is automatically generated using the network 

data from the designed model and variations of the pattern classes defined in Chapter 3, 

(ii) the user uploads their own training set of defined pattern classes, or (iii) the trajectory 

is analyzed without the use of a training set. In the first case, the user can rapidly visualize 

the trajectory without requiring additional information. By using the network structures 

from the designed model, the pattern analysis is adaptable to various morphologies. 

However, a larger number of pattern classes would need to be defined to account for 

systems containing three cell types. Also, this pattern classification is predominantly 

focused on the organization of cell types within a population rather than the morphology 
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of the population. The second option provides flexibility but requires knowledge of the 

system/desired patterns in advance. The difficulty of this option is to ensure either that 

every user creates a training set of a specified format or that multiple formats can be 

uploaded and analyzed successfully. The third option removes many of the limitations of 

the first two, but the lack of training set makes the interpretation of the results in latent 

space more complicated. The inclusion of a training set of pattern classes allows the user 

to efficiently associate the latent variable axes with macroscopic properties of the system. 

It is still possible to identify the properties that each latent variable represents by examining 

the loads of each contributing metric but this can become cumbersome, especially if using 

network-based metrics that are not easily related to a biological phenomenon. Nonetheless, 

this option is useful for examining the temporal evolution of metric variability within a 

given model. For instance, if all of the simulation time points are clustered together for 

each latent variable, then none of the selected metrics exhibit variability over that time 

period. However, if a latent variable exhibits a bimodal distribution then the metrics that 

are diverging can be identified as well as the time at which the divergence occurs. The 

divergence time would be particularly useful for identifying when major changes are 

occurring in the system and thus when to apply perturbations to prevent or maximize those 

changes.   

 The spatial analysis extension described here would substantially enhance the 

quantitative capability of MsCAMgen. One of the major limitations of ABMs is the 

difficulty associated with quantitatively validating the model results. As described in 

Figure 5, the combination of multivariate metric extraction and dimension reduction 

techniques allows for the quantitative analysis of spatial features and the comparison of 

those features between experimental and simulation results. Thus, by including an option 

for the simultaneous analysis of experimental images using the PCA transform defined 

from training set (or simulation data in Option 3), the user can both design and validate 

their model within MsCAMgen. The extension also benefits users that are designing 
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multicellular constructs in a number of ways. The goal of many engineered living systems 

is to attain and maintain a pattern or cellular organization that is associated with a desired 

functionality. Visualization of the spatiotemporal trajectory through PCA provides 

invaluable information such as which patterns/organizations develop, the time ranges 

where organizational transitions occur, and the duration of time that the system maintains 

a specific organization. All of this information can be employed to guide future 

modifications in an efficient manner to achieve a desired pattern and the conditions 

necessary to retain it.     

6.2.2.2 GPU-Acceleration 

 As mentioned in the Background Chapter, the use of the GPU to accelerate agent-

based modeling has many potential benefits but also some limitations. Many of the 

limitations revolve around a loss of flexibility for defining interactions while the benefits 

lie with the capacity for exceptionally fast parallelization. Therefore, a middle ground is 

suggested. The most computationally expensive actions within an ABM are diffusion and 

collision detection/optimization. In both of these cases, the values can be populated within 

a separate matrix, independent from the agent objects, and passed to the GPU to solve and 

return the updated values to populate the objects. In this way, it is possible to achieve 

acceleration while maintaining the flexibility of object-based agents. Of note, this would 

only be a benefit if the number of iterations was sufficiently high (~106 iterations) because 

of the computational overhead costs involved in transferring information between the CPU 

and GPU. This caveat is overcome when considering multiple extracellular and 

intercellular molecules in MsCAMgen. Assuming the GPU hardware contains sufficient 

memory, the data for each molecule could be transferred simultaneously to the GPU and 

then solved in parallel. The overhead cost would remain approximately the same while the 

number of iterations would dramatically increase. Thus, we would be able to obtain the 
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maximum possible acceleration and further enhance the ease of testing various 

permutations of model design.  

6.2.3  hiPSC Cx43-KD Mixed Populations 

 One of the major findings of this work was that inhibition of intercellular 

communication was able to delay differentiation. The next step for this work is 

investigating how heterogeneous modulation of intercellular communication will affect the 

dynamics of differentiation within a population. One approach to achieve this is through 

mixed populations of the LBC2-GJA1 cell line with the parent cell line, WTC11. A major 

advantage of the LBC2-GJA1 cell line is that it has a constitutively expressed GFP-Lamin-

B reporter as an identifier. As such, it is possible to identify the location of cells lacking 

intercellular communication within the mixed population and assess how the spatial 

arrangement affects the differentiation patterning both locally and globally. It would be 

possible to attain better spatial control utilizing optogenetic rather than TET induction but 

to attain this spatial control would require a high-resolution laser, which limits data 

collection. Furthermore, constant laser exposure would be required to maintain the 

knockdown for any significant period of time due to the rapid turnover rate of connexins. 

For these reasons, the CRISPRi knockdown provides the most robust method for 

interrogating spatially heterogeneous perturbations to the intercellular network during 

differentiation protocols. The TET-induced CRISPR system is also capable of scaling to 

3D with minimal technical difficulty and technologies currently exist that could be 

employed to gain control over the initial spatial arrangement of the two cell types within 

the population.  

 The information attained from these studies has enormous utility for the derivation 

of spatially and temporally controlled differentiation protocols. By understanding the 

behavior of cells with hindered cell-cell communication, both individually and in clusters, 

it is possible to identify cellular arrangements that lead to specific differentiation patterns. 
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Further control could be gained by additional studies that investigate the cross-talk between 

extracellular and intercellular means of communication. In particular, it is possible that 

intercellular perturbation can modulate the transduction of extracellular signals through a 

cellular population. One advantage of modulating intercellular communication is the 

degree of spatial resolution that can be obtained. The intercellular communication of a 

single cell can be completely abrogated whereas it is infeasible to generate extracellular 

gradients at a similar resolution or with a similar extent of spatial heterogeneity. Thus, there 

is tremendous promise for exploiting the intercellular network to direct spatiotemporal 

differentiation, both directly and through the propagation of signals that originate from 

other means of communication.   
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