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SUMMARY 

Researchers have paid relatively little attention to the fact that most design 

activities are actually more like redesign. These activities are characterized by an attempt 

to leverage experience, knowledge, and the capital that a company has already invested 

into existing engineering systems. In this dissertation, it is proposed that an approach be 

developed to aid designers in making decisions in redesign problems when there exist 

systems to be leveraged and multiple new systems to be created. In addition, strategy is 

introduced to the problem through the consideration that new systems may not be offered 

all at once, as is often assumed in product family design research. In this dissertation, the 

aim of the designer is assumed to be a creation, through redesign, of a series of new 

systems with desirable and distinct performance levels.  In addition, a plan is required to 

involve as little redesign effort throughout the life of the family of systems as possible 

The proposed approach is based upon the concepts of Constructal Theory and 

previous work to create methods for the design of mass customized families of products. 

The existing methods are abstracted and heavily modified through the infusion of the 

compromise Decision Support Problems at all stages of the decision-making process. In 

addition, two indices are developed to represent considerations unique to redesign as 

opposed to original design. These indices for redesign effort and commonality value are 

utilized in the overall objective formulation for the approach. Through a thorough 

validation process and a large number of redesign scenarios, it is shown that the overall 

approach proposed can lead the designer towards promising redesign plans involving 

leveraging of existing systems, but that the constructal-inspired approach in and of itself 

has certain limitations when applied to redesign. 
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CHAPTER 1  

TAKING A DECISION-BASED APPROACH TO SUPPORT FOR 
REDESIGN 

 
 

1.1 -  MOTIVATION TO CREATE METHODS WHICH SUPPORT REDESIGN 

DECISIONS IN A DYNAMIC MARKETPLACE 

 Very little that we see around us in the world today is new. Products may newly 

constructed, newly discovered, or new to us, but when it comes to man-made artifacts, 

there is little around us that is truly original. Even the best known ground-breaking, 

genre-bending, and market segment-defying products are built upon the foundation of 

products, components, materials, technologies, and ideas developed long before them. 

One need not look any further than the popular iPod for an example of how incremental 

improvements to what would otherwise be off-the-shelf technology can lead to a break-

through product. The truth of the matter is that nearly everything we as a society produce 

comes about as a result of redesign. Sometimes that redesign takes place at a conceptual 

level. For instance, when developing a new pen, at least the basic concept of a long 

cylindrical tool with a writing tip is usually retained from earlier models. Oftentimes, 

however, the redesign takes place at a more practical level where generations of products 

or systems come about through a sequence of gradual change; a phenomenon described 

here as serial or sequential redesign. 
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 The evolutionary process that is sequential redesign can take on many shapes and 

forms. The demand for new product revisions that create this shape can be driven by all 

manner of factors including but not limited to: 

• Expansion or contraction of market segments as customers around the world 

become reachable by a company’s products or trends fizzle; 

• Emergence of new technologies that expand product capabilities or improve those 

that existed previously; 

• Complementary products or technology that create or enhance market niches; and 

• Myriad unforeseen events including weather, war, terrorism, or the combined 

effects of multiple factors. 

 

Regardless of the driving factors, the result is that families of products emerge 

over time, either in a planned manner or haphazardly. Too often, the emergence of new 

products or systems is governed in an ad-hoc manner as needs arise. This leads to a 

situation in which redesign decisions are made using incomplete information about their 

effects on the system as a whole and entirely without consideration of the larger 

implications of the changes to be made. Even if the changes made result in workable new 

designs, unwise redesign decisions can set the family of systems that will be developed in 

the future up for failure. Poor decisions can design the family into a corner, making it 

harder or more costly to achieve later goals.   

 The goal in carrying out the work described in this dissertation is to present, test, 

and evaluate a method of decision support for engineers who are attempting to redesign. 

It is hoped that by using this method, engineers might avoid ad-hoc decisions that may 
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lead to sub-par system performance and assure that future redesigns are both less costly 

and more likely to succeed. 

 

1.1.1 - The Redesign Problem Visualized 

 The market segmentation grid (Meyer 1997) provides a convenient way of 

visualizing the problems facing engineers who want to redesign a system to meet shifting 

needs. In the market segmentation grid, a market is plotted in two dimensions and broken 

down vertically according the price segments of different products a company offers and 

horizontally according to the various functions of the company’s products. The market 

segmentation grid has commonly been used to identify opportunities and strategies for 

two types of leveraging. Horizontal leveraging occurs when products with different basic 

functions but similar price scales share components. Vertical leveraging occurs when 

products of different prices and performance levels but with common functions share 

components. In Figure 1-1, however, the market segmentation grid is used to display a 

hypothetical family of power tools produced by one company –some of which share 

common power supplies, motors, and other components in an attempt to realize cost 

savings.  

  The products plotted in the market segmentation grid in Figure 1-1 may serve 

their individual market niches well, but what happens when the power tool manufacturer 

decides to expand upon its offerings by offering a belt sander? This situation is portrayed 

in Figure 1-2. Given the company executives’ interest in cost savings and improved 

reliability, it is natural for engineers and designers to look for ways to reuse pieces of 

existing products and realize new goals through redesign. How should designers go about 
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creating a preliminary redesign plan in a systematic manner? How do the designers take 

into account the various components and capabilities of all the pre-existing products? 

 
Figure 1-1 – Market Segmentation Grid for a Family of Related Power Tools 
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Figure 1-2 – Market Segmentation Grid Showing Expansion of the Power Tool Family into a New 
Segment 
 

The problem becomes even more complicated if a broader long-term perspective 

is taken and the designers are allowed to know the next goals of the company: to further 

expand the new belt-sander product line in the years to follow while simultaneously 

expanding their offerings of circular saws and reciprocating saws. This situation is shown 

in Figure 1-3. In essence, the company will be asking its engineers to sequentially 

redesign elements of the existing product family to meet new needs. 
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Figure 1-3 – A Broader Redesign Problem to Expand the Power Tool Family 

 

The natural tendency of the engineer faced with a redesign problem is to look for 

the easiest ways to change a system to meet new needs or accommodate new technology. 

Based on previous experience with a given system, it may seem obvious to a designer 

how the system can best be redesigned to meet new goals. Even if the course of action is 

not obvious –the subsection in which the changes should occur or the discipline expert 

who should oversee them may seem to be clear. Ideally, such an expert or group of 

experts can find the needed changes in their subsystem, resulting in a smooth transition to 

a new system model. What happens however, when the course of action is not clear; 

when it is not obvious which subsystems should be modified or who can make all of the 

needed changes? Furthermore, how can one be sure that a given group subsystem can 

realize all the needed changes and that those changes will not spill over into a cascade of 

rework in other subsystems? How does the designer know that the seemingly obvious 

solution is really going to be the least costly over the long term? Unfortunately, while 
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there are any number of established methods for systematically designing engineering 

artifacts from scratch (Pugh 1991; Pahl and Beitz 1996; Cagan; Ulrich and Eppinger 

2004), only a few similarly rigorous methods for redesign have been demonstrated. Many 

of those redesign methods are limited to handling small, simple products (Otto and Wood 

1998), redesigning only a single existing system to realize one new system(Dixon and 

Colton 2000), identifying complications in redesign processes (Hsu and Lin 1998), 

reducing the order of math models needed for redesign (Chen, Ding et al. 2005; Chen and 

Li 2005; Chen and Li 2005; Chen, Li et al. 2005; Chen and Macwan 2005), or handling 

the data involved in redesign(Tseng and Jiao 1998; Tay and Gu 2003). 

While the situation put forward in this section involves a hypothetical power tool 

maker, the issues facing that imaginary company are the same as those facing real 

manufacturers and their designers today. In the next section, this fact is born out in a 

series of examples that show the potential upsides and downsides of adopting redesign 

strategies with long-term goals in mind.  

 

 

1.1.2 - Examples of Sequential Redesign in Engineering Practice 

 Examples of products based on sequential redesign can be found in industries of 

all sorts producing systems of all sizes and complexities. That redesign can take place 

over time scales both long and short. The types of changes made and the impacts they 

have can be either minimal –making a product seem to evolve over time- or more 

pronounced –producing distinctive products that sometimes make it hard to realize that 

they are the result of a redesign process. 
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In the aircraft industry, where development periods for some products can span 

decades, a given aircraft model may be offered in several blocks throughout its lifespan. 

Blocks are numerical designations of groups of aircraft with the same configuration. 

(Sherman 2005). The F-22 Raptor, a cutting-edge fighter aircraft manufactured by 

Lockheed Martin, first became operational in December of 2005. By mid-2007, there are 

already plans for at least five blocks of aircraft emerging over the next few years, each 

incorporating more of the electronic systems, new radar capabilities, improved weaponry, 

and even the equipment needed for electronic warfare (Anonymous 2006). This timed 

release of new product features is a planned part of the aircraft’s program, but it also has 

large implications since any changes made in early blocks must either be carried forward 

and accommodated in later blocks or revised again at extra cost. The ongoing 

development of the F-22 and other modern aircraft will, if successful, show that planned 

evolution from a starting point is possible when well managed. 

 

 
Figure 1-4 – Lockheed Martin’s F-22 Raptor: Released in Blocks with New Features (image from 
www.globalsecurity.org) 
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 One familiar example of sequential redesign at work is seen in the families of 

vehicles produced by automotive manufacturers throughout the world. Many cars, trucks, 

SUVs, and vans are based upon common platforms upon which different bodies and 

features are built. Oftentimes, these platforms go years without major changes but each 

year sees a “new” model of each vehicle emerge. A good example of the type of iteration 

seen in an automobile platform is the Volkswagen / Audi A4 platform, which was 

introduced in 1996 for use in the Audi A3. Part of a major effort to consolidate the 

number of platforms used by Volkswagen (VW), the A4 is still in use today for 

production of the New Beetle. In the last twelve years, it has also been used for 

production of the Jetta, Golf, Audi TT, and several cars sold only in foreign countries. A 

total of ten different models of cars (some of which are shown in Figure 1-5) were in 

production at once using the same platform, and each of those models was revised in each 

year it was offered (Whitney 2000; Anonymous 2003). The results of this consolidation 

were that by the end of the 1990’s, VW vehicles shared 70% of their parts with other 

vehicles and that the overall number of platforms needed was consolidated from 16 down 

to just 4 (Winter and Zoia 2001). The downside of this strategy was only seen over the 

course of several years as sales of some high-end models that used the platform slipped 

and VW’s profit margin failed to improve. This situation was largely blamed on 

customers who realized that they could buy a car with the same basic architecture, 

engine, and underbody as a high-end model but pay less by choosing a lower-end VW 

brand name. In the United States, customers opted for VW vehicles over Audis. In 

Germany, they opted for Skodas made in the Czech Republic over VW’s(Miller 1999; 
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Miller 2002). To make matters worse, the platform strategy adopted by VW never 

achieved the cost savings envisioned for it.   

 
Figure 1-5 – Six of the Ten Vehicles Produced Using the VW / Audi A4 Platform in the Last Twelve 
Years 

 

The Volkswagen A4 platform is an example of redesign and design leveraging 

being taken too far, of valuing commonality and cost savings over good service to the 

niches in one’s customer based, and of a company underestimating their customers’ 

powers of perception. Clearly, in redesigning an existing system or building a system 

based on an existing platform, the recognition and preservation of distinct market niches 

is an important goal to consider alongside achieving cost savings through commonality.  

 A more famous example of redesign in practice in the aerospace industry is the 

evolution of the Boeing B-52 “Stratofortress” bomber. Eight distinct generations of this 

aircraft (summarized in Table 1-1) have served the United States Air Force since it first 

entered service in 1954 and the latest generation –first delivered in 1961- is expected to 

serve well into the 21st century. Over the years, military and political leaders of the 

United States have seen fit to continue to upgrade, maintain, and repair a fleet of B-52’s 

instead of opting for a totally new design. This robust airframe is the result of successive 
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redesigns that took place throughout the 1950’s as new technologies and mission 

requirements emerged (Anonymous 2006).  

 
 
Table 1-1 – Major Revisions of B-52 Models, Based on Data from (Anonymous 2006) 

Model 
Year 

Design 
Begun 

Year 
Entered 
Service 

Improvements 

B-52A 1945 1954 • Longer nose to accommodate 
two pilots 

• Tail gun turret 

• Electronic countermeasures and a chaff 
system 

• J57-P-1 W engines 
B-52B 1951 1954 • Increased gross weight 

• Increased range 
• Improved navigation system 
• Improved engines 

B-52C 1953 1956 • Increased gross weight 
• Larger fuel tanks under wings 

• Improved water injection system 
• Easily convertible for reconnaissance 

B-52D 1953 1956 • Extended range • Capable of carrying thermonuclear 
weapons  

B-52E 1953 1957 • Improved navigation systems 
• More reliable electronics 

• Redesigned cabin for greater crew 
comfort 

B-52F 1954 1958 • New engines 
• Improved water injection system 

• Relocated alternators for electricity 
generation 

B-
52G 

1956 1959 • Increased gross weight 
• Integral wing fuel tanks added 
• External fuel tanks on wings 

reduced in size 
• Nose radome enlarged 

• Vertical tail reduced in size and ailerons 
removed 

• Improved electronics and fire controls 
• Ejection seats for the entire crew 
• Capable of carrying air to surface missiles 

B-
52H 

1959 1961 • New engines with new nacelles 
to hold them 

• Rearranged cabin 

• Gatling gun for rear defense 
• Improved electronics and fire control  
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Figure 1-6 – B-52 Models Timeline of Development 
 

 

Sequential redesign is not limited to large, seemingly complex systems like 

aircraft and automobiles. Research conducted by Philips elucidates a trend in recordable 

media players that they say is representative of wider trends throughout the consumer 

electronics industry. When the numbers for units sold and price per unit over the last few 

decades are plotted for VHS tape recorders, CD recorders, and DVD recorders (see 

Figure 1-7), it is readily apparent that something about the market is changing at a 

quickening pace. As competition has increased in the electronics industry, products have 

become commodities faster. This means that for the company that is first to market with a 

new technology, and which usually has to price their product at a high level to recoup 

their research and development costs, they have a very small window of opportunity to 
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capitalize on the high prices that early adopters are willing to pay. With increased 

competition, other companies have become better at quickly copying technologies or 

working product concepts, producing them more cheaply, and driving down prices. 

Another byproduct of this situation is the need to continuously produce new variants of 

products to introduce slight technological advances, manufacturing changes that lower 

costs, or even redesigned parts. Companies like Philips find themselves producing these 

product revisions at a much faster clip than they had to do in the past (Minderhoud 2003).  

 

 
Figure 1-7 – The Increasing Pace of Change in the Consumer Electronics Market (Minderhoud 2003) 
  

The examples given from Lockheed Martin, Volkswagen, Boeing, and Philips 

demonstrate that in a situation where a family of products is needed, it is oftentimes 

possible to know ahead of time what will differentiate these products, and that it is 

possible to design with these differences in mind. What happens if demand for related 

products continues to grow and change, however? In this case, it is necessary to redesign 

existing families of products to suit. Philips sees the need for new revisions as a constant 
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struggle in the electronics industry; Lockheed Martin must look ahead to anticipate this 

need in the future; Boeing and Volkswagen have each seen the respective positive and 

negative ramifications of a redesign strategy built around a product platform. Facing 

these new needs requires balancing a number of complex issues including: 

• The number of new systems to be developed; 

• The speed with which the new systems need to be ready and the staggered 

schedule by which they will be produced;  

• Distinct performance objectives for each new system being designed; 

• The conflict between individual system’s performance goals and overall 

companywide goals such as: 

o Reduction of costs; 

o Improvement of commonality 

o Reduction of part quantities 

• Consideration of what will come next beyond the current redesign task; will there 

be more future revisions, and if so, how can their success be ensured? 

 

Addressing these issues is the research goal described in this dissertation. In the 

section that follows, some clarification between design and redesign is made in order to 

clear up misconceptions that commonly occur when talking about “redesign.” 

 

 

 

1.1.3 - A Point of Clarification: Defining Sequential Redesign 
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There are any number of systematic design methods which are widely taught and 

accepted in engineering practice. Rarely do these methods touch upon how a designer 

should go about realizing a system that is not to be designed from scratch. In the 

systematic design methodology of Pahl and Beitz (Pahl and Beitz 1996), for instance, 

three types of design are described: 

• Original design, wherein a novel new artifact is created from scratch; 

• Adaptive design, wherein a proven solution is adjusted to suit a new set of 

requirements or a new application, possibly requiring some original design; and 

• Variant design, wherein a proven solution is simply tweaked to meet a distinct set 

of requirements; 

Unfortunately, most of Pahl and Beitz’s attention is directed towards original 

design, rarely even dropping a hint as to when pieces of their methodology should be 

utilized or skipped to create an adaptive for variant design most effectively. 

For the purposes of this work, redesign is taken to entail not just the creation of 

the plans for how the existing system in question will be changed to meet new goals, but 

also planning for what must be done to effect those changes. Applied to a physical 

example, the redesign plan for a new model year of a car would include not only the 

description of the changes to the exterior of the vehicle but also these three important 

aspects: the description of the resulting changes to the manufacturing procedures, the 

engineering time and costs associated with making the design changes, and any other 

overhead associated with making the needed changes. In short, the concern in this 

dissertation is not only with how a system might be changed to realize new technical 

goals, but also how difficult it will be to begin producing the newly redesigned system.   
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  “Redesign” is a term that is interpreted in a number of widely different ways 

throughout the engineering design research community. Therefore, it is useful to discuss 

the ways in which its use in this dissertation is unique. Any internet search for the word 

“redesign” or “redesign method” will turn up myriad hits for articles and research papers.  

A vast majority of these articles, however, deal only with redesign in the sense that the 

paper concerns a design effort whose results can be compared to an existing product.  As 

such, these articles are more concerned with original design than with the question of 

how one enterprise might best transition from one version of a product to another.  A 

typical example of this type of redesign is provided by Lim and Erdman (Lim and 

Erdman 2002), who redesign a surgical instrument using type synthesis.  The authors’ 

goals are not to change the function or performance of the instrument in any way.  

Instead, their goals are to decrease the number of parts in the product, create a simpler 

design internally, and make it easier to assemble.   

Along similar lines, support for product family design research is often based 

upon comparison between a family of products that are designed independently of one 

another and a family of products that are designed simultaneously using systematic 

product family design techniques.  A good overview of such product family design 

techniques is given by Simpson (Simpson 2003) and examples of this type of comparison 

between new and existing products can be seen in numerous papers.  A few examples of 

product family redesign include the following: the redesign of an automotive underbody 

to identify a platform by partitioning combinatorial design spaces Corbett and Rosen 

(Corbett and Rosen 2004); the redesign of a family of xerographic machines using 

function and variety heuristics by Zamirowski and Otto (Zamirowski and Otto 1999); the 
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identification of a product platform to redesign a family of motors by Simpson and 

coauthors (Simpson, Maier et al. 1999); the use of formal concept analysis to increase 

commonality by Nanda and coauthors(Nanda, Thevenot et al. 2005); the development of 

life cycle  modularity metrics to aid in redesigning the components of a product 

(Newcomb, Bras et al. 1998; Newcomb, Rosen et al. 2003); and lastly the redesign of a 

family of products to increase their modularity, reduce the part-count, and improve life-

cycle considerations by Bryant and coauthors (Bryant, Sivaramakrishnan et al. 2004).  

For the purposes of the research described in this dissertation, redesign is defined 

as follows:  

Any design activity in which the goal of leveraging existing systems in order to 

produce one or more systems with distinct new performance characteristics must be 

balanced against the desire to minimize the resources involved through reuse of as much 

as possible of existing systems, their design, and their manufacturing infrastructure. 

 

Furthermore, it is posited here that important characteristics of redesign includes: 

• The cost of switching over to new manufacturing facilities or processes; 

• The cost of researching, developing, designing, and testing new components or 

subsystems; 

• Schedules of product release that do not exhibit perfect overlap; that is, not all 

systems are offering simultaneously, bringing into question some of the 

economies-of-scale argument for commonality; and 
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• An understanding of where the evolution of a product family is going next may 

exist, allowing designers to consider the needs of future products when making 

revisions today. 

 

Based on these assumptions and the definition of “redesign” offered above, 

sequential redesign and serial redesign are taken to mean:  

Any design activity in which the system or systems being redesigned and the new 

system or systems whose design are being synthesized are not offered simultaneously and 

for which both the effort involved in changing over to the production of new designs and 

effects of economies of scale are expected to have significant impact on the economic 

viability of the family of systems. 

 

These characteristics are assumed to be present in at least some redesign problems 

for the purposes of this dissertation and are believed by the author to be justified by both 

the examples in Section 1.1.2 and innumerable other evolving product families in the 

world today. As such, they serve as the rationale for much of the research presented here.  

 

1.1.4 - Challenges and Opportunities for Research in Decision Support for Strategic 

Redesign 

 In the preceding sections, situations in which designers are faced with sequential 

redesign decisions have been presented and the pitfalls associated with those decisions 

laid out. It would be beneficial if a method for supporting sequential strategic redesign 
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decisions existed. Before such a method can be shown to be valuable, however, a number 

of challenges clearly need to be addressed. 

 First, in supporting sequential redesign decisions, it is important to consider all of 

the existing systems. As they are already in production, they likely represent a significant 

level of investment on the part of the company producing them. The idea of redesigning 

these systems offers an opportunity to continue leveraging that investment, but may also 

serve to create new systems that are flawed from birth because of their connection to old 

systems. Given the complex nature of many systems, even an expert designer often 

cannot predict the feasible interactions and behavior of systems and may not be able to 

predict what will be the outcome of a given redesign scenario. It may be possible to 

leverage parts of multiple existing systems in such a way that the number of new or 

redesigned subsystems is minimized. On the other hand, the original design of the 

existing systems may have made them largely incompatible with new demands, meaning 

redesign will not be a fruitful task. A decision support method for sequential redesign 

should aid designers in exploring all the options to leverage existing systems or to leave 

them behind and start anew. 

 The second challenge faced in this work is the heterogeneous nature of redesign 

problems in general. That is, not all redesign projects involve the creation of one new 

design based on one old design; a common assumption in thinking about redesign. 

Similarly, not all product families are completely redesigned and replaced, as is often 

assumed in product family research involving design. It may often be the case that 

multiple existing systems are redesigned to create a string of new systems over time, with 

one or more new systems emerging at a time. This scattered release schedule and the 
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leveraging of multiple existing systems must be handled in a method to support 

sequential and strategic redesign. 

 A third challenge in addressing sequential redesign is to model and take into 

account the investment involved in modifying an existing system or subsystem. As 

mentioned above, each existing piece of a system represents an investment. Every new 

piece will require some investment for research, development, prototyping, testing, and 

the setup of new manufacturing facilities. Accounting for the relative amounts of effort 

involved in different redesign options would be of great aid to a designer. 

 Along similar lines, the savings involved in making pieces of a new system 

common with older existing systems must be considered carefully in sequential redesign. 

The fourth challenge that must be addressed in order to support sequential redesign 

decisions is the variable value of leveraging and commonality. Not all commonality is 

equal; there are likely some pieces of a system that it would be more beneficial to avoid 

redesigning and, in a family of systems that are produced over time, production schedules 

that make commonality between two systems more valuable. Just such a situation is 

displayed in Figure 1-8. When considering how Models 100 through 400 might be used 

to create two new models, a designer might value commonality with parts of Model 400 

over commonality with Model 100 since production of the components and subsystem of 

the latter model ended years ago. On the other hand, there may be pieces of a system for 

which the cost of switching over to a new design is so minimal as to not have strategic 

significance. A part that is already custom-made for each product is one example of such 

a situation. 
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 A fifth research challenge is to offer variety in new system offerings in multiple 

dimensions. Many existing product family design methods only support the creation of 

families with variety measured using only one performance measure. Simpson (Simpson 

2003) provides a good summary of such methods and their capabilities. Real products, on 

the other hand, are usually differentiated from one another in multiple ways that may be 

related, but not directly so. MP3 players, for instance, are principally differentiated from 

one another based on their storage capacity, but also may have screens of different sizes 

with or without color capacity, may support different file types, and may be available in 

various colors with various accessories. The ability to adjust existing systems to create 

multiple valuable new product features would be beneficial to any company serving a 

marketplace full of a diverse array of customers. 

 

 
Figure 1-8 – A Situation Where Production Schedules Impact the Value of Commonality 
 

 

Just as it would benefit the customer to have access to products with multiple 

different features, it would be beneficial for a company to be able to offer those features 
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in different ways. Supporting the creation of variety using various means is a final 

challenge facing those who want to support sequential redesign. Too often, when a 

system is somewhat complex, the tendency is to look for the subsystem most directly 

related to desired system changes and focus all efforts on making needed design changes 

only in those areas. Such an approach does not take into account subsystem interactions 

initially and fails to consider that minor tweaks of more than one subsystem might lead to 

better importance. At the same time, many theoretical product family design methods are 

aimed at using just one means such as scaling or the addition and subtraction of modules 

to offer variety. In supporting sequential redesign, it would be best to help the designer 

consider as many potential ways of changing existing systems as possible. 

 In Table 1-2, a summary of the sequential strategic redesign problem is shown in 

the form of a compromise Decision Support Problem. The language in this description is 

intentionally as general as possible. Key features of this problem that differentiate it from 

others are the inclusion of scheduling information and two assumptions: 

1. There are significant economies of scale advantages to having systems with 

common components manufactured on as similar a schedule to one another if 

possible; and 

2. Significant amounts of effort are required to affect some but not all design 

changes to the systems. 

 One important term that is used at the top of Table 1-2 is market space. The 

definition of this term is modified from that used by Hernandez (Hernandez 2001): “A 

market space is the set of all feasible combinations of values of product specifications 

that a manufacturing enterprise is willing to satisfy.” In this dissertation, a market space 
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is defined as the range of system performance values over which a family of related 

systems is expected to vary through redesign over time.  

 

Table 1-2 – Verbal Summary of Sequential Strategic Redesign Problem 
Given   
 • An Msysgoal-dimensional market space MMsysgoal = {(a1,a2,…aMsysgoal)} 

where ai is a system attribute that is expected to change over time 
through redesign 

• One or more existing systems that are to be left unchanged but 
improved through redesign to create new systems 

• The parameters that describe the existing systems and mathematical 
models of them 

• A schedule that delineates the start and end dates of production for 
each existing and new system in the family being redesigned 

• Significant economies of scale advantages to having systems with 
common components manufactured on as similar a schedule to one 
another if possible 

• Significant amounts of effort required to effect some but not all design 
changes to the systems 

• Assumptions used to model the domain of interest 
• All other relevant information: 

 Nex number of existing systems to be leveraged 
 Nnew Number of new systems to be produced 
 n number of system redesign variables 
 p number of equality constraints 
 q number of inequality constraints 
 p + q Tot al number of system constraints 
 Msysgoal number of goals for attributes that will change as a result 

of redesign (number of targets for each new system) 
 Moverall number of higher goals for the redesign project itself 

(maximization of value, minimization of effort, etc)  
 Mtot = Moverall + 

Nnew(Msysgoal)  
total number of system goals 

 gi(X) system constraint function  
 Ai(X) System redesign goals  
 Gi(X) System redesign targets  
 { }( )min _effA X  Overall minimization of effort goal 

 { }( )max _comA X  Overall maximization of commonality value goal 

Find   
 The values of the independent system redesign variables (describe the 

physical attributes of an artifact) that describes the state of the most 
promising new set of systems 
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{ } { }1, ,
newNnew

X X X= …  

where ,1 ,2 ,, , ,j j j j nX X X X= …  1, newj N= …   
The values of the deviation variables (indicate the extent to which the 
goals are achieved) for each of the new systems 

+−
ii dd ,   mi ,,1…=  

Satisfy   
 The system constraints that must be satisfied for the solutions to be 

feasible including the restriction that the new design must be different 
from the existing system.  (There is no restriction placed on linearity or 
convexivity.) 

gi(X) = 0,  pi ,,1…=    
gi(X) ≥ 0,  qpi += ,,1…    

The system goals that must achieve a specified target value as far as 
possible for each new system (There is no restriction place on linearity or 
convexivity.) 

( )
( )

,
, ,

,

1j k j
j k j k

j k j

A X
d d

G X
− ++ − = ,  1, newj N= … and 1, sysgoalk M= …  

{ }( )min_eff min_eff min_eff 1A X d d− ++ − =  

{ }( )max_com max_com max_com 1A X d d− ++ − =  

The lower and upper bounds on each system 
maxmin
jjj XXX ≤≤ ,   nj ,,1…=   

0, ≥+−
ii dd  and 0=⋅ +−

ii dd ,  mi ,,1…=  
Minimize    
 The deviation function, which is a measure of the deviation of the system 

performance from that implied by the set of goals and a measure of the 
resource expenditure due to the amount of design change that has to take 
place over the life of the system.: 

( )

( ) ( )

( )

1

min _eff min _eff min _eff max_com max_com max_com

, , ,
1 1

min _eff max_com ,
1 1

       

where 1

sysgoalnew

sysgoalnew

Mtot

i i i
i

MN

j k j k j k
j k

MN

j k
j k

Z w d d

Z w d d w d d

w d d

Z w w w

− +

=

− + − +

− +

= =

= =

= +

= + + +

+ +

= + + =

∑

∑ ∑

∑ ∑

 

Note: Formulation of goal depends on whether target is being approached from above or below. 
Formulation shown is for approach from below. See (Mistree, Hughes et al. 1993) for a full description of 
all formulations 
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 Having identified the basic problem to be addressed in this dissertation here, the 

framework in which the work discussed here is introduced in Section 1.2.  

1.2 - FOUNDATIONS OF A METHOD FOR DECISION SUPPORT FOR STRATEGIC 

REDESIGN 

 The work described in this dissertation is carried out in the context of a broad 

body of work in design theory and design decision support. It is founded upon the base of 

a decision-based view of design and guided by an interest in making more strategic 

design decisions. In this section, the decision-based view is introduced and its 

implications are described. The impact of strategic thinking on the dissertation is also 

discussed.   

 

1.2.1 - Decision-Based Design and the Decision Support Problem 

Design methodologies are often are assigned to one of two broad categories based 

on the way in which they describe design. Prescriptive models of design are generally 

based on one rigorous systematic theory or method whereas Descriptive models tend to 

be used to explain the way design is carried out in practice. Both categories of design 

methods are embraced by their supporters for the various ways in which they can 

improve the effectiveness and efficiency of design processes (Mistree, Smith et al. 1990). 

Indeed, the two categories can be used to describe many widely recognized design 

methodologies such as the prescriptive model proposed by Pahl and Beitz (Pahl and Beitz 

1996). Still other methods of categorization exist. 

Decision-Based Design (DBD) (Mistree, Smith et al. 1990; Mistree, Smith et al. 

1993) is an entirely distinct paradigm for design based on concurrent engineering. As 
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opposed to traditional prescriptive or descriptive design methods that focus on the 

creation of the artifact, the focus in concurrent engineering is on the coincident creation 

of both the design process and the artifact, trusting that the creation of the artifact will be 

a natural byproduct of a well-designed process. The aim in carrying out concurrent 

engineering is twofold: 

• Facilitate increased knowledge early in the design process (See Figure 1-9) and an 

increase in the qualitative ratio of hard to soft information (Mistree, Smith et al. 

1993); and  

• Minimize total life cycle costs of the product without sacrificing quality or 

performance (Mistree, Smith et al. 1990).   
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Figure 1-9  - Increased Design Knowledge at Early Design Stages, modified from (Anonymous 1995) 
 

Decision-Based Design serves as the foundation upon which the research 

described in this dissertation is conducted. Formulating, evaluating, and making decisions 

become the key activities when design is considered from a decision-based perspective. 

In practice, the DBD paradigm also brings along with it a set of key assumptions 

concerning decision-making in design (Mistree, Smith et al. 1990; Mistree, Smith et al. 

1993): 

• The principal role of a designer is to make decisions; 

• Design problems may involve both sequential and concurrent decisions; 

• Design problems may involve hierarchical decision-making; 
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• Some of the information needed to make a decision may not be available at any 

given time; 

• Some of the information needed in decision-making may be hard (quantitative) 

and some may be soft (qualitative); 

• The interaction between decisions must be taken into account in modeling a 

problem;  

• The definition of the problem to be solved may be loose and open to change; and 

• Any decision support method must ideally be process-based, and discipline 

independent. 

 

As is stated in the first point, a designer is assumed to be, at the most basic level, 

a decision-maker.  While a designer is necessarily a decision-maker, the same cannot be 

said in reverse.  Throughout this dissertation, a person engaged in the process of solving a 

design problem is referred to as a designer.  In describing situations or methods that go 

beyond the scope of engineering design, reference will, at times, be made to a decision-

maker.  When this occurs, it simply is meant to point to the fact that the discussion at 

hand is not limited to the realm of engineering design. Regardless, these principles of 

DBD are assumed to be as equally applicable to Decision-Based Re-Design as they are to 

original design. Aside from the assumptions about decision-making mentioned above, 

taking a DBD perspective leads to the important conclusion that the designer cannot be 

removed from the design process. Given the presence of fuzzy, loose, open, soft 

information and the absence of other information, the final decision must remain with 
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what is assumed to be an expert designer who can fill in the gaps in the models that are 

often created to facilitate systematic design. 

 

 

Practically, this focus on the designer dictates that any computer programs, 

algorithms, or methods described in this dissertation exist simply to help the designer 

make better decisions. The ultimate is not to automate the activities of the designer –

although automation of ancillary activities may be beneficial- but rather to support 

him/her with the best information possible at the time the final decision must be made. 

Therefore, the focus of the work in this dissertation is not on the generation of the best, 

most optimal design for a narrow set of circumstances. Instead, the goal is to help in 

identifying a “satisficing” solution (Simon 1957) that is good enough to let him/her steer 

a conceptual redesign project in the most promising direction. As this is considered 

conceptual redesign, it is acceptable if one clear winning redesign plan is not found so 

long as the choices are greatly narrowed.  

A second practical way in which the adoption of a decision-based perspective 

impacts this research is that it dictates the use of the Decision Support Problem 

Technique to formulate basic design problems. The Decision Support Problem (DSP) 

Technique gives designers a mathematical means of modeling the various types of 

decisions that may arise in engineering design problems.  Capable of modeling problems 

based on quantitative “hard” information and qualitative “soft” information, the DSP 

Technique is built around an assumption. At the core of the DSPT is the assumption that 

in the real world, in the early stages of design, it is impossible to have all of the 
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information necessary to completely and accurately model a solution.  Thus, even if an 

optimal solution is found to the problem as stated, the incompleteness of the available 

information will keep that solution from ever being optimal in a real-world situation. For 

this reason, Decision Support Problems (DSPs) are intended only to guide the decision-

maker in the process of discovering a superior solution (Mistree, Hughes et al. 1993; 

Mistree, Lewis et al.). While the capability to handle soft or fuzzy information is 

interesting, it is not useful for the type of strategic redesign problem described here, 

wherein all information is known. It is recognized, however, that this is a gross 

oversimplification of matters. Using DSP’s in this work may lay the groundwork for later 

research into problems with less concrete information. 

 Depending on the formulation of the problem at hand, DSPs have been 

used to solve problems of various types including (Marston, Allen et al. 2000): 

• Selection Decision Support Problems (sDSP) – wherein a choice is made between 

a suite of possibilities.  Multiple measures of merit may be used as criteria in the 

decision; 

• Compromise Decision Support Problems (cDSP) – wherein a best but not 

necessarily optimal “satisficing” solution is found under multiple, sometimes 

conflicting goals; and 

• Derived / Couple Decision Support Problems – wherein more complex decisions 

are modeled by combining the primary forms of selection and compromise to 

form compromise/compromise, selection/selection, and compromise/selection 

decisions. 
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It can be shown that selection problems can be reformulated as cDSPs, but not the 

opposite. In addition, numerous methods have been developed based upon one or more of 

these Decision Support Problems.  Most recently, research has gone into the development 

of both a utility-based compromise DSP (Seepersad 2001) and a utility-based selection 

DSP (Fernández, Seepersad et al. 2001). 

DSPs provide a flexible framework upon which models of a variety of types of 

decisions can be placed. They can be used alone for simple decision-making activities or 

as the backbone of more complex design methods like the Robust Concept Exploration 

Method (RCEM) (Chen, Allen et al. 1996; Chen, Mavris et al. 1996) or the Product 

Platform Concept Exploration Method (PPCEM) (Simpson 1999; Simpson, Chen et al. 

1999). They have been utilized in a diverse variety of applications from the design of 

ships to aircraft and everywhere in between. It is proposed here that given the decision-

based perspective of this work, the basic decision-making processes in any method for 

supporting strategic sequential redesign be formulated using Decision Support Problems. 

The impact of this decision is discussed further in throughout Chapters 2 and 3. 

 

 

 

 

1.2.2 - Strategy in Design and Redesign 

 In design theory, a boundary line is oftentimes drawn between the domains of 

management and engineering, separating the definition of customer needs from the 

identification of design parameters to meet those needs. A good example of this 
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separation is shown in Figure 1-10 in the context of simultaneously designing families of 

products. The work of designers typically does not stray into the left side of this figure. 

Rarely do designers get the chance to determine customer demands or translate them into 

requirements for new products.  Engineers are cut off from the context in which they are 

working by erecting a wall between those that identify needs and those that find solutions 

to address them. In a sequential redesign problem, this arrangement has profound effects. 

Unaware that those who work in marketing have already identified other market needs 

and/or future market needs, the engineer will be tempted to redesign the existing system 

with only the narrowly defined goals of the most current market need in mind. Cut off as 

he/she is, the designer cannot know how decision he/she makes will affect the company’s 

product offerings for the future. 

The example of Philips recordable media devices (see Figure 1-7) shows two 

reasons for adopting a different arrangement when considering the sequential redesign of 

engineering systems. First, a general trend can be seen in the evolution of the market, so 

designers should have a good idea in which direction their next redesign projects will go. 

Second, the pace of change in the marketplace is quickening, meaning that redesigned 

systems will need to emerge in shorter periods of time in the future, suggesting that any 

steps that can be taken to hasten the redesign process would be beneficial.  
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Note the planned 
separation between needs 
definition and design

 
Figure 1-10 – Disconnect Between Needs Identification and Design in Product Family Design and 
Development, modified from (Jiao, Simpson et al. 2006) 
 

 

It is suggested here that in cases of sequential redesign where future revisions are 

known or expected, the redesign process should take a more strategic slant. The word 

strategy comes from the Greek for generalship, which in turn is derived from the word for 

a military general. One dictionary defines it, in part, as “the science of planning and 

directing… forces into the most advantageous position prior to actual engagement 

(Anonymous 1983).” Another source (Anonymous 2002) defines strategy as “the art of 

devising or employing plans… towards a goal.” It is suggested that in sequential 

redesign, to ensure the ongoing success of a family of systems, strategy should be 

employed in making decisions. It is further suggested that sequential strategic redesign be 

considered a subset of strategic design, so defined by Seepersad and coauthors 

(Seepersad, Cowan et al. 2002): 
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“Strategic design is a comprehensive approach for forecasting shifts or 

changes in markets, associated customer requirements, and technical 

capabilities and for devising artifacts that accommodate these shifts 

efficiently and effectively.  It is a marriage of strategic product planning 

and market analysis, methods for leveraging and adapting existing 

products, procedures for assessing and infusing technological 

innovations, and systematic evaluation techniques for comparing and 

selecting among a portfolio of options.” 

 

In redesigning strategically, it is suggested that designers ignore the usual barrier 

between management, marketing, and engineering to the greatest extent possible, 

absorbing all available information about future goals and conditions. Practically 

speaking, strategy introduces a broader perspective that has impacts on all parts of a 

design problem including: 

• Objectives may include redesign projects beyond the immediate goal of producing 

new systems, meaning that the goal is really to redesign multiple systems at once 

instead of one system at a time; 

• Existing systems must be described in terms of the objectives that are important 

both now and in the future, even if offering variety in those areas is not important 

at this point; 

• Objectives that may tend to be at a higher level than were only a single system be 

under design. Furthermore, as the redesign problem reaches further into the 

future, modeling of uncertainty may be necessitated and surrogate “means 
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objectives” may be substituted in place of fundamental objectives like cost for 

which models become too unpredictable; and 

• Variables must be considered to include not just possibilities available today but 

also those that will become available within the scope of the redesign problem. 

 

The downside of expanding the redesign problem to think strategically is that 

even an expert designer cannot be expected to project or model the economic conditions 

that will be present for future generations of a family. Still, the economic characteristics 

of a redesign solution generally serve as one of the most important factors in deciding 

whether to adopt or abandon the solution. For this reason, it is important to find ways to 

reflect economic considerations without wasting time on complex models that probably 

will not accurately reflect the future. In this dissertation, an attempt has been made to 

identify metrics and objectives that have three appealing characteristics for those carrying 

out strategic sequential redesign:  

• They provide indirect indications of a solution’s potential for economic viability 

over the life of the family of systems; 

• They are relative, rather than absolute measures so that the designer can evaluate 

their success by simply considering whether two solutions with different values 

are preferred to one another, not by how much they are preferred over one 

another; and 

• They are relatively easy for a designer to calculate based on knowledge that 

he/she can reasonably be expected to have given the fact that one or more systems 

in the family already exist. 
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In summary, by thinking strategically when redesigning, the redesign problem is 

expanded to not just include the current revision but also any planned future generations. 

In choosing to look far ahead, the designer treads into a realm where his/her 

understanding of economic models may be insufficient, meaning that while performance 

objectives can be quantified easily enough, the economic viability may be hard to project 

in monetary terms. For this reason, indirect indications of economic performance are 

needed. 

1.3 - THE GOALS AND RESEARCH FOCUS IN THIS DISSERTATION 

 The work described in this thesis is carried out with the goal of creating a method 

to support redesign decision-making under certain circumstances. In this section, those 

circumstances are spelled out clearly so that the formal research goals and their 

associated hypotheses can be introduced.   

 

1.3.1 - Some Considerations in the Scope of this Work 

 The reader is referred back to Figure 1-3 for a concise picture of the problem 

facing designers wishing to strategically redesign a family of products that is expected to 

be released sequentially over time. Several important assumptions are made in this 

dissertation in order to limit its scope and make it more manageable. The ramifications of 

these assumptions is studied throughout the rest of this document and summarized in 

Section 5.3 but they are introduced briefly here. 

 First, it is assumed that given the task of the designer is to identify the best way(s) 

in which to adjust existing systems to address new needs, that mathematical models of 
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these systems are available to the designer. Furthermore, it is assumed that these models 

are flexible within the realm of the current redesign problem. That is, the understanding 

of the system is broad enough so that the mathematical model does not fail within the 

range of the redesign variables. 

 Second, it is assumed that all system performance characteristics are known and 

modeled with certainty. This is a simplifying assumption which is not reflective of 

reality. It is also assumed that all redesign goals are known with certainty. This may be 

the case in certain applications such as consumer electronics or the automobile industry, 

but would not always be the case for as long periods of time as are used in this 

dissertation. 

 Lastly, it is assumed throughout this dissertation that the designer is an expert 

both with regard to the systems being redesigned and with regard to the redesign method 

presented here. The former assumption means that he/she has a good enough 

understanding of the system to be able to identify which variables are most likely to have 

large impacts on its various performance characteristics and to know the role that 

redesign variables would play on the manufacturing of the system. The latter assumption 

means that the designer can be trusted to create subjective metrics for the redesign 

process, understanding the impact that the weights in such metrics would have upon the 

outcome of the redesign process. 

 

1.3.2 - Research Questions and Hypotheses 

 If the method presented in this dissertation is to be successful, it must address the 

research challenged presented in Section 1.1.3 through the decision-based and strategic 
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perspectives introduced in Section 1.2.1 and Section 1.2.2. It is useful to revisit these 

challenges as requirements for the method, as these requirements will serve to define the 

usefulness that must be demonstrated later on. These refined challenges are shown as 

requirements in Table 1-3. Most of the requirements in Table 1-3 flow directly from the 

discussion in Section 1.1.3. The final two requirements are exceptions to this rule. They 

are drawn from the foundations of this method in Decision-Based Design and strategic 

thinking respectively. 

In this section, only the primary research questions and hypothesis are introduced.  

At the end of the second chapter, having reviewed relevant literature, these are described 

in greater detail and the research question is broken into secondary questions.  It is my 

opinion that this arrangement makes more sense from a scholarly point of view than to 

introduce all the hypotheses before the literature that justifies them is presented. 

It is noted here that for the purposes of this dissertation, commonality is taken to 

mean the sharing of two identical components or variable values between two distinct 

systems. In application, this definition is hard to implement as many applications can 

handle floating point variables with a large amount of precision. In this dissertation, for 

every variable, the designer is expected to choose a level of detail beyond which he/she 

does not care about differences between two variable values. Hence, the definition of 

commonality for practical purposes is taken to be the sharing between two distinct 

systems of two variable values that are sufficiently similar to one another to assume that 

they could be produced in the same manner. 
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Table 1-3 – Research Challenges and Resulting Requirements of a Redesign Method 
Research Challenge Requirements 

 Existing systems, their design parameters, and 
performance characteristics should be modeled and 
considered as a starting point for the redesign problem. 

Support consideration of 
the possibility of reusing 
existing systems  Reuse of elements of existing systems should be 

considered as a piece of the redesign plan  

Account for the effort 
involved in switching 
over to new designs 

 The effort involved in designing new subsystems, 
researching their technology, prototyping them, testing 
them, and setting up their manufacturing facilities should 
be taken into consideration when comparing two redesign 
options. 

 In two systems with common subsystems, the impact of 
the schedule whereby they are produced on the value of 
commonality should be taken into consideration if it is 
significant. Account for the variable 

value of commonality 
and leveraging 

 The relative value of commonality between different 
variables or subsystems should be taken into 
consideration if it is significant 

 Commonality should not be limited to be available to 
only certain variables 

 Commonality should not be limited to only applying to 
certain groups of variables in “platforms” 

Allow exploration of 
commonality throughout 
the emerging family of 
systems  Platforms of common variables should not be limited to 

certain sizes or to being all common versus all unique. 
Support creation of new 
systems with variety in 
multiple dimensions 

 The method should foster the creation through redesign 
of a family of systems that vary in multiple performance 
characteristics 

Support use of multiple 
means of redesigning 
systems to offer variety 

 The method should foster the creation through redesign 
of a family of systems that are differentiated through 
fundamentally different manners of adjustment 

Support the high-level 
conceptual redesign of 
systems 

 The method should support conceptual redesign decisions 
at a systems level and thus be useful to those designers 
who may only be able to think in terms of top-level 
design variables 

Redesign decisions 
should be made as 
strategically appropriate 
as possible 

 The method should support redesign decisions that take 
into account all known future redesign projects and their 
associated goals. 

 



 40 

 In this dissertation, a method to support decision-making for sequential strategic 

redesign of engineering systems is developed. The requirements of such a method are 

spelled out in Section 1.3.2 and are motivated by industrial examples explained in 

Section 1.1.2. Taking a decision-based strategic view of these problems leads to the 

following Overall Problem Statement: 

Redesign is a fact of life in engineering but it is usually carried out in an ad hoc manner 

as new needs arise while design research focuses on clean-sheet projects or simple 

hands-on adjustments.  Little consideration is given to the effect of small subsystem 

changes on the larger system and even less is given to how such changes could affect the 

future viability of the system when demands change even further.  The danger is that 

engineers involved in redesign might make decisions that seem appropriate to the current 

state of demand and inadvertently close off parts of the design space that will become 

desirable as demands change further –necessitating larger design changes in the future 

or at an extreme the abandonment of the product family entirely. Existing design methods 

do little to support high level redesign, let alone the tweaking of multiple existing systems 

to create multiple new systems over time. There is a need for methods to support 

decision-making in such situations, fostering commonality and variety in multiple 

dimensions using as many means of offering variety as possible. 

  

This problem statement leads to the following Primary Research Question, a 

refinement of what has already been stated: 

How can an existing system be most effectively redesigned as the basis for a product 

family while taking into account the demands of the present and future? How can the 
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staggered release schedules of future product variants be accommodated, costly future 

redesigns be minimized, and commonality between product family members used most 

effectively, all in the course of making decisions as to how an existing system will be 

redesigned? How can multiple redesign goals be achieved using multiple basic means of 

offering product variety? 

  

It is proposed here that a systematic method be developed based around a 

constructal-inspired (Bejan 1996; Bejan 1997; Bejan and Ledezma 1998; Bejan 2000) 

solution strategy which affords the use of multiple means of offering system variety in 

multiple dimensions. Thus, the Primary Research Hypothesis associated with the 

primary research question presented above is as follows: 

The overall goal of achieving a desired amount and type of variety while minimizing 

design changes and maximizing the value of non-commonality can be achieved through 

the use of a modified constructal-inspired approach based on the Product Platform 

Constructal Theory Method (Hernandez 2001; Hernandez, Allen et al. 2002; Hernandez, 

Allen et al. 2003) which is in turn based on Constructal Theory(Bejan 1996; Bejan 1997; 

Bejan and Ledezma 1998; Bejan 2000). By incorporating simple and intuitive indices for 

redesign difficulty the need for redesign can be minimized in the pieces of a system where 

it is expected to be most expensive. By using an index for commonality value, sharing of 

components between systems can be targeted to where it is most useful from a strategic 

perspective. 

  



 42 

The primary research question and hypothesis can be broken down into several 

parts that are more practical to take on as research tasks. In this project, the tasks are 

broken down into two key parts: the creation of an overall solution strategy inspired by 

Constructal Theory and the development of two overall redesign metrics to serve as 

indirect economic indicators. As a result, Secondary Research Question #1 is as 

follows: 

How can design changes be minimized and commonality used most effectively in a 

conceptual strategic redesign problem? 

Hypothesis #1: Through the use of two indices as objectives in a redesign problem, better 

redesign strategies utilizing fewer design changes and more valuable targeted 

commonality can be identified.  

 

This overall secondary hypothesis will be proven if the tertiary supporting 

hypotheses are shown to be correct and if the use of both indices together yields better 

results than can be found using either alone. The tertiary supporting research questions 

and hypotheses deal with each of these indices individually, starting with a measure for 

the effort involved in the creation of newly redesigned systems relative to the option of 

leaving all the system variables the same. Research Question #1.1, which deals with this 

issue, is the following: 

How can design changes requiring less effort be encouraged in a simple manner in the 

course of making redesign decisions? 
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Hypothesis #1.1: By utilizing the minimization of the Redesign Index (RI) as an objective 

in a redesign problem, a decision-maker’s attention can be directed to redesign solutions 

involving lower numbers of design changes in targeted parts of a system. 

 

While Research Question #1.1 deals with one factor of redesign that makes them 

distinct from original design problems, Research Question #1.2 is meant to address 

another issue: the effect that varying production schedules and manufacturing processes 

have on the value of commonality between individual systems and the value of 

commonality in certain variables. The research question addressing this issue is: 

How can commonality between future product variants with staggered release schedules 

be encouraged in a simple manner, taking into account the effort involved in producing 

specific components? 

Hypothesis #1.2: By utilizing the minimization of the Commonality Discount Factor 

(CDF) as an objective in a redesign problem, the designer’s attention can be directed to 

combinations commonality in the most valuable parts of a system that is being 

redesigned.  

 

The two indices that are the subject of Research Question #1 provide a measure of 

the economic performance of a plan for redesigning existing systems to create new 

systems. These indices are a crucial tool in an overall method for identifying such 

redesign plans. It is this method, which is inspired by Constructal Theory and based upon 

existing product family design methods, which is the subject of Research Question #2: 

How can the redesign of one or more existing systems for the creation of one or more 
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new systems be supported in such a way that multiple conflicting redesign goals can be 

achieved simultaneously, multiple means of changing the system may be employed, 

strategic considerations are taken into account, elements of designs are reused in the 

most effective way possible? 

Hypothesis #2: The redesign problem can be characterized as a problem of optimal 

access in a geometric space made up of the redesign objectives and solved using a 

modified, constructal-inspired approach based on the Product Platform Constructal 

Theory Method (PPCTM) using the Redesign Index (RI) and Commonality Discount 

Factor (CDF) as overall objectives in conflict with the individual systems’ goals. 

  

Research Question #2 is broken down into two parts in order to sort out the 

individual contributions of the two main components of the work in this dissertation the 

development of indices for redesign and the development of a constructal-inspired 

approach to structuring and solving a redesign problem. Research Question #2.1 deals 

with the use of the constructal-inspired approach to structure the problem: 

How can the problem of strategically redesigning existing systems to create specific new 

systems with distinct performance goals be structured in such a way that commonality 

between related systems is encouraged? 

Hypothesis #2.1: The strategic sequential redesign problem can be structured as a 

problem of optimal access in a geometric space and solved using an approach based on 

the Product Platform Constructal Theory Method (PPCTM), abstracting its inner 

workings towards redesign applications and infusing the use of the multi-objective 

compromise Decision Support Problem at every stage of the decision-making process.  
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Meanwhile, the contribution of the redesign indices RI and CDF are addressed in 

Research Question #2.2: 

How can a finer level of commonality as well as commonality between geometrically 

distant systems both be encouraged in the context of an approach to constructal-inspired 

redesign decision support? 

Hypothesis #2.2: By utilizing the Redesign Index (RI) and Commonality Discount 

Function (CDF) as overall objectives in the constructal-inspired redesign commonality 

exploration method, design reuse can be considered between systems that are not close to 

one another in the market space and between individual elements of subsystems or modes 

of collections of subsystems.  

 

The overall problem statement, primary and secondary research questions, and 

hypotheses are all summarized in Table 1-4. As is clear from Hypothesis #2, the two 

indices developed in answer to Research Question #1 are intimately involved in the 

second portion of this research. Therefore, the validation of the indices and the overall 

method must be handled carefully so as not to confuse and intertwine the meaning of 

results. The way in which both the indices and the overall method are verified and 

validated is explained in the Section 1.4.  
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Table 1-4 – A Summary of Research Questions and Hypotheses 

Overall 
Problem 

Statement 

Redesign is a fact of life in engineering but it is usually carried out in an ad hoc manner as new needs 
arise while design research focuses on clean-sheet projects or simple hands-on adjustments.  Little 
consideration is given to the effect of small subsystem changes on the larger system and even less is 
given to how such changes could affect the future viability of the system when demands change even 
further.  The danger is that engineers involved in redesign might make decisions that seem appropriate 
to the current state of demand and inadvertently close off parts of the design space that will become 
desirable as demands change further –necessitating larger design changes in the future or at an extreme 
the abandonment of the product family entirely. 

Primary 
Research 
Question 

How can an existing system be most effectively redesigned as the basis for a product family while 
taking into account the demands of the present and future? How can the staggered release schedules of 
future product variants be accommodated, costly future redesigns be minimized, and commonality 
between product family members used most effectively, all in the course of making decisions as to how 
an existing system will be redesigned? How can multiple redesign goals be achieved using multiple 
basic means of offering product variety? 

Overall 
Hypothesis 

The overall goal of achieving a desired amount and type of variety while minimizing design changes 
and maximizing the value of non-commonality can be achieved through the use of a modified 
constructal-inspired approach based on the Product Platform Constructal Theory Method (PPCTM). By 
incorporating simple and intuitive indices for redesign difficulty the need for redesign can be 
minimized in the pieces of a system where it is expected to be most expensive. By using an index for 
commonality value, sharing of components between systems can be targeted to where it is most useful 
from a strategic perspective.  

Research Question 1 Hypotheses 1 

R
Q

 #
 1

 How can design changes be minimized and 
commonality used most effectively in a 
conceptual strategic redesign problem? 

Through the use of two indices as objectives in a redesign 
problem, better redesign strategies utilizing fewer design 
changes and more valuable targeted commonality can be 
identified.  

Research Question 1.1 Hypotheses 1.1 

R
Q

 #
 

1.
1 

How can design changes requiring less effort 
be encouraged in a simple manner in the course 
of making redesign decisions? 

By utilizing the minimization of the Redesign Index (RI) 
as an objective in a redesign problem, the goal of 
minimizing design changes in targeted areas can be 
achieved.  

Research Question 1.2 Hypotheses 1.2 

R
Q

 #
 1

.2
 How can commonality between future product 

variants with staggered release schedules be 
encouraged in a simple manner, taking into 
account the effort involved in producing 
specific components? 

By utilizing the minimization of the Commonality 
Discount Factor (CDF) as an objective in a redesign 
problem, commonality in the most valuable parts of a 
redesign problem can be encouraged.  

Research Question 2 Hypotheses 2 

R
Q

 #
2 

How can the redesign of one or more existing 
systems for the creation of one or more new 
systems be supported in such a way that 
multiple conflicting redesign goals can be 
achieved simultaneously, multiple means of 
changing the system may be employed, 
strategic considerations are taken into account, 
and elements of designs are reused effectively? 

The redesign problem can be characterized as a problem of 
optimal access in a geometric space made up of the 
redesign objectives and solved using a modified, 
constructal-inspired approach based on the Product 
Platform Constructal Theory Method (PPCTM) using the 
Redesign Index (RI) and Commonality Discount Factor 
(CDF) as overall objectives in conflict with the individual 
systems’ goals. 

Research Question 2.1 Hypothesis 2.1 

R
Q

 #
 2

.1
 How can the problem of strategically 

redesigning existing systems to create specific 
new systems with distinct performance goals be 
structured in such a way that commonality 
between related systems is encouraged? 

The strategic sequential redesign problem can be structured 
and solved using an approach based on the PPCTM, 
abstracting its inner workings towards redesign 
applications and infusing the use of the cDSP at every 
stage of the decision-making process. 

Research Question 2.2 Hypothesis 2.2 

R
Q

 #
 2

.2
 

How can a finer level of commonality and 
commonality between geometrically distant 
systems both be encouraged? 

By utilizing the RI and CDF as overall objectives in the 
constructal-inspired redesign commonality exploration 
method, such design reuse can be encouraged. 
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1.4 - THE ORGANIZATION OF THIS DISSERTATION 

The rationale behind the organization of this dissertation is the idea that the 

purpose of this document is to provide the evidence that the reader will need to gain 

confidence in the hypotheses presented in Section 1.3 and the general approach they 

suggest. The reader is guided through a systematic process of verification and validation 

based on the structure of the Validation Square (Pederson, Emblemsvag et al. 2000). The 

hope is that, by following this structure, the reader will gain enough confidence so that 

he/she will see the proposed method’s broad usefulness beyond the engineering examples 

presented in this dissertation. With this plan in mind, the philosophy and structure of the 

validation square are introduced in Section 1.4.1, while the implementation of that 

structure in this dissertation and a roadmap it creates are introduced in Section 1.4.2. 

 

1.4.1 - A General Strategy for the Verification and Validation of the Proposed 

Method 

In proposing and testing new engineering design methods, it is often useful to 

follow a systematic process in order to both verify the methods’ consistency and validate 

any claims that are to be made about their usefulness. The way in which the methods 

proposed in this dissertation will be validated and verified is best described by the 

“validation square” (see Figure 1-11) described by Pederson and coauthors (Pederson 

1999; Pederson, Emblemsvag et al. 2000; Seepersad, Pederson et al. 2006).  As Pedersen 

and coauthors point out, “Validation refers to internal consistency (i.e. a logical problem), 

whereas verification deals with justification of knowledge claims.”  Traditionally, 
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validation of engineering methods has been rooted in logic, induction, and/or deduction, 

an approach that has worked because much of engineering deals with mathematical 

models.  A special approach to validation is needed when studying engineering design, 

however, as it often depends at least partly on more qualitative statements and measures 

of merit. The structure of the validation square is drawn from the assertion that rigorous 

mathematical validation of an engineering design method’s internal consistency does not 

necessarily dictate that the method also has external, real-world relevance.  Rather, to 

gain confidence in a method’s external validity, a set of appropriate but limited real-

world example problems must be chosen and solved so that all aspects of the method are 

tested thoroughly.  Given a thorough set of example problems and consideration of the 

implications of use of the methods beyond the chosen examples, the generality of the 

method can justly be claimed. 

The validation strategy proposed by Pedersen and coauthors has six main steps 

that are distributed throughout the square’s four quadrants, each of which represents a 

major milestone in the validation process.  It is suggested that each of the first three 

quadrants must be fully addressed before it be considered whether it is appropriate to 

make a “leap of faith” to the fourth quadrant’s acceptance of the methods’ external 

validity. In this way, the validation process can be viewed as a confidence-building 

exercise wherein the reader of this dissertation will, by reviewing the steps taken, grow 

more and more assured that the methods proposed do in fact fulfill the purpose for which 

they are proposed. 
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Figure 1-11 – The Validation Square (Pederson, Emblemsvag et al. 2000) 
 

The steps towards validation and the measures recommended for each step are 

summarized in Table 1-5. In Step 1, the pieces of the proposed methods or constructs 

upon which they are built are examined for validity, oftentimes through a literature 

review meant to check that they solve problems of the type being solved here. The reader 

may wish to look for inconsistencies in variable types, in measures of uncertainty used, or 

even in the types of results generated. Small problems might be solved to check the 

results suggested in the literature. In Step 2, the methods or constructs are examined 
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together as a whole with an eye towards checking their consistency. Ideally, any 

mathematical consistencies between constructs are identified in the first step while, in the 

second step, the method is checked to make sure that the types of information and data 

needed at each step of the method are in fact available and that assumptions are 

consistent throughout. Thus, in the first quadrant of the validation square, the theoretical 

structure of the proposed method has been checked in every way possible.  

In the second quadrant and third step of the process, the proposed example 

problems are examined in previous steps. The features of the problem including 

variables, constraints, assumptions, and data generated are all checked to make sure that 

they are similar to those for which the constructs of the proposed have been demonstrated 

previously. The data that is expected to be generated is also checked to make sure that it 

will be good enough to generate conclusions at later stages of the validation process. 

Thus confidence that the structure of the example problems is appropriate to the research 

at hand is built up. 

In the third quadrant, the fourth step involves examination of the results of 

application of the proposed methods to the example problems that have been chosen. The 

data generated must be compared to known results or that which is generated using 

alternative solution techniques to make sure that the proposed methods are producing 

believable results. In the fifth step, any valid data is again examined in order to identify 

any benefits that may have been achieved with the methods proposed here. If benefits are 

identified, it must be shown that these are produced as a result of using the proposed 

method and cannot be explained in any other way. Thus in the third quadrant of the 
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validation square, confidence in the validity of the empirical results of using the proposed 

methods is built. 

 

Table 1-5 – Steps in the Validation of an Engineering Design Method (Pederson, Emblemsvag et al. 
2000)  

Step 1  -Acceptance of the 
construct’s validity  

This step is generally based on a literature search 
to make sure that the construct is generally 
accepted. 

Quadrant I 
 

Theoretical 
Structural 

Validity 
Step 2 – Acceptance of the 
method’s consistency 

Flow charts are extremely useful to check for 
incorrect assumptions and that for each step there 
is both a valid input of information and a valid 
output. 

 
Quadrant II 

 
Empirical 
Structural 
Validity 

 

Step 3 – Acceptance of the 
example problems 

Acceptance comes from documentation that the 
example problems are similar to those for which 
the constructs are generally used, that they are 
similar to the actual problems that the method is 
intended for, and that the available data supports 
conclusions 

Step 4 – Acceptance of the 
usefulness of the method for 
example problems 

The “usefulness” of the design method is usually 
tied to whether the design solutions are believed 
correct. 

Quadrant III 
 

Empirical 
Performance 

Validity 

Step 5 – Acceptance that 
usefulness is linked to the 
application of the new 
method 

To tie the new construct to the usefulness found 
in the previous step, the design solution or results 
with and without the construct should be 
compared to one another and the new construct 
should be compared with existing approaches.   

 
Quadrant IV 

 
Theoretical 

Performance 
Validity 

 

Step 6 – Acceptance of the 
usefulness of the method 
beyond the given example 
problems 

This step involves a “leap of faith” based on the 
confidence built up in the previous steps.  If 
adequate confidence in the construct has been 
produced, the leap to generality can be made. 

 

Transitioning to the final quadrant of the square involves consideration of the 

degree of confidence in the proposed method that has been generated in the course of the 

research conducted. All previous quadrants are reviewed with this in mind. It is also 

important to look back at the original purpose put forward for the research, to question 

whether the proposed method has really been shown to be useful with respect to that 

purpose, and whether all of the features of the proposed methods have been adequately 
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exercised in the example problems presented. If the answer to all of these questions is 

affirmative, then it is possible to make a “leap of faith” to claim wider applicability for 

the methods.  The methods that are proposed as answers to the research questions posed 

in Section 1.3.3 can be generally described as an approach to decision support for 

strategic redesign of a system or systems. The main research contributions associated 

with this approach are associated with two new metrics that are proposed as ways of 

measuring the merit of redesign plans and an overall constructal-based solution strategy. 

The methods that make up these contributions must be validated to a certain extent in this 

dissertation.  

The way in which this plan is put into practice in the validation of the methods 

proposed in this work is described in further detail in the following section in the course 

of laying out the organization of this dissertation.  

 

1.4.2 - Implementation of the Verification and Validation Plan in this Dissertation 

 The steps of the validation square provide the rationale for the structure of the rest 

of this dissertation, as shown in Figure 1-14. The purpose of each chapter and each sub-

section is to provide further support for the hypotheses put forward in Section 1.3.2 and 

to add to the level of comfort that the reader has with the usefulness of the proposed 

methods with respect to their established purpose: the support of decision-making in 

cases of high-level, sequential and strategic redesign. With that in mind, here at the end 

of the first chapter, the reader should be familiar with this purpose, the types of problems 

that inspire this work, and the level of usefulness expected of the proposed method: that 

redesign solutions exhibiting valuable commonality and lessened need for redesign can 
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be identified. The steps whereby this usefulness is demonstrated throughout this 

dissertation are shown in the form of more detailed validation squares for each of the 

secondary research questions in Figure 1-12 and Figure 1-13. 
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redesign metrics 
shown to be valid 

Section 3.2.2 to 
Section 3.2.6

Step 2 
Redesign metrics 
shown to be consistent

Section 3.2.4 to 
Section 3.2.6

Step 3 
Universal motor 
example problem 
(simple and complete 
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appropriate

Section 4.2,
Section 4.3.1 to 
Section 4.3.2,
Section 4.3.5

Step 6 
“Leap of faith” made 
to accept that the 
usefulness 
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warrant assuming 
wider usefulness

Section 5.2.2

Step 5 
Usefulness linked to 
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Figure 1-12 – Implementation of Verification and Validation Plan for Redesign Metrics and the First 
Hypothesis 
 

 In Chapter 2, existing literature is critically evaluated to determine its usefulness 

in the strategic sequential redesign problem. The author puts forward the idea that the 

type of problem being framed here is unlike those addressed by previous research but that 

some elements of this problem have been solved separately. The elements that have been 

addressed serve as a foundation for the development of a new method and indices that fill 

in the gaps that have not been addressed. It is the establishment of the areas in which 
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previous research is useful and the gaps in the capabilities of existing methods that is the 

purpose of Chapter 2.  
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Figure 1-13 – Implementation of Verification and Validation Plan for Overall Redesign Method and 
the Second Hypothesis 
 

 Details of the development of the methods proposed in the research hypotheses 

are provided in Chapter 3. The focus of Section 3.2 is on the development and initial 

validation of the Redesign Index (RI) and Commonality Discount Factor (CDF) based on 

existing indices for product family design. In Section 3.3, the overall method is 

developed and explained in detail. Through literature review, analysis, and simple 

problems, the theoretical structural validity of the proposed method and indices is 

demonstrated in Chapter 3.  
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The empirical performance validity of the indices for redesign is demonstrated in 

solving two scenarios for the modification of an evolving family of simple universal 

motors in Section 4.3.4. The empirical structural validity of this universal motor example 

is discussed in these sections as well. In Section 4.4, the universal motor example is made 

more complex through the addition of a larger number of redesign options and the 

introduction of multiple redesign objectives. The whole redesign method is employed in 

solving these larger problems, lending credence to its empirical performance validity. 

Furthermore, by the end of Chapter 4, it is expected that the following characteristics will 

have been demonstrated by the indices and method that are the focus of the research 

hypotheses: 

• For the Redesign Index (RI): 

o Show that RI reduces the instances of redesign without significant 

sacrifice of other objectives 

o Show that by using redesign difficult indices, the location of commonality 

can be controlled –reducing design variation in parts of the product that 

are hard to redesign. 

o Show that increasing the weight given to RI in the overall decision-

making process increases the amount of commonality seen. (really part of 

the overall method’s validation) 

• For the Commonality Discount Factor (CDF):  

o Show that CDF reduces the instances of redesign without significant 

sacrifice of other objectives 
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o Show that by using penalties to reflect the relative merit of commonality 

for different variables, commonality in specific variables can be increased 

at the expense of commonality in other variables 

o Show that by using penalties to reflect the relative merit of commonality 

for different types of overlap in production schedules, more valuable 

commonality can be promoted 

o Show that increasing the weight given to CDF in the overall decision-

making process increases the amount of commonality seen.  

• For the overall constructal-inspired redesign method:  

o Show that it can produce viable platforms of arbitrary size and shape 

o Show that it can produce families of products with features roughly 

equivalent to those produced using simple optimization 

o Show that it can sometimes produce better families of products 

o Show that the overall approach works for: 

 One-to-one redesign 

 One-to-two redesign 

 Two-to-one redesign 

 General cases of redesign 

 

The last four bullets require some explanation and are broken down in Table 1-6. 

In this work, it is assumed that there exist four distinct types of sub-problems within what 

has been defined as sequential strategic redesign.  
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Table 1-6 – Basic Sequential Redesign Problem Sub-Types 
Market space Schedule Features 

 

4321 4321

 

Basic Redesign 
a.k.a. “One to One Redesign” 

• One existing system 
• One new system being designed 

 

4321 4321

 

Redesign for Variety 
a.k.a. “One to Two Redesign” 

• One existing system 
• Two current and future planned new 

systems 

 

4321 4321

 

Redesigned Based on Variety 
a.k.a. “Two to One Redesign” 

• Two existing or past systems 
• One new system being designed 

 

4321 4321

 

General Redesign 
• One or more existing or past systems 
• One or more new systems being 

redesigned 

 

The basic “one-to-one redesign” paradigm is the type that could be supported by 

Otto and Wood’s (Otto and Wood 1998) approach based on disassembly. It is the most 

basic, simple type of redesign and thus the first to be tackled. One existing system is 

redesigned to create one new system with an overlapping production schedule. 

The second type, dubbed “one-to-two redesign” or “redesign for variety” involves 

the leveraging of one existing system for the creation of two new systems, each of which 

have production schedules that overlap with the original system. It involves two distinct 

sets of goals for the two new systems but also a common concern for identifying 

opportunities for reuse and commonality with the original system 
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The third type, called “two-to-one redesign” or “redesign based on variety” 

involves two or more existing systems and a new system to be designed based on them 

and be produced on an overlapping schedule. In this type of problem, the special concern 

is that there are multiple options for design reuse and commonality in the multiple 

existing systems.  

The fourth and final type, called “general redesign” is envisioned as having at 

least two existing systems being leveraged to create at least two new systems, meaning 

that all the issues tackled in the three other subtypes are combined. It is assumed here 

that, ignoring issues of scalability and computer power, the ability to solve the general 

problem type indicates the ability to solve any more complex redesign problems. 

 Finally, in Chapter 5, the accomplishments and research contributions described 

in the dissertation are revisited, the progress towards the validation of the proposed 

method and indices in the first four chapters is summarized, and the work completed is 

critically evaluated. The assumptions made in this work are recounted, as are the 

limitations of the method. Based on this information, the potential for making the 

philosophical “leap of faith” to claiming theoretical performance validity and broader 

usefulness for the indices and overall redesign method is discussed. In order to do this, 

the problems solved are examined for factors that would have to change or be flexible for 

them to be truly representative of broader, more general redesign scenarios. Finally, some 

ideas for future work based on this dissertation are shared, as are some personal 

reflections on the research that went into this dissertation.  
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Figure 1-14 – Organization of this Dissertation 
 

1.5 - STATUS AND PROMISE 

In this chapter, the reader has been introduced to the problem of strategic and 

sequential redesign from a high-level, decision-based perspective. It has been proposed 

that a constructal-inspired method be developed to support decision-makers facing such 
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redesign problems. In Chapter 2, it is shown that there is no single existing decision-

support method that tackles the type of redesign problem envisioned here but that there 

are some tools and techniques that, when modified and used together, can form the 

foundation for a useful method. The development of this method is explained in Chapter 

3 and it is shown in action in Chapter 4. Finally, in Chapter 5, the requirements that are 

outlined in this chapter are revisited to ensure that the constructal-inspired method meets 

all the needs set forth for it. It is only then that the method can be examined for broader 

capabilities. 
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CHAPTER 2  

OFFERING VARIETY IN A CHANGING MARKETPLACE – A 
LITERATURE REVIEW 

 

2.1 - A PREVIEW OF THIS CHAPTER’S CONTENTS 

In Chapter 1, a case is made for methods that support designers in situations 

where they must redesign existing systems repeatedly to meet multiple conflicting goals. 

In this chapter, the literature on redesign and design methodologies is examined to see in 

what ways sequential redesign is supported. The case is made that although no existing 

work deals with this problem head-on, there are areas of previous work that can 

contribute to some of the requirements of a sequential design decision support method. 

Based on the positive and negative aspects of this previous work, gaps are identified and 

solidified, providing further justification for the research questions and hypotheses 

presented in Chapter 1. These hypotheses serve as the basis for the redesign decision 

support method described in Chapter 3 and exercised in the design of universal motors in 

Chapter 4.  

 

2.2 - NARROWING THE SCOPE OF THE ISSUES OF INTEREST IN STRATEGIC 

REDESIGN 

As stated in Section 1.1 – sequential redesign as described here is a topic that is 

new to the engineering design community. As such, a comprehensive literature review is 

difficult, as the issues and problems being addressed by the most relevant previous 

research are still tangential at best to the concerns of this dissertation. Lacking clear 
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foundations or competitors, the literature review contained in this chapter is organized 

around assumed characteristics of the strategic sequential redesign problem (see Table 

2-1), the requirements laid out for a redesign decision support method (see Table 2-2) and 

a series of questions that emerge when one considers the overall themes present: 

• What are the alternatives to carrying out redesign? This question is answered 

in Section 2.3.1 because it is often posed when this research is presented. 

• How do existing methods support systematic redesign? This question is 

addressed in Section 2.3.2. 

• How do existing methods support the creation of variety amongst a group of 

related systems? Although the subject matter overlaps slightly with that of 

other sections, this question provides the main focus for Section 2.3.3. 

• How is commonality between related systems encouraged in existing decision-

support methods? This question is answered in Section 2.3.4. 

• How is strategic decision-making supported in existing design methods? This 

question is addressed in Section 2.3.5. 

This critical literature review is not meant to be exhaustive in all the areas that it 

covers, as some areas involve a large amount of ongoing research. Instead, the focus of 

the review –particularly in those sections that involve product family design and strategic 

thinking in design- is on work that could directly contribute to this dissertation or which 

fulfills more than one requirement of a decision-support method for strategic sequential 

redesign. For instance, a modular design method aimed at handling uncertain future 

objectives such as that developed by Allada and Lan (Allada and Lan 2002) has more 

interest than work on design for modularity by itself. 
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Table 2-1 – Assumed Features of a Strategic Sequential Redesign problem 
Features of a Strategic Sequential Redesign Problem 
Family of systems includes at least one existing system 
Goal of activity is to realize new system designs, leveraging existing designs where 
possible 
New redesign targets are known  
Mathematical models of the systems exist and can be stretched to be used in new redesign 
variable space 
Schedules whereby new systems will be released are known  
The effort involved in employing an option to change the existing systems (redesigning a 
component or subsystem) is significant to the long-term economic viability of the family 
of systems 
The savings in effort associated with the economies of scale achieved by having systems 
share components is significant to the long-term economic viability of the family of 
systems 
The savings associated with economies of scale is dependent upon both the redesign 
option being considered (a redesign variable) and the way in which the schedules of 
systems releases overlap 
The designer is an expert capable of assessing both the effort involved in redesign options, 
the savings associated with commonality under different circumstances, the relative 
impacts of different redesign options on performance goals, and the best way to best 
represent his/her redesign preferences using Archimedean weights in an objective function
All quantities in the problem are known with certainty 
 

Table 2-2 – Condensed Requirements List for a Sequential Redesign Decision Support Method 
Desirable Features of Method (Drawn from Requirements in Section 1.3.2) 

 Overall: Supports redesign decision-making 
 Considers features and performance of existing systems 
 Considers possibility of design reuse, a.k.a. commonality 
 Considers redesign effort 
 Considers relative value of commonality based on schedule 
 Considers relative value of commonality in variables 
 Commonality not limited to certain variables 
 No defined platforms 
 No defined platform shape 
 Multiple dimensions of variety 
 Multiple manners of adjustment 
 Systems level decision-making 
 Support strategic thinking in redesign 
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2.3 - A REVIEW OF LITERATURE ON TOPICS OF RELEVANCE IN THE STUDY OF 

SYSTEMATIC REDESIGN 

It is hoped that the main point that will be drawn out of this literature review is 

that there are systematic methods for designing single systems from scratch, designing 

multiple systems from scratch, designing systems from scratch that are capable of 

evolutional changes but there is little support for redesigning existing systems to meet 

evolving goals and little attention is paid to what a good redesign is. In each section and 

sub-section, the existing work will be compared to the requirements list from Section 

1.1.3 -to show how some but not all requirements are ever met. The tough part about this 

literature review is that there really isn’t previous work in this area. That is, nobody has 

really done a high-level systematic redesign method for multiple new and existing 

systems, so it is hard to compare things on an even plane. Instead, pieces of the overall 

research question are posed in each subsection and then answered through the literature 

review. At the end of each subsection, the deficiencies in the existing work when it 

comes to answering the research questions should be clear. These deficiencies are the 

source of the question asked in the next subsection and make up the meat of the summary 

in the next-to-last section of the chapter. 

 

2.3.1 - Alternatives to Redesign 

In Section 1.1.3, a distinction is made between the problem being addressed in 

this dissertation –conceptual, strategic, and sequential redesign of one or more existing 

systems- and other common problems in which the word “redesign” crops up. This 

distinction is made for the purpose of avoiding confusion regarding terminology. In the 
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author’s experience, when discussing sequential redesign, it is also common for a number 

of alternative approaches to be suggested in the course of questioning just why research 

in to redesign decision support is needed. The most common suggestions involve 

improved original design the adoption of alternative philosophies of design like 

“openness” (Simpson, Lautenschlager et al. 1998), “flexibility” (Ferguson and Lewis 

2004; Olewnik, Brauen et al. 2004), information re-use (See Section 2.3.2), and product 

family design as ways of avoiding the need for redesign in the first place. What these 

approaches have in common is that they start from a very different place in the life of a 

family of products or systems –usually the point at which the first family members are 

conceptualized and designed. Each of these approaches and suggestions are touched upon 

briefly here. 

 The most basic suggestion is that original design be done better in the first place. 

Ignoring the fact that this does not consider the reuse of existing systems, there are two 

ways of taking this suggestion:  

• One is that designers should suck it up and try to accomplish redesign by carrying 

out original design again and hoping for the best, but as is pointed out in Section 

1.1, this ad-hoc approach leaves any similarity between new and old systems up 

to chance; while 

• The other is that original design can simply be used iteratively to accomplish new 

goals, adjusting the design each time if it proves insufficient. 

The crux of the second argument is that whereas going about redesign 

haphazardly or using original design techniques may have drawbacks, it has proved 

successful in myriad products in the world, so why not do it again? There are two key 
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counterpoints to this argument. First, it can be pointed out that while redesigned systems 

existing in the world today may be successful, they might have been even better had they 

been designed systematically but the customer will never know. Second, the consumer 

may never get the opportunity to perceive what makes the product of a redesign process 

unsuccessful. The fault may be internal, may have been corrected through redesign 

iteration, or the costliness of the poorly redesigned system may have been covered up by 

a company more willing to accept a dent in profits than raise prices.  

Another common suggestion is that in place of redesign, that more “open” 

solutions should be identified. Simpson and coauthors (Simpson, Lautenschlager et al. 

1998) define Open Engineering Systems (OES) as products, services, or processes that 

retain their competitive edge in the market through adaptation, improvement, and growth 

based on existing technology. In creating OES, designers aim to leverage the adaptability 

of their product to respond to customers’ demands more quickly, improve customization, 

enhance capabilities, increase quality, all of which should lead to decreased time-to-

market and increased return on investment. At the heart of Open Engineering Systems is 

the creation of a common baseline model that is flexible enough to allow slightly 

modified versions to address as much of the market as possible for as long as possible.  In 

essence, the goal in designing a new OES is the same as the goal in the strategic 

sequential redesign process, the key difference being that the individual engaged in 

redesign must consider how existing systems may have already created the baseline 

model from which they should direct their future developments. 

“Flexible” systems are the subject of some research into how a system can be 

designed to function in a number of very distinct operating conditions (Ferguson and 
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Lewis 2004; Olewnik, Brauen et al. 2004). The solution put forward by researchers is to 

design systems with the capability of being reconfigured while in service to suit the 

operating conditions at hand. Such a system is useful in varying conditions, but only in so 

far as the original designer is able to anticipate: 

1. That operating conditions will change 

2. The features of the changing operating conditions 

It is assumed in this sequential strategic redesign problem that the designer is 

tasked with modifying an existing system, not original design, so the starting assumptions 

are entirely different from those of a designer seeking a “flexible” system. A more 

relevant question that is beyond this scope of this dissertation is whether the designer 

should redesign the existing system to create a series of new systems or invest in creating 

a single “flexible” design that can meet all of the known future needs. Even in that case, 

the flexible system would face the drawback of having to meet all future needs at once, 

potentially requiring greater up-front research and development costs and greater per-unit 

production costs. 

A number of methods focus on the reuse of design information in a redesign 

process or the organization of information for future reuse. Some of these methods are 

discussed in Section 2, but many are not, as they are considered to be supportive to the 

overall task of identifying promising redesign plans. For the purposes of this dissertation, 

it is assumed that the designer has the information at his/her fingertips that is needed to 

identify or synthesize legitimate redesign plans. It is realized that this may be an 

oversimplification, but it is necessary to limit the scope of this work. 
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 Product family design methods are also frequently suggested as alternative 

approaches to sequential strategic redesign. Indeed, a sequential strategic redesign 

problem, shown pictorially in a market space does indeed resemble a product family 

design problem.  There are two major differences between product family design 

methods and a method fitting the needs of sequential strategic redesign. First, the 

redesign problem starts with the assumption that one or more systems already exist and 

represent sunk costs to be leveraged if possible while product family design methods 

generally focus on original design. Second, it is oftentimes assumed in product family 

design that all products will be offered simultaneously. As a result, many but not all 

product family methods also seek any and all commonality that can be achieved, 

believing that all commonality is good and that it is equally good. It is a guiding premise 

of this dissertation that all commonality is not equal and that both production schedules 

and redesign difficulties may make two instances of commonality have different values in 

a designer’s mind. The similarities between product family design problems and the 

redesign problem being addressed here are too great, however, to diminish the usefulness 

of much existing work in the field. For that reason, various product family design 

methods and metrics associated with product families are discussed at points throughout 

this chapter. 

 On a related note, one way of achieving a family of related products is to create a 

modular product architecture wherein there is as close as possible to a one-to-one 

correspondence between components and functions in a system. In essence, this task is 

almost a specialized application of the product family redesign methods mentioned in 
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Section 1.1.3. Zhang and coauthors (Zhang, Gershenson et al. 2001) point out a number 

of benefits of modularity in a family of products: 

1. Economies of scale for components that are shared across the family; 

2. Easier updates to products by replacing modules; 

3. More product variety from a smaller number of components; 

4. Shorter order lead-time needed as a result of a smaller number of components 

5. Easier design and testing due to functional decoupling between modules; 

6. Easier service; and 

7. Easier retirement, disassembly, and remanufacturing. 

However, in their work Zhang and coauthors also show through study of one 

design example that the relationship between modularity and retirement cost may not be 

as strong as previously thought. 

Examples of methods to support redesign for modularity include but are not 

limited to (Sanderson and Uzumeri 1995; Newcomb, Bras et al. 1996; Feitzinger and Lee 

1997; Allen and Carlson-Skalak 1998; Zamirowski and Otto 1999; Dahmus, Gonzalez-

Zugasti et al. 2001; Bryant, Sivaramakrishnan et al. 2004). Allada and Lan also present a 

method for planning how new modules should be released over time to meet new 

demands. Redesign to create a modular architecture is considered to go one step beyond 

the scope of this dissertation in that it is hoped that the approach presented here will 

enable designers to identify redesign plans that do not require total revisions of their 

existing systems.  

To be sure, many of these methods tackle problems with many of the same 

features as the sequential redesign problem envisioned here and for that reason many 
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appear in later sections of this chapter. However, as they start from different points in the 

problem, suggesting them as an overall solution to the problem of sequential redesign is 

akin to answering the question “how do you get to the stadium from the library” by 

suggesting that the individual not go to the library in the first place. The methods put 

forward to create Open Engineering Systems, Flexible Systems, and product families are 

all predicated on starting in a fundamentally different place from the designer tasked with 

sequential strategic redesign. 

 

2.3.2 - Systematic Prescriptive and Descriptive Approaches to Redesign from Design 

Theory 

 While attracting nowhere near the attention that original design has garnered, 

redesign has been the subject of study in a variety of research tackling the issue of what 

designer should do when he/she is not starting from scratch. The melancholy upside of 

this situation is that it is much easier to get a grasp on the whole body of research into 

systematic redesign methods than if one were to attempt the same for clean-sheet design. 

The review of systematic redesign methods contained in this section is subdivided into a 

number of topics. The first to be discussed is a small group of comprehensive redesign 

methods that could be viewed as the most direct spiritual peers to the work in this 

dissertation. The work described in the second group all involves what might be 

considered a sub-topic of redesign: the cascading effect of change propagation in 

redesign. Lastly, a body of work on the reuse of information in redesign is discussed. 

This section is closed with an analysis of the benefits and shortcomings of the works 

discussed in it. 
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Systematic Redesign Methods 

One of the few structured approaches to redesigning and existing product is 

presented by Otto and Wood (Otto and Wood 1998). They propose that there are two 

major justifications for redesign. The first one comes early in a product’s life when it is 

still in the initial horizontal phase of a technology S-curve (Rogers 1995) and generally 

involves small changes to the product, its components, and its manufacturing process. 

The second justification for redesign emerges at the top of the S-curve, as a technology is 

reaching the end of its useful lifespan and more drastic design changes such as the 

introduction of new technologies or entirely new manufacturing process may be needed. 

They offer a comprehensive but straightforward approach meant to guide a designer step-

by-step through the process of gathering customer requirements, tearing down an existing 

product, generating functional models, analysis, and redesign if it is needed.  Extensive 

use in educational and industry settings has shown that designers favor this structured 

approach to redesign over ad-hoc approaches.   

The method proposed by Otto and Wood (see Figure 2-1) is composed of up to 

ten steps grouped into three stages: 

• Stage I: Reverse Engineering  

o Step 1: Investigation, Prediction, and Hypothesis – First, the product is 

characterized as a black box and its overall function characterized by the 

designer. This is done to get an impression of the system’s goals without 

being biased by an understanding of the existing way in which the system 

embodies or achieves those goals. The customer’s needs are then 
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characterized using any one of the various methods for doing so, and the 

product’s weaknesses with respect to those needs are identified. Using the 

customer needs, a hypothetical function structure is then generated.  

o Step 2: Product Teardown and Experimentation – In order to better 

understand the current product architecture, it is disassembled 

systematically, taking note of each component and the way in which it is 

removed. As this goes on, the function of each part is noted, it is added to 

the Bill-of-Materials, and a disassembly plan is generated as a means of 

later developing a re-assembly plan. The product and its components can 

also be tested at this time to gather data for later tasks. 

o Step 3: Functional Analysis – The actual function structure of the existing 

product is generated, as are maps of force flow and energy flow through 

the system. The sub-functions associated with the customer’s key needs 

are then identified as potential areas of improvement in adaptive design 

later on 

o Step 4: Constraint Propagation – In order to identify components that 

share the key functions of the product and those that are incompatible, the 

authors suggest creation of a morphological matrix (Pahl and Beitz 1996) 

with solution principles for all the key functions. This matrix can then be 

scanned for instances of components fulfilling multiple functions and/or 

components that are not compatible with each other. 

o Step 5: Forming Engineering Specifications – The first piece of this step is 

the generation of quantitative redesign metrics for each function in the 
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product and targets for each metric in a manner that characterizes the 

customer’s needs and desires for the new product. 

 
Figure 2-1 – Otto & Wood’s Reverse Engineering and Redesign Methodology (Otto and Wood 1998) 
 

• Stage II: Modeling & Analysis 

o Step 6: Model Development – For each component related to a key 

customer need and a functional metric, a physical model must be 



 74 

developed. These can then be combined into a higher-level model. 

Alternatively, physical prototypes may be built if time constraints or the 

types of customer needs being addressed –comfort, for example- preclude 

the creation of mathematical models. 

o Step 7: Analysis Strategies – If a mathematical model is being used, it 

must be calibrated to ensure its accuracy with respect the physical product 

and then a plan for carefully testing the model must be generated. Creating 

this plan involves the identification of objective functions, constraints, and 

noise factors. A similar plan for experiments must be generated for a 

physical prototype as well. 

• Stage III: Redesign (one of the following three steps must be chosen based on 

circumstances) 

o Step 8: Parametric Redesign – In this type of redesign, new product 

parameters are identified using optimization, simulation, or any other 

solution technique. This type of redesign may be a second step after 

adaptive redesign is used to change subsystems, add, or subtract functions 

from a system. A mathematical model is needed to carry out parametric 

redesign. 

o Step 9: Adaptive Redesign – The goal in this type of redesign is to utilize 

different solution principles from the original product, to add features to it, 

or to subtract features from it. Once the solution principles involved in the 

new product have been identified, new models must be developed and 
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tested, constraints must be checked again, and then parametric redesign 

may be necessary as well. 

o Step 10: Original Redesign – This is the most drastic alternative, involving 

development of a wholly new function structure based on the customer’s 

needs and perhaps the first unbiased structure developed in Step 1. From 

that point on, the rest of the redesign process is carried out anew. 

The drawback to Otto and Wood’s work from the perspective of the problem at 

hand is that it is a long and detailed process based on physical experience –chiefly 

teardowns of the existing product.  The authors also do not consider the creation of 

multiple systems based on redesign, positioning for future market needs, or leveraging of 

multiple existing products. 

Dixon and co-authors (Dixon 1997; Dixon and Colton 2000) present a description 

of and strategy for re-design as way of managing what would otherwise be an ad-hoc 

process. The goal of the research carried out was to better understand and manage the 

manner in which successful designer approach the task of re-designing mechanical and 

electromechanical systems. The resulting description and strategy are based upon a 

several concepts from psychology including natural human reasoning and judgment 

heuristics including the following assertions: 

• Redesign solutions are based on pre-existing solutions 

• Carrying out redesign preempts the use of most prescriptive design methods 

because of the fact that it is started from a different point with different 

information available 
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• The reuse of existing solutions in the redesign of a system represents an attempt at 

a shortcut in the design process and a use of two key judgment heuristics:  

o Availability, which means that when faced with too much information, a 

designer tends to revert to a decision or choice based on something from 

memory or upon something readily and currently available; and 

o Anchoring and Adjustment, which means that designers tend to make the 

solution to a problem similar to that of a similar problem and then will 

adjust it until it meets the exact needs of the current problem. 

The authors suggest that the availability and anchoring/adjustment judgment 

heuristics commonly used by designers can create biases they may not recognize. Using 

the availability judgment heuristic may lead a designer to choose an anchor that is too 

close to the existing system. Using the anchoring and adjustment heuristic may lead a 

designer to under-adjust the anchor, favoring a solution that is closer to the original 

system but may not achieve all of the goals set forth in the redesign effort. Dixon and 

coauthors set out to generate a redesign process management system that takes this 

potential bias into account by utilizing an anchoring/adjustment approach built around 

two main components: 

• Anchors, which are previous designs, solutions, or working principles that 

constitute the first approximation of the new design and are based upon the 

customer’s needs; and 

• Adjustments, which are sets of design changes grouped by degree of change, level 

of detail, or level of abstraction  
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The redesign management process is monitored using two metrics developed by 

the authors: 

• deltaSpecs, which are measures of how well adjustments of the anchor drive the 

redesigned system towards the goals set for and is formally defined as follows: 

 

deltaSpec(i,j) =  

      [ TargetSpecification(i) ] – [ Current Specification (i.j) ]  

where 

i = the current specification under consideration 

j = the current redesign iteration under consideration 

[2.1] 

 

• Jump Metric, which determines when in a design process it becomes necessary to 

move from one level of change to another as a result of the lower level of change 

being unable to provide the needed change in deltaSpecs. 

 

In the first step of the method (shown in flowchart form in Figure 2-2), the 

designer queries the customers to identify their needs and uses these needs to generate an 

appropriate problem statement. In the second step, a rough initial approximation of the 

redesigned system is created to serve as the anchor for the redesign process. In the third 

step, the customers’ needs are used to define the deltaSpecs that will be used to judge the 

level of achievement in each redesign iteration. The adjusted design is then checked 

against the deltaSpecs to determine whether the goals associated with them (minimizing 

or eliminating the deltaSpecs) have been achieved. The process shown in Steps 5-8 in 
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Figure 2-2 is repeated until either the jump metric is exceeded or the deltaSpecs are 

eliminated. The jump metric is a measure of whether or not the strategy of adjusting the 

anchor at a certain level of detail has been achieved. If too cycles of the process have 

occurred without elimination of the deltaSpecs, the jump metric is exceeded, signaling 

that change at a higher level must occur. 

Dixon and co-authors (Dixon 1997; Dixon and Colton 2000) develop their model 

of redesign as an anchoring-and-adjustment process based on industrial experience and 

then use case studies to show that their model is accurate in describing engineering 

practice when the deltaSpecs and jump metric are chosen appropriately. What is not 

shown is the result of using their entire formal process on industrial redesign problems 

from their inception.  

The anchoring-and-adjustment approach is interesting for the fact that it provides 

structure to the process of redesigning an existing system in multiple ways to achieve 

multiple redesign goals. However, the adjustment plans detailing which aspects of the 

system are to be changed at a given time are generated by hand and must be revisited if 

redesign fails. The success or failure of this approach is highly dependent upon the ability 

of the designer to create these plans, rank the identified goals of the redesign effort, and 

determine which goals are most strongly associated with each subsystem. In addition, the 

anchoring-and-adjustment approach provides little guidance to a designer with multiple 

“anchors” or multiple new systems to design. 
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Figure 2-2 – Flowchart of redesign management strategy by Dixon and coauthors (adjusted from 
(Dixon 1997)) 
 

Considering redesign at a systems level, Chen and coauthors (Chen, Ding et al. 

2005; Chen and Li 2005; Chen and Li 2005; Chen, Li et al. 2005; Chen and Macwan 

2005) present a method aimed at achieving rapid redesign by reducing how much of a 

large system model needs to be re-computed in a redesign project. Their strategy is to 

identify smaller sub-problems that can be solved independently. The first step in their 

approach is the identification of relationships between system parameters and the 

functions that are deficient in the system being redesigned. These relationships are 
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portrayed graphically in a Design Dependency Matrix (DDM), which the authors then 

rearrange into patterns of blocks that are used to decompose the problem as shown in 

Figure 2-3. Two metrics are used to evaluate the patterns whereby the DDM can be 

rearranged. The intensity metric is based on the number of components being 

recalculated and weights that are meant to reflect the difficulty of those calculations. The 

interdependency metric is meant to reflect the degree of coupling between the 

decomposed parts of the system in a proposed pattern.  Based on the pattern, a redesign 

roadmap is then generated and used to find a redesign solution that is just good enough to 

meet the new system goals while still minimizing expected the computational costs that 

make up the redesign effort. 

 

 
Figure 2-3 – Comparison of a Design Dependency Matrix Before and After Decomposition (Chen and 
Li 2005) 
 

Hsu and Lin (Hsu and Lin 1998) present a method for redesigning existing 

products that is based on Design for Assembly (Boothroyd and Dewhurst 1991) and on 

analysis of the functions of the product. Their DFA-based redesign approach (DBPRA) 

has three key components: 
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• A knowledge representation scheme called Assembly Functional Representation 

(AFP) in which the allocation of functions to components of the product is 

studied, as are the surfaces of components that come into contact during 

assembly. The aim in this step is to identify those components that are associated 

with problems in the assembly process. 

• A problem recommendation-driven mechanism (PRDM) which separates 

components associated with assembly problems into those that are shared across 

multiple functional areas and those that are unique to a particular functional area 

and then, depending on the circumstances, recommends either eliminating or 

modifying that part. 

• A redesign procedure –as shown in Figure 2-4- that includes a number of steps 

starting with standard DFA analysis of the existing product, identification of 

constraints associated with each functional area, identification of contacts 

between components that mate with one another, and a number of redesign 

strategies for grouping together or singling out the design problems. No precise 

direction is given on how the needed design changes should be made. 

 

The authors claim that the benefit of their approach is that by taking it, designers 

can identify both promising “local” changes (parametric component modifications) and 

promising “global” changes (modifications to the whole area that serves a particular 

function) to the existing design. However, by basing their method around DFA and 

focusing their language on components, surfaces, and contacts, it is hard to see how this 

method could be applied at a systems level.   
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Figure 2-4 – The Redesign Phase of DBPRA (Hsu and Lin 1998) 
 

Studies of Change Propagation 

Change propagation is the focus of a great deal of study, particularly in computer 

science where modeling problem solving, design, and the way in which iteration occurs 

are all topics of interest to those developing systems for autonomous decision-making.  

There are a number of examples of change propagation role in engineering design 

applications being studied, some of which are interested solely in being able to quickly 

revise a design to meet changing demands, and some of which are solely interested in 

identifying the ramifications of making a change in a complex system.  

The efforts of Goel and coauthors (Goel and Chandrasekaran 1989; Goel and 

Prabhakar 1994; Goel, Garza et al. 1997) to develop the KRITIK computer program fall 

into the first category. KRITIK makes use of case-based reasoning, model-based 

reasoning, and stored, well known Structure-Behavior-Function (SBF) relationships to 

automatically identify and modify previous designs to make them suited to new 

applications.  Existing designs are modified by comparing the functions that they perform 
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to the desired function.  From a group of candidate modifications, the computer program 

determines which will best achieve the desired change in function. From the decision-

based design perspective, this process is too automated, as there is little focus on 

verifying and modeling the views of the designer.  

RedesignIT (Ollinger and Stahovich 2001) is a computer program that uses 

model-based reasoning to develop possible redesign plans.  The program takes as its 

input a model of the system in question –the model consisting of relevant physical 

parameters and a mapping of the relationships between those parameters.  Based on a 

user’s input of a desired magnitude of change in one of those parameters, the program 

generates a list of changes to other parameters that could be used to produce the desired 

change and to mitigate any negative interactions.  The program makes use of a “semi-

quantitative” representation in which relationships between parameters and changes to 

those parameters are expressed simply in orders of magnitude.  This semi-quantitative 

approach is a significant drawback unless the only goal of the redesign process is to 

identify those parts of the system that will have to be modified to get close to a desired 

change. As such, it provides one piece of a hypothetical redesign process –much like the 

first half of the work by Chen and coauthors (Chen, Ding et al. 2005; Chen and Li 2005; 

Chen and Li 2005; Chen, Li et al. 2005; Chen and Macwan 2005)– but the resolution of 

what values the new system’s variables should have is left up to later work.  

Clarkson and coauthors (Clarkson, Simons et al. 2001) consulted with engineers 

and others at GKN Westland to study the way in which a particular helicopter design is 

redesigned to meet the needs of various customers.  The result of their work is an 

analytical prediction model for change propagation, a Change Prediction Method (CPM) 
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that makes use of this model, and a piece of software meant to support the prediction of 

changes. The CPM is verified by comparing predicted results to three historic examples 

at GKN Westland, but not demonstrated elsewhere, so it is unclear whether the success of 

the models is tied to the helicopter design field in which it has been developed. The result 

of using the method is a measure of the risk of a change in one subsystem leading to a 

cascaded change each other subsystem but it is unclear how this measure could be used 

proactively to resolve issues in a system’s design before they occur.  

Change propagation studies offer one piece of the information that a designer 

faced with a redesign project needs. As such, they provide some guidance to the designer 

but don’t help him/her develop an entire redesign plan, but they choose to focus on the 

small iterative changes that are needed as a result of larger changes –they do not 

necessarily guide a designer toward the big changes he/she will need to meet widely 

different demands. DesignIT and KRITIK also run somewhat in conflict with the DBD 

perspective in that the designer is almost completely taken out of the process (although 

DesignIT does allow a user to inspect each candidate redesign plan generated by the 

program and make the decision whether or not to accept the plan or continue looking for 

better solutions.) Another drawback to all these approaches is that while they can assist a 

designer faced with the task of creating one new system, they do not help to identify 

opportunities for reuse that are valuable for a series of new systems. 

 

Reuse of Design Information for Redesign 

Tay and Gu (Tay and Gu 2003) propose their “Evolutionary Product Design” 

(EPD) methodology as a means of increasing the productivity of a designer engaged in 
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the redesign of a system that evolves over time.  The primary intent of the authors in 

creating this method is to support those who work in computer-aided design (CAD) since 

-as they assert- the amount of design information captured by current CAD systems is not 

nearly sufficient to support reuse.  The system they suggest (see the flowchart in Figure 

2-5) makes use of stored information regarding the pattern of functions in existing 

designs.  When new functional requirements are entered, the system identifies similar 

patterns in existing systems and then tries to swap out dissimilar functions.  While useful 

for a CAD engineer, such a support method does not meet many of the criteria put forth 

here for a systematic serial redesign method.  The level of detail at which it operates is 

too low to be used for a large complex system without broadening the concepts used 

beyond the realm of CAD by modeling and simulating other aspects of the system 

besides its physical structure.  On the positive side, the system is capable of leveraging 

multiple existing designs in the realization of a new system and of doing so in a way that 

reuses pieces of existing systems. 

Tseng and Jiao (Tseng and Jiao 1998) describe a database system they have 

developed to support customers and designers in the early conceptual stages of 

evolutionary design. The authors seek to alleviate the “tedious” period of product 

definition wherein customer requirements are translated into functional requirements that 

can be addressed with engineering solutions. They point out that the product definition 

process is often “time-consuming and error prone” as a result of miscommunication or 

uncertainty on the part of the customers, fuzzy or poorly-worded requirements, a lack of 

understanding of the engineering consequences of requirements, and life-cycle concerns. 

To leverage existing products, the authors demonstrate a process whereby the functional 
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requirements of existing systems may be catalogued in a database and then identified 

according to similarities or patterns in those requirements when customers appear with 

demands similar to those met by existing products. The basic idea behind this work is that 

if there is a similarity between the customer’s needs and the functional requirements of an 

existing system, it is better to start from the completed product definition of that existing 

system than begin original design with a clean slate and risk creating an ill-formed 

definition. 

Kawakami and coauthors (Kawakami, Katai et al. 1996) leverage concepts from 

Axiomatic Design (Suh 1990) in creating a method to find deeper knowledge in the 

function structures of existing physical systems in order to better understand why they 

succeed. Their Explanation Based Learning (EBL) system uses the ideas put forward by 

Suh to generate an Explanation Based Generalization (EBG) from the function structure. 

The EBG has a standardized form that is meant to help the designers resolve how 

multiple subsystem or lower-level goals can be balanced in achieving the system’s 

ultimate goal. The authors’ purpose in putting forward this method is to gather insight 

into what constitutes a “good design” by studying successful existing systems and thus to 

leverage the best parts in future designs. 

At an even higher level, Sferro and coauthors (Sferro, Bolling et al. 1993) have 

developed Omni-Engineer, a database of design and manufacturing information captured 

as constraints that could be used to reduce the lead-time of new designs.  If the idea put 

forth by the authors were more than a proposal, it might be of interest in this research, but 

at last report it had not progressed beyond a very conceptual stage. 
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All of these information reuse methods support designers in the identification of 

promising modes of change and reuse.  Tay and Gu (Tay and Gu 2003) and Sferro and 

coauthors (Sferro, Bolling et al. 1993) represent a totally different way of looking at the 

design/redesign process. Instead of looking for promising modes of change first, they 

look for promising modes of repeat.  That is, they look for functional similarities between 

what is being demanded and what is available in the database from previous designs.  

Then they look for dissimilarities and search again for functional modules to match those 

changes.  In this way, they can reuse parts of multiple systems as long as models of those 

systems are stored in the database.  One potential drawback to this approach is that 

reusing the old data does not ensure that the reuse will carry over to the physical world 

unless the company in question is actively producing the system whose parts are being 

reused.   

Each of the major areas of work discussed in this section has a major drawback 

when applied to a sequential strategic redesign problem. All the systematic redesign 

processes address a fundamentally different problem: Otto and Wood (Otto and Wood 

1998) offer a careful plan but only for one-to-one redesign of a system one can 

disassemble; Dixon (Dixon 1997; Dixon and Colton 2000) also focuses on one-to-one 

redesign and requires an intensive program of redesign plan development; Chen and 

coauthors (Chen, Ding et al. 2005; Chen and Li 2005; Chen and Li 2005; Chen, Li et al. 

2005; Chen and Macwan 2005) choose to focus on the computer issues involved in 

redesign; and Hsu and Lin (Hsu and Lin 1998) require hands-on assembly information to 

use their method. The methods for studying change propagation discussed here all tend to 

focus on the changes needed to compensate for the large systems-level modifications that 
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are of interest in this dissertation. The methods for design information reuse seem to 

operate at a different meta-level above that of this dissertation; they could be useful but 

do not address the central problem. In short, there is no existing redesign method that can 

be leveraged wholesale to support sequential strategic redesign, however many of the 

methods discussed here could be useful to those carrying out the redesign process after 

the conceptual exploration activities discussed in this dissertation have taken place. 

 

 
Figure 2-5 – Evolutionary Product Design (EPD) Methodology (Tay and Gu 2003) 
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2.3.3 - Means of and Alternatives to Offering Product Variety OR Means of 

Offering Product Variety 

One of the central questions posed by a number of the requirements of a 

sequential strategic redesign method in Section 1.3.2 is, how can a variety of systems be 

redesigned so that they share as much in relation to one another as possible? In this 

section, various ways of creating related engineering systems are explored and compared 

to the requirements of sequential strategic redesign in the hope that some piece or pieces 

of the existing methods can be leveraged to support redesign.  

 

Repeatedly Carry Out Original Design 

The most obvious way to create a number of existing systems is to design each 

individually while keeping the others in mind. There are any number of systematic 

approaches to original design such as the work of Pahl and Beitz (Pahl and Beitz 1996), 

Ulrich and Eppinger (Ulrich and Eppinger 2004), and Pugh (Pugh 1991) just to name a 

few. Any of these approaches can be repeated over and over anew in an effort to redesign 

an existing system and would undoubtedly yield better results than an entirely ad-hoc 

design process from scratch. Still, doing so could result in exactly the situation that is 

meant to be avoided in this work. If considerations such as commonality or redesign 

difficulty are to be considered, it is not clear how is to be done, nor is it clear how the 

designer can assess the parts of the existing system that need to be changed. Even an 

expert designer might not fail to consider promising redesign options. In order to achieve 

the cost savings that are the goal of leveraging an existing system, other approaches are 

needed.  
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Rely Upon Alternatives to Redesign 

 Several of the approaches discussed in Section 2.3.2 can be used to create a 

variety of product offerings. The assumption inherent is of course that these approaches 

have already been adopted to create open, flexible, or modular systems that can be 

adjusted at a low cost to meet new needs. If any of these approaches has been taking and 

the change in demands that is forecast stays within the expansion possibilities of the base 

system, the redesign problem is solved. It is assumed here, however, that this is not the 

case –that the original system or systems were designed without future expansion in mind 

but that the company wishes to make up for this lack of foresight with wise redesign 

decisions at this time.  

 

Product Platform Design Methods 

Meyer and Lehnerd (Meyer and Lehnerd 1997) define a product platform as “a 

set of common components, modules, or parts from which a stream of derivative products 

can be efficiently developed and launched”. A substantial amount effort has been 

expended on product platform research in the last ten or so years as academics and 

corporations attempt to understand what makes platforms successful and how platforms 

can be systematically identified. As a result numerous disparate approaches to designing 

platforms for families of products have been suggested in the literature. A very 

exhaustive review of product family design methods, applications, and ongoing areas of 

research can be found in (Simpson 2003; Simpson 2004; Jiao, Simpson et al. 2006). 

Simpson offers a useful distinction between two major groups of product platform design 
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methods. He describes the vast majority of methods as “bottom-up”, meaning that the 

family is the result of redesign of existing systems with an eye towards increasing their 

commonality and thus making the overall set of system offerings more competitive. One 

example of these methods in action is the effort to modify the universal motors inside 

Black & Decker tools to increase standardization, which resulted in decreased costs sales 

that eventually increased to more than compensate for the original cost of the redesign 

(Lehnerd 1987). Other examples of successful applications of bottom-up product 

platform strategies come from Lutron (Pessina and Renner 1998), John Deere (Shirley 

1990), and as discussed in Section 1.1.1, Volkswagen (Whitney 2000; Anonymous 2003). 

Academic research has resulted in other bottom-up approaches examples of which 

include the work of Anderson (Anderson 1997), Ericsson and Erixon (Ericsson and 

Erixon 1999), Siddique and Rosen (Siddique and Rosen 1999), and Pederson (Pederson 

1999). 

Aside from increased standardization across a family of systems, “bottom-up” 

approaches have the advantage of making use of existing designs, meaning that they can 

be more easily and quickly modified by a more novice designer, the costs associated with 

new parts can be estimated more accurately, and manufacturing facilities can be modified 

to suit the redesigned systems more easily. One commonly presumed disadvantage of 

“bottom-up” approaches as opposed to other options is that they are only useful for the 

redesign of an existing system, meaning that time and money has been expended in the 

design and setup for manufacturing facilities for what has turned out to be an inefficient 

family of systems. These are costs that can never be retrieved, regardless of the quality of 

the method. For the purposes of this dissertation, however, this disadvantage becomes an 
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advantage, as redesign is assumed from the start. The envisioned goal for strategic 

sequential redesign is not, however, to modify the existing systems rather to 

accommodate them in a plan for developing new systems. 

 The systematic bottom-up product family design methods developed in academia 

tend to have several major drawbacks in a sequential strategic redesign scenario. 

Generally, the focus of the methods is on the creation of the redesigned product family, 

with little or no attention paid to the amount of effort involved in transitioning a 

manufacturing enterprise from one point to another. Also, as it is generally assumed that 

the product family members are offered simultaneously, it is often likewise assumed that 

all commonality is equally beneficial. The static set of product family members means 

that there is no need to juggle commonality, system performance, and the desire to cut 

down on the amount of redesign present.  

The other major division within product family design methods defined by 

Simpson (Simpson 1998) includes those approaches described as “top-down” in that they 

involve an up-front effort to design a platform that will be common across the family of 

systems. Sanderson and Uzumeri offer the original design of the early Sony Walkman as 

one example of successful application of a suite of top-down methods in the development 

of a new product line (Sanderson and Uzumeri 1995). Another successful example of this 

approach in action can be seen in the design of the family of Kodak disposable 

cameras(Wheelwright and Clark 1995). Examples of systematic top-down approaches 

developed in academia are too numerous to list, but characteristic examples include the 

scale-based Product Platform Concept Exploration Method (PPCEM) (Simpson 1998; 

Simpson 1999), the two-stage Variation-Based Platform Design Methodology (Nayak, 
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Chen et al. 2002), the Product Variety Tradeoff and Exploration Method (PVTEM) that 

seeks to balance variance in a family’s variables against deviation from target (Simpson, 

Seepersad et al. 2001), and the work of Seepersad and coauthors to identify product 

platforms of various extents (Seepersad, Hernandez et al. 2000; Seepersad, Allen et al. 

2002). 

The major advantage of these types of methods -as pointed out by Wheelwright 

and Clark (Wheelwright and Clark 1992)- is that by tackling standardization in the initial 

process of designing the family of systems, a “bottom-up” redesign process is not 

necessarily needed later on and the process of adding more products to the family later on 

may be made smoother. In the context of sequential redesign, however, this is not truly an 

advantage. From the perspective of a designer faced with a sequential redesign scenario, 

there are several major disadvantages associated with the majority of top-down product 

family design methods, although there are exceptions to each: Disadvantages:  

• Typically, the methods involve the separation of the set of design variables into 

just two sets: platform variables that are common across the whole family and 

non-platform variables that are unique to each family member. Exceptions to this 

rule include (Seepersad, Hernandez et al. 2000; Seepersad, Allen et al. 2002; 

Simpson and D'Souza 2004)). Separating the variables in this way can require a 

negative tradeoff between commonality and the performance of individual 

systems. Hernandez (Hernandez, Allen et al. 2002) suggests this also limits the 

size of the family that can be considered. Applied to the design of a family of 

aircraft, for instance, such a division might require that adjustments in payload 

capacity be achieved using different fuselage lengths and engines for each family 
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member while requiring that the wings, cockpit, and tail remain exactly the same 

throughout the family. 

• Many methods only allow for variety to be offered in one dimension, feature, or 

performance characteristic. For instance, a family of aircraft designed in this way 

might only differ significantly in their length, providing a greater or lesser number 

of seats for passengers, but airlines would not be able to choose the width, range, 

or speed of the aircraft they purchase. 

• Oftentimes, top-down methods only make use of only one mode of modifying the 

family members to produce variety. That is, the family is produced by scaling one 

variable upward or downward, by swapping modules, or by adding on prescribed 

amounts of a variable. A greater variety of systems and greater flexibility can be 

achieved by considering mixes of these modes and others including adjustable or 

flexible components at the same time. Applied to the example of designing a 

family of aircraft again, if designers were only allowed to vary the length of the 

fuselage of the aircraft, the possible new product family members might be 

severely limited. 

One drawback that is common to the majority of both “bottom-up” and “top-

down” methods is their reliance upon a very limited number of means of offering variety. 

That is, oftentimes, only one variable is scaled to create a family or one module is 

replaced to offer different functions, greatly decreasing the variety that can be created. At 

the same time, the majority of approaches in both groups generally can only handle 

variety in one dimension. This drawback means that in the example of a family of cars 

engines of greater horsepower could be accommodated, but not different body styles.  
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Both types of product family design methods also suffer from the assumption that all of 

the variants in a family will be stated ahead of time, anticipating all future needs. Taking 

such a perspective may encourage designers to optimize their product family design to 

the specific demands of the family, ignoring the possibility of building flexibility into the 

family to meet changing future needs and allow for ease in redesigning the system. 

Assuming that all of the product family’s variants are known ahead of time also can lead 

designers to conclude that all commonality in a product family is good and equal in 

value. This may not be the case, however, if the variants are released over time and the 

cost of repeatedly starting and stopping production of common components is significant. 

 To address some of the drawbacks of both product family design paradigms, a 

new “top-down” approach called the Product Platform Constructal Theory Method 

(PPCTM) has been developed by Hernandez and coauthors (Hernandez 2001; Hernandez, 

Allen et al. 2002; Hernandez, Allen et al. 2003). As the name of the approach implies, it 

is based on Constructal Theory. This theory rests on the premise that a single principle – 

the constrained optimization of global performance – is the generating mechanism of 

organization, complexity, and hierarchic structure in nature, engineering, and even 

management. It is posed by Bejan as a means of explaining the similarities that can be 

seen in both natural and man-made systems like those shown in Figure 2-6. The crux of 

constructal theory is the concept that hierarchic organizations observed in nature are the 

result of a sequential optimization process with the objective of the maximization of 

access or, alternatively, the minimization of resistance, or losses. Following the basic 

tenants of constructal theory, this optimization process should proceed in a specific time 

direction: from the optimization of the basic elements to the higher-order assemblies of 
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the structure. As this process is repeated, a familiar hierarchical structure like tree roots or 

lightening emerges. Bejan and coauthors (Bejan 1996; Bejan 1997; Bejan and Ledezma 

1998; Bejan 2000) have successfully applied Constructal Theory to design tasks ranging 

from heat exchangers to fluid channels to road layouts.  

 
Figure 2-6 – Examples of Natural and Man-Made Systems Explained Through Constructal Theory 
 

 PPCTM is based upon two key constructs: Constructal Theory and Hierarchical 

Systems Theory (Simon 1996). From the latter, two key ideas are drawn and posits 

developed. First, Simon suggests that complex natural systems are self-organized into a 

hierarchy.  Second, he suggests that a hierarchical organization in a system allows the 

system to be more efficient in its response to changes around it. PPCTM, as developed by 

Hernandez, utilizes these theories to organize a strategy for building families of products 

that can be easily mass customized to meet a wide range of needs quickly. In order to 

apply this method, a market space is defined to show the range of dimensions through 

which the family will be customized. This space is subdivided into a hierarchical series of 

“space elements” that represent a piece of the market that will all be served with a 

common set of variables. Each hierarchical level of space element is larger than the 

previous one and involves making a distinctly more important set of variables common 

across a larger piece of the market.  The groups of variables made common across the 

space elements are termed “constructs” and are organized hierarchically so that each 
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grouping addresses specific dimensions of customization and it can have a more 

significant impact on those dimensions. In a product family design problem in which 

PPCTM is utilized, there are then two main sets of variables: 

• Those that describe the size and shape of the space elements; 

• Those that describe the variable values made common in each space 

elements. 

In practice, the focus of research into the use of PPCTM has been on finding the 

variables that describe the size and shape of the space elements. In order to reduce the 

complexity of the design problem, the engineering examples used are frequently simple 

enough that constraints can be used to pick variable values based on the most demanding 

performance characteristics inside a space element. In some examples in (Williams 

2003), however, the examples are difficult enough that the variable values must be found 

by formulating a utility-based compromise Decision Support Problem (Seepersad 2001). 

 A good analogy to help explain the way in which constructs and space elements 

are used in PPCTM comes from the road construction problem discussed in (Bejan 1996) 

and shown in Figure 2-7. The problem at hand is how best to design a network of roads 

such that people spread out in a given space can get out of that space in the fastest 

average time possible. In this problem, the constructs being applied are roads of different 

sizes and speeds. The demand they must address is a uniform distribution of people who 

live throughout the given space at locations P(x,y) and can walk with speed V0 to a road. 

The first step is to determine, given an element of a certain area S1, the dimensions H1 

and L1 of that area such that a road with speed V1 that gets the people in that space 

element to the exit the fastest. At the second stage, the question that faces a designer is 
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how best to assemble a number of the smallest elements so that a road with speed V2 gets 

all the people in the space to the exit the fastest possible. Subsequent steps continue 

building up using combinations of the previous steps’ space elements until the largest 

road is used.  
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Figure 2-7 – Assembly of Space Elements in a Constructal Approach to Road Design, Modified from 
(Bejan 2000) 
 

 Ideally, when applying Constructal Theory to a problem, the decisions as to how 

design variable values will be set for each level are made by optimizing the system 

design at each level. In the road design problem, this process is simple, as the objective at 

all levels is the same: to get the people in each space to the exit as quickly as possible on 

average. Hernandez (Hernandez 2001) realizes that this situation is not always the case in 

more complex engineering systems where it is not so easy to tie the value of low-level 
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variables directly to the way in which the product meets or fails to meets the demands in 

that space element, let alone how it impacts the economic viability larger system that is 

the family of products. Applying optimization over and over to succeeding hierarchical 

levels seems to have the effect of a greedy algorithm and can definitely lead to 

suboptimal system performance. For this reason, researchers have utilized various 

solutions schemes to solve the constructal problem, from dynamic programming 

(Hernandez 2001) to exhaustive search (Williams 2003; Williams, Allen et al. 2004; 

Williams, Rosen et al. 2004), to simulated annealing and genetic algorithms (Kulkarni, 

Allen et al. 2005). The creation of a design by building up constructs is a key tenet of 

Constructal Theory in the opinion of this author, so henceforth, PPCTM and the 

approach proposed in this dissertation will be referred to as “constructal-inspired” to 

avoid confusion. 

 

 
Figure 2-8 – Flowchart of the Product Platform Constructal Theory Method (Williams 2003) 
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 The baseline PPCTM method as put forward by Hernandez has been updated a 

number of times, most notably by Williams and coauthors (Williams 2003; Williams, 

Allen et al. 2004), who present ways to use utility-theory to accommodate multiple 

objectives in designing a product family and present an abstraction of PPCTM to make it 

applicable to the design of mass customizable production process families. Kulkarni and 

coauthors (Kulkarni, Allen et al. 2005) develop PPCTM further, showing that its capacity 

to deal with multiple objectives can be leveraged to achieve robust product family 

designs. The basic form of PPCTM used by these authors is shown in Figure 2-8. While 

readers are referred to the dissertation of Hernandez (Hernandez 2001) and the thesis of 

Williams (Williams 2003) for detailed explanations, a brief synopsis of the steps of 

PPCTM follows. 

 

Step 1: Define the Geometric Market Space and Demand Scenario 

The market space is defined by the attributes or performance parameters that 

customers will demand from the product family members. Given n independent attributes 

r1, r2, … rn, in which customers crave variety, a n-dimensional market space is defined, 

Mn = {( r1, r2, … rn)}.The ranges over which these parameters will vary must be identified 

and a model linking demand to specific values of these parameters must be developed.  

 

Step 2: Formulate the Objective Functions 

The designer must identify the objectives that best represent his/her goals for the 

product family being designed. Depending on the focus of the design effort, the objective 
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function might involve the minimization of cost, maximization of profit, maximization of 

quality, minimization of lead-time, or some combination thereof. The objective function 

is evaluated by previous researchers in one of two different ways, either using a 

summation of a discretized analysis: 

1,max 2,max ,max

1,min 2,min ,min

1, 2, ,overall obj ( , , )
n

n

r r r

i j n k
i r j r k r

Obj r r r
= = =

= ∑ ∑ ∑… …  [2.2] 

(where Obj is the objective function), or using the integral of a continuous analysis: 

1,max 2,max ,max

1,min 2,min ,min

1, 2, , 1 2overall obj ( , , )
n

n

r r r

i j n k n
i r j r k r

Obj r r r dr dr dr
= = =

= ∫ ∫ ∫… … …  [2.3] 

 In both formulas, rmin and rmax refer to the upper and lower bounds of each 

dimension of the market space. 

 

Step 3: Identify Modes for Managing Product Variety 

The designer must identify the ways in which he/she proposes to offer the variety 

present in the targeted market space. The modes chosen will depend entirely upon the 

problem and the preferences of the designer. Basic forms suggested by Williams 

(Williams 2003) include component commonality, dimensional commonality, 

modularity, and standardization. Depending on one’s perspective, these modes can be 

viewed as either ways of making components or features common across pieces of the 

market or ways of adjusting products to realize the variety desired. 

 

Step 4: Identify the Number of Hierarchical Levels and Allocate the Modes for Managing 

Variety to the Levels 
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In utilizing PPCTM, the market space will be divided up into smaller space 

elements in a number of stages. At each successive stage, the divisions must be at least as 

large as the ones found in previously. The number of stages to be used must be identified 

in this step and the modes assigned to stages. More than one mode can be assigned to a 

stage. In general, it is advised that the modes be arranged such that those at the higher 

levels have the greatest impact on the attributes being varied and/or have the largest cost 

to provide variety. There is no clear-cut way to set the number of stages or determine 

which modes should be assigned to which particular stages but the assignment is critical, 

as the results depend heavily upon how this is done. The decision variables in each space 

element at each stage make up the construct that is pieced together at the next stage, as 

shown in Figure 2-9.  

 

 
Figure 2-9 – Hierarchical Ranking of Constructs in a Single Dimension of the Market Space 
(Hernandez 2001) 
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One final important piece of this step if the market space is more than one-

dimensional is the allocation of response space dimensions to each stage. It is assumed 

that the first stage space elements address a space element with as many dimensions as 

the overall markets space. Constructs at higher levels may be used to provide variety in 

any combination of dimensions or just one, but the assignment is critical to the success of 

the overall method. 

 

Step 5: Formulate a Multistage Utility-Based Compromise Decision Support Problem 

Given the assignment of modes to stages in the previous step, the design problem 

must now be formulated as a series of utility-based Compromise Decision Support 

Problems (u-cDSP). Starting at the first stage with the smallest space elements, the 

decision variables that must be identified using the u-cDSP are the dimensions 

[ ]1 2, , nr r r∆ ∆ ∆…  of the n-dimensional space element across which the first stage’s modes 

of managing product variety will be made common. The goal in each u-cDSP is the 

minimization of the deviation variables associated with the expected utility of the 

solution. Based on the sizes of each stage’s space elements, the values for the modes of 

managing product variety are either deduced using constraints or synthesized based upon 

the most stringent attributes in each space element. Williams (Williams 2003) calls this 

decision within each space element “Decision 0”.  

 

Step 6: Solve the Multi-stage Utility-Based Compromise Support Problem 

Solving the series of u-cDSP’s generated in the previous step in series in a 

constructal manner could easily lead to vastly inferior solutions, as the decisions made as 
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to the smaller less-important mode values would be made in the early stages before 

larger, more important variable values were set. To address this problem, various authors 

have implemented a number of solution schemes for identifying space element sizes 

including dynamic programming (Hernandez 2001), exhaustive search (Hernandez, Allen 

et al. 2002; Hernandez 2003; Williams 2003), and genetic algorithms (Kulkarni, Allen et 

al. 2005). Because solution schemes have tended to avoid building upward from the 

smallest space elements and because in some previous work, space elements that do not 

nest together have been created, it has been suggested (Williams 2003) that the use of the 

term “Constructal” in the name for PPCTM is entirely inappropriate and confusing. A 

more appropriate choice of words for describing PPCTM and the work based on it might 

be “constructal inspired.” 

 The Product Platform Constructal Theory method is interesting because it 

addresses a combination of challenges in sequential strategic redesign that are unmet by 

any product family design methods. Most notably, it allows a designer to: 

• Design families of products based on multiple platforms of arbitrary size 

and shape; 

• Utilize multiple means of offering variety including scaling, 

customization, and the addition or subtraction of modules; and 

• Create a product family in such a way that any customer demand within a 

multi-dimensional market space can be addressed, meaning that problems 

in which a product family with variety in multiple dimensions is desirable 

can be solved (see Figure 2-10). 
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“Traditional” Product Family Design Methods 
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Traditional product 
family design methods 
tend to address families 
in which products are 
distinguished from one 
another in only one 
way and in which one 
means of offering 
variety (scaling of a 
certain variable or 
replacement of certain 
modules) is utilized. 

Constructal-Inspired Product Family Design Methods 
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By utilizing multiple 
means of offering 
variety in concert, 
constructal-inspired 
product family methods 
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able to support the 
design of families with 
variety in a number of 
dimensions. 
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Product families that 
emerge over time as a 
result of redesign may 
include individuals that 
are differentiated 
through various 
performance 
characteristics and 
features. It will be 
desirable to be able to 
achieve this, perhaps 
through use of various 
means. 

Figure 2-10 – Comparison of Market Coverage in Traditional Product Family Design, PPCTM, and 
Sequential Strategic Redesign 
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There are several ways in which PPCTM fails to address the needs of one 

engaged in sequential strategic redesign, however. Obviously, in previous applications of 

PPCTM, no attention is paid to redesign effort or scheduling differences, as it is assumed 

that the mass customized product families being designed are brand new. Looking 

beyond the focus of the method on original design as opposed to redesign, the practical 

ways in which PPCTM falls short include: 

• The lack of consideration of existing systems in creating product family 

designs. 

• Its focus on the creation of family designs that address a whole market space. 

Even within space element subdivisions of this space, individual systems are 

based on over-design to meet the most stringent demands represented there. 

There is no way to account for specific customer demands in a market space. 

• The assumption that there is a level of performance change that a customer 

cannot discern. One key assumption in PPCTM involves the size of the 

smallest space element, a small piece of the market in which it is assumed that 

any customer whose demand falls there will be satisfied, so long as the 

system’s performance also falls there. 

• The assumption that geometric proximity between two systems in a market 

space implies that commonality between those two particular systems is 

preferable. By exploring how contiguous pieces of the market space can be 

combined into spaces that can share variable values in common, reuse of 

components is achieved, but opportunities to share components between 
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systems that are not in contiguous pieces of the market space may never be 

considered. 

• The failure to consider commonality at levels of detail smaller than the modes 

of managing product variety. While a designer using PPCTM might determine 

that it is beneficial for two systems not to share all the variables in a particular 

mode of managing product variety, it might be beneficial to share just one of 

those variable values. Unless the groupings of variables are changed or their 

hierarchical order is shuffled, this commonality might never be identified. 

The final two drawbacks mentioned above are caused by the need to group design 

variables into modes in PPCTM and rank them hierarchically. As Hernandez (Hernandez 

2003) points out, the designer can inspect the most promising space element sizes 

identified through use of PPCTM and determine when a change to the groupings or 

hierarchical ordering might be beneficial. He suggests that this take place whenever two 

stages’ space elements are the same size. As a practical matter, however, it is not easy to 

determine the groupings or rankings, so a fall-back strategy might be appropriate if 

PPCTM is to be augmented to support redesign. 

 

2.3.4 - A Summary of Relevant Literature on Commonality and Reuse in Product 

Family Design and Commentary on its Usefulness in Serial Redesign 

Researchers have proposed a number of different ways of measuring commonality 

or, more generally, the beneficial features of a particular product family. In product 

family design, these are often referred to as commonality indices. A good summary of 

these indices can be found in (Thevenot and Simpson 2004) or in (Guo and Gershenson 

2004). Because of the similarities between a product family realized through redesign and 
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one that is both designed and released all-at-once, it seems logical to look at some of 

these indices for inspiration in the creation of an index for redesign. This will also help 

elucidate the ways in which existing measures for commonality and effort fall short when 

applied to redesign. The metrics discussed in this section are also summarized in Table 

2-3 based on their features and whether they are calculated based on analysis of each part 

in a family or based on a measure of the family as a whole. 

 

Degree of Commonality Index (DComI) by (Collier 1981) 

DComI is a measure of the average number of common parent items per 

component in a family of products.  Component parts are considered to be any part in the 

family of products besides the final assemblies offered at market. Parent items are 

considered to be any part in the family of products that is made up of component parts.  

The DComI is easy to compute but its major limitation is that because of the way it is 

computed, it has no fixed boundaries. The lack of boundaries makes it difficult to use the 

DComI to compare families of products to one another. 

1

i d

j
j iDCI

d

+

= +

Φ
=
∑

 [2.4] 

where: 

jΦ  = the number of immediate parent components that part j has amongst all 

products offered 

d = the total number of unique parts in all of the finished end products offered 

i = the total number of finished end products offered 

and the range of DCI is: 
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 1 DCI β≤ ≤ ,  
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i d

j
j i
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+

= +

= Φ∑  

 The other drawback to using DCI in the design or redesign of future systems, is 

that intimate information about the structure and makeup of the systems is required in 

order to sort out which components go with which system and the organization of parent 

components. This is the kind of information that may be difficult to generate for a 

hypothetical future system for which redesign plans are being generated. This is a 

drawback that spreads to many of the other commonality measures discussed in this 

chapter, as many have used Collier’s work as a starting point for their own. 

 

Table 2-3– Summary of Information Included in Commonality/Non-Commonality Indices 
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Degree of Commonality Index 
(DComI) 
(Collier 1981) 

           

Total Constant Commonality 
Index (TCCI)  (Wacker and 
Treleven 1986) 

           

Product Line Commonality 
Index (PLCI) (Kota, 
Sethuraman et al. 2000) 

           

Percent Commonality Index 
(PCI) 
(Siddique and Rosen 1998) 

           

Commonality Index (CI1) 
(Martin and Ishii 1996)            

Commonality Index (CI2) 
(Martin and Ishii 1997)            

Total Cost of Providing 
Commonality (TCPI) 
(Martin and Ishii 1996) 

           

Coupling Index (CoupI) 
(Martin and Ishii 2002)            
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Generational Variety Index 
(GVI) 
(Martin and Ishii 2002) 

           

Component and Process 
Commonality Indices (CPCI) 
(Jiao and Tseng 2000) 

           

Product Family Penalty 
Function (PFPF) 
(Messac, Martinez et al. 2002) 

  ?         

Design Capability Indices 
(DCI) 
(Chen, Simpson et al. 1996) 

           

Non-Commonality Index 
(NCI) 
(Simpson, Seepersad et al. 
2001) 

           

Performance Deviation Index 
(PDI) 
(Simpson, Seepersad et al. 
2001) 

           

Design Freedom (DF) 
(Simpson, Rosen et al. 1998)            

 

Total Constant Commonality Index (TCCI) by (Wacker and Treleven 1986) 

The TCCI is a modified version of the DCI presented by Collier (Collier 1981). 

The major difference between the TCCI and the original DCI is that the former is 

computed such that it is always between 0 and 1, making it possible to use the TCCI as a 

relative measure of the value of product families. 
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[2.5] 

where: 

jΦ  = the number of immediate parent components that part j has amongst all 

products offered 

d = the total number of unique parts in all of the finished end products offered 

i = the total number of finished end products offered 

and the range of TCCI is: 

 0 1.0TCCI≤ ≤  
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Commonality Index (CI1) by (Martin and Ishii 1996) 

This version of the CI1 is based on Collier’s work (Collier 1981) but is much 

simpler. It is simply the ratio of the total number of unique parts in a family to the total 

number of parts in all of the members of the family. A lower number indicates that more 

parts have been made common across the family. 

1

1
nv
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=
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∑
 

[2.6] 

where: 

u = the number of unique parts 

pj = the number of parts in model j 

vn = the final number of varieties of models offered 

and the range of CI1 is: 

 0 1 1.0CI≤ ≤  

 

Design Capability Indices (DCI) by (Chen, Simpson et al. 1996)  

Developed based on Process Control Indices used in manufacturing quality 

control, the DCI is computed using a nominal design and an assumed amount 

(percentage) of variability in its variable values. This variability is used to calculate the 

distribution of system responses of interest. The DCI is the percentage of the resulting 

range of system responses that overlaps the stated desirable range. Generally, the 

variation in the variables is assumed, meaning that the design task is to determine the 

nominal variable settings that maximize the DCI’s for the responses of interest. As a 
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design tool, the DCI is useful for identifying the rough “top-level design specifications” 

of a family, but it is not useful for the designer whose task it is to find the design variable 

values of the individual family members, nor is it a measure or indicator of the amount of 

commonality that will be present in a resulting product family design. If the preliminary 

design process is repeated using different amounts of assumed variance, the designer 

might be able to identify top-level specifications that offer greater promise of final 

designs with more commonality.  

 

Total Cost of Providing Variety (TCPI) by (Martin and Ishii 1996) 

Martin and Ishii propose to regress a function for the total cost of providing 

variety in a family as a function of not just the CI1 but also as a function of the 

Differentiation Point Index (DPI) and Setup Index (SI). The DPI is a measure of how late 

in the manufacturing process variety is created, the presumption being that adding variety 

later is advantageous. The SI is a measure of the contribution made by setup costs to the 

total cost of all the products in the system. 
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where: 
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0 1 2 3, , ,β β β β  are regression coefficients 

u = the number of unique parts 

pj = the number of parts in model j 

vn = the final number of varieties of models offered 

di = average throughput time from process i to sale 

d1 = average throughput time from beginning of production to sale 

ai = value added in process i 

ci = cost of setup at process i 

Cj = total cost (material, labor, and overhead) of product j 

And: 

0 1 1.0
0 1.0
0 1.0

CI
DPI
SI

≤ ≤
≤ ≤
≤ ≤

 

 In proposing the TCPI, Martin and Ishii choose to include the perspectives of 

those who manage the flow of a manufacturing process. It is also interesting to note the 

use of the abstract term “value” in the term ai in the computation of the DPI. It can be 

argued that all of the commonality measures discussed here suffer from the common 

liability of not linking their values to an absolute measure of the success of a product 

platform and that particular values of the measures have no real meaning. In using ai, the 

DPI takes one more subjective step away from being tied to practical quantities. 

 

Commonality Index (CI2) by (Martin and Ishii 1997)  

This index by the same authors as the previously-discussed Commonality Index 

and labeled with the same name is again based on the basic ideas put forth by Collier 
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(Collier 1981) but is constrained to the range between 0 and 1. The CI2 measures is based 

on ratio between the total number of parts in a family that provide variety and total 

number of parts in all of the members of the family. 
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[2.8] 

Where: 

u = the number of unique parts 

pj = the number of parts in model j 

vn = the final number of varieties of models offered 

and the range of CI2 is: 

 0 2 1.0CI≤ ≤  

 

Percent Commonality Index (PCI) by (Siddique and Rosen 1998) 

The overall percent commonality measure suggested by the Siddique and Rosen 

can be calculated in a number of ways, but the suggested form is the weighted sum of a 

number of sub-indices, each of which reflects a product platform’s commonality from a 

different perspective. The sub-indices each measure commonality in the architecture and 

assembly of the products in the family. The two architecture indices measure the 

percentage of components and connections that are common in the family while the 

assembly indices measure the percentage of the assembly processes and assembly 

workstations that are common across the family.    

4
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where: 

Ii = the importance (weighting) of each viewpoint’s sub-index 

Ci = the percent commonality for each viewpoint, more specifically: 

 c
common componentsC 100

common components + unique components
= × , 

a
common connectionsC 100

common connections + unique connections
= × , 

c
common assembly component loadingC 100

common assembly component loading + unique assembly component loading
= × , 

and 

c
common assembly workstationsC 100

common assembly workstations + unique assembly workstations
= ×  

If 
4

1
1i

i
I

=

=∑  then 0 100PCI≤ ≤  

 The PCI is the commonality measure which Guo and Gershenson (Guo and 

Gershenson 2004) identify as being both the most consistent with other measures and the 

most sensitive to small changes in proposed product family designs. It also incorporates a 

higher-level view of the value of commonality with respect to manufacturing than the 

other works discussed thus far. 

 

Product Line Commonality Index (PLCI) by (Kota, Sethuraman et al. 2000)  

The PLCI can be used to compare a product family to the ideal situation in which 

all of the parts that do not serve to differentiate the various family members are shared 

across the entire family, have the same size and shape, are made of the same materials, 

and are made the same way. The PLCI is measured on a scale between 0 and 100, with 
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the lower score indicating that either none of these parts are common or that if they are 

shared they have some features that aren’t common. A perfect score of 100 indicates that 

all parts are shared across all family members, that they have all of the same features, and 

that they are all made in the same way. Scores in between 0 and 100 indicate that either 

some of the non-differentiating parts that could have the same size and shape are different 

from one another, some components that could be manufactured the same way are being 

made differently, or that the assembly or fastening schemes for some parts are different 

when they could be the same. Key to the calculation of the PLCI is the identification of 

three factors (f1i, f2i, and f3i) associated with the ratios of the number of product family 

members that do share a given part to the number of product family members that could 

share that part.  
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where: 

P = the total number of non-differentiating parts that can potentially be 

standardized 

N = the number of products in the family 

ni = the number of products in the family that contain part i 

f1i = size and shape factor for part i 

f2i = materials and manufacturing processes factor for part i 

f3i = assembly and fastening schemes factor for part i 

and the range of PLCI is: 

 0 100PLCI≤ ≤  
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Thevenot and coauthors (Thevenot, Nanda et al. 2005) utilize the PLCI as a 

measure of the number of components that do not serve to externally differentiate the 

product family members. The authors’ research is aimed at creating a method for 

identifying both the best redesign strategy and the components of a product that 

contribute most to commonality in general. In addition to the commonality goal, several 

constraints are added to ensure that unique components that serve to differentiate specific 

products are preserved, that components that are already shared across the whole family 

are not altered, and that a certain maximum number of design changes is not exceeded. 

By adding these constraints, the authors are in effect placing reasonable limits on the cost 

of the redesign effort without explicitly calculating it. There are several significant 

drawbacks to this work, which do not have to do with the PLCI itself. First, the proposed 

redesign plans are never checked for feasibility, meaning that some commonality may be 

achieved at the cost of impossible designs. Second, since certain design changes are 

ignored due to the constraints, the possible benefits of a change in a small number of 

common parts is ignored in favor of more changes in less common parts. 

 

Component and Process Commonality Indices (CPCI) by (Jiao and Tseng 2000)  

One half of the CPCI is based on Collier’s DCI (Collier 1981) but expands that 

measure by incorporating product volume, cost per part, and quantity per operation into 

the Component Part Commonality CI(c). The other half of the CPCI is made up of a 

Process Commonality Index (CI(P)) which is modified from a process flexibility measure 

put forward by Tsubone et al (Tsubone, Matsuura et al. 1994) and reflects lot sizes, 

schedule sequencing, and overall process flexibility. As Thevenot and Simpson 
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(Thevenot and Simpson 2004) point out, one advantage of the CI(C) as compared to other 

measures of part commonality is that greater weight is given to making an expensive part 

common across a family as opposed to a cheaper part. The flip side of this advantage is 

that the dependency on cost estimates, which decrease the value of this index if they are 

not accurate. 
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where: 

d = total number of components in a product family 

j = index of each component 

Pj = price or cost of each part 

m = total number of products in the family 

i = index of each product in the family 

Vi = volume of each product in the family 

ijΦ  = number of immediate parents for part dj “over all the product levels of 

product i of the family 

Qij = quantity of part dj required by product i 
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 By separating the overall CPCI into two sub-indices, the authors are better able to 

differentiate between changes that have value from the perspective of part commonality 

and from the perspective of process commonality. Like CI before it, the CPCI requires in-

depth part-level understanding of a product and careful accounting for the structure of 

each product family member, information that may be difficult to obtain when 

conceptually redesigning a system.  

 

Coupling Index (CoupI) by (Martin and Ishii 2002)  

The Coupling Index proposed by Martin and Ishii can be used at either a 

component level or at a product/system level. It is first calculated for individual 

components in a product before being added to create a measure of the system as a 

whole. At the component level, it is a subjective measure of both the strength of the 

impact of changes in a component on other components (CI-S) and the strength of the 

impact received in the component in question because of changes in other components 

(CI-R). Each of these impacts is rated on a scale of 1 to 9. The authors suggest the 

minimization of CI-R and the Generational Variety Index as a way of promoting 

standardization across generations and suggest the minimization of CI-S as a way of 

promoting modularity. As such, CoupI is not truly a commonality measure, but rather a 

measure of the degree to which elements of a system design are tied to one another and 

an aid in identifying more promising decoupled designs. 
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Table 2-4 – Rating System for both CI-S (supplied changes due to coupling) and CI-R (changes 
received due to coupling) (Martin and Ishii 2002) 
Rating Description 
9 High Sensitivity – Meaning that even a small change in specification 

impacts the receiving component 
6 Medium-high sensitivity 
3 Medium-low sensitivity  
1 Low Sensitivity – Meaning that it takes a large change in specification to 

impact the receiving component 
0 No specifications are affecting the component in question. 
Note: The total CI-S value for a component may be higher than 9 as a result of adding up multiple supplied 
or received impacts from expected specification changes 
 

Generational Variety Index (GVI) by (Martin and Ishii 2002)  

The Generation Variety Index is computed based on the results of Quality 

Function Deployment (QFD), in which expected changes in customer requirements are 

described and the impacts of those changes on engineering metric targets estimated. 

These estimates are then used by an engineering team to forecast, based on their 

judgment, what percentage of the original cost to design each component will have to be 

reinvested to redesign that component to meet the most stringent new engineering metric 

targets. These costs are expressed on a scale of 1 to 9 (see Table 2-5) and total costs are 

indicated by adding up the component redesign costs associated with each change in 

customer requirements.  

One downside of this approach is the use of percentages in the rating system 

means that the values generated are only meaningful in comparison to the original 

system. Furthermore, by only considering how much of the original design cost will have 

to be reinvested in the new component, an inherent assumption is made that all 

components are equally important or cost the same amount. That is, under the current 

GVI rating system, a $1000 component with a GVI rating of 6 is just as important as a $5 

component with the same rating. The cost structure is in reality problem dependant, it 
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might make more sense to either create rating systems on a case-by-case basis. The 

assignment of the GVI rating scheme to percentages of original design cost is also made 

arbitrarily depending on the preferences of the designer and the problem at hand. 

The GVI is interesting because of the way in which the authors (Martin and Ishii 

2002) propose to use it to judge the impact of proposed redesign plans. The GVI is used 

in concert with CoupI to strategically estimate the amount of redesign effort that will be 

needed to realize future revisions of a system, thus meeting one of the requirements of the 

method being developed in this dissertation. However, due to its discrete nature, it works 

better as a yardstick for measuring the merit of a completed redesign plan than as a tool 

for guiding a redesign process towards more promising plans. 

 

Table 2-5 – Rating System for GVI (Martin and Ishii 2002) 

Rating Description Percent of Original Design Costs that 
Must be Invested in Redesign 

9 Requires major redesign of the 
component 

>50% 

6 Requires partial redesign of 
component 

<50% 

3 Requires numerous simple 
changes 

<30% 

1 Requires few minor changes <15% 
0 Requires no changes None 
Note: The total GVI value for a component may be higher than 9 as a result of the impact of multiple 
expected engineering changes 
 

Product Family Penalty Function (PFPF) by Messac, Martinez, and Simpson (Messac, 

Martinez et al. 2002; Messac, Martinez et al. 2002)  

In an attempt to identify the best scaling variables for a scalable product platform, 

the coauthors suggest using the variability of each design variable as a measure of how 

difficult it would be to make that variable common across the family of products. 
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Families of products with greater variability in the array of components are thus 

penalized for having a higher percent variation, which is defined as: 

varpvar i
i

ix
=  [2.12] 

where: 

n = the number of variables  
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  (which is the mean value of variable i in the product family) 

 

The PFPF then is defined as the sum of all percentage variations as follows: 
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where: 

 pi = weight given to variable i 

Aside from the references above, the PFPF is also used in a number of papers by 

D’Souza, Simpson, and coauthors (Simpson and D'Souza 2002; D'Souza and Simpson 

2003; Simpson and D'Souza 2004) as a part of a method based on genetic algorithms to 

explore platforms of varying sizes in a product family. In this work, the genetic 

algorithms are used to turn variables on or off to represent whether they are or are not 
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part of the family’s platform. Commonality in this family is driven by minimization of a 

fitness function based on the PFPF. 

The PFPF is basically a measure of weighted variance in a variable. It is shown by 

Messac, D’Souza, Simpson, and coauthors to be useful in both in identifying variables to 

be used for scaling a product family and in identifying platforms of various sizes. It could 

be used to measure the variability in a family of products based on redesign, however the 

pi weights it uses would have to be tied somehow to the relative difficulty of redesigning 

the elements of the system or the relative value of commonality in various components. 

 

Non-Commonality Index (NCI) and Performance Deviation Index (PDI) by (Simpson, 

Seepersad et al. 2001)  

In proposing a Product Variety Tradeoff Method for exploring varying amounts 

of commonality in a product platform, the authors suggest the use of two indices to 

evaluate the candidate platform designs. The NCI is a weighted sum of the normalized 

average deviations in each parameter across the family. The weighting used indicates the 

difficulty in varying that parameter. The PDI is actually a weighted sum of weighted 

sums. For each product, its deviations from target values are normalized and added up, 

with weights corresponding to the importance of each performance value. These 

deviation sums for each product are then added up with weights corresponding to the 

relative importance of each product within the family. The authors suggest seeking 

product platform designs that minimize both the NCI and PDI. The NCI and PDI are 

calculated as follows: 
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where: 

 m = the number of variables 

n = the number of products in the family 

q = the number of performance parameters 

wi = the weight or importance of product i in the family 

wj = the weight or difficulty of varying variable j  

wk = the weight or importance of performance parameter k 
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performance parameter k 

 The creators of the NCI and PDI recognize that the approach of minimizing both 

measures as a goal for product family design has two major drawbacks: the assumption 

that greater commonality is always desirable and the assumption that the platform 
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architecture is actually good for the whole family. Still, in formulating the NCI, they 

tackle one of the challenges put forward in this dissertation by attempting to account for 

the difficulty in adjusting designs. They also chose to balance this with a performance 

measure in the form of PDI, although they do not consider whether all the commonality is 

valued equally. 

 

Design Freedom (DF) by (Simpson, Rosen et al. 1998)  

The authors suggest the design of open engineering systems –systems that can be 

easily adapted to changing demands through ongoing improvement to a “technological 

base.” Towards this end, they propose a metric for design freedom, which they define to 

be extent to which parameters in a system can be changed while still meeting design 

specifications. If both the expected performance of a system and the targets for that 

performance measure can be expressed as a range, then DF is calculated by taking the 

weighted sum of the ratio of the overlaps of the ranges over the initial performance range 

when the design process starts. The weights are determined based on the relative 

importance of each performance measure. A design freedom value of 1.0 indicates that 

the design’s performance can be tweaked to achieve any of the desired target values. 

Design Freedom is calculated as follows:  
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∩
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where: 

 iTR  = target range for performance measure i 

,i initialPR  = initial feasible performance range for performance measure i 
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iPR  = feasible performance range for performance measure i during design 

process 

 

 While DF allows a designer to get a feel for the flexibility inherent in the 

architecture of a system design, it includes the assumption that all the proposed tweaks 

are possible and equally difficult. As such, it is a good tool for gauging the initial design 

of a system that is to be adjusted later, but perhaps not suited to measuring plans for 

redesigning a system to meet future needs over time. 

 

 Some authors have made an attempt to study and test various measures of 

commonality in a bid to identify one that is most promising. Several of the metrics and 

indices discussed in this section and summarized and tested by Thevenot and Simpson 

(Thevenot and Simpson 2004) with the goal of identifying the circumstances under which 

each measure of commonality is most useful. They found that the usefulness of the 

indices depended upon the amount of information available and the perspective that the 

designer chooses to take; for instance, some might choose to focus on maximizing the 

number of common components in a family while others might want to focus on 

minimizing the number of unique parts. In the end, they propose that certain indices such 

as the Total Constant Commonality Index (Wacker and Treleven 1986) and Commonality 

Index (Martin and Ishii 1997) be utilized early in a design process while others are 

chosen for use later on. It is also pointed out that none of the measures can be evaluated 

in terms of accuracy as there is no one universal measure of the goodness of a certain 

amount of commonality.  
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In the pursuit of a standardized approach to design for modularity, Gershenson 

and coauthors (Zhang, Gershenson et al. 2001; Gershenson, Prasad et al. 2004; Guo and 

Gershenson 2004; Ye, Gershenson et al. 2005) have also devoted a significant amount of 

effort to the study of measures of commonality, modularity, and variety. After an 

exhaustive survey, they find that the methods that make use of these measures in the 

pursuit of perfect or improved modularity often have several weaknesses. The first 

weakness is that they require that huge amounts of information be input into them, some 

of which may not be readily or rapidly available to a single designer. Second, the 

calculations the modularity measures employ are large enough in number and complexity 

that computerized implementation is usually necessary. Third, it is pointed out that the 

modularity measures usually only consider gross modular changes to systems, ignoring 

the other small changes that might be necessary to accommodate the switching of 

modules. Lastly, none of the methods or their measures of commonality has been used to 

create a design that can be independently verified as having improved modularity 

(Gershenson, Prasad et al. 2004).  

Elsewhere, it is suggested that most measures of modularity include some amount 

of subjectivity and that they have not been rigorously verified and validated (Guo and 

Gershenson 2004). In response to this situation, Guo and Gershenson (Guo and 

Gershenson 2004) compare a number of modularity measures. Noting that many of the 

measures are very similar in structure, the authors use clustering analysis to look for 

measures that are the most consistently close to one another in their evaluation of the 

modularity of a number of consumer products. The authors also examined which of the 

measures is most sensitive to small changes in product architectures. In the end, the 
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authors conclude that the Percent Commonality Index (PCI) by Siddique and Rosen 

(Siddique and Rosen 1998) performs best according to these measures but point out that 

even their tests include subjectivity and are prone to the need to input large amounts of 

information. 

 Ye and coauthors (Ye, Gershenson et al. 2005) go a step further, suggesting that 

once a good commonality measure is rigorously validated, it should be used to trade off 

options against a hypothetical variety index. They propose to use Product Family 

Evaluation Graphs (PFEG) to demonstrate these tradeoffs and analyze modular product 

family designs. As shown in Figure 2-11, two potential product family designs are plotted 

as vectors according to their commonality and variety ratings. A third, dotted line called 

the life-cycle strategy unit vector ( )pα  is also plotted to represent the strategy of the 

company. It is suggested by the authors that the angle α of the strategy vector be picked 

based on a number of factors that might influence the amount of variety or commonality 

that is desirable in a product family. For instance, a strategy involving more 

customization, longer life of products in the marketplace, a larger number of product 

family members, and some attempts to make products more environmentally friendly can 

result in larger values of α. At the same time, the authors suggest that a desire to avoid 

the use of new technologies, decrease the complexity of the product designs, decrease 

development time, and improve maintenance costs could lead to a smaller α value. 

Prospective family designs are evaluated by projecting their positioning vector against 

the chosen strategy vector, with longer values indicating greater adherence to the desired 

strategy. While conceptually useful for both the evaluation and graphical presentation of 

product family alternatives, as a practical tool for designers, the PFEG lacks two of the 
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legs it needs to stand. While there are a number of existing measures of commonality to 

choose from earlier in this chapter, there is no established and comprehensive measure of 

variety in a product family. In addition, the idea of setting the product family strategy 

angle α is put forward without a good understanding of all of the factors that should be 

included, let alone what relative impact they should have on the angle. 

 

 
α  - Life-cycle product family strategy angle  
Pα  - Life-cycle strategy unit vector  
F1,F2 – Product family design options 1 and 2 

1 2,F F  - Position vector for respective product family design options 1 and 2 

,1 ,1,P Pα α  - Life-cycle strategy achievement vector of design options 1 and 2 
Figure 2-11 – Use of the PFEG (Ye, Gershenson et al. 2005) to Analyze Two Product Family Designs 
 

All of the metrics and indices discussed here have been developed with a common 

goal in mind: establishing some measure of the merit of a proposed design of a family of 

products. Most are based upon the goal of increasing the commonality present in a 

product family design or decreasing the amount of a family that is unique to individual 

products. The indices differ greatly in the amount of information that is needed to 

compute them and in the perspectives they choose include or exclude. As shown in Table 
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2-3, different indices choose to focus on part design, production volumes, manufacturing 

processes, or even fastening methods. This review of relevant metrics and indices has 

intentionally been organized chronologically so that the reader can see the growth in 

thought that is put into them –there is even visible change in thought on the part of 

individual authors represented here. Over time, researchers have chosen to remove 

certain assumptions used by previous authors, but have often had to neglect other 

assumptions or impose new restrictions of their own to suit the problem at hand. For 

instance, the work of Collier (Collier 1981) that has been leveraged greatly includes a 

number of inherent assumptions, most notably that: 

• Components all have the same cost; 

• Product family members are all produced in equal numbers; and 

• The total number of end components in the family will be the same for all 

possible family designs.  

The last assumption that is removed by Wacker and Treleven (Wacker and 

Treleven 1986) in putting forward their index, but other assumptions remain. These 

assumptions create a number of gaps when it comes to addressing the requirements of 

sequential strategic redesign problems, as shown in Table 2-6. All of the indices and 

metrics discussed here have been developed for the purpose of aiding designers creating 

new families of products, so it is not entirely fair to criticize them for not considering 

issues related only to redesign. However, this fundamental difference in mission brings 

with it the key assumptions that: 

• The product family is to be designed from scratch; 

• All product family members will be offered simultaneously; and 
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• There are not yet any sunk costs associated with the family that need to be 

leveraged in redesigned entities. 

These are the gaps that are addressed in developing two new metrics specifically 

for redesign in Section 3.2. 
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 Table 2-6 – Relevance of Selected Existing Product Family Measures to Requirements for Sequential 
Redesign  
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Degree of Commonality Index 
(DComI) 
(Collier 1981) 

            

Total Constant Commonality 
Index (TCCI)  (Wacker and 
Treleven 1986) 

            

Product Line Commonality 
Index (PLCI) (Kota, 
Sethuraman et al. 2000) 

            

Percent Commonality Index 
(PCI) 
(Siddique and Rosen 1998) 

            

Commonality Index (CI1) 
(Martin and Ishii 1996)             

Commonality Index (CI2) 
(Martin and Ishii 1997)             

Total Cost of Providing 
Commonality (TCPI) 
(Martin and Ishii 1996) 

            

Coupling Index (CoupI) 
(Martin and Ishii 2002)             

Generational Variety Index 
(GVI) 
(Martin and Ishii 2002) 

            

Component and Process 
Commonality Indices (CPCI) 
(Jiao and Tseng 2000) 

            

Product Family Penalty 
Function (PFPF) 
(Messac, Martinez et al. 2002) 

            

Design Capability Indices 
(DCI) 
(Chen, Simpson et al. 1996) 

?            

Non-Commonality Index 
(NCI) 
(Simpson, Seepersad et al. 
2001) 

            

Performance Deviation Index 
(PDI) 
(Simpson, Seepersad et al. 
2001) 

            

Design Freedom (DF) 
(Simpson, Rosen et al. 1998)             
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2.3.5 - Support for Long-Term Decision-Making  

Taking inspiration from the definition of Strategic Design (Seepersad, Cowan et 

al. 2002), the question being pursued in this section is, how do designers create 

engineering systems in anticipation of future needs? It is understood that a broader 

definition of strategy could be used, taking into account technology forecasts or 

uncertainty, but for the purposes of this dissertation, it is assumed that designers are 

dealing with well-understood and fully-defined future design targets in the context of the 

other requirements explained in Section 1.3.2. As in other sections of this chapter, there 

are various areas in which other researchers make contributions to strategic thinking in 

design. These include product family design, iterative design change management, and 

flexible product platform design. 

 

Strategic Thinking in Up-Front Product Family Design 

Seepersad and coauthors (Seepersad, Allen et al. 2002) use physical programming 

to design a scale-based product family with a product platform that is robust to a set of 

scenarios for how the distribution of demand in a market space might change during the 

expected lifespan of the product platform. Based on an initial snapshot of the market and 

the scenarios for future demand, a compromise Decision Support Problem is formulated 

and solved, the goal being to identify the most promising platform strategy (See Figure 

2-12) regardless of which scenario turns out to be accurate. The scenarios are given equal 

weight in the governing objective function of the method, meaning that it is assumed that 

the designer has a good idea of what the future demand scenario could look like, just not 

which of his/her ideas will come true.  
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Figure 2-12 – Examples of Vertical and Horizontal Portfolio Expansion (Seepersad, Allen et al. 2002) 

 

A flowchart of the approach used by Seepersad and coauthors is shown in Figure 

2-13. Kulkarni and coauthors (Kulkarni, Allen et al. 2005) use a similar approach to 

modeling potential market shifts as a part of a method to support the design of a 

hierarchical product family of customizable systems that is robust to both variations in 

the distribution of demand throughout the market space and changes in the size of the 

market space. Both sets of authors’ approaches offer a way of realizing a large amount of 

variety for changing demand but both include the assumption that the platform should be 

designed up-front with all future demands in mind. 
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Figure 2-13 – Method for Designing Product Platforms for a Changing Environment (Seepersad, 
Allen et al. 2002) 
 

Elsewhere, Gonzalez-Zugasti and coauthors (Gonzalez-Zugasti, Otto et al. 2001) 

use real options to design a product platform based on uncertainties in design problem 

like technology, funding, market conditions, and competition. The value of a design 
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option is based on the sum of the benefits realized minus the cost of investment to 

achieve them.  Their method has two steps, as shown in Figure 2-14. In the first, a group 

of “equally good” candidate product platforms along a Pareto frontier are identified using 

deterministic information about future demands. The variants in the product families 

based on these platforms a plotted along a timeline like that shown in Figure 2-15 and are 

then designed. 

 

 
Figure 2-14 – Real Options-Based Platform Design Method (Gonzalez-Zugasti, Otto et al. 2001)  
 

In the second step, real options are used to pick the best –meaning most flexible- 

of these platforms given the uncertainties in the requirements of each variant in the 

family and in the payoffs from each of the variants. As a part of this process, a decision 

tree with uncertain outcomes is generated as shown in Figure 2-16. Ideally, the result of 
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the application of this method is a flexible system that is meant to be easily adjustable 

based on slight changes in how the design scenario plays out but no plan is presented for 

how such adjustments might take place. 

 

 
Figure 2-15 – Timeline of Platform and Variant Development (Gonzalez-Zugasti, Otto et al. 2001) 
 

 
Figure 2-16 – Platform and Variant Development Decision Tree (Gonzalez-Zugasti, Otto et al. 2001) 
 

Allada and Lan (Allada and Lan 2002) present a method for designing an 

evolving system by planning the launch of new modules.  Their method is based upon 

perfect knowledge of the emergence, availability, and performance of new modules as 

well as perfect knowledge of the profit that will be obtained from a given system 
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realization.  The design problem is reduced to planning out when and if the new modules 

should be launched.  The result is a plan for a system that will evolve over time to meet 

different demands but the plan for how those changes will occur is essentially assumed at 

the beginning of the problem.  

 

Iterative Redesign to Make Large Changes 

The work of Coulter and Bras (Coulter and Bras 1997; Coulter 1998) is inspired 

by the desire to make products more environmentally friendly over time. The authors 

realize that there are often a number of limiting factors restraining designers from making 

the big changes needed to make products like automobiles more environmentally 

friendly. In products like cars and consumer electronics in which small revisions are 

made quite frequently, justifying huge one-time revisions can be hard whereas smaller 

incremental changes over multiple iterations of the product may fit more easily into 

budgets. The example used is the improvement of the amount of an automobile that is 

recyclable. The authors suggest that by adopting a systematic strategy for product 

evolution (see flowchart in Figure 2-17), large changes can be achieved over time. The 

crux of the authors’ approach to this iterative problem involves modeling the various 

uncertainties in the problem, identifying targets for each revision of the system, and 

prioritization of the limiting factors so that they are addressed one-by-one during each 

iteration. Their method for doing this is broken down into five steps:  

 

Task 1 – Characterize the Existing Product Design – The goal in this step is to 

produce a Decision-Support Problem-based mathematical model of the existing product. 
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This model could be based on measurements or on historical records. It should include 

the designer’s perceptions of what the variables are that fully describe the product as well 

as the constraints and goals that are most relevant to its function. 

Task 2 – Identify Problem – In this task, the designer must identify a general or 

rough set of targets for the redesign process. These targets can be based on the current 

product information, the company’s business strategy, and external factors such as 

regulatory changes. 

Task 3 – Select Metrics – The goal in carrying out this task is to build goal 

formulations for the objectives of the redesign process. To do this, metrics are needed. 

These metrics could be carryovers from the original design of the product and may have 

been identified in the course of carrying out Task 2. 

Task 4 – Define Design Space – In this task, the designer must identify both the 

variables that can be changed and the range of values that each variable can take on. The 

choice of variables may be influenced by the original product design, the goals for the 

redesign process, and the level of abstraction at which the redesign is being considered. 

Another important piece of this task is the decision as to how many revisions will be a 

part of the redesign strategy. For instance, in an automotive example, the designer would 

need to decide over how many model years the desired changes would take place.  

Task 5 – Identify / Prioritize Factors – The final task is the most complicated as in 

it, the solution to the evolutionary redesign problem is found. The first part of this task is 

the generation of targets for the intermediate steps of the redesign process. One way of 

doing this when aspects of the redesign problem are uncertain is to use Monte Carlo 

Simulations to test sets of targets to see whether they achieve the desired end goals. 
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Repeated use of these simulations can eventually lead to a workable set of targets. The 

second part of this task is the identification of key limiting factors. These factors can also 

be thought of as the design variables that offer the best tradeoff between cost and impact 

on the metrics of interest and can be identified using a selection Decision Support 

Problem using soft information including metrics related to the problem, the number of 

design iterations prescribed, and any limits there might be on the amount of resources 

that can be expended in each iteration. The third step is to “prioritize” the limiting 

factors, which is another way of saying that the factors need to be assigned to their 

respective intermediate steps. In a problem with purely qualitative information, the step 

can be achieved by ranking the possible design changes according to a loose cost/benefit 

ratio and picking the best options. In more quantitative applications, the redesign takes on 

the form of a General Assignment Problem (GAP) like the Traveling Salesman example 

and can be solved by any number of means including exhaustive search, genetic 

algorithms, or simulated annealing. At the high end of complexity, the most difficult 

problems can be addressed by formulated a hierarchical arrangement of Decision Support 

Problems as seen in Figure 2-18. At the upper level an iteration management Decision 

Support Problem (IM-DSP) controls the iteration strategy in the redesign solution, 

including the targets associated with each revision. At the lower level, product 

instantiation Decision Support Problems (PI-DSP) control the changes to be made at each 

iteration in order to meet targets controlled by the IM-DSP. This step is discussed in great 

detail in (Coulter, McIntosh et al. 1998). 
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Figure 2-17 – Flowchart of a Method for Formulating and Solving Evolutionary Design Problems  
from (Coulter and Bras 1997) 
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Figure 2-18 – Hierarchical Structure of Systematic Evolution DSP from (Coulter and Bras 1997) 
 

The work of Coulter and coauthors is generic enough to be used more broadly 

than just on the redesign of systems to achieve environmental goals, however this is not 

demonstrated. It is also not clear whether the approach used would work for multiple 

redesign goals or in the presence of multiple existing systems, as the authors focus 

instead on managing design change in one system. They also choose not to model the 

effort involved in realizing the design changes prescribed, focusing solely on breaking up 

that effort over the course of a prescribed length of time. 

 

Flexible Product Platforms / Design for Flexibility  

The idea of this work (Suh, Kim et al. 2004; Suh 2005) is to embed flexibility into 

an existing or planned product platform using a multi-step process. First, alternatives for 

embedding flexibility are generated. Each of these designs is then optimized for both 

maximum performance and minimum cost. Next, the economic performance of the 

optimized flexible designs under uncertainties in factors such as market demand is 
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evaluated using a Monte Carlo simulation. Suh and coauthors take their definition of 

flexibility from (Anonymous 2001) to mean “the ease of changing the system’s 

requirements with a relatively small increase in complexity (and rework).”They suggest 

that product platform strategies have three downsides: increased commonality in a family 

can lead to performance losses that effect competitiveness; sharing of components 

between low-end and high-end products can cannibalize the sales of the latter; and the 

costs associated with implementing new technologies across a whole platform can deter a 

company from choosing to adopt them. In response, the authors suggest embedding 

flexibility in the platform itself by identifying one critical component that should be made 

flexible. 

• Step I – Identify Critical Uncertainties – In this step, any facets of the design 

problem that are uncertain in the future are identified and quantified. These facets 

might include changes in geometric constraints, emergence of new product 

variants, or changes in quantity or type of demand in the marketplace. 

• Step II – Generate Flexible Component Designs – In this step, the designer must 

generate a number of alternative ways in which flexibility can be built into the 

product platform to deal with the expected uncertainties.  

• Step III – Structural and Economic Simulation – The first part of this step of the 

method is the structural optimization of each alternative way of building 

flexibility into the platform. The authors suggest that each alternative’s physical 

characteristics be optimized to not only achieve structural requirements but also to 

minimize the complexity of the resulting design and to minimize the cost of 

setting it up. In the second piece of this step, the optimized platform designs are 
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put through economic simulations to determine how well each performs as each 

uncertain value in the problem is allowed to vary. The authors suggest using the 

average expected Net Present Value to calculate the economic performance of 

each platform alternative.  

There are a number of drawbacks to the approach suggested by Suh and coauthors 

when considering utilizing it for strategic sequential redesign as envisioned in this 

dissertation. First, the whole method is based upon uncertain future demand as opposed 

to specific future redesign targets and discrete new system releases. Second, the authors 

choose to focus on embedding flexibility utilizing one component, a choice that may limit 

the flexibility they can produce. Lastly, the whole method is based upon the use of Net 

Present Value, necessitating complex economic models that may not be easily accessible 

to designers. 

All of the strategic design methods discussed in this section suffer from serious 

drawbacks when considered against the demands of a sequential strategic redesign 

method. The most obvious and overriding gap in their capabilities is that none consider 

redesign in the sense of modeling existing systems and considering what it will take to 

get from those existing systems to new ones. 

The robust product platform approach taken by Seepersad and coauthors 

(Seepersad, Allen et al. 2002) and Kulkarni and coauthors (Kulkarni, Allen et al. 2005) is 

a way of offering variety in a way that takes some market changes into account.  The 

problem is that these approaches only take the anticipated changes into account and, as 

more anticipated changes are taken into account, the goal becomes to create a product 

platform that is robust to everything. At that point, either the design problem becomes 
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impossible or the meaning of the “robustness” of the platform must be reduced.  Another 

positive aspect of this work is that commonality across the product family is encouraged.  

In the case of the work conducted by Kulkarni and coauthors (Kulkarni, Allen et al. 

2005), this is even handled inherently in the way that the customizable family is designed 

hierarchically. 

Gonzalez-Zugasti and coauthors (Gonzalez-Zugasti, Otto et al. 2001) explicitly 

take into account the schedule whereby products might be released, but funding decisions 

and other aspects of their problem are uncertain. Coulter and Bras (Coulter and Bras 

1997; Coulter 1998) meanwhile end up with a schedule for the release of product 

revisions over time, but the creation of this schedule is actually one of their design tasks. 

Neither of these methods fit the needs of redesign. 

The overriding advantage of the approaches taken by Gonzalez-Zugasti and 

coauthors (Gonzalez-Zugasti, Otto et al. 2001) and Allada and Lan (Allada and Lan 

2002) is that in their own ways, they anticipate future market conditions and support 

decisions with those conditions in mind.  In the case of the latter piece of work, the 

authors assume that they know all future requirements while in the former the authors 

assume that various factors in the future are uncertain. Suh and coauthors (Suh, Kim et al. 

2004; Suh 2005), meanwhile, do not forecast certain future demands, choosing instead to 

run uncertain models over and over again. They also pursue a strategy of infusing 

flexibility that can be limited in the magnitude and dimensions of the responses it 

reproduces. 
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The impression drawn from this review of existing methods for designing 

strategically is that none of them should be used as-is for redesign but rather that lessons 

learned from their drawbacks can be utilized in creating a new approach. 

2.4 - REVISITING THE RESEARCH QUESTIONS AND HYPOTHESES IN LIGHT OF 

THE LITERATURE REVIEW 

In this chapter, a broad review of literature relevant to sequential strategic 

redesign has been presented. The methods dissected here have been examined against a 

set of requirements developed in Section 1.3.2 and summarized in the top row of Table 

2-7. As can be seen in this table, the body of existing research related to redesign is found 

to be lacking in a number of respects when compared to these requirements. The gaps in 

the capabilities of existing methods should help to elucidate the reasoning behind the 

hypotheses posed in Section 1.3.2. In the rest of this section, the gaps are touched upon 

again –as are the research questions and hypotheses- in the hope of justifying the 

direction that this research takes in Chapter 3 and beyond. 

As discussed in Section 2.3.1, ad-hoc approaches to design are not even 

guaranteed to yield the desired performance changes in the system, can lead to designs 

that are harder to change later on to meet future needs, and can lead to a cascade of 

design changes to other pieces of the system that weren’t intended. These methods are 

shown in aggregate in one row of Table 2-7. 

At the same time, existing systematic approaches to redesign are few and far 

between. All are either meant for small-scale product reverse engineering, are only 

capable of realizing one new system at a time, or are only capable of predicting the 

cascade of design changes that will be needed to realize a desired change in performance 
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or accommodate a new module. Many of the methods that are meant to aid in redesign 

are really aimed at replacement, meaning that there is no consideration of keeping the 

existing system around or focus on commonality with that system. The discussion of 

these methods in Section 2.3.2 is summarized in a single row of Table 2-7. 
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Product family design methods (see Section 2.3.3) as a whole seem a promising 

avenue because of the similar goals their developers had in creating a variety of similar 

products. Most product family design methods, however, have a number of significant 

drawbacks when applied to redesign. All of the systematic, high-level product family 
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design methods with the exception of that of Suh and coauthors (Suh, Kim et al. 2004; 

Suh 2005) and the Product Platform Constructal Theory Method (Hernandez, Allen et al. 

2002; Hernandez 2003; Williams, Allen et al. 2004; Williams, Allen et al. 2005) utilize 

only one means of offering product variety such as scaling or modularity, but not 

multiple means even when it is a possibility. Many product family design methods 

require that the design variables be separated into two groups, one of which is allowed to 

vary in every family member and another of which is kept constant across the entire 

family. The PPCTM is again an exception to this rule. Finally, all product family design 

methods presume that the design process is being started from scratch and most assume 

that all products will be offered at once. As a result, the difficulty of redesigning existing 

systems to realize the new ones is not considered by any existing method, nor is the 

difference in commonality between products that are offered simultaneously and those 

that are not. 

It is because of the capabilities that make it unique that the PPCTM has been 

chosen as the starting point to structure the redesign problem and solve it. PPCTM is 

alone amongst product family design methods in its ability to: 

• Utilize multiple modes of commonality, permitting a designer to use scaling 

variables or modules in the same product family; 

• Handle product families with variety in any number of dimensions; 

• Create product platforms of arbitrary size and shape without needing to 

specify them ahead of time; and 

• Address the need for customized products at any point in a geometric space. 

Given these characteristics, it should be clear why the second hypothesis is: 
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The redesign problem can be characterized as a problem of optimal access in a 

geometric space made up of the redesign objectives and solved using a modified, 

constructal-inspired approach based on the Product Platform Constructal Theory 

Method (PPCTM) using the Redesign Index (RI) and Commonality Discount Factor 

(CDF) as overall objectives in conflict with the individual systems’ goals. 

As shown in Table 2-7, he PPCTM still has gaps. These are addressed in the 

details of Hypotheses 2.1 wherein it is proposed that the PPCTM be abstracted to apply it 

to redesign and that its basic decision structure be reformulated around the compromise 

Decision Support Problem (cDSP). The cDSP is a generic decision support construct 

capable of aiding a decision-maker in all manner of problems (Mistree, Hughes et al. 

1993; Mistree, Lewis et al.). In this dissertation, it is utilized to help guide the designer in 

meeting individual system redesign goals while trying to achieve overall family goals 

involving the minimization of redesign effort and maximization of commonality value. 

There are number product family commonality indices (see Section 2.3.4) that 

could be modified to apply to redesign, but none that are directly applicable. Each 

chooses to include or exclude certain aspects of the true cost model associated with the 

product family, but none address the special aspects of redesign that make is special: the 

varying value of commonality and the effort involved in moving from existing systems to 

new ones. Most are based around the basic idea of maximizing the amount of a product 

family that is shared in common as a factor of how many components in total there are 

present. Acknowledging that this relationship brings with it assumptions in and of itself, 

it is proposed here that a similar tack be taken in developing two new redesign metrics. 

This is the focus of the first hypothesis which is broken down into two sub-hypotheses:  
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Hypothesis #1: Through the use of two indices as objectives in a redesign problem, better 

redesign strategies utilizing fewer design changes and more valuable targeted 

commonality can be identified.  

Hypothesis #1.1: By utilizing the minimization of the Redesign Index (RI) as an objective 

in a redesign problem, a decision-maker’s attention can be directed to redesign solutions 

involving lower numbers of design changes in targeted parts of a system.. 

Hypothesis #1.2: By utilizing the minimization of the Commonality Discount Factor 

(CDF) as an objective in a redesign problem, the designer’s attention can be directed to 

combinations commonality in the most valuable parts of a system that is being 

redesigned. 

Finally, thinking strategically in Section 2.3.5, no existing method considers the 

future design possibilities inherent in a family. An argument could be made that Design 

Capability Indices (Chen, Simpson et al. 1996; Chen, Simpson et al. 1999) do this but 

they only provide a range, which is of little use if the variety of interest lies inside that 

range. 

Having gone through the literature review in the earlier sections of this chapter, 

the research questions and hypotheses are filled out in greater detail, the argument is 

made here that given a decision-based-design perspective, the starting building blocks of 

an approach to strategic sequential redesign should be the Product Platform Constructal 

Theory Method, the compromise Decision Support Problem, and two indices that still 

need to be developed later in this dissertation.  In the next section, the role of this chapter 

in the larger process of proving the research hypotheses and validating the proposed 

methods is discussed. 
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2.5 - CONTRIBUTIONS IN THIS CHAPTER TO THE DOMAIN-INDEPENDENT 

STRUCTURAL VALIDITY OF THE PROPOSED METHOD 

In this chapter, it has been demonstrated that there are significant gaps in the 

ability of existing methods to support a designer faced with conceptual sequential 

redesign of an engineering system. There are positive and negative ways of viewing this 

gap. On the negative side, while many of the requirements for supporting such a redesign 

process are met by particular methods that have been developed for different types of 

problems, no one method addresses all of the features that are important in this 

dissertation. However, having clearly elucidated this gap, the research presented in this 

dissertation is shown to be even more important than previously understood. On the 

positive side, the fact that there is only a gap –meaning there is strong footing on either 

side- means that there are methods upon which this research can be built. 

 The process of identifying this gap has contributed to the Theoretical Structural 

Validity of the work in this dissertation. By further clarifying the gap, the purpose of this 

research is also made clearer. By identifying the shortcomings of existing work when 

applied to a sequential redesign problem, the usefulness that must be demonstrated by the 

proposed method here is spelled out in greater detail.   

 The first construct discussed in this chapter is the Product Platform Constructal 

Theory Method (PPCTM) (Hernandez 2001; Hernandez, Allen et al. 2002; Carone, 

Williams et al. 2003; Hernandez, Allen et al. 2003; Williams 2003; Williams, Allen et al. 

2004; Williams, Rosen et al. 2004; Kulkarni, Allen et al. 2005) based upon the ideas of 

constructal theory (Bejan 1996; Bejan 1997; Bejan and Ledezma 1998; Bejan 2000). The 
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PPCTM has several features that make it particularly interesting in this dissertation, 

chiefly the ability to utilize multiple modes of changing a product to create variety in 

multiple dimensions without a need to specify sizes or numbers of product platforms 

ahead of time. 

 The second construct is the compromise Decision Support Problem (Mistree, 

Hughes et al. 1993; Mistree, Lewis et al.). that will be infused into the decision-making 

process of PPCTM to support the redesign of individual systems to meet new individual 

goals. The cDSP has been used widely in all sorts of engineering applications and has 

been utilized as the basic building block for the development of techniques for robust 

design (Chen, Allen et al. 1996; Chen, Mavris et al. 1996), product family design 

(Simpson 1999; Simpson, Chen et al. 1999), hierarchical systems design (Kuppuraju, 

Ganesan et al. 1985; Bascaran 1987; Shupe 1987; Bascaran, Bannerot et al. 1989; 

Karandikar 1989; Vadde, Allen et al. 1994), and many other problems. 

 The final constructs will be developed in this dissertation. These are two indices 

for assessing the merit of redesign plans based on the amount of redesign effort entailed 

and the value of the commonality present. While developed from scratch, they adopt 

many of the advantages and disadvantages seen in product family commonality indices 

(see Section 2.3.4) in that they are quick to compute but may vastly oversimplify the 

problem that is being solved. 

 These constructs are discussed in greater detail in Chapter 3, finishing the 

assessment of their Theoretical Structural Validity, but the refinement of their purpose 

and the identification of the ways in which they succeed in addressing sequential 

redesign’s demands are both important first steps in the process of validation. 
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2.6 - STATUS AND PROMISE 

Through the critical evaluation of literature contained in this chapter, it has been 

shown that the problem of high-level sequential strategic redesign is not fully addressed 

by any existing decision support methods. By clarifying the deficiencies of these 

methods, the purpose of the approach proposed here is refined. By identifying the ways in 

which these methods hold promise in meeting some of the demands of sequential 

strategic redesign, some of the constructs of the proposed approach are chosen. Both the 

refinement of purpose and the identification of constructs help to address the Theoretical 

Structural Validity of the proposed approach and of the hypotheses put forward in 

Section 1.3.2. In the coming sections of Chapter 3, the rest of the proposed approach is 

developed using the constructs of the Design Capability Index, the Product Platform 

Constructal Theory Method, and the compromise Decision Support Problem. In the 

course of the rest of this development, the Theoretical Structural Validity of the approach 

will be completely demonstrated. In Chapter 4, this approach is used in the redesign of 

various families of universal motors, lending credence to the Empirical Structural 

Validity and Empirical Performance Validity of the research hypotheses. 
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CHAPTER 3  

ADDRESSING STRATEGIC REDESIGN AS A LIMITED PROBLEM 
OF OPTIMUM ACCESS IN A GEOMETRIC SPACE 

 

3.1 - A PREVIEW OF THIS CHAPTER’S CONTENTS 

In the Sections 2.3 and 2.4, it is shown that no known approach exists to address 

the problem of sequential strategic redesign. In addition, a number of gaps are shown to 

exist in even the most promising methods when they are applied to the problem of 

strategically redesigning one or more systems to realize a string of new systems over 

time. A constructal approach has been identified as a promising way of exploring the 

possibility of reusing elements of existing systems and encouraging new systems to share 

components where possible. Previous uses of constructal-inspired product family design 

methods have demonstrated the ability to explore commonality but do not support design 

towards specific demands and fail to account for existing systems, the effort involved in a 

redesign project, or the varying value of commonality between systems. It is proposed in 

Section 1.3.2 that these gaps be addressed through the adaptation of a constructal-inspired 

product platform design method to redesign by creating two new indices to measure the 

merit of a redesign plan and by incorporating a compromise Decision Support Problem 

(DSP) into the decision-making process. 

In this chapter, the way in which these changes are implemented is explained. The 

indices for redesign are developed in Section 3.2 and the logic behind them is explained. 

In Section 3.3, the infusion of the cDSP into the constructal-inspired approach is 

explained, as are the rippling effects that this change has on other activities. In addition, 

the abstractions that need to be made to convert the constructal-inspired product platform 



 155 

design method into a redesign decision support method are discussed. Finally, in Section 

3.4, the adjusted approach is explained step-by-step and one potential solution process is 

laid out.   

 

3.2 - DEVELOPMENT OF INDICES APPROPRIATE TO CHARACTERIZING THE 

GOODNESS OF REDESIGN 

As discussed in Section 2.4, there are two key characteristics of redesign 

problems that are not reflected in the indices that are commonly used in original design 

and product family design to encourage commonality between related systems. In this 

section of the chapter, two indices are developed to model the amount of redesign effort 

in a proposed redesign plan and the value of commonality present between members of 

family based on redesign. First, in Section 3.2.1, the motivation to develop these indices 

is discussed. In Section 3.2.2, the reader is taken through a thought exercise to 

demonstrate the thinking behind the Commonality Discount Factor (CDF) and Redesign 

Index (RI), which are developed in Sections 3.2.3 and 3.2.4 respectively. These indices 

are further developed to make them better suited to the synthesis of redesign plans in 

work presented in Section 3.2.5. Finally, the indices are critically evaluated in Section 

3.2.6. 

   

3.2.1 - Motivation to Develop an Indices for Goodness in a Redesign Project 

The motivation to develop metrics for the goodness of a redesign project is 

twofold. The first piece of motivation is due to the fact that there is no existing metric for 

redesign. In Section 2.3.4 and Section 2.4, it is also pointed out that commonality metrics 
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fail to take into account several factors that make redesign problems distinct from 

original design of a single product, product family design, or even design under 

uncertainty. The existing indices fall short in that they: 

• Do not consider that there may be existing systems to be leveraged in the 

redesign project; 

• Do not model the effort involved in moving from production of any existing 

systems to production of new systems, a change which may involve 

investments in research, design, development, testing, and manufacturing 

infrastructure; and 

• Assume that all product family members are offered simultaneously so that 

economies of scale can always be exploited. 

The second piece of motivation comes from the decision to pursue a constructal-

inspired approach to commonality exploration in the redesign problem. As discussed in 

Sections 2.4 and 2.5, one of the drawbacks to using this approach based on the Product 

Platform Constructal Theory Method is that opportunities for commonality are not 

pursued if they occur between geometrically dispersed systems or at a finer level of detail 

than the prescribed stages. Creating a metric or metrics for redesign commonality and 

incorporating it into the decision-making process can help alleviate this problem. 

 

3.2.2 - A Redesign Metric Thought Exercise 

In most product family design applications, the implicit assumption is that all 

products will be offered at the same time, meaning that any commonality that the 

products can have with one another is valuable. This is the concept of pure commonality 
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and is the basis for most indices or metrics for product families. What happens, however, 

when the products are not all offered at once? Furthermore, what happens when one 

product is leveraged through redesign to create the rest of the family? To help explore 

these questions, a simple example is introduced here. 

Consider the example of a small company that designs and manufactures a small 

mobile robot used by police and the military in bomb disposal actions as shown in Figure 

3-1. Moving on a pair of treads over mildly rough terrain, the robot is radio controlled 

and has a short battery life. Sitting on top of its main body is a swiveling “tool package” 

with a set of manipulators, lights, and simple cameras that broadcast images back to the 

controller. The company is interested in expanding its product offerings in coming years 

by exploring new design options for locomotion, for the main body, and for the tool 

package that rides on top. More specifically, they are interested in making their vehicle 

faster, enabling it to travel over rougher terrain, giving it a longer battery life, equipping 

it with better sensors for intelligence-gathering applications, and improving its 

control/communications technologies. 

 

 
Figure 3-1 – Model I Bomb Disposal Robot 
 

After a considerable amount of work, the company develops a set of new redesign 

options as shown in Table 3-1. Each of these options helps the company achieve one or 

more of its objectives for the new product family based on Model I. Using these options, 
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the company has identified five candidate designs, as shown in Table 3-2. Each of these 

redesigned robots is meant to meet a new market niche in which the company is 

interested. The redesigned product family shown in Table 3-2 is an attractive solution 

because it only uses design changes in three main areas and it only involves one design 

change in two of those areas as shown in Table 3-1. The product family members share 

many components in common and reuse a number of the features of the existing system, 

meaning that some of the costs that would be associated with designing, manufacturing, 

and servicing a group of individually-optimized robots can probably be saved. This fact is 

born out in the high values of TCCI and CI2 shown in Table 3-2. 

 

Table 3-1 – Original Design and Redesign Options for Robot Family 

Type A
(existing design)

Type B

Type A
(existing design)

Type B

Type A
(existing design)

Type B

Type C

To
ol

 P
ac

ka
ge

M
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n 
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y

Lo
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Bomb disposal toolkit with 
manipulator, lights, simple camera, 
and simple radio communications

Reconnaissance package with 
improved satellite communications, 
multiple cameras, microphones, and 
other sensors

Low-profile body with limited 
storage for batteries

High-profile body with large 
storage space for batteries, 
increasing running time

Tracked system which is slow but 
very good at traversing uneven 
terrain

Wheeled system which is fast but 
can only handle smooth terrain

Hovercraft technology which is 
very fast and allows for travel over 
somewhat uneven terrains but is 
very expensive  
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Table 3-2 – Proposed Redesigned Robot Family 

Model I

Model II

Model III

Model IV

Model V

Model VI

 
Degree of Commonality Index (Collier 1981) 
DComI = 2.5714  
Total Constant Commonality Index (Wacker and Treleven 1986) 
TCCI = 0.6471  

Selected Product 
Family Metrics: 

Commonality Index (Martin and Ishii 1996) 
CI2 = 0.7333 

 

Table 3-3 – The Robot Family with Redesign Choices Made 
 Tool Package Main Body Locomotion 
Model I A A A 
Model II B A A 
Model III B B B 
Model IV B A B 
Model V B A C 
Model VI A A C 
 

Measuring the value of this design reuse and commonality is difficult if the 

schedule by which the newly redesigned systems will be released (shown in Figure 3-2) 

is taken into account. With only one exception, none of the robots are released and retired 

at the same time. Five of the six family members are to be redesigned based on one 

existing system. This schedule reveals several problems with the assumption inherent in 

all existing product family commonality indices that all commonality is desirable. Each 

of these problems is discussed in greater detail below. For the purposes of this discussion, 
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two products with common features are being considered. What varies from case to case 

is the schedule by which they are released, manufactured, and retired from the market.  

  

Model I

Model II

Model III

Model IV

Model V

Model VI

Year 0 Year 5 Year 10 Year 15 Year 20 Year 25 Year 30  
Figure 3-2 – Release Schedule for New Robots 
 

Scenario #1: Commonality Between Products with Completely Coincident Production 

This is the ideal case that is generally assumed in product family design examples 

wherein the two product family members are designed, manufactured, and retired at the 

same time as shown in Figure 3-3. This type of commonality can be seen between Model 

III and Model IV in Figure 3-2 as well.  
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Year 1 Year 2 Year 3 Year 4

Product #1

Product #2

Time

 
Figure 3-3 – Two Products with Completely Coincident Production Schedules 
 

Scenario #2: Commonality Between Products with Staggered Introduction Schedules 

In the case shown in Figure 3-4, two products share features in common but one is 

released after the other. An example of this situation is the commonality between the 

main body and type of locomotion employed in Model I and Model II in Figure 3-2. A 

comparison between Scenario #1 above and this case begs the question of whether or not 

the type of commonality shown here is just as valuable as that in Scenario #1. In existing 

product family metrics/indices this type of commonality would be equally-valued since 

the production timetable is not taken into consideration. The delay between the releases 

of the products could mean that further design work and testing on Product #2 needs to 

occur, that some of the efficiency of the shared manufacturing systems is lost, or that 

some of the benefit of having a shared inventory of parts is lost. The point to be taken 

away here is that in some but not all cases, the type of commonality shown in Scenario #1 

is preferred over that type shown here. There are exceptions to this rule –for instance 

when the design changes in Product #2 involve no costs because they are modular- but 

generally there is some cost in time and money to redesigning a new product family 

member. 
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Product #1

Product #2

Year 1 Year 2 Year 3 Year 4

Time

 
Figure 3-4 – Two Generic Products with Staggered Introduction Schedules 
 

Scenario #3: Commonality Between Products with Staggered Retirement 

In the case shown in Figure 3-5, two products that share common features are 

being offered at the same time, but one is retired before the other. An example of this 

situation can be seen in Figure 3-2 between Model V and Model VI, which share 

hovercraft technology. Model V is retired before Model VI. It would be preferable to 

have common parts with a system that shares an entire production schedule for many of 

the same reasons listed for Scenario #2. Namely, by retiring one product family member 

earlier, some of the benefits of economies-of-scale are lost. Again, there may be 

exception to this rule, but generally, one would prefer Scenario #1 to the situation shown 

here if the choice was possible. 

 

Year 1 Year 2 Year 3 Year 4

Product #2

Product #1

Time

 
Figure 3-5 – Two Generic Products with Staggered Retirements 
 

Scenario #4: Commonality Between Products with Totally Staggered Production 
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In the case shown in Figure 3-8 and Figure 3-7, the production schedules of two 

products with common features overlap but are introduced and retired at different points 

in time. Figure 3-6 shows one variant of this scenario in which the production schedules 

are completely staggered while Figure 3-7 shows a different variant in which one 

product’s lifespan starts earlier and ends later than another member of its product family. 

An example of the former scenario can be seen in Figure 3-2 where the Model IV and 

Model V have staggered production schedules. Either of the variants of this scenario is 

generally preferred less than Scenario #1, but the degree to which that is true depends on 

the example at hand. They are less preferred for all of the reasons cited for Scenarios #2 

and #3, namely the need for more testing and the lost potential savings as a result of 

economies of scale. In addition, both variants involve two disturbances in the 

manufacturing process, whereas Scenarios #2 and #3 involve only one. In this work, it is 

suggested that neither of the two variants should be preferred over the other. 

 

Year 1 Year 2 Year 3 Year 4

Product #1

Product #2

Time

 
Figure 3-6 – Two Generic Products with Completely Staggered Production 
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Year 1 Year 2 Year 3 Year 4

Product #1

Product #2

Time

 
Figure 3-7 – Two Generic Products with Completely Staggered but Overlapping Production 
 

Scenario #5: Commonality Between Products with a Production Gap 

In the case shown in Figure 3-8, two products share common components but 

there is a gap between their production schedules. This is essentially a more extreme 

combination of both Scenario #2 and Scenario #3. The gap in production means that the 

value of commonality between the products might be further eroded by the loss of 

knowledge of the system, by the need to set up or revitalize dormant manufacturing 

facilities, and by the need to replenish supplies and materials that may no longer be on-

hand. Again, the main point to be taken away here is that commonality between products 

in this situation is not as preferable as between products in Scenario #1. 

 

Product #2

Year 1 Year 2 Year 3 Year 4

Product #1

Time

 
Figure 3-8 – Two Generic Products with a Production Gap 
 

The four different types or degrees of beneficial commonality discussed above are 

not differentiated in any existing product family metrics/indices. To be useful in 
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evaluating product families that evolve over time through redesign as discussed in the 

robot example, the ability to differentiate and place values on these types of commonality 

would be beneficial. 

There is one other special aspect of a redesign scenario like the robot example that 

is not captured using existing product family metrics. The basis for the simplest of these 

metrics like Degree of Commonality Index (DComI) (Collier 1981) and Total Constant 

Commonality Index (TCCI) (Wacker and Treleven 1986) is the counting of the number 

of unique components out of the total number of components. Counting these 

components might be useful in a redesign example since each new unique component 

represents a redesign activity that must occur. In product family design, the numbers of 

unique components can be weighted by their cost, the frequency with which they are 

used, or various aspects relating to the difficulty of their manufacturing process as in the 

Product Line Commonality Index (PLCI) (Kota, Sethuraman et al. 2000) and the Percent 

Commonality Index (PCI) (Siddique and Rosen 1998). From a redesign perspective, 

these are all important factors, but there are other factors not included in existing metrics 

that are worth consideration. Aside from the cost of the production of the members of a 

product family that evolves over time, there are overhead and startup costs associated 

with every design change made. These costs –both in terms of man-hours and dollars- 

come about due to the need to design variant or new components, to test those new 

components and the whole new system, and to set up new manufacturing facilities. These 

costs might be small in the case of a variant of a component that is designed using CAD 

and manufactured using a CNC machine but they can be large if the new component, the 

procedure by which it is tested, or the process by which it is manufactured are large, 
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complicated, or expensive. An example of this situation is shown in Figure 3-9 where the 

decision is being made to change the system of locomotion in the robot. The decision-

maker must decide between a proven component that might require less investment to 

develop and test and a component that relies on new, high-performance technology that 

might cost much more to develop.  

 

 
Figure 3-9 – Example of the Role of Difficulty in Redesign 
 

Accounting for the cost or effort involved in redesign is made more complicated 

by two more factors. First, even if the cost of redesigning individual components is small 

compared to the rest of the costs to produce the family of products, the effect of redesign 

cost can be cumulative in a family with a number of generations that emerge over time 

through redesign to meet a variety of changing performance targets. Second, even in a 

situation in which only existing components are being reused in a new design, there is 

some cost to creating this redesign. An example of this is shown in Figure 3-10 where 

two existing systems are being leveraged to create one new system. Even though all the 
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components used in the creation of the newly redesigned system already exist, they have 

not been used together, tested, or manufactured together, meaning that some effort must 

be expended to realize the new system. 

 

 
Figure 3-10 – Example of Module-Swapping to Redesign 
 

Typically, the cumulative cost of the effort involved in redesigning a system to 

create new product family members is not counted in the metrics/indices used to evaluate 

product family designs. The costs associated with module-swapping are also not 

accounted for since all products are assumed to be designed and produced 

simultaneously. All of these factors could have a significant impact on the person making 

decisions as to what parts of a system should be redesigned and in what way to assure the 

ongoing financial success of an evolving family of systems.  

The ideas explored in this section are exploited in the next one to help guide the 

development of two indices: one aimed at gauging the effort involved in redesigning 

existing systems over time to meet new needs and another aimed at encouraging 

commonality where it is most valuable to the designer. 

 

3.2.3 - A Pair of Proposed Indices for Difficulty the Early Stages of Redesign 
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In previous sections, it has been shown that existing metrics/indices for product 

family design fail to account for two important factors in redesign: the varying value of 

commonality depending on the product release schedule and the effort involved in 

making design changes. In this section, it is therefore proposed that some of the ideas 

used in existing metrics/indices be adapted to create two metrics that do account for these 

factors. These metrics are meant to work together to give the designer an indication of the 

relative merit of various redesign plans.  

 

A Weighted Commonality Discount Factor 

 A Commonality Discount Factor (CDF) is proposed which would take into 

account the schedule by which newly redesigned members of the product family will be 

released, manufactured, and retired. The basic idea behind the proposed factor is that, 

ideally, commonality would occur between systems that are designed, tested, 

manufactured, and retired at the same time. This situation would offer all of the savings 

often attributed to product families (Robertson and Ulrich 1998). In its simplest form, the 

factor could be calculated as follows:  

instances of less than ideal commonality
all instances of commonality

CDF = ∑
∑

 [3.1] 

 In order to organize oneself and help recognize instances of commonality, it is 

proposed that the designer construct a schedule like that shown in Figure 3-2 or Figure 

3-11 and then use this schedule to construct a Commonality Opportunity Matrix (COM) 

an example of which is shown in Figure 3-12. In the COM, instances of overlap in 

production are shaded and coded for the type of commonality that exists between the two 

systems, for instance SP to indicate “staggered production” like that shown in Figure 3-4 
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or SR for “staggered retirement” like that shown in Figure 3-5. The four types of 

commonality proposed here are described in detail in Table 3-4 but it should always be 

remembered that these are only one way of defining commonality value differences. Other 

models with greater or lesser amounts of detail can be constructed to suit the problem at 

hand. The inclusion of the amount of overlap between systems might be useful, for 

instance. The remaining spaces are left white to indicate a gap in production between two 

family members.  
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Figure 3-11 – Redesign Schedule 
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Figure 3-12 –Commonality Opportunity Matrix 
 

 Next the designer must consider each redesign variable and how much each type 

of sub-ideal commonality would hurt the value of commonality for that variable. The 

designer must select a value on a scale from 0 to 1.0 where: 

• A value of 0 indicates that regardless of the staggered nature of production or 

the gap in production, the value of commonality between two products with 

the same variable value is the same as if production were started and ended at 

the same time. This might indicate that there are no costs associated with 

starting up manufacturing after a gap in production or that there were no cost 

savings due to simultaneous manufacturing to be lost through staggered 

production.  
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• A value of 1.0 indicates that a gap in production or staggered production 

schedules for two products sharing a common value of the variable in question 

completely negates the value of commonality. Essentially, choosing a 

discount factor of 1.0 means that the production schedule is such that the 

company might as well design a new component from scratch. Some reasons 

why this might occur could be a lack of economies-of-scale savings due to 

commonality or excessive costs associated with setting manufacturing 

facilities back up after a gap in production. 

 Using the discount factors described in Table 3-4, a detailed definition of CDF is 

given as follows: 

( ) ( ) ( ) ( )

( )
1

1

i i i i

n

i SII i SRI i SPI i PGI
i

n

new j
j

SII SRI SPI PGI
CDF

N n

ψ ψ ψ ψ
=

=

 ⋅ + ⋅ + ⋅ + ⋅ 
=

⋅ − Φ

∑

∑
 [3.2] 

where: 

Φj = the number of instances of design changes that result in new values of 

variable i 

SIIi = the number of instances of commonality between products with staggered 

introduction schedules 

SRIi = the number of instances of commonality between products with staggered 

retirement schedules 

SPIi = the number of instances of commonality between products with completely 

staggered production schedules 
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PGIi = the number of instances of commonality between products with gaps 

between their production schedules 

ΨSIIi = the discount associated with instances of commonality between products 

with staggered introduction schedules for variable i 

ΨSRIi = the discount associated with instances of commonality between products 

with staggered retirement schedules for variable i 

ΨSPIi = the discount associated with instances of commonality between products 

with completely staggered production schedules for variable i 

ΨPGIi = the discount associated with instances of commonality between products 

with gaps between their production schedules for variable i 

n = the number of redesign variables used to characterize family members 

Nnew = the number of new systems planned to be added to the family through 

redesign 

CDF  =  commonality discount factor 

and: 

 0 ≤ ΨSIIi ≤ 1.0   

 0 ≤ ΨSRIi ≤ 1.0   

 0 ≤ ΨSPIi ≤ 1.0 

 0 ≤ ΨPGIi ≤ 1.0 

Using this formulation, CDF ranges from a value of 1.0, which would indicate 

that all of the commonality seen is so invaluable as to essentially be as advisable as 

designing all the changed components from scratch to a value of 0, which would indicate 
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that either all of the instances of commonality have the ideal form seen in Figure 3-3 or 

that the discount factors for all the other types of commonality are all 0. 

 

Table 3-4 – Four Different Types of Commonality Discounting Factors 
 Situation Discount Factor Pertinent Question 

1. Staggered 
Introduction Product #1

Product #2

Year 1 Year 2 Year 3 Year 4

Time

 

Staggered Introduction 
Index (SII) 
 
Symbol: ,SII iψ  

For the variable in 
question, how much 
does a staggered 
production schedule hurt 
the value of sharing 
values between two 
products? 

2. Staggered 
Retirement 

Year 1 Year 2 Year 3 Year 4

Product #2

Product #1

Time

 

Staggered Retirement 
Index (SRI)  
 
Symbol: ,SRI iψ  

For the variable in 
question, how much 
does having two 
products retire at 
different times hurt the 
value of sharing values 
between them? 

3. Totally  
Staggered 
Production 

Year 1 Year 2 Year 3 Year 4

Product #1

Product #2

Time

 

Year 1 Year 2 Year 3 Year 4

Product #1

Product #2

Time

 

Staggered Production 
Index (SPI) 
 
Symbol: ,SPI iψ  

For the variable in 
question, how much 
does having two 
products introduced at 
different times and 
retired at different times 
hurt the value of sharing 
values between them? 

4. 
Production 
Gap 

Product #2

Year 1 Year 2 Year 3 Year 4

Product #1

Time

 

Production Gap Index 
(PGI)  
 
Symbol: ,PGI iψ  

For the variable in 
question, how much 
does a gap in the 
production schedule hurt 
the value of sharing 
values between two 
products? 

Note: it is assumed in this table that perfect commonality has no discount, however it could be added as 
a fifth commonality type. The definition of the types of commonality is up to the discretion of the 
designer and will depend on the characteristics of the redesign problem at hand. 
 

 This formulation of CDF would give a decision-maker an indication of the value 

of the commonality in a product family that evolves over time through redesign, taking 
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into account various aspects of the production schedule and even addressing the problem 

of module swapping discussed in Section 3.2.3. On the other hand the proposed 

formulation of CDF does not take into account the length of times associated with 

delays/overlaps, meaning that a small gap is valued identically to a large gap. This is a 

problem which could be addressed by adding a multiplier to each term in the definition of 

CDF. The multiplier could weigh the discount of each instance of sub-ideal commonality 

by the amount of time over which it occurs –either in weeks, months, or years depending 

on the application at hand. 

 

3.2.4 - A Proposed Index for Redesign Effort and Commonality / Non-Commonality 

the Early Stages of Redesign 

For preliminary redesign concept exploration at a high level, it seems most 

appropriate to use as basic an indicator of commonality as possible. Most product family 

commonality indices make use of some variant of Collier’s Degree of Commonality 

Index (Collier 1981), which is based around the concept of maximizing the ratio of 

products in a family to unique components used in the family. Put another way, the goal 

is the minimization of the number of unique parts. The parallel to this concept in redesign 

would be the minimization of the number of design changes or the ratio of number of 

design changes to the total number of design variables needed to characterize the systems 

making up the family. One formulation of this index (RI) on a scale of 0 to 1.0 would be: 
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(# design changes)+1Redesign Index = 
(# new family members)(# variables in system)

(# unique variable values)RI
(# new family members)(# variables in system)

or

=

 [3.3] 

A redesign difficulty index (RDI) can be added to the formulation to represent the 

relative difficulty of making changes in different variables/components/subsystems. The 

RDI would also be on a scale between 0 and 1.0. A RDI value of 0 would indicate that 

changing the variable in question comes with no cost in dollar terms, setup time, etc. One 

example of such a change might be a CNC-machined part based on a parametric CAD 

model that simply would need to be updated. A RDI value of 1.0 would be pegged to the 

design change that, out of all the options available, is expected to be the most difficult, 

costly, and/or time consuming. The rest of the design changes could be pegged according 

to this scale. Using this scale for RDI means that a very simple design change with an 

RDI of 0 would be equivalent to keeping the value common. The more formal 

formulation of RI would now be the following: 

( )
1

n

i i
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new

RDI
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N n
=

⋅Φ
=

⋅

∑
 [3.4] 

where: 

Φi = the number of instances of design changes that result in new values of 

variable i 

n = the number of redesign variables used to characterize family members 

Nnew = the number of new systems planned to be added to the family through 

redesign 

RDi  = redesign difficulty index for the change Φi 
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and: 

 0 ≤ RDIi  ≤ 1.0 

The redesign index, as it is now formulated, would still have a range between 0 

and 1.0. A value of 0 could indicate that either no redesign occurs, meaning all variable 

values are common throughout the family, or that the RDI values for all of the variables 

that are changed in the family are all 0. A value of 1.0 indicates that every 

component/subsystem in the family is redesigned using the most difficult option for each 

new family member, that all of the new products are released share common variable 

values but that the value of commonality is nil as a result of the difficulty of bringing 

back old subsystems, or that some combination of these two scenarios occurs. 

The two redesign indices proposed, CDF and RI, can be used in concert to help 

the decision-maker judge the relative merit of alternative redesign plans. In general, the 

designer will want to maximize both CDF and RI as part of the overall objectives of the 

redesign plan, as shown in Figure 3-13. To help with the interpretation of various values 

of CDF and RI, a summary of possible interpretations of high and low values of the 

respective indices are given in Table 3-5 
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Figure 3-13 – Plot of CDF Versus RI 
 

Table 3-5 – Interpretations of CDF and RI Values 
 Potential Interpretations 

Low RI • Small number of design changes 
• Proposed changes are generally inexpensive/easy 

High RI • Large number of design changes 
• Proposed changes are generally expensive/difficult/intense 

Low CDF 

• All of the products are offered at once 
• Despite a staggered production schedule, significant savings can 

be realized from the types of commonality proposed in the 
redesign plan 

High CDF • The nature of the production schedule makes the commonality 
worthless  

 

It is assumed here that accurate estimations of the actual costs associated with 

redesign decisions are not available for use as an objective in this problem. As Keeney 
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and Raiffa (Keeney and Raiffa 1976; Keeney 2002) note, the only way to make good 

value trade-offs is to use the actual objective in any problem. Lacking the ability to model 

that objective, summary statistics can be used as “means objectives” so long as care is 

taken to make sure that these statistics are consistent with the designer’s real preferences 

and that they should be: 

• Comprehensive, meaning that for a given level of that statistic, the designer 

has a good idea of how well his/her objectives have been achieved; and 

• Measurable, meaning that for each alternative, it is possible to obtain either a 

probability distribution for a given range of the statistic or a point value and 

that the decision-maker’s preferences can be assessed at all possible values of 

the attribute. 

The degree to which the indices proposed here measure up to the standards put 

forth by Keeney and Raiffa depends on the care taken in setting them up and testing 

them. Consistency with the decision-maker’s preferences and comprehensiveness can 

only be checked through testing using examples from whatever problem is at hand. At 

best, obtaining an index that is perfectly comprehensive will be difficult, likely 

impossible. Depending on how high a level from which the design problem is to be 

viewed, the primary objective changes. If a very high level view is taken, the objective is 

the maximization of profit. Thus the objectives of maximizing commonality and 

minimizing redesign effort would be means objectives for the overall objective. The 

metrics proposed would only be indicators for those means objectives. To test how 

accurate they are, the decision maker would have to be able to assess profit, which is two 

levels of abstraction higher than the indices. Still, considering that there is no absolute 
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scale for “commonality” and that the assumption in this research that there is no accurate 

way to estimate the dollar cost of redesign, these indices are the best that can be done. 

 

3.2.5 - Modification of the Proposed Indices for Use in Synthesis 

While the indices proposed in Section 3.2.5 are useful for analysis of redesign 

plans in much the same way as the product family indices discussed in Section 3.2.2, it is 

much harder to make use of them for synthesis. The fact that the indices are based on a 

count of common parts makes them discontinuous, meaning that new redesign plans must 

either be generated by hand or through use of an algorithm capable of handling 

discontinuous objectives. Optimization methods for discontinuous objectives include but 

are not limited to genetic and evolutionary algorithms, simulated annealing, particle 

swarm methods, and simple exhaustive search or grid search. The latter option –a grid or 

exhaustive search- is by far the simplest to implement but requires that the redesign 

variables be evaluated at discrete values, a process that becomes cumbersome as the 

number of variables is increased and the grid is reduced to a level suitable to model 

variables that are in reality allowed to vary continuously. A much wider array of 

optimization and synthesis algorithms are available for continuous objectives and 

variables, so it is beneficial to seek new definitions of the indices that fulfill the same 

roles as those tested in Section 3.2.6 but do so in a manner that results in an objective 

function that is at least piecewise continuous. 

The proposed new form is as follows for CDF: 
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where: 

( )( )comm typemin 1
jk jk−Ψ ⋅∆ = minimum weighted distance between variable i in 

system j and any other system k given the type of commonality 

relationship (perfect, SII, SRI, SPI, or PGI) between systems j and k. 

�jik = the normalized distance between the values of variable j for systems k and l 

ΨSIIjk = the discount associated with instances of commonality between products 

with staggered introduction schedules for variable i 

ΨSRIjk = the discount associated with instances of commonality between products 

with staggered retirement schedules for variable i 

ΨSPIjk = the discount associated with instances of commonality between products 

with completely staggered production schedules for variable i 

ΨPGIjk = the discount associated with instances of commonality between products 

with gaps between their production schedules for variable i 

n = the number of redesign variables used to characterize family members 

Nnew = the number of new systems planned to be added to the family through 

redesign 

CDF  =  commonality discount factor 

and: 

 0 ≤ ΨSIIik ≤ 1.0 

 0 ≤ ΨSRIik ≤ 1.0 

 0 ≤ ΨSPIik ≤ 1.0 

 0 ≤ ΨPGIik ≤ 1.0 
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It should be noted that a value of 0 should never be used for the commonality 

discount in this formulation of CDF, as it will effectively eliminate the variable 

interaction in question from consideration, as explained later in this section. 

The proposed piece-wise continuous form for RI is as follows: 

( )
1 1

min
newNn

i ijk
i j

new

RDI
RI

N n
= =

⋅∆
=

⋅

∑∑
 [3.6] 

where: 

( )min j jklRDI ⋅∆  = the minimum weighted distance between the value of variable 

i for system j and that of any other system k that preceded it  

�ijk = the normalized distance between the values of variable i for systems j and k 

n = the number of redesign variables used to characterize family members 

Nnew = the number of new systems planned to be added to the family through 

redesign 

RDIi  = redesign difficulty index for change in variable i 

and: 

 0 ≤ RDIi  ≤ 1.0 

As a simple graphical check of the formulations of RI and CDF proposed here, 

consider a redesign problem in which there is only one variable to be adjusted, three 

existing systems with distinct values of that variable, and two new systems to be realized 

based on redesign. This problem is summarized in Table 3-6. 
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Table 3-6 – Summary of Simple One-Variable Redesign Problem for Graphical Analysis 

Given: Two existing systems with variable values of 1, 3, and 8 respectively 

Equal commonality discounts between all systems 

Find: X1 and X2, the variable values for two new systems that are to be created 

based on redesigns of the three existing systems 

Minimize The values of RI and CDF for the entire family. 

 

Intuitively, if RI is working correctly, it should provide minimum values 

whenever both of the new designs use the same values as the existing systems. Similarly 

given that all the commonality discounts are set evenly, CDF should be at a minimum 

whenever the two variables each take on a value used in the existing systems. This is in 

fact the result generated if every value of X1 and X2 is plotted for values of each ranging 

between 0 and 10, as shown in Figure 3-14 and Figure 3-18.  

 

 
a.) Isometric View 

 
b.) Overhead View (dark areas are low points) 

Figure 3-14 – CDF Plots for Simple One-Variable Example 
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a.) Isometric View 

 
b.) Overhead View (dark areas are low points)v 

Figure 3-15 – RI Plots for Simple One-Variable Example 
 

 The simple redesign problem with one variable, three existing systems, and two 

new systems is changed slightly as shown in Table 3-7 to have one existing system with a 

value of 7 and to have commonality discounts that favor the following: 

• Commonality between new system #1 and the existing system with a variable 

value of 1; and 

• Commonality between new system #2 and the existing system with a  variable 

value of 8. 

Under these circumstances, it can be expected that some of the minimum values 

for RI and CDF should move from the previous existing system value of 3 to the new 

value of 7 and that as a result of the varying values of the commonality discounts: 

• the slope of CDF in the X1 direction near the variable value for existing 

system #1 will be steeper than elsewhere; and 

• The slope of CDF in the X2 direction approaching the variable value for 

existing system #2 will be steeper than elsewhere. 
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These desirable outcomes are just what can be observed in Figure 3-16 and Figure 

3-17. Again, these plots are based upon assessing the indices for values of X1 and X2 

between 0 and 10 at a refinement of 0.25. 

 
 Finally, in the simple one-variable experiment shown above, it should be noted 

that, as suggested in the development of RI and CDF, they are not continuous functions. 

Rather, each is a piecewise continuous linear function for a portion of the space between 

minima. This fact will come into play later in Chapter 4 when the task of solving for a 

redesign solution based on these indices is tackled. Discontinuities require special 

approaches when algorithms are to be used to search along such objective functions. 

 

Table 3-7 – Summary of Simple Redesign Problem for Graphical Analysis with New Existing 
Systems and Differences in Commonality Discounts 
Given: Two existing systems with X values of 1, 7, and 8 respectively 

Increased value of commonality between new system #1 and the existing 
system with a value of 1.  
Increased value of commonality between new system #2 and the existing 
system with a value of 8. 

Find: X1 and X2, the values of X for two new systems that are to be created 
based on redesigns of the three existing systems 

Minimize The values of RI and CDF for the entire family. 
 

 
a.) Isometric View 

 
b.) Overhead View (dark areas are low points) 

Figure 3-16 – CDF Plots for Simple One-Variable Example with New Existing Systems and Weights 
 



 185 

 
a.) Isometric View 

 
b.) Overhead View (dark areas are low points) 

Figure 3-17 – RI Plots for Simple One-Variable Example with New Existing Systems  
 

 

3.2.6 - A Critical Evaluation of the Proposed Redesign Metrics 

It is pointed out in discussing product family metrics in Section 2.3.4 and Section 

2.4 that none of those reviewed are perfect; their developers all picked and chose the 

types of information to be included, thus building assumptions into the metrics either 

consciously or subconsciously. The same can definitely be said for the two indices 

proposed in this chapter.  

First, it is assumed that the designer is enough of an expert on the system being 

redesigned and the future of the family of systems to be able to fill in all of the weights 

and commonality discounts in the two indices. It is also assumed that he/she has an 

understanding of the influences of those weights upon the resulting redesign portfolios so 

that he/she can set them in a way that accurately reflects his/her preferences. Lastly, the 

indices are assumed to be accurate indicators of redesign effort and commonality value 

respectively. Using these together as the overall goals neglects myriad other factors that 

might concern the designer including manufacturing costs, production volumes, volumes 

of demand in the market for each product, and any uncertainties in the problem. 
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So are these indices good things to use as objectives in a redesign problem? 

Keeney (Keeney 2002) suggests that the only way to make good value trade-offs is to 

deal directly with the fundamental objectives in the problem. Clear measures of the 

degree of achievement of fundamental objectives are needed in order for this to work. At 

the very least –he suggests- it is necessary to find means objectives that are consistent 

with your preferences. He uses the trade-off between reducing the costs associated with 

reducing air pollution and minimizing the health effects of air pollution. In studies, it is 

common to see objectives like reduction of concentrations of pollution in the air, but 

these don’t really measure what we care about: the effect of those concentrations on 

people. Anything else besides the fundamental objectives is a means objective or is at 

best an indicator of a fundamental objective. 

An alternative they suggest are proxy attributes which indirectly indicate the 

degree to which a fundamental objective has been satisfied. Such an attribute is useful 

when the fundamental objectives are not numerical or cannot be measured. As the 

Keeney and Raiffa (Keeney and Raiffa 1976) point out, the downside of using proxy 

attributes is that it forces the decision-maker to process more information internally than 

if he/she could use fundamental attributes.  

“Essentially, the introduction of proxy attributes requires that some of the 

modeling of the system be done in the decision maker’s head. This is what 

we would often like to avoid, because there is too much information in 

complex problems to handle effectively this way. However, when it is 

unavoidable, careful thinking may permit the decision maker to express a 

useful set of relationships between proxy attributes and the original 
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objectives. It is probably safe to say that, in general, when a smaller part 

of the model must be implicitly considered by the decision maker, the 

quantified preferences more accurately reflect his true preferences for the 

basic objectives.”  -Keeney and Raiffa 

As mentioned earlier, Keeney and Raiffa (Keeney and Raiffa 1976) suggest that 

in order to be useful to a decision-maker in a complex problem, an attribute must be both 

comprehensive and measurable. Comprehensiveness refers to the degree to which the 

attribute yields the information needed while measurability refers to whether it is possible 

to calculate the data needed to use the attribute. 

In the end, the goal of including these indices is to achieve results that are closer 

to those that the designer really would prefer, so the only thing that matters is that his/her 

preferences are modeled as well as possible. A conscious decision has been made here to 

make the indices developed as simple as possible. Just as the example used in Section 

3.2.2 is simple, the idea behind these indices is that they should be relatively simple and 

easy to compute. One of the common criticisms of the existing metrics and indices for 

product family design is that many of them require huge amounts of input information 

and are too complicated even for an expert designer to evaluate and understand. To be 

sure, a more complex model of value could be used and the designer’s preferences 

assessed with respect to that model. Rather than build a complex model of value, it has 

been proposed here that a simple model be built around these two indices and their 

included biases. At their core, both indices are meant to increase commonality but also to 

push commonality in certain places for various reasons. 
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This push towards commonality begs the question of whether or not commonality 

is truly the outcome towards which the designer should be pushing. Indeed, some of the 

product family metrics are criticized in Section 2.3.4 and Section 2.4 for valuing all 

commonality equally. Here commonality is sought for a variety of reasons. It has 

strategic benefits in addition to cost-savings in that it can: (McDermott and Stock 1994) 

• Help to reduce the time needed for design –a particularly important factor in the 

technologically sensitive automobile, telecommunications, and aircraft industries; 

and 

• Result in time and cost savings in manufacturing as fewer parts are kept in 

inventory, setup times are reduced, and the production line needs to be shut down 

less often to switch parts;  

• Enhance product quality, as new products depend more upon proven platforms 

and less upon newly designed components that have to be tested and for which 

new manufacturing processes might be needed; and 

• Reduce time-to-market as design cycle times become shorter. 

Robertson and Ulrich point out that a company can release new, more highly-customized 

products in a more efficient manner using product platforms (Robertson and Ulrich 

1998). Wheelwright and Clark point out that the firm that is better able to bring their 

products to market quickly is the firm that is more likely to survive (Wheelwright and 

Clark 1992). In the redesign context, commonality in product platforms takes on a special 

context because every instance of reuse of existing systems represents sunken resources 

that continue to pay dividends. Still, in the end, both of the indices proposed here are 

built upon the assumption that commonality in certain areas is an indicator of future 
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economic viability, and a proxy objective that serves as an indicator that pleases the 

designer.   

To be sure, the indices presented here do not meet the needs of Keeney. They are 

proxy attributes at best, but as they are just intended for conceptual redesign and for 

finding satisficing solutions, it is felt that they provide sufficient for the needs of a 

designer interested in scoping out potential solutions, not identifying the final best design. 

3.3 - ADAPTATION OF THE PRODUCT PLATFORM CONSTRUCTAL THEORY 

METHOD TO SEQUENTIAL STRATEGIC REDESIGN 

In order to make the Product Platform Constructal Theory method useful in 

sequential strategic redesign, a number of arguments need to be made and some 

abstractions drawn so that the gaps in PPCTM identified in Section 2.3.3 can be filled. 

Specifically, the five gaps being addressed in this section are:  

1. The lack of consideration of existing systems in creating product family designs; 

2. The focus on designing a continuous range of products for a market space instead 

of meeting the specific needs of customers with discrete demands for a certain 

number of products over time; 

3. The assumption that there is a level of performance change that a customer cannot 

discern; 

4. The assumption that geometric proximity between two systems in a market space 

implies that commonality between those two particular systems is preferable; and 

5. The failure to consider commonality at levels of detail smaller than the modes of 

managing product variety.  
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The way in which each of these five gaps is addressed is the subject of this section 

of the chapter. There is not a direct one-to-one correspondence between the changes 

made to PPCTM and the gaps that are being filled because some changes affect more 

than one gap while some changes necessitate further important changes. Two important 

additions to PPCTM are the dual goals of minimizing RI and CDF, which are described 

in detail in Section 3.2. The addition of these goals and their inclusion in a new 

compromise DSP formulation of PPCTM go a long way towards addressing gaps 3, 4 and 

5 above. The way in which this change is carried out is explained in Section 3.3.1. 

Meanwhile, the rest of the first three gaps are handled by making the conscious decision 

to abstract the mass customization problem for which PPCTM is intended to the redesign 

problem at hand, modeling new features and interpreting existing features in new ways. 

This is the subject of the discussion in Section 3.3.2. The resulting redesign decision 

support method is explained in full in Section 3.4, but as a preview, PPCTM is shown 

alongside the proposed redesign decision support method in Figure 3-18 to give an 

impression of how pieces of the original method are reused and what new material is to 

be presented here. 
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Figure 3-18 – Parallels Between PPCTM and Proposed Method 
 

 

3.3.1 - Accommodation of Multiple Discrete Redesign Targets and Strategic 

Redesign Goals Using a Compromise Decision Support Problem in the Product 

Platform Constructal Theory Method 

The Product Platform Constructal Theory Method (PPCTM) is intended to help 

designers identify efficient plans for mass customizing products to meet a continuous 

distribution of demand throughout a defined market space. Based on this goal, the task of 

the designer faces in determining the shapes and sizes of space elements is to do so in 

such a way that the most stringent demands in the resulting space are met by a product 

design that maximizes the value of the rest of the designs in the space. The common 

values in the space are determined based on the most stringent demands while the value 
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is determined based upon a continuous model of demand and cost/benefit for the whole 

market.  In framing the sequential strategic redesign problem, it has been envisioned that 

a designer will be given certain redesign targets and a known schedule whereby the new 

systems should be released. With discrete redesign targets and no knowledge of volumes 

of demand, it makes little sense to use PPCTM in its current state for redesign For this 

reason, a new type of baseline decision for this constructal-inspired method must be 

identified. 

Based on the problem description in Section 1.1, the decisions the designer must 

make in fully describing each space element of a constructal-inspired redesign approach 

can be identified. These goals, which would be the same for every space element at every 

stage of a constructal-inspired approach, would be: 

• Satisfy the redesign goals (targets values for responses of interest) of the 

individual new systems; 

• Minimize the amount of redesign effort that will be needed to create the 

new systems based on the features of earlier systems; and 

• Maximize the value of the sharing of components between systems based 

on the proposed production schedule. 

As is discussed in Section 2.4, the multi-objective compromise Decision Support 

Problem (cDSP) has been chosen as the construct to guide this baseline decision because 

of its flexibility, generality, and proven track record in design problems of all sorts. Later 

versions of PPCTM, most notably that developed by Williams and coauthors (Williams 

2003; Williams, Allen et al. 2004; Williams, Rosen et al. 2004), have made use of a 

utility-based CDSP (u-cDSP) as the base for decisions in each space element. This is the 
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version of PPCTM most closely related to that which is proposed here, but it is still 

fundamentally different. The new cDSP-based version for redesign is presented in Table 

3-8. Key differences that should be noted appear in the variables to be found, the goals, 

and the deviation function that results from those goals.  

Unlike in PPCTM, it is necessary to identify the redesigned systems’ variables as 

a part of the decision-making process. Previously, the decision-maker needed only 

identify the space element size at each stage and then derive the system variables from 

there. Thus in the redesign process, at each stage, the space element size must be 

determined and at the same time, a set of the stage’s redesign variables must be found for 

each new system in that element. 

The goals at each stage are the same and are made up of goals for each individual 

redesigned system as well as overall goals for the redesign process. The individual 

system redesign goals represent the changes in performance that are desired. These 

changes are modeled as targets using the compromise Decision Support Problem, so the 

goal for each changing performance measure is to minimize the deviation from those 

targets. The goals for the overall redesign process are represented using the Redesign 

Index (RI) and Commonality Discount Function (CDF) which are meant to subjectively 

measure the redesign effort and commonality value respectively. At any stage, the 

designer’s goal is to minimize both RI and CDF towards their ideal (but impossible) 

value of zero. 
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Table 3-8 – Basic Redesign Decision at Any Stage i 
For each stage i 

Given: • The = Msysgoal-dimensional market space M Msysgoal = {(a1,a2,…aMsysgoal)} 
where ai is a system attribute that is expected to change over time through 
redesign 

• The decision variables of the previous stages (1), (2), , ( 1)a a a i∆ ∆ ∆ −…  
and { } { } { }1 2 1

, , ,
i

X X X
−

…  

• The existing systems { } { }1 2
, , ,

Nexex ex ex exX X X X= … ,where 

,1 ,2 ,
, , ,

j j j j nex ex ex exX X X X= …  and 1, exj N= …   

• The modes of managing product change to be utilized at Stage i,{ }i
X  

where { } { }i new
X X⊆   

Find:  The value of decision variables  

• [ ]1 2( ) ( ), ( ), , ( )Nx i r i r i r i= ∆ ∆ ∆…  to determine sizes of space elements; and  

• 
{ } { }, ,1 , ,2 , ,,

, , ,
ii k i k i k ni k

X X X X= …
 for each space element k where ni is the 

number of redesign variables used in construct i at stage i. 
The deviation variables and b bd d− + , for all Mtot goals 

Satisfy: Bounds: • Variable bounds, i.e. 
min max1 , ,1 1i kX X X≤ ≤  

• Space element sizes 0 ( )l la i a≤ ∆ ≤ ,where l is the number 
of dimensions of variety provided by construct i 

• , 0b bd d− + ≥  for b = 1,…Mtot 
• 0b bd d− +× =  for b = 1,…Mtot 

 Constraints: • ( ) ( 1)l la i a i∆ ≥ ∆ −  
 Goals: • ( ) 1b

b b
b

A x d dG
− ++ − =  for achievement of each of the 

Msysgoal targets for each of the Nnew new systems 
• ( ) 0RI RI RIA x d d− ++ − =  for RI 
• ( ) 0CDF CDF CDFA x d d− ++ − =  for CDF 

Minimize: 
( )

( )

( )
1

1
where  1.0

new sysgoal

new sysgoal

N M

RI RI CDF CDF b b b
b

N M

RI CDF b
b

Z w d w d w d d

w w w

×
+ + − +

=

×

=

= ⋅ + ⋅ +

+ + =

∑

∑
 

Note: Formulation of target-matching goal depends on whether target is being approached from above or 
below. Formulation shown is for approach from below. See (Mistree, Hughes et al. 1993) for a full 
description of all formulations 
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 The objective function that results from these goals is shown at the bottom of 

Table 3-8. An Archimedean or weighted sum form is used forth this objective function, 

but there is no reason why another function with a preemptive form or a different rule 

regarding the sum total of the weights cannot be used. In using the Archimedean form, 

the designer must decide which weights best express his/her preferences towards the 

goals present. However, these weights have no absolute meaning, so the designer must be 

sure to closely inspect the results obtained. Iterating by reusing this decision support 

method with slightly different weights may result in a redesign solution with significantly 

different characteristics. For this reason, the designer must assign the weights carefully, 

but with full recognition of the fact that the results produced may not be what he/she 

originally intended. 

 

3.3.2 - Abstraction of Concepts in the Product Platform Constructal Theory Method 

to the Redesign of Engineering Systems 

There are two key elements of PPCTM that do not translate directly from it and 

the mass customization examples for which it is intended to the constructal-inspired 

redesign method proposed here. In applying PPCTM, it is critically important that the 

designer understand the role of these elements and that he/she describe them accurately. 

The way in which each of these is abstracted to a sequential strategic redesign application 

is described in this section. 

The first concept that must be abstracted from PPCTM is the mode of managing 

product or process variety. In previous applications, a mode of managing variety can be 

viewed from one of two perspectives either as a way of achieving change in a 
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product/process or as a way of handling commonality across a selected piece of the 

market. In the approach proposed here, the definition of these modes of offering system 

change are not treated any differently but the criteria for selecting the modes may 

change. More specifically, the list of modes of offering system change may differ from 

the modes of managing product variety that the same designer would identify for original 

design in that those modes for redesign will be: 

• Smaller in number, as a result of a desire to leverage certain aspects of 

existing systems or because of increased insight into the relationship between 

the performance characteristics of the system and the original design 

variables; or 

• Made up of some groups of original design variables which together control a 

function or particular performance characteristic of the system. 

For these reasons, even a designer familiar with the design processes that created 

the present existing systems must take care in identifying the modes of offering system 

change. Although it is suggested above that the list of modes for redesign will likely be 

shorter than the list of modes available in original design, there may be some new modes 

not previously recognized that are now open for change as a result of better 

understanding of a system’s characteristics.  

The implementation of these modes across space elements must also be abstracted 

to translate the capabilities of the PPCTM for designing a continuous range of products to 

the capability to create a certain number of new systems with discrete performance 

characteristics through redesign. In PPCTM, it is assumed that there is a level of each 

performance measure below which the customer cannot or chooses not to differentiate 
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between systems. The practical impact is that customers whose exact demands fall in the 

smallest space element possible are assumed to be satisfied with any performance levels 

that also reside in that element. In designing mass customized systems using PPCTM, it 

is generally assumed that it is safe to over-engineer in choosing the redesign variables at 

each stage so that the resulting product in each space element is acceptable to those with 

less stringent demands. In redesigning to create systems with certain performance 

characteristics instead of a continuous range of products, it makes less sense to assume 

that the customer will be satisfied with any performance “close” to what they asked for. 

Given that they expressed certain demands, it makes sense to only design towards those 

demands. The way in which this situation is accommodated in the method proposed in 

this dissertation is to remove the assumptions in the smallest space elements, place all 

variables into the modes that are applied at each stage and structure decisions at every 

stage as a compromise Decision Support Problem in which achievement of redesign goals 

is part of the objective. 

The market space is the second element of PPCTM that deserves some translation 

to the present redesign application. Recall the definition of market space given in Section 

1.1.4: A market space is the range of system performance values over which a family of 

related systems is expected to vary through redesign over time. 

This definition differs significantly from that which is used in PPCTM. In that 

method, the market space or space of customization is a pre-defined aspect of the mass 

customization design problem as a piece of the market over which a demand distribution 

is known. In the type of sequential strategic redesign problem envisioned here, there is no 

known demand distribution, nor is there demand for systems outside of the discrete 
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redesign targets given, so the market space is not defined up front. Instead, it is proposed 

here that the market space for redesign be derived based on other known aspects of the 

problem, namely the existing system’s performance characteristics and the nominal 

redesign targets that have been set. These values can be plotted in a Msysgoal-dimensional 

space, where Msysgoal is the number of dimensions of change desired to be seen in the 

newly redesigned systems. This process is shown in Figure 3-19. Having done this, it is 

suggested that the designer identify an appropriate buffer space around the most extreme 

values of the existing system and nominal new systems’ performance points. These 

buffer zones are proposed for two reasons. First, by adding a buffer, design targets will 

not lie right at the border of the market space. During the solution process, such a 

situation could confuse algorithms that seek to keep solutions away from constraints but 

close as possible to nominal target values. Second, the buffer zone provides the designer 

with the opportunity to consider redesign compromise solutions that lie on either side of 

the nominal target values, not simply the side that lies closest to the rest of the systems in 

the family. The amount of buffer added to the market space is determined at the 

discretion of the expert designer who is assumed to be carrying out the redesign process. 
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a.) A redesign problem with two existing systems and three new systems 

 
b.) A potential buffer zone for the redesign problem at hand 

Figure 3-19 – Buffer Zone for Market Space Explained 
 

 It is difficult to explain point-by-point all the changes that need to be made to the 

PPCTM to create a method suitable to redesign, as many of the changes are interrelated, 

depending upon one another to create the desired impact. Once these changes are made, 

however, a whole new approach to sequential strategic redesign emerges. As is discussed 
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at the outset of this section, the goal in making these changes and abstractions is to 

address the five key gaps in PPCTM when compared the requirements of a sequential 

strategic redesign problem. The key modifications and abstractions discussed here in 

Section 3.3 and earlier in Section 3.2 are as follows: 

• Use of the Redesign Index (RI) and Commonality Discount Factor (CDF) 

which roughly model the effort required to create all of the new redesigned 

systems and the value of the common items shared between them while at the 

same time providing objective functions to drive commonality at a level 

PPCTM is not capable of; 

• Incorporation of a multi-objective compromise Decision Support Problem 

formulation for the redesign decision at each stage of the constructal-inspired 

approach, which allows the designer to balance out overall goals such as the 

minimization of RI and CDF while at the same time considering the specific 

design goals of each new system;  

• Abstraction of the concept of modes of managing product/process variety 

PPCTM to make them reflect the needs of a designer engaged in a redesign 

project who wants to apply modes of change in a system; and  

• Abstraction of the purpose and process whereby the market space is defined 

so that specific redesign targets can be addressed as a part of a compromise 

solution that may involve underachievement or overachievement of target 

values. 
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3.4 - A CONSTRUCTAL-INSPIRED REDESIGN DECISION SUPPORT METHOD 

The gaps in the Product Platform Constructal Theory Method from the 

perspective of one who needs to solve a sequential strategic design problem are addressed 

in the preceding three sections of this chapter. Having developed new indices for redesign 

that can serve as overall objectives, modified the basic decision-making structure at each 

stage of the process, and abstracted the basic elements of the PPTCM, what is left is an 

almost entirely new approach to redesign. This approach allows a designer to synthesize 

redesign options while exploring commonality in what is best termed a constructal-

inspired manner. Where the constructal-inspired approach fails to find good solutions or 

fosters only a limited amount of commonality, the redesign indices pick up the slack, 

permitting a designer to identify opportunities for reuse even when the existing systems 

are very different from one another. Having taken apart PPCTM, revised key elements of 

it, and abstracted the remaining pieces to apply them to redesign, a new eight-step 

process is developed as shown in Figure 3-20. The steps of this process and the way in 

which a designer would carry them out are explained in this section of the chapter. 
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Figure 3-20 – Flowchart of Proposed Constructal-Inspired Redesign Method  
 
3.4.1 - Step 1 – Definition of the Redesign Problem 

The first step in the constructal-inspired redesign decision support method is the 

definition of the background elements of the problem. The designer must identify the 

existing systems that are candidates for leveraging in the new designs. The existing 

systems must be described in detail and mathematical models that relate physical 

parameters of those systems to their performance must either be obtained or created. It is 
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assumed that any system models obtained are valid beyond the performance range of the 

existing systems, so that they can be used to model newly redesigned systems as well. 

Next, the number of new systems must be chosen. Redesign targets must be 

identified based on an assessment of how the market is expected to expand in the 

foreseeable future. It is assumed that the designer only includes those redesign targets and 

new systems for which he/she has a solid understanding of its performance demands and 

desired release schedule. For each new system, the designer must pick measures of the 

changed performance desired and set ideal target values G(x). The number Msysgoal of 

performance attributes in which change is desired will be utilized later in Step 5 to 

determine the number of dimensions in the market space while the target values will be 

used in Step 2 to create the objective functions. 

Having identified the redesign targets and the number of new systems to be 

produced, the designer must lay out the schedule by which systems will be released and 

retired. This schedule can then be used to create a Commonality Opportunity Matrix (See 

Section 3.2.3) in which the designer identifies the types of commonality present between 

the systems in the family. This process is explained graphically in Figure 3-21. 
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Figure 3-21 – Creation of the Commonality Opportunity Matrix 
 

Finally, the designer must consider whether any further objectives are needed in 

the redesign problem. It is assumed here that the designer will always want to minimize 

the amount of effort involved in the redesign scenario being developed and maximize the 

value of commonality present between systems. For this reason, minimization of both the 

Redesign Index (RI) and Commonality Discount Function (CDF) are assumed to be 

overall objectives. Other objectives that might be considered at a high level like the 
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minimization of RI and CDF could include family-wide goals such as similarity of shape 

or size, minimization of variance in power requirements. 

 

3.4.2 - Step 2 – Formulate Objective Functions 

Having gathered all the information discussed in the first step, the next one 

involves the formulation of objective functions based on the targets and overall 

objectives.  As discussed in Section 3.3.1, the redesign decision at each stage of the 

constructal-inspired approach has been reformulated as a compromise Decision Support 

Problem (cDSP). In the cDSP formulation, the designer’s preferences are expressed 

through target values Gi(x) for each objective i and weights wi that are meant to model the 

relative importance of each objective. The overall objective function in the Archimedean 

form of the cDSP is a weighted sum of the deviation variables di
+ and di

-, which represent 

the amount by which each target value is over or under achieved, respectively. The 

resulting objective function is as follows: 

( )
1

totM

i i i
i

Z w d d− +

=

= +∑  [3.7] 

where Mtot is the total number of redesign targets and overall objectives in the redesign 

problem and the deviation variables di
+ and di

- are found by calculating the achievement 

of each design plan with respect to each goal. The way in which this achievement is 

calculated depends upon the type of goal –be it minimization, maximization, or target 

matching- as well as the target value for that goal. According to Mistree, Hughes, and 

Bras, (Mistree, Hughes et al. 1993) there are three basic ways of calculating the deviation 

variables based on the achievement value Ai(x) and the target Gi(x): 
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• If the goal is to be maximized towards some ideal value Gi(x), then the form 

is: 

( )i i i iA x d d G− ++ − =  [3.8] 

Or, when normalized, it can be formulated as: 

( ) 1i
i i

i

A x d dG
− ++ − =  [3.9] 

In either case, in this form, it is id −  that should be minimized and included in 

the overall objective function. 

• If the goal is to be minimized towards some ideal value Gi(x), then the form is: 

( )i i i iG d d A x− ++ − =  [3.10] 

Or, when normalized, it can be formulated as: 

1( )
i

i i
i

G d dA x
− ++ − =  [3.11] 

In either case, in this form, it is id −  that should be minimized and included in 

the overall objective function unless the target value is zero, in which case the 

achievement should be normalized by the maximum possible value of that 

performance measure as follows 

max

( ) 0( )
i

i i
i

A x d dA x
− +  + − = 

 
 [3.12] 

And the goal should be to minimize id + . 

• If the goal is to get as close as possible to some target value Gi(x) and it is to 

be approached from below, the objective can be formulated like the 

maximization goal discussed above. 
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• If the goal is to get as close as possible to some target value Gi(x) and it is to 

be approached from above, the objective can be formulated like the 

minimization goal discussed above. 

• If the goal is to get as close as possible to some target value of zero, then the 

objective can be formulated like the minimization objective above, but the 

sum of the deviation variables ( )i id d− ++  that should be minimized. 

Redesign targets for each response of the newly redesigned systems can be 

modeled as target-matching objectives while the overall goals of minimizing CDF and RI 

can be formulated as objectives that should be minimized towards zero. Other overall 

goals may be formulated differently. If the only overall goals are to minimize CDF and 

RI, then the objective function has the following form: 

( )
( )

( )
1

1
where  1.0

new sysgoal

new sysgoal

N M

RI RI CDF CDF b b b
b

N M

RI CDF b
b

Z w d w d w d d

w w w

×
+ + − +

=

×

=

= ⋅ + ⋅ +

+ + =

∑

∑
 [3.13] 

The Archimedean weighted sum form of the objective function which is discussed 

here is just one of several different ways in which a design problem has been formulated 

using a cDSP. Alternatives include the preemptive or lexicographic formulation (Mistree, 

Smith et al. 1993) as well as forms that describe problems using fuzzy information 

(Allen, Krishnamachari et al. 1992; Vadde, Krishnamachari et al. 1993) or utility theory 

(Seepersad 2001). The preemptive form allows a designer to group objectives and rank 

those groups hierarchically so that lower-level goals are only pursued so long as they do 

not require a drop-off in the achievement of higher-level goals. The preemptive form is 

not used here because the designer would have to choose certain levels of achievement 
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for the top-level goals beyond which he/she did not require further improvement. Such 

target levels would be hard to set for CDF or RI as their values have no absolute 

meaning. Similarly, it might be hard to anticipate what levels of achievement of the many 

redesign targets are even possible. The Archimedean form provides a much simpler way 

of formulating the problem. The fuzzy and utility-based formulations are not used here 

because their usefulness is rooted in problems fraught with quantifiable uncertainty. To 

be sure, the redesign problems described here do involve uncertainty, however to 

simplify the problem, it is assumed that all information is certain.  

 

3.4.3 - Step 3 – Identify and Describe Redesign Options 

The designer’s goal in step 3 is to identify and describe the modes of offering 

system change that will be applied using the constructal-inspired approach. These modes 

are ways in which the existing systems may be changed in order to realize the redesign 

targets set for the new systems. In order to identify the modes, the designer may want to 

consult any available information about the original design of the existing systems in 

order to sort out the most promising changes. In considering these changes for inclusion 

in the redesign decision-making process, it may be useful to consider the ramifications of 

each change, both impacts from the change itself like the need to test a newly redesigned 

component and from the ripple effects of a change. The ramifications in the latter 

category might include other small design changes that will have to be made to 

accommodate a mode or incompatibilities between modes being considered. The designer 

may also want to consider the mathematical models of system performance that he/she 

has to make sure that proposed changes can actually be modeled accurately. 
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The modes can be thought of as ways of changing the existing systems to realize 

new performance characteristics, but they also may be thought of as ways of extending 

the usefulness of the capital that has been sunk into the existing systems. That is, if a 

mode is kept the same as in the existing system or systems, could the new systems be 

designed around that mode? Using this way of thinking, modes would take on a 

definition closer to that which is used in PPCTM. The question the designer would want 

to ask him or herself in this case is “how much of the market could this mode cover with 

a set value?” 

Having identified the modes, the designer must assign redesign difficulties and 

commonality discounts to each value. The redesign difficulties are assumed to be 

constant for all members of the family of systems, but the commonality discounts may 

vary depending upon the type of overlap present between the systems in the family. The 

designer may want to consult the Production Schedule (Figure 3-11) and the 

Commonality Opportunity Matrix (Figure 3-12) for help in assigning these values.  

 

3.4.4 - Step 4 – Identify Number of Stages, Narrow Redesign Options, Create 

Groups and Hierarchically Rank Them 

The fourth step may at first seem unimportant, but it plays a crucial role in 

determining the usefulness of the constructal-inspired approach. In this step, the designer 

must decide when and in what order each of the modes will be used to reach each of the 

new systems in the market space. There may be as many stages to the constructal-

inspired approach as there are modes identified in Step 3. If there are fewer stages than 

modes, the modes must be grouped together at times to form a construct.  
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In general, the guidelines for grouping and ranking the modes into constructs 

hierarchically are as purposefully vague as they are for PPCTM for the simple reason that 

it may not be immediately clear to the designer how this should happen. No systematic 

method for making the groups or ranking them exists at this point, but in general it is 

suggested that the modes that offer the smallest change and most change per unit cost be 

ranked at the bottom in the early stages. Meanwhile, the modes that offer large change or 

that incur high costs when they are varied are grouped and ranked at the top for use in the 

later stages of a constructal-inspired method (Hernandez 2001; Williams 2003). 

Hernandez and coauthors (Hernandez 2003) also suggest that the designer create these 

groupings and rank them to the best of his/her ability, solve the problem, and then inspect 

the most promising arrangements of space elements. The authors also opine that if two 

stages’ space elements are the same size, it is likely that the higher stage is restricting the 

lower stage and that the problem should be re-solved with the stages flipped. This advice 

is likely just as useful for constructal-inspired redesign. 

 

3.4.5 - Step 5 – Define Boundaries of Market Space 

In this step, the market space that is to be addressed in a constructal-inspired 

manner is given its boundaries. Whereas in PPCTM, the market space is pre-defined as a 

given value, in this approach it is derived based upon the inputs from the first four steps. 

As discussed in Section 3.3.2 -, the size and shape of the market is defined by a designer 

based upon the locations of existing systems, the nominal locations of the redesign 

targets, and his/her preferences towards achievement of those targets. The market space 
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should contain all the existing systems as well as the nominal performance targets, but it 

should also include a buffer zone of the designer’s choosing. 

 

3.4.6 - Step 6 – Formulate the Multistage Problem 

With the market defined, the objectives determined, and the modes described, 

ranked, and grouped if needed, the multistage problem can be formulated. One of the 

primary differences between the constructal-inspired redesign decision support method 

proposed here and previous work on constructal-inspired design methods for mass-

customized families lies in this step. In it, the designer must describe the decisions that 

must be made at each stage of the constructal-inspired process. The basic form that these 

decisions take is shown earlier in Table 3-8. At each stage, the basic decisions that the 

designer must make are: 

1. How large that stage’s space elements should be in each direction, or put another 

way, how many space elements should the market be divided up into at each 

stage; and 

2. What the values of the modes of offering system change should be in each space 

element at that stage. 

These issues remain the focus of each stage’s decision-making process however 

the basic form discussed previously does not take into account two special situations in 

dealing with the presence of existing systems and potentially large numbers of space 

elements in a solution. Each of these situations is discussed in turn below and is shown in 

mathematical form in Table 3-9. 
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First, because of the reformulation of the baseline decision at any stage and in any 

space element, there can only be one solution –one value for the mode of offering product 

change- in each element. As one of the goals of this redesign process is to explore 

commonality, it is assumed that the existing system is unchanged, meaning that wherever 

it sits in the market space, it restricts the variable values of solutions that share space 

elements, as shown in Figure 3-22. Therefore, the constraints in the basic cDSP decision 

formulation for each stage must be modified as shown in Table 3-9 to force any space 

element that contains an existing system to take on that system’s variable values for the 

modes applied at that stage.  

  
a.) A Possible Arrangement of Space Elements for 
Problem with One Existing System 

b.) Resulting Sharing of Features of Existing 
System Throughout Space Elements 

Figure 3-22 – Explanation of Role of Existing Systems in Constraining Modes in Space Elements 
 

Second, to simplify the solution to the redesign problem, it is assumed in this 

dissertation that –as in early applications of constructal theory- all space elements equally 

divide the space in which they reside. It is also assumed that no space element at any 

stage i is smaller than those at stage (i – 1). Because existing systems and redesign targets 
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may be spaced out unevenly throughout the redesign market space as shown in Figure 

3-23, it may be necessary to have space elements made up of more divisions of the 

market space in each direction than there are redesign targets. In such a situation, not all 

space elements created are needed, nor should they necessarily be used. Instead, it must 

be decided which elements will contain a solution and which redesign target that solution 

is serving. The other alternative is that each space element could be left as in Table 3-8, 

in which case every decision in every element would be attempting to maximize its 

contribution to the objective function. A problem would arise, however, if one of the 

redesign targets was harder to achieve than others. In that case, there might be a number 

of solutions produced for each easy target but none for the most difficult. The other 

practical problem with this approach is that it could make the redesign problem 

enormously large. In the example portrayed in Figure 3-23, for instance, the total number 

of redesign variables present would increase sevenfold as all fourteen open elements are 

considered. 
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Table 3-9 – Basic Redesign Decision at Any Stage in the Multistage Process 

For each stage i 
Given: • The Msysgoal-dimensional market space M Msysgoal = {(a1,a2,…aMsysgoal)} 

where ai is a system attribute that is expected to change over time through 
redesign 

• The decision variables of the previous stages (1), (2), , ( 1)a a a i∆ ∆ ∆ −…  
and { } { } { }1 2 1

, , ,
i

X X X
−

…  

• The existing systems { } { }1 2
, , ,

Nexex ex ex exX X X X= … ,where 

,1 ,2 ,
, , ,

j j j j nex ex ex exX X X X= …  and 1, exj N= …   

• The modes of managing product change to be utilized at Stage i,{ }i
X  

where { } { }i new
X X⊆   
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• [ ]1 2( ) ( ), ( ), , ( )Nx i r i r i r i= ∆ ∆ ∆…  to determine sizes of space elements; and  

• { } { }, ,1 , ,2 , ,,
, , ,

ii k i k i k ni k
X X X X= …  for each space element k where ni is the 

number of redesign variables used in construct i at stage i. 
The deviation variables and b bd d− + , for all Mtot goals 

Satisfy: Bounds: • Variable bounds, i.e. 
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Note: Formulation of target-matching goal depends on whether target is being approached from above or below. 
Formulation shown is for approach from below. See (Mistree, Hughes et al. 1993) for a full description of all 
formulations 
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Figure 3-23 – Rationale for Deciding Element Will or Will Not Contain Solution 

 

3.4.7 - Step 7 – Solve the Multistage Problem 

The next to last step of the approach requires the designer to solve the multi-stage 

problem. A strict interpretation of Constructal Theory would guide a designer to proceed 

through the stages of the problem, starting by solving the cDSP’s for the first stage and 

working upward to larger space elements and more important modes. In early work with 

PPCTM, however, it has been shown that this approach can lead to highly unfavorable 

solutions, as the designer is forced to nail down less important facets of the family before 

getting to the more important and widely used ones (Hernandez 2001). To address this 

problem, previous researchers have relied on dynamic programming (Hernandez 2001), 

or on collapsing the problem into one big cDSP that can be solved using exhaustive 
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search (Williams, Allen et al. 2004; Williams, Allen et al. 2005) or even genetic 

algorithms and simulated annealing (Kulkarni, Allen et al. 2005) to determine space 

element sizes.  

The sequential strategic redesign problem is made more complicated by three 

factors. First, the presence of specific redesign targets makes it impossible to assume that 

the size of a space element implies a certain type of system performance. To compensate 

for this, the modes must be handled explicitly as variables in addition to the space 

element size variables. Second, the assumptions that all space elements divide the space 

evenly and nest inside one another –while making the problem easier to understand- 

creates a set of space elements that are discrete. Third, because not all space elements 

will contain a solution, the decision as to which elements will be used must be tackled, 

creating a type of assignment problem, but not a simple one. 

With a constructal-inspired approach, numerous objectives, both continuous and 

discrete variables, and targets that need to be assigned, the approaches to solving the 

mass customization problem in PPCTM would either fail outright, would take incredible 

amounts of time to complete, or become quite labor intensive. Instead what is proposed is 

a mixed approach as shown in Figure 3-24.  
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Figure 3-24 – Flowchart of Solution Process 
 

At the start and given all the information gathered in the previous six steps, the 

designer must decide upon the maximum number of divisions of the redesign market 

space. There must be at least as many divisions in a given dimension as there are existing 

systems and redesign targets with distinct values of the performance parameter that 

measures that dimension. Adding a few more divisions to that number will give the 

constructal-inspired approach more flexibility.  

Next, given that maximum number of divisions of the market space, a list of all 

feasible arrangements of space elements can be generated by taking into account the 

assumptions that all elements must nest inside later-stage elements and that all elements 

evenly divide the market space.  

In the next step, for a given arrangement of space elements, all the possible 

assignments of targets to the elements are generated. For a large number of open 
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elements (those that do not contain an existing system and thus are free to be changed 

using the modes), the number of potential assignments can become prohibitively large. 

For this reason, a common sense rule is used to eliminate a large number of assignments. 

Following this rule, which is explained in Figure 3-25, all assignment schemes that would 

require the resulting systems to have performance characteristics that contradict the 

relationships between their nominal target values are eliminated from consideration. The 

one way in which the “common sense rule” can fail is if two targets or existing systems 

fall close together in a market space, but if this is the case, the designer may want to 

consider whether or not he/she really wants or needs the small differentiation between 

systems. An example of the impact of the common sense rule in an example with two 

existing systems, two new redesign targets, and a two-stage space element arrangement is 

shown in Figure 3-26. 

For any valid assignment of targets to the space elements, the next step is to 

synthesize the most promising redesign solution using all of the objectives, constraints, 

and bounds found in the basic decision shown in cDSP form in Table 3-9. The next step 

in the solution process is to try another set of target assignments, try another arrangement 

of space elements, or complete the process by inspecting the results. 

It is notated that the manner for solving the redesign problem discussed here is 

just one of a myriad of potential avenues that the designer could choose to take. Given 

slightly different assumptions, even more possibilities would appear. Some of these 

possibilities are discussed in Section 5.3 and Section 5.5. 
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a.) A General Redesign Problem 

 
b.) Space Element Assignment Violating Common 
Sense Rule Between Targets 

 
c.) Space Element Assignment Violating Common 
Sense Rule Between Target and Existing System 

Figure 3-25 – The "Common Sense Rule" of Space Element Assignments Explained 
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Figure 3-26 - Assignment of Targets to Space Elements Explained 
 
 
3.4.8 - Step 8 – Examine Redesign Portfolios an Consider Iteration 

The final step of the redesign process involves the inspection of the potential 

redesign portfolios that have been developed thus far. Experience has shown that there is 

oftentimes very little discernible difference between the top few portfolios for different 

space element arrangements, particularly when they are ranked based solely on the size of 

their objective function. Small differences in this function may not necessarily translate 

to significant changes in the amount of design reuse or valuable commonality present in a 

solution. For this reason, the designer should inspect some of the best solutions visually, 

checking the results to make sure that they exhibit the characteristics that are desired. If 

the solutions are unsatisfactory, the designer might consider altering the formulation of 
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the objective functions, increasing the modes of redesign allowed, rearranging the 

groupings of modes, or even increasing the maximum number of market space divisions 

allowed in the solution process in Step 7.  
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3.5 - CONTRIBUTIONS IN THIS CHAPTER TO THE DOMAIN-INDEPENDENT 

STRUCTURAL VALIDITY OF THE PROPOSED METHOD 

The methods and indices developed in this chapter combine to create an approach 

to decision support for strategic and sequential redesign. The resulting approach and all 

the major developments that go into it are shown in Figure 3-27. The details of that 

approach flesh out the proposals made in the hypotheses in Section 1.3.2, showing how 

gaps are filled and needs met. 

 

 
Figure 3-27 – Summary of Developments that Went Into the Proposed Method 
 

In this section, the approach and its constructs are again compared to one another 

and to the requirements list in Table 1-3. In order to accept the Theoretical Structural 
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Validity (a.k.a. Domain-Independent Structural Validity) of the proposed approach and 

its constructs, it must be shown that: 

1. Each construct is appropriate to the sequential strategic redesign problem; and 

2. The resulting approach is internally consistent. 

The first major construct of the approach developed here is the Product Platform 

Constructal Theory Method (PPCTM), which has been abstracted and heavily modified 

to address redesign problems. PPCTM provides the designer with the capability of using 

multiple means to realize a family of products with variety in multiple dimensions 

without requiring that he/she specify product platforms ahead of time. This is a key 

requirement for strategic and sequential redesign.  

The second major construct is the compromise Decision Support Problem (cDSP) 

which provides structure for the decisions that are made at each stage of the constructal-

inspired redesign problem. The cDSP is employed because it is a flexible way of 

characterizing a multi-objective problem that can include both minimization goals like 

the Redesign Index (RI) and Commonality Discount Function (CDF) and target goals like 

the performance values that will change within a product family.  

The final major constructs are the RI and CDF indices, which are developed from 

scratch to represent distinct redesign perspectives. Although they have their drawbacks, 

as discussed in Section 3.2.6, they serve the purpose put forward for them in that they 

give a rough indication of a designer’s preferences towards minimizing redesign effort or 

maximizing commonality in certain pieces of an engineering system. 

The consistency of the proposed approach is seen in that all the information 

needed for each step is appropriate to the way the problem is framed in Section 1.1. All 
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information is assumed to be deterministic and all models to be flexible enough to 

operate at all values of the redesign variables.  

Having shown that the proposed approach is theoretically structurally valid, the 

next step is to discuss an engineering example that is appropriate to test it. A universal 

motor redesign example is introduced to fill this need in Section 4.3.2. Once this step is 

complete (the third step and the second quadrant of the validation square), the next task 

will be to demonstrate the usefulness of the approach with that example in Section 4.4. 

3.6 - STATUS AND PROMISE 

The approach developed in this chapter fulfills the requirements set forth in 

Section 1.3.2 for an approach to decision support for strategic and sequential redesign. 

The gaps in the capabilities of existing methods that are demonstrated in Section 2.4 are 

filled in this chapter by adapting and abstracting an existing constructal-inspired product 

family design method to the task. A new decision-making construct is introduced in the 

cDSP and new overall goals are introduced in the two redesign indices developed here. 

The finished approach is exercised in two forms in Chapter 4. A simplified version is 

used to demonstrate the effectiveness of the indices both separately and together.  Then a 

full version of the problem is used in increasingly complex scenarios to demonstrate the 

effectiveness of the constructal-inspired approach both with and without the use of the 

indices. Through these examples, the Empirical Performance Validity of the proposed 

approach is established.  
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CHAPTER 4  

EXAMPLE PROBLEM: REDESIGN OF FAMILIES OF UNIVERSAL 
MOTORS 

 

4.1 - A PREVIEW OF THIS CHAPTER’S CONTENTS 

The goal in presenting the materials in this chapter is to demonstrate -through 

increasingly complex redesign scenarios involving the design of a family of universal 

motors- how the redesign decision support method proposed here is used to identify 

promising solutions to redesign problems of various types. In accordance with the 

existence of two very distinct research questions, there are two major sections of this 

chapter. As explained in Figure 4-1, both sections make use of the universal motor 

example, a well-known product family design problem that is introduced in Section 4.2. 

In this section, it is also demonstrated that the universal motor redesign problem can be 

described in such a way that it embodies all the characteristics of strategic sequential 

redesign as described in Section 1.1.1. By demonstrating this, support is added to the 

theoretical performance validity of the proposed method. 

Initially, a universal motor redesign problem of reduced complexity is used to 

build confidence in the redesign indices’ ability to support basic redesign decision 

making that encourages targeted commonality. Presented in Section 4.3, this simple 

version of the example is used to build support in the reader’s mind for the empirical 

performance validity of the indices by themselves. It is shown that not only do they help 

the designer in identifying opportunities for valuable and effort-saving commonality, but 

that also that the benefits shown are tied to the indices themselves. The goal in presenting 
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this section of the chapter is the support of the Hypothesis #1, which is introduced in 

Section 1.3.2: 

Hypothesis #1: Through the use of two indices as objectives in a redesign problem, better 

redesign strategies utilizing fewer design changes and more valuable targeted 

commonality can be identified.  

Next, in Section 4.4, a broader universal motor example utilizing more redesign 

variables is used to show the utility of the constructal-inspired approach, both with and 

without the use of the redesign indices, lending credence to the second hypothesis and the 

empirical performance validity of the overall method proposed in this dissertation. 

Several basic types of redesign are shown first, followed by several more complex 

scenarios involving larger families of motors in different combinations. As a reminder, 

Hypothesis #2, which is the supported by the work in Section 4.4, is introduced in 

Section 1.3.2 and is defined as follows:  

Hypothesis #2: The redesign problem can be characterized as a problem of optimal 

access in a geometric space made up of the redesign objectives and solved using a 

modified, constructal-inspired approach based on the Product Platform Constructal 

Theory Method (PPCTM) using the Redesign Index (RI) and Commonality Discount 

Factor (CDF) as overall objectives in conflict with the individual systems’ goals. 

Finally, the chapter closes in Sections 4.5 and 4.6 with a discussion of the results 

gathered thus far and their role in the overall task of validating the methods proposed in 

this dissertation. 
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a.) Simple universal motor model using only four variables 

Section 4.3 
 
Variables per motor: 4 
Redesign scenarios: 2 
 
Purpose: Support empirical 
performance validity of indices 
proposed in Hypothesis #1 
(defined in Section 1.3.2) 

 
b.) More complex model using eight variables per motor 

Section 4.4 
 
Variables per motor: 8 
Redesign scenarios: 4 
 
Purpose: Support empirical 
performance validity of overall 
constructal-inspired approach 
proposed in Hypothesis #2 
(defined in Section 1.3.2) 

Figure 4-1 – The Role of Example Problems in Verification and Validation in this Chapter 
 

4.2 - INTRODUCTION TO THE FULL UNIVERSAL MOTOR EXAMPLE 

 In order to provide support for the performance validity of the hypotheses 

proposed in this dissertation, engineering redesign examples are presented in this chapter. 

Instead of utilizing a number of different examples to show the utility of different aspects 

of the proposed approach, a single system is used with varying degrees of detail involved 

in the redesign scenarios. These scenarios are modeled with increasing complexity 

throughout the course of the chapter as additional pieces of the approach are 

demonstrated. It is hoped that through the escalated use of this single example, the reader 
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will gain familiarity both with the problem and with the usefulness of the proposed 

approach.  

The system chosen is a universal electric motor (see Figure 4-2), which is so 

named because of its capability to function using either direct or alternating current. They 

can produce more torque for a given amount of current than any other type of single-

phase motor (Chapman 1999) and are commonly found in household appliances such as 

drills, saws, blenders, vacuums, and sewing machines (Veinott and Martin 1986). 

Universal motors consist of two main components: an armature (also known as a rotor) 

and a field (also known as a stator). The armature is made up of a metal shaft and slats 

around which a wire is wrapped longitudinally as many as a few thousand times. The 

field is made up of a hollow metal cylinder with its own slats that are wrapped 

longitudinally hundreds of times with wire. The armature rotates within the field and both 

are wired in series, meaning that both run on the same amount of current. The design of 

the motor also enables it to operate in the same direction regardless of the direction of DC 

current as a result of the magnetic field created by the passage of electrical current 

through the wires. 

 The model of the universal motor that is used in this work is directly derived from 

that which is presented by Simpson and coauthors (Simpson, Maier et al. 2001). This 

model has been shared by researchers interested in product family design, appearing in a 

number of other publications (Messac, Martinez et al. 2002; Messac, Martinez et al. 

2002; Hernandez 2003; Akundi, Simpson et al. 2005) and receiving focus in a special 

session of the 2007 ASME Design Engineering Technical Conferences. As a result of all 

the work that has been done with the universal motor example, it can be demonstrated 
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that families of products can successfully be built around platforms with anywhere from 

two to six of the most important design variables in the problem. It is this flexibility in 

product platform design problems that makes the problem interesting for redesign, as it is 

likely that regardless of the configuration of existing systems, extendable platforms can 

be developed based on them. The eight major variables are presented in Table 4-1 and in 

a simplified drawing in Figure 4-3. 

 
Figure 4-2 – Universal Motor Schematic (AMETEK, Inc., 2006) 
 

Table 4-1 – Universal Motor Redesign Variables 
Variable Name (Name in Matlab Code) Symbol Min Value Max Value Units 
Num of turns in armature/rotor (NARM) Nc or Na 100 1500  
Cross-sect area of wire in armature/rotor 
(AWA) 

Awa 0.01 1.0 [mm2] 

Num of turns in field/stator (NFIELD) Ns or Nf 1.0 500  
Cross-sect area of wire in field/stator (AWF) Awf 0.01 1.0 [mm2] 
Outer radius of field/stator (RADIUS) ro 1.0 10.0 [cm] 
Thickness of the field/stator (THICK) t 0.5 10.0 [cm] 
Stack length (LENGTH) L 1.0 10.0 [cm] 
Current (CURRNT) I 0.1 6.0 [Amp] 
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Figure 4-3 – Universal Motor Components, Modified from (Hernandez, Allen et al. 2002)  
 

The mathematical model developed by Simpson and coauthors is presented here 

in summary form, but for further details on the derivation of certain formulas, the reader 

should consult (Simpson, Maier et al. 2001), (Simpson 1998), or the electrical machinery 

handbooks (Cogdell 1996; Chapman 1999) upon which the original model is based. The 

mathematics presented here are just what is enough to understand the Matlab code for the 

universal motor, which is presented in Appendix A. The goal in explaining these 

calculations is to show how seven key response values are generated. These responses, 

which are summarized in Table 4-2, include one value that needs explanation. Feasibility 

(F) is a measure of whether the design of the motor is physically impossible as a result of 

the armature radius exceeding the size of the inner radius of the field.  
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Table 4-2 – Universal Motor Responses of Interest 
Attribute Name Symbol Min Value Max Value Units 
Torque T 1.9041 x10-9 0.011357 [Nm] 
Mass Mtot 0.022007 1.9998 [kg] 
Efficiency η 15.086 98.258 [%] 
Magnetizing Intensity (SAT) H 0.50219 4846.6 [Amp*turns/m] 
Power P 1.7349 676.93 [W] 
Feasibility (check of radii) F 1 155  
Speed ω 10326 5.8676 x109 [rad/s] 
 

Torque Calculations: 

The torque output of the motor is governed by the following basic equation: 

T K Iφ= ⋅ ⋅  [4.1] 

where K is a motor constant and φ  is the magnetic flux in the motor. The motor constant 

is found using the following if one assumes that the armature has simplex winding and 

that the number of poles in the motor is two: 

cNK π=  [4.2] 

while the computation of the magnetic flux involves a more laborious process. At a basic 

level, the flux is found by dividing the magnetomotive force (ℑ ) by the total reluctance 

in the motor (ℜ ): 

φ ℑ= ℜ  [4.3] 

The magnetomotive force is simply the product of the current and the number of wire 

turns in the stator: 

sN Iℑ = ⋅  [4.4] 

The basic formula for reluctance is: 
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( )( )cross-sectional

Magnetic Path Length
Relative Permeability Area

ℜ =  [4.5] 

where the relative permeability (µ) is the permeability of the material as compared to the 

permeability of free space (µo). For the whole motor, the total reluctance of the stator, 

rotor, and air gaps must be considered: 

2tot stator rotor airℜ =ℜ +ℜ + ℜ  [4.6] 

where, 
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µ µ µ µ
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 ℜ = =
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 [4.7] 
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and the permeability of steel (µsteel), a characteristic of the material, is a curve 

approximated in three sections by the following expressions: 

( )
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 [4.10] 

The magnetizing intensity (H) is given by: 

2
c

c r gap

N IH
l l l

⋅
=

+ + ⋅
 [4.11] 

where lc is the mean magnetic path length of the stator/field, which is taken to be half of 

the stator’s inner circumference, lr is the diameter of the armature, and lgap is the length of 

the air gap. 
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Equation 4.11 is notable because it is known to be mistakenly doubled in the computer 

code in at least two publications (Simpson 1998; Simpson, Maier et al. 2001). The correct 

value is given in the work of Simpson (Simpson 1998) and Chapman (Chapman 1999). 

Given the similarity of results in other publications, this mistake seems likely to have 

been carried forward by others who use the same example. The effect of the error is to 

make a much wider range of torques available through the manipulation of the motor 

design variables. Since part of the interest in using the universal motor example comes 

from the ability to compare results with previous work, the error has been preserved but 

is noted here and in the Matlab code in Appendix A. 

 

Mass Calculations: 

The mass model used in this problem involves a greatly simplified motor whose two 

major parts are an armature that is a solid steel cylinder and a stator that is a hollow steel 

cylinder. The mass of the copper windings is included as well, so that the overall formula 

for the mass of the motor is: 

armature stator wireMass=M +M +M  [4.12] 

where 

( )0armature steel gapM L r t lπ ρ= ⋅ ⋅ − −  [4.13] 

( )( )22
stator steel o oM L r r tπ ρ= ⋅ ⋅ − −  [4.14] 

( )( ) ( )( )g2 4 2 2 4wire copper c wa o ap s wf oM N A L r t l N A L r tρ  = ⋅ + − − + ⋅ ⋅ + −   [4.15] 
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Power Calculations 

The overall equation for computing the power output of the motor is given by subtracting 

the power losses in the motor from the power input. 

in lossesP P P= −  [4.16] 

where the input power is given by the product of the voltage of the motor and the current 

entering it: 

in tP V I= ⋅  [4.17] 

The losses in the model occur for a variety of reasons including the heating of the wires, 

the friction in the motor’s bearings, the interface between the motor’s brushes and the 

armature, as well as hysteresis and eddy currents in the motor core. If it is assumed that if 

the motor is designed well enough and used properly, many of these losses can be 

ignored, leading to a simplified expression for power losses based solely on the brush 

interfaces and the wire heating: 

losses copper brushP P P= +  [4.18] 

where 

( )2
copper a sP I R R= +  [4.19] 

where aR and sR  are the resistances in the wire windings of the armature and stator 

respectively and 

brushP Iα= ⋅  [4.20] 

where α is typically set to 2 volts. 

 

The general equation for resistance in a wire is given by: 
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( )( )Resistivity Length
Resistance=

Cross-Sectional Area
 [4.21] 

The resistivity (ρ) of the wire is a property of the wire, but the effective length must be 

calculated. If it is assumed that the wires have roughly rectangular cross sections, then it 

can be shown that the respective resistances of the armature and stator are: 

( )( )
cross-section,armature wire

2 4a o gap
a

N L r t l
R

A

ρ ⋅ ⋅ + − −
=  [4.22] 

and 

( )( )
cross-section,field wire

2 2 4s o
s

N L r t
R

A
ρ ⋅ ⋅ + −

=  [4.23] 

 

Efficiency Calculation 

The efficiency of the motor can be derived directly from the power calculations in 

Equations 4.16 and 4.17: 

( )in losses

in in

P PP
P P

η
−

= =  [4.24] 

 

 The redesign variables used to control the motor responses are listed in Table 4-1. 

Throughout Sections 4.3 and 4.4, the weighting factors that represent redesign difficulties 

in the Redesign Index (see Equation 3.6) and commonality discounts in the Commonality 

Discount Function (see Equation 3.5) are adjusted based on the redesign scenario being 

addressed. While the setting of these weights ultimately depends on the preferences of the 

designer, there is some higher thinking behind the settings of those weighting variables. 
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The salient features of each redesign variables are discussed here to give a general idea 

from where weightings presented later in the chapter are drawn. 

 It is assumed that the numbers of turns of wire in the armature (Na) and field (Nf) 

are both whole numbers. It is also assumed that it is relatively easy to adjust the number 

of wire turns in a motor, as whatever mechanism it is that winds the wire around these 

parts can simply be programmed to add or subtract windings. At the same time, assuming 

that this change can be made with a simple programming change, commonality for these 

variables has very little value in that there is no sunk cost associated with a certain value 

of them. 

 The areas of the wire for the armature (Awa) and field (Awf) would be more 

difficult to change than the numbers of turns of wire. Instead of just adding or subtracting 

turns of wire, the machinery needed to turn wire would need to handle wire of different 

sizes and stocks of existing wire could not be reused. The value of commonality between 

areas of wire would be greater than turns of wire as it would mean that the same stocks of 

wire could be utilized, making better use of volume purchasing discounts. The value of 

sharing common values for wire diameters between two systems that not being produced 

at the same time would be lower. In order for this type of commonality be valuable, the 

machinery to handle the wire or stocks of the wire would have to be saved. 

 The radius (r) and thickness (t) are both dimensions of the stator, (a.k.a. field) of 

the motor. As such, they control the design of the steel element that determines much of 

the shape of the motor. It is assumed here that each of these variables has a significant 

redesign difficulty associated with it because of the effort that will be needed to produce 

a new shape of field. Changing them would result in the need to create new molds and/or 
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tools for machinery to create the new fields. As a result, commonality in these variables 

is considered extremely valuable. Although it is not shown in this dissertation, in future 

work it would be useful to consider them even more valuable when both of their values 

are kept common across two motors. These variables have high commonality values for 

perfect or near-perfect overlap between production schedules of motors as a result of the 

infrastructure needed to produce them. 

 The stack length (L) is a variable with a large impact on the rest of the motor and 

thus has a large redesign difficulty. It affects the sizes of the windings and general layout 

of the motor. It is assumed that changing this variable will result in a cascade of smaller 

design changes that need to be accounted for in other pieces of the motor not modeled 

here. Like the radius and thickness of the field, the stack length has a high commonality 

value because it controls the shape of the two main steel pieces of the motor. It also 

carries a high value of commonality for the same reasons as the radius and thickness of 

the field. 

 Finally, the current in the motor (I) is assumed to be the easiest redesign option to 

implement, as its implementation is largely external to the motor. Still, changing the 

current is not without redesign cost, as the new motor design will have to be modeled and 

tested before it can be produced. Since it is so simple to change, the current carries little 

commonality value and there is little differentiation in the value between perfect overlap 

schemes and ones in which there is a gap in production. 

4.3 - VERIFICATION AND VALIDATION OF PROPOSED REDESIGN INDICES 

 In this section, a multitude of redesign scenarios are run repeatedly with slightly 

different to demonstrate the effectiveness of the indices RI and CDF in pushing 
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commonality in certain places when the designer wants it. The universal motor example 

used in this section has been simplified from the form described in Section 4.2 to use just 

four variables. It is shown that not only are both indices effective in their intended ways, 

but also that they exceed the capabilities of other measures in pushing for commonality in 

the most valuable pieces of an evolving family of products. 

As a reminder to the reader, a number of abbreviations that are used constantly 

throughout this section are summarized here: 

• Types of commonality overlap (see Section 3.2.2) : 

 PG – Production Gap  

 SP – Staggered Production 

 SI – Staggered Introduction 

 SR – Staggered Retirement 

• Universal motor variables of interest: 

 Na – Number of wire turns in the armature 

 Nf – Number of wire turns in the field 

 L – Stack length 

 

4.3.1 - Plan for Verification and Validation of the Proposed Indices 

In Sections 4.3.2, 4.3.4, and 4.3.5, an example of a typical sequential strategic 

redesign scenario is presented, implemented, and solved in many different ways. The 

goal in presenting and solving this problem in a number of different ways is to 

demonstrate to the reader both the empirical structural validity and the empirical 
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performance validity of the indices that are proposed in the two subsections of  

Hypothesis #1. 

The empirical structural validity is discussed in Section 4.3.2, wherein the 

example scenario itself is described. Key points to consider when evaluating the 

empirical structural validity are the features of the problem and whether they match up 

with the type of sequential strategic redesign problem described in Chapter 1, whether the 

example scenario can generate meaningful results, and whether the results generated can 

be used to validate the first hypothesis. 

The empirical performance validity of the first hypothesis and the proposed 

indices is shown through the results in Section 4.3.4 and the discussion in Section 4.3.5. 

In validating the proposed indices, it is important to demonstrate that their use creates 

commonality of the desired types in the desired areas in the family. It is shown in Section 

4.3.4 that by adjusting the redesign difficulties in the Redesign Index (RI) and the weight 

given to RI, commonality can be encouraged in certain variables deemed more difficult to 

change. Similarly, it is shown that by adjusting commonality discounts in the 

Commonality Discount Factor (CDF) and the weight given to CDF, that commonality in 

certain less valuable variables or less valuable relationships can be discouraged. 

Furthermore, in demonstrating empirical performance validity it is important to show that 

the impact of the indices can be tied to the use of the particular indices proposed here and 

not just as a result of adding any commonality or non-commonality index. This is shown 

through comparison with results generated with other similar indices from product family 

design. 
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4.3.2 - A Simple Universal Motor Redesign Scenario for Verification and Validation 

of the Proposed Indices 

Consider a company that produces universal motors for two different applications 

with torques of 0.35 Nm and 0.25 Nm. A new customer has asked them to produce a 

special low-torque model for the first of a new family of hand tools that will have varying 

torque demands. The customer already has a planed release schedule for their tools, 

which would translate into a motor production schedule like the one seen in Figure 4-4. 

Five new motors with distinct torque requirements would need to be produced over the 

next eight years.  

 

 
Figure 4-4 – Production Schedule for Simple Universal Motor Redesign Scenario 
 

 There are only two other requirements that have been stated by the tool 

manufacturer. The first desire is that all the tools have the same sort of feel in the palm of 

a customer’s hand, so the mass should be relatively constant at around 0.50 Kg. The 

second request is that the performance of the motors be relatively consistent, with 

efficiencies of around 70%. 



 241 

 Based on some preliminary research and a review of the paper by Simpson, 

Maier, and Mistree (Simpson, Maier et al. 2001), the motor producer knows that it is 

possible to scale a family of universal motors around a platform of fixed values of the 

armature and field wires (Awa and Awf respectively) as well as the thickness and radius 

of the motor (t and r respectively). Accordingly, it is decided that those four variables 

will be frozen for the new motors and that as much of the existing motors as possible 

should be reused in the production of the new ones. 

 In order to help identify redesign solutions that make use of as much of pre-

existing motors as possible, the company decides to formulate a compromise Decision 

Support Problem with the minimization of RI and CDF as goals of the designer. In 

addition, they add physical constraints to make sure of the motor’s feasibility, power 

requirements, and magnetizing intensity. The resulting formulation is shown in Table 4-3 

with goals for the minimization of CDF and RI, the achievement of mass and efficiency 

targets, and the achievement of torque targets for each of the new motors. 

 There are a number of values in the cDSP formulation shown in Table 4-3 that are 

left in variable form on purpose. These include the weightings given to the various 

deviation variables in the overall objective function as well as the redesign difficulties in 

RI and the commonality discounts in CDF. In Section 4.3.4, this redesign scenario is 

solved in a number of ways using different weightings, difficulties, and discounts to 

represent different desires on the part of the designer. The goal in doing this is to show 

that by adjusting these values in the ways that common sense would dictate, the redesign 

plans that are most promising are adjusted accordingly. 

 

Table 4-3 – cDSP Formulation of Redesign Problem for Validation of Indices 
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Given   
 • An 1-dimensional market space of torque values that are to be changed 

over time through redesign 
• Two existing systems with torques of 0.25 Nm and 0.35 Nm 
• Five new systems to be released over the next 7 years with torques of 

0.05 Nm, 0.10 Nm, 0.15 Nm, 0.20 Nm, and 0.30 Nm 
• The schedule of production shown in Figure 4-4 
• A set of values for certain platform variables (Awa, Awf, r, and t) that 

is to be constant through all of the new motor designs: 
  Awa = 0.241 mm 

Awf = 0.376 mm 
r = 2.69 cm 
t = 6.66 cm 

Find   
 The values of the independent system redesign variables: 

{ } { }1 5, ,
new

X X X= …  

where { }, , ,
j jj a f j jX N N L I=  1, 5j = …   

The values of the deviation variables (indicate the extent to which the 
goals are achieved) for each of the new systems 

+−
ii dd ,   

where i = 1,…Mtot and Mtot is the total number of individual and system-
wide goals. 

Satisfy   
 The system constraints: 

Mass: 2.0kg 

Efficiency: 15%

Power: 300

Saturation: 5000

Physical feasibility: 1.0

j

j

j

j

j

m

P W

H

Feas

η

≤

≥

=

≤

≥

 

System average mass goal of 0.50Kg: 

10.50 avg avg

avg
m m

m d dKg
− ++ − =  

System average efficiency goal of 0.70: 

10.15 avg avg

avg d dη η
η − ++ − =  

System minimization of CDF goal: 
{ }( ) CDF CDF 1CDF X d d− ++ − =  

System minimization of RI goal: 
{ }( ) RI RI 1RI X d d− ++ − =  

Individual motor torque goals: 
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( )
( ) 1
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j
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T X
d d

G X
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ii dd ,  1,..., toti M=  
Minimize    
 The deviation function: 

( ) ( )
( ) ( ) ( )

f
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4.3.3 - Implementation of the Simple Redesign Scenario 

The overall constructal-inspired approach to redesign that is described in Section 

3.4 is implemented in Matlab and discussed later both in Section 4.4 Appendix B. In 

order to solve the simpler cDSP formulation of this redesign scenario, a simplified 

version of the Matlab implementation is used. Code for this simpler version is shown in 

Appendix B while the overall organization of the implementation is shown in Figure 4-5. 

In this implementation, variables are normalized on a scale of 0 to 1 and the deviation 

function is minimized using the built-in Matlab fmincon script. This script makes use of 

sequential quadratic programming (SQP), which is suitable for local minimization of 

objective functions that can be accurately approximated using a second order curve.  

 



 244 

 
Figure 4-5 – Flowchart of Matlab Implementation of Simplified Problem Solving Approach 
 

The fmincon script requires that it be fed a starting point or initial guess. Repeated 

use of fmincon using different starting points will frequently yield different results and 

experience shows that better values of CDF and RI can be found if those starting points 

incorporate the values of the existing systems. For these reasons, the Matlab 

implementation makes use of seven different starting points, choosing only the result that 

yields the smallest deviation function values. This number has been chosen following 

thorough analysis of the impact of using increasing numbers of starting points randomly 

created using pieces of existing systems. This analysis involved the repeated running of 
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the simple validation example presented in Section 4.3.2 over and over again with 

different start points generated using elements of the existing system as shown in Figure 

4-6.  

 

 
Figure 4-6  – Random Assignment of Existing System Values to Start Points 

 

After running the experiment a certain number of times Ntests, the best final 

objective function value is recorded. For each value of Ntests, five separate treatments are 

carried out with the best final objective function value recorded for each of the five 

random groups. The value of Ntests is spread out between 5 and 1000 in Figure 4-7, 

showing that there is relatively little value in generating extra random start points for this 

scenario. Based on these results, the number of starting points is set at seven including 
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five randomly assigned starting points and two that are based directly upon one of the 

two existing systems. 
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Figure 4-7 – Objective Function Values for Increasing Numbers of Start Points 
 
 

 

4.3.4 - Redesign Solutions for Varying Index Parameters and Weights 

As described in Section 1.4.2, there are a number of features of the two proposed 

indices that are desirable when redesigning existing systems to realize a stream of new 

ones. Series of runs of the redesign scenario described in Section 4.3.2 are used in this 

section to show that the Redesign Index (RI) and Commonality Discount Factor (CDF) 

exhibit the following important features: 
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• The ability to reduce design changes in a certain difficult variable using RI; 

• The ability to reduce design changes in general at the expense of a certain 

variable using RI; 

• The increasing presence of design reuse in the family as RI is given more 

weight; 

• The ability to increase the instances of commonality in a certain variable for 

which design reuse is valuable using CDF; 

• The ability to increase commonality in general in a family at the expense of a 

certain variable with less valuable commonality using CDF; 

• The ability to increase the instances of commonality in a certain type of 

valuable commonality using CDF; 

• The ability to increase commonality in general in a family at the expense of a 

certain type of commonality with less value using CDF; 

• The increasing presence of design reuse in the family as CDF is given more 

weight; and finally 

• The increasing presence of design reuse in the family as CDF and RI are used 

together.  

These nine features express what is expected out of the indices if they are to be 

considered useful for strategic sequential redesign. As such, they are also the 

requirements for demonstrating the empirical performance validity of the indices. Each 

point is covered one at a time throughout the rest of this section. 

 In considering the rest of this section, the reader should set aside for a moment the 

discussion of the redesign difficulties and commonality discounts associated with certain 
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redesign options or types of commonality. In this section, the difficulties and discounts 

associated with the redesign options in the simple universal motor redesign scenario are 

adjusted somewhat arbitrarily to show how RI and CDF perform under certain 

circumstances. The values used to demonstrate these behaviors are not meant to be 

representative of realistic values in any way. 

 For comparison’s sake, the compromise Decision Support Problem presented in 

Table 4-3 is solved with zero Archimedean weight given to both RI and CDF. The 

resulting solution yields what are essentially individually redesigned motors for the five 

new torque goals as each motor is only designed with the torque, mass, and efficiency 

goals in mind. No attempt is made to make any of the motors similar to another. This 

baseline solution is presented in Table 4-4 and Table 4-5 as a point with which solutions 

throughout the rest of this section can be compared. 
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Table 4-4 – Baseline Family Design for Simple Redesign Scenario 
Motor Na Awa 

(mm2) 
Nf Awf 

(mm2) 
r 

(cm) 
t 

(cm) 
L 

(cm) 
I (A) 

Existing Motor #1 1056 0.237 73 0.260 2.51 6.46 2.81 4.36
Existing Motor #2 1007 0.224 73 0.246 2.35 6.17 2.61 4.02
New Motor #1 655 0.241 109 0.376 2.69 6.66 0.80 3.10
New Motor #2 913 0.241 100 0.376 2.69 6.66 1.05 3.40
New Motor #3 1242 0.241 82 0.376 2.69 6.66 1.26 4.14
New Motor #4 1108 0.241 91 0.376 2.69 6.66 1.18 3.74
New Motor #5 1404 0.241 57 0.376 2.69 6.66 1.16 5.99
Note: Italicized values are constants 
 
Table 4-5 – Baseline Family Responses  for Simple Redesign Scenario 
Motor Torque 

(Nm) 
Mass 
(Kg) 

Efficiency Power Saturation Feasibility Speed 
(rad/s) 

Existing Motor #1 0.351 0.750 0.570 5041 286 3.89 814
Existing Motor #2 0.249 0.619 0.624 4966 289 3.81 1161
New Motor #1 0.050 0.341 0.840 5000 300 4.04 6000
New Motor #2 0.100 0.443 0.768 5000 300 4.04 3000
New Motor #3 0.200 0.552 0.630 5000 300 4.04 1500
New Motor #4 0.150 0.508 0.698 5000 300 4.04 2000
New Motor #5 0.300 0.545 0.435 5000 300 4.04 1000
Note: Italicized values are constants 
 

Demonstrating the Reduction of Redesign in a Variable Using the Redesign Index (RI) 

In order to show that RI is useful in targeting certain redesign options as being far 

more difficult than others and thus requiring more effort, the compromise Decision 

Support Problem formulation of the universal motor redesign scenario shown in Table 

4-3 is modified. The goal of minimizing the Commonality Discount Function (CDF) is 

not used in this new formulation, which is summarized in Table 4-6. In the first series of 

tests, the only variable considered difficult to redesign is the number of wire turns in the 

armature (Na), which is given a redesign difficulty index (RDI) of 1.0 as opposed to 

values of 0.1 given to the other variables. Ideally, this arrangement will lead to a large 

amount of commonality throughout the resulting redesigned family but little design reuse 

in Na. 
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Table 4-6 – Summary of cDSP Reformulated to Test RI  
Given   
 • The redesign scenario formally described in Table 4-3 
Find   
 • Redesign variables 

• Deviation variables 
• Redesign difficulties as follows: 

  RDI(Na) = 1.0 
RDI(Nf) = 0.1 

RDI(L) = 0.1 
RDI(I) = 0.1 

Satisfy   
 • System constraints 

• System average mass goal of 0.50Kg 
• System average efficiency goal of 0.70 
• System minimization of CDF goal: 

{ }( ) RI RI 1RI X d d− ++ − =  

• Individual motor torque goals 
• The lower and upper bounds on each system 
• Deviation variable constraints 

Minimize    
 The deviation function: 

( ) ( )
( ) ( )

f

5

1

5

1

       

where 1

avg avg avg avg avg avg

j j j

avg avg j

m m m

RI RI T T T
j

m RI T
j

Z w d d w d d

w d w d d

Z w w w w

η η η

η

− + − +

+ − +

=

=

= + + +

+ + +

= + + + =

∑

∑

 

 

 The cDSP shown in Table 4-6 is solved for increasingly heavy Archimedean 

weights for the minimization of RI. As the weight is increased from 0.1667 to 0.625, the 

instances of commonality in Na tend to increase, as the amount of redesign in that 

variable is decreased. This relationship is shown in the data displayed in Table 4-7 and 

plotted in Figure 4-8.   
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Table 4-7 – Unique Values of a Difficult Na for Increasing RI Archimedean Weight 
Weight 

Given to 
RI 

Final RI Value 
Achieved 

Total Number of 
Unique Values of Na 

(total max possible is 7) 

Total Number of Unique 
Variable Values 

(total max possible is 27) 
0 0.0451 7 27 

0.167 0.0205 7 27 
0.250 0.0171 6 26 
0.375 0.0147 5 25 
0.500 0.0121 5 25 
0.625 0.0087 3 22 

 

Unique Variable Values for Different Weights of RI in Test Aimed at Increasing Commonality 
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Figure 4-8 – Effect of Increasing RI Weight on Instances of Redesign in a Difficult Na 
 

 As an example of the types of solutions achieved using the cDSP formulated in 

this way, the solution for an RI weight of 0.625 is shown in Table 4-4. All of the new 

motors listed achieve their torque targets almost exactly while meeting all physical 

constraints. The average mass of the resulting family is 0.559 Kg while the average 

efficiency is 66.8%. The reader should note that whereas previously the number of 
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windings in the armature (Na) changed for each motor, there are now only three values 

used throughout the entire family with one value reused for two later motors. Also, while 

not expressly the goal of this test, one value for the motor’s current is reused. 

 

Table 4-8 – Family with Na Difficult to Change and RI Given a Weight of 0.625 
Motor Na Nf L (cm) I (A) 
Existing Motor #1 1056 73 2.81 4.36 
Existing Motor #2 1007 73 2.61 4.02 
New Motor #1 1007 94 0.52 3.35 
New Motor #2 1007 97 0.93 3.48 
New Motor #3 1124 86 1.47 3.93 
New Motor #4 1124 90 1.15 3.76 
New Motor #5 1124 78 1.99 4.36 
 

 The type of effect shown here when the number of windings in the armature (Na) 

is considered difficult to redesign is also shown to be true for the stack length (L) of the 

motor. The data to support this claim is presented in Appendix A for the sake of brevity. 

 

Demonstrating the General Reduction of Redesign at the Expense of a Certain Variable 

Using the Redesign Index (RI) 

In order to show that the Redesign Index (RI) can be used to encourage 

commonality in a family while ignoring a particularly easy redesign option, the 

compromise Decision Support Problem summarized in Table 4-6 is modified so that the 

redesign difficulties are flipped with only the number of wire turns in the armature (Na) 

given a difficulty of 0.1 while the number of wire turns in the field (Nf), the stack length 

(L), and the amount of current I are given difficulties of 1.0. The cDSP is solved for RI 

weights of between 0.1667 and 0.625 again, with the final redesign solutions, total 

numbers of unique variable values, and RI values all recorded. As is seen in Table 4-11 
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and  Figure 4-9, increasing the weight of RI when the cDSP is formulated in this way 

does reduce design change in most of the family while barely touching Na, just as 

intended.  

 

Table 4-9 – Unique Values of an Easy Na for Increasing RI Archimedean Weight 
Weight 

Given to 
RI 

Final RI Value 
Achieved 

Total Number of 
Unique Values of Na 

(total max possible is 7) 

Total Number of Unique 
Variable Values 

(total max possible is 27) 
0 0.0451 7 27 

0.167 0.0755 7 26 
0.250 0.0705 7 25 
0.375 0.0697 7 26 
0.500 0.0576 6 22 
0.625 0.0502 7 22 
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Figure 4-9 – Effect of Increasing RI Weight on Instances of Redesign in an Easy Na 
 



 254 

 As an example of the types of solutions achieved using the cDSP formulated in 

this way, the solution for an RI weight of 0.625 is shown in Table 4-22. Again, all motors 

have good torque, mass, and efficiency values and meet the required constraints. The 

total number of unique values of Na has stayed the same as in the baseline solution while 

the number of other variable values has dropped from 20 to 15. In Appendix A, a similar 

relationship is shown to exist when the RI weight is adjusted and only the stack length is 

given a low redesign difficulty. 

 

Table 4-10 – Family with Na Easy to Change and RI Given a Weight of 0.625 
Motor Na Nf L (cm) I (A) 
Existing Motor #1 1056 73 2.81 4.36 
Existing Motor #2 1007 73 2.61 4.02 
New Motor #1 746 74 0.99 3.17 
New Motor #2 791 86 1.46 3.32 
New Motor #3 1127 86 1.46 3.93 
New Motor #4 1245 86 0.99 3.93 
New Motor #5 1259 71 1.63 4.76 
 

Demonstrating the Increased Presence of Design Reuse in a Family Using the Redesign 

Index (RI) 

It can be seen quite clearly in Figure 4-8 and Figure 4-9 that increasing the 

Archimedean weight given to RI results in a general increase in design reuse or 

commonality across the redesigned product family. To further demonstrate this trend, the 

cDSP formulation of the redesign scenario is changed so that all redesign options are 

evenly difficult, with index values of 0.5. When the weight given to RI is adjusted 

between 0.1667 and 0.625, commonality again increases, as seen in Figure 4-10. 
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Figure 4-10 – Effect of Increasing RI Weight on Instances of Redesign When All Options are 
Equally-Difficult 
 

Demonstrating the Increase in Commonality in a Variable in Which it is Valuable Using 

the Commonality Discount Factor (CDF) 

In order to demonstrate that the Commonality Discount Factor (CDF) is capable 

of directing the designer’s attention towards solutions in which commonality in a certain 

variable in which design reuse is particularly valuable, the cDSP formulation of the 

redesign scenario in Table 4-3 is adjusted as is summarized in Table 4-11. The major 

change made is that the goal of minimizing RI is dropped from the objective function. 

The variable representing change in the number of wire turns in the armature (Na) is 

given the only low commonality discount (CD), representing the idea that commonality 

in it is much more valuable than reuse of other variable values. The other values for 
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which commonality is not as valuable are the number of wire turns in the field (Nf), the 

stack length (L), and the current (I). 

 

Table 4-11 – Summary of cDSP Reformulated to Test CDF  
Given   
 • The redesign scenario formally described in Table 4-3 
Find   
 • Redesign variables 

• Deviation variables 
• Commonality Discounts as follows: 

  CD(Na) = 0.1 
CD(Nf) = 1.0 

CD(L) = 1.0 
CD(I) = 1.0 

Satisfy   
 • System constraints 

• System average mass goal of 0.50Kg 
• System average efficiency goal of 0.70 
• System minimization of CDF goal: 

{ }( ) CDF CDF 1CDF X d d− ++ − =  

• Individual motor torque goals 
• The lower and upper bounds on each system 
• Deviation variable constraints 

Minimize    
 The deviation function: 

( ) ( )
( ) ( )

f

5

1

5

1
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 The cDSP summarized in Table 4-11 is solved for varying amounts of 

Archimedean weight given to the goal of minimizing CDF. The weights are varied 

between 0.1667 and 0.625. As can be seen in Table 4-22 and Figure 4-11, as the weights 

increase, commonality in Na does increase as is desirable. At the same time, there is 

some increase in commonality amongst other redesign options, but not nearly as much. 
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Table 4-12 – Unique Values of a Valuable Na for Increasing CDF Archimedean Weight 
Weight 

Given to 
CDF 

Final CDF Value 
Achieved 

Total Number of 
Unique Values of Na 

(total max possible is 7) 

Total Number of Unique 
Variable Values 

(total max possible is 27) 
0 0.0406 7 27 

0.167 0.0044 6 26 
0.250 0.0035 4 24 
0.375 0.0033 4 24 
0.500 0.0034 4 24 
0.625 0.0033 5 24 
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Figure 4-11 – Effect of Increasing CDF Weight on Instances of Redesign in an Valuable Na 
 

 The family redesign plan shown in Table 4-13 is an example of the type of 

solution that is generated when CDF is given a high Archimedean weight of 0.625 in the 

cDSP formulation. By using such a weight, the number of unique values of Na is reduced 

from seven to four as is the goal. The same sort of results can be achieved with the 
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number of wire turns in the field (Nf) and the stack length (L) of the motor. The data 

associated with the tests of these variables is found in Appendix A. 

 

Table 4-13 – Family with Na Commonality Valuable and CDF Given a Weight of 0.625 
Motor Na Nf L (cm) I (A) 
Existing Motor #1 1056 73 2.81 4.36 
Existing Motor #2 1007 73 2.61 4.02 
New Motor #1 811 98 0.67 3.20 
New Motor #2 811 102 1.21 3.31 
New Motor #3 1275 80 1.21 4.21 
New Motor #4 1057 92 1.25 3.67 
New Motor #5 1275 70 1.58 4.82 
 

Demonstrating the Increase in Commonality in General in a Family at the Expense of 

Greater Redesign in a Certain Variable Using the Commonality Discount Factor (CDF) 

 To show that the Commonality Discount Function (CDF) can be used to 

encourage commonality in general while not favoring reuse of values of a certain 

variable, the weightings are flipped from the formulation discussed above. The cDSP 

summarized in Table 4-11 is changed by giving the number of wire turns in the armature 

(Na) the highest commonality penalty of 1.0 to represent the fact that commonality in that 

variable is not particularly valuable. At the same time, the other redesign options are all 

given commonality discounts of 0.1. The cDSP is solved repeatedly using these discounts 

with CDF weights of between 0.1667 and 0.625. The aim in this series of tests is to show 

overall commonality can be encouraged while commonality in Na is not necessarily 

discouraged but rather encouraged to a much smaller degree than the other variables. 

 The results of this series of tests are summarized in Table 4-14 and plotted in 

Figure 4-12. As the CDF weight is increased, the total number of unique variable values 
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is decreased reduced 18.5% while the number of unique values of Na stays relatively 

constant. These results are exactly in line with what is expected and desired. 

 

Table 4-14 – Unique Values of a Worthless Na for Increasing CDF Archimedean Weight 
Weight 

Given to 
CDF 

Final CDF Value 
Achieved 

Total Number of 
Unique Values of Na 

(total max possible is 7) 

Total Number of Unique 
Variable Values 

(total max possible is 27) 
0 0.0406 7 27 

0.167 0.0216 7 25 
0.250 0.0189 7 25 
0.375 0.0152 7 22 
0.500 0.0134 6 22 
0.625 0.0118 7 22 
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Figure 4-12 – Effect of Increasing CDF Weight on Instances of Redesign with a Worthless Na 
 

 A sample solution from this series of tests is shown in Table 4-15. This solution, 

from a problem formulation in which CDF is given a weight of 0.625, shows the overall 
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18.5% reduction in design change mentioned above with only one instance of reuse in 

values of Na. All of the motors in this redesigned family meet their torque goals nearly 

dead-on while achieving good mass and efficiency values.  

 
Table 4-15 – Family with Na Commonality Worthless and CDF Given a Weight of 0.625 
Motor Na Nf L (cm) I (A) 
Existing Motor #1 1056 73 2.81 4.36 
Existing Motor #2 1007 73 2.61 4.02 
New Motor #1 696 104 0.77 3.13 
New Motor #2 728 104 1.37 3.26 
New Motor #3 1179 84 1.37 4.02 
New Motor #4 1441 78 0.77 4.36 
New Motor #5 1328 67 1.44 5.08 
 

Demonstrating the Increase in Design Reuse in a Certain Type of Valuable Commonality 

Using the Commonality Discount Factor (CDF) 

 Fort the last few series of tests, the commonality discounts associated with 

individual variables have been changed to reflect a general level of value associated with 

reuse in those particular variables. For all of the tests thus far, the discounts have been 

kept constant regardless of the type of commonality present. It is desirable to show that 

the commonality types can also be differentiated in this way. For this reason, the cDSP 

summarized in Table 4-11 is modified to give the Staggered Retirement (SR) type of 

commonality a lower commonality discount of 0.1 than all other types present, which 

receive a discount of 1.0. The aim in this test is to show that as the Archimedean weight 

of CDF in the overall objective function is increased, more and more instances of SR 

commonality are seen. It is hoped that other commonality occurs as well, but that an extra 

kick is given to SR-type commonality. As a side note, the redesign scenario used 

throughout this section (see Figure 4-4) exhibits four of the five types of commonality 



 261 

delineated in Section 3.3.2, the lone exception being the Staggered Introduction type of 

commonality.  

 Table 4-16 and Figure 4-13 summarize the results of this series of tests. As the 

weight of CDF in the objective function is increased from 0.1667 to 0.625, there is some 

increase in commonality throughout the whole family but absolutely no SR commonality 

until the CDF weight reaches 0.625.  

 
Table 4-16 – Instances of Valuable Staggered Retirement Commonality for Increasing CDF 
Archimedean Weight 

Weight 
Given to 

CDF 

Final CDF Value 
Achieved 

Total Number of 
Instances of SR 
Commonality 

(total max possible is 8) 

Total Number of Unique 
Variable Values 

(total max possible is 27) 

0 0.0406 0 27 
0.167 0.0045 0 27 
0.250 0.0039 0 26 
0.375 0.0043 0 27 
0.500 0.0038 0 26 
0.625 0.0029 1 25 
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Figure 4-13 – Effect of Increasing CDF Weight on Instances of Staggered Retirement Commonality 
 

 

It is not known exactly why this result is seen in the series of tests, or in the series 

of tests favoring just Perfect Commonality which can be seen in Appendix A. It is noted 

in Table 4-17, however, that even when CDF is given a weight of 0.625, there are just 

three other instances of commonality: two instances of Staggered Production 

commonality between new motors and the two pre-existing motors and one instance of 

Perfect Commonality between two new motors (see Table 4-17). In other words, no one 

type of commonality received a big push from this test. It is interesting to note, however 

that there are two sets of values of Na and I that are very close to one another. It is 

possible that, re-run with slightly different settings or with these variables constrained to 

be equal to one another, another good solution could be found with more commonality 

present.
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Table 4-17 – Family in Which Staggered Retirement Commonality is Particularly Valuable with 
CDF Given a Weight of 0.625 
Motor Na Nf L (cm) I (A) 
Existing Motor #1 1056 73 2.81 4.36 
Existing Motor #2 1007 73 2.61 4.02 
New Motor #1 740 107 0.69 3.16 
New Motor #2 955 99 0.99 3.43 
New Motor #3 1332 78 1.12 4.35 
New Motor #4 955 95 1.43 3.56 
New Motor #5 1333 66 1.43 5.11 
 

To try to further elucidate the impact of CDF when it is used to promote 

commonality of only one type, a third series of tests is run with the commonality 

discounts set such that only Staggered Production commonality has a low discount. The 

results of these tests are show in Table 4-16 and Figure 4-14. The commonality discounts 

given clearly encourage Staggered Production commonality as most all of the design 

reuse seen in the family at each weight is made up of sharing between systems with that 

type of overlap. These results may, however, be misleading as because of the definitions 

of the types of overlap used here, the vast majority of opportunities for design reuse are 

between systems that can have only the Staggered Production type of commonality. In 

fact, were it possible, all of the new systems could have the Staggered Production type of 

commonality with the two pre-existing systems. This number of opportunities is far 

larger than that associated with any other commonality type. 
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Table 4-18 – Instances of Valuable Staggered Production Commonality for Increasing CDF 
Archimedean Weight 

Weight 
Given to 

CDF 

Final CDF Value 
Achieved 

Total Number of 
Instances of SP 
Commonality  

(total max possible is 20) 

Total Number of Unique 
Variable Values 

(total max possible is 27) 

0 0.0406 0 27 
0.167 0.0065 1 26 
0.250 0.0064 2 25 
0.375 0.0046 4 24 
0.500 0.0042 3 24 
0.625 0.0039 4 23 
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Figure 4-14 – Effect of Increasing CDF Weight on Instances of Staggered Production Commonality 
 

To back up the observations made here, a totally new redesign scenario shown in 

Figure 4-15 is solved in Appendix A. This scenario is especially capable of testing CDF 

as a result of the fact that it involves only two types of commonality: Staggered 

Production and Production Gap. There is also a potential for equal amounts of either type 

of overlap although Staggered Production commonality is still at an advantage on account 
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of the fact that the motors close to each other in the production schedule have similar 

torque targets. The results of this example are largely similar to those shown here, 

suggesting that CDF can have a positive impact on a certain type of commonality given 

that the schedule of product releases gives ample opportunities for the type of 

commonality in question. 

 

 
Figure 4-15 – Special Redesign Scenario Run to Further Test CDF 
 

Demonstrating the Increase in Design Reuse in General in a Family at the Expense of a 

Certain Type of Valuable Commonality Using the Commonality Discount Factor (CDF) 

 While it has not been shown that CDF is useful in encouraging commonality of 

certain types, the opposite is the aim of the series of experiments discussed here. Just as it 

is desirable to be able to encourage commonality, it is desirable to be able to show that 

commonality of one type can be discouraged in favor of other types. For this reason, the 

cDSP summarized in Table 4-11 is adjusted to give Staggered Retirement commonality a 

high discount of 1.0 as compared to Perfect, Staggered Production, and Production Gap 

Commonalities, which all receive discounts of 0.1. The Archimedean weight of CDF in 
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the objective function is again adjusted between 0.1667 and 0.625 to see if commonality 

can be improved without increasing Staggered Retirement commonality as much. Given 

the results of the previous series of tests, it should not be a surprise to see in Table 4-19 

and Figure 4-16 that the desired result is achieved. 

 
Table 4-19 – Instances of Worthless Staggered Retirement Commonality for Increasing CDF 
Archimedean Weight 

Weight 
Given to 

RI 

Final CDF Value 
Achieved 

Total Number of 
Instances of SR 
Commonality  

(total max possible is 8) 

Total Number of Unique 
Variable Values 

(total max possible is 27) 

0 0.0406 0 27 
0.167 0.0178 0 26 
0.250 0.0177 0 25 
0.375 0.0160 0 24 
0.500 0.0102 0 23 
0.625 0.0115 0 22 

 

 The sample results shown in  

Table 4-20 are similar to those in Table 4-17 in that only a small amount of commonality 

is present except in the variable Na. All the motors designed in this experiment with a 

CDF weight of 0.625 meet their torque goals with an average family mass of 0.551 Kg 

and an average efficiency of 66.5%. 
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Figure 4-16 – Effect of Increasing CDF Weight on Instances of Worthless Staggered Retirement 
Commonality  
 

Table 4-20 –Family in Which Staggered Retirement Commonality is Worthless with CDF Given a 
Weight of 0.625 
Motor Na Nf L (cm) I (A) 
Existing Motor #1 1056 73 2.81 4.36 
Existing Motor #2 1007 73 2.61 4.02 
New Motor #1 780 106 0.65 3.18 
New Motor #2 928 99 1.03 3.41 
New Motor #3 1056 87 1.62 3.84 
New Motor #4 1219 87 1.03 3.89 
New Motor #5 1219 73 1.73 4.62 
 

Demonstrating the Increase in Design Reuse in General in a Family as the Commonality 

Discount Factor (CDF is Given More Weight) 

A pattern emerges in viewing the results of the previous series of tests. That 

pattern demonstrates quite clearly that increasing the weight of CDF in the objective 

function does lead to a general increase in design reuse throughout the family. To back up 
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this observation, an extra series of experiments is run with all commonality discounts set 

to equal values of 0.5. As the Archimedean weight is increased throughout the series of 

tests, the observed pattern in solutions to the cDSP repeats (as seen in Table 4-21 and 

Figure 4-17) with design reuse increasing as desired. 

 
Table 4-21 –Effect of Increasing CDF Weight on Instances of Design Reuse in a Scenario with 
Equally Valuable Commonality 

Weight Given to CDF Final CDF Value 
Achieved 

Total Number of Unique 
Variable Values 

(total max possible is 27) 
0 0.0406 27 

0.167 0.0158 26 
0.250 0.0157 25 
0.375 0.0148 24 
0.500 0.0094 23 
0.625 0.0119 21 
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Figure 4-17 – Effect of Increasing CDF Weight on Instances of Design Reuse When All Commonality 
is Equally Valuable 
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Demonstrating the Increased Presence of Design Reuse in a Family as CDF and RI are 

used Together 

 From the series of experiments presented thus far, it should be clear that both 

CDF and RI used separately can encourage or discourage commonality in certain 

variables when used properly. To make sure that both indices work together well, the 

cDSP for the redesign scenario is again reformulated as summarized in Table 4-22 to 

include both the Redesign Index and the Commonality Discount Factor with even 

weights.  

 A sample of the type of solution that is generated when RI and CDF are used in 

concert is shown in  

Table 4-23. The cDSP that is formulated to generate this family features even weights of 

¼ for RI and CDF in the Archimedean objective function, with target achievement given 

1/3 of the weight and the achievement of family mass and efficiency goals each given 1/6 

of the weight. In the makeup of RI, the number of wire turns in the armature (Na) is the 

only variable that is considered an easy redesign option. In the makeup of the CDF, Na is 

considered the only redesign option for which commonality is valuable. As a result, as 

seen in  

Table 4-23, the number of unique values of Na is reduced from seven to three, with only 

one value that is not based on the pre-existing systems. There is also one value of Nf that 

is very close to two others, suggesting that upon iteration, a good solution could be found 

with those three values constrained to be equal. 
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Table 4-22 – Summary of cDSP Reformulated to Test RI and CDF Together 
Given   
 • The redesign scenario formally described in Table 4-3 
Find   
 • Redesign variables 

• Deviation variables 
• Redesign difficulties as follows: 

  RDI(Na) = 1.0 
RDI(Nf) = 0.1 

RDI(L) = 0.1 
RDI(I) = 0.1 

 • Commonality Discounts as follows: 
  CD(Na) = 0.1 

CD(Nf) = 1.0 
CD(L) = 1.0 
CD(I) = 1.0 

Satisfy   
 • System average mass goal of 0.50Kg 

• System average efficiency goal of 0.70 
• System minimization of RI goal: 

{ }( ) RI RI 1RI X d d− ++ − =  
• System minimization of CDF goal: 

{ }( ) CDF CDF 1CDF X d d− ++ − =  

• Individual motor torque goals 
• The lower and upper bounds on each system 
• Deviation variable constraints 

Minimize    
 The deviation function: 

( ) ( )
( ) ( ) ( )
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Table 4-23 –Sample Redesigned Family Using Both RI and CDF with Weights of 1/3 Each 
Motor Na Nf L (cm) I (A) 
Existing Motor #1 1056 73 2.81 4.36 
Existing Motor #2 1007 73 2.61 4.02 
New Motor #1 1007 101 0.48 3.35 
New Motor #2 1056 96 0.87 3.53 
New Motor #3 1205 83 1.32 4.07 
New Motor #4 1205 87 1.04 3.87 
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New Motor #5 1205 74 1.77 4.57 
 
Comparison to An Alternative Commonality/Non-Commonality Measure 

 Although it is shown through the results earlier in this section that both the 

Redesign Index and the Commonality Discount Factor are effective in encouraging 

commonality in the ways they are intended, this is only the first step of demonstrating the 

empirical performance validity of the first hypothesis. The second step of this quadrant of 

the Validation Square (Pederson, Emblemsvag et al. 2000; Seepersad, Pederson et al. 

2005) is the demonstration that the positive results shown thus far can be tied to the use 

of these particular indices. It is difficult to identify a comparative index or metric against 

which to judge RI and CDF as they are meant for purposes quite distinct from earlier 

product family indices. In addition, they utilize a continuous range of redesign variables 

whereas many of the metrics discussed in Section 2.3.4 are predicated upon an ability to 

distinguish solely that certain elements of two family members are or are not exactly the 

same. The Product Family Penalty Function (PFPF) introduced by Messac and coauthors 

(Messac, Martinez et al. 2002; Messac, Martinez et al. 2002) is one exception. As 

discussed earlier, the PFPF is a sum of percentages of variation in each variable in a 

product family. As such, it makes use of a continuous range of design variables, albeit 

without a specific focus on issues related to redesign.  

 In order to compare the results of use of the PFPF in the redesign scenario with 

the results demonstrated earlier in this section, the compromise Decision Support 

Problem in Table 4-3 is reformulated as is summarized in Table 4-24. The only major 

difference in this formulation is the replacement of both RI and CDF with PFPF, for 

which the goal is minimization. 



 272 

 

 

Table 4-24 – Summary of cDSP Reformulated to Make Use of the PFPF  
Given   
 • The redesign scenario formally described in Table 4-3 
Find   
 • Redesign variables 

• Deviation variables 
Satisfy   
 • System constraints 

• System average mass goal of 0.50Kg 
• System average efficiency goal of 0.70 
• System minimization of PFPF goal: 

{ }( ) CDF CDF 1PFPF X d d− ++ − =  

 where PFPF is given by Equations 2.13 and 2.14 
• Individual motor torque goals 
• The lower and upper bounds on each system 
• Deviation variable constraints 

Minimize    
 The deviation function: 

( ) ( )
( ) ( )

f

5

1

5

1

      

where 1

avg avg avg avg avg avg

j j j

avg avg j

m m m

PFPF PFPF T T T
j

m PFPF T
j

Z w d d w d d

w d w d d

Z w w w w

η η η

η

− + − +

+ − +

=

=

= + + +

+ + +

= + + + =

∑

∑

 

 

 This formulation is implemented in Matlab and solved as in the other cases earlier 

in this section with increasing Archimedean weight given to PFPF between 0.1667 and 

0.667. The torque targets collectively receive 1/3 of the remaining Archimedean weights, 

as do the average mass and efficiency goals. Given seven starting points, the solutions 

with lowest objective function values are chosen and inspected. Those most promising 

solutions are summarized in Table 4-25, where it can be seen that the PFPF does indeed 

have a positive effect on the family. Use of the PFPF encourages commonality between 
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product family members and does so in increasing quantities as it is given more weight in 

the overall objective function. This result is plotted in Figure 4-18. What the PFPF cannot 

do, however, is help a designer identify solutions that contain increased commonality in 

certain variables or between systems that have a certain type of commonality as can RI 

and CDF respectively. 

 

Table 4-25 – Unique Variable Values for Increasing PFPF Archimedean Weight 

Archimedean Weight Given to Product 
Family Penalty Function 

Total Number of Unique Variable 
Values 

(out of a total possible number of 27) 
0 27 

0.167 25 
0.250 26 
0.375 24 
0.500 26 
0.625 21 

 

 In closing, it should be noted that the data presented in this section is a mere 

fraction of that which is generated from the series of tests that are described here and in 

Appendix A. Presenting all of this data would be both impossible and of little use to the 

reader. One of the reasons why the universal motor example is used throughout this 

dissertation is that although there are tradeoffs to be made between commonality, torque, 

mass, and efficiency goals, there are a number of feasible designs for any given set of 

targets. Even where it is not mentioned explicitly, all of the solutions presented here 

exhibit excellent performance characteristics in all ways including low masses close to 

the goal of 0.50 Kg, high efficiencies in the range of the goal of 70%, power 

requirements at or very near 300 Watts, and a physical layout that can be feasibly created. 
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Figure 4-18 – Effect of Weight Given to PFPF on Total Number of Unique Variable Values in Family 
 

4.3.5 - The Role of these Redesign Scenarios in the Empirical Structural and 

Performance Validity of Hypothesis #1 

In Section 4.3.4, a typical strategic sequential redesign problem is solved dozens 

of times in planned series of tests that demonstrate the effectiveness of the Redesign 

Index (RI) and Commonality Discount Factor (CDF) relative to their respective intended 

purposes. This fact, which will be discussed in greater detail here, lends credulity to the 

claim that the first hypothesis has both theoretical performance validity and empirical 

performance validity. 

One redesign scenario is used for much of this section of the chapter. In that 

example, two universal motors are redesigned in a limited way to realize a stream of five 

new motors over the next seven years. The redesign targets are known as is the schedule 



 275 

of the release of the new systems to meet those targets. The designer has four different 

redesign options to employ as many times and in as many combinations as he/she wants. 

One of the goals of the designer in the problem is the minimization of the amount of 

redesign effort that will be needed to create the new motors. In a slightly different 

problem, one existing motor is leveraged to create a stream of six new motors over eight 

years. All of the characteristics of both problems match up perfectly with the type of 

sequential and strategic redesign problem envisioned for the indices in Section 1.3.2. For 

this reason, it is claimed here that with respect to the first hypothesis, theoretical 

performance validity is demonstrated and that the redesign problems solved here are 

appropriate to use. 

In several series of tests using the first redesign scenario, it is shown that the 

Redesign Index (RI) is effective in increasing the amount of commonality in a redesign 

plan both in general and in specific variables. Increasing the difficulty associated with 

certain variables is shown to lead to an increase in design reuse in the final solutions, 

reflecting a desire to avoid complicated design changes. Decreasing one variable’s 

difficulty is shown to lead to more variety in that variable across the family. Not only is 

the RI effective in all of these ways, it stands apart from the Product Family Penalty 

Function (PFPF) (Messac, Martinez et al. 2002) to which it is compared in that the 

reduced design changes can be targeted to certain variables. 

In a much larger number of series of tests, the utility of the Commonality 

Discount Function (CDF) is shown in a very similar way. The usefulness of the CDF in 

increasing design reuse in general is shown by using it with all commonality discounts set 

to even levels. By setting discounts for certain variables to be low while all others are 
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high, it is shown that commonality can be encouraged in the variables in which it is the 

most valuable. It is also shown that decreasing the penalty associated with just one type 

of production overlap can lead to increases in commonality between systems with that 

overlap. However, this is the weakest effect shown in the chapter and may be heavily tied 

to the amount of the type of overlap that is present in the redesign scenario and in the 

types of systems that have that overlap. Finally, the opposites of all of these effects are 

shown to be true: increasing the discount associated with a certain variable will 

discourage commonality in it and increasing the discount associated with one type of 

commonality will largely keep those opportunities from being used. In fact, the CDF is 

shown to be almost more effective in discouraging commonality in certain places than in 

encouraging it. It is also observed that when attempting to encourage commonality in 

certain parts of a solution while discouraging it elsewhere, the most effective strategy is 

to use extreme values of the commonality discounts for each. Again, as compared to the 

PFPF, the commonality discount factor has the advantage of being able to target certain 

variables or types of commonality overlap for special consideration. 

Through these series of tests, it is shown that both of the indices are useful with 

respect to their intended purposes and that the contributions made can be tied directly to 

their use. The effect of using both in concert is also shown. Accordingly, the case for the 

empirical performance validity of the indices, the first hypothesis, and the overall 

research hypothesis is given a great boost. In Section 4.4, the indices are used 

successfully in concert with the constructal-inspired approach to redesign, lending them 

further credence.  
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 In closing, it is important to note that the experiments described here have been 

carried out without respect to the particular behavior of the universal motor redesign 

problem. That is, the variables chosen for experimentation are largely those that are 

available, not just those that show good results. The stack length is a variable that is 

oftentimes very hard to make common across the family. Indeed, in previous research it 

has been isolated as a scaling variable to provide variety to the whole family. In this 

section and the appendix, an attempt has been made to show all of the available results-

good or bad- in as concise a manner as possible. 

 

4.4 - VERIFICATION AND VALIDATION OF THE PROPOSED APPROACH TO 

SEQUENTIAL AND STRATEGIC REDESIGN 

In the previous section, the validity of the first hypothesis is bolstered through the 

demonstration of the utility of the proposed redesign indices. As a reminder, Hypothesis 

#1 is as follows:  

Hypothesis #1: Through the use of two indices as objectives in a redesign problem, better 

redesign strategies utilizing fewer design changes and more valuable targeted 

commonality can be identified.  

In this section, the goal is the demonstration of the validity of Hypothesis #2, 

which is as follows: 

Hypothesis #2: The redesign problem can be characterized as a problem of optimal 

access in a geometric space made up of the redesign objectives and solved using a 

modified, constructal-inspired approach based on the Product Platform Constructal 



 278 

Theory Method (PPCTM) using the Redesign Index (RI) and Commonality Discount 

Factor (CDF) as overall objectives in conflict with the individual systems’ goals. 

 

In order to demonstrate the validity of this hypothesis, a series of increasingly 

difficult redesign problems are addressed using the constructal inspired approach that has 

been proposed in Section 1.3.2 and described in detail in Chapter 3. The constructal-

inspired approach not only provides structure to the overall problem-solving process but 

also organizes the exploration of commonality between geometrically similar systems. It 

is hoped that by carrying out this series of tests, the reader can come to comprehend the 

utility of the constructal-inspired approach in both these regards and to see how the 

indices bolster that utility, backing it up in certain ways. 

The example used throughout this section is an expanded version of the universal 

motor problem used earlier. As shown in Figure 4-1b, the number of variables in the 

problem has been increased from four to eight although the goals in each of the scenarios 

that follow are similar: motors with new torque values are to be created based on redesign 

while minimizing the effort expended, maximizing the use of valuable commonality, and 

bringing both the mass and efficiency of the whole family close to targets. As a reminder 

to the reader, the redesign options available to the designer are as follows: 

• Na – Number of turns of wire in the armature/rotor 

• Awa – Cross-sectional area of the wire in the armature/rotor 

• Nf – Number of wire turns in the field/stator 

• Awf – Cross-sectional area of the wire in the field/stator 

• r – Radius of the motor 
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• t – Thickness of the field/stator 

• L – Stack length of the motor 

• I – Current 

In order to solve the redesign problems presented here in a constructal-inspired 

manner, the solution scheme has been implemented in Matlab as shown in Figure 4-19. 

While this implementation appears wildly different from that which is used in the 

previous section to exercise the indices, it is actually made up of more complicated 

versions of many of the same functions in Figure 4-5 with several unique functions added 

to handle the space elements that fill the market space. These functions can all be seen in 

Section C.1. 
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Figure 4-19 – Flowchart of Matlab Implementation of Full Constructal-Inspired Approach 
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4.4.1 - “Simple Redesign” Example Scenario 

The most basic type of redesign is the leveraging of one existing system to create 

one new system, as shown in Figure 4-20. This is the basic redesign scenario addressed in 

here. One existing universal motor is to be redesigned to realize one new motor with 

different torque requirements. While not a strategic and sequential redesign problem like 

the ones envisioned in Chapter 1, this is considered a building block towards the solution 

of those problems. The major issue facing a designer in this situation is how –if at all- he 

or she will leverage elements of the existing motor. The goal in this section is to illustrate 

how a constructal-based approach can be used to help identify the most promising 

leveraging opportunities. The approach is explained step-by-step throughout the rest of 

this section. 

 

 
Figure 4-20 – Flowchart Representation of the Issues in Simple Redesign 
 

Step 1 – Definition of the Redesign Problem 

 In this scenario, a designer would like to leverage an existing universal motor 

with an output of 0.050 Nm to create a new motor with a torque output of 0.250 Nm that 

will be rolled out and eventually supplant the existing motor as shown in the schedule in 

Figure 4-21. The commonality opportunity matrix that results from this schedule is 

shown in Figure 4-22. It is desirable for the two motors to have an average efficiency of 
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70% and an average mass of around 0.500 Kg. At the same time, the designer would like 

to minimize the amount of effort associated with the realization of the new motor, using 

the most valuable commonality available, so minimization of both the Redesign Index 

(RI) and Commonality Discount Function (CDF) will be goals. 

New Motor #1
Existing Motor #1

Year
4321

New Motor #1
Existing Motor #1

Year
4321

New 
Motor

Existing 
Motor

XSP

SPX

New 
Motor

Existing 
Motor

New 
Motor

Existing 
Motor

XSP

SPX

New 
Motor

Existing 
Motor

 
Figure 4-21 – Redesign Schedule Matrix for the 
“Simple Redesign” Scenario 

Figure 4-22 – Commonality Opportunity 
Matrix for the “Simple Redesign” Scenario 

 

 This basic redesign problem is summarized in Table 4-26 with unknown values 

and targets highlighted in boldfaced text. In the next step, the objective functions that will 

be used in this problem are formulated. 

 

Table 4-26 – Summary of “Simple Redesign” Problem 
 Existing Motor #1 New Motor #1 
Responses of Interest 
Torque 0.05 Nm 0.25 Nm 

Mass 0.499 Kg Family Goal: Average mass of 
0.50 Kg 

Efficiency 71.7 % Family Goal: Average 
efficiency of 70% 

Variables 
Number of Wire Turns in the 
Armature (Na) 730 ? 

Area of Wire in Armature (Awa) 0.205 mm2 ? 
Number of Wire Turns in Field 
(Nf) 45 ? 
Area of Wire in Field (Awf) 0.203 mm2 ? 
Radius of motor (r) 3.62 cm ? 
Thickness of motor (t) 9.69 cm ? 
Stack Length (L) 0.998 cm ? 
Current (I) 3.65 A ? 
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Step 2 – Formulate Objective Functions 

 Based on the problem description put together in the first step, the designer’s 

goals can be formulated as objective functions. The goals described thus far include: 

• Bringing the new motor’s torque output close to the target value of 0.250 Nm; 

• Bringing the pair of motors’ average mass and average efficiency close to 

their targets of 0.500 Kg and 70% respectively; and  

• Minimization of RI and CDF in an effort to minimize the effort and maximize 

the value associated with the redesign effort. 

Each of these goals is described and modeled here in detail. First, the torque goal 

is described using Equation 3.9 as follows: 

( ) 10.250 T T
T x d d− ++ − =  [4.25] 

 Next, the mass and efficiency goals are similarly described using Equation 3.9 

and Equation 3.11: 

( ) 10.50
family

m m
m x d d− ++ − =  

[4.26] 

10.70
family d dη η

η − ++ − =  [4.27] 

 Equation 3.12 is used to model the goals related to the minimization of the RI and 

CDF as follows: 

max

( ) 0( ) RI RI
RI x d dRI x

− +  + − = 
 

 [4.28] 

max

( ) 0( ) CDF CDF
CDF x d dCDF x

− +  + − = 
 

 [4.29] 
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 Since the maximum values for both RI and CDF are 1.0 if constraints are not 

violated, the goals become: 

( ) 0RI RIRI x d d− ++ − =  [4.30] 

( ) 0CDF CDFCDF x d d− ++ − =  [4.31] 

 In order to assess the values for RI, the designer must determine the redesign 

difficulties associated with each option, which in this case are the adjustment of the eight 

variables in Table 4-1. The difficulties chosen are shown in Table 4-27 and are based 

partially upon the reasoning explained in Section 4.2 and partially upon the observations 

made in Section 4.3.4 where it is noted that extreme values of both the redesign 

difficulties and commonality discounts yield better differentiation between results. The 

values noted in Table 4-27 will be used in the scenarios presented throughout the rest of 

Section 4.4. 

 

Table 4-27 – Redesign Difficulties Assigned to Variables in “Simple Redesign” Scenario 
Number 

of 
Turns 

of Wire 
in Arm. 

Area of 
Wire in 
Arm. 

Number 
of 

Turns 
of Wire 
in Field 

Area of 
Wire in 

Field 

Radius 
of 

Motor 

Thickness 
of Field 

Stack 
Length Current 

(Na) (Awa) (Nf) (Awf) (r) (t) (L) (I) 
0.1 0.5 0.1 0.5 0.5 0.5 1.0 0.1 

 

 Similarly, in order to assess values of CDF, the designer must decide on discounts 

that represent the value of commonality in each variable for each type of production 

overlap. The values chosen for this problem are shown in Table 4-28. Although there is 

only Staggered Production commonality present in the “Simple Redesign” scenario being 
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addressed here, all of the discounts have been described for use in scenarios later Section 

4.4. 

 

Table 4-28 – Commonality Discounts Associated with the Variables and Types of Production Overlap 
Present in the “Simple Redesign” Scenario 

Number 
of Turns 
of Wire 
in Arm. 

Area of 
Wire in 
Arm. 

Number 
of 

Turns 
of Wire 
in Field 

Area of 
Wire in 

Field 

Radius 
of 

Motor 

Thickness 
of Field 

Stack 
Length Current 

Type of 
Commonality (Na) (Awa) (Nf) (Awf) (r) (t) (L) (I) 
Perfect 0 0 0 0 0 0 0 0 
Staggered 
Production 0.2 0.6 0.2 0.6 0.6 0.6 0.6 0.2 

Staggered 
Introduction 0.1 0.5 0.1 0.5 0.5 0.5 0.5 0.1 

Staggered 
Retirement 0.1 0.4 0.1 0.4 0.4 0.4 0.4 0.1 

Production 
Gap 0.3 0.7 0.3 0.7 0.3 0.3 0.3 0.3 

 

Finally, the designer must formulate the overall objective function for the 

redesign problem. The designer here chooses to utilize an Archimedean weighted sum 

approach, generating the following goal: 

( ) ( )
( ) ( ) ( )       

where: 
0.222

0.333
0.111

avg avg avg avg avg avg

avg avg

m m m

RI RI CDF CDF T T T

T

RI CDF

m

Z w d d w d d

w d w d w d d

w
w w
w w

η η η

η

− + − +

+ + − +

= + + +

+ + + +

=
= =
= =

 [4.32] 

 
 While a cDSP goal-programming formulation is used to model the designer’s 

goals and preferences here, there is no reason why other models such as value theory, 

utility theory, or physical programming could not be used for this step. As mentioned in 
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Section 3.4.2, there are also different goal formulations for goals in the cDSP such as 

maximization that have not been utilized here. 

 

Step 3 – Identify and Describe Redesign Options 

 As is hinted earlier, the redesign options available to the designer include all eight 

of the basic universal motor variables listed in Table 4-1. These variables are organized 

into stages or constructs in the next step. 

 

Step 4 – Identify Number of Stages, Narrow Redesign Options, Create Groups and 

Hierarchically Rank Them 

 Having identified the redesign options to be explored in this problem, they are 

now grouped and ranked hierarchically according to their expected impact on the 

responses of interest. In the case of this redesign scenario, the primary response of 

interest is the changing torque output since it is the major differentiating factor between 

the existing universal motor and the new one.  

 Based on the results presented in Section 4.3.4, it can be seen that it is definitely 

possible to make some design variables constant across a large number of universal 

motors. Meanwhile, there are other variables like the stack length and current which are 

more difficult to reuse from motor to motor. As a starting point, the variables are 

organized according to the groupings used by Hernandez and coauthors (Hernandez, 

Allen et al. 2002) who designed a mass customized family of motors for a similar range 

of torques. These groupings are: 

• Stage 1 (smallest space elements, most commonly changed variables): 



 287 

 Radius of the motor (r) 

 Thickness of the field (t) 

• Stage 2 (middle-range space elements, variables less likely to be changed): 

 Cross-sectional area of wire in the armature (Awa) 

 Cross-sectional area of wire in the field (Awf) 

• Stage 3 (largest space elements, variables that can be made common across 

the whole space or which are costly to change): 

 Number of wire turns in armature (Na) 

 Number of wire turns in field (Nf) 

 Stack length (L) 

 Current (I) 

While this arrangement of modes is used successfully by Hernandez and 

coauthors in their work and seems to make sense logically at first, it is shown later on in 

this section that it does not serve the redesign problem well.  

 

Step 5 – Define Boundaries of Market Space 

 The existing system and redesign target provide initial definitions for the redesign 

space. However to make sure that there is enough room around these two nominal torque 

values to consider designs that compromise torque output in one direction or another, a 

buffer of 5% of the preliminary range is added. This results, as shown in Figure 4-23, in a 

redesign space that starts at a torque value of 0.0477 Nm and extends to 0.2625 Nm. This 

is the space that will be addressed in a constructal-inspired manner. 
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Figure 4-23 – Redesign Market Space for “Simple Redesign” Example 
 

Step 6 – Formulate the Multistage Problem 

 Having defined the redesign space and established the modes that will be used at 

each stage of the constructal-inspired approach, the multi-stage problem can now be 

formulated. As Discussed in Section 3.4.6, the major change in this step from its parallel 

in the Product Platform Constructal Theory Method (Hernandez, Allen et al. 2003) is that 

in addition to deciding the shape of each stage’s space elements, the values of the modes 

to be used in each stage must be found.  

 From Table 3-9Table 3-9, the redesign decision at the first stage can be 

formulated. At this stage, the designer’s task is to decide on the shape and size of the 

smallest space elements and to decide the radius and thickness that will be used in each 

space element that is active. In Table 4-29, this first-stage decision is summarized in the 

form of a compromise Decisions Support Problem. 



 289 

 

Table 4-29 – The First Stage Decision in the “Simple Redesign” Scenario 
For Stage 1 

Given: • The one -dimensional market space of torque values 
• The design of the existing system, with a torque output of 0.05 Nm 
• The modes of managing product change to be utilized at Stage 1: 

  • Radius of the motor (r) 
• Thickness of the field (t) 

Find:  The value of decision variables  
• [ ](1) (1)x T= ∆  to determine sizes of space elements; and  

• { } { }1,
,k kk

X r t=  for each space element k  

The deviation variables and b bd d− + , for all four goals 
Satisfy: Bounds: • Variable bounds:  

1.0 10.0
0.5 10.0

cm r cm
cm t cm

≤ ≤
≤ ≤

 

• Space element sizes 0.0477 (1) 0.2625Nm T Nm≤ ∆ ≤  
• , 0b bd d− + ≥  for b = 1,…4 
• 0b bd d− +× =  for b = 1,…4 

 Constraints: • { } { }, exi k i
X X

ε
=  where { }ex i

X
ε

 are the variables from the 

ith construct from any existing system ε that happens to be 
contained in space element k 

• Power = 300 W 
• Feasibility ≥ 1.0 

 Goals: • Torque goal: ( ) 10.250 T T
T x d d− ++ − =  

• Mass goal: ( ) 10.50
family

m m
m x d d− ++ − =  

• Efficiency goal: 10.70
family d dη η

η − ++ − =  

• RI goal: ( ) 0RI RIRI x d d− ++ − =  
• CDF goal: ( ) 0CDF CDFCDF x d d− ++ − =  

Minimize: ( ) ( )
( ) ( ) ( )          

where: 0.222,  0.333,  and 0.111

avg avg avg avg avg avg

avg avg

m m m

RI RI CDF CDF T T T

T RI CDF m

Z w d d w d d

w d w d w d d

w w w w w

η η η

η

− + − +

+ + − +

= + + +

+ + + +

= = = = =
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 At the second of the three stages, the designer’s goal is first to determine how 

many first-stage space elements will be combined to form each of the second-stage 

elements. It is assumed here that the second-stage space elements can be no smaller than 

those of the previous stage. The designer’s second goal is to determine the values of the 

second-stage modes of redesign that will be made common across each second-stage 

space element. Thus, the second-stage decision is a slightly more complicated than was 

that of the first stage, as shown in Table 4-30. 

 

Table 4-30 – The Second Stage Decision in the “Simple Redesign” Scenario 
For Stage 2 

Given: • The one -dimensional market space of torque values 
• The design of the existing system, with a torque output of 0.05 Nm 
• The decision variables of the previous stage [ ](1) (1)x T= ∆  and 

{ } { }1,
, , ,

k ka f k kk
X N N L I=  

• The modes of managing product change to be utilized at Stage2: 
  • Cross-sectional area of wire in the armature (Awa) 

• Cross-sectional area of wire in the field (Awf) 
Find:  The value of decision variables  

• [ ](2) (2)x T= ∆  to determine sizes of space elements; and  

• { } { }2,
,

k kwa wfk
X A A=  for each space element k  

The deviation variables and b bd d− + , for all four goals 
Satisfy: Bounds: • Variable bounds: 

2 2

2 2

0.01 1.0

0.01 1.0
wa

wf

mm A mm

mm A mm

≤ ≤

≤ ≤
 

• Space element sizes 0.0477 (2) 0.2625Nm T Nm≤ ∆ ≤  
• , 0b bd d− + ≥  for b = 1,…Mtot 
• 0b bd d− +× =  for b = 1,…Mtot 

 Constraints: • { } { }, exi k i
X X

ε
=  where { }ex i

X
ε

 are the variables from the 

ith construct from any existing system ε that happens to 
be contained in space element k 

• (2) (1)T T∆ ≥ ∆  
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• Power = 300 W 
• Feasibility ≥ 1.0 

 Goals: • Torque goal: ( ) 10.250 T T
T x d d− ++ − =  

• Mass goal: ( ) 10.50
family

m m
m x d d− ++ − =  

• Efficiency goal: 10.70
family d dη η

η − ++ − =  

• RI goal: ( ) 0RI RIRI x d d− ++ − =  
• CDF goal: ( ) 0CDF CDFCDF x d d− ++ − =  

Minimize: ( ) ( )
( ) ( ) ( )       

where: 0.222,  0.333,  and 0.111

avg avg avg avg avg avg

avg avg

m m m

RI RI CDF CDF T T T

T RI CDF m

Z w d d w d d

w d w d w d d

w w w w w

η η η

η

− + − +

+ + − +

= + + +

+ + + +

= = = = =

 

 

 The decision at the third stage is similar to that of the second-stage. Having 

identified the sizes of the space elements for the first two stages, the third stage elements 

are made up of combinations of second-stage elements. The variable values for the third 

mode (the number of wire turns in the armature, number of wire turns in the field, the 

stack length, and the current) must be identified as well for each active space element. 

The decision faced by the designer is described in Table 4-31. 

 

Table 4-31 – The Third Stage Decision in the “Simple Redesign” Scenario 
For Stage 3 

Given: • The one -dimensional market space of torque values 
• The design of the existing system, with a torque output of 0.05 Nm 
• The decision variables of the previous stage [ ](2) (2)x T= ∆  and 

{ } { }2,
,

k kwa wfk
X A A=   

• The modes of managing product change to be utilized at Stage2: 
  • Number of wire turns in armature (Na) 

• Number of wire turns in field (Nf) 
• Stack length (L) 
• Current (I) 

Find:  The value of decision variables  
• [ ](3) (3)x T= ∆  to determine sizes of space elements; and  
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• { } { }3,
, , ,

k ka f k kk
X N N L I=  for each space element k  

The deviation variables and b bd d− + , for all four goals 
Satisfy: Bounds: • Variable bounds: 

100 1500
1 500

1.0 10
0.1 6.0

a

f

N
N

cm L cm
A I A

≤ ≤

≤ ≤

≤ ≤
≤ ≤

 

• Space element sizes 0.0477 (3) 0.2625Nm T Nm≤ ∆ ≤  
• , 0b bd d− + ≥  for b = 1,…Mtot 
• 0b bd d− +× =  for b = 1,…Mtot 

 Constraints: • { } { }, exi k i
X X

ε
=  where { }ex i

X
ε

 are the variables from the 

ith construct from any existing system ε that happens to 
be contained in space element k 

• (3) (2)T T∆ ≥ ∆  
• Power = 300 W 
• Feasibility ≥ 1.0 

 Goals: • Torque goal: ( ) 10.250 T T
T x d d− ++ − =  

• Mass goal: ( ) 10.50
family

m m
m x d d− ++ − =  

• Efficiency goal: 10.70
family d dη η

η − ++ − =  

• RI goal: ( ) 0RI RIRI x d d− ++ − =  
• CDF goal: ( ) 0CDF CDFCDF x d d− ++ − =  

Minimize: ( ) ( )
( ) ( ) ( )      

where: 0.222,  0.333,  and 0.111

avg avg avg avg avg avg

avg avg

m m m

RI RI CDF CDF T T T

T RI CDF m

Z w d d w d d

w d w d w d d

w w w w w

η η η

η

− + − +

+ + − +

= + + +

+ + + +

= = = = =

 

 

Step 7 – Solve the Multistage Problem 

 As is discussed in Section 3.4.7, the redesign problem is solved partially 

exhaustively and partially by solving compromise Decision Support Problems. If it is 

assumed that all space elements evenly divide up the redesign market space, then the 

realm of all possible arrangements of space elements can be searched exhaustively. It is 
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assumed here that the designer arbitrarily chose that there can be no more than four space 

elements dividing up the space at any stage. This number is excessive since there are only 

two motors at either end of the space, but it gives the search flexibility. Thus, the number 

of space elements at each stage is searched exhaustively. For each space element 

arrangement that is feasible –meaning that the second space elements are larger than the 

first stage ones and so on- all possible assignments of the space elements to the redesign 

target are considered. Those that fail the “common sense test” explained in Section 3.4.7 

are eliminated. For those that remain, the compromise Decision Support Problems are 

solved using the Matlab code in Appendix B and the built-in fmincon function. The 

fmincon function utilizes sequential linear programming to identify variable values 

meeting the physical constraints, the constraints of the space elements, and any equality 

constraints from space elements that are shared with the existing system. Seven start 

points are used for each target assignment in an attempt to see if they have any effect on 

the end solution. The redesign plans that are generated are discussed in the next section. 

 

Step 8 – Examine Redesign Portfolios an Consider Iteration 

 In this step, it is the designer’s task to examine the solutions identified as most 

promising according to their objective function values and consider whether they are 

truly representative of the goals that he/she had when beginning the redesign task. 

Solving the redesign problem for the scenario described here yields the solution shown in 

Table 4-32 with instances of redesign use in highlighted boxes. A motor with good 

physical qualities that shares some commonality with the original is found. While it has a 

good low mass, its efficiency is a little bit low.  
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What is more interesting, however, is that this solution is found using a space 

element arrangement shown in Figure 4-24 wherein the existing motor and the new one 

share absolutely no space elements. In short, all of the commonality seen in the solution 

comes as a result of use of the Redesign Index and Commonality Discount Factor. In fact, 

the most promising solution in which the space element setup mandates sharing of certain 

values fails, with the variable values violating their respective constraints by a wide 

margin. All the other redesign options in which commonality is forced by space elements 

suffer from similar problems, if not worse. It should be noted that these solutions are not 

bad in that they meet the redesign goals, but clearly the constructal-inspired commonality 

exploration is not working. 

 

Table 4-32 – Most Promising Solution “Simple Redesign” Problem Based Solely on Objective 
Function Value 
 Existing Motor #1 New Motor #1 
Responses of Interest 
Torque 0.05 Nm 0.25 Nm 
Mass 0.499 Kg 0.537 Kg 
 Family Average: 0.518 Kg 
Efficiency 71.7 % 56.6% 
 Family Average: 64.2% 
Variables 
Number of Wire Turns in the 
Armature (Na) 730 730 
Area of Wire in Armature (Awa) 0.205 mm2 0.217 mm2 
Number of Wire Turns in Field 
(Nf) 45 69 
Area of Wire in Field (Awf) 0.203 mm2 0.203 mm2 
Radius of motor (r) 3.62 cm 3.29 cm 
Thickness of motor (t) 9.69 cm 9.69 cm 
Stack Length (L) 0.998 cm 1.32 cm 
Current (I) 3.65 A 6.00 A 
Note: instances of design reuse shown in boldly outlined cells 
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Figure 4-24 – Space Element Arrangement of Most Promising Solution Using Old Constructs 
 

To get some insight into the failure of all solutions that utilize the commonality 

created by the space elements, the problem is re-solved without the use of the redesign 

metrics RI and CDF. After the problem is solved, all the solutions are re-evaluated using 

RI and CDF to see how much commonality is present in each. The point of this test is to 

see whether feasible designs with some commonality can be found utilizing the 

constructal-based approach. Without the redesign metrics in the objective function, the 

most promising feasible solutions should be those in which motors’ variables share space 

elements. Instead, all those cases feature infeasible designs or the solution process failed 

outright. Again, the best redesign options feature good designs, but utilize arrangements 

of variables that violate the space element arrangements set forth for them. Clearly, 

forcing commonality to be present in the arrangement of modes chosen by Hernandez 

and coauthors (Hernandez, Allen et al. 2002) is not working. 

 Based on the body of results from this problem, it seems clear that the 

arrangement of modes into constructs used by Hernandez and coauthors (Hernandez, 
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Allen et al. 2002) is not appropriate for this redesign problem as not only is it not helping 

identify promising solutions but also seems to be hindering the hunt for good redesign 

plans. Further experimentation with the old constructs suggested by Hernandez and 

coauthors in the more complicated scenarios that are solved in the following three 

sections has shown such negative results repeatedly. Those space element arrangements 

in which some elements are shared invariably result in solutions that are inferior, if not 

completely infeasible. In response, three other arrangements of modes shown in Table 

4-33 are proposed and tested thoroughly utilizing both this redesign scenario and the ones 

in the three subsequent sections. For the sake of brevity, the results of these tests are not 

shown here. 

 

Table 4-33 – Original and Newly Tested Construct Arrangements 

Variable 

Original 
Constructs 
(Hernandez, 
Allen et al. 

2002) 

New Construct 
Arrangement 

#1 

New Construct 
Arrangement 

#2 

New Construct 
Arrangement 

#3 

Na 3rd stage 3rd stage 3rd stage 2nd stage 
Awa 2nd stage 1st stage 3rd stage 3rd stage 
Nf 3rd stage 3rd stage 2nd stage 1st stage 
Awf 2nd stage 1st stage 3rd stage 4th stage 
r 1st stage 2nd stage 1st stage 1st stage 
t 1st stage 1st stage 2nd stage 4th stage 
L 3rd stage 2nd stage 1st stage 3rd stage 
I 3rd stage 3rd stage 1st stage 2nd stage 
Note: 1st stage elements are the smallest. Sizes for subsequent elements must be at least as large. 
 

While each arrangement in Table 4-33 improves slightly upon the last, the final 

one (#3) delivers the most consistently superior results in all the experiments discussed in 

this chapter. The criteria for making this statement is based in the second hypothesis in 

which it is suggested that the constructal-inspired approach should provide a way for 
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organizing the exploration of commonality between existing and new systems that are 

geometrically close to one another. If Hypothesis 2.1 is to be demonstrated to be true, 

then it must be shown that at some times in some situations, the use of variables arranged 

into stages leads to good solutions, even if still better solutions are found by adding the 

use of the two redesign metrics. 

On the flip side of the argument, if Hypothesis 2.2 is to be shown to be true, then 

it must be shown that even in cases where the use of constructal-inspired space elements 

leads to commonality, the use of redesign indices can improve the amount or location of 

commonality as judged by the designer’s preferences. What this means is that it is not 

enough to show that constructal-inspired solutions are best but also that they can work in 

conjunction with the indices. 

 With these statements in mind, the reader is asked to consider the solutions 

presented previously in Table 4-32 and below in Table 4-34. In Table 4-32, a solution is 

presented that is generated using the original arrangement of variables/modes into 

stages/constructs. It has the best objective function value of any space element 

arrangement although the space elements force no commonality. In Table 4-34, a solution 

is presented that makes use of the shared space elements as shown in Figure 4-25 to have 

just as many instances of design reuse as the other solution. The design is actually only 

slightly different from that obtained using the previous arrangement of modes (see Table 

4-32) but it does so without violating any constraints. Similar results have been generated 

for each of the next three scenarios, so for the rest of this chapter, only this new four-

stage arrangement of modes is used. 
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Table 4-34 – Most Promising Solution “Simple Redesign” Problem Using New Mode Arrangement #3 
and Constructal Commonality 
 Existing Motor #1 New Motor #1 
Responses of Interest 
Torque 0.05 Nm 0.25 Nm 
Mass 0.499 Kg 0.537 Kg 
 Family Average: 0.518 Kg 
Efficiency 71.7 % 56.6 % 
 Family Average: 64.2 % 
Variables 
Number of Wire Turns in the 
Armature (Na) 730 730 

Area of Wire in Armature (Awa) 0.205 mm2 0.217 mm2 
Number of Wire Turns in Field 
(Nf) 45 69 

Area of Wire in Field (Awf) 0.203 mm2 0.203 mm2 
Radius of motor (r) 3.62 cm 3.28 cm 
Thickness of motor (t) 9.69 cm 9.69 cm 
Stack Length (L) 0.998 cm 1.33 cm 
Current (I) 3.65 A 6.00 A 
Note: instances of design reuse shown in boldly outlined cells 
 

 
Figure 4-25 – Space Element Arrangement for Most Promising Solution Utilizing Constructal 
Commonality and Third New Mode Arrangement 
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 At this point, the designer would want to consider whether the results generated 

are similar to what he/she was hoping to get out of the redesign exercise. As shown here, 

if the results are not acceptable, the designer might consider expanding the redesign 

market space buffer or rearranging the modes into different stages. If commonality is 

present but not in the places where it would be most valuable or would lead to a reduction 

in redesign effort, the designer may wish to adjust the redesign difficulties or 

commonality discounts and re-solve the problem. 

 

4.4.2 - “Redesign Based on Variety” Example Scenario 

Having demonstrated “simple redesign” in the previous section, a slightly more 

complicated scenario (see Figure 4-26) is addressed here. In this scenario, a designer 

would like to leverage the elements of two universal motors that provide the most value 

and change only those elements that require little effort in the process of creating the 

design for one new motor. The major issue that now faces the designer is how best to 

utilize leveraging in the presence of even more options. Which elements, if any, should 

be taken from each motor? Which elements should be redesigned and from which 

existing motor should the redesign process start for each element. This is the problem 

solved in a constructal-inspired manner here.  

 Many of the steps of the constructal-inspired approach to this scenario are similar 

to that which is addressed in Section 4.4.1, so here the discussion of the steps is limited to 

those changes that are dictated by the new scenario. 
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Figure 4-26 – Flowchart Representation of the Issues in Redesign Based on Variety 
 

Step 1 – Definition of the Redesign Problem 

 In this redesign scenario, the designer wishes to leverage two existing motors with 

torques of 0.05 Nm and 0.25 Nm respectively to create one new motor with a torque of 

0.15 Nm that will be rolled out next year and replace the two existing motors as shown in 

the schedule in Figure 4-27. The opportunities for commonality are shown in Figure 

4-28, but are slightly misleading, as the perfect commonality between the two existing 

systems is not really an “opportunity.” The only meaningful overlap is of the “Staggered 

Production” type and is between the two existing motors and the one new motor. 
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 Again, the designer has the goal of minimizing the effort associated with this 

redesign process and of maximizing the value of those elements that are carried over to 

the new motor. The designer also desires an average family mass of 0.50 Kg with an 

average family efficiency of 70%. This redesign scenario is summarized in Table 4-35. 

 

New Motor #1
Existing Motor #2
Existing Motor #1

Year
4321

New Motor #1
Existing Motor #2
Existing Motor #1

Year
4321

SPXExisting 
Motor #2

SP

Existing 
Motor #2

XSPNew 
Motor

SP

New 
Moto

Existing 
Motor #1 X

Existing 
Motor #1

SPXExisting 
Motor #2

SP

Existing 
Motor #2

XSPNew 
Motor

SP

New 
Moto

Existing 
Motor #1 X

Existing 
Motor #1

 
Figure 4-27 – Redesign Schedule Matrix for the 
“Redesign Based on Variety” Scenario 

Figure 4-28 – Commonality Opportunity 
Matrix for “Redesign Based on Variety 
Scenario” 

 

Table 4-35 – Summary of “Redesign Based on Variety” Problem 
 Existing Motor #1 Existing Motor #2 New Motor #1 
Responses of Interest 
Torque 0.05 Nm 0.25 Nm 0.15 Nm 

Mass 0.499 Kg 0.619 Kg Family Goal: Average 
mass of 0.50 Kg 

Efficiency 71.7 % 62.5 % Family Goal: Average 
efficiency of 70% 

Variables 
Number of Wire Turns in the 
Armature (Na) 730 1007 ? 

Area of Wire in Armature 
(Awa) 0.205 mm2 0.224 mm2 ? 
Number of Wire Turns in 
Field (Nf) 45 73 ? 
Area of Wire in Field (Awf) 0.203 mm2 0.246 mm2 ? 
Radius of motor (r) 3.62 cm 2.35 cm ? 
Thickness of motor (t) 9.69 cm 6.17 cm ? 
Stack Length (L) 0.998 cm 2.61 cm ? 
Current (I) 3.65 A 4.02 A ? 
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Step 2 – Formulate Objective Functions 

 The objective functions for this scenario are exactly the same as for the “simple 

redesign scenario” presented in Section 4.4.1. The commonality discounts and redesign 

difficulties are also the same. 

 

Step 3 – Identify and Describe Redesign Options 

 The redesign options employed in this scenario are exactly the same as for the 

“simple redesign scenario” presented in Section 4.4.1. 

 

Step 4 – Identify Number of Stages, Narrow Redesign Options, Create Groups and 

Hierarchically Rank Them 

 As discussed in Section 4.4.1, experimentation with this scenario and the others 

has led to the decision to utilize the third new arrangement of the modes (see Table 4-33), 

which creates a four-stage approach. 

 

Step 5 – Define Boundaries of Market Space 

 Although there is a third motor in this redesign scenario, the extreme values of 

torque remain the same. Given the same 5% buffer as is used in the previous example in 

Section 4.4.1, the market space is of the same size, as shown in Figure 4-29. 
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Figure 4-29 – Redesign Market Space for “Redesign Based on Variety” Example 
 

Step 6 – Formulate the Multistage Problem 

 The only change to the decision process at each stage is that the designer must 

consider the presence of two existing motors as opposed to one. This situation comes into 

play in assessing the feasibility of an arrangement of space elements since two existing 

systems with different variable values at a particular stage cannot share a space element 

at that stage. Otherwise, the problem is the same as in the “simple redesign” scenario. 

 

Step 7 – Solve the Multistage Problem 

 As a result of the presence of three motors in the redesign space, the decision is 

made to utilize as many as eight space elements in dividing up the redesign space. Again, 

this decision is somewhat arbitrary, but is made in such a way that it provides flexibility 

to place space elements all throughout the redesign space if needed. 

 Otherwise, the solution process for this scenario is exactly the same as for the 

“simple redesign” scenario.” With the addition of more possible space element 

arrangements, the solution process takes a significantly longer period of time. 
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Step 8 – Examine Redesign Portfolios an Consider Iteration 

 The two existing motors are quite different from each in design, meaning that 

there is twice the opportunity for the newly redesigned motor to share variable values 

with pre-existing systems. Indeed, when the redesign plans are examined, the new motor 

exhibits much more design reuse than in the “simple redesign” scenario in Section 4.4.1. 

The solution summarized in Table 4-36 is the one with the best overall objective function 

value, but as shown in Figure 4-30 it again makes no use of space elements to promote 

commonality. 

 

Table 4-36 – Most Promising “Redesign Based on Variety” Solution Based Solely on Objective 
Function Value 
 Existing Motor #1 Existing Motor #2 New Motor #1 
Responses of Interest 
Torque 0.05 Nm 0.25 Nm 0.150 Nm 

0.499 Kg 0.619 Kg 0.500 Kg Mass Family Average: 0.540 Kg 
71.7 % 62.5 %  70.5 % Efficiency Family Average:  68.0 % 

Variables 
Number of Wire Turns in Armature (Na) 730 1007 730 
Area of Wire in Armature (Awa) 0.205 mm2 0.224 mm2 0.205 mm2 
Number of Wire Turns in Field (Nf) 45 73 64 
Area of Wire in Field (Awf) 0.203 mm2 0.246 mm2 0.246 mm2 
Radius of motor (r) 3.62 cm 2.35 cm 2.26 cm 
Thickness of motor (t) 9.69 cm 6.17 cm 6.17 cm 
Stack Length (L) 0.998 cm 2.61 cm 2.61 cm 
Current (I) 3.65 A 4.02 A 4.02 A 
Note: instances of design reuse shown in boldly outlined cells 
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Figure 4-30 – Space Element Arrangement for Most Promising Plan for “Redesign Based on 
Variety” 
 

 Interestingly, if the most promising solution that does make use of constructal-

inspired forced commonality is inspected in Table 4-37, it can be seen that there is as 

much design reuse present. However, the slightly higher objective function value 

achieved by this redesign plan is a result of the commonality discounts and redesign 

difficulties. In the slightly better solution shown in Table 4-36, there is one instance of 

commonality in Awa, a variable in which commonality is more highly valued. 

 

Table 4-37 – Most Promising “Redesign Based on Variety” Solution Utilizing Constructal 
Commonality and Indices 
 Existing Motor #1 Existing Motor #2 New Motor #1 
Responses of Interest 
Torque 0.05 Nm 0.25 Nm 0.15 Nm 

0.499 Kg 0.619 Kg 0.500 Kg Mass Family Average:  0.540 Kg 
71.7 % 62.5 % 70.0 % Efficiency Family Average: 68.0 % 

Variables 
Number of Wire Turns in Armature (Na) 730 1007 1005 
Area of Wire in Armature (Awa) 0.205 mm2 0.224 mm2 0.212 mm2 
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Number of Wire Turns in Field (Nf) 45 73 73 
Area of Wire in Field (Awf) 0.203 mm2 0.246 mm2 0.203 mm2 
Radius of motor (r) 3.62 cm 2.35 cm 2.15 cm 
Thickness of motor (t) 9.69 cm 6.17 cm 9.69 cm 
Stack Length (L) 0.998 cm 2.61 cm 2.61 cm 
Current (I) 3.65 A 4.02 A 3.65 A 
Note: instances of design reuse shown in boldly outlined cells 
 

 To show the value of the constructal-inspired approach, the problem is resolved 

without the use of the redesign metrics RI and CDF, utilizing only that commonality 

found as a result of the constructal-inspired approach and the start points for the fmincon 

function in Matlab. Afterwards, the results are measured using RI and CDF to judge the 

amount of redesign and commonality present. The most promising solution found this 

way is shown in Table 4-38 and Figure 4-31. It features good mass and efficiency values, 

a torque that is right on target, and design reuse in two out of its eight variables. Clearly, 

comparing these results to those found using the indices in the solution process, the 

indices have advantages even when the same space element scheme is implemented. 

 

Table 4-38 – Most Promising “Redesign Based on Variety” Solution Utilizing Constructal 
Commonality Alone 
 Existing Motor #1 Existing Motor #2 New Motor #1 
Responses of Interest 
Torque 0.05 Nm 0.25 Nm 0.150 Nm 

0.499 Kg 0.619 Kg 0.496 Kg Mass Family Average: 0.538 Kg 
71.7 % 62.5 % 70.1 % Efficiency Family Average:  68.0% 

Variables 
Number of Wire Turns in Armature (Na) 730 1007 996 
Area of Wire in Armature (Awa) 0.205 mm2 0.224 mm2 0.203 mm2 
Number of Wire Turns in Field (Nf) 45 73 87 
Area of Wire in Field (Awf) 0.203 mm2 0.246 mm2 0.203 mm2 
Radius of motor (r) 3.62 cm 2.35 cm 2.40 cm 
Thickness of motor (t) 9.69 cm 6.17 cm 9.69 cm 
Stack Length (L) 0.998 cm 2.61 cm 2.10 cm 
Current (I) 3.65 A 4.02 A 3.41 A 
Note: instances of design reuse shown in boldly outlined cells 
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Figure 4-31 – Space Element Arrangement for “Redesign Based on Variety” Scenario Utilizing Only 
Constructal-Forced Commonality 
 

4.4.3 -  “Redesign for Variety” Example Scenarios 

In this next scenario, the designer is faced with the problem of leveraging just one 

existing system in order to create two new ones as shown in Figure 4-32. Whereas the 

primary challenge in the previous scenario is the decision as to which elements of the 

existing systems will be chosen for leveraging, here the challenge is to decide between 

leveraging the existing system and creating two new systems with a great deal in 

common. The former has the advantage leveraging effort that has already been put into 

the existing system while the latter may have the advantage of economies of scale as the 

two systems are produced simultaneously.   

Again, many of the steps of the constructal-inspired approach to this scenario are 

similar to that which is addressed in Section 4.4.1, so here the discussion of the steps is 

limited to those changes that are dictated by the new scenario. 
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Figure 4-32 – Flowchart Representation of the Issues in Redesign for Variety 
 

Step 1 – Definition of the Redesign Problem 

 The designer faces the problem of redesigning one existing motor with a torque 

output of 0.05 Nm to create two new motors with torques of 0.15 Nm and 0.25 Nm that 

will be rolled out next year to replace the existing one as shown in Figure 4-33. The 

commonality opportunity matrix in Figure 4-34 is of more interest in this scenario as it 

helps to keep track of the fact that there are opportunities for both “Staggered 

Production” commonality and “Perfect” commonality in creating the designs for the new 

motors.  
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Figure 4-33 – Redesign Schedule Matrix for the 
“Redesign for Variety” Scenario 

Figure 4-34 – Commonality Opportunity 
Matrix for the “Redesign for Variety” 
Scenario 

 

 As before, the designer has mass and efficiency goals for the family as a whole 

and would like to both minimize the effort associated with the redesign project and 

maximize the value of the commonality in the redesigned family. The redesign problem 

is summarized in Table 4-39. 

 

Table 4-39 – Summary of “Redesign for Variety” Problem 
 Existing Motor #1 New Motor #1 New Motor #2 
Responses of Interest 
Torque 0.05 Nm 0.15 Nm 0.25 Nm 

Mass 0.499 Kg Family Goal: Average mass of 
0.50 Kg 

Efficiency 71.7 % Family Goal: Average efficiency  
of 70% 

Variables 
Number of Wire Turns in Armature (Na) 730 ? ? 
Area of Wire in Armature (Awa) 0.205 mm2 ? ? 
Number of Wire Turns in Field (Nf) 45 ? ? 
Area of Wire in Field (Awf) 0.203 mm2 ? ? 
Radius of motor (r) 3.62 cm ? ? 
Thickness of motor (t) 9.69 cm ? ? 
Stack Length (L) 0.998 cm ? ? 
Current (I) 3.65 A ? ? 
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Step 2 – Formulate Objective Functions 

 The objective functions are the same as those used in the earlier scenarios, except 

that with two new motors to be created, there are two torque target goals present. 

 

Step 3 – Identify and Describe Redesign Options 

 The redesign options are the same as those used in the scenarios in Sections 4.4.1 

and 4.4.2. 

 

Step 4 – Identify Number of Stages, Narrow Redesign Options, Create Groups and 

Hierarchically Rank Them 

 The new ranking of the redesign modes that is employed in the example in 

Section 4.4.2 is used again here. 

 

Step 5 – Define Boundaries of Market Space 

 As the redesign targets and existing systems lay in the same nominal locations in 

the torque market space as in the previous two scenarios, the boundaries of the redesign 

space are the same as well. The redesign space is shown in Figure 4-35. 
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Figure 4-35 – Redesign Market Space for “Redesign for Variety” Example 
 

Step 6 – Formulate the Multistage Problem 

 The problem facing the designer in this scenario has some slight changes that 

must be addressed. At the first stage, as seen in Figure 4-29, the designer must consider 

redesign variables (modes) for both new systems and two target goals, each of which has 

its own weight. For this scenario, it has been decided that each of the two new systems’ 

torque goals should carry the same weight, dividing in two the value they have in 

previous scenarios. 
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Table 4-40 – The First Stage Decision in the “Redesign for Variety” Scenario 
For Stage 1 

Given: • The one -dimensional market space of torque values 
• The design of the existing system, with a torque output of 0.05 Nm 
• The modes of managing product change to be utilized at Stage 1: 

  • Radius of the motor (r) 
• Thickness of the field (t) 

Find:  The value of decision variables  
• [ ](1) (1)x T= ∆  to determine sizes of space elements; and  

• { } { }1,
,k kk

X r t=  for each space element k  

The deviation variables and b bd d− + , for all four goals 
Satisfy: Bounds: • Variable bounds:  

1.0 10.0
0.5 10.0

cm r cm
cm t cm

≤ ≤
≤ ≤

 

• Space element sizes 
0.0477 (1) 0.2625Nm T Nm≤ ∆ ≤  

• , 0b bd d− + ≥  for b = 1,…4 
• 0b bd d− +× =  for b = 1,…4 

 Constraints: • { } { }, exi k i
X X

ε
=  where { }ex i

X
ε

 are the variables 

from the ith construct from any existing system ε 
that happens to be contained in space element k 

• Power = 300 W 
• Feasibility ≥ 1.0 

 Goals: 
• Torque goal: 1 1

2 2

( ) 1 and 0.150
( ) 10.250

T T

T T

T x d d

T x d d

− +

− +

+ − =

+ − =
 

• Mass goal: ( ) 10.50
family

m m
m x d d− ++ − =  

• Efficiency goal: 10.70
family d dη η

η − ++ − =  

• RI goal: ( ) 0RI RIRI x d d− ++ − =  
• CDF goal: ( ) 0CDF CDFCDF x d d− ++ − =  

Minimize: ( ) ( )
( ) ( ) ( )

1 2

2

1
      

where: 0.111,  0.333,  and 0.111

avg avg avg avg avg avg

i i i

avg avg

m m m

RI RI CDF CDF T T T
i

T T RI CDF m

Z w d d w d d

w d w d w d d

w w w w w w

η η η

η

− + − +

+ + − +

=

= + + +

+ + + +

= = = = = =

∑  
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 Similar changes can also be seen in the decision facing the designer at the second 

stage in Table 4-41 and the third stage in Table 4-42.  

 

Table 4-41 – The Second Stage Decision in the “Redesign for Variety” Scenario 
For Stage 2 

Given: • The one -dimensional market space of torque values 
• The design of the existing system, with a torque output of 0.05 Nm 
• The decision variables of the previous stage [ ](1) (1)x T= ∆  and 

{ } { }1,
, , ,

k ka f k kk
X N N L I=  

• The modes of managing product change to be utilized at Stage2: 
  • Cross-sectional area of wire in the armature 

(Awa) 
• Cross-sectional area of wire in the field (Awf) 

Find:  The value of decision variables  
• [ ](2) (2)x T= ∆  to determine sizes of space elements; and  

• { } { }2,
,

k kwa wfk
X A A=  for each space element k  

The deviation variables and b bd d− + , for all four goals 
Satisfy: Bounds: • Variable bounds: 

2 2

2 2

0.01 1.0

0.01 1.0
wa

wf

mm A mm

mm A mm

≤ ≤

≤ ≤
 

• Space element sizes 
0.0477 (2) 0.2625Nm T Nm≤ ∆ ≤  

• , 0b bd d− + ≥  for b = 1,…4 
• 0b bd d− +× =  for b = 1,…4 

 Constraints: • { } { }, exi k i
X X

ε
=  where { }ex i

X
ε

 are the variables 

from the ith construct from any existing system ε 
that happens to be contained in space element k 

• (2) (1)T T∆ ≥ ∆  
• Power = 300 W 
• Feasibility ≥ 1.0 

 Goals: 
• Torque goal: 1 1

2 2

( ) 1 and 0.150
( ) 10.250

T T

T T

T x d d

T x d d

− +

− +

+ − =

+ − =
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• Mass goal: ( ) 10.50
family

m m
m x d d− ++ − =  

• Efficiency goal: 10.70
family d dη η

η − ++ − =  

• RI goal: ( ) 0RI RIRI x d d− ++ − =  
• CDF goal: ( ) 0CDF CDFCDF x d d− ++ − =  

Minimize: ( ) ( )
( ) ( ) ( )

1 2

2

1
      

where: 0.111,  0.333,  and 0.111

avg avg avg avg avg avg

i i i

avg avg

m m m

RI RI CDF CDF T T T
i

T T RI CDF m

Z w d d w d d

w d w d w d d

w w w w w w

η η η

η

− + − +

+ + − +

=

= + + +

+ + + +

= = = = = =

∑  

 

Table 4-42 – The Third Stage Decision in the “Redesign for Variety” Scenario 
For Stage 3 

Given: • The one -dimensional market space of torque values 
• The design of the existing system, with a torque output of 0.05 Nm 
• The decision variables of the previous stage [ ](2) (2)x T= ∆  and 

{ } { }2,
,

k kwa wfk
X A A=   

• The modes of managing product change to be utilized at Stage2: 
  • Number of wire turns in armature (Na) 

• Number of wire turns in field (Nf) 
• Stack length (L) 
• Current (I) 

Find:  The value of decision variables  
• [ ](3) (3)x T= ∆  to determine sizes of space elements; and  

• { } { }3,
, , ,

k ka f k kk
X N N L I=  for each space element k  

The deviation variables and b bd d− + , for all four goals 
Satisfy: Bounds: • Variable bounds: 

100 1500
1 500

1.0 10
0.1 6.0

a

f

N
N

cm L cm
A I A

≤ ≤

≤ ≤

≤ ≤
≤ ≤

 

• Space element sizes 
0.0477 (3) 0.2625Nm T Nm≤ ∆ ≤  

• , 0b bd d− + ≥  for b = 1,…4 
• 0b bd d− +× =  for b = 1,…4 

 Constraints: • { } { }, exi k i
X X

ε
=  where { }ex i

X
ε

 are the variables 

from the ith construct from any existing system ε 
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that happens to be contained in space element k 
• (3) (2)T T∆ ≥ ∆  
• Power = 300 W 
• Feasibility ≥ 1.0 

 Goals: 
• Torque goals: 1 1

2 2

( ) 1 and 0.150
( ) 10.250

T T

T T

T x d d

T x d d

− +

− +

+ − =

+ − =
 

• Mass goal: ( ) 10.50
family

m m
m x d d− ++ − =  

• Efficiency goal: 10.70
family d dη η

η − ++ − =  

• RI goal: ( ) 0RI RIRI x d d− ++ − =  
• CDF goal: ( ) 0CDF CDFCDF x d d− ++ − =  

Minimize: ( ) ( )
( ) ( ) ( )

1 2

2

1
      

where: 0.111,  0.333,  and 0.111

avg avg avg avg avg avg

i i i

avg avg

m m m

RI RI CDF CDF T T T
i

T T RI CDF m

Z w d d w d d

w d w d w d d

w w w w w w

η η η

η

− + − +

+ + − +

=

= + + +

+ + + +

= = = = = =

∑  

 

Step 7 – Solve the Multistage Problem 

 The solution process used here is the same as that which is used in the example 

problem in Section 4.4.2. 

 

Step 8 – Examine Redesign Portfolios an Consider Iteration 

 As in the previous example, it pays for the designer to carefully inspect the most 

promising redesign plans generated. Two identical designs share equal objective 

functions, one making use of constructal-inspired commonality while the other does not. 

The best solution that does utilize this commonality is shown in Table 4-37 and Table 

4-43. This solution results in a family of motors with a high average efficiency and seven 

instances of design reuse across the family. This is also the first result shown here that 

uses one single space element across the whole redesign market space. It is also noted 
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that there is great similarity in two values of the Stack Length in the most promising 

family, suggesting that with further redesign work, a family with greater commonality 

might be produced to suit the designer’s preferences. 

 

 
Figure 4-36 – Most Promising Arrangement of Space Elements for “Redesign for Variety” Scenario  
 

Table 4-43 – Most Promising “Redesign for Variety” Solution Utilizing Constructal Commonality 
and Indices 
 Existing Motor #1 New Motor #1 New Motor #2 
Responses of Interest 
Torque 0.05 Nm 0.150 Nm 0.250 Nm 

0.499 Kg 0.415 Kg 0.585 Kg Mass Family Average: 0.500 Kg 
71.7 % 70.6 % 66.5 % Efficiency Family Average: 69.6 % 

Variables 
Number of Wire Turns in Armature (Na) 730 730 734 
Area of Wire in Armature (Awa) 0.205 mm2 0.277 mm2 0.277 mm2 
Number of Wire Turns in Field (Nf) 45 64 65 
Area of Wire in Field (Awf) 0.203 mm2 0.203 mm2 0.203 mm2 
Radius of motor (r) 3.62 cm 2.99 cm 3.04 cm 
Thickness of motor (t) 9.69 cm 9.69 cm 9.69 cm 
Stack Length (L) 0.998 cm 1.00 cm 1.60 cm 
Current (I) 3.65 A 5.84 A 5.84 A 
Note: instances of design reuse shown in boldly outlined cells 
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4.4.4 - General, More Complicated Redesign Scenarios 

The final scenario addressed in this chapter is a generalization of the three 

scenarios presented in the preceding sections. The designer is faced with a problem like 

the one pictured in Figure 4-37 wherein two existing systems must be redesigned to 

realize two new systems. The challenge here is to figure out the best balance of design 

reuse and commonality between the two new systems. 

 Again, many of the steps of the constructal-inspired approach to this scenario are 

similar to that which is addressed in Section 4.4.1, so here the discussion of the steps is 

limited to those changes that are dictated by the new scenario. 

 

 
Figure 4-37 – Flowchart Representation of the Issues in General Redesign 



 318 

 

Step 1 – Definition of the Redesign Problem 

 This is the only step that is significantly different from the steps needed to address 

the scenario presented in Section 4.4.3. As shown in Figure 4-38, the designer would like 

to redesign two existing motors with torque outputs of 0.05 Nm and 0.25 Nm to create 

two new motors with torques of 0.15 Nm and 0.10 Nm. These new motors will roll out 

simultaneously and eventually take the place of the existing motors. As shown in the 

commonality opportunity matrix in Figure 4-39, this scenario presents the designer with 

opportunities for both “Perfect” commonality and “Staggered Production” commonality 

 

New Motor #2
New Motor #1
Existing Motor #2
Existing Motor #1

Year
4321

New Motor #2
New Motor #1
Existing Motor #2
Existing Motor #1

Year
4321

SPSPXExisting 
Motor #2
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SP

Existing 
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XSPNew 
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Motor #1
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SPX
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Existing 
Motor #1

SPSPXExisting 
Motor #2
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Existing 
Motor #2

XSPNew 
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Motor #1
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Motor #2
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New 
Motor #2

Existing 
Motor #1

 
Figure 4-38 – Redesign Schedule Matrix for the 
“General Redesign” Scenario 

Figure 4-39 – Commonality Opportunity 
Matrix for the “General Redesign” Scenario 

 

 The redesign scenario is summarized in Table 4-44. As before, two existing 

motors have been designed separately based on results from Simpson and coauthors 

(Simpson, Maier et al. 2001) so that they on one hand offer more opportunities for design 

reuse while on the other hand not making it excessively easy to fit space elements into the 

resulting redesign space.  
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Table 4-44 – Summary of “General Redesign” Problem 
 Existing Motor 

#1 
Existing Motor 
#2 

New Motor #1 New Motor #2 

Responses of Interest 
Torque 0.05 Nm 0.25 Nm 0.15 Nm 0.10 Nm 

Mass 0.499 Kg 0.619 Kg Family Goal: Average mass of  
0.50 Kg 

Efficiency 71.7 % 62.5 % Family Goal: Average efficiency of 
70% 

Variables 
Number of Wire Turns in 
Armature (Na) 

730 1007 ? ? 
Area of Wire in Armature 
(Awa) 

0.205 mm2 0.224 mm2 ? ? 
Number of Wire Turns in 
Field (Nf) 

45 73 ? ? 
Area of Wire in Field (Awf) 0.203 mm2 0.246 mm2 ? ? 
Radius of motor (r) 3.62 cm 2.35 cm ? ? 
Thickness of motor (t) 9.69 cm 6.17 cm ? ? 
Stack Length (L) 0.998 cm 2.61 cm ? ? 
Current (I) 3.65 A 4.02 A ? ? 
 

 Steps 2 through 4 of the constructal-inspired approach are very similar to those 

presented earlier, so they are skipped. 

 

Step 5 – Define Boundaries of Market Space 

 Based on the locations of the existing systems and the new redesign targets in the 

torque market space, the same boundaries are used as in previous scenarios and as shown 

in Figure 4-40. Steps 6 and 7 are also skipped, as they are largely the same as those 

presented in Section 4.4.3. 

 

 



 320 

 
Figure 4-40 – Redesign Market Space for “General Redesign” Example 
 

Step 8 – Examine Redesign Portfolios an Consider Iteration 

 The most promising redesign solution found for this scenario is shown Table 

4-45. As seen in Figure 4-41, this solution is derived from the use of an arrangement of 

space elements that forces commonality, but a great deal of extra commonality is pushed 

by the indices.  Also, as before, there are several values of Nf and L that are very similar 

but not equal to each other, suggesting that further work could product commonality. 

 

Table 4-45 – Most Promising “General Redesign” Solution  
 Existing 

Motor #1 
Existing 
Motor #2 

New Motor 
#1 

New Motor 
#2 

Responses of Interest 
Torque 0.05 Nm 0.25 Nm 0.10 Nm 0.15 Nm 

0.499 Kg 0.619 Kg 0.345 Kg 0.539 Kg Mass 
 Family Average: 0.501 Kg 

71.7 % 62.5 % 72.8 % 72.7 % Efficiency Family Average: 69.7 % 
Variables 
Number of Wire Turns in Armature (Na) 730 1007 1007 730 
Area of Wire in Armature (Awa) 0.205 mm2 0.224 mm2 0.224 mm2 0.205 mm2 
Number of Wire Turns in Field (Nf) 45 73 80 74 
Area of Wire in Field (Awf) 0.203 mm2 0.246 mm2 0.203 mm2 0.246 mm2 
Radius of motor (r) 3.62 cm 2.35 cm 2.57 cm 2.35 cm 
Thickness of motor (t) 9.69 cm 6.17 cm 9.69 cm 6.17 cm 
Stack Length (L) 0.998 cm 2.61 cm 1.00 cm 2.61 cm 
Current (I) 3.65 A 4.02 A 4.02 A 3.65 A 
Note: instances of design reuse shown in boldly outlined cells 
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Figure 4-41 – Most Promising Arrangement of Space Elements for “General Redesign” Scenario  
 

 The fact that the commonality seen in the solution above is driven by the indices 

is seen by looking at the solution to the scenario when the indices are not used. When the 

only objectives are the achievement of torque, mass, and efficiency goals and the indices 

are used afterwards to measures solutions, the most promising solution is the one using 

the space element arrangement shown in Figure 4-42. This arrangement makes use of a 

great deal of forced commonality, almost replicating the one with a lower objective 

function shown in Table 4-45. That more promising solution has less forced commonality 

but the rest is driven by the minimization of the redesign indices, which coincidentally 

creates an almost identical redesign solution. This solution is summarized in Table 4-46) 
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Table 4-46 – Most Promising “General Redesign” Solution Utilizing Constructal Commonality Only 
 Existing 

Motor #1 
Existing 
Motor #2 

New Motor 
#1 

New Motor 
#2 

Responses of Interest 
Torque 0.05 Nm 0.25 Nm 0.10 Nm 0.15 Nm 

0.499 Kg 0.619 Kg 0.430 Kg 0.449 Kg Mass Family Average: 0.499 Kg 
71.7 % 62.5 % 72.0 %  68.7 % Efficiency Family Average: 68.7 % 

Variables 
Number of Wire Turns in Armature (Na) 730 1007 730 1007 
Area of Wire in Armature (Awa) 0.205 mm2 0.224 mm2 0.205 mm2 0.224 mm2 
Number of Wire Turns in Field (Nf) 45 73 101 59 
Area of Wire in Field (Awf) 0.203 mm2 0.246 mm2 0.203 mm2 0.246 mm2 
Radius of motor (r) 3.62 cm 2.35 cm 3.21 cm 1.89 cm 
Thickness of motor (t) 9.69 cm 6.17 cm 9.69 cm 6.17 cm 
Stack Length (L) 0.998 cm 2.61 cm 1.00 cm 2.61 cm 
Current (I) 3.65 A 4.02 A 3.65 A 4.02 A 
Note: instances of design reuse shown in boldly outlined cells 
 

 
Figure 4-42 – Most Promising Space Element Arrangement for the “General Redesign” Scenario 
Utilizing Constructal Commonality Only 
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4.4.5 - Revisiting the Metric Validation Examples 

 In this section, the two redesign scenarios used for validating the redesign metrics 

are revisited, this time with the full complement of universal motor redesign variables in 

play. The goal in showing the redesign solutions for these two examples is to demonstrate 

that the approach exercised in the four basic types of redesign earlier is still useful even 

as the redesign scenario gets larger (more variables and more systems) and more complex 

(more redesign, more types of commonality.) 

 For both of these examples, the preferences expressed by the designer with 

respect to redesign difficulties and commonality discounts for the earlier examples 

remains the same. The grouping of redesign options/modes into stages and the 

hierarchical ranking of those stages also remains the same as that shown in the far right-

hand column of Table 4-33. 

 The schedule for the first scenario is that which is shown in Figure 4-4. In this 

scenario, two existing systems are redesigned to create a series of five new systems 

whose production is spread out over the next seven years. The two most promising 

solutions to this redesign problem have nearly identical objective function values of 

0.00136 and 0.00139. One, which is summarized in Table 4-47 makes use of no forced 

constructal-inspired commonality at all. The other, summarized in Table 4-48, does make 

use of this commonality as shown in the space element arrangement in Figure 4-43.  
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Table 4-47 – Most Promising Redesign Plan for Validation Scenario #1 According to Objective 
Function Value Only 
 Existing Motors New Motors 
 #1 #2 #1 #2 #3 #4 #5 
Responses of Interest 
Torque [Nm] 0.35 0.25 0.05 0.10 0.15 0.20 0.30 

0.750 0.619 0.340 0.494 0.465 0.523 0.678 Mass [Kg] Family Average: 0.550 Kg 
57.0 % 62.5 % 82.0 % 75.4 % 69.0 % 64.6 % 59.5 % Efficiency Family Average: 67.0 % 

Variables 
Number of Wire 
Turns in 
Armature  

1056 1007 900 1007 900 1007 1056 

Area of Wire in 
Armature [mm] 0.237 0.224 0.224 0.215 0.215 0.215 0.237 

Number of Wire 
Turns in Field  73 73 57 73 58 66 67 

Area of Wire in 
Field [mm] 0.260 0.246 0.246 0.246 0.246 0.246 0.260 

Radius of motor 
[cm] 2.51 2.35 1.60 2.03 2.03 2.13 2.35 

Thickness of 
motor [cm] 6.46 6.17 6.17 6.17 6.17 6.46 6.46 

Stack Length 
[cm] 2.81 2.61 2.61 2.61 2.61 2.61 2.81 

Current [A] 4.36 4.02 2.77 2.77 4.03 4.02 4.36 
Instances of design reuse are shaded 
 

It is interesting to note that the solution based on the forced commonality features 

fewer total variable values throughout the family meaning that less redesign has to 

happen, yet it has a higher objective function value. The difference in objective function 

value is owed to the fact that the few variable values that are not reused in the solution in 

Table 4-47 are very close to other values nonetheless. This drives down the values of 

both the Redesign Index and Commonality Discount Factor. Still, this case illustrates the 

necessity of Step 8 of the proposed approach wherein the designer considers whether the 

top solution according to the objective function really is the most promising one present. 

Lastly, both the solution presented in Table 4-47 and the one in Table 4-48 are 

much more preferable to the solution (see  
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Table 4-23) found using just the redesign metrics for the simplified problem. Both 

of these solutions have more design reuse and show this reuse in an example when twice 

as many variables are allowed to be changed. 

 

Table 4-48 – Most Promising Redesign Plan for Validation Scenario #1 Utilizing Constructal-
Inspired Commonality 
 Existing Motors New Motors 
 #1 #2 #1 #2 #3 #4 #5 
Responses of Interest 
Torque [Nm] 0.35 0.25 0.05 0.10 0.15 0.20 0.30 

0.750 0.619 0.346 0.518 0.437 0.521 0.678 Mass [Kg] Family Average: 0.550 Kg 
57.0 % 62.5 % 81.9 % 77.3 % 67.8 % 64.5 % 59.5 % Efficiency Family Average: 67.0 % 

Variables 
Number of Wire 
Turns in 
Armature  

1056 1007 1007 1007 1080 1080 1056 

Area of Wire in 
Armature [mm] 0.237 0.224 0.237 0.237 0.224 0.224 0.237 

Number of Wire 
Turns in Field  73 73 56 73 56 64 67 

Area of Wire in 
Field [mm] 0.260 0.246 0.246 0.246 0.246 0.246 0.260 

Radius of motor 
[cm] 2.51 2.35 1.53 2.05 1.81 2.05 2.35 

Thickness of 
motor [cm] 6.46 6.17 6.46 6.46 6.17 6.17 6.46 

Stack Length 
[cm] 2.81 2.61 2.61 2.61 2.61 2.61 2.81 

Current [A] 4.36 4.02 2.78 2.78 4.02 4.02 4.36 
Instances of design reuse are shaded 
 

 It is interesting to note the degree of commonality between systems in the family 

shown in Figure 4-43that are widely different in torque outputs. The motors with torques 

of 0.05 Nm and 0.35 Nm –the two extremes in the family- show a particularly large 

amount of commonality. While some of this may be identified randomly in the design 

space exploration, a certain amount of it may also be present as a result of the fact that 

those two motors share valuable “staggered production” commonality. In order to explore 
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this relationship further, it would be necessary to either adjust the value of “staggered 

production” commonality or carry out further experiments with different types of overlap 

between the two motors in question would be needed. 

 
Figure 4-43 – Space Element Arrangement for Most Promising Constructal-Inspired Solution to 
First Metric Validation Example 
 

The schedule for the second scenario used in Section 4.3.4 for validation of the 

redesign metrics is shown Figure 4-15. In this scenario, a single existing system is 

leveraged to create a stream of six new motors that are to be released one at a time over 

the next nine years with each year’s model increasing the torque output over previous 

years’ offerings. As with the previous example, the constructal-inspired approach proves 

very useful in identifying redesign solutions that utilize design reuse throughout the 

family. Table 4-49 and Figure 4-44 display in tabular and graphical form the most 

promising redesign plan that the constructal-inspired exploration can identify without the 

use of the redesign indices.  
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Table 4-49 – Most Promising Redesign Plan for Validation Scenario #2 Without Use of Either Index 
 New Motors 
 

Existing 
Motor #1 #2 #3 #4 #5 #6 

Responses of Interest 
Torque [Nm] 0.05 0.10 0.15 0.20 0.25 0.30 0.35 

0.499 0.403 0.385 0.463 0.525 0.582 0.643 Mass [Kg] 
Family Average: 0.500 Kg 

71.7 % 73.0 % 72.5 % 68.4 % 64.3 % 60.0 % 57.1 % Efficiency 
Family Average: 66.7 % 

Variables 
Number of Wire 
Turns in 
Armature  

730 730 860 860 978 1080 1080 

Area of Wire in 
Armature [mm] 0.205 0.205 0.279 0.279 0.279 0.279 0.279 

Number of Wire 
Turns in Field  45 106 48 54 52 52 56 

Area of Wire in 
Field [mm] 0.203 0.203 0.203 0.203 0.203 0.203 0.203 

Radius of motor 
[cm] 3.62 3.08 2.33 2.61 2.53 2.53 2.69 

Thickness of 
motor [cm] 9.69 9.69 9.69 9.69 9.69 9.69 9.69 

Stack Length 
[cm] 0.998 1.00 1.51 1.51 1.79 1.95 1.95 

Current [A] 3.65 3.65 6.00 6.00 6.00 6.00 6.00 
Note: instances of design reuse are shaded 
 

All the motors in the redesign plan shown in Table 4-49 and Figure 4-44 have 

desirable torque values and the family as a whole has the amount of part variety reduced 

by 54 % from 56 to 26 unique variable values. As in some other experiments, there are 

values of Nf and L that are very similar, suggesting that further experimentation might 

reveal a redesign solution with even greater commonality. 
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Figure 4-44 – Space Element Arrangement for Most Promising Constructal-Inspired Solution to 
Second Metric Validation Example Without Use of Indices 
 

 When the redesign indices are used in concert with the constructal-inspired 

commonality exploration, similar results are obtained, as seen in Table 4-50 and the 

space element arrangement in Figure 4-45. What is most interesting about these results is 

that the total amount of variety in the redesign plan is actually higher than when the 

indices are not used. This result comes about because of the relative values of 

commonality in different variables and the relative difficulty in changing different 

variable values. The choices made by the designer in setting up the problem cause a 

tradeoff that produces a greater amount of variety with lower variety in certain parts of 

the family.  
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Table 4-50 – Most Promising Redesign Plan for Validation Scenario #2 With Use of Both Indices 
 New Motors 
 

Existing 
Motor #1 #2 #3 #4 #5 #6 

Responses of Interest 
Torque [Nm] 0.05 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 

0.499 0.4032 0.3872 0.4729 0.5136 0.579 0.6442 Mass [Kg] 
Family Average: 0.500 Kg 

71.7 % 0.73 0.7269 0.6835 0.6293 0.5968 0.565 Efficiency 
Family Average: 66.4 % 

Variables 
Number of Wire 
Turns in 
Armature  

730 730 805 805 1062 1062 1062 

Area of Wire in 
Armature [mm] 0.205 0.205 0.273 0.273 0.273 0.274 0.274 

Number of Wire 
Turns in Field  45 106 52 59 52 56 60 

Area of Wire in 
Field [mm] 0.203 0.203 0.234 0.234 0.235 0.235 0.235 

Radius of motor 
[cm] 3.62 3.08 2.50 2.82 2.50 2.69 2.88 

Thickness of 
motor [cm] 9.69 9.69 9.70 9.70 9.69 9.69 9.69 

Stack Length 
[cm] 0.998 1.00 1.35 1.35 1.70 1.70 1.70 

Current [A] 3.65 3.65 6.00 6.00 6.00 6.00 6.00 
Note: instances of design reuse shown in boldly outlined cells are shaded 
 

 
Figure 4-45 – Space Element Arrangement for Most Promising Constructal-Inspired Solution to 
Second Metric Validation Example With Use of Both Indices 
 



 330 

 Having examined the usefulness of the constructal-inspired commonality 

exploration approach and the redesign indices in several more complex redesign 

scenarios here, the impacts and relevance of the results are discussed in the next section. 

4.5 - CONTRIBUTIONS IN THIS CHAPTER TO THE DOMAIN-SPECIFIC 

STRUCTURAL AND PERFORMANCE VALIDITY OF THE PROPOSED METHOD 

In this chapter, a universal motor example problem has been used in six different 

redesign scenarios to show the usefulness of the redesign metrics and the overall 

constructal-inspired approach to redesign with respect to their intended purposes. In 

doing so, contributions are made to the domain-specific structural validity and domain-

specific performance validity of both Hypothesis 1 and Hypothesis 2. 

As a reminder, Hypothesis #1, as posited on Section 1.3.2 is: 

Hypothesis 1: Through the use of two indices as objectives in a redesign problem, better 

redesign strategies utilizing fewer design changes and more valuable targeted 

commonality can be identified.  

 The redesign scenarios used in Section 4.3.4 of this chapter have been picked 

specifically for the testing of the redesign metrics. The first one, which is used throughout 

that section of the chapter, employs almost all of the different types of production overlap 

described in this dissertation and, with five new systems to be redesigned, offers ample 

opportunity for design reuse. The scenario involves specific, known, deterministic 

redesign targets over a known schedule. It also involves a reduced set of variables so that 

the impacts of the metrics are easier to distinguish. The second scenario that is used to 

test the ability of CDF to push certain types of commonality is also designed specifically 

with that task in mind, making two types of commonality opportunities readily available. 
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As such, the redesign scenarios used in this chapter are appropriate to the redesign 

metrics and can generate the type of data needed to make conclusions. Thus, for the first 

hypothesis they help address the second quadrant of the validation square, which is 

known alternatively as the “empirical structural validity” and “domain-specific structural 

validity”. 

 The results generated in Section 4.3.4 clearly demonstrate the utility of the 

Redesign Index (RI) and the Commonality Discount Factor (CDF) in encouraging 

commonality in certain redesign variables for their respective reasons. The RI is shown 

over and over to help the designer identify redesign plans that involve fewer changes in 

redesign variables that require more effort to change. The CDF is shown to increase 

commonality in redesign variables for which reuse is most valuable. It is also shown that 

both metrics can discourage commonality in certain variables. Finally, the CDF is shown 

to be capable of both encouraging and discouraging certain types of commonality 

depending on the type of overlap there is in the production schedules of certain products. 

This capability is the most difficult to demonstrate and requires the use of a second 

example scenario with more opportunities for commonality of both types present. It is 

suggested in Section 4.3.4 that the difficulty associated with certain types of commonality 

may be linked to the number of opportunities there are present in a given product release 

schedule and in how similar the performance characteristics of the systems are to one 

another.  

 The impact of both metrics is also compared to an alternative metric, the Product 

Family Penalty Function (Messac, Martinez et al. 2002) and shown to produce a similar 

level of commonality. Both metrics, however, have the advantage of being able to target 



 332 

this design reuse in certain variables and types of production overlap. By showing that 

the metrics are not only useful with respect to their intended purpose and that this 

usefulness is tied distinctly to the use of just these metrics, the empirical performance 

validity”, also known as the “domain-specific performance validity” of Hypothesis #2 is 

established. 

The second research hypothesis is as follows: 

Hypothesis 2: The redesign problem can be characterized as a problem of optimal access 

in a geometric space made up of the redesign objectives and solved using a modified, 

constructal-inspired approach based on the Product Platform Constructal Theory 

Method (PPCTM) using the Redesign Index (RI) and Commonality Discount Factor 

(CDF) as overall objectives in conflict with the individual systems’ goals. 

A more complicated series of universal motor examples is used in Section 4.4 in 

the validation of the first hypothesis. These example scenarios have all of the features of 

those used to validate the redesign metrics but make use of all eight of the motor’s 

redesign variables, creating a much larger problem when it comes to the juggling of 

opportunities for design reuse. The universal motor and the scenarios in which it is used 

fit all the features of the sequential strategic redesign problem described in Chapter 1, 

thus satisfying the second quadrant of the Validation Square. 

In order to validate the second hypothesis, it is desirable to show that the 

constructal-inspired approach based on PPCTM does provide value in giving structure 

and identifying commonality opportunities in the solutions to redesign problems. 

Through the examples in Section 4.4, it is shown that the constructal-inspired approach 

can handle the challenges associate with increasingly difficult problems, allowing a 
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designer to identify promising solutions with commonality present in valuable locations. 

As a result of the use of the redesign metrics as objectives in this approach, the results are 

not always as one might expect. In some cases, the solutions that have the best objective 

function values do not make use of the commonality forced by sharing of space elements 

between motors. Oftentimes, the solutions that appear best according to the objective 

function value are not very different from those that make use of forced commonality. 

These solutions drop in rankings simply because of the redesign difficulties and the 

commonality discounts chosen by the designer. If those values were set differently or if 

the redesign schedule was slightly different, the constructal-inspired solutions might 

seem more promising at first blush. When the redesign metrics are not used, the 

constructal-inspired approach produces feasible solutions that sometimes include a great 

deal of design reuse. These inconsistencies again point to the importance of Step 8 of the 

proposed approach wherein the designer considers whether the solutions with the best 

objective functions really are what he/she desires. 

It is noted in Section 4.4 that the usefulness of the constructal-inspired approach is 

tied strongly to the arrangement of the redesign modes into hierarchical stages. It is 

shown that stages used for the constructal-inspired design of mass-customized product 

families in previous work do not work here. Several alternative arrangements are 

proposed and tested before a new four-stage setup is settled upon. 

Through the four redesign scenarios in Section 4.4, it is shown that the 

constructal-inspired approach, when used without the redesign metrics, and generate 

promising redesign solutions exhibiting targeted design reuse. However, the utility of this 

approach is tied strongly to the use of proper groupings and rankings of the redesign 
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modes. In addition, when the redesign metrics are used in the objective function, 

solutions that do not make use of forced constructal-inspired commonality are often seen 

with the lowest objective function values. This makes sense because when all of the 

redesign variables are unrestricted, more opportunities for the types of commonality 

favored by the settings in RI and CDF may be available.  

The reader may also have noted that in all of the redesign scenarios addressed in 

this section, the redesign targets and existing systems are spaced out quite well and 

relatively evenly in the redesign market space. Experimentation shows that there are 

certain types of redesign problems for which the constructal approach is ill-suited. The 

approach is ill-suited to problems in which existing systems and redesign goals are 

clustered close to one another in a redesign market space. In this case, it may be hard to 

realize the new system if many of the redesign variables are constrained in space 

elements that it shares with the existing system. When this occurs, the designer may want 

to consider whether the redesign targets associated with the new system truly differentiate 

it from the existing system enough to justify a new product offering. A small change in 

some targets might make the problem much easier to handle. The constructal-inspired 

approach is also ill-suited to problems in which all the existing systems are grouped close 

to one another while all the redesign targets are grouped together but distance from the 

existing systems. In this case, unless the existing systems are very similar to one another 

already, their proximity forces a space element arrangement with many small elements 

that is inefficient in exploring commonality. This is a problem that may be addressed by 

breaking up the redesign problem into several smaller ones or by choosing on some 

existing systems for leveraging. 
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It is also interesting to note that in a number of experiments, the values of some 

redesign variables are very close to one another yet not quite close enough that they are 

counted as “common” here. It is observed earlier in this chapter that these instances 

might be signs of opportunities for commonality that have not yet been exploited. It is 

possible that upon iteration, these values might be found equal in slightly different 

configurations of the redesign plan or that, if the values were constrained to be equal, 

valid redesign plans might be identified anyway. These options have not been pursued 

however. In a related issue, the values presented in this chapter are, by and large, rounded 

to three significant figures. The scheme for rounding the values presented here is 

borrowed from previous work on the universal motor example, most notably (Messac, 

Martinez et al. 2002) and (Simpson, Maier et al. 2001). This scheme for rounding –which 

is sometimes inconsistent with respect to significant figures- has been used so that results 

may be compared with the previous literature. It is entirely possible that if a different 

rounding scheme were used, the results shown here would be significantly different, as 

the rounding effects what is considered a reused variable value and what is considered 

unique. 

Thus, in Section 4.4, it is shown that the constructal approach can lend structure 

that leads to good redesign plans. The value of the constructal-inspired sharing of space 

elements is shown to be less strong, as it heavily depends on the setup of the stages and 

on the settings of the commonality metrics. For this reason, it is claimed that the second 

hypothesis is conditionally shown to have empirical performance validity, satisfying the 

third quadrant of the Validation Square. 
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4.6 - STATUS AND PROMISE 

 The experimentation described in this chapter provides results that help to address 

the second and third quadrants of the Validation Square for both Hypothesis #1 and #2, 

demonstrating that the proposed metrics and overall approach fill the gaps in existing 

literature when used in the universal motor redesign scenarios presented in this chapter. 

Having satisfied the requirements to claim validity in three out of the four quadrants of 

the Validation Square, it is time to consider the fourth quadrant. This is the task that faces 

the reader in Chapter 5. In that chapter, the contributions to the validity of the hypotheses 

are revisited and the broader usefulness of the proposed approach is considered in light of 

the features that are likely to be present in other problems. The work described in this 

dissertation is also critically reviewed, intellectual contributions are claimed, and ideas 

for future work shared.  
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CHAPTER 5  

CLOSURE 

5.1 - A PREVIEW OF THE CHAPTER’S CONTENTS  

In this chapter, the arguments, hypotheses, data, and observations presented in the 

first four chapters are tied up with a review and some closing thoughts. The work 

completed and discussed in this dissertation is summarized in Section 5.2. Particular 

attention is paid in that discussion to the confidence in the proposed constructal-inspired 

redesign method that has been built up through the research presented here. In Section 

5.3, the research is critically reviewed with an eye towards identifying those places where 

the work falls short and where assumptions may be skewing the outcomes. With those 

criticisms in mind, the intellectual contributions made in this dissertation are discussed in 

Section 5.4 and ideas for future work are shared in Section 5.5. In closing, some personal 

comments on the work make up Section 5.6. 

5.2 - A SUMMARY OF THE WORK COMPLETED  

In this section, the work presented in the first four chapters is summarized at a 

high level, looking at the research questions and hypotheses that guide the research from 

the start and the validation process that is followed in order to back up those hypotheses 

with supporting data.  

 

5.2.1 - Revisiting Research Questions and Hypotheses 
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In Chapter 1, a new type of design problem is identified and described as a 

strategic and sequential redesign problem. In such a problem, a designer is faced with the 

task of redesigning one or more existing systems to meet both immediate and well-known 

future goals to expand the family in multiple directions. It behooves the designer to create 

as good a new design as possible, meeting as many performance targets as he/she can, but 

there are other considerations as well. It would be beneficial to minimize the amount of 

design change in the family to keep the effort that goes into producing the new family 

members as low as possible. Along similar lines, not all commonality is equally valuable 

to eh designer. Thus is framed the problem addressed in this dissertation. The primary 

hypothesis put forward to address this problem is as follows: 

The overall goal of achieving a desired amount and type of variety while minimizing 

design changes and maximizing the value of non-commonality can be achieved through 

the use of a modified constructal-inspired approach based on the Product Platform 

Constructal Theory Method (Hernandez 2001; Hernandez, Allen et al. 2002; Hernandez, 

Allen et al. 2003) which is in turn based on Constructal Theory (Bejan 1996; Bejan 1997; 

Bejan and Ledezma 1998; Bejan 2000). By incorporating simple and intuitive indices for 

redesign difficulty the need for redesign can be minimized in the pieces of a system where 

it is expected to be most expensive. By using an index for commonality value, sharing of 

components between systems can be targeted to where it is most useful from a strategic 

perspective. 

 The primary research question and hypothesis is broken down into two main parts 

that are more practical to take on as research tasks. In the first part, the problem of 

measuring the merit of a redesign plan is tackled. As mentioned above, the designer is 
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interested in minimizing the effort involved in a project while maximizing the value of 

any commonality created between systems in the family. There exist no metrics for the 

“goodness” of a product family created through redesign, so the following secondary 

hypothesis is posed: 

Hypothesis #1: Through the use of two indices as objectives in a redesign problem, better 

redesign strategies utilizing fewer design changes and more valuable targeted 

commonality can be identified.  

This secondary hypothesis is broken down even further, dividing the dual 

concerns of minimizing redesign effort and maximizing commonality value into two 

separate hypotheses: 

Hypothesis #1.1: By utilizing the minimization of the Redesign Index (RI) as an objective 

in a redesign problem, a decision-maker’s attention can be directed to redesign solutions 

involving lower numbers of design changes in targeted parts of a system.. 

Hypothesis #1.2: By utilizing the minimization of the Commonality Discount Factor 

(CDF) as an objective in a redesign problem, the designer’s attention can be directed to 

combinations commonality in the most valuable parts of a system that is being 

redesigned.  

The two indices that are the subject of Research Question #1 provide an indirect 

measure of the economic performance of a plan for redesigning existing systems to create 

new systems. These indices are a crucial tool in an overall method for identifying such 

redesign plans. It is this method, which is inspired by Constructal Theory and based upon 

existing product family design methods, which is the subject of the second major part of 

the research and the second secondary hypothesis: 
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Hypothesis #2: The redesign problem can be characterized as a problem of optimal 

access in a geometric space made up of the redesign objectives and solved using a 

modified, constructal-inspired approach based on the Product Platform Constructal 

Theory Method (PPCTM) using the Redesign Index (RI) and Commonality Discount 

Factor (CDF) as overall objectives in conflict with the individual systems’ goals. 

 Research Question #2 is broken down into two parts in order to sort out the 

individual contributions of the two main components of the work in this dissertation the 

development of indices for redesign and the development of a constructal-inspired 

approach to structuring and solving a redesign problem. The resulting sub-hypotheses are 

as follows: 

Hypothesis #2.1: The strategic sequential redesign problem can be structured as a 

problem of optimal access in a geometric space and solved using an approach based on 

the Product Platform Constructal Theory Method (PPCTM), abstracting its inner 

workings towards redesign applications and infusing the use of the multi-objective 

compromise Decision Support Problem at every stage of the decision-making process.  

Hypothesis #2.2: By utilizing the Redesign Index (RI) and Commonality Discount 

Function (CDF) as overall objectives in the constructal-inspired redesign commonality 

exploration method, design reuse can be considered between systems that are not close to 

one another in the market space and between individual elements of subsystems or modes 

of collections of subsystems.  

These are the hypotheses that are to be validated by following the Validation 

Square (Pederson, Emblemsvag et al. 2000; Seepersad, Pederson et al. 2005) in 
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conducting the research in this dissertation. The way in which this has been done is 

explained in the next section. 

 

5.2.2 - A Summary of the Confidence Building Process and the Validity of the 

Proposed Method 

The philosophy behind the Validation Square is explained in detail in Section 

1.4.1. In following validation process symbolized by the square, the author hopes that the 

reader sees that a systematic and reasoned approach has been taken to the process of 

proving the validity of the hypotheses. If this systematic process is perceived as 

successful and the value demonstrated thus far is accepted, then the discussion of the 

wider usefulness of the proposed approach can be carried forward in this section. It is 

hoped that, having reviewed the material in this section, the reader can make some sort of 

leap forward into the fourth quadrant of the validation square (see Figure 5-1). 
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Figure 5-1 – Exploded View of the Validation Square in Which Step 6 is the Focus Here 
 

Theoretical Structural Validity, a.k.a. Domain-Independent Structural Validity 

In Section 2.4, it is demonstrated that there are significant gaps in the ability of 

existing methods to support a designer faced with conceptual sequential redesign of an 

engineering system. The process of identifying this gap contributed to the Theoretical 

Structural Validity of the work in this dissertation. By further clarifying the gap, the 

purpose of this research is made clearer. By identifying the shortcomings of existing 

work when applied to a sequential redesign problem, the usefulness that must be 

demonstrated by the proposed method here is spelled out in greater detail.  This 

usefulness is summed up in the requirements listed in Table 1-3 and in the features of the 

proposed redesign metrics and overall method that are required:  

• For the Redesign Index (RI): 
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o Show that RI reduces the instances of redesign without significant 

sacrifice of other objectives 

o Show that by using redesign difficult indices, the location of commonality 

can be controlled –reducing design variation in parts of the product that 

are hard to redesign. 

o Show that increasing the weight given to RI in the overall decision-

making process increases the amount of commonality seen. (really part of 

the overall method’s validation) 

• For the Commonality Discount Factor (CDF):  

o Show that CDF reduces the instances of redesign without significant 

sacrifice of other objectives 

o Show that by using penalties to reflect the relative merit of commonality 

for different variables, commonality in specific variables can be increased 

at the expense of commonality in other variables 

o Show that by using penalties to reflect the relative merit of commonality 

for different types of overlap in production schedules, more valuable 

commonality can be promoted 

o Show that increasing the weight given to CDF in the overall decision-

making process increases the amount of commonality seen.  

• For the overall constructal-inspired redesign method:  

o Show that it can produce viable platforms of arbitrary size and shape 

o Show that it can produce families of products with features roughly 

equivalent to those produced using simple optimization 
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o Show that it can sometimes produce better families of products 

o Show that the overall approach works for: 

 One-to-one redesign 

 One-to-two redesign 

 Two-to-one redesign 

 General cases of redesign 

 

 The constructs of the proposed metrics and the overall approach are discussed in 

Chapter 2. The first one described is the Product Platform Constructal Theory Method 

(PPCTM) (Hernandez 2001; Hernandez, Allen et al. 2002; Carone, Williams et al. 2003; 

Hernandez, Allen et al. 2003; Williams 2003; Williams, Allen et al. 2004; Williams, 

Rosen et al. 2004; Kulkarni, Allen et al. 2005) based upon the ideas of constructal theory 

(Bejan 1996; Bejan 1997; Bejan and Ledezma 1998; Bejan 2000). The PPCTM has 

several features that make it particularly interesting in this dissertation, chiefly the ability 

to utilize multiple modes of changing a product to create variety in multiple dimensions 

without a need to specify sizes or numbers of product platforms ahead of time. However, 

it is meant to design continuous ranges of products from scratch, so it has never been 

used for redesign or for the creation of certain specific products. Abstracted and heavily 

modified to address redesign problems, the PPCTM provides the designer with the 

capability of using multiple means to realize a family of products with variety in multiple 

dimensions without requiring that he/she specify product platforms ahead of time. This is 

a key requirement for strategic and sequential redesign. The PPCTM has been shown to 

be internally consistent in previous research and use. Thus it is accepted that PPCTM is 
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appropriate as a construct for this research and the theoretical structural validity (the first 

quadrant of the Validation Square) of the second hypothesis is taken to be proven. 

 The second construct discussed is the compromise Decision Support Problem 

(Mistree, Hughes et al. 1993; Mistree, Lewis et al.) The cDSP is infused into the 

decision-making process of PPCTM to support the redesign of individual systems to meet 

new individual goals. The cDSP has been used widely in all sorts of engineering 

applications and has been utilized as the basic building block for the development of 

techniques for robust design (Chen, Allen et al. 1996; Chen, Mavris et al. 1996), product 

family design (Simpson 1999; Simpson, Chen et al. 1999), hierarchical systems design 

(Kuppuraju, Ganesan et al. 1985; Bascaran 1987; Shupe 1987; Bascaran, Bannerot et al. 

1989; Karandikar 1989; Vadde, Allen et al. 1994), and many other problems. The cDSP 

is employed because it is a proven flexible way of characterizing a multi-objective 

problem that can include both minimization goals like the Redesign Index (RI) and 

Commonality Discount Function (CDF) and target goals like the performance values that 

will change within a product family. It is entirely capable of describing and facilitating 

the solution of strategic and sequential redesign problems. Thus the theoretical structural 

validity of the first hypothesis is also accepted. 

 The final constructs are developed later in Chapter 3 of this dissertation. These 

two indices are meant to assess the merit of redesign plans based on the amount of 

redesign effort entailed and the value of the commonality present. While developed from 

scratch, they adopt many of the advantages and disadvantages seen in product family 

commonality indices (see Section 2.3.4) in that they are quick to compute but may vastly 

oversimplify the problem that is being solved. Although they have their drawbacks, as 
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discussed in Section 3.2.6, they serve the purpose put forward for them in that they give a 

rough indication of a designer’s preferences towards minimizing redesign effort or 

maximizing commonality in certain pieces of an engineering system. 

The consistency of the proposed approach is seen in that all the information 

needed for each step is appropriate to the way the problem is framed in Chapter 1. All 

information is assumed to be deterministic and all models to be flexible enough to 

operate at all values of the redesign variables. Having shown the consistency and 

appropriateness of both the constructs and the overall approach, it is claimed that the first 

quadrant of the validation square (theoretical structural validity) is complete. 

 

 

Empirical Structural Validity, a.k.a. Domain-Specific Structural Validity 

 Having shown that the proposed approach is theoretically structurally valid, the 

next step is to discuss an engineering example that is appropriate to test it. The redesign 

scenarios used in Section 4.3.4 of this chapter are picked specifically for the testing of the 

redesign metrics. The first one, which is used throughout that section of the chapter, 

employs almost all of the different types of production overlap described in this 

dissertation and, with five new systems to be redesigned, offers ample opportunity for 

design reuse. The scenario involves specific, known, deterministic redesign targets over a 

known schedule. It also involves a reduced set of variables so that the impacts of the 

metrics are easier to distinguish. The second scenario that is used to test the ability of 

CDF to push certain types of commonality is also designed specifically with that task in 

mind, making two types of commonality opportunities readily available. As such, the 
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redesign scenarios used in this chapter are appropriate to the redesign metrics and can 

generate the type of data needed to make conclusions. Thus, for the first hypothesis they 

help address the second quadrant of the validation square, which is known alternatively 

as the “empirical structural validity” and “domain-specific structural validity”.  

A more complicated series of universal motor examples is used in Section 4.4 in 

the validation of the first hypothesis. These example scenarios have all of the features of 

those used to validate the redesign metrics but make use of all eight of the motor’s 

redesign variables, creating a much larger problem when it comes to the juggling of 

opportunities for design reuse. The universal motor and the scenarios in which it is used 

fit all the features of the sequential strategic redesign problem described in Chapter 1, 

thus satisfying the second quadrant of the Validation Square in Figure 5-1. 

 

Empirical Performance Validity, a.k.a. Domain-Specific Performance Validity 

In several series of tests in Section 4.3.4 that make use of the first redesign 

scenario, it is shown that the Redesign Index (RI) is effective in increasing the amount of 

commonality in a redesign plan both in general and in specific variables. Increasing the 

difficulty associated with certain variables is shown to lead to an increase in design reuse 

in the final solutions, reflecting a desire to avoid complicated design changes. Decreasing 

one variable’s difficulty is shown to lead to more variety in that variable across the 

family. Not only is the RI effective in all of these ways, it stands apart from the Product 

Family Penalty Function (PFPF) (Messac, Martinez et al. 2002) to which it is compared 

in that the reduced design changes can be targeted to certain variables. 
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In a much larger number of series of tests, the utility of the Commonality 

Discount Function (CDF) is shown in a very similar way. The usefulness of the CDF in 

increasing design reuse in general is shown by using it with all commonality discounts set 

to even levels. By setting discounts for certain variables to be low while all others are 

high, it is shown that commonality can be encouraged in the variables in which it is the 

most valuable. It is also shown that decreasing the penalty associated with just one type 

of production overlap can lead to increases in commonality between systems with that 

overlap. However, this is the weakest effect shown in the chapter and may be heavily tied 

to the amount of the type of overlap that is present in the redesign scenario and in the 

types of systems that have that overlap. Finally, the opposites of all of these effects are 

shown to be true: increasing the discount associated with a certain variable will 

discourage commonality in it and increasing the discount associated with one type of 

commonality will largely keep those opportunities from being used. In fact, the CDF is 

shown to be almost more effective in discouraging commonality in certain places than in 

encouraging it. It is also observed that when attempting to encourage commonality in 

certain parts of a solution while discouraging it elsewhere, the most effective strategy is 

to use extreme values of the commonality discounts for each. Again, as compared to the 

PFPF, the commonality discount factor has the advantage of being able to target certain 

variables or types of commonality overlap for special consideration. 

Through these series of tests, it is shown that both of the indices are useful with 

respect to their intended purposes and that the contributions made can be tied directly to 

their use. The effect of using both in concert is also shown. Accordingly, the case for the 

empirical performance validity of the indices, the first hypothesis, and the overall 
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research hypothesis is given a great boost. In Section 4.4, the indices are used 

successfully in concert with the constructal-inspired approach to redesign, lending them 

further credence.  

In order to validate the second hypothesis, it is desirable to show that the 

constructal-inspired approach based on PPCTM does provide value in giving structure 

and identifying commonality opportunities in the solutions to redesign problems. 

Through the examples in Section 4.4, it is shown that the constructal-inspired approach 

can handle the challenges associated with increasingly difficult problems, allowing a 

designer to identify promising solutions with commonality present in valuable locations. 

As a result of the use of the redesign metrics as objectives in this approach, the results are 

not always as one might expect. In every case, the solutions that have the best objective 

function values do not make use of the commonality forced by sharing of space elements 

between motors. Oftentimes, the solutions that appear best according to the objective 

function value are not very different from those that make use of forced commonality. 

These solutions drop in rankings simply because of the redesign difficulties and the 

commonality discounts chosen by the designer. If those values were set differently or if 

the redesign schedule was slightly different, the constructal-inspired solutions might 

seem more promising at first blush. When the redesign metrics are not used, the 

constructal-inspired approach produces feasible solutions that sometimes include a great 

deal of design reuse. 

It is noted in Section 4.4 that the usefulness of the constructal-inspired approach is 

tied strongly to the arrangement of the redesign modes into hierarchical stages. It is 

shown that stages used for the constructal-inspired design of mass-customized product 
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families in previous work do not work here. Several alternative arrangements are 

proposed and tested before a new four-stage setup is settled upon. 

Through the four redesign scenarios in Section 4.4, it is shown that the 

constructal-inspired approach, when used without the redesign metrics, and generate 

promising redesign solutions exhibiting targeted design reuse. However, the utility of this 

approach is tied strongly to the use of proper groupings and rankings of the redesign 

modes. In addition, when the redesign metrics are used in the objective function, 

solutions that do not make use of forced constructal-inspired commonality are often seen 

with the lowest objective function values. This makes sense because when all of the 

redesign variables are unrestricted, more opportunities for the types of commonality 

favored by the settings in RI and CDF may be available.  

Thus, in Section 4.4, it is shown that the constructal approach can lend structure 

that leads to good redesign plans. The value of the constructal-inspired sharing of space 

elements is shown to be less strong, as it heavily depends on the setup of the stages and 

on the settings of the commonality metrics. For this reason, it is claimed that the second 

hypothesis is conditionally shown to have empirical performance validity, satisfying the 

third quadrant of the Validation Square in Figure 5-1. 

 

Empirical Performance Validity, a.k.a. Domain-Specific Performance Validity 

 At this point it is important to look back at what has been done and question the 

strength of the claims made thus far.  

Theoretical structural validity for both hypotheses is proven by inspecting the 

constructs that make up the proposed approach and comparing them to the requirements 
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of a sequential strategic redesign method. In every respect, both the constructs and the 

overall method meet the requirements.  

Empirical structural validity is shown by picking universal motor redesign 

problems with features that exactly match the types of problems envisioned in Chapter 1. 

As the problems are hand-picked, they test out all of the desired features of the proposed 

approach.  

The empirical performance validity of the proposed approach is shown through 

numerous experiments using simplified universal motor redesign scenarios and a number 

of more complicated scenarios with more variables present. The proposed approach is 

shown to be useful with respect to every intended purpose, although in several ways there 

is room for further experimental evidence. The Commonality Discount Function can only 

weakly encourage commonality of certain types whereas it has a great impact when used 

to encourage commonality in certain variables. The overall constructal approach is shown 

capable of generating good redesign solutions but its utility depends heavily on the way 

in which redesign modes are arranged and its effects can be swamped by the effects of 

the redesign metrics. By showing the results of using the approach without the indices 

however, the approach’s utility is demonstrated. The approach is also ill-suited to 

problems in which existing systems and redesign goals are clustered close to one another 

in a redesign market space.  

So now, what of the leap of faith to claim broader usefulness beyond the universal 

motor examples presented here? It is clear that any redesign problem that is to be solved 

must meet very specific conditions in order for the constructal-inspired approach 

proposed here to work. The problem must involve definite information about multiple 
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new redesign targets that are relatively well spaced out from existing systems in the 

redesign market space. The system being redesigned must be modeled mathematically 

and the designer must be familiar enough with it to evaluate redesign difficulties and 

commonality discounts. The designer must also be able to arrange the redesign modes in 

such a way that commonality can explored in a constructal-inspired manner. If all these 

conditions are met, there is no reason why the approach proposed here would not work. 

Scaling up the implementation shown in Appendix B might be a painful process, but this 

is not truly relevant to the domain-independent performance validity of the approach. 

There are definite limits to the approach described in this dissertation, but that is the 

subject of the next section. 

5.3 - A CRITICAL REVIEW OF THE WORK AND THE ASSUMPTIONS MADE 

In the previous section, it is claimed that the proposed constructal-inspired 

approach to redesign could be applied to a much broader array of problems besides the 

universal motor examples used in this dissertation. There are limitations to that claim 

however. Identifying and discussing these limitations is the task in this section. 

 

5.3.1 - General Comments 

The one limiting assumption that generally draws the most attention from 

audiences is the presumption that the designer has perfect information about future 

redesign goals, system capabilities and redesign variables. With much effort in the design 

community being expended on modeling and handling uncertainty, this assumption 

seems a throwback to yesteryear. Still, as shown in Section 1.1.2, there are cases in which 

designers could know where they will be going next if the information was shared with 
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them. Whether they know as far in advance as is described in some of the universal motor 

examples in Chapter 4 depends on the application and situation. In addition to knowing 

the future, the designer must have confidence that the information that he/she provides as 

input to this approach such as the redesign difficulties and commonality discounts will 

continue to be as valid tomorrow as they are today. In some applications like automobiles 

and consumer electronics, it seems almost imperative that the designer be thinking ahead 

a few steps and having knowledge of options emerging in the future. Choosing to utilize 

uncertain information or a stochastic model of system performance would not necessarily 

ruin the approach proposed here It would require that the first few steps be modified to 

build a model of the problem based on combinations of uncertain inputs, and assess the 

designer’s preferences given uncertainty. 

In this dissertation, only scalable redesign options have been demonstrated. It is 

suggested that, like the Product Platform Constructal Theory Method that is also inspired 

by Constructal Theory, this approach could make use of modular or discrete redesign 

options but this ability has not been shown. Just as with PPCTM, implementing such 

variables would simply require some programming effort and a slightly modified solution 

process as an algorithm like fmincon could not be used to minimize the deviation function 

using discrete variables. One interesting question involves whether new technologies 

could be modeled as redesign options using this approach. In order to solve a redesign 

problem in which changing technologies used in the system is an option, one would have 

to consider two issues: how that change in technology is represented in the variable 

domain and how the change is modeled to relate to meaningful responses of interest. If 

the technology can be implemented such that the decision to use or not use it is 
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represented by a scalar variable then there is no issue in using it in the implementation 

presented in this dissertation. Otherwise a new process for solving the multi-stage 

problem must be found. Implementation would also be easy if changing the technology 

used does not impact the models used to find the systems performance. Otherwise, some 

effort would have to be expended to change the implementation to switch models, a 

process that could make identifying a solution more difficult. 

 

5.3.2 - Thoughts on Redesign Metrics 

Furthermore, there are limitations associated with the redesign metrics 

themselves. The overarching assumption that the designer is an “expert” is made in this 

research, but this puts a great burden on the designer to know all things about all aspects 

of a redesign and manufacturing process that may stretch well into the future so that 

he/she can assess the Redesign Index (RI) and the Commonality Discount Factor (CDF). 

The utility of the Redesign Index, for instance, is predicated upon the significance of the 

cost of redesigning a system. What are not considered in RI are the potential losses that 

can come about when customers realize the similarity between products. The 

Volkswagen case discussed in Section 1.1.2 (Anderson 1997) is a good example of this 

scenario in action. As an aside, it is assumed that the designer, as an “expert,” can assess 

redesign difficulties and commonality discounts, but the rationality of the designer is 

definitely bounded in other respects. Most notably, one of the founding premises of this 

research is that the designer is incapable of assembling a redesign plan all at once without 

confusion.  
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The RI and CDF are chosen as indirect measures of economic success, but other 

potentially more important measures of success are ignored intentionally to focus on 

these two factors as they are perceived to be unique to strategic and sequential redesign. 

It is possible that in certain redesign problems the cost of redesign or the savings 

associated with commonality may be small relative to the overall cost of manufacturing 

the product family. Nowhere in the work presented here is it ever directly considered that 

one of the “easy” redesign options or “valuable” instances of commonality may be 

extremely costly to manufacture. Also, the production volumes associated with individual 

family members is not considered, implicitly creating the assumption that all family 

members are created in equal numbers. Development and testing can also play a role in 

the value of commonality if the cost associated with those activities is high relative to the 

savings associated with economies of scale. In that case, the cost of testing and 

assimilating old components in a new product might be prohibitive; meaning the value of 

commonality is low. It is assumed that: 

 At a more detailed level, the particular formulation chosen for the piecewise-

linear versions of RI and CDF come with some advantages and some drawbacks. The 

advantage of using this formulation is that, assuming the rest of the problem is 

approximately linear, a much wider array of algorithms are available to help minimize the 

deviation function in the cDSP that is solved at each stage. The disadvantage is 

demonstrated in the numerical analysis of the indices shown at the end of Section 3.2.5. 

In the plots displayed in that section, it can be seen that no matter the redesign difficulty 

settings or commonality discounts, the RI and CDF functions and multi-modal, having as 

many local minima as there are distinct variable values in a family. Increasing the 
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weights or discounts simply adjusts the local slope around certain variable values. The 

point of choosing RI and CDF formulations in which only the closest pairs of variable 

values are counted is to encourage commonality by driving values that are already close 

together even closer. The problem is that since the metrics both have numerous local 

minima, it is entirely possible for the solution process to get stuck. The only solutions to 

this problem are to use a surrogate model to simplify the functions or to utilize a global 

optimization approach such as a genetic algorithm, particle swarm optimization or 

simulated annealing. 

 

5.3.3 - Thoughts on the Implementation of this Approach 

The redesign problems presented in this dissertation involve a small system (the 

universal motor) in relatively small redesign scenarios of up to seven motors. Product 

family design papers utilizing the same universal motor example oftentimes involve up to 

ten motors but make a great number of simplifying assumptions to reduce the number of 

variables to a level lower than in the problems in this dissertation. The scenarios used 

here are not made larger because of the complexity that would result from handling eight 

variables for every member of the product family plus the variables associated with space 

element size. This problem can be solved; however it takes a significant amount of time. 

In this respect, the problems could be scaled up but the conscious choice has been made 

not to do so. At some point, the number of variables would get too large for the fmincon 

algorithm to operate so other solution schemes would have to be considered.  

Another concern with tackling a problem larger than the universal motor is the 

management of the redesign modes and the stages into which they must be grouped. In 
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this dissertation, the problems associated with organizing the modes for the small 

universal motor are discussed. It is inconceivable that a designer could handle the 

organization of a much larger group of modes unless the system being designed behaved 

in such a way that the groupings were obvious and easy.  

The way in which the space elements have been used and constrained in the work 

presented in this dissertation is very limiting in that it will only work well for families in 

which the targets for the systems are well-spaced out and will only work very well if 

those targets closest to each other also have the most valuable commonality. It is also 

assumed for the sake of simplification that all space elements must evenly divide the 

redesign market space. Space elements of the nth stage are also assumed to be at least as 

large as those of the (n-1)th stage in each direction. This is an assumption copied from the 

earliest constructal-inspired product family design work (Hernandez, Allen et al. 2002; 

Hernandez 2003; Hernandez, Allen et al. 2003). The impact of this assumption is that no 

two new or existing systems can share a 1st-level space element as doing so will imply 

that they share all other space elements and thus must have the same design. Williams 

and coauthors (Williams, Allen et al. 2004; Williams, Allen et al. 2005) have shown that 

good results can be achieved in the design of mass-customized product families when this 

restriction is removed.  

 

5.3.4 - Thoughts on the Redesign Examples 

Upon close inspection of the results in Chapter 4, there are a number of pairs of 

variable values that, while very close to one another, are not counted as common here 

because the solution process did not push those values closer. It is entirely possible that 
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the designer could iterate by adjusting a solution given by the constructal-inspired 

approach to force these close values to be equal. This adjustment has not been attempted 

in here since doing so would require fixing the variable values throughout a great deal of 

Matlab code, but it is likely to work. It should be remembered that in adopting a decision-

based approach to this research it is assumed that the designer plays a key role in making 

the final decisions as to how the existing systems will be redesigned. The computer code 

in Appendix B has been run and produced the values that are seen in Chapter 4 but it is 

still up to the designer to decide how this information will or will not be used. The 

approach proposed here is assumed to be an attention-directing tool only, not a redesign 

automation system. Because of this assumption, it is reasonable to assume that the 

designer will carefully examine any results, make adjustments, and re-run experiments in 

an effort to fully explore the redesign space. In using an attention-directing tool, the 

design is simply seeking a promising direction in which to take a redesign project, not the 

final embodiment of each new system. 

The universal motor example has been chosen for experimentation in this 

dissertation because its prior uses have shown that it is a very flexible product family 

example capable of offering variety and commonality in multiple ways. Another redesign 

problem might not be so flexible. It is assumed that the designer will be capable of 

determining whether a project is suitable for this approach. The project should involve 

known redesign targets and deterministic models of system performance. In addition, the 

designer may want to consider how sensitive the system is to the values of the redesign 

variables chosen. If there are not multiple feasible ways to design the system using those 
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variables, it is probably not a good idea to utilize the constructal inspired approach 

described here. 

The reader may also have noted that in all of the redesign scenarios addressed in 

this section, the redesign targets and existing systems are spaced out quite well and 

relatively evenly in the redesign market space. Experimentation shows that there are 

certain types of redesign problems for which the constructal approach is ill-suited. The 

approach is ill-suited to problems in which existing systems and redesign goals are 

clustered close to one another in a redesign market space. In this case, it may be hard to 

realize the new system if many of the redesign variables are constrained in space 

elements that it shares with the existing system. When this occurs, the designer may want 

to consider whether the redesign targets associated with the new system truly differentiate 

it from the existing system enough to justify a new product offering. A small change in 

some targets might make the problem much easier to handle. The constructal-inspired 

approach is also ill-suited to problems in which all the existing systems are grouped close 

to one another while all the redesign targets are grouped together but distance from the 

existing systems. In this case, unless the existing systems are very similar to one another 

already, their proximity forces a space element arrangement with many small elements 

that is inefficient in exploring commonality. This is a problem that may be addressed by 

breaking up the redesign problem into several smaller ones or by choosing on some 

existing systems for leveraging. 

Finally, the redesign solutions obtained using the approach suggested here are 

highly dependent upon the schedule of product release created. The schedule and the 

commonality opportunity matrix drawn from it are in turn heavily dependent upon the 
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definitions of five types of production overlap laid out in Section 3.2.2. These five types 

of overlap are used because they illustrate the key reasons why commonality might not be 

of equal value throughout a family. There is no reason, however, why a designer should 

stick with this number of overlap types nor adhere to the definitions chosen here. In 

addition, if the schedule is changed just slightly, the solutions generated might be very 

different. Whether or not the designer has control of the schedule depends on the 

problem. For instance, an automotive designer might not be able to change the frequency 

with which new cars are released but might be able to convince superiors to swap a 

redesign target between release dates. The work of Coulter and coauthor (Coulter and 

Bras 1997; Coulter 1998; Coulter, McIntosh et al. 1998) is interesting if this is the avenue 

the designer chooses.   

5.4 - A REVIEW OF INTELLECTUAL CONTRIBUTIONS  

The intellectual contributions presented in this dissertation are introduced briefly 

in Chapter 1 but realized without proper mention throughout this dissertation. In 

summation, these contributions are: 

• The description of a problem type that is new to design theory: the sequential and 

strategic redesign problem (See Sections 1.1-1.3); 

• A metric for the amount of effort associated with a plan to strategically redesign a 

product family over time (see Section 3.2) 

• A metric for the value of commonality present in a plan to strategically redesign a 

product family over time (see Section 3.2) 
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• A constructal-inspired approach to strategic redesign capable of leveraging 

multiple existing systems using multiple modes of redesign to create a stream of 

related new systems (see Sections 3.3 and 3.4.) 

 

But what is the value of these contributions? How have they added to the 

fundamental knowledge of the field of design theory? The first contribution helps the 

engineering design community by exposing a problem that has not previously been 

addressed and which existing methods cannot solve. The sequential strategic redesign 

problem involves more systems than traditional structured redesign methods can handle. 

It considers product family members to be entities that have independent schedules rather 

than modeling them as a solid block that will be designed from scratch and produced 

simultaneously. As a result, the designer can consider whether commonality between all 

the members of the product family is really equivalent in value. Unlike product family 

design methods, the existence of current products is considered, as is the effort associated 

with moving from the existing product family design to the new one. 

Product family commonality/non-commonality indices have existed for decades 

but their focus is narrowed by two key assumptions they generally include: 

• The family is taken to be designed from scratch, hence no consideration of the 

effort involved in redesigning existing systems; and 

• All the members of the family are taken to be produced simultaneously; hence 

commonality between any two systems is equally valuable. 
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These assumptions ignore important factors unique to redesign that might 

influence the importance of commonality in certain areas. The idea that commonality 

between variables of different types might have different levels of importance is not new. 

What is new is that in the proposed redesign metrics it is taken into consideration that: 

• The difference in value associated with commonality might flow from the effort 

that would otherwise be expended to make systems each have unique values (the 

idea behind the Redesign Index); and 

• The difference in value associated with commonality might flow from the 

production schedules of the two systems that share common variable values (the 

idea behind part of the Commonality Discount Factor). 

 

Therefore, the redesign indices presented here plug a gap in the capabilities of the 

indices that have been developed up to this point. None of those indices consider the 

ramifications of changing a design that already exists or the ramifications of a production 

schedule that has the family being produced asynchronously.  

In addition, the Commonality Discount Factor takes into account a feature of 

redesign problems not previously modeled in product family metrics. The CDF also 

allows the designer to distinguish variables according to the value of commonality that is 

inherent to them. Manufacturing concerns can lead to a decrease in the value of 

commonality associated with a certain redesign option/mode if producing variety in the 

related component is easy and cheap. An example of the latter situation would be a part 

that has to be custom made for each system by CNC machining, meaning that the value 

of commonality is only that more designs do not have to be stored and managed. 
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 The overall constructal-inspired approach represents a wholly new use of 

Constructal Theory in design and solves a type of redesign problem not previously 

addressed. Built upon previous work on mass-customized product families, the approach 

is nevertheless heavily abstracted and modified through the inclusion of compromise 

decision-making at all levels. It is capable of taking into account multiple distinct existing 

systems in creating a plan to redesign them to create multiple new systems that will 

emerge over time. The redesign plan can involve multiple redesign options and 

potentially multiple types of variables including modular switching, scaling, and the 

addition or subtraction of parts. The new systems can be differentiated from one another 

in multiple dimensions meaning that a product family could be scaled in more than one 

performance parameter simultaneously. By including compromise decision-making and 

abstracting the previous constructal-inspired approaches it is possible to redesign with 

specific targets in mind instead of designing the best system to serve a whole segment of 

a market. By directly considering how well a redesign plan achieves its redesign targets 

using compromise decision-making, the approach proposed here implicitly solves a 

problem mentioned by Ye and coauthors (Ye, Gershenson et al. 2005). They point out the 

lack of a metric for variety in product family design. Unlike most product family design 

methods in which the amount of variety is assumed and target performance values are 

constraints, the approach presented here allows for compromise decisions to include 

performance values that deviate from their nominal targets. By including this target 

deviation, a lack of variety can be punished in the overall objective function. 

 Taken together, the overall constructal-inspired approach with its redesign metrics 

solves a previously unsolved –if narrowly focused- redesign problem in a new way. 
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Because the problem addressed here is entirely different from those tackled previously, it 

can be hard to even compare the work described here with previously existing methods. 

Instead, it is necessary to examine the gaps in existing methods (summarized in Section 

2.4) when it comes to fulfilling the needs of strategic sequential redesign.  

 Unlike existing systematic redesign methods, the approach described here does 

not depend on disassembly of the existing systems and is not limited to leveraging just 

one system to realize one new system. Unlike “redesign” examples seen frequently in 

design theory research publications (Newcomb, Bras et al. 1998; Simpson, Maier et al. 

1999; Zamirowski and Otto 1999; Newcomb, Rosen et al. 2003; Bryant, 

Sivaramakrishnan et al. 2004; Corbett and Rosen 2004; Nanda, Thevenot et al. 2005), the 

effort involved in transitioning between the existing systems and the new ones is 

considered in making redesign decisions. Other methods –particular product family 

design methods- tend to refer to the replacement of a system or family as redesign 

without considering the transitional effort.  

 Additionally, whereas most product family design methods limit the decision-

maker to a single design option and offer variety in only a single dimension, the 

constructal inspired approach shown here can handle any number of redesign options in 

an effort to provide variety in a market space with any number of dimensions. Whereas 

product family methods often require the definition of product platforms up front and the 

explicit delineation of each system’s performance characteristics, the redesign plans 

found using this approach are generated without defining strict platforms and with the 

flexibility to allow “satisficing solutions” wherein there may be performance tradeoffs.  
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 Finally, while most product family design methods and redesign methods assume 

that all production will occur simultaneously, the approach described here allows a 

designer to delineate a schedule whereby new products will emerge over time, looking 

ahead of the current redesign project to future needs. By doing so, the impact of the 

schedule on the value of commonality between systems can be considered and design 

choices with negative future consequences avoided. 

 Thus, the approach described here plugs many of the gaps identified in Section 

1.1.4 and Section 2.4. The philosophy with which the designer can approach the redesign 

problem is in essence changed from the status quo, enabling strategic thinking, flexible 

redesign options, variety in a number of dimensions, and consideration of the effort it will 

take to get there. This combination is unique in design theory. 

5.5 - AVENUES OF FUTURE WORK 

The work presented in this dissertation could be just the beginning of a much 

larger effort to explore decision support for redesign and naturally-inspired design 

decision support. In this section, a few ideas for how this effort could be carried forward 

are shared. 

 

5.5.1 - Extension of Example Problems 

 The example problems presented in this dissertation are intentionally simple; both 

to aid in demonstration of the capabilities of the redesign approach and ensure that the 

Matlab implementation of that approach is capable of finding a solution. It would be 

interesting to see the method applied to other, larger problems. To make such problems 

tenable, it is likely that the problem would need to be one in which the grouping of 
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redesign modes is obvious, the existing systems already have a degree of commonality, 

or –like the universal motor- there are many different ways in which each system can be 

designed. In addition, to handle larger, more complex systems such as aircraft or 

automobiles, a very high-level approach to the problem would have to be taken. The 

redesign variables would have to be chosen carefully for impact on the system and to 

make sure that the total number of redesign options is low. A large problem like the 

redesign of an aircraft –in which there may be thousands or millions of variables- would 

never be tackled outright using the constructal-inspired approach described here. 

One interesting aspect of redesign that has not been addressed in this dissertation 

is the infusion of new technologies. Future work could involve the use of new 

technologies in the system and study how their use affects capabilities down the road. 

The use of a historic example could give a researcher a better basis for evaluating 

redesign difficulties and commonality discounts as well. 

A still more interesting possibility is the use of the constructal-inspired approach 

in a historic example of a system that evolved over time through redesign. A historic 

example would provide the definite information about release schedules, redesign targets, 

and system capabilities that is needed to use this approach. It would also give an 

investigator the opportunity to play “what-if” games with the redesign scenario to see: 

• How redesign decisions that were made negatively affected the performance 

of systems later on and/or limited the redesign options available later; 

• Whether better redesign plans could have been identified; and 

• How knowing more or less about the future redesign plans for the system 

might have affected the redesign decisions made. 
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5.5.2 - A Preemptive Approach Involving Redesign of Existing Systems 

 One avenue of redesign that is not explored in the work here is the redesign and 

replacement of the existing systems themselves. Changing just a few variable values in 

the existing systems in the example problems in Chapter 4 might lead to much greater 

opportunities for commonality between the pre-existing systems and the new ones. 

Because of the effort that has already been expended on designing, testing, and setting up 

manufacturing for the pre-existing systems, this option would likely be considered second 

after the other redesign options are exhausted. The use of a preemptive decision-making 

formulation might help the designer consider adjustment of the new systems first and 

adjustment of the pre-existing systems at a second, lower priority level. In order to make 

the problem realistic and interesting, it would be necessary to consider the effect of 

redesigning the existing systems on the overall effort involved in the redesign project as 

opposed to the option of leaving the existing systems alone. There must be tradeoffs 

between changing the pre-existing systems and their manufacturing facilities and keeping 

them the same while accepting the penalty of producing more variety of certain 

components or subsystems. 

 

5.5.3 - Exploring New Opportunities for Variety in the Redesign Solution 

In the arrangements of space elements from the solutions to the redesign scenarios 

in Section 4.4, one thing that sticks out is the presence of many unused space elements. 

These unused space elements (see Figure 5-2) come about because the maximum number 

of space elements is set to be larger than the number of systems and because the space 
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elements are constrained to evenly divide the space. The result is that some elements are 

assigned to targets while others sit unused. One avenue of future research is to see how 

the elements of the redesign solution might be used to create more new systems. This 

would be a sort of design-using-available-assets problem. The goal would simply be to 

see, based on the release schedule for the new products and the variables that make them 

up, whether systems could be designed to fill the unused space elements. The purpose of 

this exercise would be to see how much opportunity for expansion there is in the family 

at any point in time so that, if a need suddenly arises for new systems, it might be met 

quickly. 

Torque
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The unused space elements in this The unused space elements in this 
solution share some space solution share some space 

elements with the existing new elements with the existing new 
systems. Might this represent an systems. Might this represent an 

opportunity to offer more variety?opportunity to offer more variety?

 
Figure 5-2 – Exploring Opportunities for New Variety from Shared Space Elements 
 
 
5.5.4 - Use of Different Solution Strategies 

The solution strategy utilized in this dissertation is a sort of two staged mixed 

exhaustive search and compromise Decision Support Problem formulation. It is a 
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compromise solution to the problem of having to assign space elements to targets but its 

weaknesses are twofold. First, the exhaustive search of space element arrangements is 

excessively slow if the number of systems is high or the number of divisions is high. The 

speed of the solution strategy has never been intended as one of its selling points, 

however. Second, the solution process for the compromise DSP portion makes use of a 

gradient-based optimization algorithm that is only really fitting for local optimization. As 

is discussed in Section 5.3.2, both RI and CDF have many local minima that might trap 

such an optimization algorithm. It is for this reason that a global optimization algorithm 

like particle swarm optimization, simulated annealing, or genetic algorithms might be of 

interest for future research. Any one of these would be less likely to get stuck around 

certain opportunities for commonality. Genetic algorithms in particular are interesting 

because of the possibility of structuring the genes to express problem setup issues like the 

size of space elements in one section while expressing the design of the actual systems in 

an entirely different section as shown in Figure 5-3. 

 

| 2 4 8 |  0 1 4 0 2 0 3 5 | x11 x21 x31 x41 | x21 x22 x23 x24 | …| xn1 xn2 xn3 xn4 |

Sizes of 
space 

elements

Assignments of 
redesign targets to 
elements

Variables for individual product 
family members  

Figure 5-3 – Structured Genetic Algorithm Approach to Describing a Redesign Solution 

 

5.5.5 - Other Naturally-Inspired Approaches to Exploring Commonality 

In Section 5.5.4, it is mentioned that one of the drawbacks to the solution strategy 

used in this dissertation is that it is slow. More importantly, not only is it slow, but with 
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the constraints imposed by the author and the adherence [as close as possible to] 

Constructal Theory the exploration of commonality is restricted in ways not foreseen at 

the beginning of this research. What is done in effect is to try to impose a constructal 

regime on a problem involving pre-existing systems that were not designed with the 

constructal regime in mind. It should be obvious that this strategy will fail quite 

frequently. Since the goal is to move through the redesign space from the existing 

systems to the new ones via the path of least resistance, it might be more appropriate to 

look elsewhere in nature for ideas about exploring commonality. One intriguing 

possibility is the growth of crystals, which form around an initial nucleus and grow in 

rates governed by the shape of the initial nucleus, the presence of foreign bodies that prop 

up the structure, and any dislocations in the latticework of the crystal.  

Having discussed a number of ideas for how the work described in this 

dissertation might be expanded upon in the future, the dissertation is closed in Section 5.6 

with some personal thoughts on this work and where it takes both the design community 

and the author himself. 

5.6 - A PERSONAL STATEMENT  

One of the greatest struggles that I have had throughout the course of this research 

has been the temptation to travel down the side roads that are constantly presenting 

themselves. Most of the avenues of research discussed in Section 5.5 came about as these 

avenues emerged over time. Some of these were exceptionally hard to let go, particularly 

those in Sections 5.5.3 through 5.5.5 but in a research project in which the initial 

objectives are hard to achieve, pursuing side projects seemed not to be the best idea. Still, 

I would like to make a personal plea for the ideas for future work contained in those 
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sections. There is something elegant and enticing about Constructal Theory and its 

connection to nature. Having studied it, one can suddenly see the cascading path of a 

river in the design of a heat exchanger and the tendrils of a root system in the 

organization of a product family. Solutions generated using these constructal-inspired 

methods seem to have the stamp of nature on them. When I look at the results provided 

using the method proposed and tested in this dissertation, I see solutions that nature 

would reject. The excessive searching through arrangement of space elements and the 

unused space elements that remain in many solutions cry out with waste that nature 

would certainly make use of in some way. This is why I was and am still so interested in 

finding better solution strategies and in making use of all of the market space where 

possible. The idea of using a biologically inspired global optimization method like a 

genetic algorithm or particle swarm optimization fits neatly into this theme, as does the 

idea of moving from constructal space elements to crystal space elements. The reasoned 

rationales for these ideas are given in Section 5.5 but I felt that the urge behind them had 

better be explained here. 

Without further ado, I would like to share some thoughts on other important 

topics throughout the rest of this section. 

 

Why even bother to solve this problem in a constructal-inspired manner at all? 

It seems clear at this time that the constructal-inspired commonality exploration 

seems to be best-suited to problems in which the systems being designed or redesigned 

are spread out as evenly as possible in the market space or in which the designer is 

willing to sit patiently while solutions with huge numbers of empty space elements are 
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explored. In this work, the organization of the space elements in the constructal-inspired 

method has been limited so that each level’s elements fit neatly inside the next higher 

level’s elements. This system of organization, size, and shape comes directly from 

constructal theory, but in applications of constructal theory, it is often assumed that the 

driving force from which the constructal shape is derived is constant throughout space. In 

previous work on constructal-inspired product family design (Williams, Allen et al. 2004; 

Williams, Rosen et al. 2004), it has been shown that good results can be obtained even 

when the market demand that drives the space element shapes is non-uniform. The 

variance in market demand is handled in part by allowing space elements to have any 

size, the only restriction being that lower level elements must be no larger than higher 

level elements.  

This arrangement can lead to much less organized space elements but also lends 

more freedom to the solution. Eliminating the restriction that dictates the maximum size 

of small elements would lend even greater freedom as well. As these restrictions are 

eliminated, however, a philosophical question rears its head: at what point does this work 

cease to be related to constructal theory?  

It could be argued that all previous work related to product design and product 

family design differs enough from the basic tenets of constructal theory to warrant not 

using the word “constructal” anywhere. This conclusion is based on the fact that, in 

product design there is rarely a single deterministic objective that can be quantified and 

optimized at every level of detail of the system. There is also a problem of 

interdependence: in applications of constructal theory, the approach works because the 

solutions in adjacent space elements do not depend upon each other. For example, the 
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length of the driveway of your neighbor a block away does not affect the amount of time 

it takes you to walk to your car in the morning. In a more complex engineering system, 

however, such interactions cannot be ignored.  

So, back to the question at hand, why use a constructal-inspired approach? The 

answer is best phrased by Chris Williams in the closure to his Master’s thesis (Williams 

2003) but I will attempt to paraphrase. In using this constructal approach, multiple 

existing systems can be redesigned in any number of ways to meet changed goals in 

multiple dimensions. That is a capability that constructal-inspired methods alone have. 

No other product family design methods allow the designer to explore the creation of a 

product family changing in multiple dimensions at once. With the addition of the research 

in this dissertation, constructal inspired methods can now be used to solve problems in 

which the product family emerges over time something that is also unmatched by other 

product family design methods. These capabilities more than justify our interest in 

Constructal Theory. 

It is incorrect to assume that even an expert designer could anticipate the proper 

formulation of the constructs into which the variables should be placed. Even for the 

simple universal motor problem, constructs that seem obvious based on previous work or 

suggested by studying analysis of variance on the problem do not prove to be the best. If 

the assumption that you know the proper makeup of the constructs was removed, a 

method for defining the makeup would be needed. No such method exists at this time. 

What kind of study would be needed? 

 

Why shouldn’t we consider uncertainty in the redesign problem? 
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It has been suggested to me repeatedly that, given the focus of this work on future 

needs and capabilities, it only makes sense to assess the impact of uncertainty on the 

decisions being made. Certainly, a designer considering the impact of current redesign 

decisions will not know perfectly how new technologies will perform when implemented 

in future generations, nor will he/she know perfectly what market demands will look like 

in the future. On the other hand, as hard as it might be for the designer to be sure about 

the capabilities of future systems, it could be even harder to quantify how uncertain 

he/she is about those capabilities. As the automotive, consumer electronics, and 

aerospace examples discussed in Section 1.1.2 illustrate, there are numerous instances in 

which systems are redesigned with the full knowledge that future revisions will be 

necessary to produce new models at a later date. Considering that the method presented 

in this dissertation is intended to be a decision support method for designers considering 

the conceptual redesign of existing system in the context of ongoing sequential design, it 

seems reasonable to let the designer express his/her expert opinion about future demands 

and capabilities. If he/she is uncomfortable with certain values, sensitivity analysis can be 

done at a later time to see if incorporating uncertainty is worthwhile.  

 

What makes my approach not ad-hoc?  

This question occurred to me as I wrote Chapter 1 and spoke harshly about the 

potential downsides of “ad-hoc” approaches to redesign. “If ad-hoc is so bad, what is 

better about this redesign method that I have assembled in an ad-hoc manner,” I thought 

to myself. For a few moments, this thought bounced around in my head and probably 
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made my eyes widen a bit as I envisioned the whole meta-rationale for my work slowly 

circling the drain.  

What makes the approach presented here systematic as opposed to ad-hoc is the 

fact that it builds upon past work. By building upon past research and generally accepted 

engineering methods, I hoped to ensure safe footing as I stepped just beyond what others 

have done before. The research presented here involves a carefully framed type of 

problem that exhibits just enough new and challenging characteristics to make it 

interesting. At the same time, the redesign problem is close enough in structure to 

problems solved in the past to allow pre-existing work to serve as the basis for the few 

small strides that I have made. I hope that these similarities are obvious. I have chosen to 

make the strides forward by adding, subtracting from, and modifying existing methods in 

ways I hope to have justified. There are certainly instances of choices that I made for one 

reason that could just as logically have been made in a different direction by a different 

researcher. For instance, I chose to pursue a very simple but solution scheme, eschewing 

pursuing a potentially more interesting approach using genetic algorithms. It is my 

opinion that this does not diminish the significance of my research contribution –the 

solution scheme is not claimed as a significant contribution in any case- nor does it 

diminish the promise of the road not taken. To summarize, I hope that by following the 

steps of the validation square to ensure that the steps forward I took fit with both the 

existing work I was leveraging and the characteristics of the redesign problem, it can be 

seen that the resulting method is as systematic as the approach taken to create it. 

 

Is the model of time flow I use too simplistic?  
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In the work I present in this dissertation, I chose to model the emergence and 

retirement of products using event-based time in terms of discrete years. There is no 

reason I couldn’t have changed this to be weeks, months, or decades. Instead of using 

five classifications of types of overlap in schedules as I did here, a more complicated 

formula could be used –perhaps counting the number of years of overlap or gap between 

products and using this as a factor in determining the value of commonality between 

those two products. Making this change could help differentiate between the situation 

shown in Figure 5-4 where –all things being equal- it might make more sense to choose 

to make the new Model 300 have as much in common with the Model 200 as possible as 

opposed to encouraging commonality with Model 100. This decision is derived from the 

fact that production between Models 200 and 300 overlap for four years as opposed to 

just one year of overlap between Model 100 and Model 300. This change was not made 

because it would make assigning weights to CDF much more complicated and less 

intuitive. 

 

Model 
300

Model 
200

Model 
100

Year of Production
10987654321

Model 
300

Model 
200

Model 
100

Year of Production
10987654321

 
Figure 5-4 – An Example of a Situation Where Amount of Overlap Might Matter 
 

A related issue involves the assumption in my work that the designer is only 

concerned with the total effort in a redesign project, not the effort expended per unit of 



 377 

time. One realistic goal of a designer thinking strategically about a series of upcoming 

regularly-occurring revisions to an existing product or product would be to want to 

control the rate of design changes over generations. The goal in the example problems 

solved in this dissertation is to reduce the overall number of changes needed, however 

ignoring when, where, and in what quantity these changes take over time may not make 

sense to a manager trying to allocate design and development funds over periods of years. 

This is the type of problem that might face automobile designers trying to allocate their 

funds to the changes that go into their vehicles each year. This is also the type of problem 

that motivates the work of Stewart Coulter (Coulter and Bras 1997; Coulter 1998). The 

problem with extending the work in this dissertation to attempt to control the rate of 

redesign over time would be doing so in a way that flows logically from realistic 

management objectives. One way to do this would be break down the overall objectives 

of minimizing RI and CDF into yearly goals to reduce the values of those metrics for the 

family that exists at that point. The level of achievement for each year could be weighted 

according heavily in inverse to the amount of money available for research, development, 

and design work to produce that year’s revision. 

I have enjoyed writing about this research when I have the time to do so at a 

relaxed pace and with careful consideration of each sentence. For two reasons, it has at 

times seemed like torture to do the actual work that went into the research described here.  

On the one hand, most of the experiments described here have been run at least a dozen 

times as the constructal-inspired approach has been refined, bugs have been worked out, 

and various preferences adjusted. On the other hand, it has at times been very tempting to 

look beyond the small steps I have taken here to think about the ideas for future work 
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discussed both here and in Section 5.5. I find many of these ideas exciting, so it has been 

hard to be satisfied with the metaphorical bird in the hand. Perhaps this discomfort 

exhibits a bit of the explorer mentality in me: never satisfied with just staying where I am 

or taking small steps; always interested in what is beyond the next hill. If I remember 

correctly, this was the focus of my college application essays twelve years ago. I hope to 

maintain that spirit of exploration but am content at this time with the first few small 

steps up the hill of systematic strategic sequential redesign decision support that have 

been taken in this dissertation. 
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APPENDIX A - EXPANDED DATA FROM VALIDATION OF 

METRICS/INDICES 

 The data presented in this appendix is meant to support the activities in Section 

4.3 to demonstrate the effectiveness of the Redesign Index (RI) and Commonality 

Discount Factor (CDF). The data presented in that section is purposefully brief, as the 

reader would be overwhelmed by the bulk of what can possibly be shown. The data 

presented here is broken down by many of the same headings used in Section 4.3.4 when 

discussing the nine characteristics of RI and CDF that are desirable.  

 As a reminder, a number of abbreviations that are used constantly throughout this 

appendix are summarized here: 

• Types of commonality overlap (see Section 3.2.2) : 

 PG – Production Gap  

 SP – Staggered Production 

 SI – Staggered Introduction 

 SR – Staggered Retirement 

• Universal motor variables of interest: 

 Na – Number of wire turns in the armature 

 Nf – Number of wire turns in the field 

 L – Stack length 

 

A.1 – FURTHER DEMONSTRATING THE REDUCTION OF REDESIGN IN A 

VARIABLE USING THE REDESIGN INDEX (RI) 
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It is shown in Section 4.3.4 that by making the number of wire turns in the 

armature (Na) the only difficult variable in the redesign problem, the amount of 

commonality in that variable can be increased. The same is shown here for the stack 

length (L). If this variable alone is given a redesign difficulty of 1.0 while Na, the number 

of wire turns in the field (Nf), and the current (I) are all given difficulties of 0.1, the 

amount of commonality in L can be increased, albeit at a lower rate. The relationship 

between the Archimedean weight given to RI in the compromise Decision Support 

Problem formulation of the redesign scenario and the amount of commonality is shown in 

Table A-1 and Figure A-1. The final family design for a weight of 0.625 is also shown in 

Table A-2. 

 

Table A-1 –  Unique Values of a Difficult L for Increasing RI Archimedean Weight 
Weight 

Given to 
RI 

Final RI Value 
Achieved 

Total Number of 
Unique Values of L 

(total max possible is 7) 

Total Number of Unique 
Variable Values 

(total max possible is 27) 
0 0.0451 7 27 

0.167 0.0242 7 26 
0.250 0.0239 7 27 
0.375 0.0234 5 25 
0.500 0.0231 4 24 
0.625 0.0216 4 24 
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Figure A-1 – Effect of Increasing RI Weight on Instances of Redesign in a Difficult L Variable 
 

Table A-2 – Redesigned Family with L Difficult to Change and RI Given a Weight of 0.625 
Motor Na Nf L (cm) I (A) 
Existing Motor #1 1056 73 2.81 4.36
Existing Motor #2 1007 73 2.61 4.02
New Motor #1 493 112 1.09 3.02
New Motor #2 757 103 1.31 3.27
New Motor #3 1213 83 1.31 4.08
New Motor #4 1022 93 1.31 3.63
New Motor #5 1371 62 1.31 5.42
 

A.2 – FURTHER DEMONSTRATING THE GENERAL REDUCTION OF REDESIGN AT 

THE EXPENSE OF A CERTAIN VARIABLE USING THE REDESIGN INDEX (RI) 

 In Section 4.3.4, it is shown that if the number of wires in the armature (Na) is the 

only variable that is easy to change then even for increasing Archimedean weights given 

to RI, solutions to the cDSP formulation of the redesign scenario can be found in which 

the level of commonality in Na stays relatively constant while other design reuse is 
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encouraged. The same relationship is shown here for a situation in which the stack length 

(L) is the only easy variable. For this scenario, only L is given a difficulty of 0.1 while 

Na, the number of wire turns in the field (Nf), and the current (I) are all given hard 

difficulties of 1.0. As the weight given to RI is increased, the trends shown in Table A-3 

and Figure A-2 become clear. The level of commonality in L remains constant while 

change in other variables is reduced. 

 
Table A-3 – Unique Values of an Easy L for Increasing RI Archimedean Weight 

Weight 
Given to 

RI 

Final RI Value 
Achieved 

Total Number of 
Unique Values of Na 

(total max possible is 7) 

Total Number of Unique 
Variable Values 

(total max possible is 27) 
0 0.0451 7 27 

0.167 0.0589 7 26 
0.250 0.0430 7 25 
0.375 0.0275 7 23 
0.500 0.0225 7 19 
0.625 0.0149 7 22 
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Figure A-2 – Effect of Increasing RI Weight on Instances of Redesign in an Easy L 
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 Table A-4 is presented as an example of the kind of solutions that can be found 

using RI in this way. This solution is found using an Archimedean weight of 0.625 for RI 

with redesign difficulties set such that the stack length is the only design variable 

considered easy to change. 

 

Table A-4 – Family with L Easy to Change and RI Given a Weight of 0.625 
Motor Na Nf L (cm) I (A) 
Existing Motor #1 1007 73 2.81 4.36
Existing Motor #2 1179 73 2.61 4.02
New Motor #1 1179 84 0.58 3.36
New Motor #2 1056 92 0.75 3.67
New Motor #3 1179 84 1.37 4.02
New Motor #4 1007 92 1.26 3.67
New Motor #5 1179 75 1.84 4.50
 

A.3 – FURTHER DEMONSTRATING THE INCREASE IN COMMONALITY IN A 

VARIABLE IN WHICH IT IS VALUABLE USING THE COMMONALITY DISCOUNT 

FACTOR (CDF) 

In Section 4.3.4, it is shown that the number of unique values of the variable Na 

(number of wire turns in the armature) in the universal motor example can be reduced 

through judicious use of the CDF. The same can also be shown for both the number of 

wire turns in the field (Nf) and the stack length (L). Table A-5 and Figure A-3, results for 

a cDSP formulation in which Nf is the only variable with valuable commonality are 

shown. As the Archimedean weight is increased, a drop in both the number of unique 

values of Nf and the number of unique variable values overall can be seen. 
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Table A-5 – Unique Values of a Valuable Nf for Increasing CDF Archimedean Weight 
Weight 

Given to 
CDF 

Final CDF Value 
Achieved 

Total Number of 
Unique Values of Nf 

(total max possible is 7) 

Total Number of Unique 
Variable Values 

(total max possible is 27) 
0 0.0406 6 27 

0.167 0.0066 6 27 
0.250 0.0054 6 25 
0.375 0.0044 5 24 
0.500 0.0040 5 24 
0.625 0.0038 5 24 
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Figure A-3 – Effect of Increasing CDF Weight on Instances of Redesign in a Valuable Nf 
   

Table A-6 contains a description of a redesign option identified by solving a 

cDSP in which Nf is the only variable with a low commonality discount and CDF is 

given a weight of 0.625 in the overall objective function. From these results, it is clear 

that the impact on the amount of design reuse in Nf is not great, but that there is a general 

development of reuse opportunities throughout the family.  
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Table A-6 – Family with Nf Commonality Valuable and CDF Given a Weight of 0.625 
Motor Na Nf L (cm) I (A) 
Existing Motor #1 1056 73 2.81 4.36
Existing Motor #2 1007 73 2.61 4.02
New Motor #1 796 101 0.67 3.19
New Motor #2 871 101 1.11 3.36
New Motor #3 1363 76 1.07 4.44
New Motor #4 1007 94 1.34 3.62
New Motor #5 1364 63 1.34 5.35
 

The series of tests meant to show that CDF can be used to target design reuse in 

the stack length (L) variable have more promising results, as seen in Table A-7 and 

Figure A-4.  

 
Table A-7 – Unique Values of a Valuable L for Increasing CDF Archimedean Weight 

Weight 
Given to 

CDF 

Final CDF Value 
Achieved 

Total Number of 
Unique Values of L 

(total max possible is 7) 

Total Number of Unique 
Variable Values 

(total max possible is 27) 
0 0.0406 7 27 

0.167 0.0091 7.00 27 
0.250 0.0067 5.00 25 
0.375 0.0069 5.00 25 
0.500 0.0063 5.00 23 
0.625 0.0059 4.00 22 
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Figure A-4 – Effect of Increasing CDF Weight on Instances of Redesign in a Valuable L 
 

 The redesigned family that is found when the cDSP is solved with CDF given an 

Archimedean weight of 0.625 and L is the only variable with a low commonality 

discount is seen in Table A-8. Overall, there is a good amount of overlap in the values of 

stack length used by the product family members. 
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Table A-8 – Family with L Commonality Valuable and CDF Given a Weight of 0.625 
Motor Na Nf L (cm) I (A) 
Existing Motor #1 1056 73 2.81 4.36
Existing Motor #2 1007 73 2.61 4.02
New Motor #1 614 102 0.93 3.08
New Motor #2 835 102 1.17 3.33
New Motor #3 1302 79 1.17 4.27
New Motor #4 1302 84 0.93 4.04
New Motor #5 1403 57 1.17 5.95
 

A.4 – FURTHER DEMONSTRATING THE INCREASE IN COMMONALITY IN 

GENERAL IN A FAMILY AT THE EXPENSE OF GREATER REDESIGN IN A CERTAIN 

VARIABLE USING THE COMMONALITY DISCOUNT FACTOR (CDF) 

 The next series of tests is aimed at demonstrating the opposite effect of CDF. In 

Section 4.3.4, it is shown that by manipulating the commonality discounts associated 

with certain variables, commonality can be encouraged in general while encouraged to a 

lesser degree in the number of wire turns in the armature (Na). A series of experiments 

explained here are aimed at showing the same trend for the number of wire turns in the 

field (Nf). A cDSP is formulated in which only Nf has a low commonality discount of 0.1 

while Na, the stack length (L), and the current (I) all have high discounts of 1.0. The 

results in Nf, even as the weight given to CDF is increased, are not huge, as seen in Table 

A-9 and FigureA-5. This is the desired result.  
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Table A-9 – Unique Values of a Worthless Nf for Increasing CDF Archimedean Weight 
Weight 

Given to 
CDF 

Final CDF Value 
Achieved 

Total Number of 
Unique Values of Nf 

(total max possible is 6) 

Total Number of Unique 
Variable Values 

(total max possible is 27) 
0 0.0406 6 27 

0.167 0.0066 6 26 
0.250 0.0054 6 23 
0.375 0.0044 6 23 
0.500 0.0131 6 22 
0.625 0.0135 6 22 
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Figure A-5 – Effect of Increasing CDF Weight on Instances of Redesign with a Worthless Nf 
 

As seen in Table A-10, while the number unique values for Nf stays relatively 

constant even when CDF receives a weight of 0.625, the total amount of design reuse in 

the family is quite high. Commonality can be seen in each of the other three variables. 
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Table A-10 – Family with Nf Commonality Worthless and CDF Given a Weight of 0.625 
Motor Na Nf L (cm) I (A) 
Existing Motor #1 1056 73 2.81 4.36
Existing Motor #2 1007 73 2.61 4.02
New Motor #1 1007 84 0.57 3.36
New Motor #2 1007 97 0.93 3.48
New Motor #3 1056 88 1.60 3.83
New Motor #4 1268 85 0.97 3.97
New Motor #5 1268 71 1.60 4.79
 
 A similar series of experiments is run for the stack length (L) in an attempt to 

show that CDF can encourage commonality in general while focusing away from L. As 

seen Table A-11 and Figure A-6, the results of this series are even better than for Nf. The 

redesigned family shown in Table A-12 has even more design re-use although there is 

one repeat of a value of L. 

 

Table A-11 – Unique Values of a Worthless L for Increasing CDF Archimedean Weight 
Weight 

Given to 
CDF 

Final CDF Value 
Achieved 

Total Number of 
Unique Values of L 

(total max possible is 7) 

Total Number of Unique 
Variable Values 

(total max possible is 27) 
0 0.0406 7 27 

0.167 0.0218 7.00 24 
0.250 0.0138 7.00 24 
0.375 0.0109 7.00 24 
0.500 0.0050 7.00 20 
0.625 0.0071 7.00 22 
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Figure A-6 – Effect of Increasing CDF Weight on Instances of Redesign in a Worthless L 
  

Table A-12 – Family with L Commonality Worthless and CDF Given a Weight of 0.625 
Motor Na Nf L (cm) I (A) 
Existing Motor #1 1056 73 2.81 4.36
Existing Motor #2 1007 73 2.61 4.02
New Motor #1 952 97 0.54 3.31
New Motor #2 1007 97 0.93 3.48
New Motor #3 1179 84 1.37 4.02
New Motor #4 952 95 1.44 3.56
New Motor #5 1179 75 1.84 4.50
 

A.5 – FURTHER DEMONSTRATING THE INCREASE IN DESIGN REUSE IN A 

CERTAIN TYPE OF VALUABLE COMMONALITY USING THE COMMONALITY 

DISCOUNT FACTOR (CDF) 

 The results presented in Section 4.3.4 do not strongly demonstrate the benefit of 

using CDF when a certain type of commonality is more valuable than others. The 
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argument is also made that a redesign scenario in which there are more opportunities of 

each type might show this benefit more clearly. In an effort to back up this supposition, a 

totally new redesign scenario is presented in Figure 4-15 and summarized in cDSP form 

in Table A-13. 

 

Table A-13 – cDSP Formulation of Special Redesign Problem for Validation of Indices 
Given   
 • An 1-dimensional market space of torque values that are to be changed 

over time through redesign 
• One existing system with at torque output of 0.05 Nm 
• Six new systems to be released over the next 8 years, each with a 

torque output 0.05 Nm greater than the previous year’s new model 
• The schedule of production shown in Figure 4-15 
• A set of values for certain platform variables (Awa, Awf, r, and t) that 

is to be constant through all of the new motor designs: 
  Awa = 0.241 mm 

Awf = 0.376 mm 
r = 2.69 cm 
t = 6.66 cm 

Find   
 • Redesign variables 

• Deviation variables 
Satisfy   
 The system constraints: 

• System average mass goal of 0.50Kg 
• System average efficiency goal of 0.70 
• System minimization of CDF goal: 

{ }( ) CDF CDF 1CDF X d d− ++ − =  

• Individual motor torque goals 
• The lower and upper bounds on each system 
• Deviation variable constraints 

Minimize    
 The deviation function: 
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 The cDSP summarized in Table A-13 is solved in three series of tests to see 

whether Staggered Production (SP) commonality and Production Gap (PG) commonality 

can be encouraged at the exclusion of other types in this scenario. It should be noted that 

given the redesign schedule shown in Figure 4-15, these are the only two types of 

commonality possible. It should also be noted that while the total number of commonality 

types possible has dropped, the SP commonality may still have a head start on account of 

the systems with overlapping production schedules having similar required torque 

outputs. 

 The results from solving the cDSP when only Staggered Production is given a low 

commonality discount are promising. As seen in Table A-14 and Figure A-7, a good 

amount of commonality is encouraged as the weight given to CDF is increased, with 

most of it going to SP commonality. 

 

Table A-14 – Instances of Valuable SP Commonality for Increasing CDF Archimedean Weight in the 
Special Scenario 

Weight 
Given to 

CDF 

Final CDF Value 
Achieved 

Total Number of 
Instances of Perfect 

Commonality  
(total max possible is 20) 

Total Number of Unique 
Variable Values 

(total max possible is 28) 

0 0.010348 0 28 
0.167 0.006924 0 28 
0.250 0.006917 3 25 
0.375 0.004936 3 25 
0.500 0.004446 6 22 
0.625 0.010348 4 22 
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Unique Variable Values for Different Weights of CDF in Test Favoring Only Staggered 
Production Type Commonality
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Figure A-7 – Effect of Increasing CDF Weight on Instances of SP Commonality in the Special 
Scenario 
 

The solution found when CDF is given a weight of 0.625 is shown in Table A-15. 

The redesigned family has an average mass of 0.544 Kg and average efficiency of 57.7 

%, which is not great. Still, all of the torque targets are met almost exactly. 

 

Table A-15 – Special Scenario Family in Which SP Commonality is Particularly Valuable with CDF 
Given a Weight of 0.625 
Motor Na Nf L (cm) I (A) 
Existing Motor #1 730 45 1.00 3.65
New Motor #1 730 104 1.37 3.26
New Motor #2 1496 35 1.00 5.61
New Motor #3 1496 60 0.91 5.19
New Motor #4 1133 82 1.73 4.15
New Motor #5 1387 60 1.25 5.61
New Motor #6 1312 60 1.53 5.67
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Table A-16 – Instances of Valuable PG Commonality for Increasing CDF Archimedean Weight in 
the Special Scenario 

Weight 
Given to 

CDF 

Final CDF Value 
Achieved 

Total Number of 
Instances of Perfect 

Commonality  
(total max possible is 20) 

Total Number of Unique 
Variable Values 

(total max possible is 28) 

0 0 28 0 
0.167 0 28 0 
0.250 0 28 0 
0.375 0 28 0 
0.500 0 28 0 
0.625 3 22 3 

 

Unique Variable Values for Different Weights of CDF in Test Favoring Only Production Gap 
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Figure A-8 – Effect of Increasing CDF Weight on Instances of PG Commonality in the Special 
Scenario 
 

The solution found when CDF is given a weight of 0.625 is shown in Table A-17. 

The redesigned family has an average mass of 0.526 Kg and average efficiency of 57.3 
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%, which is not great. Still, all of the torque targets are met almost exactly. The PG 

commonality in this family is seen in the sharing of values of Nf and L. 

 

Table A-17 – Special Scenario Family in Which PG Commonality is Particularly Valuable with CDF 
Given a Weight of 0.625 
Motor Na Nf L (cm) I (A) 
Existing Motor #1 730 45 1.00 3.65
New Motor #1 706 104 1.42 3.24
New Motor #2 1479 56 0.89 4.70
New Motor #3 1479 69 0.89 4.91
New Motor #4 1391 69 1.18 4.93
New Motor #5 1404 56 1.16 6.00
New Motor #6 1330 56 1.42 6.00
 

A.6 – FURTHER DEMONSTRATING THE INCREASE IN DESIGN REUSE IN 

GENERAL IN A FAMILY AT THE EXPENSE OF A CERTAIN TYPE OF VALUABLE 

COMMONALITY USING THE COMMONALITY DISCOUNT FACTOR (CDF) 

 Returning to the original redesign scenario used throughout Section 4.3.4, it is 

shown here that the CDF can be used to emphasize commonality in general while not 

encouraging much design reuse between systems that have “perfect” overlap in their 

production schedules. This type of Perfect Commonality is only seen in this example 

between the fourth and fifth new motors. To show the effectiveness of CDF in this 

regard, the cDSP formulation is again adjusted to give any Perfect Commonality a high 

discount while all other types receive low ones. As is seen in Table A-18 and Figure A-9, 

this adjustment successfully yields lower and lower amounts of change in the new 

systems as the weight given to CDF in the objective function is increased. 

  

 



 396 

 

Table A-18 – Instances of Worthless Perfect Commonality for Increasing CDF Archimedean Weight 

Weight 
Given to 

RI 

Final CDF Value 
Achieved 

Total Number of 
Instances of Perfect 

Commonality (total max 
possible is 8) 

Total Number of Unique 
Variable Values 

(total max possible is 27) 

0 0.0406 0 27 
0.167 0.0106 0 25 
0.250 0.0089 0 23 
0.375 0.0083 0 23 
0.500 0.0062 0 22 
0.625 0.0059 0 21 

 

Unique Variable Values for Different Weights of CDF in Test Favoring All Commonality 
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Figure A-9 – Effect of Increasing CDF Weight on Instances of Worthless Perfect Commonality  
 

A sample solution from this formulation of the cDSP is shown in Table A-19. 

This redesign solution exhibits design reuse throughout and achieves all torque goals with 

an average mass of 0.543 Kg and average efficiency of 64.7%. 
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Table A-19 –Family in Which Perfect Commonality is Worthless with CDF Given a Weight of 0.625 
Motor Na Nf L (cm) I (A) 
Existing Motor #1 1056 73 2.81 4.36
Existing Motor #2 1007 73 2.61 4.02
New Motor #1 868 78 0.77 3.25
New Motor #2 868 101 1.11 3.36
New Motor #3 1337 78 1.11 4.36
New Motor #4 1294 84 0.94 4.02
New Motor #5 1337 66 1.42 5.14
 

 As noted in Section 4.3.4, it is impossible to show all of the data for each of the 

experiments in each of the series discussed here. However, it is hoped that by showing 

examples and summaries of trends, the reader will get an idea of the effectiveness of the 

proposed indices and their real impact on the redesign solutions that are identified.  
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APPENDIX B – MATLAB FUNCTIONS AND SCRIPTS 

B.1 – MATLAB CODE FOR VERIFICATION AND VALIDATION OF OVERALL 

CONSTRUCTAL INSPIRED METHOD 

In order to be able to quickly run experiments with new redesign scenarios, much 

of the constructal-inspired redesign decision support method presented in this dissertation 

has been automated in Matlab programs and scripts. The information flows between these 

programs and scripts are shown in Figure 4-19. Almost all of this code has been written 

in such a way that it can be reused with minimal effort for problems that differ in the 

number of: 

• Dimensions of customization (a.k.a. system responses) in the problem; 

• Redesign variables; 

• Stages to the constructal-inspired approach; 

• Existing systems; 

• New systems to be created through redesign; 

• Overall objectives like the CDF, RI, mass, and efficiency goals used in the 

examples in Chapter 4; and 

• Space elements allowed to be used to break up the space. 

In addition, the user can quickly adjust weights, redesign difficulty indices (RDI), 

commonality discounts, and redesign targets to better represent his/her preferences. The 

groupings of variables (modes of managing product variety) into constructs can also be 

easily adjusted. All of this was done so that future researchers could easily use this code 

on other example problems besides the universal motor problem exercised here.  
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Much of the Matlab code utilized in the verification and validation of the overall 

constructal-inspired method is the same as that which is used to validate the indices by 

themselves. As a result, the only scripts and programs displayed in Section C.2 are those 

that differ significantly from their counterparts here or which are unique to the overall 

method. 

 

B.1.1 – “solvequasicon.m” Program 

 This is the main function for the implementation of the constructal-inspired 

approach to solving the redesign problem. It calls all of the rest of the functions and 

scripts that are displayed in Section C.1, setting up the redesign problem, generating start 

points for fmincon, analyzing the results, sorting the results, and saving everything of 

value for analysis later on. The only values that should need to be changed for use of this 

function in different example problems is the file name used to save the Matlab diary and 

the data file. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% solvequasicon3.m 
%  
% Updated by: Matt Chamberlain 
% 
% Description: This script is meant to be the main program used to solve 
% the universal motor redesign problem in a constructal-inspired manner.  
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
[schedule,existingsys,existingsysres,targets,overallobjs,weights,... 
    physcons,physconflags,physconseq,physconseqflags,minndiv,maxndiv,... 
    responsebounds,numvars,constructs,lbounds,ubounds,x0,commindices,rdi]... 
    = redesigninputs2; 
  
numexsys = size(existingsys,1); 
numtargets = size(targets,1); 
  
% Make a non-dimensional set of existing systems 
existingsysnondim = zeros(numexsys,numvars); 
for countexsys = 1:size(existingsys,1) 
    existingsysnondim(countexsys,:) = ... 
        (existingsys(countexsys,:) - lbounds') ./ (ubounds' - lbounds'); 
end 
  
% Create the redesign difficulty and scheduling matrices  
[commmatrix,startprod,endprod] = createcomoppmatrix2(schedule,numvars,commindices); 
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maxvalue = 0; 
validndiv = 0; 
numconstructs = size(unique(constructs),2); 
  
% This loop runs an exhaustive search of the number of space element 
% divisions possible 
ndiv = maxndiv * ones(numconstructs,1) 
tracendiv(:,1) = ndiv; 
savepoint = 2; 
while (sum(ndiv) > numconstructs) 
    % Don't go forward without an ndiv formulation that might 
    % possibly work 
    if (checkndiv(ndiv,existingsys,targets) == 0) 
        clear spaceelements validflag existingsysflag Aeq Beq; 
        clear currsetup alltargassignments startvars2; 
  
        % Based on the ndiv, create the bounds for the space elements 
        spaceelements = createspaceelements(responsebounds,ndiv); 
  
        % checkexistingelem2 checks to see if the arrangement of 
        % existing elements inside 
        [validflag,existingsysflag,openspaceflag] = ... 
            checkexistinelem(spaceelements,existingsys,existingsysres,constructs,ndiv); 
  
        % The "if" statement on the next line makes sure there is no 
        % conflict regarding the space elements in which the existing 
        % system sit 
        if (validflag == 1) 
            tic 
            validndiv = validndiv + 1 %#ok<NOPTS> 
            savedndiv(validndiv,:) = ndiv; %#ok<AGROW> 
            if (ndiv(1,1) < (numtargets+numexsys)) 
                commflag(validndiv,1) = 1; %#ok<AGROW> 
            else 
                commflag(validndiv,1) = 0; %#ok<AGROW> 
            end 
            numdimensions = size(responsebounds,1); 
            numelements = ndiv(:,1); 
            for countelements = 2:numdimensions 
                numelements = numelements .* ndiv(:,countelements); 
            end 
            totnumvars = numvars * numelements(numconstructs); 
  
            % Figure out number of elements that may contain new 
            % systems 
            numnewsols = numelements(numconstructs,1) - numexsys; 
            % Figure out all the possible assignments of new 
            % systems to redesign targets 
            alltargassignments = createtargassignments(numnewsols,numtargets); 
            numassignments = size(alltargassignments,1) %#ok<NOPTS> 
            [narrowedassignments] = narrowtargassignments(alltargassignments,... 
                spaceelements,openspaceflag,responsebounds,numelements,... 
                numconstructs,targets,existingsysres); 
            numnarrowedassignments = size(narrowedassignments,1) %#ok<NOPTS> 
            % Search through the narrowed number of assignments 
            for searchassignments = 1:numnarrowedassignments 
                clear startvars2; 
                searchassignments %#ok<NOPTS> 
                currsetup = narrowedassignments(searchassignments,:); 
  
                % Generate an array to show which targets each 
                % system in the variable array is assigned to 
                % ("VARTARGASSIGN") 
                vartargassign = nonzeros(currsetup)'; 
  
                % Generate an array to show which space element 
                % each system in the variable array is assigned to 
                % ("VARSPACEELEMASSIGN") 
                varspaceelemassign = zeros(1,numtargets); 
                assignments = 0; 
                for i = 1:size(currsetup,2) 
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                    if (currsetup(i) > 0) 
                        assignments = assignments + 1; 
                        varspaceelemassign(assignments) = i; 
                    end 
                end 
  
                % Generate an array of flags to show what targets 
                % are assigned to each space element 
                % ("SPACEELEMTARGASSIGN") 
                countopens = 0; 
                counttargs = 0; 
                spaceelemtargassign = zeros(1,numelements(numconstructs,1)); 
                spaceelemvarassign = zeros(1,numelements(numconstructs,1)); 
                for i = 1:numelements(numconstructs,1) 
                    if (openspaceflag(numconstructs,i) > 0) 
                        countopens = countopens + 1; 
                        if (currsetup(countopens) > 0) 
                            spaceelemtargassign(i) = currsetup(countopens); 
                            counttargs = counttargs + 1; 
                            spaceelemvarassign(i) = counttargs; 
                        end 
                    end 
                end 
  
                % USING EXISTING SYSTEMS, NDIV, AND SPACE ELEMENT SIZES, FIGURE 
                % OUT THE EQUALITY CONSTRAINTS 
                [Aeq,Beq,removedvarflags] = ... 
                    createeqconst4(spaceelements,ndiv,constructs,existingsys,... 
                    existingsysflag,currsetup,spaceelemtargassign,spaceelemvarassign); 
  
                % Create non-dimensional bounds 
                nondimbounds = [zeros(size(Aeq,2),1),ones(size(Aeq,2),1)]; 
  
                % Create a matrix of start points to try out in the 
                % optimization 
                numstartpts = 1; 
                fullstartvars2(numstartpts,:) = ... 
                    findgoodstart4(x0,[lbounds ubounds],spaceelements,... 
                    Aeq,Beq,currsetup,varspaceelemassign); %#ok<AGROW> 
                numstartpts = numstartpts + 1; 
                fullstartvars2(numstartpts,:) = ... 
                    findlowstart2([lbounds ubounds],numtargets,spaceelements,... 
                    Aeq,Beq,currsetup,varspaceelemassign); %#ok<AGROW> 
                numstartpts = numstartpts + 1; 
                fullstartvars2(numstartpts,:) = ... 
                    findmidstart([lbounds ubounds],numtargets,spaceelements,... 
                    Aeq,Beq,currsetup,varspaceelemassign); %#ok<AGROW> 
                numstartpts = numstartpts + 1; 
                fullstartvars2(numstartpts,:) = ... 
                    findhighstart2([lbounds ubounds],numtargets,spaceelements,... 
                    Aeq,Beq,currsetup,varspaceelemassign); %#ok<AGROW> 
                numstartpts = numstartpts + 1; 
                for morepts = numstartpts:7 
                    fullstartvars2(morepts,:) = ... 
                        findclosestart2([lbounds ubounds],numtargets,spaceelements,... 
                        currsetup,varspaceelemassign,existingsys); %#ok<AGROW> 
                end 
  
                startvars2 = fullstartvars2; 
                for removepts = size(removedvarflags,2):-1:1 
                    if (removedvarflags(removepts) > 0) 
                        startvars2(:,removepts) = []; %#ok<AGROW> 
                    end 
                end 
  
                % Fmincon options and settings 
                options = optimset('Display','off','Tolfun',1*10^-7,... 
                    'Tolcon',0.001,'MaxFunEval',5000,'LargeScale','off',... 
                    'DiffMaxChange',1.00); %,'DiffMinchange',0.001'OutputFcn', @outfun, 
  
                % Try out each start point in the optimization 
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                minobj = 1*10^6; 
                for searchstartpts = 1:7 
                    [reducedtempvars2,tempobjvalue2,tempexitflag2,output,lambda] = ... 
                        fmincon(@(solutionset)portfolioeval4(solutionset,existingsys,... 
                        targets,responsebounds,weights,schedule,startprod,commmatrix,... 
                        rdi,currsetup,vartargassign,[lbounds, 
ubounds],removedvarflags),... 
                        startvars2(searchstartpts,:),[],[],Aeq,Beq,nondimbounds(:,1),... 
                        nondimbounds(:,2),... 
                        @(solutionset)createnonlconst3(solutionset,spaceelements,... 
                        
existingsys,physcons,physconflags,currsetup,spaceelemvarassign,... 
                        [lbounds, ubounds],removedvarflags),options); 
                    searchstartpts 
                    tempobjvalue2 
                    tempexitflag2 
                    if (tempobjvalue2 <= minobj) 
                        minobj = tempobjvalue2; 
                        % Next few lines put removed vars back in! 
                        reducedplace = 1; 
                        tempvars2 = zeros(1,size(removedvarflags,2)); 
                        for i = 1:size(removedvarflags,2) 
                            if (removedvarflags(i) == 0) 
                                tempvars2(i) = reducedtempvars2(reducedplace); 
                                reducedplace = reducedplace + 1; 
                            end 
                        end 
                        vars2(validndiv,searchassignments,:) = tempvars2; %#ok<AGROW> 
                        finalobjvalue2(validndiv,searchassignments) = tempobjvalue2; 
%#ok<AGROW> 
                        exitflag2(validndiv,searchassignments) = tempexitflag2; 
%#ok<AGROW> 
                        setup2(validndiv,searchassignments,1:size(currsetup,2)) = 
currsetup; %#ok<AGROW> 
                        startpointused2(validndiv,searchassignments) = searchstartpts; 
%#ok<AGROW> 
                    end 
                end 
  
                % Change the best non-dimensional array of 
                % variables back into a dimensional form and an 
                % easy-to-read form 
                countrows = 1; 
                dimvarsinrows = zeros(numtargets,numvars); 
                nondimvarsinrows = zeros(numtargets,numvars); 
                for i = 1:numvars:(numvars*numtargets) 
                    nondimvarchunk(1:numvars) = ... 
                        vars2(validndiv,searchassignments,i:(i + numvars - 1)); 
                    dimvarchunk = (nondimvarchunk .* (ubounds' - lbounds')) + lbounds'; 
                    dimvarsinrows(countrows,:) = dimvarchunk; 
                    nondimvarsinrows(countrows,:) = nondimvarchunk; 
                    countrows = countrows + 1; 
                end 
  
                % Reevaluate RI and CDF 
                finalri2(validndiv,searchassignments) = ... 
                    evalcontinuousri(existingsysnondim, nondimvarsinrows, ... 
                    rdi, vartargassign, schedule, startprod); %#ok<AGROW> 
                finalcdf2(validndiv,searchassignments) = ... 
                    evalcontinuouscdf2(existingsysnondim, nondimvarsinrows, ... 
                    commmatrix, vartargassign); %#ok<AGROW> 
                finalvars2(validndiv,searchassignments,1:numtargets,1:numvars) = ... 
                    dimvarsinrows; %#ok<AGROW> 
  
                % Reevaluate the torques of the new motors 
                for countfinalsys = 1:numtargets 
                    output = ... 
                        
TSunivmotor(finalvars2(validndiv,searchassignments,countfinalsys,:)); 
                    finalsystorques2(validndiv,searchassignments,countfinalsys) = ... 
                        output(1); %#ok<AGROW> 
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                    finalsysresponsesall2(validndiv,searchassignments,countfinalsys,:) = 
... 
                        output; %#ok<AGROW> 
                end 
  
                % Check for negative variable values in the 
                % solution (a sign of a failed optimization 
                % process) 
                if (min(vars2(validndiv,searchassignments,:)) < 0) 
                    negativevarflag2(validndiv,searchassignments,1) = -1; %#ok<AGROW> 
                end 
            end % loop to search through setups 
            timelog(validndiv) = toc;    %#ok<AGROW> 
        end 
    end 
    tempndiv = ndiv; 
    % tempndiv(numconstructs,1) = tempndiv(numconstructs,1) - 1; 
    tempndiv(1,1) = tempndiv(1,1) - 1; 
    % if (tempndiv(numconstructs,1) < 1) 
    if (tempndiv(1,1) < 1) 
        %     tempndiv(numconstructs,1) = maxndiv; 
        tempndiv(1,1) = maxndiv; 
        %     searchplace = numconstructs - 1; 
        searchplace = 2; 
        done = 0; 
        %     while (searchplace > 0) && (done == 0) 
        while (searchplace <= numconstructs) && (done == 0) 
            if (tempndiv(searchplace,1) > 1) 
                tempndiv(searchplace,1) = tempndiv(searchplace,1) - 1; 
                done = 1; 
            else 
                tempndiv(searchplace,1) = maxndiv; 
                %             searchplace = searchplace - 1; 
                searchplace = searchplace + 1; 
            end 
        end 
    end 
    ndiv = tempndiv 
    savepoint = savepoint + 1; 
end 
minobjval = 10000; 
% Special section to compute the objective function values using target 
% achievement using RI and CDF for experiment #39 in which RI and CDF were 
% not used in the optimiziation process 
if ( (weights(numtargets+1,1) == 0) && (weights(numtargets+2,1) == 0) ) 
  
    finalobjvalue2original = finalobjvalue2; 
    for i = 1:size(finalobjvalue2,1) 
        for j = 1:size(finalobjvalue2,2) 
            finalobjvalue2(i,j) = (finalobjvalue2(i,j) + finalri2(i,j) + ... 
                finalcdf2(i,j)) / 3; %#ok<AGROW> 
        end    % WHAT ABOUT THE MASS AND EFFICIENCE GOALS!??? 
    end 
  
end 
  
% Find the smallest objective function value 
for i = 1:size(finalobjvalue2,1) 
    for j = 1:size(finalobjvalue2,2) 
        if (finalobjvalue2(i,j) <= minobjval) && (finalobjvalue2(i,j) > 0) 
            minobjval = finalobjvalue2(i,j); 
            minloc = [i,j]; 
        end 
    end 
end 
  
% Sort the results by objective function value 
sortedobjvalues = 0; 
sortedlocs = [0,0]; 
sortedcommflags = [0,0]; 
numsorted = 0; 



 404 

for i = 1:size(finalobjvalue2,1) 
    for j = 1:size(finalobjvalue2,2) 
        if (finalobjvalue2(i,j) > 0) 
            numsorted = numsorted + 1; 
            sortloc = 1; 
            while (sortloc < numsorted) && (sortedobjvalues(sortloc) < 
finalobjvalue2(i,j)) 
                sortloc = sortloc + 1; 
            end 
            sortedobjvalues(sortloc+1:numsorted) = sortedobjvalues(sortloc:numsorted-1); 
            sortedobjvalues(sortloc) = finalobjvalue2(i,j); %#ok<AGROW> 
            sortedlocs(sortloc+1:numsorted,:) = sortedlocs(sortloc:numsorted-1,:); 
            sortedlocs(sortloc,:) = [i,j]; 
            sortedcommflags(sortloc+1:numsorted,:) = sortedcommflags(sortloc:numsorted-
1,:); %#ok<AGROW> 
            sortedcommflags(sortloc,1) = commflag(i,1); %#ok<AGROW> 
        end 
    end 
end 
% save test13onethirdweightswith8ndivGabrielsConstructsNoCDForRIOct03Platonewndivsetup 
% WARNING THAT PROGRAM HAS ENDED 
for countbeeps = 1:5 
    beep; 
end 
diary off 
 

 

B.1.2 – “redesigninputs.m” Program 

 This script is the main source of information that should be input by the designer 

to describe the redesign problem, his/her preferences towards the goals, the redesign 

difficulties, and the commonality discounts. There are also several values relevant to the 

solution procedure that must be set, including the buffer for the redesign market space, 

the maximum number of market space divisions, and the arrangement of the redesign 

variables/modes into stages.  

function [schedule,existingsys,existingsysres,targets,overallobjs,weights,... 
    physcons,physconflags,physconseq,physconseqflags,minndiv,maxndiv,... 
    responsebounds,numvars,constructs,lbounds,ubounds,x0,commindices,rdi]... 
    = redesigninputs() 
% Initializes many of the parameters necessary to describe the redesign 
% problem 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% redesigninputs2.m 
%  
% Written by: Matt Chamberlain 
% December 11th, 2006 
% 
% Description: This script is a consolidation of all of the initiation 
% functions previously used to address the constructal redesign problem. 
% This script is made up of pieces of the following old functions: 
% -initconstraints.m 
% -initexistingsys.m 
% -initobjectives.m 
% -initresponsespace.m 
% -initschedule.m 
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% -initvars.m 
% -initcommandredesignfactors.m 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%% PRODUCT RELEASE SCHEDULE %%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% The number of total product family members anticipated: 
numprods = 4; 
  
% The number of years/months/quarters that is known or anticipated at this 
% time: 
numyears = 4;   
  
% Initialize the matrix with zeros which indicate that a product is not 
% being made during that time period 
schedule = zeros(numprods,numyears); 
  
% THESE TEN SYSTEMS ARE FOR MY BASIC EVOLVING 10-SYSTEM FAMILY 
schedule(1,1:3) = 1;    % Schedule of production for product #1 
schedule(2,1:3) = 1;    % Schedule of production for product #2 
schedule(3,2:4) = 1;    % Schedule of production for product #3 
schedule(4,2:4) = 1;    % Schedule of production for product #4 
% schedule(5,3:6) = 1;    % Schedule of production for product #5 
% schedule(6,6:7) = 1;    % Schedule of production for product #7 
% schedule(7,6:7) = 1;    % Schedule of production for product #8 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%% EXISTING SYSTEMS %%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% These are the individualy-optimized systems from Simpson, Maier, and 
% Mistree (2001) 
% Torques of the motors: 
% (1) 0.05 (2) 0.10 (3) 0.125 (4) 0.15 (5) 0.20 (6) 0.25 (7) 0.30 (8) 0.35 (9) 0.40 (10) 
0.50 
existingsystemp = zeros(10, 8); 
existingsystemp(:,1) = [730, 750, 760, 785, 988, 1007, 1030, 1056, 1082, 1087]; 
existingsystemp(:,2) = [0.205, 0.203, 0.203, 0.205, 0.217, 0.224, 0.230, 0.237, 0.243, 
0.247];  
existingsystemp(:,3) = [45, 76, 89, 95, 74, 73, 73, 73, 72, 72]; 
existingsystemp(:,4) = [0.203, 0.186, 0.190, 0.205, 0.241, 0.246, 0.253, 0.260, 0.267, 
0.284]; 
existingsystemp(:,5) = [3.62, 3.31, 3.12, 2.82, 2.26, 2.35, 2.44, 2.51, 2.58, 2.71]; 
existingsystemp(:,6) = [9.69, 11.77, 11.20, 8.88, 5.75, 6.17, 6.35, 6.46, 6.67, 7.15]; 
existingsystemp(:,7) = [0.998, 1.28, 1.41, 1.63, 2.38, 2.61, 2.74, 2.81, 2.87, 3.16]; 
existingsystemp(:,8) = [3.65, 3.73, 3.73, 3.70, 3.84, 4.02, 4.19, 4.36, 4.53, 4.71]; 
  
% These are systems chosen using GA in Simpson book chapter (2005) 
% existingsystemp = zeros(10, 8); 
% existingsystemp(:,1) = [1056, 1056, 1056, 1056, 1056, 1056, 1055, 1056, 1056]; 
% existingsystemp(:,2) = [0.234, 0.234, 0.234, 0.234, 0.234, 0.234, 0.234, 0.234, 0.234, 
0.234]; 
% existingsystemp(:,3) = [55, 55, 55, 55, 56, 57, 55, 57, 55, 55];  
% existingsystemp(:,4) = [0.348, 0.356, 0.356, 0.356, 0.357, 0.359, 0.355, 0.354, 0.351, 
0.356]; 
% existingsystemp(:,5) = [2.54, 2.54, 2.54, 2.54, 2.52, 2.54, 2.54, 2.54, 2.54, 2.54]; 
% existingsystemp(:,6) = [6.91, 6.96, 6.99, 6.99, 6.99, 6.99, 6.99, 6.99, 6.99, 6.99]; 
% existingsystemp(:,7) = [0.880, 1.547, 1.808, 2.039, 2.408, 2.632, 2.855, 2.926, 3.027, 
2.995]; 
% existingsystemp(:,8) = [3.38, 3.61, 3.73, 3.84, 4.08, 4.29, 4.59, 4.83, 5.15, 5.79]; 
  
% MOVE AROUND SOME EXISTING SYSTEMS FOR DIFFERENT SITUATIONS 
% existingsystemp(1,:) = existingsystemp(8,:); 
existingsystemp(2,:) = existingsystemp(6,:); % for T = 0.25 
% existingsystemp(2,:) = existingsystemp(4,:); % for T = 0.15 
  
numexsys = 0;  
for countexsys = 1:size(schedule,1) 
    if (schedule(countexsys,1) > 0) 
        numexsys = numexsys + 1; 
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    end 
end 
  
j = numexsys + 1; 
while (j <= size(existingsystemp,1)) 
    existingsystemp(j,:) = []; 
end 
existingsys = existingsystemp; 
  
for i = 1:numexsys 
    existingsysres(i,:) = TSunivmotor(existingsys(i,:)); 
end 
  
%%%%%%%%%%%%%%%%%%%%%% 
%%%%% OBJECTIVES %%%%% 
%%%%%%%%%%%%%%%%%%%%%% 
%%% DESIGNER'S PREF'S FOR EACH TARGET %%% 
% Note: The target matrix below is of size m row x n columns where m is the  
% number of new systems being redesigned and n is the number of dimensions  
% in which there are new redesign targets 
% Note: Targets MUST be put in here in chronological order as in the 
% schedule matrix 
  
targets(1,1) = 0.050; 
targets(2,1) = 0.250; 
targets(3,1) = 0.100; 
targets(4,1) = 0.150; 
% targets(5,1) = 0.200; 
% targets(6,1) = 0.150; 
% targets(7,1) = 0.300; 
targets(1:numexsys,:) = []; 
  
numtargets = size(targets,1); 
  
%%% DESIGNER'S PREFS FOR OVERALL OBJECTIVES %%% 
% This is not used anymore. It was supposed to help model different overall 
% objectives but since RI and CDF have been adopted, it is unused 
overallobjs(1,:) = [0,1]; % points on the value curve for CDF 
overallobjs(2,:) = [0,1]; % points on the value curve for RI 
% overallobjs(1,:) = [0,.6,1]; % points on the value curve for CDF 
% overallobjs(2,:) = [0,.6,1]; % points on the value curve for RI 
  
%%% GATHER WEIGHTS FOR OBJECTIVE  FUNCTION %%% 
% Assume there is one row for each target, with one column for each 
% dimension of a redesign target 
% After the weights for the targets are the weights for CDF, RI, mass, and 
% efficiency overall family goals, each in its own rows 
cdfportion = 1/3; 
riportion = 1/3; 
targportion = 2 * (1 - cdfportion - riportion) / 3; % Divide up target/mass/efficiency 
goals three ways 
weights = [(targportion/(numtargets)); ... 
    (targportion/(numtargets));... 
    (targportion/(numtargets));... 
    (targportion/(numtargets));... 
    (targportion/(numtargets));... 
    (targportion/(numtargets));... 
    (targportion/(numtargets));... 
    (targportion/(numtargets));... 
    (targportion/(numtargets));... 
    (targportion/(numtargets));... 
    (targportion/(numtargets));... 
    cdfportion;... %CDF 
    riportion;... % RI 
    targportion/4;... % Avg Mass 
    targportion/4]; % Avg Efficiency 
  
weights((numtargets+1):(size(weights,1)-4),:) = []; %#ok<NASGU> 
  
%%%%%%%%%%%%%%%%%%%%%%% 
%%%%% CONSTRAINTS %%%%% 
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%%%%%%%%%%%%%%%%%%%%%%% 
% INEQUALITIES: 
% This arrray will have the values that the respones are compared to. The 
% standard form for these constraints is assumed to be c(x) <= 0 
% We'll assume that the inequalities measured here are of the form: 
% response(i) <= physcons(i)  
% physcons = [5000 1.0 2 0.15]; % Old constraints 
physcons = [0 0 2 0.15 1.0 5000 0 1.0 0]; % New constraints to maintain realism 
  
% This array simply keeps track of which of the response values describing 
% the system are related to physcons(i) 
% A positive flag indicates a "less-than" physical constraint for that 
% response value, for instance Mass(x) < 2kg 
% A negative flag indicates a "greater-than" physical constraint for that 
% response value, for instance Effic(x) > 15% 
% physconflags = [4 -6 2 -3]; % Old flags 
physconflags = [-1 -2 2 -3 3 4 -5 -6 -7]; 
  
% EQUALITIES: 
% Similar approach to above except that its assumed that they have the 
% following form: response(i) = physconseq(i) 
physconseq = 300; 
  
% For the flags, there is no need for positive or negative signs 
physconseqflags = 5; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%% CREATE RESPONSE SPACE %%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
maxndiv = 4; 
minndiv = 1; 
numdimensions = size(maxndiv,1); 
minloc = 1; %place in target array where min value will be found 
maxloc = size(targets,3); %place in target array where max value is found 
  
% Search through the extreme values of the targets and the extreme values 
% of the existing systems to find the overall extreme values 
minres(1:numdimensions) = existingsysres(1,1:numdimensions); 
maxres(1:numdimensions) = existingsysres(1,1:numdimensions); 
for countexissys = 1:size(existingsysres,1) 
    for countres = 1:numdimensions 
        if (existingsysres(countexissys,countres) > maxres(countres)) 
            maxres(countres) = existingsysres(countexissys,countres); 
        elseif (existingsysres(countexissys,countres) < minres(countres)) 
            minres(countres) = existingsysres(countexissys,countres); 
        end 
    end 
end 
  
% Process targets to get most extreme values in each dimension/response 
for counttargets = 1:size(targets,1) 
    for countres = 1:numdimensions 
        if (targets(counttargets,countres,maxloc) > maxres(countres)) 
            maxres(countres) = targets(counttargets,countres,maxloc); 
        elseif (targets(counttargets,countres,minloc) < minres(countres)) 
            minres(countres) = targets(counttargets,countres,minloc); 
        end 
    end 
end 
% Export the extreme values as the response bounds 
responsebounds = [minres',maxres']; 
% Export the extreme values as the response bounds 
responsebounds = [(0.95 * minres'),(1.05 * maxres')]; 
  
%%%%%%%%%%%%%%%%%%%%% 
%%%%% VARIABLES %%%%% 
%%%%%%%%%%%%%%%%%%%%% 
%%% NUMBER OF VARIABLES 
% We'll just assume that we know the number of variables. All this program 
% does is store the arrangement of constructs that has been chosen 
numvars = 8; 
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%%% CONSTRUCTS 
% NOTE: FOR THE PURPOSES OF THIS PROGRAM, THE NUMBERS IN THE 'CONSTRUCTS' 
% ARRAY ARE REVERSED FROM WHAT THEY ARE COMMONLY LABELED, SO 1 MEANS THE 
% BIGGEST ELEMENT, AND SO ON 
% vars: Na/Nc, Awa, Nf/Ns, Awf, r, t, L, I 
% Gabriel's version 
constructs = [3,2,3,2,1,1,3,3];  
% Version I have used mainly, a.k.a. "my original" 
% constructs = [3,1,3,1,2,1,2,3];  
% My newer version based on observations a.k.a. "First New" 
% constructs = [3,3,2,3,1,2,1,1];  
% My second newer version based on observations, a.k.a. "Second New" 
% constructs = [2,3,1,4,1,4,3,2];  
  
%%% VARIABLE BOUNDS 
% order in which the variables appear in the bounds matrix: 
% NARM - NUMBER OF OF TURNS IN THE ARMATURE (a.k.a. Nc sometimes) 
% AWA - CROSS-SECT AREA OF THE ARMATURE 
% NFIELD - NUMBER OF TURNS IN THE FIELD PER POLE (a.k.a. Ns sometimes) 
% AWF - CROSS-SECT AREA OF WIRE IN FIELD 
% RADIUS - RADIUS OF THE STATOR 
% THICK - THICKNESS OF THE STATOR 
% LENGTH - STACK LENGTH 
% CURRNT - CURRENT 
bounds = [100,1500;... 
    0.01,1.0;... 
    1.0,500;... 
    0.01,1.0;... 
    1.0,10.0;... 
    0.5,10.0;... 
    0.0566,5.18;... 
    0.1,6.0]; 
  
lbounds = bounds(:,1); 
ubounds = bounds(:,2); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%% COMMONALITY AND REDESIGN RELATED FACTORS %%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% COMMONALITY INDICES INDICATE THE VALUE (ON A SCALE OF 0 TO 1) OF 
% COMMONALITY IN THAT PARTICULAR VARIABLE UNDER THE CONDITOIN IN QUESTION 
% A 1.0 INDICATES THAT COMMONALITY IS WORTHLESS, 0 THAT IT IS EQUIVALENT 
% TO PERFECT COMMONALITY  
commindices = [0    0   0   0   0   0   0   0; 
0.2 0.6 0.2 0.6 0.6 0.6 0.6 0.2; 
0.1 0.5 0.1 0.5 0.5 0.5 0.5 0.1; 
0.1 0.4 0.1 0.4 0.4 0.4 0.4 0.1; 
0.3 0.7 0.3 0.7 0.3 0.3 0.3 0.3]; 
  
% RDI SIGNIFIES THE DIFFICULTY ASSOCIATED WITH REDESIGNING EACH VARIABLE 
% INDIVIDUALIZED VALUES: 
rdi = [0.1,0.5,0.1,0.5,0.5,0.5,1.0,0.1]; %#ok<NASGU> 

 

B.1.3 – “createcomoppmatrix.m” Program 

 This function takes the commonality discounts entered by the designer in 

“redesigninputs.m” along with the stated redesign schedule and creates the commonality 

opportunity matrix (see Figure 3-12 ) that will be used later on to evaluate CDF values 
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for proposed redesign plans. This function will only need to be adjusted for use in other 

problems if the designer wishes to change the definitions of the types of overlap used. 

function [commmatrix,startprod,endprod] = createcomoppmatrix(SCHEDULE, numvars, 
commindices) 
% Creates a matrix to keep track of all commonality discounts in the prob 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% createcomoppmatrix.m 
%  
% Written by: Matt Chamberlain 
% 
% Description: This program instantiates the various matrices used later on 
% to evaluate the merit of a proposed portfolio of redesign solutions based 
% on their production schedules. The input to this script is the schedule 
% of system release while the outputs are matrics dealing with staggered 
% production, staggered retirement, and production gaps. Another matrix 
% stores all instances of complete commonality in production schedules 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% The inputted schedule matrix is composed of ones and zeros, the ones 
% indicating a time period in which the system in that row is produced. 
numyears = size(SCHEDULE,2); 
numprods = size(SCHEDULE,1); 
  
% Array that tracks when each product started production 
startprod = zeros(numprods,1); 
% Array that tracks when each product ended production 
endprod = zeros(numprods,1); 
  
commmatrix = zeros(numvars,numprods,numprods); 
  
% Matrix that tracks totally staggered production releases 
stagproduction = zeros(numprods,numprods); 
% Matrix that tracks staggered introduction 
stagintroduction = zeros(numprods,numprods); 
% Matrix that tracks staggered retirement 
stagretirement = zeros(numprods,numprods); 
% Matrix that tracks gaps in production 
productiongap = zeros(numprods,numprods); 
% Matrix that tracks when two product's production schedules perfectly 
% match up 
perfectcomm = zeros(numprods,numprods); 
  
% This loop creates two arrays to help keep track of when each system is 
% expected to start and end production 
for countprods = 1:numprods 
    for countyears = 1:numyears 
        if (SCHEDULE(countprods,countyears) == 1) && (startprod(countprods) == 0) 
            % Note the first appearance of a 1 in each row, record this in 
            % a "start of production" array 
            startprod(countprods) = countyears; 
        end 
         
        if (startprod(countprods) > 0) && (endprod(countprods) == 0) && ... 
                (SCHEDULE(countprods,countyears) == 0) 
            % If the sys is not produced in the given year and production is 
            % listed as having started, but end of production has not been 
            % listed, then the previous year was the last year of 
            % production 
            endprod(countprods) = countyears - 1; 
        elseif (countyears == numyears) && (endprod(countprods) == 0) 
            % if the sys is still being produced at the end of the 
            % schedule, assume its production ends there 
            endprod(countprods) = countyears;  
        end 
    end 
end 
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% Compare production schedules to create the Staggered Production, 
% Staggered Retirement, Production Gap, and Perfect Commonality Matrices 
for countprods1 = 1:numprods 
    for countprods2 = 1:numprods 
        if (endprod(countprods1) == endprod(countprods2)) & ... 
                (startprod(countprods1) == startprod(countprods2)) 
            % Perfect Commonality 
            perfectcomm(countprods2,countprods1) = 1; 
        elseif (startprod(countprods1) > endprod(countprods2)) | ... 
                (startprod(countprods2) > endprod(countprods1)) 
            % Production gap 
            productiongap(countprods2,countprods1) = 1; 
        elseif ((startprod(countprods1) > startprod(countprods2)) | ... 
                (startprod(countprods2) > startprod(countprods1))) &... 
                (endprod(countprods1) == endprod(countprods2)) 
            % Staggered Introduction ONLY 
            stagintroduction(countprods2,countprods1) = 1; 
        elseif ((endprod(countprods1) > endprod(countprods2)) | ... 
                (endprod(countprods2) > endprod(countprods1))) &... 
                (startprod(countprods1) == startprod(countprods2)) 
            % Staggered Retirement ONLY 
            stagretirement(countprods2,countprods1) = 1; 
        elseif ((startprod(countprods1) > startprod(countprods2)) & ... 
                (endprod(countprods2) > endprod(countprods1))) |... 
                ((startprod(countprods1) > startprod(countprods2)) & ... 
                (endprod(countprods2) < endprod(countprods1)) & ... 
                (startprod(countprods1) <= endprod(countprods2))) |... 
                ((startprod(countprods1) < startprod(countprods2)) & ... 
                (endprod(countprods2) > endprod(countprods1)) &... 
                (startprod(countprods2) <= endprod(countprods1))) |... 
                ((startprod(countprods1) < startprod(countprods2)) & ... 
                (endprod(countprods1) > endprod(countprods2))) 
            % Staggered Production  
            stagproduction(countprods2,countprods1) = 1; 
        end 
         
  
    end 
end 
  
commmatrices(1,:,:) = perfectcomm; 
commmatrices(2,:,:) = stagproduction; 
commmatrices(3,:,:) = stagintroduction; 
commmatrices(4,:,:) = stagretirement; 
commmatrices(5,:,:) = productiongap; 
  
  
for countvars = 1:numvars 
    for countmatrices = 1:size(commmatrices,1) 
        commmatrix(countvars,:,:) = commmatrix(countvars,:,:) + ... 
            (commmatrices(countmatrices,:,:) * commindices((countmatrices),countvars)); 
    end 
end 

 

B.1.4 – “checkndiv.m” Program 

 This function checks to make sure that a proposed arrangement of space elements 

(which is referred to as “ndiv” in the code) provides enough distinct space elements to 

accommodate all of the existing systems and redesign targets present in the redesign 

scenario. 
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function [invalidflag] = checkndiv(ndiv,existingsys,targets) 
% Checks to make sure there are enough space elems and they nest correctly 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% checkndiv.m 
%  
% Written by: Matt Chamberlain 
% Last Edited: July 11, 2006 
% 
% Description: This program is simply meant to check to make sure that a 
% potential set of space element divisions is valid in two respects: 1.) 
% that the smaller space elements actually fit into the larger ones evenly 
% and 2.) that there are enough distinct space elements for each existing 
% system and new system to sit in its own space. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
invalidflag = 0; 
% 1. Check to make sure that the larger elements are divided evenly by the 
% smaller ones 
for countdimensions = 1:size(ndiv,2) 
    for countconstructs = 1:(size(ndiv,1) - 1) 
        % If the larger cannot be divided into the smaller evenly, make 
        % exitflag equal to 1.0 
        if (rem(ndiv(countconstructs+1,countdimensions),... 
                ndiv(countconstructs,countdimensions)) > 0)... 
                || (ndiv(countconstructs+1,countdimensions) < ... 
            ndiv(countconstructs,countdimensions)) 
            invalidflag = 1; 
        end 
    end 
end 
  
% 2.) Check to make sure that there are enough space elements to at least 
% conceivably house all the distinct existing systems and new targets 
numdimensions = size(ndiv,2); 
numexsys = size(existingsys,1); 
numtarg = size(targets,1); 
totalnumsys = numexsys + numtarg; 
numelements = ndiv(:,1); 
for countelements = 2:numdimensions 
    numelements = numelements .* ndiv(:,countelements); 
end 
if ( numelements < totalnumsys )  
    invalidflag = 1; 
end 

 

B.1.5 – “createspaceelements.m” Program 

 This function defines the boundaries of the space elements based upon the 

boundaries of the whole redesign market space, the number of divisions in the solution 

being assessed, and the construct arrangement selected by the designer. 

function [spaceelements] = createspaceelements(dimensionbounds,ndiv) 
% Defines space elements based on the bounds and number of divisions 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% createspaceelements.m 
%  
% Written by: Matt Chamberlain 
% Last Edited: July 26, 2006 
% 
% Description: This program is meant to take in the bounds of the response 
% space in which redesign is taking place and the number of divisions for 
% each dimension of that space. The program ouputs the bounds of each space 
% element in each dimension. 
% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% INPUTS: 
% dimensionbounds = an m by 2 matrix, where m is the number of dimensions 
% in the market space being addressed in this problem 
% ndiv = a matix of size n x m where n is the number of constructs to be 
% used in this problem. The value at (n,m) indicates the number of 
% divisions of the mth dimension in the nth construct's space elements 
  
% OUTPUTS: 
% spaceelements(i,j,k,l) 
% where  
% i = level/construct number, with the lowest numbers denoting the smallest 
% elements 
% j = element # from amongst all the elements at that level 
% k = response / market dimension 
% l = lower (1) and upper (2) bounds of the space element  
dimensionranges = dimensionbounds(:,2) - dimensionbounds(:,1); 
numconstructs = size(ndiv,1); 
numdimensions = size(dimensionbounds,1); 
numelements = ndiv(:,1); 
for countelements = 2:numdimensions 
    numelements = numelements .* ndiv(:,countelements); 
end 
  
% Pre-allocate the memory for the basic setup of the space elements 
basicsetup = zeros(numconstructs,max(numelements),numdimensions); 
for i = 1:numconstructs 
    tempndiv = ndiv(i,:); 
    singledivcount = 0; 
    for j = 1:numdimensions 
        if (ndiv(i,j) == 1) 
            singledivcount = singledivcount + 1; 
            % keep track of which column the ones should be in 
            oneflag(singledivcount) = j;  
        end 
    end 
    if (singledivcount > 0) 
         % now go back again and take out those columns 
         numremoved = 0; 
        for j = 1:numdimensions 
            if (ndiv(i,j) == 1) 
                tempndiv(j-numremoved) = []; 
                numremoved = numremoved + 1; 
            end 
        end 
        if (size(tempndiv,2) > 0)%(tempndiv ~= []) 
            % Create the setup without columns of 1's 
            tempsetup = fullfact(tempndiv) - 1; 
            % Put the columns of 1's back in the correct place 
            for j = 1:singledivcount 
                place = oneflag(j); 
                if (place == 1) 
                    % put the column at the beginning (only two pieces) 
                    tempsetup = cat(2,zeros(size(tempsetup,1),1),... 
                        tempsetup(:,1:size(tempsetup,2))); 
                elseif (place == numdimensions) 
                    % put the column at the end (only two pieces) 
                    tempsetup = cat(2,tempsetup(:,1:place-1),... 
                        zeros(size(tempsetup,1),1)); 
                else 
                    % put together the three pieces of the matrix 
                    tempsetup = cat(2,tempsetup(:,1:place-1),... 
                        zeros(size(tempsetup,1),1),tempsetup(:,place:size(tempsetup,2))); 
                end 
            end 
        else % The case when all of the divisions are zero, tempndiv = [] 
            tempsetup = zeros(1,numdimensions); 
        end 
    else % The case when there are no single-division elements 
        tempsetup = fullfact(tempndiv) - 1; 
    end 
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    basicsetup(i,1:numelements(i,1),:) = tempsetup; 
end 
spaceelements = zeros(numconstructs,numelements(numconstructs,1),numdimensions,2); 
for countconstructs = 1:numconstructs 
    for countelements = 1:numelements(numconstructs,1) 
        for countdims = 1:numdimensions 
            % Calculate what the real bounds of each element are in each dimension 
            % Calculate lower bound in a dimension: 
            spaceelements(countconstructs,countelements,countdims,1) = ... 
                dimensionbounds(countdims,1) + ... 
                ( basicsetup(countconstructs,countelements,countdims) * ... 
                dimensionranges(countdims) / ndiv(countconstructs,countdims) ); 
            % Calculate upper bound in a dimension:  
            spaceelements(countconstructs,countelements,countdims,2) = ... 
                dimensionbounds(countdims,1) + ... 
                ( (basicsetup(countconstructs,countelements,countdims) + 1) * ... 
                dimensionranges(countdims) / ndiv(countconstructs,countdims) ); 
        end 
    end 
end 

 

B.1.6 – “checkexistinelem.m” Program 

 As the name of this function implies, its purpose is to check a given arrangement 

of space elements to see whether it is valid. The space elements must be checked to make 

sure that the commonality that they force does not conflict with the locations of existing 

systems. It is assumed that only one existing system may lie in each of the smallest space 

elements because otherwise, a space element at a later stage may contain two existing 

systems with different variable values –a violation of the basic ideas behind the 

constructal-inspired approach.  

function [validflag,existingsysflag,openspaceflag] = ... 
    checkexistinelem(spaceelem,existingsys,existingsysres,constructs,ndiv) 
% Checks to see where existing sys lay and that they match space elems 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% checkexistinelem.m 
%  
% Written by: Matt Chamberlain 
% Last Edited: August 24, 2006 
% 
% Description: This program checks to see if a proposed arrangement of 
% space elements fits with the existing systems (or vice versa depending on 
% your point of view.) The existing systems are compared to the makeup of 
% the space elements to make sure that they have the correct degree of 
% commonality. 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% OUTPUT:  
% The validflag is set to zero to signify that the setup of the space 
% elements does not work with the existing systems. This will occur if two 
% existing systems with different variable values share the same element. 
  
% The insideflag matrix is of size (m x n ) where: 
% m = # of constructs 
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% n = # of space elements at each level 
% The value of insideflag(i,j) is determined by the presence (or lack 
% thereof) of an existing system in that element.  
% insideflag is initially set to zeros to signify that no existing systems 
% reside in those elements.  
% If an existing system is found in an element, the value of the flag for 
% that element is changed to  
numconstructs = size(spaceelem,1); 
numdimensions = size(spaceelem,3); 
numexsys = size(existingsysres,1); 
numelements = ndiv(:,1); 
for countelements = 2:numdimensions 
    numelements = numelements .* ndiv(:,countelements); 
end 
%existingsysflag = zeros(size(spaceelem,1),size(spacelem,2),size(spaceleme,3)); 
% one flag is available for each existing element so that if all are in one 
% element, they can all be listed... otherwise, the flags are zeros 
existingsysflag = zeros(size(spaceelem,1),size(spaceelem,2),size(existingsys,1)); 
openspaceflag = ones(size(spaceelem,1),size(spaceelem,2),size(existingsys,1)); 
validflag = 1; 
for countlevel = 1:numconstructs 
    for countelems = 1:numelements(countlevel,1) 
        exsysinsidecount = 0; % counter for how many ex sys are in each element 
        for countexsys = 1:numexsys 
            outsideelemflag = 0; 
            countres = 1; 
            while (countres <= numdimensions) & (outsideelemflag == 0) 
                % Search through the response bounds that characterize the 
                % space element in question to see if the existing system 
                % is inside 
                if (existingsysres(countexsys,countres) > ... 
                        spaceelem(countlevel,countelems,countres,2)) ... 
                        || (existingsysres(countexsys,countres) < ... 
                        spaceelem(countlevel,countelems,countres,1)) 
                    outsideelemflag = 1; 
                else  
                    countres = countres + 1; 
                end 
            end 
            if (outsideelemflag == 0) 
                exsysinsidecount = exsysinsidecount + 1; 
                existingsysflag(countlevel,countelems,exsysinsidecount) = countexsys; 
                openspaceflag(countlevel,countelems,exsysinsidecount) = 0; 
            end 
            if (outsideelemflag == 0) && (exsysinsidecount > 1) 
                % case when there's already an existing system noted for 
                % this element --> indicates that we should check to see if 
                % the variables are equal for the construct that is used at 
                % this level space element 
                firstexsysinelement = existingsysflag(countlevel,countelems,1); 
                for countvars = 1:size(constructs,2) 
                    % compare the current ex sys (exsysinsidecount) with 
                    % the one in slot 1... 
                    if (constructs(countvars) <= countlevel) && ... 
                            ( existingsys(countexsys,countvars) ~= ... 
                            existingsys(firstexsysinelement,countvars) ) 
                        % NOTE: FOR THE PURPOSES OF THIS PROGRAM, THE 
                        % NUMBERS IN THE 'CONSTRUCTS' ARRAY ARE REVERSED 
                        % FROM WHAT THEY ARE COMMONLY LABELED, SO 1 MEANS 
                        % THE BIGGEST ELEMENT, AND SO ON 
                        validflag = 0;                   
                    end 
                end 
             end 
        end 
    end 
end 
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B.1.7 – “createtargassignments.m” Program 

This function generates a list of all possible assignments of empty space elements 

(those that do not have an existing system inside of them) to the redesign targets.  

function [finalsetup] = createtargassignments(numnewsols,numtargets) 
% Creates all the possible assignments of targets to space elements 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% evalvalue.m 
%  
% Written by: Matt Chamberlain 
% October 25, 2006 
% 
% Description: This program figures out all of the possible assignments of 
% the new systems in the proposed ndiv setup to the targets. 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Note: the next line is the major bottleneck in the whole program 
basicsetup = ff2n(numnewsols); 
basicsetup(1,:) = []; 
count = 1; 
while (count <= size(basicsetup,1)) 
    if ( sum(basicsetup(count,:)) > numtargets ) 
        basicsetup(count,:) = []; 
    elseif ( sum(basicsetup(count,:)) < numtargets ) 
        basicsetup(count,:) = []; 
    else 
        count = count + 1; 
    end 
end 
  
% 2.) Create a matrix of all the possible assignments of solutions to 
% targets 
if (numtargets > 1) 
      for i = 1:numtargets 
          % i counts each column in the target assignment setup 
          colplace = 1; 
          % Repeat pattern N^(i-1) times 
          for j = 1:numtargets^(i-1) 
              % Repeat each number up to numtargets N^(N-i) times 
              for k = 1:numtargets 
                  for l = 1:numtargets^(numtargets - i) 
                      targassnmts(colplace,i) = k; 
                      colplace = colplace + 1; 
                  end 
              end 
  
          end 
      end 
      count = 1; 
    while (count <= size(targassnmts,1)) 
        if (size( unique(targassnmts(count,:)),2) < numtargets ) 
            % Look at each row of the target setup. If the row contains 
            % multiple instances of the same target assignment (which would 
            % mean two solutions contributing to the same target), then that 
            % row is eliminated because the setup is invalid 
            targassnmts(count,:) = []; 
        else 
            count = count + 1; 
        end 
    end 
else 
    targassnmts = 1; 
end 
  
% 3.) Create the overall setup using multiplications of the two matrices 
% line-by-line 
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finalsetupplace = 1; 
for counttest = 1:size(basicsetup,1) 
    for counttarg = 1:size(targassnmts,1) 
        targetplace = 1; 
        for countelements = 1:size(basicsetup,2) 
            if (basicsetup(counttest,countelements) == 1) 
                finalsetup(finalsetupplace,countelements) = ... 
                    basicsetup(counttest,countelements) * ... 
                    targassnmts(counttarg,targetplace); 
                targetplace = targetplace + 1; 
            end 
        end 
        finalsetupplace = finalsetupplace + 1; 
    end 
end 
 

 

B.1.8 – “narrowtargassignments.m” Program 

 This function takes in the long list of all possible target assignments created by 

“createtargassignments.m” and applies the “common sense rule” explained in Section 

3.4.7 in order to pare down the number of assignments that must be considered. All those 

assignments that fail this test are eliminated. Oftentimes, this can cut down the list of 

assignments by two orders of magnitude, making it far more manageable. 

function [narrowedassignments] = narrowtargassignments(assignments,... 
    spaceelements,openspaceflag,responsebounds,numelements,... 
    numconstructs,targets,existingsysres) 
% Narrows the list of possible target assignments using "common sense rule" 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% narrowtargassignments.m 
%  
% Written by: Matt Chamberlain 
% 
% Description: This program is meant to eliminate all target assignments 
% that do not pass a "common sense" test to make sure that distinct targets 
% described as being greater than or less than one another are not 
% addressed using solutions that have the opposite relationship. The space 
% elements are inspected to check for this situation, as well as any wrong 
% relationships with existing systems. 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
numassignments = size(assignments,1); 
% maxdist = responsebounds(:,2) - responsebounds(:,1); 
numdims = size(responsebounds,1); 
numtargets = size(targets,1); 
% halfnumtargets = ceil(numtargets/2); 
numexsys = size(existingsysres,1); 
  
% Build target-to-target relationship matrix 
% (only build the matrix for one more than half the number of targets since 
% the matrix shows relationships with one another. Otherwise, would be 
% rechecking the same relationships)  
targtargrelation = zeros(numtargets,numtargets,numdims,1); 
for counttarg1 = 1:numtargets 
    for counttarg2 = 1:numtargets 
        for countdims = 1:numdims  
            if (targets(counttarg1,countdims) < targets(counttarg2,countdims)) 
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                targtargrelation(counttarg1,counttarg2,countdims) = -1; 
            elseif (targets(counttarg1,countdims) > targets(counttarg2,countdims)) 
                targtargrelation(counttarg1,counttarg2,countdims) =  1; 
            end 
        end 
    end 
end 
% Build target-to-existing system relationship matrix 
targexsysrelation = zeros(numtargets,numexsys,numdims); 
for counttarg1 = 1:numtargets 
    for countexsys = 1:numexsys 
        for countdims = 1:numdims  
            if (targets(counttarg1,countdims) < existingsysres(countexsys,countdims)) 
                targexsysrelation(counttarg1,countexsys,countdims) = -1; 
            elseif (targets(counttarg1,countdims) > existingsysres(countexsys,countdims)) 
                targexsysrelation(counttarg1,countexsys,countdims) =  1; 
            end 
        end 
    end 
end 
% Check real space elements and assignments against the two relationship 
% matrices to make sure all is well. 
invalidflag = zeros(numassignments,1); 
% Go element by element 
% Check to make sure it is open and that it has a target assigned to it 
% Go through the rest of the elements and find the ones with targets (not 
% the same) and no ex sys 
% Check the relationship between the element under consideration and the 
% targets in the rest of the elements, checking against targtargrelation 
% Go through the existing sys and make sure the element's borders fit the 
% targexsysrelation entries 
narrowedassignments = assignments; 
% i = 1; 
% while (i <= size(narrowedassignments,1)) 
for i = 1:size(assignments,1) 
    countopens = 0; 
    spaceelemtargassign = zeros(1,numelements(numconstructs,1)); 
    for j = 1:numelements(numconstructs,1) 
        if (openspaceflag(numconstructs,j) > 0) 
            countopens = countopens + 1; 
            if (narrowedassignments(i,countopens) > 0) 
                spaceelemtargassign(j) = narrowedassignments(i,countopens); 
                restopencount = 0; 
                for searchrest = 1:numelements(numconstructs,1) 
                    if (openspaceflag(numconstructs,searchrest) > 0) 
                        restopencount = restopencount + 1; 
                        if (narrowedassignments(i,restopencount) > 0) &&... 
                                (countopens ~= restopencount) 
                            for countdims = 1:numdims 
                                targ1 = narrowedassignments(i,countopens); 
                                targ2 = narrowedassignments(i,restopencount); 
                                lower1 = spaceelements(numconstructs,j,countdims,1); 
                                upper1 = spaceelements(numconstructs,j,countdims,2); 
                                lower2 = ... 
                                    spaceelements(numconstructs,searchrest,countdims,1); 
                                upper2 = ... 
                                    spaceelements(numconstructs,searchrest,countdims,2); 
                                if (targtargrelation(targ1,targ2,countdims) == 1) && ... 
                                        (lower1 < upper2) 
                                    invalidflag(i,1) = 1; 
                                elseif (targtargrelation(targ1,targ2,countdims) == -1)... 
                                        && (upper1 > lower2) 
                                    invalidflag(i,1) = 1; 
                                end 
                            end 
                        end 
                    end 
                end 
                %PUT IN PIECE WHERE YOU SEARCH FOR EX SYS HERE 
                for countexsys = 1:size(existingsysres,1) 
                    for countdims = 1:numdims 
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                        lower1 = spaceelements(numconstructs,j,countdims,1); 
                        upper1 = spaceelements(numconstructs,j,countdims,2); 
                        currtarg = spaceelemtargassign(j); 
                        if (targexsysrelation(currtarg,countexsys,countdims) == -1)... 
                                && (lower1 > existingsysres(countexsys,countdims)) 
                            invalidflag(i,1) = 1; 
                        elseif (targexsysrelation(currtarg,countexsys,countdims) == 1)... 
                                && (upper1 < existingsysres(countexsys,countdims)) 
                            invalidflag(i,1) = 1; 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
  
elimcount = 1; 
while (elimcount <= size(narrowedassignments,1)) 
    if (invalidflag(elimcount,1) == 1) 
        narrowedassignments(elimcount,:) = []; 
        invalidflag(elimcount,:) = []; 
    else 
        elimcount = elimcount + 1; 
    end 
end 

 

C.1.9 – “createeqconst.m” Program 

 This function creates the “Aeq” and “beq” matrices needed by fmincon to run. 

These matrices represent any equality constraints on the redesign variables that might be 

present as a result of commonality forced by space elements or by physical constraints on 

the system itself. 

function [Aeq,Beq,removedvarflags] = ... 
    createeqconst4(spaceelements,ndiv,constructs,existingsys,... 
    existingsysflag,currsetup,spaceelemtargassign,spaceelemvarassign) 
% Creates equality constrints and removes redundant variables 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% createeqconst4.m 
%  
% Written by: Matt Chamberlain 
% 
% Description: This program creates the two matrices that are used to 
% describe the equality constraints in the constructal solution to the 
% redesign problem. 
% New version that takes out variables that aren't needed due to equality 
% constraints. The two new outputs are arrays that mark where in  
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Assume that x array is a row with n*numvars spaces (one for each variable 
% in each of the smallest space elements) 
numconstructs = size(ndiv,1); 
numdimensions = size(ndiv,2); 
numnewsys = size(find(currsetup),2); 
numvars = size(existingsys,2); 
numelements = ndiv(:,1); 
for countelements = 2:numdimensions 
    numelements = numelements .* ndiv(:,countelements); 
end 
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% CHECK TO SEE WHICH SMALL SPACE ELEMENTS ARE IN THE LARGER SPACE 
% ELEMENTS, SETTING THE APPROPRIATE VARIABLE VALUES. THEN LOOK FOR OTHER 
% SMALL SPACE ELEMENTS THAT ARE ALSO WITHIN THE LARGER ELEMENT AND CREATE 
% EQUALITY CONSTRAINTS BY ADDING A LINE TO AEQ AND BEQ 
counteqconst = 0; % Counter to keep track of which line of the eq cons we are on 
countvareqconst = 0; % Sub-Counter to keep track of variable equalities 
countexsyseqconst = 0; % Sub-Counter for ex sys equalities 
for countlevels = 1:(numconstructs-1) 
    % only check for equalities if there are actually multiple smaller 
    % elements inside of the element you are currently checking (otherwise 
    % you are doing the same check twice at the next lower level 
    %if (isequal(ndiv(countlevels,:),ndiv(countlevels+1,:)) == 0) 
    % Go through each element in the current level 
    for countinlevelelements = 1:numelements(countlevels,1) 
        % Go through each of the lowest-level elements to see which are 
        % inside the element at the current level in question 
        numinside = 0; 
        exsysinside = 0; 
        for countsmallest = 1:numelements(numconstructs,1) 
            % Check each element using checkelements.m 
            insideflag = checkelements... 
                (spaceelements(countlevels,countinlevelelements,:,:),... 
                spaceelements(numconstructs,countsmallest,:,:)); 
            if ( ((insideflag == 1) && ... 
                    (existingsysflag(numconstructs,countsmallest,1) > 0)) ||... 
                    ((insideflag == 1) && ... 
                    (spaceelemtargassign(countsmallest) > 0)) ) 
                % If it is inside and it contains one of the systems 
                % being used, set numinside = numinside + 1; 
                numinside = numinside + 1; 
                if ((numinside == 1) && ... 
                        (existingsysflag(numconstructs,countsmallest,1) > 0 )) 
                    % Save the "first element's" place so we can set it 
                    % equal to all others inside the larger element 
                    % This is the case when it's an existing system 
                    exsysinside = countsmallest; 
                    exsysinsideflag = ... 
                        existingsysflag(numconstructs,countsmallest,1); 
                elseif ((numinside == 1) && (spaceelemtargassign(countsmallest) > 0)) 
                    % Save the "first element's" place so we can set it 
                    % equal to all others inside the larger element 
                    % This is the case when it's one of the new systems 
                    firstsysinsideflag = spaceelemvarassign(countsmallest); 
                elseif ((numinside > 1) && (exsysinside > 0)) 
                    % Case when there is an exsys inside the element in 
                    % question ... means elements should be set equal 
                    % to that exsys ... also assumes target is found 
                    % second 
                    for countvars = 1:numvars 
                        % Look for flags saying which variables are 
                        % common at this level of construct 
                        if (constructs(countvars) == countlevels) 
                            counteqconst = counteqconst + 1; 
                            countexsyseqconst = countexsyseqconst + 1; 
                            Beq(counteqconst) = ... 
                                existingsys(exsysinsideflag,countvars); %#ok<AGROW> 
                            Aeq(counteqconst,1:(numnewsys*numvars)) = ... 
                                zeros( 1,(numnewsys * numvars) ); %#ok<AGROW> 
                            newsysplace = ... 
                                countvars + ... 
                                ( (spaceelemvarassign(countsmallest) - 1) * numvars); 
                            Aeq(counteqconst,newsysplace) = 1; %#ok<AGROW> 
                        end 
                    end 
                elseif ((numinside > 1) && (exsysinside == 0) && ... 
                        (existingsysflag(numconstructs,countsmallest,1) > 0 )) 
                    % Case when an existing sys is found second after a 
                    % target is found in a given element 
                    exsysinside = countsmallest; 
                    exsysinsideflag = ... 
                        existingsysflag(numconstructs,countsmallest,1); 
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                    for countvars = 1:numvars 
                        % Look for flags saying which variables are 
                        % common at this level of construct 
                        if (constructs(countvars) == countlevels) 
                            counteqconst = counteqconst + 1; 
                            countexsyseqconst = countexsyseqconst + 1; 
                            Beq(counteqconst) = ... 
                                existingsys(exsysinsideflag,countvars); %#ok<AGROW> 
                            Aeq(counteqconst,1:(numnewsys*numvars)) = ... 
                                zeros( 1,(numnewsys * numvars) ); %#ok<AGROW> 
                            newsysplace = ... 
                                countvars + ( (firstsysinsideflag - 1) * numvars); 
                            Aeq(counteqconst,newsysplace) = 1; %#ok<AGROW> 
                        end 
                    end 
                elseif ((numinside > 1) && (exsysinside == 0) && ... 
                        (existingsysflag(numconstructs,countsmallest,1) == 0 )) 
                    % Case when there are no exsys in the element in 
                    % question ... means that two new sys should be set 
                    % equal at that construct 
                    for countvars = 1:numvars 
                        % Look for ffindlags saying which variables are 
                        % common at this level of construct 
                        if (constructs(countvars) == countlevels) 
                            counteqconst = counteqconst + 1; 
                            countvareqconst = countvareqconst + 1; 
                            Beq(counteqconst) = 0; %#ok<AGROW> 
                            blank = zeros( 1,(numnewsys * numvars) ); 
                            Aeq(counteqconst,1:(numnewsys*numvars)) = blank; %#ok<AGROW> 
                            secondsysinsideflag = spaceelemvarassign(countsmallest); 
                            firstnewsysplace = ... 
                                countvars + ( (firstsysinsideflag - 1) * numvars); 
                            secondnewsysplace = ... 
                                countvars + ( (secondsysinsideflag - 1) * numvars); 
                            Aeq(counteqconst,firstnewsysplace) = -1; %#ok<AGROW> 
                            Aeq(counteqconst,secondnewsysplace) = 1; %#ok<AGROW> 
                        end % if statement 
                    end % countvars loop 
                end % if/else statement (numinside) 
            end % if statement (insideflag) 
        end % countsmallest loop 
    end % countinlevelelements loop 
end % countlevels (constructs) loop 
  
% In case there are no equality constraints at all 
if (counteqconst == 0) 
    Aeq = zeros( 1,(numnewsys * numvars) ); 
    Beq = 0; 
    removedvarflags = zeros(1,(numvars * numnewsys)); 
else 
    % SCAN THROUGH AEQ AND BEQ TO FIND CASES WE ARE LOOKING FOR: 
    % Look for Beq lines that are nonzero 
    % Or look for instances of "-1"'s in Aeq and then take out the one with a 
    % "1" as it signifies the second variable 
    removedvarflags = zeros(1,(numvars * numnewsys)); 
    % Creates an array called "removedvarflags" that has a zero if a var 
    % stays in the list of variables and a non-zero index if that var is to 
    % be removed because of redundancy. The index indicates what var in the 
    % original array the removed variable is equal to (for reassembly 
    % later) 
    % Also creates an array "removerow" that will tell later on which rows 
    % need to be eliminated. 
    numremoved = 0; 
    removeequalitylist = zeros(1,(numvars * numnewsys)); 
    removevarlist = zeros(1,(numvars * numnewsys)); 
    i = 1; 
    while (i <= size(Aeq,1)) 
        [minval,minloc] = min(Aeq(i,:)); 
        [maxval,maxloc] = max(Aeq(i,:)); 
        countones = 0; 
        countnegones = 0; 
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        for searchforones = 1:size(Aeq,2) 
            if (Aeq(i,searchforones) == 1) 
                countones = countones + 1; 
            elseif (Aeq(i,searchforones) == -1) 
                countnegones = countnegones + 1; 
            end 
        end 
        if (minval == -1) && (maxval == 1) && (countones == 1) && ... 
                (countnegones == 1) 
            numremoved = numremoved + 1; 
            % list of rows in Aeq to be removed 
            removeequalitylist(i) = 1; %#ok<AGROW>  
            % list of the variables that are taking the place of removed 
            % ones 
            removedvarflags(maxloc) = minloc;  
            % list of columns (variables) that are being removed 
            removevarlist(maxloc) = 1; %#ok<AGROW>  
        end 
        i = i + 1; 
    end 
    j = size(Aeq,2); 
    while (j >= 1) 
        if (removevarlist(j) == 1) 
            Aeq(:,j) = []; %#ok<AGROW> 
        end 
        j = j-1; 
    end 
    k = size(Aeq,1); 
    while (k >= 1) 
        if (removeequalitylist(k) == 1) 
            Aeq(k,:) = []; %#ok<AGROW> 
            Beq(k) = []; %#ok<AGROW> 
        end 
        k = k - 1; 
    end 
end 

 

B.1.10 – “checkelements.m” Program 

 This Matlab function simply checks to see whether one space element fits cleanly 

inside another one, returning a flag value to signal success or failure. This function is 

called by other functions as part of their routines. 

function [insideflag] = checkelements(elementbig,elementsmall) 
% Checks to see if one space element contains another one 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% checkelements.m 
%  
% Written by: Matt Chamberlain 
% Last Edited: Sept 22, 2006 
% 
% Description: This program checks to see if the first space element 
% contains the second space element. It returns a value of 1 to signify 
% that the smaller element does lay within the larger and a 0 if this is 
% not the case. This function is called by the createeqconst.m function. 
% 
% NOTE: It is assumed that the inputs are descriptions of the bounds of the 
% two elements in question. The inputs should be of size (m x 2) where m is  
% the number of dimensions in the redesign market space 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
insideflag = 1; 
for i = 1:size(elementbig,3) 
    % Check to see if lower bound of smaller element is below that of the 
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    % larger element or if the upper bound of the smaller element is above 
    % that of the larger one. 
    if (elementsmall(1,1,i,1) < elementbig(1,1,i,1)) |... 
            (elementsmall(1,1,i,2) > elementbig(1,1,i,2)) 
        % If so, put up the flag that the smaller element doesn't fit 
        insideflag = 0; 
    end 
end 

 

B.1.11 – “findgoodstart.m” Program 

 This function generates a start point for fmincon to use. Experimentation has 

shown that the fmincon function is much more likely to be able to converge to a viable 

solution if the start point it is given is viable to begin with. For this reason, 

“findgoodstart.m”, “findmidstart.m”, “findlowstart.m”, and “findhighstart.m” have been 

written to generate a series of starting points spread throughout the variable space of the 

problem. This particular function generates starting points by trying to make the resulting 

systems fit into their respective space elements. This function and its subfunctions have 

been written specifically for the universal motor example problem and thus would have 

to be changed for future use in other applications. 

function [newstartpoints] = 
findgoodstart4(x0,varranges,spaceelements,Aeq,Beq,currsetup,varspaceelemassign); 
% Finds a good starting point for fmincon using ex sys variable values 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% findgoodstart4.m 
% 
% Written by: Matt Chamberlain 
% 
% This program finds better starting points for the system in each space 
% element (in the hope that doing so causes fewer ndiv setups to fail to 
% converge.  
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% REARRANGE THE x0 VARIABLES INTO ONE ROW PER SYSTEM 
numvars = size(varranges,1); 
numdimensions = size(spaceelements,3); 
numconstructs = size(spaceelements,1); 
numsys = size(find(currsetup),2); 
  
% FIND A MODIFIED VERSION OF EACH STARTING POINT THAT IS CLOSE TO THE 
% TARGET IN THE CENTER OF THE SPACE ELEMENT 
% NOTE: THIS IS ONE OF THE STEPS THAT WOULD HAVE TO BE DIFFERENT IF THERE 
% WERE MULTIPLE DIMENSIONS TO EACH SPACE ELEMENT 
for k = 1:numsys 
    cell = varspaceelemassign(k); 
    firstvar = ((cell-1) * numvars) + 1; 
    lastvar = numvars * cell; 
    bunkstartpoint = x0( firstvar:lastvar ); 
    target =( ( spaceelements(numconstructs,cell,1,2) - ... 
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        spaceelements(numconstructs,cell,1,1) ) / 2 ) + ... 
        spaceelements(numconstructs,cell,1,1); 
    [base,T,d] = patternsearchMKC(bunkstartpoint,varranges,target); 
    lastbasept = size(base,1); 
    firstvarnewarray = (k - 1) * numvars + 1; 
    lastvarnewarray = firstvarnewarray + numvars - 1; 
    newstartpoints(firstvarnewarray:lastvarnewarray) = (base(lastbasept,:) - ... 
        varranges(:,1)') ./ (varranges(:,2) - varranges(:,1))'; 
end 

 

B.1.12 – “findmidstart.m” Program 

 This function generates a start point for fmincon to use. Experimentation has 

shown that the fmincon function is much more likely to be able to converge to a viable 

solution if the start point it is given is viable to begin with. For this reason, 

“findgoodstart.m”, “findmidstart.m”, “findlowstart.m”, and “findhighstart.m” have been 

written to generate a series of starting points spread throughout the variable space of the 

problem. This particular function generates starting points by initially trying to use 

variable values at the middle of their ranges. This function and its subfunctions have been 

written specifically for the universal motor example problem and thus would have to be 

changed for future use in other applications. 

function [midstartpoints] = 
findmidstart2(varranges,targets,responsebounds,vartargassign); 
% Finds a good starting point for fmincon at middle of variables' ranges 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% findmidstart2.m 
% 
% Written by: Matt Chamberlain 
% 
% This program finds better starting points for the system close to each 
% target (whereas the previous version just looked for starting points in 
% each element) 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
numvars = size(varranges,1); 
numtargets = size(targets,1); 
numsys = numtargets; 
countvars = 1; 
for i = 1:numtargets 
    for j = 1:size(varranges,1) 
        newstartpoints(countvars) = 0.5 * (varranges(j,2) - ... 
            varranges(j,1)) + varranges(j,1); 
        countvars = countvars + 1; 
    end  
end 
% FIND A MODIFIED VERSION OF EACH STARTING POINT THAT IS CLOSE TO THE 
% TARGET IN THE CENTER OF THE SPACE ELEMENT 
% NOTE: THIS IS ONE OF THE STEPS THAT WOULD HAVE TO BE DIFFERENT IF THERE 
% WERE MULTIPLE DIMENSIONS TO EACH SPACE ELEMENT 
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for k = 1:numsys 
    firstvar = ((k-1) * numvars) + 1; 
    lastvar = numvars * k; 
    bunkstartpoint = newstartpoints( firstvar:lastvar ); 
    newvars = ... 
        optindivmotorlow(bunkstartpoint,targets(vartargassign(k),1,:),responsebounds); 
    firstvarnewarray = (k - 1) * numvars + 1; 
    lastvarnewarray = firstvarnewarray + numvars - 1; 
    midstartpoints(firstvarnewarray:lastvarnewarray) = ... 
        (newvars - varranges(:,1)') ./ (varranges(:,2) - varranges(:,1))'; 
end 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function newvars = optindivmotorlow(vars,target,responsebounds) 
% This subfunction does the optimization of one motor 
x0 = vars; 
bounds = [100,1500;... 
    0.01,1.0;... 
    1.0,500;... 
    0.01,1.0;... 
    1.0,10.0;... 
    0.5,10.0;... 
    0.0566,5.18;... 
    0.1,6.0]; 
lb = bounds(:,1); 
ub = bounds(:,2); 
options = optimset('Display','on','Tolfun',0.001,'Tolcon',0.01,'LargeScale','off'); 
exitflag = 0; 
% additions = 0; 
while (exitflag < 1) 
    [newvars,value,exitflag] = ... 
        fmincon(@(vars)inelement(vars,target,responsebounds),x0,[],[],[],[],... 
        lb,ub,@(vars)confun(vars),options) 
%     additions = additions + 0.1; 
    x0 = x0 + (0.1 * (ub' - lb')); 
end 
  
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [dev] = inelement(vars, target, responsebounds) 
% This subfunction calculates deviation variable values 
% incoming variables: 
Nc = vars(1); 
Awa = vars(2); 
Ns = vars(3); 
Awf = vars(4); 
r = vars(5); 
t = vars(6); 
L = vars(7); 
I = vars(8); 
  
% calculate response values 
Input = [Nc,Awa,Ns,Awf,r,t,L,I]; 
responses = TSunivmotor(Input); 
res = responses(1); 
  
% Calculate deviation from desired space element boundaries 
% if (T > spaceelem(1,1,1,2)) 
%     dev = (T - spaceelem(1,1,1,2)) / spaceelem(1,1,1,2); 
% elseif (T > spaceelem(1,1,1,1)) & (T < spaceelem(1,1,1,2))  
%     dev = 0; 
% else 
%     dev = (spaceelem(1,1,1,1) - T) / spaceelem(1,1,1,1); 
% end 
%  
% end 
  
if (res <= target(1,1,2)) %&& (res >= responsebounds(2)) 
    % target matching when the point is below midpoint 
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    value = (res - responsebounds(1)) / (target(1,1,2) - responsebounds(1)); 
elseif (res > target(1,1,2)) %&& (res <= responsebounds(2)) 
    % target matching when the point is above the midpoint 
    value = 1 - (res - target(1,1,2)) / (responsebounds(2) - target(1,1,2)); 
else  
    value = 0; 
end 
dev = 1-value; 
  
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [c,ceq] = confun(vars) 
% This subfunction calculates constraint values 
% incoming variables: 
Nc = vars(1); 
Awa = vars(2); 
Ns = vars(3); 
Awf = vars(4); 
r = vars(5); 
t = vars(6); 
L = vars(7); 
I = vars(8); 
  
% calculate response values 
Input = [Nc,Awa,Ns,Awf,r,t,L,I]; 
responses = TSunivmotor(Input); 
% This arrray will have the values that the respones are compared to. The 
% standard form for these constraints is assumed to be c(x) <= 0 
% We'll assume that the inequalities measured here are of the form: 
% response(i) <= physcons(i)  
physcons = [0 0 2 0.15 1.0 5000 0 1.0 0]; 
% This array simply keeps track of which of the response values describing 
% the system are related to physcons(i) 
physconflags = [-1 -2 2 -3 3 4 -5 -6 -7]; 
nonlconcount = 0; 
for countpcons = 1:size(physcons,2) 
    nonlconcount = nonlconcount + 1; 
    if (physconflags(countpcons) > 0) 
        % case when the flag is positive 
        c(nonlconcount) = ... 
            responses(physconflags(countpcons)) - physcons(countpcons); 
    elseif (physconflags(countpcons) < 0) 
        % case when the flag is negative 
        c(nonlconcount) = ... 
            (-1 * responses((-1 * physconflags(countpcons)) )) - physcons(countpcons); 
    end 
end 
ceq = ones(9,1); % not sure if I need to do this 
ceq = []; 
  
end 

 

B.1.13 – “findlowstart.m” Program 

 This function generates a start point for fmincon to use. Experimentation has 

shown that the fmincon function is much more likely to be able to converge to a viable 

solution if the start point it is given is viable to begin with. For this reason, 

“findgoodstart.m”, “findmidstart.m”, “findlowstart.m”, and “findhighstart.m” have been 
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written to generate a series of starting points spread throughout the variable space of the 

problem. This particular function generates starting points by initially trying to use 

variable values at the bottom of their ranges. This function and its subfunctions have been 

written specifically for the universal motor example problem and thus would have to be 

changed for future use in other applications. 

function [lowstartpoints] = findlowstart2(varranges,numtargets,spaceelements,... 
    Aeq,Beq,currsetup,varspaceelemassign); 
% Finds a good starting point for fmincon at bottom of variables' ranges 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% findlowstart2.m 
% 
% Written by: Matt Chamberlain 
% 
% This program finds low better starting points for the system in each space 
% element (in the hope that doing so causes fewer ndiv setups to fail to 
% converge.  
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
numvars = size(varranges,1); 
numdimensions = size(spaceelements,3); 
numconstructs = size(spaceelements,1); 
numsys = size(find(currsetup),2); 
countvars = 1; 
for i = 1:numtargets 
    for j = 1:size(varranges,1) 
        newstartpoints(countvars) = varranges(j,1); 
        countvars = countvars + 1; 
    end  
end 
  
% FIND A MODIFIED VERSION OF EACH STARTING POINT THAT IS CLOSE TO THE 
% TARGET IN THE CENTER OF THE SPACE ELEMENT 
% NOTE: THIS IS ONE OF THE STEPS THAT WOULD HAVE TO BE DIFFERENT IF THERE 
% WERE MULTIPLE DIMENSIONS TO EACH SPACE ELEMENT 
for k = 1:numsys 
    cell = varspaceelemassign(k); 
    firstvar = ((k-1) * numvars) + 1; 
    lastvar = numvars * k; 
    bunkstartpoint = newstartpoints( firstvar:lastvar ); 
    newvars = optindivmotorlow(bunkstartpoint,spaceelements(1,cell,:,:)); 
    firstvarnewarray = (k - 1) * numvars + 1; 
    lastvarnewarray = firstvarnewarray + numvars - 1; 
    lowstartpoints(firstvarnewarray:lastvarnewarray) = ... 
        (newvars - varranges(:,1)') ./ (varranges(:,2) - varranges(:,1))'; 
end 
  
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function newvars = optindivmotorlow(vars,spaceelem) 
% This subfunction does the optimization of one motor 
x0 = vars; 
bounds = [100,1500;... 
    0.01,1.0;... 
    1.0,500;... 
    0.01,1.0;... 
    1.0,10.0;... 
    0.5,10.0;... 
    0.0566,5.18;... 
    0.1,6.0]; 
lb = bounds(:,1); 
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ub = bounds(:,2); 
options = optimset('Display','off','Tolfun',0.001,'Tolcon',0.01,'LargeScale','off'); 
exitflag = 0; 
additions = 0; 
while (exitflag < 1) 
    [newvars,value,exitflag] = ... 
        fmincon(@(vars)inelement(vars,spaceelem),x0,[],[],[],[],lb,ub,... 
        @(vars)confun(vars,spaceelem),options); 
    additions = additions + 0.1; 
    x0 = x0 + (0.1 * (ub' - lb')); 
end 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [dev] = inelement(vars, spaceelem) 
% This subfunction calculates deviation variable values 
% incoming variables: 
Nc = vars(1); 
Awa = vars(2); 
Ns = vars(3); 
Awf = vars(4); 
r = vars(5); 
t = vars(6); 
L = vars(7); 
I = vars(8); 
  
% calculate response values 
Input = [Nc,Awa,Ns,Awf,r,t,L,I]; 
responses = TSunivmotor(Input); 
T = responses(1); 
  
% Calculate deviation from desired space element boundaries 
if (T > spaceelem(1,1,1,2)) 
    dev = (T - spaceelem(1,1,1,2)) / spaceelem(1,1,1,2); 
elseif (T > spaceelem(1,1,1,1)) & (T < spaceelem(1,1,1,2))  
    dev = 0; 
else 
    dev = (spaceelem(1,1,1,1) - T) / spaceelem(1,1,1,1); 
end 
  
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [c,ceq] = confun(vars,spaceelem) 
% This subfunction calculates constraint values 
% incoming variables: 
Nc = vars(1); 
Awa = vars(2); 
Ns = vars(3); 
Awf = vars(4); 
r = vars(5); 
t = vars(6); 
L = vars(7); 
I = vars(8); 
  
% calculate response values 
Input = [Nc,Awa,Ns,Awf,r,t,L,I]; 
responses = TSunivmotor(Input); 
physcons = [0 0 2 0.15 1.0 5000 0 1.0 0]; 
% This array simply keeps track of which of the response values describing 
% the system are related to physcons(i) 
physconflags = [-1 -2 2 -3 3 4 -5 -6 -7]; 
nonlconcount = 0; 
for countpcons = 1:size(physcons,2) 
    nonlconcount = nonlconcount + 1; 
    if (physconflags(countpcons) > 0) 
        % case when the flag is positive 
        c(nonlconcount) = ... 
            responses(physconflags(countpcons)) - physcons(countpcons); 
    elseif (physconflags(countpcons) < 0) 
        % case when the flag is negative 
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        c(nonlconcount) = ... 
            (-1 * responses((-1 * physconflags(countpcons)) )) - physcons(countpcons); 
    end 
end 
  
% create a pair of constraints to get the motor inside its element 
nonlconcount = nonlconcount + 1; 
spaceelemlb = spaceelem(1,1,1,1); 
c(10) = spaceelemlb - responses(1); 
nonlconcount = nonlconcount + 1; 
spaceelemub = spaceelem(1,1,1,2); 
c(11) = responses(1) - spaceelemub; 
ceq = ones(11,1); % not sure if I need to do this 
ceq = []; 
  
end 

 

B.1.14 – “findhighstart.m” Program 

 This function generates a start point for fmincon to use. Experimentation has 

shown that the fmincon function is much more likely to be able to converge to a viable 

solution if the start point it is given is viable to begin with. For this reason, 

“findgoodstart.m”, “findmidstart.m”, “findlowstart.m”, and “findhighstart.m” have been 

written to generate a series of starting points spread throughout the variable space of the 

problem. This particular function generates starting points by initially trying to use 

variable values at the top of their ranges. This function and its subfunctions have been 

written specifically for the universal motor example problem and thus would have to be 

changed for future use in other applications. 

function [highstartpoints] = findhighstart2(varranges,numtargets,spaceelements,... 
    Aeq,Beq,currsetup,varspaceelemassign); 
% Finds a good starting point for fmincon at top of variables' ranges 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% findhighstart2.m 
% 
% Written by: Matt Chamberlain 
% 
% This program finds better high starting points for the system in each space 
% element (in the hope that doing so causes fewer ndiv setups to fail to 
% converge.  
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
numvars = size(varranges,1); 
numdimensions = size(spaceelements,3); 
numconstructs = size(spaceelements,1); 
numsys = size(find(currsetup),2); 
countvars = 1; 
for i = 1:numtargets 
    for j = 1:size(varranges,1) 
        newstartpoints(countvars) = varranges(j,2); 
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        countvars = countvars + 1; 
    end  
end 
  
% FIND A MODIFIED VERSION OF EACH STARTING POINT THAT IS CLOSE TO THE 
% TARGET IN THE CENTER OF THE SPACE ELEMENT 
% NOTE: THIS IS ONE OF THE STEPS THAT WOULD HAVE TO BE DIFFERENT IF THERE 
% WERE MULTIPLE DIMENSIONS TO EACH SPACE ELEMENT 
% newsyslocs = find(currsetup); 
for k = 1:numsys 
    cell = varspaceelemassign(k); 
    firstvar = ((k-1) * numvars) + 1; 
    lastvar = numvars * k; 
    bunkstartpoint = newstartpoints( firstvar:lastvar ); 
    newvars = optindivmotor(bunkstartpoint,spaceelements(1,cell,:,:)); 
    firstvarnewarray = (k - 1) * numvars + 1; 
    lastvarnewarray = firstvarnewarray + numvars - 1; 
    highstartpoints(firstvarnewarray:lastvarnewarray) = ... 
        (newvars - varranges(:,1)') ./ ((varranges(:,2) - varranges(:,1))'); 
end 
  
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function newvars = optindivmotor(vars,spaceelem) 
% This subfunction does the optimization of one motor 
x0 = vars; 
bounds = [100,1500;... 
    0.01,1.0;... 
    1.0,500;... 
    0.01,1.0;... 
    1.0,10.0;... 
    0.5,10.0;... 
    0.0566,5.18;... 
    0.1,6.0]; 
lb = bounds(:,1); 
ub = bounds(:,2); 
options = optimset('Display','off','Tolfun',0.001,'Tolcon',0.01,'LargeScale','off'); 
[newvars,value,exitflag] = ... 
    fmincon(@(vars)inelement(vars,spaceelem),x0,[],[],[],[],lb,ub,... 
    @(vars)confun(vars,spaceelem),options); 
  
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [dev] = inelement(vars, spaceelem) 
% This subfunction calculates deviation variable values 
% incoming variables: 
Nc = vars(1); 
Awa = vars(2); 
Ns = vars(3); 
Awf = vars(4); 
r = vars(5); 
t = vars(6); 
L = vars(7); 
I = vars(8); 
  
% calculate response values 
Input = [Nc,Awa,Ns,Awf,r,t,L,I]; 
responses = TSunivmotor(Input); 
T = responses(1); 
% Calculate deviation from desired space element boundaries 
if (T > spaceelem(1,1,1,2)) 
    dev = (T - spaceelem(1,1,1,2)) / spaceelem(1,1,1,2); 
elseif (T > spaceelem(1,1,1,1)) & (T < spaceelem(1,1,1,2))  
    dev = 0; 
else 
    dev = (spaceelem(1,1,1,1) - T) / spaceelem(1,1,1,1); 
end 
  
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [c,ceq] = confun(vars,spaceelem) 
% This subfunction calculates constraint values 
% incoming variables: 
Nc = vars(1); 
Awa = vars(2); 
Ns = vars(3); 
Awf = vars(4); 
r = vars(5); 
t = vars(6); 
L = vars(7); 
I = vars(8); 
  
% calculate response values 
Input = [Nc,Awa,Ns,Awf,r,t,L,I]; 
responses = TSunivmotor(Input); 
% This arrray will have the values that the respones are compared to. The 
% standard form for these constraints is assumed to be c(x) <= 0 
% We'll assume that the inequalities measured here are of the form: 
% response(i) <= physcons(i)  
physcons = [0 0 2 0.15 1.0 5000 0 1.0 0]; 
% This array simply keeps track of which of the response values describing 
% the system are related to physcons(i) 
physconflags = [-1 -2 2 -3 3 4 -5 -6 -7]; 
nonlconcount = 0; 
for countpcons = 1:size(physcons,2) 
    nonlconcount = nonlconcount + 1; 
    if (physconflags(countpcons) > 0) 
        % case when the flag is positive 
        c(nonlconcount) = ... 
            responses(physconflags(countpcons)) - physcons(countpcons); 
    elseif (physconflags(countpcons) < 0) 
        % case when the flag is negative 
        c(nonlconcount) = ... 
            (-1 * responses((-1 * physconflags(countpcons)) )) - physcons(countpcons); 
    end 
end 
% create a pair of constraints to get the motor inside its element 
nonlconcount = nonlconcount + 1; 
spaceelemlb = spaceelem(1,1,1,1); 
c(10) = spaceelemlb - responses(1); 
nonlconcount = nonlconcount + 1; 
spaceelemub = spaceelem(1,1,1,2); 
c(11) = responses(1) - spaceelemub; 
ceq = ones(6,1); % not sure if I need to do this 
ceq = []; 
  
end 

 

B.1.15 – “portfolioeval.m” Program 

 This is a major sub-function which calculates the objective function value for a 

given portfolio of redesigned systems. It takes in the variables associated with the 

portfolio, calculates its performance, calls the functions needed to assess quantitites like 

RI and CDF, and returns the objective function value to fmincon. 

function [objvalue] = portfolioeval(reducednondimvars,existingsys,targets,... 
    responsebounds,weights,schedule,startprod,commmatrix,... 
    rdi,currsetup,vartargassign,varranges,removedvarflags) 
% Evaluates a given redesign portfolio based on designer's preferences 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% portfolioeval.m 
% 
% Updated by: Matt Chamberlain 
% 
% Description: This program will take in a set of possible redesigned 
% systems (a "portfolio" of redesign options) and evaluate it against the 
% designer's preferences. 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
numvars = size(existingsys,2); 
numdimensions = size(targets,2); 
numtargets = size(targets,1); 
reducedplace = 1; 
nondimvars = zeros(1,size(removedvarflags,2)); 
% PUT THE REMOVED VARIABLES BACK INTO THE LIST 
for i = 1:size(removedvarflags,2) 
    if (removedvarflags(i) == 0) 
        nondimvars(i) = reducednondimvars(reducedplace); 
        reducedplace = reducedplace + 1; 
    end 
end 
for j = 1:size(removedvarflags,2) 
    if (removedvarflags(j) > 0) 
        nondimvars(j) = nondimvars(removedvarflags(j)); 
    end 
end 
  
% RE-ARRANGE THE LIST OF VARIABLES INTO ROWS (ONE FOR EACH SYSTEM) AND TURN 
% INTO DIMENSIONALIZED FORM 
solutionsetnondim = zeros(numtargets,numvars); 
solutionset = zeros(numtargets,numvars); 
for i = 1:numtargets 
    firstvar = ((i-1) * numvars) + 1; 
    lastvar = numvars * i; 
    solutionsetnondim(i,:) = nondimvars( firstvar:lastvar ); 
    solutionset(i,:) = (nondimvars( firstvar:lastvar ) .* ... 
        (varranges(:,2)' - varranges(:,1)')) + varranges(:,1)'; 
end 
numnewsols = size(solutionset,1); 
  
% MAKE A NON-DIMENSIONAL SET OF EXISTING SYSTEMS 
existingsysnondim = zeros(size(existingsys,1),numvars); 
for i = 1:size(existingsys,1) 
    existingsysnondim(i,:) = (existingsys(i,:) - varranges(:,1)') ./ ... 
        (varranges(:,2)' - varranges(:,1)'); 
end 
  
% MODEL THE NEW SYSTEMS 
newdesignsres = zeros(numnewsols,7); 
for n = 1:numnewsols 
    newdesignsres(n,:) = TSunivmotor(solutionset(n,:)); 
end 
  
overallvalue = 0; 
countposflag = 0; 
for countelem = 1:size(currsetup,2) 
    % Look for the systems that are flagged for use in the portfolio in 
    % this setup 
    if (currsetup(countelem) > 0) 
        countposflag = countposflag + 1; 
        currenttarget = currsetup(countelem); 
        % Go through and evaluate the current system against its target 
        % in each dimension 
        for countdims = 1:numdimensions 
            targvalue = ... 
                evalvalue(newdesignsres(countposflag,countdims),... 
                targets(currenttarget,countdims,:),responsebounds(countdims,:)); 
            devtarget = targvalue; 
            weighted = devtarget * weights(currenttarget,countdims); 
            overallvalue = overallvalue + weighted; 
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        end 
    end 
  
end 
  
  
% CALCULATE THE HIGH-LEVEL OBJECTIVE VALUES AND CONVERT TO DEVIATION 
% For right now, the value of these is not evaluated; we're just trying 
% to get cdf and ri as close to 1.0 as possible 
cdf = ... 
    evalcontinuouscdf2(existingsysnondim, solutionsetnondim, commmatrix,...  
    vartargassign); 
cdfdev = cdf; 
weightedcdfdev = cdfdev * weights( (numtargets+1), 1); 
  
ri = ... 
    evalcontinuousri(existingsysnondim, solutionsetnondim, rdi, ... 
    vartargassign, schedule, startprod); 
ridev = ri; 
weightedridev = ridev * weights( (numtargets+2), 1); 
  
avgmass = sum(newdesignsres(:,2)) / numtargets; 
dweightedavgmass = (avgmass/0.5 - 1) * weights( (numtargets+3),1); 
if (dweightedavgmass < 0) 
    dweightedavgmass = 0; 
end 
  
avgeffic = sum(newdesignsres(:,3))   / numtargets; 
dweightedavgeffic = (1 - (avgeffic/0.7)) * weights( (numtargets+4),1); 
if (dweightedavgeffic < 0) 
    dweightedavgeffic = 0; 
end 
  
objvalue = overallvalue + weightedcdfdev + weightedridev + ... 
    dweightedavgmass + dweightedavgeffic; 

 

B.1.16 – “evalcontinuousri.m” Program 

 This function caluculates the Redesign Index value for a given portfolio of 

existing systems and newly redesigned systems given the redesign difficulties associated 

with changing each variable. 

function [RI] = evalcontinuousri(existingsys, newdesigns, RDI, ... 
    vartargassign, schedule, startsys) 
% Calculates the RI value for a redesign portfolio 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% evalcontinuousri.m 
%  
% Updated by: Matt Chamberlain 
% 
% Description: This program calculates the Redesign Index (RI) for a given 
% portfolio of redesigned systems 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
numsys = size(schedule,1); 
  
% RE-SORT THE NEW SYSTGEMS INTO CHRONOLOGICAL ORDER USING 'VARTARGASSIGN' 
numvars = size(existingsys,2); 
portfolio = zeros(numsys,numvars); 
numexsys = size(existingsys,1); 
numnewsys = size(newdesigns,1); 
portfolio(1:numexsys,:) = existingsys; 
for countnewsys = 1:numnewsys 
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    % Put the new sys in the order of the target to which they are 
    % assigned 
    portfolio(numexsys + vartargassign(countnewsys),:) = newdesigns(countnewsys,:); 
end 
pvar = zeros(1,numvars); 
  
% FOR EVERY VARIABLE IN EVERY NEW SYSTEM 
for countvars = 1:numvars 
    for countsys = (numexsys + 1):numsys 
        smallestdiff = 1*10^6; 
        % CHECK USING SCHEDULE / STARTDATE TO SEE IF ANY OTHER NEW SYS THAT IS 
        % MADE BEFOREHAND OR EXISTING SYS HAS THE CLOSEST VARIABLE VALUE 
        for comparevars = 1:numsys 
            diff = abs( (portfolio(countsys,countvars) - ... 
                portfolio(comparevars,countvars))  ); 
            percentdiff = diff * RDI(countvars); 
            if ( comparevars ~= countsys ) &&... 
                    (startsys(comparevars) < startsys(countsys)) &&... 
                    (percentdiff <= smallestdiff) 
                smallestdiff = percentdiff; 
            end 
        end 
         
        % CALCULATE PVAR FOR THE SELECTED SYS WITH THE CLOSEST VAR VALUE 
        % ADD TO THE PVAR FOR THAT VAR (DIVIDED BY THE NUMBER OF NEW SYS) 
        pvar(countvars) = pvar(countvars) + (smallestdiff / (numnewsys*numvars)); 
    end % countsys for loop 
end % countvars for loop 
  
% CALCULATE THE TOTAL RI/RDF FOR SOLUTION BY ADDING UP WEIGHTED SUM OF ALL 
% PVARS 
RI = sum(pvar); 

 

B.1.17 – “evalcontinuouscdf.m” Program 

 This function calculates the Commonalit Discount Factor for a given portfolio of 

existing systems and newly redesigned systems given the commonality discounts 

associated with each redesign variable and each type of overlap in production. 

function [CDF] = evalcontinuouscdf(existingsys, newdesigns, commmatrix, vartargassign) 
% Calculates the CDF value for a given portfolio and comm discounts 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% evalcontinuouscdf.m 
%  
% Updated by: Matt Chamberlain 
% 
% Description: This program calculates the Commonality Discount Factor 
% (CDF) for a given portfolio of redesigned systems 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
numsys = size(commmatrix,2); 
  
% RE-SORT THE NEW SYSTGEMS INTO CHRONOLOGICAL ORDER USING 'VARTARGASSIGN' 
numvars = size(existingsys,2); 
portfolio = zeros(numsys,numvars); 
numexsys = size(existingsys,1); 
numnewsys = size(newdesigns,1); 
portfolio(1:numexsys,:) = existingsys; 
for countnewsys = 1:numnewsys 
    % Put the new sys in the order of the target to which they are 
    % assigned 
    portfolio(numexsys + vartargassign(countnewsys),:) = newdesigns(countnewsys,:); 
end 
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% CALCULATE CDF 
pvar = zeros(1,numvars); 
for countvars = 1:numvars 
    for countsys = 1:numsys 
        smallestdiff = 1*10^6; 
        % CHECK TO SEE WHICH IS SMALLEST PERCENT DIFFERENCE * COMMONALITY 
        % DISCOUNT TOTAL 
        for comparevars = 1:numsys % COMPAREVARS IS ALSO A SYS SEARCH VARIABLE 
            diff = abs( (portfolio(countsys,countvars) - ... 
                portfolio( comparevars,countvars) ) ); 
            weighteddiff = diff * ( commmatrix(countvars,countsys,comparevars)); 
            if ( comparevars ~= countsys ) &&... 
                    (weighteddiff <= smallestdiff) 
                smallestdiff = weighteddiff; 
            end  
        end 
         
        % CALCULATE PVAR FOR THE SELECTED SYS WITH THE CLOSEST AND MOST 
        % VALUABLE COMMONALITY (AND DIVIDE BY N*P FOR EACH TERM) 
        pvar(countvars) = pvar(countvars) + (smallestdiff / (numsys*numvars)); 
    end % countsys for loop 
end % countvars for loop 
  
% CALCULATE THE TOTAL CDF 
CDF = sum(pvar); 

 

B.1.18 – “evalvalue.m” Program 

 This function was at one point much more complicated, but currently is just used 

to calculate deviation variable values for target-matching goals in a compromise Decision 

Support Problem. The two inputs are the system performance and the target value for that 

performance. It is assumed here that the target is not zero. 

function [dev] = evalvalue(res,target)  
% Evaluate the deviation variable values for achievement of a given target 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% evalvalue.m 
%  
% Updated by: Matt Chamberlain 
% 
% Description: This is a basic form from the original formulatoin of a 
% cDSP. We now assume that there is just one target value. 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
dplus = (res/target) - 1.0; 
dminus = 1.0 - (res/target); 
if (dplus >= 0) 
    dev = dplus; 
elseif (dminus > 0) 
    dev = dminus; 
end 
 

 

B.1.19 – “createnonlconst.m” Program 
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 This function calculates the nonlinear constraints associated with a proposed 

portfolio of existing systems and newly redesigned systems. The nonlinear constraints are 

made up of space element boundaries that should not be breached as well as any 

nonlinear physical constraints associated with the redesign problem at hand. The function 

returns values for the constraints in a form that fmincon will accept. 

function [c,ceq] = createnonlconst(reducednondimvars,spaceelements,... 
    existingsys,physcons,physconflags,currsetup,spaceelemvarassign,varranges,... 
    removedvarflags) 
% Calculates nonlinear constraint values from approach and physical cons 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% createnonlconst.m 
% 
% Written by: Matt Chamberlain 
% 
% Description: This program calculates and ouptputs the nonlinear 
% constraint values for the constructal-inspired appraoch. The nonlinear 
% constraints come both from the approach itself and the physical 
% constraints of the systems being redesigned. This version of the program 
% also puts any redundant variables back into the design matrix. 
% 
% fmincon expects the constraints to be written in the following form: 
% c(x) <= 0 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
nonlconcount = 0; 
numvars = size(existingsys,2); 
numdimensions = size(spaceelements,3); 
numsolutions = (size(nonzeros(currsetup),1)); 
numconstructs = size(spaceelements,1); 
reducedplace = 1; 
nondimvars = zeros(1,size(removedvarflags,2)); 
% PUT THE REMOVED VARIABLES BACK INTO THE LIST 
for i = 1:size(removedvarflags,2) 
    if (removedvarflags(i) == 0) 
        nondimvars(i) = reducednondimvars(reducedplace); 
        reducedplace = reducedplace + 1; 
    end 
end 
  
for j = 1:size(removedvarflags,2) 
    if (removedvarflags(j) > 0) 
        nondimvars(j) = nondimvars(removedvarflags(j)); 
    end 
end 
  
% RE-ARRANGE THE LIST OF VARIABLES INTO ROWS (ONE FOR EACH SYSTEM) 
portfolio = zeros(numsolutions,numvars); 
for i = 1:numsolutions 
    firstvar = ((i-1) * numvars) + 1; 
    lastvar = numvars * i; 
    portfolio(i,:) = (nondimvars( firstvar:lastvar ) .* ... 
        (varranges(:,2)' - varranges(:,1)')) + varranges(:,1)'; 
end 
numexsys = size(existingsys,1); 
numtotalelements = numexsys + size(currsetup,2); 
  
% MODEL THE NEW SYSTEMS AND SAVE THE RESPONSES 
% NOTE: In this program, it is assumed that the the responses that make up 
% the redesign market space are the first responses delivered by the 
% simulation program and are delivered in the same order 
alldesignsres = zeros(numsolutions,7); 
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for n = 1:numsolutions 
    alldesignsres(n,:) = TSunivmotor(portfolio(n,:)); 
end 
  
% Go through each of the bounds for each element and make sure that 
% c(x) <= 0 ..... which equates to ..... 
% response <= ub ... response - ub <= 0 ... c(x) = response - ub 
% lb - response = c(x) 
% countnewsys = 0; 
% for countelements = 1:numtotalelements 
numphyscons = size(physcons,2); 
totnumcons = (numphyscons * numsolutions) + (numsolutions * numdimensions * 2); 
c = zeros( totnumcons ); 
for countelements = 1:numtotalelements 
    % See if the element has a system and target assigned to it 
    if (spaceelemvarassign(countelements) > 0) 
        % If it does, create the element border constraints 
        for countdimensions = 1:numdimensions 
            nonlconcount = nonlconcount + 1; 
            % next line calculates: lb - response = c(x) 
            c(nonlconcount) = ... 
                spaceelements(numconstructs,countelements,countdimensions,1) ... 
                - alldesignsres(spaceelemvarassign(countelements),countdimensions);  
            nonlconcount = nonlconcount + 1; 
            % next line calculates: c(x) = response - ub 
            c(nonlconcount) = ... 
                alldesignsres(spaceelemvarassign(countelements),countdimensions) ... 
                - spaceelements(numconstructs,countelements,countdimensions,2);  
        end 
        % Create the physical constraints for each new system 
        for countpcons = 1:numphyscons 
            nonlconcount = nonlconcount + 1; 
            if (physconflags(countpcons) > 0) 
                % case when the flag is positive indicating a "less-than" 
                % physical constraint of the form Mass(x) < 2 kg 
                c(nonlconcount) = ... 
                    
alldesignsres(spaceelemvarassign(countelements),physconflags(countpcons))... 
                    - physcons(countpcons); 
            elseif (physconflags(countpcons) < 0) 
                % case when the flag is negative indicating a "greater-than" 
                % physical constraint of the form Effic(x) > 15% 
                c(nonlconcount) = ... 
                    (-1 * alldesignsres(spaceelemvarassign(countelements),... 
                    (-1 * physconflags(countpcons)) ) ) + physcons(countpcons); 
            end 
        end 
    end 
end 
  
% Nonlinear EQUALITY Constraints 
ceq = []; 

 

B.2 – MATLAB CODE FOR VERIFICATION AND VALIDATION OF REDESIGN 

INDICES 

 To quickly run the huge number of fast experiments necessary to verify and 

validate the redesign metrics proposed in this dissertation, the Matlab code written for the 

constructal-inspired approach to the redesign problem has been modified to make a 
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simpler “all-at-once” version that collapses a simple problem down into the form of one 

compromise Decision Support Problem. While this approach is seemingly far simpler 

than the constructal-inspired one, the code used to implement it is actually made up of 

functions and scripts from the constructal-inspired version that have been mildly revised 

and shortened. The code presented in this section is only that which differs significantly 

from the original Matlab code presented in Section C.1. The manner in which these 

programs and scripts interact is shown in flowchart form in Figure 4-5. 

 

B.2.1 – Experimental Input and Executable 

 This Matlab script is used to set up an experiment and execute the main Matlab 

code “solveAAO”, which is short for “Solve All At Once”, which alludes to the fact that 

in these experiments, the whole redesign problem is condensed into a single compromise 

Decision Support Problem. Oftentimes, dozens of experiments are run at a time by 

repeating the code here over and over again, adjusting the values for the designer’s 

preferences, redesign difficulties, and commonality discounts to try to show trends. One 

experiment’s inputs are shown here for the sake of brevity. 

% Boilerplate setup for all experiments in this series 
schedule(1,1:3) = 1;    % Schedule of production for product #1 
schedule(2,2:4) = 1;    % Schedule of production for product #2 
schedule(3,3:5) = 1;    % Schedule of production for product #3 
schedule(4,4:6) = 1;    % Schedule of production for product #4 
schedule(5,5:7) = 1;    % Schedule of production for product #5 
schedule(6,6:8) = 1;    % Schedule of production for product #6 
schedule(7,7:9) = 1;    % Schedule of production for product #6 
  
existingsystemp = zeros(10, 8); 
existingsystemp(:,1) = [730, 750, 760, 785, 988, 1007, 1030, 1056, 1082, 1087]; 
existingsystemp(:,2) = [0.205, 0.203, 0.203, 0.205, 0.217, 0.224, 0.230, 0.237, 0.243, 
0.247];  
existingsystemp(:,3) = [45, 76, 89, 95, 74, 73, 73, 73, 72, 72]; 
existingsystemp(:,4) = [0.203, 0.186, 0.190, 0.205, 0.241, 0.246, 0.253, 0.260, 0.267, 
0.284]; 
existingsystemp(:,5) = [3.62, 3.31, 3.12, 2.82, 2.26, 2.35, 2.44, 2.51, 2.58, 2.71]; 
existingsystemp(:,6) = [9.69, 11.77, 11.20, 8.88, 5.75, 6.17, 6.35, 6.46, 6.67, 7.15]; 
existingsystemp(:,7) = [0.998, 1.28, 1.41, 1.63, 2.38, 2.61, 2.74, 2.81, 2.87, 3.16]; 
existingsystemp(:,8) = [3.65, 3.73, 3.73, 3.70, 3.84, 4.02, 4.19, 4.36, 4.53, 4.71]; 
  
numexsys = 1; %%% MUST BE ADJUSTED! 
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j = numexsys + 1; 
while (j <= size(existingsystemp,1)) 
    existingsystemp(j,:) = []; 
end 
existingsys = existingsystemp; %#ok<NASGU> 
  
targets(1,1) = 0.050; 
targets(2,1) = 0.100; 
targets(3,1) = 0.150; 
targets(4,1) = 0.200; 
targets(5,1) = 0.250; 
targets(6,1) = 0.300; 
targets(7,1) = 0.350; 
targets(1:numexsys,:) = []; 
  
numtargets = size(targets,1); 
  
rdi = [0.1,0.5,0.1,0.5,0.5,0.5,1.0,0.1]; %#ok<NASGU> 
%------------------------------------------------------------------------- 
  
disp('EXPERIMENT #Vsp01A') 
  
diary expVsp01AcommfixedOct11Nash.txt 
tic 
  
  
cdfportion = 1/6; 
riportion = 0; 
targportion = 2 * (1 - cdfportion - riportion) / 3;  
weights = [(targportion/(numtargets)); ... 
    (targportion/(numtargets));... 
    (targportion/(numtargets));... 
    (targportion/(numtargets));... 
    (targportion/(numtargets));... 
    (targportion/(numtargets));... 
    (targportion/(numtargets));... 
    (targportion/(numtargets));... 
    (targportion/(numtargets));... 
       cdfportion;... %CDF 
   riportion;... % RI 
    targportion/4;... % Avg Mass 
    targportion/4]; % Avg Efficiency 
  
  
weights((numtargets+1):(size(weights,1)-4),:) = []; %#ok<NASGU> 
  
commindices(1,:) = [1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0]; %Perfect Comm 
commindices(2,:) = [0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1]; %SPI 
commindices(3,:) = [1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0]; %SII 
commindices(4,:) = [1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0]; %SRI 
commindices(5,:) = [1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0]; %PGI 
  
  
solveAAO2 
  
responses(1:6,1:7) = finalsysresponses2(1,1,:,:); 
majorresponses = [finalri2,finalcdf2,finalobjvalue2]; %#ok<NASGU> 
  
time = toc %#ok<NASGU,NOPTS> 
save expVsp01AcommfixedOct11Nash 
diary off 

 

B.2.2 – “solveAAO.m” Program 
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 This is the main function for solving a simplified redesign problem all at once. It 

is a greatly simplified version of the “solvequasicon.m” function shown in Section C.1.1. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% solveAAO2.m 
%  
% Written by: Matt Chamberlain 
% 
% Description: This script is meant to be the main program used to solve 
% the universal motor redesign problem all at once 
% 
% This version is meant to help run a whole bunch of tests at once using 
% some custom inputs instead of getting all inputs from redesigninputs.m as 
% was done previously 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% INITIALIZE ALL OF THE GIVENS FOR THE PROBLEM AT HAND 
[existingsysres,overallobjs,... 
    physcons,physconflags,physconseq,physconseqflags,minndiv,maxndiv,... 
    responsebounds,numvars,constructs,lbounds,ubounds,x0]... 
    = redesigninputs3(schedule,existingsys,targets,weights,commindices,rdi); 
  
numexsys = size(existingsys,1); 
numtargets = size(targets,1); 
  
% Make a non-dimensional set of existing systems 
existingsysnondim = zeros(numexsys,numvars); 
for countexsys = 1:size(existingsys,1) 
    existingsysnondim(countexsys,:) = ... 
        (existingsys(countexsys,:) - lbounds') ./ (ubounds' - lbounds'); 
end 
  
% CREATE THE REDESIGN DIFFICULTY AND SCHEDULING MATRICES 
[commmatrix,startprod,endprod] = createcomoppmatrix3(schedule,numvars,commindices); 
  
% Calculate the maximum number of elements based on maxndiv (THIS WILL ONLY 
% WORK FOR 1-DIMENSIONAL PROBLEMS) 
maxnumelem = 1; 
for countndiv = 1:size(maxndiv,1) 
    maxnumelem = maxnumelem * maxndiv(countndiv,1); 
end 
  
maxvalue = 0; 
validndiv = 0; 
savedvars = zeros(1, (numvars * maxnumelem) );    % saves room for variables 
  
maxnumassignments = 2520; 
numvalidndiv = 22; 
  
numdimensions = size(responsebounds,1); 
  
totnumvars = numvars * numtargets; 
  
% Figure out number of elements that may contain new 
% systems 
numnewsols = numtargets; 
  
assignnumber = 1; 
validndiv = 1; 
currsetup = 1:numtargets; 
  
% Generate an array of flags to show what targets 
nondimbounds = [zeros(numvars*numtargets,1),ones(numvars*numtargets,1)]; 
  
% Set options for fmincon 
options = optimset('Display','on','Tolfun',1*10^-7,'Tolcon',0.001,... 
    'MaxFunEval',10000,'LargeScale','off','DiffMaxChange',1.00); ... 
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    %,'DiffMinchange',0.001'OutputFcn', @outfun, 
  
% Generate various start points for fmincon 
findstartpoints = 1; 
[tempx0(findstartpoints,:),tempstartvarflag(findstartpoints)] = ... 
    findlowstartAAO([lbounds ubounds],targets,responsebounds) 
findstartpoints = findstartpoints + 1; 
[tempx0(findstartpoints,:),tempstartvarflag(findstartpoints)] = ... 
    findmidstartAAO([lbounds ubounds],targets,responsebounds) 
findstartpoints = findstartpoints + 1; 
[tempx0(findstartpoints,:),tempstartvarflag(findstartpoints)] = ... 
    findhighstartAAO([lbounds ubounds],targets,responsebounds) 
findstartpoints = findstartpoints + 1; 
while (findstartpoints <= 7) 
    [tempx0(findstartpoints,:),tempstartvarflag(findstartpoints)] = ... 
        findclosestartAAO2([lbounds ubounds],targets,responsebounds,existingsys) 
    findstartpoints = findstartpoints + 1; 
end 
  
% Sets the "platform" variable values for the "simplified" problem 
for countstartpts = 1:7 
    for counttargs = 0:1:(numtargets - 1) 
  
        tempx0(countstartpts,(counttargs*numvars)+2) = ... 
            (0.241-lbounds(2,1))/(ubounds(2,1) - lbounds(2,1)); 
        tempx0(countstartpts,(counttargs*numvars)+4) = ... 
            (0.376-lbounds(4,1))/(ubounds(4,1) - lbounds(4,1)); 
        tempx0(countstartpts,(counttargs*numvars)+5) = ... 
            (2.69-lbounds(5,1))/(ubounds(5,1) - lbounds(5,1)); 
        tempx0(countstartpts,(counttargs*numvars)+6) = ... 
            (6.66-lbounds(6,1))/(ubounds(6,1) - lbounds(6,1)); 
         
    end 
end 
  
goodfound = 0; 
mintemp = 500; 
for trypoints = 1:size(tempx0,1) 
    trypoints 
    [tempvars2(trypoints,:),tempfinalobjvalue2(trypoints),... 
        tempexitflag2(trypoints),output,lambda] = ... 
    fmincon(@(solutionset)portfolioevalAAO4(solutionset,existingsys,targets,... 
    weights,schedule,startprod,commmatrix,rdi,currsetup,[lbounds, ubounds]),... 
    tempx0(trypoints,:),[],[],[],[],nondimbounds(:,1),nondimbounds(:,2),... 
    @(solutionset)createnonlconstAAO(solutionset,physcons,physconflags,... 
    physconseq,physconseqflags,currsetup,[lbounds, ubounds]),options) 
  
    if (min(tempvars2(trypoints,:)) < 0) 
        tempnegativevarflag(trypoints) = -1; 
    else 
        tempnegativevarflag(trypoints) = 10000; 
    end 
     
    % New few loops determine if a solution is good enough to be saved and 
    % recorded as the best found thus far. 
    if ( (goodfound == 0) && ... 
            ((tempnegativevarflag(trypoints) == -1) || ... 
            (tempexitflag2(trypoints) < 0))) 
        bestpoint = trypoints; 
        mintemp = tempfinalobjvalue2(trypoints); 
    elseif ( (goodfound == 0) && ... 
            (tempnegativevarflag(trypoints) > -1) && ... 
            (tempexitflag2(trypoints) >= 0) ) 
        bestpoint = trypoints; 
        mintemp = tempfinalobjvalue2(trypoints); 
        goodfound = 1; 
    elseif ( (goodfound == 1) && ... 
            (tempnegativevarflag(trypoints) > -1) && ... 
            (tempexitflag2(trypoints) >= 0) && ... 
            (tempfinalobjvalue2(trypoints) < mintemp) ) 
        bestpoint = trypoints; 
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        mintemp = tempfinalobjvalue2(trypoints); 
    end 
end 
  
% Save the best values found 
vars2(validndiv,assignnumber,:) = tempvars2(bestpoint,:); 
finalobjvalue2(validndiv,assignnumber) = tempfinalobjvalue2(bestpoint); 
exitflag2(validndiv,assignnumber) = tempexitflag2(bestpoint); 
  
% Put the "platform" values back in 
countrows = 1; 
dimvarsinrows = zeros(numtargets,numvars); 
nondimvarsinrows = zeros(numtargets,numvars); 
for i = 1:numvars:(numvars*numtargets) 
    nondimvarchunk(1:numvars) = vars2(validndiv,assignnumber,i:(i + numvars - 1)); 
    dimvarchunk = (nondimvarchunk .* (ubounds' - lbounds')) + lbounds'; 
    dimvarsinrows(countrows,:) = dimvarchunk; 
    dimvarsinrows(countrows,2) = 0.241; 
    dimvarsinrows(countrows,4) = 0.376; 
    dimvarsinrows(countrows,5) = 2.69; 
    dimvarsinrows(countrows,6) = 6.66; 
    nondimvarsinrows(countrows,:) = nondimvarchunk; 
    nondimvarsinrows(countrows,2) = (0.241-lbounds(2,1))/(ubounds(2,1) - lbounds(2,1)); 
    nondimvarsinrows(countrows,4) = (0.376-lbounds(4,1))/(ubounds(4,1) - lbounds(4,1)); 
    nondimvarsinrows(countrows,5) = (2.69-lbounds(5,1))/(ubounds(5,1) - lbounds(5,1)); 
    nondimvarsinrows(countrows,6) = (6.66-lbounds(6,1))/(ubounds(6,1) - lbounds(6,1)); 
    countrows = countrows + 1; 
end 
finalri2(validndiv,assignnumber) = ... 
    evalcontinuousriAAO(existingsysnondim, nondimvarsinrows, rdi, schedule, startprod); 
finalcdf2(validndiv,assignnumber) = ... 
    evalcontinuouscdfAAO3(existingsysnondim, nondimvarsinrows, commmatrix); 
finalvars2 = dimvarsinrows; 
for countfinalsys = 1:numtargets 
    output = TSunivmotor(finalvars2(countfinalsys,:)); 
    finalsystorques2(validndiv,assignnumber,countfinalsys) = output(1); 
    finalsysresponses2(validndiv,assignnumber,countfinalsys,:) = output; 
end 
  
if (min(vars2(validndiv,assignnumber,:)) < 0) 
    negativevarflag2(validndiv,assignnumber,1) = -1; 
else 
    negativevarflag2(validndiv,assignnumber,1) = 1; 
end 
  
% WARNING THAT PROGRAM HAS ENDED 
for countbeeps = 1:5 
    beep; 
end 

 

B.2.3 – “createeqconstAAO.m” Program 

 This function creates the equality constraints needed by fmincon for the 

simplified approach to solving the redesign problem. 

function [Aeq,Beq] = ... 
    createeqconstAAO(spaceelements,ndiv,numvars,constructs,existingsys,... 
    existingsysflag,currsetup,spaceelemtargassign,spaceelemvarassign) 
% Creates equality constraints appropriate to the all-at-once solution   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% createeqconstAAO.m 
%  
% Written by: Matt Chamberlain 
% 
% Description: This program creates the two matrices that are used to 
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% describe the equality constraints in the all-at-once solution 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Assume that x array is a row with n*numvars spaces (one for each variable 
% in each of the smallest space elements) 
numconstructs = size(ndiv,1); 
numdimensions = size(ndiv,2); 
numnewsys = size(find(currsetup),2); 
numelements = ndiv(:,1); 
for countelements = 2:numdimensions 
    numelements = numelements .* ndiv(:,countelements); 
end 
  
for countlevels = 1:(numconstructs-1) 
             
    % only check for equalities if there are actually multiple smaller 
    % elements inside of the element you are currently checking (otherwise 
    % you are doing the same check twice at the next lower level 
    %if (isequal(ndiv(countlevels,:),ndiv(countlevels+1,:)) == 0) 
     
        % Go through each element in the current level             
        for countinlevelelements = 1:numelements(countlevels,1) 
            % Go through each of the lowest-level elements to see which are 
            % inside the element at the current level in question 
            numinside = 0; 
            exsysinside = 0; 
            for countsmallest = 1:numelements(numconstructs,1) 
                 
                % Check each element using checkelements.m 
                insideflag = checkelements... 
                    (spaceelements(countlevels,countinlevelelements,:,:),... 
                    spaceelements(numconstructs,countsmallest,:,:)); 
                 
                if ( ((insideflag == 1) & (existingsysflag(numconstructs,countsmallest,1) 
> 0)) |... 
                        ((insideflag == 1) & (spaceelemtargassign(countsmallest) > 0)) ) 
                    % If it is inside and it contains one of the systems  
                    % being used, set numinside = numinside + 1; 
                    numinside = numinside + 1; 
  
                    if ((numinside == 1) & 
(existingsysflag(numconstructs,countsmallest,1) > 0 )) 
                        % Save the "first element's" place so we can set it 
                        % equal to all others inside the larger element 
                        % This is the case when it's an existing system 
%                         firstelementflag = countsmallest; 
                        exsysinside = countsmallest; 
                        exsysinsideflag = existingsysflag(numconstructs,countsmallest,1); 
                    elseif ((numinside == 1) & (spaceelemtargassign(countsmallest) > 0)) 
                        % Save the "first element's" place so we can set it 
                        % equal to all others inside the larger element 
                        % This is the case when it's one of the new systems 
                        firstsysinsideflag = spaceelemvarassign(countsmallest); 
                    elseif ((numinside > 1) & (exsysinside > 0)) 
                        % Case when there is an exsys inside the element in 
                        % question ... means elements should be set equal 
                        % to that exsys 
                        for countvars = 1:numvars 
                            % Look for flags saying which variables are 
                            % common at this level of construct 
                            if (constructs(countvars) == countlevels) 
                                counteqconst = counteqconst + 1; 
                                Beq(counteqconst) = 
existingsys(exsysinsideflag,countvars); 
                                Aeq(counteqconst,1:(numnewsys*numvars)) = ... 
                                    zeros( 1,(numnewsys * numvars) ); 
                                newsysplace = ... 
                                    countvars + ( (spaceelemvarassign(countsmallest) - 1) 
* numvars); 
                                Aeq(counteqconst,newsysplace) = 1; 
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                            end 
                        end 
                         
                    elseif ((numinside > 1) & (exsysinside == 0)) 
                        % Case when there are no exsys in the element in 
                        % question ... means that two new sys should be set 
                        % equal at that construct 
                        for countvars = 1:numvars 
                            % Look for ffindlags saying which variables are 
                            % common at this level of construct 
                            if (constructs(countvars) == countlevels) 
                                counteqconst = counteqconst + 1; 
                                Beq(counteqconst) = 0; 
                                blank = zeros( 1,(numnewsys * numvars) ); 
                                Aeq(counteqconst,1:(numnewsys*numvars)) = blank; 
                                secondsysinsideflag = spaceelemvarassign(countsmallest); 
                                firstnewsysplace = ... 
                                    countvars + ( (firstsysinsideflag - 1) * numvars); 
                                secondnewsysplace = ... 
                                    countvars + ( (secondsysinsideflag - 1) * numvars); 
                                Aeq(counteqconst,firstnewsysplace) = -1; 
                                Aeq(counteqconst,secondnewsysplace) = 1; 
                                
                            end % if statement 
                             
                        end % countvars loop 
                           
                    end % if/else statement (numinside) 
                 
                end % if statement (insideflag) 
                 
            end % countsmallest loop 
  
        end % countinlevelelements loop 
         
    %end % if statement (isequal) 
     
end % countlevels (constructs) loop 
  
% In case there are no equality constraints at all 
if (counteqconst == 0) 
    Aeq = zeros( 1,(numnewsys * numvars) ); 
    Beq = 0; 
end 

 

B.2.4 – “findclosestartAAO.m” Program 

 This function generates a start point for fmincon to use. Experimentation has 

shown that the fmincon function is much more likely to be able to converge to a viable 

solution if the start point it is given is viable to begin with. For this reason, 

“findclosestartAAO.m”, “findmidstartAAO.m”, “findlowstartAAO.m”, and 

“findhighstartAAO.m” have been written to generate a series of starting points spread 

throughout the variable space of the problem. This particular function generates starting 

points by initially trying to set variable values by selecting them from randomly selected 
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existing systems, the idea being that commonality can be encouraged in this way. This is 

one of the few functions and scripts that would have to be adjusted for use in an example 

problem different from the universal motor, as constraints and variables relevant to that 

problem have been hard-wired into this code. 

function [closestartpoints,startvarflag] = ... 
    findclosestartAAO(varranges,targets,responsebounds,existingsys) 
% Finds a good start point for fmincon close to existing systems 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% findclosestartAAO.m 
% 
% Written by: Matt Chamberlain 
% 
% This program finds better starting points for the system based on a 
% random assortment of values from existing systems' variables 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
numvars = size(varranges,1); 
numtargets = size(targets,1); 
numsys = numtargets; 
numexsys = size(existingsys,1); 
  
% FIND A START POINT THAT IS CLOSE TO THE VALUES OF THE EXISTING SYSTEMS 
% newsyslocs = find(currsetup); 
for k = 1:numsys 
    goodpoint = 0; 
    while (goodpoint == 0) 
        randvars = rand(1,numvars);% make an array of random variables 
        randvars = randvars ./ (1/numexsys);% divide each by (1/numexsys) 
        randvars = floor(randvars) + 1;% chop off the remainder 
        % remaining number is the existing system from which each variable 
        % comes (for loop) 
        for findexsysvars = 1:numvars 
            bunkstartpoint(findexsysvars) = ... 
                existingsys(randvars(findexsysvars),findexsysvars); 
        end 
        [newvars,startvarflag] = ... 
            optindivmotorlow(bunkstartpoint,targets(k,1,:),responsebounds); 
        if (startvarflag >= 0) 
            goodpoint = 1; 
        end 
        firstvarnewarray = (k - 1) * numvars + 1; 
        lastvarnewarray = firstvarnewarray + numvars - 1; 
        closestartpoints(firstvarnewarray:lastvarnewarray) = ... 
            (newvars - varranges(:,1)') ./ ... 
            ((varranges(:,2) - varranges(:,1))'); 
    end 
end 
  
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [newvars,startvarflag] = optindivmotorlow(vars,target,responsebounds) 
% This subfunction does the optimization of one motor 
% Inside, it calls fmincon 
% Also computes Aeq and Beq ... or are these not needed? 
% Need separate function to compute the deviation itself 
% Need separate function co compute physical constraints 
  
x0 = vars; 
  
bounds = [100,1500;... 
    0.01,1.0;... 
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    1.0,500;... 
    0.01,1.0;... 
    1.0,10.0;... 
    0.5,10.0;... 
    0.0566,5.18;... 
    0.1,6.0]; 
lb = bounds(:,1); 
ub = bounds(:,2); 
  
options = optimset('Display','off','Tolfun',0.001,'Tolcon',0.01,'LargeScale','off'); 
startvarflag = 0; 
% additions = 0; 
while (startvarflag < 1) 
    [newvars,value,startvarflag] = ... 
        
fmincon(@(vars)inelement(vars,target,responsebounds),x0,[],[],[],[],lb,ub,@(vars)confun(vars),options); 
    x0 = x0 + (0.1 * (ub' - lb')); 
end 
  
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [dev] = inelement(vars, target, responsebounds) 
% This subfunction calculates deviation variable values. 
  
% incoming variables: 
Nc = vars(1); 
Awa = vars(2); 
Ns = vars(3); 
Awf = vars(4); 
r = vars(5); 
t = vars(6); 
L = vars(7); 
I = vars(8); 
  
% calculate response values 
Input = [Nc,Awa,Ns,Awf,r,t,L,I]; 
responses = TSunivmotor(Input); 
res = responses(1); 
  
if (res <= target(1,1)) %&& (res >= responsebounds(2)) 
    % target matching when the point is below midpoint 
    value = (res - responsebounds(1)) / (target(1,1) - responsebounds(1)); 
elseif (res > target(1,1)) %&& (res <= responsebounds(2)) 
    % target matching when the point is above the midpoint 
    value = 1 - (res - target(1,1)) / (responsebounds(2) - target(1,1)); 
else  
    value = 0; 
end 
dev = 1-value; 
  
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [c,ceq] = confun(vars) 
% This subfunction computes constraint values 
% incoming variables: 
Nc = vars(1); 
Awa = vars(2); 
Ns = vars(3); 
Awf = vars(4); 
r = vars(5); 
t = vars(6); 
L = vars(7); 
I = vars(8); 
  
% calculate response values 
Input = [Nc,Awa,Ns,Awf,r,t,L,I]; 
responses = TSunivmotor(Input); 
  
physcons = [0 0 2 0.15 1.0 5000 0 1.0 0]; 
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% This array simply keeps track of which of the response values describing 
% the system are related to physcons(i) 
physconflags = [-1 -2 2 -3 3 4 -5 -6 -7]; 
         
nonlconcount = 0; 
for countpcons = 1:size(physcons,2) 
    nonlconcount = nonlconcount + 1; 
    if (physconflags(countpcons) > 0) 
        % case when the flag is positive 
        c(nonlconcount) = responses(physconflags(countpcons)) - physcons(countpcons); 
    elseif (physconflags(countpcons) < 0) 
        % case when the flag is negative 
        c(nonlconcount) = ... 
            (-1 * responses((-1 * physconflags(countpcons)) )) - physcons(countpcons); 
    end 
end 
  
ceq = ones(9,1); % not sure if I need to do this 
ceq = []; 
  
end 
 

B.2.5 – “findlowstartAAO.m” Program 

 This function generates a start point for fmincon to use. Experimentation has 

shown that the fmincon function is much more likely to be able to converge to a viable 

solution if the start point it is given is viable to begin with. For this reason, 

“findclosestartAAO.m”, “findmidstartAAO.m”, “findlowstartAAO.m”, and 

“findhighstartAAO.m” have been written to generate a series of starting points spread 

throughout the variable space of the problem. This particular function generates starting 

points by initially trying to set variable values at the bottom of their possible ranges. This 

is one of the few functions and scripts that would have to be adjusted for use in an 

example problem different from the universal motor, as constraints and variables relevant 

to that problem have been hard-wired into this code. 

function [lowstartpoints,startvarflag] = 
findlowstartAAO(varranges,targets,responsebounds) 
% Finds a start point for fmincon using low variable values 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% findlowstartAAO.m 
% 
% Matt Chamberlain 
% 
% This program finds better starting points for the system at the low range 
% of what is possible for each variable 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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numvars = size(varranges,1); 
% numdimensions = size(spaceelements,3); 
% numconstructs = size(spaceelements,1); 
  
numtargets = size(targets,1); 
numsys = numtargets; 
  
countvars = 1; 
for i = 1:numtargets 
    for j = 1:size(varranges,1) 
        newstartpoints(countvars) = varranges(j,1); 
        countvars = countvars + 1; 
    end  
end 
  
% FIND A MODIFIED VERSION OF EACH STARTING POINT THAT IS CLOSE TO THE 
% TARGET IN THE CENTER OF THE SPACE ELEMENT 
% NOTE: THIS IS ONE OF THE STEPS THAT WOULD HAVE TO BE DIFFERENT IF THERE 
% WERE MULTIPLE DIMENSIONS TO EACH SPACE ELEMENT 
for k = 1:numsys 
    firstvar = ((k-1) * numvars) + 1; 
    lastvar = numvars * k; 
    bunkstartpoint = newstartpoints( firstvar:lastvar ); 
    [newvars,startvarflag] = 
optindivmotorlow(bunkstartpoint,targets(k,1),responsebounds); 
    firstvarnewarray = (k - 1) * numvars + 1; 
    lastvarnewarray = firstvarnewarray + numvars - 1; 
    lowstartpoints(firstvarnewarray:lastvarnewarray) = ... 
        (newvars - varranges(:,1)') ./ (varranges(:,2) - varranges(:,1))'; 
end 
  
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [newvars,startvarflag] = optindivmotorlow(vars,target,responsebounds) 
% This subfunction does the optimization of one motor 
  
% This does the optimization of one motor 
% Inside, it calls fmincon 
% Also computes Aeq and Beq ... or are these not needed? 
  
x0 = vars; 
  
bounds = [100,1500;... 
    0.01,1.0;... 
    1.0,500;... 
    0.01,1.0;... 
    1.0,10.0;... 
    0.5,10.0;... 
    0.0566,5.18;... 
    0.1,6.0]; 
lb = bounds(:,1); 
ub = bounds(:,2); 
  
options = optimset('Display','off','Tolfun',0.00001,'Tolcon',0.01,'LargeScale','off'); 
startvarflag = 0; 
while (startvarflag <= 1) && (x0(1) <= bounds(1,2)) 
    [newvars,value,startvarflag] = ... 
        fmincon(@(vars)inelement(vars,target,responsebounds),x0,... 
        [],[],[],[],lb,ub,@(vars)confun(vars),options); 
    x0 = x0 + (0.1 * (ub' - lb')); 
end 
  
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [dev] = inelement(vars, target, responsebounds) 
% This subfunction calculates the deviation variable values 
  
% incoming variables: 
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Nc = vars(1); 
Awa = vars(2); 
Ns = vars(3); 
Awf = vars(4); 
r = vars(5); 
t = vars(6); 
L = vars(7); 
I = vars(8); 
  
% calculate response values 
Input = [Nc,Awa,Ns,Awf,r,t,L,I]; 
responses = TSunivmotor(Input); 
res = responses(1); 
  
if (res <= target(1,1)) %&& (res >= responsebounds(2)) 
    % target matching when the point is below midpoint 
    value = (res - responsebounds(1)) / (target(1,1) - responsebounds(1)); 
elseif (res > target(1,1)) %&& (res <= responsebounds(2)) 
    % target matching when the point is above the midpoint 
    value = 1 - (res - target(1,1)) / (responsebounds(2) - target(1,1)); 
else  
    value = 0; 
end 
dev = 1-value; 
  
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [c,ceq] = confun(vars) 
% This subfunction computes the constraint values 
  
% incoming variables: 
Nc = vars(1); 
Awa = vars(2); 
Ns = vars(3); 
Awf = vars(4); 
r = vars(5); 
t = vars(6); 
L = vars(7); 
I = vars(8); 
  
% calculate response values 
Input = [Nc,Awa,Ns,Awf,r,t,L,I]; 
responses = TSunivmotor(Input); 
  
physconflags = [-1 -2 2 -3 3 4 -5 -6 -7]; 
         
nonlconcount = 0; 
for countpcons = 1:size(physcons,2) 
    nonlconcount = nonlconcount + 1; 
    if (physconflags(countpcons) > 0) 
        % case when the flag is positive 
        c(nonlconcount) = responses(physconflags(countpcons)) - physcons(countpcons); 
    elseif (physconflags(countpcons) < 0) 
        % case when the flag is negative 
        c(nonlconcount) = ... 
            (-1 * responses((-1 * physconflags(countpcons)) )) - physcons(countpcons); 
    end 
end 
  
ceq = ones(9,1); % not sure if I need to do this 
ceq = []; 
  
end 

 

B.2.6 – “findmidstartAAO.m” Program 
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 This function generates a start point for fmincon to use. Experimentation has 

shown that the fmincon function is much more likely to be able to converge to a viable 

solution if the start point it is given is viable to begin with. For this reason, 

“findclosestartAAO.m”, “findmidstartAAO.m”, “findlowstartAAO.m”, and 

“findhighstartAAO.m” have been written to generate a series of starting points spread 

throughout the variable space of the problem. This particular function generates starting 

points by initially trying to set variable values at the middle of their possible ranges. This 

is one of the few functions and scripts that would have to be adjusted for use in an 

example problem different from the universal motor, as constraints and variables relevant 

to that problem have been hard-wired into this code. 

function [midstartpoints,startvarflag] = 
findmidstartAAO(varranges,targets,responsebounds) 
% Finds a start point for fmincon using mid-range variable values 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% findmidstartAAO.m 
% 
% Matt Chamberlain 
% 
% This program finds better starting points for the system using variable 
% values as close to the middle of the range of each variable 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
numvars = size(varranges,1); 
numtargets = size(targets,1); 
numsys = numtargets; 
  
countvars = 1; 
for i = 1:numtargets 
    for j = 1:size(varranges,1) 
        newstartpoints(countvars) = ... 
            0.5 * (varranges(j,2) - varranges(j,1)) + varranges(j,1); 
        countvars = countvars + 1; 
    end  
end 
  
% FIND A MODIFIED VERSION OF EACH STARTING POINT THAT IS CLOSE TO THE 
% TARGET IN THE CENTER OF THE SPACE ELEMENT 
% NOTE: THIS IS ONE OF THE STEPS THAT WOULD HAVE TO BE DIFFERENT IF THERE 
% WERE MULTIPLE DIMENSIONS TO EACH SPACE ELEMENT 
for k = 1:numsys 
    firstvar = ((k-1) * numvars) + 1; 
    lastvar = numvars * k; 
    bunkstartpoint = newstartpoints( firstvar:lastvar ); 
    [newvars,startvarflag] = 
optindivmotorlow(bunkstartpoint,targets(k,1),responsebounds); 
    firstvarnewarray = (k - 1) * numvars + 1; 
    lastvarnewarray = firstvarnewarray + numvars - 1; 
    midstartpoints(firstvarnewarray:lastvarnewarray) = ... 
        (newvars - varranges(:,1)') ./ (varranges(:,2) - varranges(:,1))'; 
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end 
  
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [newvars,startvarflag] = optindivmotorlow(vars,target,responsebounds) 
% This subfunction does the optimization of one motor 
  
% Inside, it calls fmincon 
% Also computes Aeq and Beq ... or are these not needed? 
  
x0 = vars; 
  
bounds = [100,1500;... 
    0.01,1.0;... 
    1.0,500;... 
    0.01,1.0;... 
    1.0,10.0;... 
    0.5,10.0;... 
    0.0566,5.18;... 
    0.1,6.0]; 
lb = bounds(:,1); 
ub = bounds(:,2); 
  
options = optimset('Display','off','Tolfun',0.001,'Tolcon',0.01,'LargeScale','off'); 
startvarflag = 0; 
% additions = 0; 
while (startvarflag < 1) && (x0(1) <= bounds(1,2)) 
    [newvars,value,startvarflag] = ... 
        fmincon(@(vars)inelement(vars,target,responsebounds),x0,... 
        [],[],[],[],lb,ub,@(vars)confun(vars),options); 
    x0 = x0 + (0.1 * (ub' - lb')) 
end 
  
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [dev] = inelement(vars, target, responsebounds) 
% This subfunction calculates the deviation variable values 
% incoming variables: 
Nc = vars(1); 
Awa = vars(2); 
Ns = vars(3); 
Awf = vars(4); 
r = vars(5); 
t = vars(6); 
L = vars(7); 
I = vars(8); 
  
% calculate response values 
Input = [Nc,Awa,Ns,Awf,r,t,L,I]; 
responses = TSunivmotor(Input); 
res = responses(1); 
  
if (res <= target(1,1)) %&& (res >= responsebounds(2)) 
    % target matching when the point is below midpoint 
    value = (res - responsebounds(1)) / (target(1,1) - responsebounds(1)); 
elseif (res > target(1,1)) %&& (res <= responsebounds(2)) 
    % target matching when the point is above the midpoint 
    value = 1 - (res - target(1,1)) / (responsebounds(2) - target(1,1)); 
else  
    value = 0; 
end 
dev = 1-value; 
  
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [c,ceq] = confun(vars) 
% This subfunction computes the constraint values 
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% incoming variables: 
Nc = vars(1); 
Awa = vars(2); 
Ns = vars(3); 
Awf = vars(4); 
r = vars(5); 
t = vars(6); 
L = vars(7); 
I = vars(8); 
  
% calculate response values 
Input = [Nc,Awa,Ns,Awf,r,t,L,I]; 
responses = TSunivmotor(Input); 
  
physcons = [0 0 2 0.15 1.0 5000 0 1.0 0]; 
  
% This array simply keeps track of which of the response values describing 
% the system are related to physcons(i) 
physconflags = [-1 -2 2 -3 3 4 -5 -6 -7]; 
         
nonlconcount = 0; 
for countpcons = 1:size(physcons,2) 
    nonlconcount = nonlconcount + 1; 
    if (physconflags(countpcons) > 0) 
        % case when the flag is positive 
        c(nonlconcount) = responses(physconflags(countpcons)) - physcons(countpcons); 
    elseif (physconflags(countpcons) < 0) 
        % case when the flag is negative 
        c(nonlconcount) = ... 
            (-1 * responses((-1 * physconflags(countpcons)) )) - physcons(countpcons); 
    end 
end 
  
ceq = ones(9,1); % not sure if I need to do this 
ceq = []; 
  
end 

 

C.2.7 – “findhighstartAAO.m” Program 

 This function generates a start point for fmincon to use. Experimentation has 

shown that the fmincon function is much more likely to be able to converge to a viable 

solution if the start point it is given is viable to begin with. For this reason, 

“findclosestartAAO.m”, “findmidstartAAO.m”, “findlowstartAAO.m”, and 

“findhighstartAAO.m” have been written to generate a series of starting points spread 

throughout the variable space of the problem. This particular function generates starting 

points by initially trying to set variable values at the top of their possible ranges. This is 

one of the few functions and scripts that would have to be adjusted for use in an example 
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problem different from the universal motor, as constraints and variables relevant to that 

problem have been hard-wired into this code. 

function [highstartpoints,startvarflag] = 
findhighstartAAO(varranges,targets,responsebounds) 
% Finds a start point for fmincon using high variable values 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% findhighstartAAO.m 
% 
% Matt Chamberlain 
% 
% This program finds better starting points for the system using variable 
% values at the high range of what is possible 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
numvars = size(varranges,1); 
% numdimensions = size(spaceelements,3); 
% numconstructs = size(spaceelements,1); 
  
numtargets = size(targets,1); 
numsys = numtargets; 
  
countvars = 1; 
for i = 1:numtargets 
    for j = 1:size(varranges,1) 
        newstartpoints(countvars) = varranges(j,2); 
        countvars = countvars + 1; 
    end  
end 
  
% FIND A MODIFIED VERSION OF EACH STARTING POINT THAT IS CLOSE TO THE 
% TARGET IN THE CENTER OF THE SPACE ELEMENT 
% NOTE: THIS IS ONE OF THE STEPS THAT WOULD HAVE TO BE DIFFERENT IF THERE 
% WERE MULTIPLE DIMENSIONS TO EACH SPACE ELEMENT 
for k = 1:numsys 
    firstvar = ((k-1) * numvars) + 1; 
    lastvar = numvars * k; 
    bunkstartpoint = newstartpoints( firstvar:lastvar ); 
    [newvars,startvarflag] = 
optindivmotorlow(bunkstartpoint,targets(k,1),responsebounds); 
    firstvarnewarray = (k - 1) * numvars + 1; 
    lastvarnewarray = firstvarnewarray + numvars - 1; 
    highstartpoints(firstvarnewarray:lastvarnewarray) = ... 
        (newvars - varranges(:,1)') ./ (varranges(:,2) - varranges(:,1))'; 
end 
  
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [newvars,startvarflag] = optindivmotorlow(vars,target,responsebounds) 
% This subfunction does the optimization of one motor 
  
% This does the optimization of one motor 
% Inside, it calls fmincon 
% Also computes Aeq and Beq ... or are these not needed? 
  
x0 = vars; 
  
bounds = [100,1500;... 
    0.01,1.0;... 
    1.0,500;... 
    0.01,1.0;... 
    1.0,10.0;... 
    0.5,10.0;... 
    0.0566,5.18;... 
    0.1,6.0]; 
lb = bounds(:,1); 
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ub = bounds(:,2); 
  
options = optimset('Display','off','Tolfun',0.001,'Tolcon',0.01,'LargeScale','off'); 
startvarflag = 0; 
% additions = 0; 
while (startvarflag < 1) && (x0(1) >= bounds(1,1)) 
    [newvars,value,startvarflag] = ... 
        fmincon(@(vars)inelement(vars,target,responsebounds),x0,... 
        [],[],[],[],lb,ub,@(vars)confun(vars),options); 
    x0 = x0 - (0.1 * (ub' - lb')); 
end 
  
end 
  
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [dev] = inelement(vars, target, responsebounds) 
% This subfunction calculates the deviation variable values 
  
% incoming variables: 
Nc = vars(1); 
Awa = vars(2); 
Ns = vars(3); 
Awf = vars(4); 
r = vars(5); 
t = vars(6); 
L = vars(7); 
I = vars(8); 
  
% calculate response values 
Input = [Nc,Awa,Ns,Awf,r,t,L,I]; 
responses = TSunivmotor(Input); 
res = responses(1); 
  
if (res <= target(1,1)) %&& (res >= responsebounds(2)) 
    % target matching when the point is below midpoint 
    value = (res - responsebounds(1)) / (target(1,1) - responsebounds(1)); 
elseif (res > target(1,1)) %&& (res <= responsebounds(2)) 
    % target matching when the point is above the midpoint 
    value = 1 - (res - target(1,1)) / (responsebounds(2) - target(1,1)); 
else  
    value = 0; 
end 
dev = 1-value; 
  
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [c,ceq] = confun(vars) 
% This subfunction computes the constraint values 
  
% incoming variables: 
Nc = vars(1); 
Awa = vars(2); 
Ns = vars(3); 
Awf = vars(4); 
r = vars(5); 
t = vars(6); 
L = vars(7); 
I = vars(8); 
  
% calculate response values 
Input = [Nc,Awa,Ns,Awf,r,t,L,I]; 
responses = TSunivmotor(Input); 
  
physcons = [0 0 2 0.15 1.0 5000 0 1.0 0]; 
  
% This array simply keeps track of which of the response values describing 
% the system are related to physcons(i) 
physconflags = [-1 -2 2 -3 3 4 -5 -6 -7]; 
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nonlconcount = 0; 
for countpcons = 1:size(physcons,2) 
    nonlconcount = nonlconcount + 1; 
    if (physconflags(countpcons) > 0) 
        % case when the flag is positive 
        c(nonlconcount) = responses(physconflags(countpcons)) - physcons(countpcons); 
    elseif (physconflags(countpcons) < 0) 
        % case when the flag is negative 
        c(nonlconcount) = ... 
            (-1 * responses((-1 * physconflags(countpcons)) )) - physcons(countpcons); 
    end 
end 
  
ceq = ones(9,1); % not sure if I need to do this 
ceq = []; 
  
end 

 

B.2.8 – “portfolioevalAAO.m” Program 

 This is the main subfunction used for calculating the objective function value 

associated with a given redesign portfolio. One of the major differences between this 

function and the one used in the constructal-inspired approach is that this one is hard-

wired to set the fixed variable values in the simplified universal motor example. 

function [objvalue] = 
portfolioevalAAO(nondimvars,existingsys,targets,... 
    weights,schedule,startprod,commmatrix,... 
    rdi,currsetup,varranges) 
% Evaluates a redesign solution against the designer's preferences 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
% portfolioevalAAO.m 
%  
% Updated by: Matt Chamberlain 
% 
% Description: This program will take in a set of possible redesigned 
% systems (a "portfolio") and evaluate its value as compared to the 
% designer's set of preferences, the redesign schedule, etc. This is a 
% special "all-at-once" version. 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
  
numvars = size(existingsys,2); 
numdimensions = size(targets,2); 
numtargets = size(targets,1); 
  
% RE-ARRANGE THE LIST OF VARIABLES INTO ROWS (ONE FOR EACH SYSTEM) AND 
TURN 
% INTO DIMENSIONALIZED FORM 
solutionsetnondim = zeros(numtargets,numvars); 
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solutionset = zeros(numtargets,numvars); 
for i = 1:numtargets 
    firstvar = ((i-1) * numvars) + 1; 
    lastvar = numvars * i; 
    solutionsetnondim(i,:) = nondimvars( firstvar:lastvar ); 
    solutionset(i,:) = (nondimvars( firstvar:lastvar ) .*... 
        (varranges(:,2)' - varranges(:,1)')) + varranges(:,1)'; 
    % NEXT FEW LINES ARE FOR SIMPLIFYING THE PROBLEM BY SETTING 
"PLATFORM" 
    % VARIABLES FOR A SUBSET OF VARIABLES AT ALL TIMES. 
    solutionset(i,2) = 0.241; 
    solutionset(i,4) = 0.376; 
    solutionset(i,5) = 2.69; 
    solutionset(i,6) = 6.66; 
    solutionsetnondim(i,2) = (0.241-varranges(2,1))/(varranges(2,2) - 
varranges(2,1)); 
    solutionsetnondim(i,4) = (0.376-varranges(4,1))/(varranges(4,2) - 
varranges(4,1)); 
    solutionsetnondim(i,5) = (2.69-varranges(5,1))/(varranges(5,2) - 
varranges(5,1)); 
    solutionsetnondim(i,6) = (6.66-varranges(6,1))/(varranges(6,2) - 
varranges(6,1)); 
end 
numnewsols = size(solutionset,1); 
  
% MAKE A NON-DIMENSIONAL SET OF EXISTING SYSTEMS 
existingsysnondim = zeros(size(existingsys,1),numvars); 
for i = 1:size(existingsys,1) 
    existingsysnondim(i,:) = (existingsys(i,:) - varranges(:,1)') ./ ...
        (varranges(:,2)' - varranges(:,1)'); 
end 
     
% MODEL THE NEW SYSTEMS 
newdesignsres = zeros(numnewsols,7); 
for n = 1:numnewsols 
    newdesignsres(n,:) = TSunivmotor(solutionset(n,:)); 
end 
  
overallvalue = 0; 
for countsys = 1:numnewsols 
    % Look for the systems that are flagged for use in the portfolio in 
    % this setup 
        currenttarget = countsys; 
        % Go through and evaluate the current system against its target 
        % in each dimension 
        for countdims = 1:numdimensions 
            devtarget = 
evalvalueAAO(newdesignsres(countsys,countdims),... 
                targets(currenttarget,countdims)); 
            weighted = devtarget * weights(currenttarget,countdims); 
            overallvalue = overallvalue + weighted; 
        end 
end 
  
% CALCULATE THE HIGH-LEVEL OBJECTIVE VALUES AND CONVERT TO DEVIATION 
% For right now, the value of these is not evaluated; we're just trying 
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% to get cdf and ri as close to 1.0 as possible 
cdf = evalcontinuouscdfAAO3(existingsysnondim, solutionsetnondim, 
commmatrix); 
cdfdev = cdf; 
weightedcdfdev = cdfdev * weights( (numtargets+1), 1); 
  
ri = evalcontinuousriAAO(existingsysnondim, solutionsetnondim, rdi, 
schedule, startprod); 
ridev = ri; 
weightedridev = ridev * weights( (numtargets+2), 1); 
  
avgmass = sum(newdesignsres(:,2)) / numtargets; 
dweightedavgmass = (avgmass/0.5 - 1) * weights( (numtargets+3),1); 
if (dweightedavgmass < 0) 
    dweightedavgmass = 0; 
end 
  
avgeffic = sum(newdesignsres(:,3))   / numtargets; 
dweightedavgeffic = (1 - (avgeffic/0.7)) * weights( (numtargets+4),1); 
if (dweightedavgeffic < 0) 
    dweightedavgeffic = 0; 
end 
  
overallvalue = overallvalue + weightedcdfdev + weightedridev + ... 
    dweightedavgmass + dweightedavgeffic; 
  
objvalue = overallvalue; 
 

B.2.9 – “createnonlocnstAAO.m” Program 

 This function calculates and returns to fmincon the nonlinear constraint values 

associated with a proposed redesign portfolio. In this simplified version which has been 

customized for the universal motor example, the only nonlinear constraints modeled are 

the physical constraints on each motor. 

function [c,ceq] = createnonlconstAAO(nondimvars,... 
    physcons,physconflags,physconseq,physconseqflags,currsetup,varranges) 
% Models nonlinear constraints of the all-at-once solution for fmincon 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% createnonlconstAAO.m 
%  
% Written by: Matt Chamberlain 
% 
% Description: This program models the nonlinear physical constraints in  
% the all-at-once solution approach 
%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% fmincon expects the constraints to be written in the following form: 
% c(x) <= 0 
% eventually, we need to calculate c(x) in this program and set ceq = []; 
  
nonlconcount = 0; 
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nonleqconcount = 0; 
numvars = size(varranges,1); 
numsolutions = (size(nondimvars,2)/numvars); 
  
% RE-ARRANGE THE LIST OF VARIABLES INTO ROWS (ONE FOR EACH SYSTEM) 
portfolio = zeros(numsolutions,numvars); 
for i = 1:numsolutions 
    firstvar = ((i-1) * numvars) + 1; 
    lastvar = numvars * i; 
    portfolio(i,:) = (nondimvars( firstvar:lastvar ) .* (varranges(:,2)' ... 
        - varranges(:,1)')) + varranges(:,1)'; 
    % NEXT FEW LINES ARE FOR SIMPLIFYING THE PROBLEM BY SETTING "PLATFORM" 
    % VARIABLES FOR A SUBSET OF VARIABLES AT ALL TIMES. 
    portfolio(i,2) = 0.241; 
    portfolio(i,4) = 0.376; 
    portfolio(i,5) = 2.69; 
    portfolio(i,6) = 6.66; 
end 
  
% MODEL THE NEW SYSTEMS AND SAVE THE RESPONSES 
% NOTE: In this program, it is assumed that the the responses that make up 
% the redesign market space are the first responses delivered by the 
% simulation program and are delivered in the same order 
alldesignsres = zeros(numsolutions,7); 
for n = 1:numsolutions 
    alldesignsres(n,:) = TSunivmotor(portfolio(n,:)); 
end 
  
% Go through each of the bounds for each element and make sure that 
% c(x) <= 0 ..... which equates to .....  
% response <= ub ... response - ub <= 0 ... c(x) = response - ub 
% lb - response = c(x) 
% countnewsys = 0; 
numphyscons = size(physcons,2); 
numphysconeqs = size(physconseq,2); 
totnumcons = (numphyscons * numsolutions); 
totnumeqcons = (numphysconeqs * numsolutions); 
c = zeros( totnumcons,1 ); 
ceq = zeros( totnumeqcons,1 ); 
  
for countsys = 1:numsolutions         
        % Create the physical constraints for each new system 
        for countpcons = 1:numphyscons 
            nonlconcount = nonlconcount + 1; 
            if (physconflags(countpcons) > 0) 
                % case when the flag is positive indicating a "less-than" 
                % physical constraint of the form Mass(x) < 2 kg 
                c(nonlconcount) = ... 
                    alldesignsres(countsys,physconflags(countpcons)) - ... 
                    physcons(countpcons); 
            elseif (physconflags(countpcons) < 0) 
                % case when the flag is negative indicating a "greater-than" 
                % physical constraint of the form Effic(x) > 15% 
                c(nonlconcount) = (-1 * alldesignsres(countsys,(-1 * ... 
                    physconflags(countpcons)) ) ) + physcons(countpcons); 
            end 
        end 
         
        for countpconeqs = 1:numphysconeqs 
            nonleqconcount = nonleqconcount + 1; 
            ceq(nonleqconcount) = ... 
                alldesignsres(countsys,physconseqflags(countpconeqs)) - ... 
                physconseq(countpconeqs); 
        end 
end 

 

B.3 – MATLAB VERSION OF UNIVERSAL MOTOR MODEL 
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This Matlab program is a direct conversion of Fortran code developed by Tim 

Simpson for use in his Ph.D. dissertation and subsequent later publications. None of the 

math in the code has been changed in any way. It should be noted, however, that there is 

an error in this code in the calculation of magnetizing intensity (Sat). This error has been 

missed by Dr. Simpson and other researchers who have used the same code to exercise 

their product family design methods and was deliberately left in this code in an attempt to 

make the results comparable in some way to the body of existing publications. 

function [OUTPUT] = TSunivmotor(INPUT) 
% Models a universal motor based on Tim Simpson's calculations 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% TSunivmotor.m 
%  
% Updated by: Matt Chamberlain 
% January 23, 2006 
% Updated by: Matt Chamberlain 
% June 7, 2006 
% 
% Description: This is an updated version of Tim Simpson's code for the  
% Universal Motor Problem. It uses all the same calculations as Simpson's 
% code, including one mistake in the calcuation of the air gap area. 
% including the area of the air gap.  
% Some variable names have also been changed to make them more self- 
% explanatory. (LATER) 
% Vestiges of the original FORTRAN program have also been erased. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%% 
% ...INPUTS... 
%%%%%%%%%%%%%%%% 
% NARM - NUMBER OF OF TURNS IN THE ARMATURE (a.k.a. Nc sometimes) 
NARM = INPUT(1); 
% AWA - CROSS-SECT AREA OF THE ARMATURE 
AWA = INPUT(2); 
% NFIELD - NUMBER OF TURNS IN THE FIELD PER POLE (a.k.a. Ns sometimes) 
NFIELD = INPUT(3);  
% AWF - CROSS-SECT AREA OF WIRE IN FIELD 
AWF = INPUT(4); 
% RADIUS - RADIUS OF THE STATOR 
RADIUS = INPUT(5); 
% THICK - THICKNESS OF THE STATOR 
THICK = INPUT(6); 
% LENGTH - STACK LENGTH 
LENGTH = INPUT(7); 
% CURRNT - CURRENT 
CURRNT = INPUT(8); 
  
%%%%%%%%%%%%%%%%%%%%% 
% ...PARAMETERS... 
%%%%%%%%%%%%%%%%%%%%% 
%       PI = 3.14159 % Note, this is built into Matlab 
LGAP = 0.0007; 
  
% WHAT ARE THESE VALUES? 
% 'm' MAY BE THE 'PLEX' OF THE ARMATURE WINDING (FROM THESIS) 
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% c     Poles = 2       This value is now included *implicitly* in all eqns 
% c     m =1            This value is now included *implicitly* in all eqns 
  
VOLTAG = 115;       % terminal voltage 
POLES  = 2;         % number of poles 
RESIST = 1.69E-8;   % resistivity of copper [Ohms/m] 
DCOPPR = 8960;      % density of copper [kg/m^3] 
DSTEEL = 7850;      % density of steel [kg/m^3] 
SATLEV = 220;       % first region of magnetizing intensity 
SATLV2 = 1000;      % first region of magnetizing intensity 
MUO = 4*3.14159E-7; % permeability of free space [Henrys / m]??? 
  
  
% %%%%%%%%%%%%%%%%% % 
% ...CONVERSIONS... % 
% %%%%%%%%%%%%%%%%% % 
  
% THICKNESS OF THE STATOR 
THICK = THICK / 1000; % convert units from mm to m 
  
% OUTER RADIUS OF THE STATOR??? 
RADIUS = RADIUS / 100; % convert units from cm to m 
  
% STACK LENGTH 
LENGTH = LENGTH / 100; % convert units from cm to m 
  
% CROSS-SECTIONAL AREA OF THE WIRES ON THE FIELD 
AWF = AWF / 1000000; % convert units from mm^2 to m^2 
  
% CROSS-SECTIONAL AREA OF THE WIRES ON THE ARMATURE 
AWA = AWA / 1000000; % convert units from mm^2 to m^2 
  
%  DIAMETER OF THE ARMATURE (lr) 
RDIAM = 2*(RADIUS - THICK - LGAP); 
  
% FEAS > 1 FOR FEASIBILITY  
% (outer radius of motor must be greater than the thickness of the stator) 
FEAS = RADIUS / THICK; 
  
  
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% .................POWER CALCULATIONS...................... 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  
% RESISTANCE OF ARMATURE WINDINGS  
RA = RESIST * NARM * ( (2 * LENGTH) + (2 * RDIAM) ) / AWA; 
  
% RESISTANCE OF FIELD WINDINGS 
RS = RESIST * 2 * NFIELD * ( (2* LENGTH) + (4 * (RADIUS-THICK)) ) / AWF; 
  
LOSS = ((CURRNT^2) * (RA + RS)) + (2 * CURRNT);  
  
POWER = (VOLTAG * CURRNT) - LOSS; 
  
EFFIC = POWER / (VOLTAG * CURRNT); 
  
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% C...............TORQUE CALCULATIONS................. 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  
KT = NARM / pi; % ASSUMES THAT THERE ARE TWO POLES 
  
% MEAN MAGNETIC PATH LENGTH IN THE STATOR (LC) 
LC = pi * ((2 * RADIUS) + THICK) / 2; 
  
% SAT IS THE MAGNETIZING INTENSITY OF THE STEEL IN THE STATOR AND THE 
% ARMATURE (WHY IS THERE A '2' IN THE FORMULA? ... THIS IS NOT WHAT IS SHOWN 
% ON PAGE 141 IN SIMPSON'S DISSERTATION) 
% OR IS THE '2' FOR THE TWO POLES? 
%       SAT = 2.*NFIELD*CURRNT/(LC+RDIAM+2.*LGAP) 
SAT = 2 * NFIELD * CURRNT / (LC + RDIAM + (2 * LGAP)); 
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if (SAT <= SATLEV) 
    MUR = (-0.22791 * (SAT ^ 2)) + (52.411 * SAT) + 3115.8; 
elseif (SAT >= SATLV2) 
    MUR = 1000; 
else 
    MUR = 11633.5 - (1486.33 * log(SAT)); 
end 
  
     
% CROSS SECTIONAL AREA OF THE STATOR 
AS = THICK * LENGTH; 
  
% APPROXIMATE CROSS-SECTIONAL AREA OF THE ARMATURE 
AR = RDIAM * LENGTH; 
  
% WHY IS THIS FORMULA THE SAME AS THE ONE ABOVE? 
% SHOULD THIS BE THE CROSS-SECTIONAL AREA OF THE AIR GAP? 
% THAT WOULD BE AA = LGAP * LENGTH =  
% OLD VERSION:  
AA = RDIAM * LENGTH; 
%AA = LGAP * LENGTH; % NEW VERSION!!! 
  
% RELUCTANCE OF THE STATOR       
RRS = LC / (2 * MUR * MUO * AS); 
  
% RELCUTANCE OF THE ROTOR 
RRR = RDIAM / (MUR * MUO * AR); 
%       WRITE(6,*) "RRR=",RRR      
  
% RELUCTANCE OF THE AIR GAPS 
RRA = LGAP / (MUO * AA); 
  
% MAGNETOMOTIVE FORCE 
FFF = NFIELD * CURRNT; 
%        
  
% TOTAL RELUCTANCE 
RR = RRS + RRR + (2 * RRA); 
  
% FLUX THROUGH MAGNETIC CIRCUIT 
PHI = FFF / RR; 
  
% TORQUE  
TORQUE = KT * PHI * CURRNT; 
  
SPEED = POWER/TORQUE; 
% 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% .................MASS CALCULATIONS.................. 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% MASS OF STATOR 
MSTATOR = pi * LENGTH * DSTEEL * (RADIUS^2 - (RADIUS - THICK)^2); 
  
% MASS OF ROTOR  
MROTOR = pi * LENGTH * DSTEEL * ((RDIAM / 2)^2); 
  
% MASS OF WINDINGS 
MWIND = DCOPPR * ( (AWA * NARM * ( (2 * LENGTH) + (2 *  RDIAM) ) ) + ... 
    ( ( (2 * LENGTH) + (4 * (RADIUS - THICK) ) ) * AWF * 2 * NFIELD) );  
  
% TOTAL MASS (DOES NOT INCLUDE ARMATURE FOR SOME REASON) 
MASS = MSTATOR + MROTOR + MWIND; 
A = 1; 
        
OUTPUT = [TORQUE, MASS, EFFIC, SAT, POWER, FEAS, SPEED]; 
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