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SUMMARY 

Temperature programmed desorption (TPD) is a classic surface science experiment that 

provides information regarding gas adsorption thermodynamics and desorption kinetics. 

Conventional TPD data analysis methods are inadequate for desorption processes 

involving complex surfaces, such as those involving porous materials or heterogenous 

mixtures. To address this, numerical methods were developed for analysis of TPD from 

such materials. These signals, which consist of overlapping time-resolved mass spectra, 

are governed by dynamic chemical processes. The core innovation involves nonlinear 

regression of numerically integrated kinetic models in a method inspired by 

deconvolution analysis of X-ray photoelectron spectra. Fundamental details of 

implementation and accuracy are discussed, and the modeling approach is extended to 

address porous samples and amorphous surfaces. A probabilistic approach for TPD 

analysis based on Bayesian machine learning theory is introduced to quantify uncertainty 

in extracted kinetic parameters. This approach is also modified for application to 

Gaussian mixture decomposition. These methods are applied to surface analysis of metal-

organic frameworks materials with an emphasis on application to membrane separation 

technologies. 
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CHAPTER 1. INTRODUCTION 

 

1.1 Context and Motivation 

Surface chemistry is of central importance to a wide range of industrial, biological, and 

environmental processes. These processes, which range from heterogeneous catalysis to 

surface diffusion and membrane transport phenomena, are governed by the distribution of 

chemical functionalities that terminate the solid phase.1 Thermodynamic properties 

associated with surface chemical structures are typically related to asymmetric bonding 

conditions such as hydroxyl-bound metals at metal-oxide surfaces.2 Such bonding motifs 

are often less stable than the bulk phase and therefore offer the potential for interesting 

interactions with the components of fluid phases to which they are exposed. The binding 

of fluid molecules to solid surfaces is called adsorption.1 

A wide range of experimental methodologies have been developed to characterize 

the chemical components of exposed solid surfaces. The classical approach to surface 

science involves the application of ultrahigh vacuum chambers that are evacuated to 

pressures below 10-9 Torr. At sufficiently low pressures, solid surfaces can be cleaned of 

gases and weakly bound surface terminations. Once exposed, surface-sensitive 

measurement techniques can be applied to probe its chemical environment. Two of such 

techniques are X-ray photoelectron spectroscopy (XPS) and temperature programmed 

desorption (TPD).3-5 Analysis of data from these experiments can be complicated, but is 

well-understood for simple surfaces, such as single terminations of single crystals.3 

However, as will be shown in chapter 1, conventional analysis procedures, which are 

usually some form of nonlinear regression analysis, are either biased or highly 
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susceptible to overfitting if the surface of interest is sufficiently complex. Temperature 

programmed desorption, specifically, has very sparse literature pertaining to data analysis 

for non-ideal samples while commercial software exists for analyzing complex XPS data.  

The primary goal of this thesis is to develop methods for quantitative TPD signal 

analysis comparable to those used for XPS. Parameters extracted from these approaches 

can be used to infer surface structural information and may be thought of as 

complimentary to the elemental and bonding information provided by XPS. Quantitative 

TPD signal decomposition involves extensive application of numerical analysis to 

desorption kinetic models. Topics will include Runge-Kutta methods for integration of 

ordinary differential equations, finite difference analysis of partial differential equations, 

and constrained nonlinear optimization and evolutionary algorithms for global 

optimization. Once the fitting protocol has been developed and demonstrated, Bayesian 

methods will be introduced with the goal of reducing overfitting. These algorithms will 

be demonstrated for TPD data as well as Gaussian fitting, which relates directly to XPS 

analysis.  

Experimental applications of the numerical fitting approaches that have been 

discussed will involve characterization of metal-organic framework (MOF) surfaces. 

MOF materials provide an ideal context for demonstrating the applicability of these 

approaches because they are microporous and contain a large number of possible 

adsorption sites including internal lattice positions, external sites, and an abundance of 

crystal defects. Both mass transfer limitation and overlapping signal effects will be 

considered.  
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1.2 Thesis Outline 
The document is divided into two parts. The first will focus exclusively on 

quantitative TPD data analysis, which will alternatively be referred to as TPD signal 

decomposition because the curve is the sum of an ensemble of signals. The second 

chapter introduces the differential kinetic equations that model the TPD process and 

numerical approaches to solve them. The breakdown of naïve analysis in the case of 

complex data is also discussed. Chapter three introduces nonlinear least squares 

regression analysis and demonstrates its applicability to TPD signals. The problem of 

overfitting is also discussed. The method developed in this chapter is directly analogous 

to the widely used XPS deconvolution method and the mathematical complexity and 

details of implementation of the two methods are compared. Chapter four expands the 

method developed in chapter three to porous materials where mass transfer limitation 

impacts the signal shape. This chapter appeared in Langmuir under the same title in 

September 2017.6 Chapter six introduces Bayesian nonlinear regression and variational 

Bayesian inference to kinetic and Gaussian signal decomposition. Variational Bayesian 

inference is applied to desorption profiles of carbon dioxide from copper 

benzenedicarboxylate (CuBDC) samples to examine the mechanism for the increase in 

CO2 affinity exhibited by nanosheet particle morphologies compared to bulk crystals. 

Software was developed in 2017 and 2018 in C++ to perform this Bayesian analysis of 

surface signals and a link to its GitHub repository can be found in the appendix. 

Components of chapters two, three, five, and six will comprise a submission to The 

Journal of Physical Chemistry C in July 2018.7 

Part 2 includes a single chapter that explores the decomposition of MOF 

nanomaterials under acid gas exposure. This work was conducted prior to the 
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development of the variational Bayesian inference software that is the focus of chapters 

five and six, however it makes extensive use of commercial XPS deconvolution software. 

Chapter seven was published under the same title in The Journal of Physical Chemistry C 

in April 2018. A brief conclusion and discussion of future work is given in chapter eight. 
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CHAPTER 2. KINETIC MODEL OF TEMPERATURE 
PROGRAMMED DESORPTION 

 
2.1 Introduction 
 
Surface science seeks to evaluate the chemistry and physics of solid surfaces. These 

regions are interesting for many reasons owing both to the unique chemistries that arise 

due to bond-unsaturated surface complexes as well as the crucial role the interface plays 

in transport processes such as diffusion and heat transfer. Given that for most solids only 

a vanishingly small fraction of the population of atoms are on the surface, directly 

measuring interfacial processes is difficult. The importance of surface analysis to industry 

has resulted in the wide availability of powerful techniques for surface chemical analysis 

such as X-ray photoelectron spectroscopy and Energy Dispersive X-ray Spectroscopy. 

While these techniques are valuable in that they are easy to set up with commercially 

manufactured equipment and data analysis is straightforward with off the shelf software, 

they suffer from a distinct lack of surface specificity. This is to say, signals from these 

techniques may be contaminated by emissions from bulk atoms up to 70 nm below the 

surface depending on the material’s density.1  

 TPD provides several advantages over other surface analysis techniques. While 

there are few commercially manufactured TPD systems, the experiment can be set up 

fairly easily in labs that are outfitted with general purpose ultra-high vacuum (UHV) 

equipment.2 The experiment is based on measuring small-molecule desorption processes 

under UHV conditions and therefore it does not suffer from surface specificity errors if 

the surface is impenetrable to the analyte gas.3 For many test gases, temperatures can be 

kept low such that the technique is non-destructive. While the main drawback of the 
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method is that data is very difficult to interpret, TPD signals contain a wealth of chemical 

information about the sample surface that is needed for engineering industrial products 

such as catalysts and membranes.4  

Analysis and interpretation of TPD data f is the primary topic of this thesis. 

Rather than examining the specific kinetic behavior of known distributions of surface 

sites with chemically adsorbed species, the focus will be on the determination of 

distributions of functionalities via inference based on the low temperature desorption 

behavior of probe gases such as carbon dioxide and water. The experiments considered 

occur well below room temperature and therefore outside the range of temperatures 

where dissociative adsorption of covalent molecules might occur.5 As a result, only first 

order desorption processes will be considered. 

Many methods for quantitative analysis TPD signals have been proposed and 

applied in the literature.3-4, 6 These methods tend to perform reasonably well for high 

phase-purity samples with a small number of distinct adsorption sites. However, their 

underlying assumptions break down for complex solid surfaces where signals associated 

with a distribution of similar adsorption sites often overlap. Materials with such surfaces 

include supported catalysts, nanoparticles, and membrane materials, which are of 

significant interest to industrial research in chemical manufacturing, electrochemical 

energy storage, and gas separation and storage.7-10  

 Excellent reviews of existing methods for quantitative analysis of TPD signals 

can be found elsewhere and different techniques tend to be suited to specific cases.3, 6 A 

generally applicable method for TPD signal decomposition will be developed throughout 

this thesis. The foundation of this technique is the numerical integration of the ordinary 
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differential equation that governs the TPD process. In this chapter, the properties of this 

equation will be examined and a simple nonlinear least squares fitting procedure 

comparable to that of X-ray photoelectron spectra will be introduced. This chapter is 

foundational in that most of the other chapters build on the concepts introduced here. 

Some of the ideas will be reintroduced when they are improved upon in later chapters, 

but it is convenient to cover all of the basics here and to discuss some fundamental 

weaknesses of the approach.  

 

 

Figure 2.1 Cartoon representation of the desorption of molecular water from a 

metal surface.  

 

2.2 Experimental Setup 
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As the name suggests, the fundamental process under consideration in a typical TPD 

experiment is the breaking of a bond between a gas molecule and a solid surface induced 

by a linear temperature ramp. A cartoon of this process is shown in Figure 2.1. The 

surface-gas system is isolated from the ambient conditions of the laboratory inside of a 

UHV chamber. The solid sample is installed at the end of a cryostat capable of cooling 

the solid well past the condensation temperature of the analyte gas under vacuum 

conditions. The desorption process is monitored by a pressure sensor or mass 

spectrometer located near the sample holder. The sensor is close enough that the 

molecular diffusion distance from the sample is minimized. UHV ion gauges and mass 

spectrometers emit charged particles that can induce premature desorption from the 

sample either via resistive heating or molecular collisions. Thus, the sensor may be 

installed with a shield to remove ambiguity in the desorption process. 

The temperature ramp is accomplished using a high-powered heater installed in 

the immediate vicinity of the sample. The heater is positioned such that heat transfer is 

concentrated toward the sample rather than the components of the cryostat to minimize 

background desorption from the cryostat. The heater is often shielded to prevent radiative 

heating of cold components that may also contribute to the background. While some 

background signal is to be expected, interactions between the heater and cold components 

can lead to feedback effects resulting in chaotic behavior that is difficult to characterize 

and subtract from the final signal. Figure 2.2 shows a typical TPD chamber setup. An 

alternative configuration, which uses a small trough for powder samples, will be 

discussed in chapter 3. 
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A turbopump is used to pump the chamber to a base pressure below 10-9 Torr. The 

pump is also located close to the sample holder so that desorbing gases are unable to 

accumulate in the chamber. Prevention of gas accumulation inside the chamber removes 

the possibility of dynamic equilibrium between the chamber and the sample.  

 

Figure 2.2 Schematic of TPD chamber setup. 

 

The experiment is prepared by cooling the sample below the estimated desorption 

temperature but above the sublimation point and a calibrated volume of sample gas is 

introduced to the chamber. After the dose is complete, the pressure is allowed to recover, 

and the sample is cooled below the sublimation point to minimize surface diffusion 

processes. The heater is then activated with the aid of a power controller or pre-calibrated 

circuit such that the temperature increase is linear in time. The pressure in the chamber 𝑃𝑃 

varies as a function of time 𝑡𝑡 according to equation 1, where 𝐶𝐶 is the surface 

concentration, 𝐴𝐴 is the sample area, 𝑅𝑅 is the gas constant, 𝑉𝑉 is the chamber volume, 𝑇𝑇𝑔𝑔 is 

the temperature of the gas phase, and 𝑆𝑆 is the pump rate.  
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 𝑑𝑑𝑃𝑃
𝑑𝑑𝑡𝑡

= −
𝑑𝑑𝐶𝐶
𝑑𝑑𝑡𝑡

𝐴𝐴𝑅𝑅𝑇𝑇𝑔𝑔
𝑉𝑉

−
𝑆𝑆𝑃𝑃
𝑉𝑉

 
(2.1) 

For a sufficiently high pump rate  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
≪ 𝑆𝑆𝑑𝑑

𝑉𝑉
, and the pressure in the chamber recorded by 

the mass spectrometer is inversely proportional to the desorption rate 𝑃𝑃 ∝ −𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

.3  

 

2.3 Polanyi-Wigner Equation 
 
The desorption rate proceeds as a function of temperature according to the Polanyi-

Wigner equation, given in equation (2.2). The kinetic order is given by 𝑘𝑘, the pre-

exponential frequency factor is given by 𝜈𝜈(𝜃𝜃,𝑇𝑇), and the activation energy is given by 

𝐸𝐸𝑎𝑎. These dependencies and the signal’s sensitivity to errors in this factor will be 

explored in the next section. 

 𝑑𝑑𝐶𝐶
𝑑𝑑𝑡𝑡

= 𝐶𝐶𝑛𝑛𝜈𝜈(𝐶𝐶,𝑇𝑇)𝑒𝑒−
𝐸𝐸𝑎𝑎
𝑅𝑅𝑇𝑇  

(2.2) 

As the equation shows, the technique is flexible across varying temperature ranges and 

kinetic regimes. Intuitively, zeroth order desorption corresponds to ice sublimation, first 

order corresponds to desorption of physically adsorbed gases, and second order to 

recombinative desorption of dissociatively adsorbed molecular fragments.5 Given a linear 

temperature ramp 𝛼𝛼 [𝐾𝐾 𝑠𝑠⁄ ], the temperature can be written 𝑇𝑇 = 𝑇𝑇0 + 𝛼𝛼𝑡𝑡.  

An alternative notation applies the concept of the fractional surface coverage 𝜃𝜃 = 𝑑𝑑
𝑑𝑑0

, 

which is convenient when the site coverage must be explicitly written in the governing 

equation-such as in least squares regression. Equation 2.3 gives the desorption rate in 

terms of fractional coverage. Note that this is proportional to (2.2). 

 𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡

= 𝜃𝜃𝑘𝑘𝜈𝜈(𝜃𝜃,𝑇𝑇)𝑒𝑒
− 𝐸𝐸𝑎𝑎
𝑅𝑅(𝑇𝑇0+𝛼𝛼𝑑𝑑) 

 
(2.3) 
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In the case of a surface with multiple sites, the signal intensity 𝑠𝑠(𝑡𝑡) is inversely 

proportional to the sum over the desorption rates 𝑑𝑑𝜃𝜃𝑖𝑖
𝑑𝑑𝑑𝑑

.  

 
𝑠𝑠(𝑡𝑡) ∝�

𝑑𝑑𝜃𝜃𝑖𝑖
𝑑𝑑𝑡𝑡

𝑁𝑁

𝑖𝑖=1

 
(2.4) 

 
= 𝜃𝜃𝑛𝑛𝜈𝜈(𝜃𝜃,𝑇𝑇)𝑒𝑒

− 𝐸𝐸𝑎𝑎
𝑅𝑅(𝑇𝑇0+𝛼𝛼𝑑𝑑) 

 
(2.5) 

 

The frequency factor 𝜈𝜈 may be interpreted as the surface-adsorbate bond frequency for 

first order processes (𝑘𝑘 = 1). In that case it may be very weakly dependent on coverage 

and temperature but will be assumed to be constant. In the second order processes 

(𝑘𝑘 = 2), the frequency factor corresponds to the ratio of the partition function of an 

activated surface-bound complex to the product of the partition functions of the 

molecular fragments. In this case the desorption process has two steps: combination of 

molecular fragment adsorbates followed by desorption. The combination step is assumed 

to be rate-limiting and the frequency factor tends to be dependent on temperature and 

concentration.5 Second order processes will not be considered in great detail and thus the 

reaction order 𝑛𝑛 and the coverage and temperature dependence of 𝜈𝜈 will be dropped from 

the notation.  

 

2.4 Parametric Dependence of TPD Signals 
 
The following sections will examine hypothetical TPD signals. While TPD may be used 

to measure the frequency factor 𝜈𝜈 for a system with a known activation energy 𝐸𝐸𝑎𝑎, it is 

much more frequently used to measure the activation energy for known or estimated 𝜈𝜈. 
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We will focus on this later application. The activation energy of desorption is equal to the 

enthalpy of adsorption for non-activated physical adsorption processes and provides an 

upper bound for the enthalpy of adsorption for activated processes such as dissociative 

adsorption. The base example will be a first order desorption process with parameters 

given in Table 1. This system was simulated using MATLAB’s ode15s stepwise implicit 

ordinary differential equation solver over a temperature range from 120 K to 220 K with 

a ramp rate of 0.25 K/s. The initial surface coverage was assumed to be 1015 

molecules/cm2.  

The simulated surface concentration and signal plots are show in figures 2.3 (a) and (b) 

respectively. The coverage decreases in time and the decay rate increases exponentially 

with the desorption rate. The inflection point of the surface coverage corresponds to the 

signal peak position at 182.6 K. The desorption rate intersects the coverage function at 

186.8 K, which is the inflection point of the decreasing section of the TPD signal curve.  

 

Table 2.1 Kinetic Parameters of Simple First Order Example 

Parameter Name Value 

𝐸𝐸𝑎𝑎 50 𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚 

𝜈𝜈 1013𝐻𝐻𝑧𝑧 
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Figure 2.3 Overlay of simulated surface coverage decay and desorption rate (a) and 

TPD signal from single-site surface (b). 
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Figure 2.4 Single-site first order desorption peak position as a function of activation 

energy for fixed frequency factor and initial coverage. The blue dots represent 

simulated peak maxima while the hashed line is the linear regression curve. 
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The peak position for a fixed frequency factor varies linearly as a function of the 

activation energy. Figure 2.4 shows the results of a collection of simulations of single site 

surfaces over varied activation energies with fixed frequency 𝜈𝜈 = 1013 Hz and initial 

fractional coverage  𝜃𝜃0 = 1. The relationship between the peak position and the 

activation energy of desorption is perfectly linear. Therefore, in the case of a single-site 

crystalline sample with a single, well-resolved peak, the activation energy of desorption 

can be extracted trivially using the relationship above. Unfortunately, most real samples 

are not as simple as this basic case. Even single crystal samples may contain a collection 

of different face terminations, edge sites, and surface defects to which gas molecules bind 

with varying energetics.  

Consider another hypothetical crystalline sample, this time with four distinct adsorption 

sites. The relative concentrations of these sites can produce dramatically different TPD 

signals. Four site distributions, given in Table 2.2, were used to simulate the signals 

shown in Figure 2.5. 

Table 2.2 Distributions of activation energies for a four-site sample  

  Relative Site Concentration 

𝐄𝐄𝐚𝐚 (kJ/mol) 𝛎𝛎 (Hz) Uniform Increasing Decreasing Central 

50 1013 25% 10% 40% 10% 

53 1013 25% 20% 30% 40% 

56 1013 25% 30% 20% 40% 

59 1013 25% 40% 10% 10% 
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Figure 2.5 Simulated TPD profiles of uniform (a), increasing (b), decreasing (c), and 

central (d) site distributions. Contributions from each site are represented as dotted 

lines. The signal measured by a mass spectrometer is shown by a solid blue line. 
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The presence of multiple sites with similar adsorption bond energies results in 

overlapping peaks in the TPD signal. This causes distortions of the positions of peaks that 

are large enough to resolve and completely obscures those of smaller peaks. The 

asymmetry of the desorption signal results in dramatically different signals from inverted 

site distributions. Thus, it becomes impossible to resort to the linear model shown in 

Figure 4. Nevertheless, assuming the frequency factor can be measured accurately, it will 

be shown that these curves can be decomposed by nonlinear fitting techniques.  

 Recall that for a first order desorption process, the frequency factor 𝜈𝜈 is 

interpreted as the vibrational frequency of the bond between the adsorbate and the 

surface. While this value can be calculated via computational methods, it is often roughly 

approximated using the vibrational frequency of a comparable intermolecular attraction. 

For example, hydrogen bond vibrational frequencies are typically about 1013 Hz. This 

approximation will be used liberally throughout the development of numerical methods 

for quantitative analysis of TPD curves. In order to characterize the impact of 

approximation error on extracted desorption activation enthalpies, signals were simulated 

for a range of frequency factors with constant activation energy. Plots of these 

simulations are shown in Figure 2.6. The error in extracted activation energy can be 

determined by computing predicted energy from the linear model inset in Figure 4. This 

model is expressed as a function of the peak position 𝑇𝑇(𝑠𝑠𝑚𝑚𝑎𝑎𝑚𝑚) in equation (2.6). 

 
 𝐸𝐸𝑎𝑎 = �0.265

𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚 ⋅  𝐾𝐾

�𝑇𝑇(𝑠𝑠𝑚𝑚𝑎𝑎𝑚𝑚) − 1.741 𝐾𝐾 
(2.6) 
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Figure 2.6. Desorption profiles for varied frequency factors at fixed activation 

energy 𝑬𝑬𝒂𝒂 = 𝟓𝟓𝟎𝟎𝟓𝟓𝟓𝟓/𝒎𝒎𝒎𝒎𝒎𝒎.  

 

Table 2.3. Relative error in extracted activation energy associated with 

approximation error 

Actual 

𝛎𝛎 (Hz) 

Approximate 𝛎𝛎 

(Hz) 

Peak Position 

(T) 

Predicted 𝐄𝐄𝐚𝐚  

(kJ/mol) 

Relative 

Error 

1011 1013 229.3 59.0 18% 

1012 1013 214.9 55.2 10.4% 

1013 1013 202.3 50.0 0% 

1014 1013 190.9 48.8 -2.3% 

1015 1013 180.9 46.2 -7.6% 
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Table 2.3 shows the extracted activation energies and associated relative error for each 

magnitude of approximation error. Relative error is computed as the ratio of the extracted 

activation energy to the actual activation energy, which in this case is 50 kJ/mol. The 

predicted activation energy is insensitive to error in the frequency factor over the 

examined temperature range. Given the exponential form of the Polanyi-Wigner 

equation, this insensitivity of the signal shape to logarithmic variation in the frequency 

factor is perhaps not surprising. Nevertheless, it’s worth demonstrating that the method is 

notably robust to error in the estimate of 𝜈𝜈. Interestingly, the error in extracted activation 

energy is much lower if the frequency factor is overestimated than if it underestimated by 

the same magnitude. This property is the result of the dramatic asymmetry in the 

temperature dependence of equation (2.2). Hydrogen bond frequencies tend to range 

between 5.0 × 1012 and 1.0 × 1013. Given the above results, we can confidently 

approximate 𝜈𝜈 ≈ 1013 for water desorption from polar surfaces and expect less than 1% 

resulting error in the predicted desorption activation enthalpies. 

 All simulations discussed up to this point were performed with a constant ramp 

rate 𝛼𝛼. It is important to note that because the ramp rate impacts the exponential term of 

equation (2.2), that it can have significant impacts on the signal intensity. Figure 2.7 

shows single-site simulations with kinetic parameters found in Table 2.1 with varied 

ramp rates. This property of desorption process is useful in that it allows the experimental 

parameters to be tuned to the sensitivity of the sensor and the surface area of the sample. 

For example, if the sample is very small, the ramp rate could be set very high to yield a 

large signal. Alternatively, if the surface area is very large, such as in the case of a porous 

film, the ramp rate could be set very low to avoid overloading the pump or the sensor.  
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Figure 2.7. Desorption profiles at various ramp rates. 

 

2.5 Continuous Site Distributions 
 

The occasion often arises in modern surface characterization that part or all of the sample 

is amorphous. In such cases it is unreasonable to assume that a small set of 

distinguishable sites are exposed. These surfaces can be modeled with a continuous site 

distribution. We will constrain our analysis of continuous site distributions to gaussian 

and skewed gaussian probability density functions. The univariate Gaussian Normal 

probability density function 𝜙𝜙(𝑥𝑥;  𝜇𝜇,𝜎𝜎2) and cumulative density function Φ(𝑥𝑥;  𝜇𝜇,𝜎𝜎2)  

are shown in equations (2.7) and (2.8) respectively. Equations (2.9) gives an alternative 

expression of the Gaussian Normal cumulative density function. 

 
 𝜙𝜙(𝑥𝑥; 𝜇𝜇,𝜎𝜎2) =

1
√2𝜋𝜋𝜎𝜎2

𝑒𝑒
(𝑚𝑚−𝜇𝜇)2
2𝜎𝜎2  

(2.7) 
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Φ(𝑥𝑥;  𝜇𝜇,𝜎𝜎2) =

1
√2𝜋𝜋

� 𝑒𝑒−𝑑𝑑2𝑑𝑑𝑡𝑡
𝑚𝑚−𝜇𝜇
𝜎𝜎

−∞
 

(2.8) 

 
=

1
2
�1 + erf �

𝑥𝑥 − 𝜇𝜇
𝜎𝜎√2

�� 
(2.9) 

The terms 𝜇𝜇 and 𝜎𝜎2 are the usual location and shape parameters that determine the mean 

and variance of the distribution respectively. The error function of a scalar 𝑥𝑥 is denoted 

by erf(𝑥𝑥). Asymmetric continuous distributions will be modeled using the skew normal 

distribution in equation (2.10). 

 𝑓𝑓(𝑥𝑥; 𝜇𝜇,𝜎𝜎2,𝑎𝑎) = 2𝜙𝜙(𝑥𝑥; 𝜇𝜇,𝜎𝜎2)Φ(𝑏𝑏𝑥𝑥; 𝜇𝜇,𝜎𝜎2) (2.10) 

We begin by considering a Gaussian site distribution with mean 𝜇𝜇 = 50 𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚

 and 

considering three separate variances: 𝜎𝜎12 = 1 (𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚⁄ )2, 𝜎𝜎22 = 4 (𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚⁄ )2, and 𝜎𝜎32 =

9 (𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚⁄ )2. The distributions of these site energies are shown in Figure 2.8.  

 

Figure 2.8 Gaussian distributions of site energies. 
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The distributions were simulated with 100 discrete sites each. The results of these 

simulations are shown in Figure 2.9. Contributions from each site are shown in the left 

column while the aggregate desorption rate is given on the right. The desorption peak 

broadens with larger variance in the activation energy and the maximum intensity 

decreases. The desorption peak position does not change with variance in the site 

distribution. These results indicate that TPD might be very useful for characterizing 

heterogeneous or amorphous surfaces using the mean and standard deviation as the fitting 

parameters. 
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Figure 2.9 Desorption profiles of Gaussian site distributions of increasing variance. 

The contribution from each site is given on the left and the total desorption rate is 

given on the right. The variance of each row is inset in the plot of the aggregate 

desorption rate on the right.  
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Finally, consider a heterogeneous surface with a continuous distribution of desorption 

activation energies and a high concentration of surface defects that tend to bind 

adsorbates more strongly. This distribution will be modeled using the skewed Gaussian 

density function in given in equation (2.10) with skew parameters 𝑏𝑏1 = 0, 𝑏𝑏2 = 8, 𝑏𝑏3 =

12. The mean will again be 𝜇𝜇 = 50 𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚

 and the variance 𝜎𝜎2 = 4 � 𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚

�
2
. Figure 10 

shows the site distribution and aggregate signals for each variance. Note that the signal is 

only moderately sensitive to the skew parameter but that, unlike the variance, it does 

impact the peak position. The skew position could thus also be considered as a fit 

parameter. However, because both the skew and the mean both impact the peak position, 

prior knowledge of one would be necessary to extract the other. For example, if the mean 

desorption activation energy for a given material surface were known, fitting the skew 

parameter of the distribution could then be used as a measure of the surface defect site 

density.  
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Figure 2.10 Skewed site distributions (a) and associated desorption profiles (b). 
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2.6 Conclusions 
 

The relationship between the first order temperature programmed desorption signal and 

the underlying distribution of surface sites on a given sample can be defined for a wide 

range of surface classes. While existing methods for quantitative analysis of desorption 

curves focus on simple site distributions, models for complex site distributions show that 

naïve analysis can result in incorrect predictions of underlying thermodynamic properties 

of surface-adsorbate bonds due to signal distortions induced by parallel desorption 

processes. Desorption processes from distinct sites contribute topographical features to 

the TPD signal, even if the site concentration is too low to resolve a full peak. The 

asymmetry of the TPD process causes similar distributions to result in dramatically 

different peak shapes. This property will be used in the next chapter, where a nonlinear 

least squares fitting approach is developed. 

 

2.7 References 
 

1. Kasrai, M.; Lennard, W. N.; Brunner, R. W.; Bancroft, G. M.; Bardwell, J. A.; 
Tan, K. H., Sampling Depth of Total Electron and Fluorescence Measurements in Si L- 
and K-Edge Absorption Spectroscopy. Appl. Surf. Sci. 1996, 99, 303-312. 
2. Poston, M. J.; Grieves, G. A.; Aleksandrov, A. B.; Hibbitts, C. A.; Darby Dyar, 
M.; Orlando, T. M., Water Interactions with Micronized Lunar Surrogates JSC-1A and 
Albite under Ultra-High Vacuum with Application to Lunar Observations. J. Geophys. 
Res. E 2013, 118, 105-115. 
3. King, D. A., Thermal Desorption from Metal Surfaces: A Review. Surf. Sci. 1974, 
47, 384-402. 
4. Barrie, P. J., Analysis of Temperature Programmed Desorption (Tpd) Data for the 
Characterisation of Catalysts Containing a Distribution of Adsorption Sites. Phys. Chem. 
Chem. Phys. 2008, 10, 1688-1696. 
5. Vannice, A. M., Kinetics of Catalytic Reactions; Springer: New York, 2005. 



 27 

6. Jong, A. M. d.; Niemantsverdriet, J. W., Thermal Desorption Analysis: 
Comparative Test of Ten Commonly Applied Procedures. Surf. Sci. 1990, 233, 355-365. 
7. Datta, S. J., et al., CO2 Capture from Humid Flue Gases and Humid Atmosphere 
Using a Microporous Coppersilicate. Science 2015, 350, 302-306. 
8. Han, G. B.; Park, N.-K.; Yoon, S. H.; Lee, T. J.; Han, G. Y., Direct Reduction of 
Sulfur Dioxide to Elemental Sulfur with Hydrogen over Sn−Zr-Based Catalysts. Ind. 
Eng. Chem. Res. 2008, 47, 4658-4664. 
9. Malte, B., Heterogeneous Catalysis of CO2 Conversion to Methanol on Copper 
Surfaces. Angewandte Chemie International Edition 2014, 53, 12022-12024. 
10. Shao, M.; Peles, A.; Shoemaker, K., Electrocatalysis on Platinum Nanoparticles: 
Particle Size Effect on Oxygen Reduction Reaction Activity. Nano Letters 2011, 11, 
3714-3719. 



 28 

CHAPTER 3. NONLINEAR REGRESSION OF NUMERICALLY 
INTEGRATED FUNCTIONS 

 
3.1 Nonlinear Regression for Surface Analysis 
 

Nonlinear least squares regression is widely used in surface chemical analysis in the 

context of X-ray photoelectron spectroscopy (XPS). XPS peaks are convolutions of Gaussian 

and Lorentzian line shapes and the process of fitting them is therefore referred to as 

deconvolution.1 This involves proposing an initial guess for the distribution chemical states of a 

given element on the surface of a material and then updating this guess by minimizing the sum of 

squared residuals between the guess and the data. Given the nonlinear form of the function, the 

minimum has no closed form solution and iterative algorithms are used. Typically, these 

algorithms are run under some specified set of constraints in order to encode the analyst’s 

external knowledge of the system. Complex surfaces with wide distributions of chemical states 

can be expected to produce broad XPS signals with varying degrees of structure from which the 

underlying chemistry can be inferred. Each Gaussian peak profile includes at least three 

parameters and the risk for overfitting the signal is high.   

 Where XPS peaks are convoluted, overlapping TPD signals are decomposed, since the 

measured signal is simply the sum of the curves from different energies. The process for 

decomposition of TPD signals parallels XPS deconvolution in many ways. A guess distribution 

is proposed by the analyst and refined using an iterative optimization algorithm to extract the 

most likely position and shape parameters for the component kinetic processes. Risk of 

overfitting is comparable. The highly nonlinear relationships between parameters can result in 

poor performance of basic line search optimization methods and the search domain must be 

bounded in order to the maintain numerical stability of the integrated signal function. The 
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nonlinear least-squares objective function is non-convex and suffers from the local optimum 

problem. Moreover, the global minimum may not be the best representation of the underlying 

surface chemistry. Various aspects of these problems are studied in subsequent chapters. Despite 

these issues, we will see that, given high quality data, the kinetic parameters of the underlying 

surface can be extracted with high accuracy and the underlying surface chemistry can therefore 

be studied effectively. When this information is combined with techniques such as XPS and 

vibrational spectra, a detailed picture of the surface chemistry can be constructed. 

3.2. Maximum Likelihood Estimation 
 
 Least squares regression is a natural result of elementary probability theory. This 

derivation will be reviewed here before proceeding to problem-specific numerical 

considerations. Consider a deterministic model 𝑓𝑓(𝒙𝒙,𝝎𝝎) of a data vector 𝒚𝒚 = (𝑦𝑦1 𝑦𝑦2 … 𝑦𝑦𝑛𝑛)𝑇𝑇with a 

stochastic error term 𝜖𝜖 such that  

 𝑦𝑦𝑖𝑖 = 𝑓𝑓(𝒙𝒙𝑖𝑖,𝝎𝝎) + 𝜖𝜖𝑖𝑖. (3.1) 

We let 𝒙𝒙 denote a vector of the predictor variables and 𝝎𝝎 is the vector of model parameters. If 

the error term 𝜖𝜖 is normally distributed, then we can write the probability density 𝑝𝑝 of the target 

variable 𝑦𝑦𝑖𝑖 given the model parameters as  

 𝑝𝑝(𝑦𝑦𝑖𝑖;𝝎𝝎) = 𝑁𝑁(𝑦𝑦𝑖𝑖; 𝑓𝑓(𝒙𝒙,𝝎𝝎),𝜎𝜎2) (3.2) 

 
=

1
√2𝜋𝜋𝜎𝜎2

𝑒𝑒−
(𝑦𝑦𝑖𝑖−𝑓𝑓(𝒙𝒙,𝝎𝝎))2

2𝜎𝜎2 . 
(3.3) 

If we assume that data vector 𝒚𝒚 consists of independent and identically distributed samples from 

𝑝𝑝(𝑦𝑦;𝝎𝝎), the joint density function over the data is the product of the density functions of each 

sample. 
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𝑝𝑝��𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛�;𝝎𝝎� = �

1
√2𝜋𝜋𝜎𝜎2

𝑒𝑒−
(𝑦𝑦𝑖𝑖−𝑓𝑓(𝒙𝒙𝑖𝑖,𝝎𝝎))2

2𝜎𝜎2
𝑛𝑛

𝑖𝑖=1

 
(3.4) 

When considered as a function the parameter vector 𝝎𝝎, equation 4 is called the likelihood 

function and the parameter vector 𝝎𝝎* that corresponds to the highest probability of the data 

vector 𝒚𝒚 is the maximum likelihood estimate.  As a product over a potentially large number of 

probabilities that are by definition between 0 and 1, the direct computation of the likelihood 

function carries a high risk of numerical underflow. It is often convenient to use the log-

likelihood function given in equation (5). The logarithmic function is monotonically increasing 

and therefore preserves the optimality conditions of the likelihood function.  

 
ln 𝑝𝑝��𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛�;𝝎𝝎� = ln�

1
√2𝜋𝜋𝜎𝜎2

𝑒𝑒−
(𝑦𝑦𝑖𝑖−𝑓𝑓(𝒙𝒙𝑖𝑖,𝝎𝝎))2

2𝜎𝜎2
𝑛𝑛

𝑖𝑖=1

 
(5) 

 
= −

𝑛𝑛
2

(ln 2𝜋𝜋 + ln𝜎𝜎2) −
1

2𝜎𝜎2
��𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝒙𝒙𝑖𝑖,𝝎𝝎)�

2
𝑛𝑛

𝑖𝑖=1

 
(6) 

Under the assumption that the variance 𝜎𝜎2 is constant, then the log-likelihood function is 

maximized by minimizing the sum of squared residuals ∑ �𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝒙𝒙𝑖𝑖,𝝎𝝎)�
2𝑛𝑛

𝑖𝑖=1 . This is the least 

squares criterion. Probabilistic models introduced in chapter 5 will not assume constant variance 

of the data about the model line. 

 

3.3 Numerical Considerations 
 
Iterative least squares optimization requires a potentially large number of evaluations of the 

model function, which itself involves a numerical integration of the Polanyi-Wigner equation 

under dynamic temperature conditions. Naïve implementations that rely too heavily on 

commercially available ordinary differential equation (ODE) solvers tend to perform poorly 
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because these programs are optimized for fundamentally different problem constraints. Codes 

such as those found in MATLAB’s ODE library use complicated adaptive step calculations 

which are crucial to preserving accuracy when the state of the system at the next time step is 

unknown. However, given the monotonically decreasing behavior of the surface concentration 

throughout the TPD experiment, the dynamics of the state of the system can be roughly 

estimated before the integration is performed, and the step size can be fixed to ensure accuracy 

and stability while removing the large computational overhead associated with adaptive steppers.  

The Polanyi-Wigner equation is an example of a stiff differential equation. While formal 

definitions of stiff differential equations vary, the term generally refers to equations in which the 

value of the state variable varies over many orders of magnitude over a short time period.2 Such 

equations are problematic for adaptive integrators because these programs compute the size of 

each step using the dynamics of the steps preceding it. Applying this method to stiff ODEs can 

result in very long runtimes because temporal regions of large dynamic variation act to contract 

the step size to very short time intervals. These problems are typically solved using implicit ODE 

integration schemes, which are less accurate than explicit schemes such as the widely used 

Runge-Kutta 4-5 algorithm.2  

There is also the problem of comparing a numerically integrated curve with a data set. In 

the case of an adaptive stepper, the support points of the integrated curve do not match those of 

the measured signal and the residuals must be calculated by interpolation. The interpolation step 

adds extra computational overhead to an otherwise costly procedure and the quality of the 

residual computation can be sensitive to the interpolation method applied. For example, cubic 

spline interpolations were found to perform much better than linear interpolation but come at 

additional computational cost. Both the interpolation and adaptive stepper problems can be 
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solved simultaneously by using the time steps in the dataset to define the integration steps. The 

time resolution of the time data is typically sufficient to provide a high accuracy integrated 

approximation if it is able to capture the dynamics of the desorption process during the 

measurement. If the density of measurements is not high enough to maintain numerical stability, 

the data set can be interpolated once as a preprocessing step. Linear interpolation procedures 

were found to perform as well as more advanced interpolations, such as cubic splines. 

 

3.4 Platinum Nanoparticle Test Case 
 
We conclude this chapter with an example of a nonlinear least squares fit of a simulated TPD 

curve. The oxygen reduction reaction is an important reaction in electrochemical processes. The 

reaction proceeds very slowly and presents a hard limit to the implementation of fuel cell 

technologies.3 Consider a fuel cell with a graphite supported platinum nanoparticle cathode. 

Suppose we wish to measure the enthalpy of adsorption of oxygen gas on the porous cathode. If 

the nanoparticles are 1.8 nm in diameter and have five distinct sites. These sites are illustrated in 

Figure 3.1 and the associated desorption enthalpies of oxygen gas are given in Table 1. The sites 

are labelled according to the convention used by Shao et al. Oxygen binds strongly to these sites 

due to its diradical electronic structure but does not dissociate upon adsorption.4 Therefore, first 

order TPD is an appropriate method to probe both the adsorption enthalpy and the site 

distribution. The vibrational frequency of the platinum-oxygen bond is unknown, however 

oxygen-metal bond absorptions tend to be in the far-infrared region of the electromagnetic 

spectrum and we therefore take 1013𝐻𝐻𝑧𝑧 to be an appropriate overestimate of the frequency 

factor. Figure 3.2 shows the simulated TPD signal for a ramp rate of 0.25 K/s.  

  



 33 

 

 

 

Figure 3.1 Adsorption Sites on 1.8 nm Pt nanoparticle faces. 

 

Table 3.1 Enthalpy of adsorption of oxygen on Pt nanoparticle sites 

Adsorption Site Coordination Number Adsorption bond 

enthalpy(kJ/mol) 

Fraction of total 

sites 

fcc 111 2 86.9 0.45 

hcp 111 3 115.8 0.15 

br 100 4 119.6 0.10 

br 111/111 2 129.3 0.10 

br 111/100 2 154.4 0.20 
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Figure 3.2 Simulated desorption profile of oxygen from 1.8 nm Pt nanoparticles. 

 

Given the knowledge that there are 5 distinct adsorption sites, the least squares fitting procedure 

returns a very accurate decomposition of the signal. Figure 3.3 shows plots of the initial guess 

and the refined fit of the simulated oxygen desorption data. The initial guess included activation 

energies that were picked to center the peaks and a uniform distribution of relative site coverages 

(𝜃𝜃0 = 0.2 for each curve). The extracted activation energies of desorption are given in Table 3.2. 

Recall that for a first order process these values are equal to the enthalpy of adsorption. 
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Figure 3.3 Initial guess signal (a) and refined signal (b) after least squares fit procedure. 
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Table 3.2 Comparison of fit parameters with actual values 

Peak Position Parameter Value Relative Error 

310.8 K Ea 87.0 kJ/mol 0.1% 

 θ0 0.448 -0.4% 

408.1 K Ea 115.0 kJ/mol -0.7% 

 θ0 0.14 -6.6% 

426.0 K Ea 120.0 kJ/mol 0.3% 

 θ0 0.12 20% 

458.5 K Ea 129.0 kJ/mol -0.2% 

 θ0 0.095 5% 

542.1 K Ea 154.0 kJ/mol -0.3% 

 θ0 0.19 5.3% 
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The nonlinear least squares algorithm performs very well in fitting the activation energy 

parameter and reasonably effectively with the coverage parameter. The average absolute relative 

error in the predicted activation energy was 0.32% while the average relative error magnitude in 

the predicted coverage parameter was 7.4%. The average magnitude of the relative error of the 

coverage parameter was brought down by the non-overlapping peaks, which lead to less 

ambiguity in the underlying distribution than the overlapping peaks.  

 This technique is clearly very effective; however, the results don’t give any indication of 

the uncertainty in the parameter estimates. In later chapters, probabilistic models will be 

incorporated to build a more complete picture of the fit quality. 
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CHAPTER 4. INTERACTIONS ON EXTERNAL MOF SURFACES: 
DESORPTION OF WATER AND ETHANOL FROM CUBDC 

NANOSHEETS 

 

4.1 Introduction 
 

This chapter was published in Langmuir in September 2017.1 It is reproduced here with 

permission from the journal. There has been a rapid growth in research efforts directed towards 

understanding the structural and chemical properties metal-organic framework (MOF) materials 

in recent years. MOFs are composed of metal ions bound by linker ligands into reticular crystal 

lattices. 2  These materials have high surface areas, chemical modularity, and in some cases, 

mechanical functionality.3-5 Potential applications that follow naturally from these properties 

include catalysis, chemical sensing, and gas adsorption.6-8 MOFs have also been proposed for 

inclusion as the active components of separations membranes.7, 9-10  

MOF nanosheets are crystals with thicknesses on nanometer length scales and typically with 

pore structures that run roughly normal to the plane of the sheet.  They have recently gained 

attention because of their high stacking efficiency, which allows development of thinner, more 

tunable membranes.7-8, 11-12 They have been synthesized by a number of methods, including top-

down exfoliation of layered crystals as well as bottom-up approaches that make use of 

modulating ligands or diffusion-mediated processes.11-16 The external surfaces of MOF crystals 

have not been well studied, though they play an important role as gateways to the bulk pore 

structure.17 MOF nanosheets are uniquely suited for studying the chemistry at external MOF 

surfaces because a single crystallographic face comprises a significant portion of the total surface 

area. As will be shown, outer adsorption sites interact more strongly with some guest molecules 

than internal sites. The implications of this result are that sorption properties of MOF particles 
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depend on their morphology and that degradation models, such as that of ligand displacement by 

water, may need to account for kinetic variation at the surface.18-21  

We motivate our choice of adsorbate gases in the context of the rising need for alternative fuel 

sources, such as bioethanol, in the face of global climate change.22 Separation of water and 

ethanol is an important step in the production of biofuels and accomplishing this process by 

membrane separation can be more energy-efficient than distillation.23-24 However, water and 

ethanol interact strongly and the challenge in designing a suitable membrane lies in finding a 

material that selectively binds one over the other.25 Carboxylate-based MOFs tend to have a high 

affinity for water and therefore various topologies have been proposed or demonstrated for 

application as the active component of ethanol-water separations membranes.9, 19, 26-27  

In this paper, we explore the differences between interaction of water and ethanol at interior 

and external adsorption sites by a combination of Fourier transform infrared (FT-IR) 

spectroscopy, powder X-ray diffraction (PXRD) and  temperature programmed desorption (TPD) 

from copper benzenedicarboxylate (CuBDC) nanosheets. The goal is to extract the kinetic 

parameters of desorption from external surface and internal pore sites. Complications due to 

diffusion arise in the analysis of the desorption signal from porous materials.17-18 Numerical 

methods have been demonstrated to be effective in assisting the analysis of complicated surface 

phenomena.28 Herein we develop a numerical approach for the quantitative analysis of TPD from 

porous media that deviates from previously applied approaches by attributing peak broadening 

primarily as diffusion rather than as contributions from defect sites.29 The diffusion coefficients 

of water and ethanol are also extracted from the TPD data, demonstrating versatility in the 

method.   

4.2 Experimental Methods 
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CuBDC Synthesis:  CuBDC nanosheets were synthesized using a scaled-up version of the 

layered synthesis reported by Rodenas et al.12 In a high aspect ratio beaker, measuring 1.4 cm in 

radius and 10 cm in height, 300 mg of terephthalic acid were dissolved into a mixture of 20 mL 

dimethylformamide (DMF) and 10 mL of acetonitrile to form the linker layer. A spacer layer 

was made by mixing 10 mL acetonitrile and 10 mL DMF. The spacer layer was then poured over 

the linker layer slowly to avoid mixing. The metal layer was made by mixing 300 mg 

Cu(NO3)2·3H2O in 20 mL acetonitrile and 10 mL DMF then poured slowly over the spacer layer. 

The system was allowed to react for 24 hours at room temperature, after which the precipitate 

was recovered by centrifugation at 500 rpm for 25 minutes and washed three times with 10 mL 

acetonitrile. 3-6 hours were allowed for solvent exchange between washes to facilitate a more 

gentle activation process at 150 ˚C, which is lower than previously reported.12, 30 This was done 

to minimize thermal degradation of the surface. The resulting 7 mg of light blue crystalline MOF 

powder was suspended in acetonitrile for storage. This corresponds to a 2.3% yield by mass.  

Nanosheet Characterization: Particle shape was confirmed using a Hitachi SU8230 Field 

Emission Scanning Electron Microscope (SEM) with a landing potential of 1000 V. The SEM 

sample was prepared by drop-coating the particle suspension on a piece of highly oriented 

pyrolytic graphite (HOPG). A Veeco Dimension Atomic Force Microscope (AFM) was used to 

measure the thickness of the nanosheets that had been similarly drop cast onto an atomically flat 

piece of cleaved HOPG. The crystal structure was confirmed by drop-coating on an amorphous 

silicon sample holder and recording the PXRD pattern using a Panalytical X’pert Pro Powder X-

ray diffractometer. Brunauer–Emmett–Teller (BET) surface area was measured using a 

Micrometrics Flowsorb III. Transmission FT-IR spectroscopy was performed on a Bruker Vertex 

70 spectrometer using KBr pellets. Raman spectroscopy was performed using a Bruker Senterra 
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Raman microscope with 0.2 mW (532 nm) laser power integrated over 60 seconds to avoid local 

heating and damage to the sample.  

Temperature Programmed Desorption: Experiments were carried out in an ultrahigh vacuum 

(UHV) chamber with base pressure ~ 10−10 Torr. This system has been described in detail 

previously.31 Relative pressure of gas inside the chamber was measured with a Pfeiffer 

PrismaPlus residual gas analyzer quadrupole mass spectrometer. CuBDC nanosheets were 

deposited on a gold-coated oxygen-free high conductivity copper sample holder by repeated 

drop-coating from the acetonitrile suspension. The sample film was 1 mm thick and covered the 

3.9 cm2 sample bed.  MOF activation was carried out by heating the sample at 150˚ C for 24 

hours. Vapor doses were applied by cooling the sample to 180 K and maintaining 10-7 Torr of the 

desired gas for 40, 160, 640, or 1600 seconds corresponding to 4, 16, 64, or 160 L exposures. 

After dosing, the sample was cooled to 120 K and the chamber pressure was allowed to 

equilibrate. TPD experiments were carried out with a ramp rate of 0.25 K/s, heating the sample 

from 120 K to 400 K. Three trials were conducted for each measurement to test reproducibility. 

The sample stage was mechanically detached from the high-surface area cooling system during 

heating to minimize the background signal, which was measured by exposing the system to the 

same dosing and ramp procedure as the sample. Background subtraction was conducted by linear 

interpolation of the TPD traces.  

Co-adsorption measurements were conducted by dosing the chamber sequentially with 4 L of 

pure water and pure ethanol each at 180 K, followed by cooling to 120 K and heating to 400 K at 

0.25 K/s. This was also repeated in reverse order with the water dose following ethanol.  

Temperature Programmed Desorption Curve-Fit Simulation: MATLAB 2015 was used for all 

curve fitting and simulations. Temperature programmed desorption data was analyzed 
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quantitatively by integrating the boundary value problem in one dimension discussed below. The 

simulated film had a height of 1 mm, which corresponds to the bed depth in the TPD experiment. 

The film was discretized using the central difference approximation with a grain width of 100 

µm. The discretized boundary value problem was integrated over 920 seconds using MATLAB’s 

ode15s stiff ordinary differential equation solver. Nonlinear least squares regression was fit using 

MATLAB’s genetic algorithm for constrained, stochastic optimization.  

4.3 Results and Discussion 
 
4.3.1 Characterization of CuBDC nanosheets 
 

Figure 1 shows various measurements of the particle morphology. Most particles grow into 

well-defined squares of varying sizes visible in the SEM image in Figure 1(a). While there are a 

few large sheets, the majority are under 1 µm2. The smaller sheets are more easily viewed in the 

AFM image in Figure 1(b). The histogram in Figure 1(c) shows that the distribution of sheet 

thicknesses and the average is approximately 9.4 nm. Given that there are 2.11 layers per nm of 

thickness, the sheets are roughly 20 layers thick on average and therefore 5% of copper 

adsorption sites are located on the external surface for fully activated samples. This is a 

significant portion of sites compared to a three-dimensional crystal. For example, in a 1 µm-thick 

crystal, just 0.09% of copper adsorption sites are located on the surface.  
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Figure 4.1 Morphology of CuBDC nanosheets: SEM (a) and AFM (b) images of particles 

on HOPG. Histogram of sheet thickness measured using AFM (c). 
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CuBDC grows rapidly inside the (2�01) plane as coordinate bonds between Cu(II) and 1,4-

benzenedicarboxylate (BDC) form the net-like structure of the individual lamina. It has been 

reported that MOF crystal growth follows a two-step process in which metal ions adsorb to the 

surface before migrating to and binding with an uncoordinated linker.32 For laminar MOFs such 

as CuBDC, this means that adsorbed metal ions either migrate to the sheet’s edge or nucleate a 

new sheet. In this case, nucleation of new lamina is restricted in the reagent-limited growth 

region of the layered reaction setup. This results in particles that are composed of a relatively 

small number of internal lamina. The termination of the dominant plane is simply the face of a 

laminar sheet.  The lateral edges of the sheet are likely composed of dangling BDC linkers since 

an unsaturated copper complex would undergo rapid substitution at the bottom of the reactor 

where completed sheets settle and dissolved linkers are in excess. Carboxylic acid groups at the 

edges are likely to interact with water or ethanol however the minimization of the overall particle 

thickness also minimizes their contribution to the desorption signal. 

Figure 2 illustrates the crystal structure of the CuBDC nanosheets. The PXRD pattern in 

Figure 2a shows only two reflections and these correspond to the (2�01) plane and the higher 

order (4�02) reflection. While the three-dimensional analog’s PXRD pattern has many peaks, 

only these two peaks are visible because the particles lie flat in the plane of the sample holder.12 

Figure 2b shows the crystal structure of CuBDC and its orientation relative to the nanosheet 

geometry. Because of the stacking pattern, the pores do not run normal to the sheet particle’s 

face. As a result, the lengths of pores are somewhat longer than the thicknesses of the particles.  
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Figure 4.2 Powder X-ray diffraction pattern of CuBDC nanosheets (a) and diagram of the 

crystal structure (b), including its orientation with respect to the shape of the nanosheets. 

Copper, oxygen, hydrogen, and carbon atoms are shown in brown, red, white, and grey 

respectively. 
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The BET surface area of the material was measured to be 269 m2/g. Given the large surface 

area, measuring the absolute loading resulting from a given exposure is difficult. The specific 

surface area of the material has been reported as high as 902 m2/g and was achieved using a high 

activation temperature while various wash procedures have been shown to allow partial 

activation at lower temperatures.12, 33 The surface area obtained in this work was achieved by 

sequential solvent exchanges with acetonitrile and dichloromethane followed by thermal 

activation at 150 ˚C and is consistent with Kim et al’s results.34 The procedure followed in our 

work was chosen to minimize thermally induced defects in the lattice that might unnecessarily 

complicate the TPD signal. Additionally, by allowing some crystal domains to remain closed off 

due to the lattice orientation, the fraction of the total surface area that is comprised by the 

external surface is increased from 5% to 17%. Instead of fully loading the MOF film with 

adsorbate, doses were simply measured in Langmuir for consistency and it is assumed that full 

loading wasn’t reached. Indeed, with increasing doses, the resulting change in integrated signal 

intensity did decrease but did not level off.  

Figure 3 shows FT-IR (a) and Raman (b) spectra of activated CuBDC samples that were 

measured to confirm that the pores were clear of organic solvents. The peaks at 2966 cm-1 and 

3069 cm-1 in the FT-IR spectrum correspond to the aromatic C-H stretching modes while 

bending mode overtones can be observed at 1940 cm-1 and 1838 cm-1. The strong absorption at 

1693 cm-1 corresponds to carbonyl C=O groups that terminate the edges of the sheets, this 

matches the broad carboxylic acid O-H peak centered at 3000 cm-1. The C-O stretches of 

coordinated linkers are shifted to lower frequency from the uncoordinated carboxylate groups, 

appearing at 1387 cm-1. The absorptions corresponding to C=C stretching in the aromatic ring of 
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the linker are located at 1425 cm-1, 1508 cm-1, and 1570 cm-1. The broad peak at 3431 cm-1 is 

attributed to water that has filled the activated pores of the material. 

The Raman spectrum largely mirrors the FT-IR spectrum, with the aromatic C-H stretch 

appearing at 3078 cm-1 and the C=C stretch at 1615 cm-1. Peaks at 1425 cm-1 and 1518 cm-1 

correspond to asymmetric and symmetric C-O stretches respectively. The BDC ring stretch can 

be seen at 1141 cm-1. There is no indication that significant concentrations of the solvents used: 

acetonitrile, N, N-dimethylformamide, or dichloromethane, are present in the sample prior to the 

adsorption and TPD measurements.  
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Figure 4.3 FT-IR (a) and Raman (b) spectra of activated CuBDC nanosheets. Note that 

there is no evidence for the presence of solvent in the pores. 
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4.3.2 Qualitative analysis of TPD spectra 
 

TPD was originally developed to measure desorption kinetics from well-defined crystalline 

surfaces.35 Correct application of TPD theory and interpretation of the signal is therefore 

dependent on having a well-controlled and understood MOF sample.  As the preceding analysis 

demonstrates, the CuBDC nanosheet system has been sufficiently controlled such that rigorous 

analysis of the TPD results can be performed. 

Figure 3 shows TPD plots for ethanol and water adsorbed to identical CuBDC samples. Water 

desorption was monitored via the m/z = 18 molecular ion current and has a dominant peak 

centered at 220 K. The behavior of water desorption above 360 K is complicated by a strong 

background signal that is difficult to subtract reliably. None of the peak positions change as a 

function of exposure, indicating that the desorption kinetics are first order. Because the reaction 

is first order and the adsorbed species are stable molecules, we characterize the adsorption of 

water to CuBDC as primarily physical adsorption or strong physisorption.  

A small signal was also observed in the water TPD signal at 170-180 K. The tail is obscured 

by the main peak and it seems to be saturated by exposures lower than 16 L. This signal appears 

in the background spectrum as well and is likely condensation of background water inside the 

chamber that occurred when the stage was cooled below 180 K. 
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Figure 4.4 Temperature programmed desorption plots of water (a) and ethanol (b) from 

CuBDC nanosheets.  
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Ethanol desorption was monitored by the m/z = 31 ion current that corresponds to a [CH2OH]+ 

fragment, which is the dominant peak in the ethanol mass spectrum. The ethanol signal has two 

peaks, the first centered at 213 K and the second at 260 K. This indicates that ethanol molecules 

bind to at least two distinct sites with different activation energies of desorption. The first 

matches water closely while the second has no analog in the water TPD signal, indicating that 

water either is not interacting with these sites or it is interacting with both sites with the same 

binding energy. The ethanol peak at 213 K grows faster with exposure than the peak at 260 K. 

This indicates that the higher energy sites are approaching saturation earlier. The fact that 

saturation of the lower energy sites is not reached implies that these are more abundant and likely 

internal metal sites.  

 We hypothesize that the peak at 260 K in the ethanol signal corresponds to the external metal 

sites because the molecule can bind in a more stable configuration that is sterically inaccessible 

at the interior sites. Figure 5 demonstrates the proposed binding configurations of water and 

ethanol at external and internal sites. Note that water is smaller and the proximity of the aromatic 

rings of the linkers does not influence its adsorption configuration. We propose that the 

minimum energy configuration sees the oxygen associated with the positively polarized copper 

center while the hydrogens are positioned adjacent to the negatively polarized oxygen atoms. 

Alternatively, the ethanol molecule orients at the surface site such that its aliphatic region is 

aligned with the edge of the linker. In this configuration, the ethanol associates via hydrogen 

bonding to an oxygen bound to copper as well as through dispersion forces between the 

hydrocarbons and the edge of the aromatic ring. The X-ray diffraction peak at 16.64˚ is 

associated with the (2�01) plane along which the internal lamina stack. It has a d-spacing of 5.4 

Å and a resulting inter-laminar spacing of 3.3 Å. Due to the small distances between internal 
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sheets and their staggered stacking pattern, edge-on interactions with the aromatic rings of the 

linkers are sterically inaccessible to ethanol molecules adsorbed to internal sites. Therefore, the 

binding strength of ethanol to interior sites is comparable to that of water on both internal and 

external sites.  

 

Figure 4.5. Proposed adsorption configurations of water (a) and ethanol (b) at internal and 

external metal sites. Atoms have been removed from the structure for clarity. Copper, 

oxygen, hydrogen, and carbon atoms are shown in brown, red, white, and grey 

respectively. Adsorbed atoms are highlighted in green. 

 
In view of this hypothesis, the activation energy of ethanol desorption at the external surface 

should be shifted by the strength of the dispersion interaction between the aromatic ring and the 

BDC linker. The excess molar enthalpy of ethanol-benzene mixtures has been reported to be -

14.0 kJ/mol.36 This suggests that the activation energy of desorption of ethanol from external 

surfaces may be increased by approximately half this amount due to the reduced number of 

interactions in the adsorbed state vs. a fully solvated  state in an ethanol-benzene solution. 

4.3.3 Quantitative analysis of TPD signal 
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Conventional quantitative analysis of TPD results assumes that the mass signal, 𝜎𝜎, is 

proportional to the desorption rate, which is the rate limiting step in the experiment.35 In this 

case, diffusion through the sample film and transport occur on much shorter timescales than the 

desorption step. Given a linear temperature ramp with rate 𝛼𝛼 from initial temperature 𝑇𝑇0, the 

TPD signal is proportional to the rate of change of the fractional surface coverage 𝜎𝜎 ∝ 𝜕𝜕𝜃𝜃/𝜕𝜕𝑡𝑡. 

For surfaces with 𝑛𝑛 distinct types of sites the signal is proportional to the sum of the rates of 

change of the fractional coverage of each site 𝜎𝜎 ∝ ∑ 𝜕𝜕𝜃𝜃𝑖𝑖/𝜕𝜕𝑡𝑡𝑛𝑛
𝑖𝑖=1 . The relative site density and 

surface bond vibrational frequency of site 𝑖𝑖 are given by 𝜌𝜌𝑖𝑖 and 𝜈𝜈𝑖𝑖 respectively. 
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(4.1) 

 

Due to the small pore size of CuBDC and the efficient packing enabled by the nanosheet 

geometry, diffusion through the sample bed is slow and its influence can be seen in the rounded 

peaks and long tails of the TPD signals. To extract the kinetic parameters from the signal, the 

diffusion process must be accounted for. This was accomplished by incorporating equation (4.1) 

into a binary desorption-diffusion model. Equation (4.2) is the mass balance for this model based 

on Fick’s law. In this case, the signal is proportional to the flux across the surface of the sample 

film. The concentration 𝐶𝐶 is a function of time and position 𝑧𝑧 and must be solved to simulate the 

signal.  

 𝜕𝜕𝐶𝐶
𝜕𝜕𝑡𝑡

= 𝐷𝐷(𝑡𝑡)
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑧𝑧2

+ �𝜌𝜌𝑖𝑖𝜃𝜃𝑖𝑖𝜈𝜈𝑖𝑖exp �
−Ea,i

R(T0 + αt)�
𝑛𝑛

𝑖𝑖=1

−�𝜌𝜌𝑖𝑖(1 − 𝜃𝜃𝑖𝑖)krev,i

𝑛𝑛

𝑖𝑖

 
(4.2) 

The sample film was 1 mm thick spread over 1 cm2, meaning diffusion in the z-axis dominates 

the mass transfer process and the lateral dimensions can be neglected. The first summation on the 
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right-hand side of the equation is the desorption rate as described in equation (4.1). The second 

summation is the re-adsorption rate, which is dependent only on the abundance of open sites and 

the collisional cross section of those sites; physical adsorption is not an activated process and this 

term is therefore independent of temperature.  The diffusion coefficient is temperature dependent 

and is computed using kinetic theory as shown in equation (4.3).  

 
𝐷𝐷(𝑡𝑡) = min{𝜆𝜆, 𝑑𝑑}

δ
3�

8𝑘𝑘𝐵𝐵(𝑇𝑇0 + 𝛼𝛼𝑡𝑡)
𝜋𝜋𝑚𝑚𝑔𝑔𝑎𝑎𝑔𝑔

 
(4.3) 

The mass of the gas is given by 𝑚𝑚𝑔𝑔𝑎𝑎𝑔𝑔. The coefficient δ is an empirical correction for the 

tortuosity and constrictivity of the pore structure. The parameters λ and 𝑑𝑑 are the kinetic mean 

free path and pore diameter respectively. The initial condition is complete coverage of surface 

sites with an otherwise evacuated film. The system is bounded by a no-flux Neumann boundary 

condition at the bottom surface and zero concentration Dirichlet boundary condition at the upper 

surface, corresponding to the ultra-high vacuum environment of the chamber. No analytical 

solution to equation (4.2) exists so this system was solved using the finite difference 

approximation and fit to the data according to the least squares criterion. The sum of squared 

residuals is non-linear in this case and, in addition to being non-convex, the solution space also 

contains numerically unstable combinations of parameters. To constrain the curve fitting process 

to stable parameter choices and avoid convergence to sub-optimal local minima, MATLAB’s 

genetic algorithm was used to minimize the sum of squared residuals. The fit parameters 

included the activation energies Ea,i, initial site concentrations 𝜌𝜌𝑖𝑖𝜃𝜃𝑖𝑖,0, diffusion coefficient 

correction factor δ, and re-adsorption rate constants krev,i. The vibrational frequency was 

assumed to be 1013 s-1, which is typical of metal-hydroxyl physisorption interactions. Both the 

simulated and experimental signals were normalized to allow comparison.  
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Figure 4.6 shows fits for 16 L exposure of water (a) and 4 L exposure of ethanol (b). These 

exposures were chosen for the fitting procedure because each had the best peak definition of the 

exposure levels surveyed. This experiment was repeated and fit three times for each gas; the 

extracted parameters are given in tables 4.1 and 4.2. The small variances in the extracted 

parameters reflect the reproducibility of the experiment and the close fit of the proposed model. 

The water signal was truncated at 360 K because, as mentioned previously, above this 

temperature the strong background signal obscures the signal from the sample. 
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Figure 4.6 Overlays of simulated (solid black line) and measured (dotted red line) 

desorption profiles of 16L water (a) and 4L ethanol (b).  
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Each fit parameter corresponds to a different aspect of the signal’s shape. The activation 

energies dictate where the centers of the peaks are located. The site concentrations correspond to 

the overall intensity of each peak and because the total loading of the sample was unknown these 

may be interpreted as the initial loading per unit area. The empirical diffusion coefficient 

correction 𝛿𝛿, which measures deviation from the kinetic Knudsen diffusion model given by 

equation (4.3), impacts the weight of the tails of the signals, particularly at higher temperatures, 

far from the peak. Smaller values of 𝛿𝛿 cause the tail to be heavier with the signal taking longer to 

return to the baseline. Only one value of 𝛿𝛿 is extracted for a given species and it is a measure of 

mass transfer rate averaged over transport both inside and outside the pores. The re-adsorption 

rate 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖  can be interpreted as being proportional to the scattering cross section of an 

adsorption site, which is only relevant at temperatures near the desorption temperature or at high 

pressures. Thus, the re-adsorption rate constant determines the roundedness of the top of the 

peak. 

 

Table 4.1 Fit parameters for pure water desorption 

Peak Position (K) 𝐸𝐸𝑎𝑎 (kJ/mol) 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 (s-1) 

180  44 ± 2 1.1 ± 1.7 

220  58 ± 1 0.40 ± 0.21 

 

Table 4.2 Fit parameters for pure ethanol desorption 

Peak Position (K) 𝐸𝐸𝑎𝑎 (kJ/mol) 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 (s-1) 

213  58 ± 1 0.2 ± 0.01 

260  66 ±0 .4 0.8 ± 0.05 
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The high temperature peak in the ethanol signal corresponds to an activation energy of 

desorption that is 8 kJ/mol greater than that of the 213 K peak. This is consistent with the 

hypothesis posited on page 14 that the activation energy may be shifted by interactions with the 

aromatic ring. The measured value of 8 kJ/mol is roughly half that of the excess molar enthalpy 

of ethanol-benzene mixtures. As already mentioned, this could be due to the reduced interactions 

at the surface relative to a more fully solvated ethanol molecule. The deviation from ethanol-

benzene mixtures may also be attributed to the electron withdrawing carboxylate groups of 

terephthalic acid. The values of 𝛿𝛿 extracted from the water and ethanol data were and 0.3 ± 0.13 

and 0.2 ± 0.02 respectively. This discrepancy may be due to attractive interactions between 

diffusing ethanol and the organic linkers that is not explicitly accounted for in the model. 

 

4.3.4 Co-adsorption of water and ethanol 
 

To better understand the differences between internal and surface sites as well as the 

interactions between adsorbates, simultaneous desorption of water and ethanol was measured. 

The shape of the desorption profile was independent of the order in which the sample was 

exposed to the gases and the ethanol signal did not change compared to that of the pure exposure. 

However, the water signal is dramatically different in the presence of ethanol. Figure 7 shows a 

fit overlay of typical TPD profiles of co-adsorbed water and ethanol from CuBDC nanosheets. 

The main difference in water’s TPD signal in the presence of ethanol is a new peak centered at 

260 K. The extracted desorption parameters averaged over three trials are given in table 3. The 

low temperature edge feature and high temperature tail of the water signal were excluded from 

the set in the fit algorithm. 
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The activation energy of desorption associated with the water peak centered at 220 K is 

unchanged between the two experiments while the activation energy associated with the higher 

temperature peak is 68 kJ/mol. This is 2 kJ/mol larger than the activation energy extracted from 

the higher temperature ethanol peak centered at 258 K.  This can be explained by contributions 

of both co-adsorbed surface water-ethanol complexes and singly adsorbed surface ethanol 

molecules contributing to the TPD signal. Given the similarities in desorption activation energy 

it is impossible to separate these components of the signal. 
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Figure 4.7 TPD traces of co-adsorbed ethanol and water from CuBDC (4 L each). 

Measured mass 18 (violet, water) and mass 31 (black, ethanol) signals shown as open 

circles. Simulated signals shown as solid lines of the corresponding color. 

 
Table 4.3 Fit parameters for co-adsorbed gas desorption profiles 

Adsorbate Peak 

Position 

𝐸𝐸𝑎𝑎 (kJ/mol) 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖(s-1) 

H2O 225 58 ± 0.2 0.60 ± 0.3 

H2O 260 68 ± 0.7 1.1 ± 0.6 

Ethanol 214 57 ± 0.3 0.2 ± 0.01 

Ethanol 258 66 ± 0.3 1.1 ± 0.2 
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The diffusion coefficient correction terms 𝛿𝛿 extracted for co-adsorbed water and ethanol were 

0.05 ± 0.01 and 0.3 ± 0.02 respectively. The slight difference between the values for co-adsorbed 

ethanol and pure ethanol can be attributed to the fact that the co-adsorption experiments were run 

after the single-gas experiments and the packing density of the sample bed may have changed 

after repeated heating and cooling cycles. The change in the correction term for water is much 

larger because much of the higher energy peak’s tail is obscured, reducing the accuracy of the fit.  

A result of the higher temperature water signals obscurity is that mechanistic data is difficult to 

extract. However, the retention of water at higher temperatures in the presence of ethanol 

suggests that the more strongly interacting ethanol molecules, which we have attributed to 

surface sites, interact with water to form stable hydrogen-bond complexes. A possible 

configuration for such a complex can be found in Figure 4.8. In this model, the water hydrogen 

that is bent away from the linker oxygen in the single adsorption case is instead associated with 

the ethanol oxygen. 
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Figure 4.8 Proposed water-ethanol adsorption complex at an external CuBDC surface site 

shown from top-down (a) and side (b) views. Internal lamina omitted for clarity. Copper, 

oxygen, hydrogen, and carbon atoms are shown in brown, red, white, and grey 

respectively. 
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The interactions between water and ethanol in solution are very complicated and have been the 

topic of active research for decades.24-26 Ethanol-water hydrogen bond enthalpies range from 16-

25 kJ/mol in binary mixtures.37 Thus, the retention of water at higher temperatures in the co-

adsorbed system cannot be explained simply by water hydrogen bonding to ethanol at the 

surface. Rather, it is probable that water and ethanol form a complex at external surface sites 

with ethanol oriented as described above. Water is then positioned such that it is involved in 

three hydrogen bonds: 1) with ethanol’s hydroxyl hydrogen, 2) with a carboxylate oxygen, and 

3) with ethanol’s oxygen. This configuration, shown in Figure 4.8, would include enough 

hydrogen bonds to equal the measured activation energy of desorption. 

4.3 Conclusion 
 

We have examined the interactions of pure and co-adsorbed water and ethanol with CuBDC 

nanosheets. Water desorbs with activation energies of 44±2 kJ/mol at edge sites and 58±1 kJ/mol 

at internal and surface sites while ethanol desorbs with activation enthalpies of 58±1 and 66±0.4. 

Co-adsorption of water and ethanol demonstrated the importance of adsorbate behavior at MOF 

external surfaces. Specifically, adsorbate-adsorbate interactions at the surface cause water to 

remain at higher temperatures, desorbing with an activation energy of 68 ± 0.7kJ/mol. This work 

shows that interactions at the external surfaces of MOF crystals can be probed using nanosheet 

analogs and that quantitative kinetic and transport parameters can be reliably extracted from 

diffusion-impacted TPD signals. Given that the adsorption/desorption behaviors of water and 

ethanol with this material are similar when co-adsorbed, its utility in separations will depend on 

the variation in the diffusivity mainly within the pores.  
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CHAPTER 5. VARIATIONAL BAYESIAN INFERENCE FOR SURFACE 
SIGNAL ANALYSIS 

 

5.1 Introduction 
 

It was shown in chapter 2 that, given sufficient peak resolution, nonlinear surface signals 

can be decomposed reliably. However, the analysis of metal-organic framework surfaces 

discussed in chapter 4 showed that such resolution may be unavailable. In such cases, the analyst 

proposes a number of shape and position parameters based on their knowledge of the system and 

refines this knowledge using the subsequent least squares fit. This external knowledge, which 

may include the sample’s crystal structure, stoichiometry, and polar functionality, is then used to 

qualitatively justify the choice of model parameters in the context of the fit results. The 

fundamental drawback of combining qualitative and quantitative arguments in this way is that it 

obscures the assumptions that led to the initial choice in fit parameters.  

Bayesian methods offer an alternative perspective to data modelling that interprets the fit 

parameters themselves to be random variables.1 The data analyst is able to encode their 

independent knowledge or beliefs in the possible range of values of these random variables using 

probability distribution functions (PDFs). These PDFs are called priors, because they represent 

the analyst’s knowledge prior to examining the data set. Bayes theorem is then used to update the 

prior using the data to construct a new distribution called the posterior. Thus, the posterior 

estimate of the fit parameters represents a quantitative reconciliation of the external knowledge 

of the system with the information contained in the data and typically provides a more 

conservative fit than a basic least squares approach. The alternative to Bayesian statistics is 

called frequentist statistics and this school of thought considers the experimental data to contain 



 68 

all possible information regarding the system being studied. The data modeling approaches that 

have been applied in previous chapters are frequentist methods.  

Bayesian methods have historically been criticized in the statistics community for the 

subjective nature of the prior.1 In many contexts such criticism may be warranted, however, in 

the case of nonlinear chemical signal analysis the subjectivity of the prior can be viewed as 

advantageous. This is because even without the prior, the analyst is imposing an inherently 

subjective decision in the choice of the number of parameters to use. Moreover, given that 

nonlinear fit algorithms typically find local minima, the choice in the initial guess is also 

subjective. The construction of the prior, which may also be used as the initial guess in iterative 

fitting algorithms, forces the analyst to enumerate and quantify their assumptions independent of 

the spectral data. This results in high fidelity data analysis and reduces the ambiguity of scientific 

arguments. 

Bayesian models, also known as probabilistic models, have experienced a recent surge in 

popularity due to their application by the machine learning community. They have also been 

widely applied in analytical chemistry.2 Later sections of this chapter will derive an advanced 

method for Bayesian nonlinear regression analysis. With this in mind, a brief review of 

conditional probability theory and Bayesian statistics is provided in the next section. Variational 

approaches for approximating the posterior are introduced in section 3. These are directly 

analogous to variational methods in computational chemistry. This approach is applied naïvely to 

Raman spectral analysis in section 4 using Google’s Edward probabilistic modeling library.3 

Application of variational inference becomes more complicated when no analytical form for the 

model function is known, as in the case of TPD modeling.4 Therefore, the final two sections of 
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this chapter develop a stochastic gradient construction approach for numerical models and 

applies it to TPD signal decomposition.  

 

5.2 Bayesian Statistics  
 

  The following section is a review of probability theory and Bayesian statistics. These 

theorems range from 70 to 300 years old and can be found in many undergraduate and graduate 

level texts. For a complete development of this theory, see David Mackay’s Information Theory, 

Inference, and Learning Algorithms, on which the spirit of this section is modeled.1 

 As the name suggests, Bayesian statistics involves the application of Bayes’ Theorem to 

statistical inference. Bayes’ Theorem is a fundamental law of probability theory that allows the 

knowledge of a distribution to be updated as new information arises. We will begin by briefly 

reviewing the derivation of Bayes’ Theorem using conditional probabilities.  

Definition 5.1  

Consider a discrete space 𝛺𝛺 = {𝜔𝜔1,𝜔𝜔2, …𝜔𝜔𝑛𝑛} and define a measure 𝑃𝑃 on 𝛺𝛺 such that 0 ≤

𝑃𝑃(𝜔𝜔𝑖𝑖) ≤ 1 ∀ 𝜔𝜔𝑖𝑖 ∈ 𝛺𝛺. We say 𝑃𝑃:𝛺𝛺 → [0,1] ∈ ℝ is a probability measure if  

1. 𝑃𝑃({∅}) = 0 and 𝑃𝑃(𝛺𝛺) = 1 where {∅} is the empty set. 

2. 𝑃𝑃 satisfies the countable additivity property for all countable collections {𝐸𝐸𝑖𝑖} of pairwise 

disjoint sets: 

𝑃𝑃 �� 𝐸𝐸𝑖𝑖
𝑖𝑖∈𝐼𝐼

� = � 𝑃𝑃(𝐸𝐸𝑖𝑖)
𝑖𝑖∈𝐼𝐼
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Note that definition 5.1 implies that the sum of the probabilities of events in Ω sum to 1. This 

definition also provides a formula for the conditional probability of an event 𝐴𝐴 given some other 

event 𝐵𝐵. 

 
𝑃𝑃(𝐴𝐴|𝐵𝐵) =

𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵)
𝑃𝑃(𝐵𝐵)

 
(5.1) 

𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) is the probability that events 𝐴𝐴 and 𝐵𝐵 occur together. If 𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐴𝐴) the events 𝐴𝐴 

and 𝐵𝐵 are said to be independent.  

Definition 5.2 

A function 𝑋𝑋:𝛺𝛺 → ℝ is a real valued random variable if it is measurable under some measure 𝑃𝑃 

on 𝛺𝛺.  

We call 𝑃𝑃(𝑋𝑋) the probability distribution of 𝑋𝑋 and 𝑃𝑃(𝑋𝑋,𝑌𝑌) the joint probability distribution of 𝑋𝑋 

and another random variable 𝑌𝑌. We can define the conditional probability distribution of 𝑋𝑋 given 

𝑌𝑌 analogously to equation (5.1). 

 
𝑃𝑃(𝑋𝑋|𝑌𝑌) =

𝑃𝑃(𝑋𝑋,𝑌𝑌)
𝑃𝑃(𝑌𝑌)

 
(5.2) 

Note that we have dropped the set notation because we random variables are functions, rather 

than subsets, of Ω. Equation (5.2) is symmetric in that it can be written equivalently as 

𝑃𝑃(𝑌𝑌|𝑋𝑋)𝑃𝑃(𝑋𝑋) = 𝑃𝑃(𝑋𝑋|𝑌𝑌)𝑃𝑃(𝑌𝑌). Now that we can write the conditional probability of 𝑋𝑋 in terms of 

𝑌𝑌, suppose we wanted to recover the 𝑃𝑃(𝑋𝑋). In that case, denote the domain of 𝑌𝑌 as {𝑦𝑦𝑖𝑖} and 

compute 

 
𝑃𝑃(𝑋𝑋) = � 𝑃𝑃(𝑋𝑋|𝑌𝑌 = 𝑦𝑦𝑖𝑖)

𝑦𝑦𝑖𝑖∈{𝑦𝑦𝑖𝑖}

𝑃𝑃(𝑌𝑌 = 𝑦𝑦𝑖𝑖). 
(5.3) 

This computation is known as marginalization. Bayes’ theorem follows from this result: 
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𝑃𝑃(𝑌𝑌|𝑋𝑋) =

𝑃𝑃(𝑋𝑋|𝑌𝑌)𝑃𝑃(𝑌𝑌)
∑ 𝑃𝑃(𝑋𝑋|𝑌𝑌 = 𝑦𝑦𝑖𝑖)𝑦𝑦𝑖𝑖∈{𝑦𝑦𝑖𝑖} 𝑃𝑃(𝑌𝑌 = 𝑦𝑦𝑖𝑖)

 
(5.4) 

In this context, 𝑃𝑃(𝑌𝑌) is called the prior, as it represents the belief in the probability of 𝑌𝑌 before 

observing 𝑋𝑋. 𝑃𝑃(𝑋𝑋|𝑌𝑌) is the called the likelihood function of 𝑋𝑋 given 𝑌𝑌 and 𝑃𝑃(𝑋𝑋) =

∑ 𝑃𝑃(𝑋𝑋|𝑌𝑌 = 𝑦𝑦𝑖𝑖)𝑦𝑦𝑖𝑖∈{𝑦𝑦𝑖𝑖} 𝑃𝑃(𝑌𝑌 = 𝑦𝑦𝑖𝑖) is called the evidence. The posterior 𝑃𝑃(𝑌𝑌|𝑋𝑋) is the probability 

distribution of 𝑌𝑌 given the observation of 𝑋𝑋. Note that this necessarily can change for different 

specific values of X and therefore the posterior is at least a bivariate function. These results 

transfer readily to the continuous case where the probability distribution functions 𝑃𝑃(𝑋𝑋) and 

𝑃𝑃(𝑌𝑌|𝑋𝑋) are replaced with continuous probability density functions 𝑓𝑓𝑋𝑋(𝑋𝑋) and 𝑓𝑓𝑋𝑋|𝑌𝑌(𝑌𝑌|𝑋𝑋). The 

summation in the marginalization computation is replaced with an integration over the domain of 

𝑓𝑓𝑋𝑋(𝑋𝑋). 

 In the context of data modeling, equation 4 can be written to reflect prior and posterior 

estimates of the model parameter vector 𝝅𝝅 given a set of observations of the data vector 𝒙𝒙. We 

also introduce a vector of hyperparameters 𝚼𝚼 that define the prior 𝑃𝑃(𝝅𝝅|𝚼𝚼).  

 
𝑃𝑃(𝝅𝝅|𝒙𝒙,𝚼𝚼) =

𝑃𝑃(𝒙𝒙|𝝅𝝅,𝚼𝚼)𝑃𝑃(𝝅𝝅|𝚼𝚼)
𝑃𝑃(𝒙𝒙| 𝚼𝚼)  

(5.5) 

Equation 5 can be solved analytically in very simple cases. Such solutions are covered in detail 

elsewhere and are outside the scope of this work. Rather than cover these, we will skip to the 

application of variational Bayesian inference, in which a test distribution is used to approximate 

the posterior via an optimization algorithm. 

 

5.3 Gradient Ascent Variational Bayesian Inference  
 
 Variational methods are commonly employed in statistical physics and quantum 

chemistry to represent a complex distribution (e.g. of electrons in space) with a simpler, 
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computationally tractable approximation.5-6 These methods seek to optimally approximate the 

true distribution of particles in a system by minimizing the energy of the approximating function 

over its distribution parameters. Once a sufficiently accurate approximation of the particle 

distribution is found, it can be generalized to predict the physical properties of the system. 

Variational Bayesian inference applies a mechanistically identical procedure to 

approximate a complex posterior 𝑃𝑃(𝝅𝝅|𝒙𝒙, 𝚼𝚼). Claude Shannon’s generalized the concept of 

statistical entropy to abstract probability distributions in his development of information theory.7 

This provides a clear path to the formulation of an energy function of an approximating 

distribution 𝑄𝑄(𝝅𝝅;𝝍𝝍) with variational parameters 𝝍𝝍. Information theoretic entropy is introduced 

here and will be denoted by ℍ to distinguish it from the physical entropy 𝕊𝕊. Though the 

definitions of these two notions of entropy are mathematically identical, the contexts in which 

they are applied are quite different and this distinction in notation will be enforced to avoid 

confusion. The following definitions will be used to derive the variational Bayesian inference 

algorithm.  

 

Definition 2.1: Let a sample space 𝑋𝑋 and probability measure  𝑃𝑃  be given. Then the Shannon 

information content of an outcome 𝑥𝑥 ∈ 𝑋𝑋 is given by  

ℎ(𝑥𝑥) = ln
1

𝑃𝑃(𝑥𝑥)
.  

 

The information theory literature typically defines the Shannon information content using the 

base-2 logarithm.1 This is because of the field’s historic alignment with computer science and the 

related importance of the binomial distribution of strings of binary bits. We will be primarily 

concerned with exponential distributions and thus it is more convenient to define the Shannon 
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information with the natural logarithm. Units of Shannon information defined as such are 

measured in units called nats, which correspond to increments of Euler’s number.  

Definition 2.2: Let a sample space 𝑋𝑋 and probability measure  𝑃𝑃  be given. Then the information 

entropy of the distribution P is given by 

ℍ[𝑃𝑃] = �𝑃𝑃(𝑥𝑥)ln
1

𝑃𝑃(𝑥𝑥)
𝑚𝑚∈𝑋𝑋

. 

If the sample space 𝐴𝐴 is continuous then we use the differential entropy: 

ℍ[𝑃𝑃] = � 𝑃𝑃(𝑥𝑥)ln
1

𝑃𝑃(𝑥𝑥)
𝑑𝑑𝑥𝑥

∞

−∞

. 

 

Intuitively, the Shannon entropy of a probability distribution is the expected value of the 

information content of the distribution. Entropy’s additive properties allow us to define the 

following measure to compare two distributions. 

Definition 2.3: The Kullback-Leibler divergence between distributions 𝑄𝑄(𝑥𝑥) and 𝑃𝑃(𝑥𝑥) that are 

defined over the same sample space 𝐴𝐴 is 

𝐷𝐷𝐾𝐾𝐾𝐾(𝑄𝑄||𝑃𝑃) = �𝑄𝑄(𝑋𝑋)
𝑄𝑄(𝑥𝑥)
𝑃𝑃(𝑋𝑋)

𝑚𝑚∈𝑋𝑋

. 

As with the entropy, the differential analog for continuous sample spaces is  

𝐷𝐷𝐾𝐾𝐾𝐾(𝑄𝑄||𝑃𝑃) = � 𝑄𝑄(𝑥𝑥)
𝑄𝑄(𝑥𝑥)
𝑃𝑃(𝑥𝑥)

𝑑𝑑𝑥𝑥
∞

−∞

. 

Also known as the relative entropy, this function satisfies 𝐷𝐷𝐾𝐾𝐾𝐾(𝑄𝑄||𝑃𝑃) ≥ 0 with equality only if 

𝑃𝑃 = 𝑄𝑄. The Kullback-Leibler divergence is an imperfect analog of the difference between two 

distributions, with 𝐷𝐷𝐾𝐾𝐾𝐾(𝑄𝑄||𝑃𝑃) ≠ 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃||𝑄𝑄) in general. 
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The Kullback-Leibler divergence provides a scalar-valued measure of the accuracy of the 

approximating distribution that approaches zero as 𝑄𝑄 approaches 𝑃𝑃. Indeed, it can be shown that 

the energy function for variational methods in statistical physics is equal to the relative entropy 

up to some additive constant.8 Thus, we write the Kullback-Leibler divergence of the 

approximate distribution 𝑄𝑄(𝝅𝝅;𝝍𝝍) from the target distribution 𝑃𝑃(𝝅𝝅|𝒙𝒙,𝑯𝑯). 

 
𝐷𝐷𝐾𝐾𝐾𝐾�𝑄𝑄(𝝅𝝅;𝝍𝝍)||𝑃𝑃(𝝅𝝅|𝒙𝒙,𝚼𝚼)� = � 𝑄𝑄(𝝅𝝅;𝝍𝝍)ln

𝑄𝑄(𝝅𝝅;𝝍𝝍)
𝑃𝑃(𝝅𝝅|𝒙𝒙,𝚼𝚼)𝑑𝑑

𝑘𝑘𝜃𝜃
∞

−∞

 
(5.6) 

 
= � 𝑄𝑄(𝜽𝜽;𝝍𝝍)ln

𝑄𝑄(𝜽𝜽;𝝍𝝍)
𝑃𝑃(𝒙𝒙,𝝅𝝅|𝚼𝚼)𝑑𝑑

𝑘𝑘𝜃𝜃
∞

−∞ 

− � 𝑄𝑄(𝜽𝜽;𝝍𝝍)ln𝑃𝑃(𝒙𝒙|𝚼𝚼)𝑑𝑑𝑘𝑘𝜃𝜃
∞

−∞ 

 

 

(5.7) 

 
= � 𝑄𝑄(𝜽𝜽;𝝍𝝍)ln

𝑄𝑄(𝜽𝜽;𝝍𝝍)
𝑃𝑃(𝒙𝒙,𝝅𝝅|𝚼𝚼)𝑑𝑑

𝑘𝑘𝜃𝜃
∞

−∞ 

+ ln
1

𝑃𝑃(𝑋𝑋|𝐻𝐻)
. 

(5.8) 

The term in the denominator in equation (5.6) is the called the joint likelihood function and is the 

product of the likelihood function and the prior probability distribution function. Dropping the 

constant entropy term from (5.6) and expanding about the ratio in the logarithm yields a 𝝅𝝅-

dependent entropy term and an expectation over 𝜽𝜽 of the log joint likelihood function. We take 

this expression as the objective function 𝐹𝐹(𝜽𝜽) of the variational Bayesian inference procedure, 

this is also called the free energy function.9 

 𝐹𝐹(𝝅𝝅) = −(ℍ�𝑄𝑄(𝝅𝝅;𝝍𝝍)] + 𝔼𝔼𝑄𝑄[ln𝑃𝑃(𝒙𝒙,𝝅𝝅|𝚼𝚼)]� (5.7) 

Note that for a uniform prior distribution 𝐹𝐹(𝝅𝝅) reduces to the log-likelihood function given in 

chapter 2. Thus, variational Bayesian inference is a natural generalization of maximum 

likelihood estimation to more general probabilistic models. To minimize the objective 𝐹𝐹(𝝅𝝅), we 
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seek to maximize the sum inside the parentheses in equation (5.7). As with nonlinear least 

squares, we can apply line search methods using the gradient of the objective function 

 ∇𝝍𝝍𝐹𝐹(𝝅𝝅) = ∇𝝍𝝍ℍ[𝑄𝑄(𝝅𝝅;𝝍𝝍)] + ∇𝝍𝝍𝔼𝔼𝑄𝑄[ln𝑃𝑃(𝒙𝒙,𝝅𝝅|𝚼𝚼)]. (5.8) 

A source of complexity in the implementation of optimization algorithms using equation (5.8) is 

the presence of intractable expectation terms in the second term on the right-hand side of the 

equation. In such cases a stochastic search vector must be constructed using Monte Carlo 

sampling. This will turn out to be the case in the TPD fitting problem but before we address this 

in sections 5 and 6, we will demonstrate the technique with Raman spectral fitting  

 

5.4 Probabilistic Raman Fitting 
 

Raman spectra provide bond vibrational data via inelastic Raman scattering processes. These 

processes are not surface sensitive. However, porous carbide derived carbons are amorphous 

porous materials with such large specific surface areas that they can be considered to have no 

bulk domain.10  

In this study, carbide derived carbons were synthesized by exposing titanium carbide to chlorine 

gas at elevated temperatures. The gas etched the titanium carbide to produce titanium chloride 

gas, leaving microporous amorphous carbon material behind. The specific surface area of the 

material was measured by our collaborators to be roughly 3000 m2/g but the distribution of 

functional groups within the material was unknown. Given the stoichiometry of the synthesis 

reaction it was reasonable to assume that the material contained isolated remnant domains of 

unreacted titanium carbide, and some concentration of alkyl halides, alkane, alkene, and alkyne 

groups, as well as aromatics. Carbonyl and alcohol groups were also expected to be present due 
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to post-synthesis treatments with sodium hydroxide. The sorption properties of the material are 

heavily dependent on the distribution of functional groups in the material.  

The chemical functionalities in synthesized samples were studied using X-ray photoelectron 

spectroscopy (XPS). These results yielded hypothetical concentrations of various functional 

groups, but the features were poorly resolved due to the wide range of possibilities. To refine this 

estimate, Raman spectra of the samples were collected with a Bruker Senterra Raman 

microscope.  

The goal of this work was to use the information obtained from XPS analysis as well as 

the stoichiometry of the synthesis reaction to provide a rational fit to the Raman signal. As can 

be seen in figure 1, the Raman signal has some structure, but it is obscured by heterogeneous 

broadening that results from the amorphous structure of the CDC. Given the extent of this 

broadening, we can conclude that the Raman signal is dominated by a Gaussian line-shape and 

proceed to fit the peaks without attempting to deconvolute the Lorentzian contribution that 

results from excited state lifetime uncertainty due to quantum operator non-commutation. 

Therefore, the overall model function 𝑓𝑓 is a mixture of Gaussian line shapes in which each 

component peak 𝑖𝑖 has a corresponding position 𝑝𝑝𝑖𝑖, broadening 𝑏𝑏𝑖𝑖, and intensity 𝜂𝜂𝑖𝑖 parameter.  

 
𝑓𝑓(𝜈𝜈) = �

𝜂𝜂𝑖𝑖
�2𝜋𝜋𝑏𝑏𝑖𝑖

𝑒𝑒
−

(𝜈𝜈−𝑝𝑝𝑖𝑖)2

𝑏𝑏𝑖𝑖
2

𝑛𝑛

𝑖𝑖=1

 
(5.9) 

Each parameter 𝑝𝑝𝑖𝑖, 𝑏𝑏𝑖𝑖, and 𝜂𝜂𝑖𝑖 in turn has a set of hyperparameters associated with the prior 

distributions and approximate posterior distributions 𝑄𝑄𝑖𝑖. Each parameter is modeled as a 

Gaussian normal distribution with mean 𝜇𝜇 and variance 𝜎𝜎2. The prior distributions reflect initial 

beliefs resulting from XPS analysis that was performed by a collaborating group. Tables 5.1 and 

5.2 give the mean values of the prior Gaussian Normal distributions for untreated and treated 
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samples respectively. Standard deviations were chosen to be 5 wavenumbers for the position and 

broadening priors and 5 for the intensity priors. Variational Bayesian inference was run for 5000 

iterations. The resulting curve fits are shown in Figure 5.1. The posterior hyperparameters are 

listed in Tables 5.3 and 5.4.  
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Table 5.1 Prior distribution parameters for CDC sample without NaOH treatment 

Mean Position Prior (cm-1)  Mean Broadening Prior (cm-1) Mean Intensity Prior 

250 100 50.0 

355 100 70.0 

600 100 25.0 

975 100 25.0 

1150 100 2.70 

1190 100 6.30 

1249 100 2.70 

1275 100 12.5 

1355 100 100.0 

1495 100 20.0 

1565 100 100.0 

1700 100 56.35 

2450 100 90.0 

2800 100 90.0 
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Table 5.2 Prior distribution parameters for CDC sample with NaOH treatment 

Mean Position Prior (cm-1)  Mean Broadening Prior (cm-1) Mean Intensity Prior 

600 100 27 

975 100 50 

1150 100 15 

1190 100 63 

1249 100 4.38 

1275 100 20 

1355 100 100 

1395 100 40 

1400 100 20 

1565 100 100 

1700 100 24 

2650 40 30 

2800 100 10 
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Figure 5.1 Raman spectra with Gaussian fits by variational Bayesian inference. Spectra (a) 

and (c) were recorded from samples without exposure to sodium hydroxide while spectra (b) 

and (d) were measured from exposed samples. Distributions of parameters for spectra (a) 

and (b) are given in tables 5.3 and 5.4 respectively. 
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Table 5.3 Posterior Distribution Parameters for untreated sample 

Intensity 

Mean  

 Intensity 

Standard 

Deviation 

Broadening 

Mean (cm-1) 

Broadening 

Standard Deviation  

(cm-1) 

Position 

Mean (cm-1) 

Position 

Standard 

Deviation (cm-1) 

28.3 0.03 134.0 0.11 196.6 0.44 

53.4 0.03 94.9 0.04 389.2 0.05 

53.1 0.01 47.4 0.04 571.5 0.01 

44.9 0.03 81.7 0.02 1047.02 0.02 

18.7 0.14 25.7 0.01 1094.45 0.01 

12.3 0.15 92.1 0.03 1146.72 0.06 

29.4 0.001 85.9 0.04 1155.73 0.07 

34.7 0.04 128.5 0.06 1213.44 0.09 

117.9 0.02 66.9 0.01 1352.6 0.01 

36.5 0.03 66.5 0.05 1462.87 0.04 

114.0 0.01 62.8 0.01 1570.16 0.01 

29.1 0.024 141.5 0.01 1701.96 1.50 

135.4 0.05 133.8 0.02 2473.41 0.01 

97.1 0.015 122.7 0.04 2747.65 0.01 
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Table 5.4 Posterior Distribution Parameters for NaOH treated sample 

Intensity 

Mean  

 Intensity 

Standard 

Deviation 

Broadening 

Mean (cm-1) 

Broadening 

Standard Deviation  

(cm-1) 

Position 

Mean (cm-1) 

Position 

Standard 

Deviation (cm-

1) 

19.3 0.02 160.9 0.06 519.4 0.3 

13.4 0.01 137.0 0.02 977.3 0.1 

1.0 0.004 108.2 1.2 1165.8 18.2 

48.9 0.01 100.8 0.03 1212.2 0.02 

1.3 0.005 110.0 0.60 1252.5 3.16 

11.3 0.03 68.0 0.20 1293.4 0.12 

96.0 0.02 82.9 0.01 1367.0 0.02 

33.5 0.02 90.85 0.07 1402.2 0.05 

12.6 0.01 95.5 0.10 1406.8 0.20 

106.2 0.02 54.17 0.01 1571.5 0.007 

20.7 0.02 143.8 0.14 1714.4 1.125 

14.6 0.01 77.2 0.08 2625.9 0.11 

57.9 0.01 183.8 0.03 2875.4 0.08 
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The posterior distributions in tables 5.3 and 5.4 can be used to construct posterior 

intervals. Posterior intervals are analogous to confidence intervals in the frequentist setting. The 

result of the inference procedure is that given the prior estimates of the parameters and the 

Raman data, very narrow estimates for the posterior parameter values were constructed. Note 

that in many cases the intensity of peak not present in the data was sent to zero.  

 There are a number of improvements that could be made to this analysis. The first is to 

replace the normal models with more appropriate distributions. The position term can be 

assumed under the central limit theorem to be normally distributed given that it’s the mean of the 

sum of a large number of random variables, each corresponding to a single photon scattering 

process. However, there is no reason to believe that the intensity or the broadening terms should 

follow this distribution. Indeed, the broadening term is the variance in the Gaussian distribution 

for which the position is the mean and should be expected to be chi-squared distributed. The 

distribution of the intensity parameter is less clear because it relates to both the concentration of 

the associated bond as well as the scattering probability of its vibrational mode. Given that the 

parameter must be non-negative and that the majority of its probability density should be 

localized about its mean, a non-central chi-squared distribution may suffice. Further 

improvements would involve using multivariate distributions to model collections of parameters 

in order to encode correlations between them. At the time this analysis was conducted, Google’s 

Edward library for probabilistic models supported such improvements but its limited 

documentation restricted their implementation.  

 

5.5 Stochastic Search for Intractable Expectation Gradients 
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The Edward library is useful for rapid prototyping when the model function can be 

analytically specified. However, it does not currently support sequentially defined model 

functions and therefore numerical approximations of solutions to differential equations. This 

motivated the development of software in C++ to couple variational inference with low-latency 

ODE integration using the strategy discussed in chapter 2. This section discusses an 

implementation of variational inference originally developed by the machine learning 

community and published in 2012.9 It has been tailored to the specific requirements of 

numerically integrated ODE model functions.  

Equation 5.8 is the sum of two terms, the gradient of the Shannon entropy of the 

approximate posterior and the gradient of the expectation of the log joint likelihood under the 

approximate posterior. If we assume that the approximate posterior can be divided into one or 

more factors 𝑞𝑞𝑖𝑖 and that the join likelihood can be factored according to the chain rule of 

probability theory into components 𝑒𝑒𝑓𝑓𝑗𝑗(𝝅𝝅) such that  

 𝑄𝑄(𝝅𝝅|𝝍𝝍) = �𝑞𝑞𝑖𝑖
𝑖𝑖

 (5.10) 

and 

 
𝑃𝑃(𝒙𝒙,𝝅𝝅|𝚼𝚼) = �𝑒𝑒𝑓𝑓𝑗𝑗(𝝅𝝅)

𝑗𝑗

 
(5.11) 

then 5.8 can be rewritten in terms of sums these factors in log space and applying the linearity of 

the gradient and the expected value. 

 
∇𝝍𝝍𝐹𝐹(𝝅𝝅) = �∇𝝍𝝍ℍ[𝑞𝑞𝑖𝑖(𝝅𝝅|𝝍𝝍)]

𝑖𝑖

+ �∇𝝍𝝍𝔼𝔼𝑄𝑄�𝑓𝑓𝑗𝑗(𝝅𝝅)�
𝑗𝑗

. 
(5.12) 

In this way, the log joint likelihood function can be separated into the sum of the log likelihood 

function and the log priors. Now consider a joint log likelihood component 𝑓𝑓𝑘𝑘 such that 𝔼𝔼𝑄𝑄[𝑓𝑓𝑘𝑘] is 
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intractable. In other words, the improper multiple integral in equation 5.4 can’t be evaluated 

analytically. 

 
𝔼𝔼𝑄𝑄[𝑓𝑓𝑘𝑘] = � 𝑓𝑓𝑘𝑘(𝝅𝝅)𝑄𝑄(𝝅𝝅|𝝍𝝍)𝑑𝑑𝝅𝝅

∞

−∞

 
(5.13) 

In such a case, we may invoke the following relationships. 

 
∇𝝍𝝍𝔼𝔼𝑄𝑄[𝑓𝑓𝑘𝑘] = ∇𝝍𝝍 � 𝑓𝑓𝑘𝑘(𝝅𝝅)𝑄𝑄(𝝅𝝅|𝝍𝝍)𝑑𝑑𝝅𝝅

∞

−∞

 
(5.14) 

 
= � 𝑓𝑓𝑘𝑘(𝝅𝝅)∇𝝍𝝍𝑄𝑄(𝝅𝝅|𝝍𝝍)𝑑𝑑𝝅𝝅

∞

−∞

 
(5.15) 

 
= � 𝑓𝑓𝑘𝑘(𝝅𝝅)𝑄𝑄(𝝅𝝅|𝝍𝝍)∇𝝍𝝍 ln𝑄𝑄(𝝅𝝅|𝝍𝝍)𝑑𝑑𝝅𝝅

∞

−∞

 
(5.16) 

 = 𝔼𝔼𝑄𝑄�𝑓𝑓𝑘𝑘(𝝅𝝅)∇𝝍𝝍 ln𝑄𝑄(𝝅𝝅|𝝍𝝍)� (5.17) 

Above, (5.14) is the definition of the expectation of a continuous distribution, (5.15) applies the 

fact that 𝑓𝑓𝑘𝑘(𝝅𝝅) is not a function of any element of 𝝍𝝍, and (5.16) uses the identity of exponential 

distributions that ∇𝝍𝝍𝑄𝑄(𝝅𝝅|𝝍𝝍) =  𝑄𝑄(𝝅𝝅|𝝍𝝍)∇𝝍𝝍 ln𝑄𝑄(𝝅𝝅|𝝍𝝍). The result, (5.17), is that the gradient of 

the expectation is equal to the expectation of the intractable log probability multiplied by the 

gradient of the log approximate distribution. This expectation can be approximated via a Monte 

Carlo sampling routine that involves drawing 𝑆𝑆 independent samples 𝝅𝝅𝑔𝑔 from 𝑄𝑄(𝝅𝝅|𝝍𝝍) and 

computing the average. 

 
𝔼𝔼𝑄𝑄�𝑓𝑓𝑘𝑘∇𝝍𝝍 ln𝑄𝑄(𝝅𝝅|𝝍𝝍)� ≈

1
𝑆𝑆
�𝑓𝑓𝑘𝑘(𝝅𝝅𝑔𝑔)∇𝝍𝝍 ln𝑄𝑄(𝝅𝝅𝑔𝑔|𝝍𝝍)
𝑆𝑆

𝑔𝑔=1

  
(5.18) 

Therefore, the full gradient can be approximated with equation 5.10. 
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∇𝝍𝝍𝐹𝐹(𝝅𝝅) ≈�∇𝝍𝝍ℍ[𝑞𝑞𝑖𝑖(𝝅𝝅|𝝍𝝍)]

𝑖𝑖

+ �∇𝝍𝝍𝔼𝔼𝑄𝑄�𝑓𝑓𝑗𝑗(𝝅𝝅)�
𝑗𝑗≠𝑘𝑘

+
1
𝑆𝑆
�𝑓𝑓𝑘𝑘(𝝅𝝅𝑔𝑔)∇𝝍𝝍 ln𝑄𝑄(𝝅𝝅𝑔𝑔|𝝍𝝍)
𝑆𝑆

𝑔𝑔=1

 
(5.19) 

 

In the next section it will be shown that the expectation over the log likelihood function of the 

TPD signal model is intractable. 

 

5.6 Probabilistic TPD Decomposition 
 
  We begin our development of probabilistic decomposition of TPD signals with a 

discussion of the appropriate distributions of each parameter. We limit our discussion to the 

kinetically limited model introduced in chapter 2. Recall that for a model of 𝑛𝑛 discrete adsorption 

sites, we define parameter vectors 𝑬𝑬𝒂𝒂 = (𝐸𝐸𝑎𝑎1 𝐸𝐸𝑎𝑎2 ⋯ 𝐸𝐸𝑎𝑎𝑛𝑛)𝑇𝑇 and 𝜽𝜽𝟎𝟎 =

(𝜃𝜃01 𝜃𝜃02 ⋯ 𝜃𝜃0𝑛𝑛)𝑇𝑇 where 𝐸𝐸𝑎𝑎𝑖𝑖 and 𝜃𝜃0𝑖𝑖 represent the activation energy and fractional site 

coverage of site 𝑖𝑖 respectively. We also define a fixed frequency factor vector 𝝂𝝂𝒏𝒏×𝟏𝟏,  typically 

with each entry equal to 1013 Hz. We also introduce a parameter to characterize the variance of 

the data about the deterministic model function. To distinguish between variance 

hyperparameters that will be defined later, we introduce the precision 𝜏𝜏 = 1 𝜎𝜎2⁄  that is often 

used in Bayesian statistics. The nonlinear deterministic model function that will appear as a 

component of the likelihood function is the normalized signal �̅�𝑠(𝑡𝑡,  𝑬𝑬𝒂𝒂,  𝜽𝜽𝟎𝟎) function given in 

equation 5.20, in which 𝑇𝑇𝑖𝑖 is the initial temperature, 𝑡𝑡 is time, and 𝛼𝛼 is the ramp rate. 

 
�̅�𝑠(𝑡𝑡,  𝑬𝑬𝒂𝒂,  𝜽𝜽𝟎𝟎) =

1
𝑧𝑧
�𝜃𝜃�𝜃𝜃0𝑖𝑖 ,𝐸𝐸𝑎𝑎𝑖𝑖 , 𝑡𝑡�𝜈𝜈𝑖𝑖𝑒𝑒

−𝐸𝐸𝑎𝑎𝑖𝑖
(𝑇𝑇𝑖𝑖+𝛼𝛼𝑑𝑑)

𝑛𝑛

𝑖𝑖=1

  
(5.20) 

The normalization constant 𝑧𝑧 is computed by 5.21, where 𝑇𝑇𝑖𝑖 and 𝑇𝑇𝑓𝑓 are the initial and final 

temperatures respectively and 𝑇𝑇 is the temperature at time 𝑡𝑡.  
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𝑧𝑧 = �

𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡

𝑇𝑇𝑓𝑓

𝑇𝑇𝑖𝑖

𝑑𝑑𝑇𝑇  
(5.21) 

 

This normalization is performed to allow comparison between samples when the surface area is 

unknown, as is often the case.  

 Given that each 𝐸𝐸𝑎𝑎𝑖𝑖 can be interpreted as the average bond enthalpy of adsorbates 

attached to site 𝑖𝑖, it is normally distributed by the central limit theorem. Therefore, we can model 

the joint posterior distribution of 𝑬𝑬𝒂𝒂 as multivariate Gaussian normal with position vector 𝝁𝝁 and 

covariance matrix Σ. The conjugate priors are distributions whose posteriors have the same 

functional form. The normal distribution is the conjugate prior of mean values, which we have 

established the activation energy to be. Therefore, we will model the prior over 𝑬𝑬𝒂𝒂 as Gaussian 

normal with position vector 𝜇𝜇0 and covariance matrix Σ. 

Similarly, we know that the precision parameter τ is gamma distributed with prior 

hyperparameters 𝛼𝛼0 and 𝛽𝛽0 and posterior hyperparameters 𝛼𝛼 and 𝛽𝛽. The gamma distribution is a 

strictly positive exponential distribution with the density function given by equation (5.22). The 

function Γ(𝛼𝛼) is the gamma function, the continuous generalization of the factorial operation. 

The parameters 𝛼𝛼 and 𝛽𝛽 are referred to as the shape and rate parameters respectively.  

  
Gamma(𝜏𝜏|𝛼𝛼,𝛽𝛽) =

𝛽𝛽𝛼𝛼

Γ(𝛼𝛼) 𝜏𝜏
𝛼𝛼−1𝑒𝑒−𝛽𝛽𝛽𝛽  

(5.22) 

 The distribution of the fractional site coverages is interesting given the constraints that 

the elements of 𝜽𝜽𝟎𝟎 must be positive and sum to one. The sites themselves can be thought of as 

categories and the fractional coverage as a categorical distribution. Thus, the natural choice of 

prior is the Dirichlet distribution. The elements of the parameter vector 𝒂𝒂 = (𝑎𝑎1 𝑎𝑎2 ⋯ 𝑎𝑎𝑛𝑛)𝑇𝑇 
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are called concentration parameters and are strictly greater than zero. The probability density 

function of the Dirichlet distribution is given in equation 5.23. Note that the sum over the 

parameter vector is denoted by the L1 norm notation | ∙ |. The hyperparameter vector of the prior 

distribution of 𝜽𝜽𝟎𝟎 is denoted by 𝒂𝒂𝟎𝟎 while that of the posterior is denoted 𝒂𝒂. 

 
Dir(𝜽𝜽𝟎𝟎|𝒂𝒂) =

Γ(|𝒂𝒂|)
∏ 𝑎𝑎𝑖𝑖𝑛𝑛
𝑖𝑖=1

�𝜃𝜃𝑖𝑖
𝑎𝑎𝑖𝑖−1

𝑛𝑛

𝑖𝑖=1

 
(5.23) 

As with the other distributions, the hyperparameter vector of the prior distribution of 𝜽𝜽𝟎𝟎 is 

denoted by 𝒂𝒂𝟎𝟎 while that of the posterior is denoted 𝒂𝒂.  

 The approximate distribution 𝑄𝑄 is defined to be the product of the approximate 

distributions over the activation energies, fractional coverages, and the precision. Returning to 

the notation used previously, we define the parameter set 𝝅𝝅 = {𝑬𝑬𝒂𝒂,𝜽𝜽𝟎𝟎, 𝜏𝜏}, the prior 

hyperparameters 𝚼𝚼 = {𝝁𝝁𝟎𝟎, Σ0,𝛼𝛼0,𝛽𝛽𝑚𝑚,𝒂𝒂0}, and the variational hyperparameters 𝝍𝝍 =

{𝝁𝝁,Σ,𝛼𝛼,𝛽𝛽,𝒂𝒂}.  

 

 Q(𝝅𝝅|𝝍𝝍) = 𝑞𝑞𝐸𝐸𝑎𝑎(𝑬𝑬𝒂𝒂|𝝁𝝁,Σ)𝑞𝑞𝛽𝛽(𝜏𝜏|𝛼𝛼,𝛽𝛽)𝑞𝑞𝜃𝜃0(𝜽𝜽𝟎𝟎|𝒂𝒂) (5.24) 

We can therefore write the gradient of the entropy of the approximate posterior as the sum of the 

gradients of the entropies of the individual factors as in equation (5.12). Distributions in the 

exponential family have closed form entropies, given in equations (5.25-5.26). Note that 𝜓𝜓0(𝑥𝑥) 

is the digamma function, which is equal to the first derivative of the log of the gamma function.    

 ℍ�𝑞𝑞𝐸𝐸𝑎𝑎(𝑬𝑬𝒂𝒂|𝝁𝝁,Σ)� =
1
2

ln 2𝜋𝜋𝑒𝑒|Σ| 
(5.25) 

 ℍ[𝑞𝑞𝛽𝛽(𝜏𝜏|𝛼𝛼,𝛽𝛽)] = 𝛼𝛼 − ln𝛽𝛽 + ln Γ(𝛼𝛼) + (1 − 𝛼𝛼)𝜓𝜓0(𝛼𝛼) (5.26) 
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ℍ�𝑞𝑞𝜃𝜃0(𝜽𝜽𝟎𝟎|𝒂𝒂)� = ln�Γ�𝑎𝑎𝑗𝑗�

𝑛𝑛

𝑗𝑗=1

− ln Γ(|𝒂𝒂|) − (𝑛𝑛 − |𝒂𝒂|)𝜓𝜓0(|𝒂𝒂|)

−��𝑎𝑎𝑗𝑗 − 1�𝜓𝜓0�𝑎𝑎𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

 

(5.27) 

 

The gradients of each of these functions can be derived using tensor analysis or matrix calculus. 

Matrix calculus was historically developed to deal with multivariate statistics problems and is 

used here. Table 6.1 gives the partial derivatives of each entropy component with respect to each 

hyperparameter. We denote 𝟎𝟎𝑛𝑛×1 and 𝟏𝟏𝑛𝑛×1 as the 𝑛𝑛 dimensional zero and one vectors 

respectively (that is, all elements are either zero or one accordingly). Analogously, 𝟎𝟎𝑛𝑛×𝑛𝑛 is the 

zero square matrix in 𝑛𝑛 dimensions. The first polygamma function, which is the second 

derivative of the log gamma function, is denoted by 𝜓𝜓(1) and the element-wise vector product is 

indicated by ∗. 
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Table 5.5 Partial derivatives of the entropy components 

Partial Operator ℍ�𝑞𝑞𝐸𝐸𝑎𝑎(𝑬𝑬𝒂𝒂|𝝁𝝁,Σ)� ℍ[𝑞𝑞𝛽𝛽(𝜏𝜏|𝛼𝛼,𝛽𝛽)] ℍ�𝑞𝑞𝜃𝜃0(𝜽𝜽𝟎𝟎|𝒂𝒂)� 

𝜕𝜕
𝜕𝜕𝝁𝝁

 𝟎𝟎𝑛𝑛×1 𝟎𝟎𝑛𝑛×1 𝟎𝟎𝑛𝑛×1 

𝜕𝜕
𝜕𝜕Σ

 
1
2
Σ−1 𝟎𝟎𝑛𝑛×𝑛𝑛 𝟎𝟎𝑛𝑛×𝑛𝑛 

𝜕𝜕
𝜕𝜕𝛼𝛼

 0 1 + (1 − 𝛼𝛼)𝜓𝜓(1)(𝛼𝛼)  0 

𝜕𝜕
𝜕𝜕𝛽𝛽

 0 −
1
𝛽𝛽

 0 

𝜕𝜕
𝜕𝜕𝒂𝒂

 𝟎𝟎𝑛𝑛×1 𝟎𝟎𝑛𝑛×1 𝜓𝜓(0)(𝒂𝒂) − 𝜓𝜓(0)(|𝒂𝒂|)𝟏𝟏𝑛𝑛×1

− (𝑛𝑛 − |𝒂𝒂|)𝜓𝜓(1)(|𝒂𝒂|)𝟏𝟏𝑛𝑛×1

− (𝒂𝒂 − 𝟏𝟏𝑛𝑛×1) ∗ 𝜓𝜓(1)(𝒂𝒂) 
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The prior takes a similar structure to the approximate posterior and the joint likelihood can be 

factored as follows. 

 𝑃𝑃(𝒙𝒙,𝛑𝛑|𝚼𝚼) = 𝑃𝑃(𝒙𝒙|𝝅𝝅,𝚼𝚼)𝑃𝑃(𝝅𝝅|𝚼𝚼) (5.28) 

 = 𝑃𝑃(𝒙𝒙|𝝅𝝅)𝑃𝑃(𝑬𝑬𝒂𝒂|𝝁𝝁𝟎𝟎, Σ)𝑃𝑃(𝜏𝜏|𝛼𝛼0,𝛽𝛽0)𝑃𝑃(𝜽𝜽𝟎𝟎|𝒂𝒂) (5.29) 

The log prior is separated into the sum of the logs of the factors in equation (5.29) and the 

gradient of the expectation of the log prior is subsequently distributed across the factors. The 

result is equation (5.30). We will examine each of the terms on the right-hand side to determine 

which expectations are tractable.  

 ∇𝝍𝝍𝔼𝔼𝑄𝑄[ln𝑃𝑃(𝒙𝒙,𝛑𝛑|𝚼𝚼)]

= ∇𝝍𝝍𝔼𝔼𝑄𝑄[ln𝑃𝑃(𝒙𝒙|𝝅𝝅)]

+ ∇𝝍𝝍𝔼𝔼𝑄𝑄[ln𝑃𝑃(𝑬𝑬𝒂𝒂|𝝁𝝁𝟎𝟎, Σ)] + ∇𝝍𝝍𝔼𝔼𝑄𝑄[ln𝑃𝑃(𝜏𝜏|𝛼𝛼0,𝛽𝛽0)]

+ ∇𝝍𝝍𝔼𝔼𝑄𝑄[ln𝑃𝑃(𝜽𝜽𝟎𝟎|𝒂𝒂0)] 

(5.30) 

 

Recall that the data are assumed to be normally distributed about the model function. This is 

equivalent to assuming that the residuals are normally distributed and should be satisfied if they 

are independent and identically distributed. Equations (5.31-35) show the derivation of the 

expected value of the log likelihood under 𝑄𝑄 in terms of the nonlinear model function. Let 𝑚𝑚 

denote the number of data points and 𝑠𝑠𝑖𝑖 denote a normalized measured signal value. 

 
𝔼𝔼𝑄𝑄[ln𝑃𝑃(𝒙𝒙|𝝅𝝅)] = 𝔼𝔼𝑄𝑄 �ln�𝑃𝑃(𝑥𝑥𝑖𝑖|𝝅𝝅)

𝑚𝑚

𝑖𝑖=1

� 
(5.31) 

 
= 𝔼𝔼𝑄𝑄 �ln��

𝜏𝜏
2𝜋𝜋

𝑒𝑒−
𝛽𝛽
2�𝑔𝑔𝑖𝑖−�̅�𝑔(𝑬𝑬𝒂𝒂,𝜽𝜽𝟎𝟎,𝑑𝑑𝑖𝑖)�

2
𝑚𝑚

𝑖𝑖=1

� 
(5.32) 
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= 𝔼𝔼𝑄𝑄 �ln��

𝜏𝜏
2𝜋𝜋
�
𝑚𝑚

𝑒𝑒−
𝛽𝛽
2∑ �𝑔𝑔𝑖𝑖−�̅�𝑔(𝑬𝑬𝒂𝒂,𝜽𝜽𝟎𝟎,𝑑𝑑𝑖𝑖)�

2𝑚𝑚
𝑖𝑖=1 � 

(5.33) 

 = 𝔼𝔼𝑄𝑄 �
𝑚𝑚
2

(ln 𝜏𝜏 − ln 2𝜋𝜋) −
𝜏𝜏
2
� �𝑠𝑠𝑖𝑖 − �̅�𝑠(𝑬𝑬𝒂𝒂,𝜽𝜽𝟎𝟎, 𝑡𝑡𝑖𝑖)�

2𝑚𝑚

𝑖𝑖=1
� (5.34) 

 =
𝑚𝑚
2
�𝜓𝜓(0)(𝛼𝛼) − ln𝛽𝛽 − ln 2𝜋𝜋�

−
𝛼𝛼

2𝛽𝛽
𝔼𝔼�𝑞𝑞𝐸𝐸𝑎𝑎 ,𝑞𝑞𝜃𝜃0�

� �𝑠𝑠𝑖𝑖 − �̅�𝑠(𝑬𝑬𝒂𝒂,𝜽𝜽𝟎𝟎, 𝑡𝑡𝑖𝑖)�
2𝑚𝑚

𝑖𝑖=1
 

(5.35)  

The expectation over the summation in the third term on the right-hand side of equation (5.35) 

represents an intractable integral since �̅�𝑠(𝑬𝑬𝒂𝒂,𝜽𝜽𝟎𝟎, 𝑡𝑡𝑖𝑖) cannot be written analytically in terms of 𝑬𝑬𝒂𝒂 

and 𝜽𝜽𝟎𝟎. Therefore, a stochastic search vector will need to be constructed to approximate the 

gradient of this term. The other terms in the above can be differentiated with respect to the 

hyperparameters in 𝝍𝝍 to show that, while 𝑞𝑞𝛽𝛽 need not be sampled to find the gradient 

components in the 𝛼𝛼 and 𝛽𝛽 directions, the approximate sum of squared residuals is needed.  

 𝜕𝜕𝔼𝔼𝑄𝑄[ln𝑃𝑃(𝒙𝒙|𝝅𝝅)]
𝜕𝜕𝛼𝛼

=
𝑚𝑚
2
𝜓𝜓(1)(𝛼𝛼) −

1
2𝛽𝛽

𝔼𝔼�𝑞𝑞𝐸𝐸𝑎𝑎 ,𝑞𝑞𝜃𝜃0�
� �𝑠𝑠𝑖𝑖 − �̅�𝑠(𝑬𝑬𝒂𝒂,𝜽𝜽𝟎𝟎, 𝑡𝑡𝑖𝑖)�

2𝑚𝑚

𝑖𝑖=1
 

(5.36)  

 𝜕𝜕𝔼𝔼𝑄𝑄[ln𝑃𝑃(𝒙𝒙|𝝅𝝅)]
𝜕𝜕𝛽𝛽

=
𝛼𝛼

2𝛽𝛽2
𝔼𝔼�𝑞𝑞𝐸𝐸𝑎𝑎 ,𝑞𝑞𝜃𝜃0�

� �𝑠𝑠𝑖𝑖 − �̅�𝑠(𝑬𝑬𝒂𝒂,𝜽𝜽𝟎𝟎, 𝑡𝑡𝑖𝑖)�
2𝑚𝑚

𝑖𝑖=1
 

(5.37) 

 

The gradient components of the log approximate distribution are given in equations (5.38-40). 

 

 𝜕𝜕 ln𝑄𝑄
𝜕𝜕𝝁𝝁

= Σ−1(𝑬𝑬𝒂𝒂 − 𝝁𝝁) 
(5.38) 
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 𝜕𝜕 ln𝑄𝑄
𝜕𝜕Σ

= −
1
2

(Σ−1 − (𝑬𝑬𝒂𝒂 − 𝝁𝝁)(𝑬𝑬𝒂𝒂 − 𝝁𝝁)𝑇𝑇) 
5.39) 

 𝜕𝜕 ln𝑄𝑄
𝜕𝜕𝐚𝐚

= 𝜓𝜓(0)(|𝒂𝒂|)𝟏𝟏𝑛𝑛×1 − 𝜓𝜓(0)(𝒂𝒂) + ln𝜽𝜽𝟎𝟎 
(5.40) 

 

 

The expectations of the log prior distribution factors over 𝑄𝑄 are given in equations (5.41-3).  

 𝔼𝔼𝑄𝑄[ln𝑃𝑃(𝑬𝑬𝒂𝒂|𝝁𝝁𝟎𝟎, Σ)]

= −
1
2

ln(2𝜋𝜋)𝑛𝑛|Σ0|

−
1
2
�𝑇𝑇𝑇𝑇(Σ0−1Σ) + 𝝁𝝁𝑻𝑻Σ0−1𝝁𝝁 − 2𝝁𝝁𝑻𝑻Σ0−1𝝁𝝁𝟎𝟎 + 𝝁𝝁𝟎𝟎𝑻𝑻Σ0−1𝝁𝝁𝟎𝟎� 

(5.41) 

 
𝔼𝔼𝑄𝑄[ln𝑃𝑃(𝜏𝜏|𝛼𝛼0,𝛽𝛽0)] = 𝛼𝛼0 ln𝛽𝛽0 − ln Γ(𝛼𝛼0) + (𝛼𝛼0 − 1)�𝜓𝜓(0)(𝛼𝛼) − ln𝛽𝛽� −

𝛽𝛽0𝛼𝛼
𝛽𝛽

 
(5.42) 

 𝔼𝔼𝑄𝑄[ln𝑃𝑃(𝜽𝜽𝟎𝟎|𝒂𝒂0)]

= ln Γ(|𝒂𝒂𝟎𝟎|) −� ln Γ�𝑎𝑎𝑚𝑚𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

+ (𝜶𝜶𝟎𝟎 − 𝟏𝟏𝑛𝑛×1)𝑇𝑇 �𝜓𝜓(0)(𝒂𝒂)

− 𝜓𝜓(0)(|𝒂𝒂|)𝟏𝟏𝑛𝑛×1� 

(5.43) 

 

The partial derivatives of the expected log priors are provided in Table 5.6. 
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Table 5.6 Partial derivatives of expected log priors 

Partial 

Operator 

𝔼𝔼𝑄𝑄[ln𝑃𝑃(𝑬𝑬𝒂𝒂|𝝁𝝁𝟎𝟎,Σ0)] 𝔼𝔼𝑄𝑄[ln𝑃𝑃(𝜏𝜏|𝛼𝛼0,𝛽𝛽0)] 𝔼𝔼𝑄𝑄[ln𝑃𝑃(𝜽𝜽𝟎𝟎|𝒂𝒂0)] 

𝜕𝜕
𝜕𝜕𝝁𝝁

 Σ−1(𝝁𝝁𝟎𝟎 − 𝝁𝝁) 𝟎𝟎𝑛𝑛×1 𝟎𝟎𝑛𝑛×1 

𝜕𝜕
𝜕𝜕Σ

 −
1
2
Σ0−1 𝟎𝟎𝑛𝑛×𝑛𝑛 𝟎𝟎𝑛𝑛×𝑛𝑛 

𝜕𝜕
𝜕𝜕𝛼𝛼

 0 (𝛼𝛼0 − 1) �𝜓𝜓(1)(𝛼𝛼)� − 𝛽𝛽0
𝛽𝛽

  0 

𝜕𝜕
𝜕𝜕𝛽𝛽

 0 −
1
𝛽𝛽

+
𝛽𝛽0𝛼𝛼
𝛽𝛽2

 0 

𝜕𝜕
𝜕𝜕𝒂𝒂

 𝟎𝟎𝑛𝑛×1 𝟎𝟎𝑛𝑛×1 (𝒂𝒂𝟎𝟎 − 𝟏𝟏𝑛𝑛×1)

∗ �𝜓𝜓(1)(𝒂𝒂)

− 𝜓𝜓(1)(|𝒂𝒂|)𝟏𝟏𝑛𝑛×1� 
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Thus, we have derived analytical forms or stochastic approximations for each component of the 

variational gradient. Figure 5.2 shows fits of synthetic data from a hypothetical sample with two 

different sites that are uniformly distributed across two activation energies: 50 kJ/mol and 55 

kJ/mol. This figure shows the impact of changing the value of the 𝒂𝒂 parameter vector. Both 

elements of the vector are equal in each fit, however the magnitude of the parameter increases 

from 10 in plot a to 25 in plot b and 50 in plot c. Note that the expected value of a given site 

concentration 𝜃𝜃𝑖𝑖  is given by  

 𝔼𝔼[𝜃𝜃𝑖𝑖] =
𝑎𝑎𝑖𝑖

∑ 𝑎𝑎𝑖𝑖𝑛𝑛
𝑖𝑖=1

. (5.44) 
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Figure 5.2 Plots of simulated data and fit proposals with varying Dirichlet concentration 

parameters: 𝒂𝒂 = (𝟏𝟏𝟎𝟎 𝟏𝟏𝟎𝟎)𝑻𝑻 in plot (a), 𝒂𝒂 = (𝟐𝟐𝟓𝟓 𝟐𝟐𝟓𝟓)𝑻𝑻 in plot (b), and 𝒂𝒂 = (𝟓𝟓𝟎𝟎 𝟓𝟓𝟎𝟎)𝑻𝑻 in 

plot 
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CHAPTER 6. CARBON DIOXIDE ADSORPTION SITE DISTRIBUTIONS 
ON COPPER BENZENEDICARBOXYLATE SURFACES 

 

6.1. Introduction 
 
Metal-organic frameworks (MOFs) are a class of crystalline microporous materials with high 

surface areas and flexible chemical functionality.1-2 Active research in MOFs targets a wide 

range of applications, including biosensors, heterogeneous catalysis, and drug delivery.3-6 Due to 

their transport properties and modular chemistry, MOFs have shown exceptional performance as 

active materials in gas separation membranes. In 2014, Rodenas et al demonstrated a diffusion-

limited synthesis reaction for making metal-benzenedicarboxylate (MBDC) MOF nanosheets 

and showed that copper benzenedicarboxylate (CuBDC) nanosheets are highly selective for 

carbon dioxide over methane.7 The nanosheet form of CuBDC was found to have a much higher 

selectivity for CO2 than its three-dimensional bulk crystal analog but the mechanism of this 

effect is unknown. In this chapter, the variational Bayesian decomposition analysis introduced in 

chapter 5 will be applied to temperature programmed desorption (TPD) data to arrive at 

distributions of surface sites for copper benzenedicarboxylate nanosheets.  

 TPD signals from bulk CuBDC crystals were also recorded. The bulk crystal signals are 

dramatically obscured by internal diffusion, however qualitative analysis provides insight into 

the site distribution that is numerically extracted from the nanosheet TPD profiles.  

 

6.2. Experimental  
 

6.2.1 Synthesis 
 



 99 

6.2.1.1 Bulk MOF Synthesis 

Three dimensional CuBDC nanosheets were synthesized using the bulk-type procedure reported 

by Carson et al.8 1.05 g of copper (II) nitrate trihydrate and 0.720 g of terephthalic acid were 

dissolved in 87 mL N,N-dimethylformamide (DMF). This solution was refluxed at 100˚ C in a 

250 mL round bottom flask for 24 hours while stirring. The crystalline product was recovered 

from the mixture by centrifugation at 6000 rpm for 10 minutes and washed 3 times with 20 mL 

of methanol. The product was allowed to soak in methanol for at least 3 hours between each 

wash to allow time for solvent replacement. A portion of the product was activated in a vacuum 

oven at 170˚ C for 48 hours. The activated sample was characterized by X-ray diffraction 

(XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area 

measurement. The rest of the product was stored in methanol for use in TPD experiments. 

 

6.2.1.2 Nanosheet MOF Synthesis 

Two-dimensional MOF nanosheets were synthesized using a modified version of the diffusion 

mediated approach described in chapter three. Briefly, 300 mg of terephthalic acid were 

dissolved in a mixture of 20 mL DMF and 10 mL acetonitrile, which was then poured into a 100 

mL beaker with a radius of 14 mm. A spacer layer of 10 mL DMF mixed with 10 mL acetonitrile 

was poured slowly into the 100 mL beaker to minimize mixing between the layers. 300 mg 

copper (II) nitrate trihydrate was dissolved in 10 mL DMF and 20 mL acetonitrile. The copper 

nitrate solution was poured slowly into the beaker, again to avoid mixing between the layers. The 

layered mixture was heated to 40˚ C for 24 hours. The crystalline product was recovered by 

centrifugation at 6000 rpm for 10 minutes. The product was washed three times with methanol, 

allowing at least three hours between washes to soak in methanol for solvent exchange. A 
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portion of this product was activated at 170˚ C for 48 hours in a vacuum oven and subsequently 

characterized by X-ray diffraction, SEM, and BET surface area analysis. The rest was stored in 

methanol prior to being loaded into the TPD chamber. 

 

6.2.2 Characterization 
 
XRD measurements were performed using a Panalytical X’pert Pro X-ray diffractometer with a 

copper X-ray source. XRD samples were prepared by drop coating a glass slide with MOF 

sample suspended in methanol and activating the coating by heating to 170 ˚C for 48 hours. BET 

surface area measurements were conducted with a Micrometrics Flowsorb III Surface Area 

Analyzer using nitrogen gas. Scanning electron micrographs were recorded using a Hitachi 

FE8230 Field Emission Scanning Electron Microscope with a landing potential of 700V.  

 

6.2.3 Temperature Programmed Desorption 
 
TPD measurements were carried out in a custom built ultra-high vacuum chamber with base 

pressure < 10-9 Torr. A gold sample holder was drop coated with MOF sample suspended in 

methanol. The coated sample holder was then activated in a vacuum oven at 170 ˚C for 48 hours. 

The sample was then mounted at the end of a Sumitomo 4 K cryostat equipped with a heater 

cartridge and thermocouple. The cryostat was inserted into the vacuum chamber in close 

proximity to a Hiden residual gas analyzer (RGA). The chamber was evacuated and baked at 70 

˚C for 24 hours to remove residual gases from the wall and adsorbed water from the MOF 

sample. After baking, the sample was cooled to 20 K and exposed to 10-8 Torr of 99.998%  CO2 

for either 500, 1000, or 1500 seconds, corresponding to 5, 10, and 15 Langmuir (L) of surface 

exposure respectively. After the chamber pressure was allowed to return below 10-9 Torr, a 
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Lakeshore 336 cryogenic temperature controller and heater cartridge was used to heat the sample 

to 300 K at a rate of 2.5 K/min for the nanosheets and at rates of 2.5, 5, and 7.5 K/min for the 

bulk crystals. Relative pressure of carbon dioxide in the chamber was measured during heating 

using the RGA in faraday cup mode.  

Rate and coverage procedures were reproduced between three and five times to ensure 

signal stability. Background measurements of the blank sample were also recorded for each rate 

and coverage procedure. Exposures were carried out well below the sublimation point of CO2 to 

allow ice to build up on the sample and cryostat components. The sublimation signal was used to 

accurately measure the temperature ramp rate during each experiment.  

 

6.2 Results and Discussion 
 

6.2.1 Crystal Structure and Particle Morphology 
 
Interpretation of the desorption profiles from nanosheet and bulk samples will rely on a 

consideration of their respective crystal orientations. Figure 6.1 shows graphical representations 

of prominent lattice planes relative to the pore structure as well as simulated and measured 

diffraction patterns. As seen previously, the XRD sample preparation by drop casting results in 

highly oriented nanosheet samples, which explains the dominance of the (201�) peak at 2𝜃𝜃 =

17.8˚. 
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Figure 6.1 Graphical representations of prominent lattice planes in the CuBDC crystal 

structure. The (𝟏𝟏𝟏𝟏𝟎𝟎) and (𝟏𝟏�𝟏𝟏𝟎𝟎) planes are shown in blue and red respectively in graphic 

(a). Graphic (b) shows the (𝟐𝟐𝟎𝟎𝟏𝟏�) stacking plane. Plot (c) shows a simulated XRD pattern of 

CuBDC crystals while plots (d) and (e) show measured patterns from nanosheet and bulk 

samples respectively. Oxygen is shown in red, copper in blue, carbon in brown, and hydrogen 

in white. 
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The pores run normal to the plane of the nanosheets but the specific surface area of the nanosheet 

sample is relatively small at 51 m2/g. Thus, it can be concluded that the pores are fairly shallow. 

The bulk sample, on the other hand, had a reasonably high specific surface area of 299 m2/g. 

This is still less than half of the theoretical surface area of 850 m2/g and is likely due to a mixture 

of causes including insufficient annealing as well as residual regions of trapped amides inside the 

pores. Activation of the material above 200 ˚C has been shown to yield specific surface areas 

approaching the theoretical value. However, such temperatures have been found to degrade 

nanosheet samples and may produce lattice defects. The activation procedure for both samples 

was carried out to the same specification as Rodenas et al to provide the best possible 

comparison. 

 Figure 6.2 shows SEM images of activated CuBDC samples. Many of the bulk crystals in 

image (b) are oriented such that the layers are stacked parallel to the electron beam and the 

material can be seen to be separated apart in this dimension. Thus, desorbed gases may diffuse 

between one-dimensional pore channels. For such a complicated diffusion mechanism, the 

simple mass transfer model introduced in chapter 3 is unlikely to be accurate.    
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Figure 6.2 Scanning electron micrographs of activated CuBDC nanosheets (a) and bulk 

crystals (b). 
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6.2.2 Qualitative analysis of TPD Results 
 
Figure 6.3 shows the baseline corrected TPD profile of CO2 from bulk CuBDC. The left-hand 

side of the curve rises sharply because the signal was obscured by the CO2 ice sublimation peak, 

which has been removed. As expected, the signal decays slowly after the peak at 94.05 K, 

indicating that internal diffusion processes are influencing the signal. The peak position doesn’t 

change with the ramp rate, indicating that internal mass transfer is dominated by interactions 

between the gas and the pore walls rather than between gases. Figure 3b shows a very rough fit 

of the 7.5 K/min curve. The extracted enthalpy of desorption from bulk CuBDC was 26.0 

kJ/mol. There may be higher energy sites such as defects that are otherwise obscured by the 

diffusion component. Note that TPD peaks at higher temperatures are much broader than at 

lower temperatures so even though some information was lost behind the ice peak, even this 

rough fit gives a good estimate for the enthalpy of desorption.  
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Figure 6.3 Background corrected TPD profiles of CO2 from bulk CuBDC crystals at varying 

ramp rates (a). Plot of rough simulation fit of 7.5 K/min signal. 
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Figure 6.4 shows the background corrected CO2 desorption profiles from nanosheet samples. 

These have much more structure than those from bulk crystals. Multiple peaks are present, and 

their intensity ratios vary based on the initial CO2 exposure. The peak positions do not vary with 

exposure and we conclude that the process follows a first order rate law. This is to be expected in 

this temperature range. Parts of the curves were similarly cut off by the ice peak, however this is 

only a small fraction of the signal.  

A few qualitative conclusions can be drawn from these data. The presence of two peaks 

means that there are at least two adsorption sites on CuBDC nanosheets and each makes up an 

appreciable fraction of the surface. The signals decay rapidly at temperatures above the peak, 

indicating negligible diffusion limitation to the desorption process. The first peak is centered at 

110 K, which is 15.6 K higher than the bulk desorption peak. The second peak appears 22 K 

higher than the first at 132 K. These data are consistent with Rodenas et al’s results indicating 

that CuBDC nanosheets have higher affinity for CO2 than does the bulk material. The lower 

energy peak is broad, which suggests that there may be three or more peaks overlapping one 

another. The distribution of site energies is needed before a structural mechanism for these 

relatively strong desorption enthalpies can be proposed.  
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Figure 6.4 Sample TPD curves of CO2 from CuBDC nanosheets at varying initial exposures 

(a). Mean TPD curve of over six samples with initial exposure of 10 Langmuir, point-wise 

standard deviation region shown in gray (b).  
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Figure 4b shows that there is significant uncertainty in the intensity of the second peak. This 

uncertainty presents an excellent opportunity to apply the variational Bayesian inference 

approach introduced in the previous chapter. 

 

6.3.3 Quantitative Analysis with Variational Inference  
 
Bayesian inference requires the rigorous encoding of external knowledge of the system before to 

running the fitting algorithm. This external knowledge encoded in the fitting in the form of 

parameterized probability distributions known as priors. Literature information and 

characterization measurements will be used to construct these priors. 

 Consider the crystal structure of the CuBDC nanosheets shown in figure 1. While this 

idealized structure is likely true on average over short length scales, the mesoscale structure is 

likely very disordered given that the specific surface area is only 50 m2/g and the internal regions 

are inaccessible. Fortunately, during the XRD measurements of the nanosheet sample, enough of 

the crystals were oriented to scatter X-rays off the (110) plane that a small peak at 2𝜃𝜃 = 9.39˚ is 

visible in the pattern. Scherrer analysis of this peak indicates a lower bound on average grain 

sizes in the plane of the particle of 13.7 nm. Thus, the site prior should account for a high density 

of defect rich grain boundaries. We will also consider external surface sites and shallow pore 

sites. These are illustrated by the graphic in figure 6.5.  
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Figure 6.5 Illustration of possible metallic adsorption sites. Oxygen is shown in red, copper 

in blue, carbon in brown, and hydrogen in white. 

 

 Based on the geometry of the lattice, the ratio of external sites to shallow pore sites to grain 

boundary sites is expected to be 183:183:73 for a square region with side length 13.7 nm. This is 

to say, of 1/6 the three dominant surface sites are expected to be edge sites. CO2 bound to these 

edge sites is likely to have a higher desorption enthalpy than if it were bound to the other sites 

given that these defect sites are undersaturated with linker bonds. Thus, we expect the higher 

temperature peak to correspond to desorption from grain boundary sites while the broad lower 

temperature peak is overlapped contributions from at least the two other sites. In order to ensure 

fit convergence and accommodate for unknown defect sites, three other sites were also used. 

These sites have large prior uncertainties in both their concentration and desorption activation 

energies to account for the fact that little is known or expected about their positions beforehand. 

Table 6.1 gives the prior mean parameters for each site. The activation energies are assumed to 

be uncorrelated while the coverage covariances are implicit in the Dirichlet distribution 
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parameters. Variational inference with stochastic search was run for 250 iterations and the 

algorithm converged to a local minimum at iteration 235. The results of the fit are shown in 

Figure 6.6.  

 

Table 6.1 Bayesian Priors for Nanosheet Desorption Fit 

Site Identity 𝝁𝝁𝑬𝑬𝒂𝒂 𝝈𝝈𝑬𝑬𝒂𝒂 𝒂𝒂𝜽𝜽𝟎𝟎 𝔼𝔼[𝜽𝜽𝟎𝟎] �Var(𝜽𝜽𝟎𝟎) 

External  30 kJ/mol 2 kJ/mol 5 0.34 0.12 

Shallow Pore 30 kJ/mol 2 kJ/mol 5 0.34 0.12 

Grain Boundary  35  kJ/mol 2 kJ/mol 1.67 0.12 0.08 

Unknown 1 32 kJ/mol 7 kJ/mol 1.0 0.07 0.06 

Unknown 2 32 kJ/mol 7 kJ/mol 1.0 0.07 0.06 

Unknown 3 32 kJ/mol 7 kJ/mol 1.0 0.07 0.06 

 

 

Figure 6.6 Bayesian fit of CO2 TPD signal from CuBDC nanosheet sample. 
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 Table 6.2 Posterior Parameter Distributions Given Nanosheet TPD Data 

Site Identity 𝝁𝝁𝑬𝑬𝒂𝒂 𝝈𝝈𝑬𝑬𝒂𝒂 𝒂𝒂𝜽𝜽𝟎𝟎 𝔼𝔼[𝒂𝒂𝟎𝟎] �Var(𝒂𝒂𝟎𝟎) 

External  31.14 kJ/mol 0.17 kJ/mol 8.0 0.21 0.07 

Shallow Pore 33.18 kJ/mol 0.16 kJ/mol 9.6 0.25 0.07 

Grain Boundary 39.0 kJ/mol 0.17 kJ/mol 8.9 0.23 0.07 

Unknown 1 37.0  kJ/mol 0.51 kJ/mol 3.2 0.08 0.04 

Unknown 2 35.1 kJ/mol 0.60 kJ/mol 5.7 0.15 0.06 

Unknown 3 41.5 kJ/mol 0.92 kJ/mol 2.8 0.07 0.04 

 

While the fit isn’t perfect, the simulated curve falls within one standard deviation of the signal 

mean over most of the temperature range as shown by the solid blue line superimposed on the 

gray band in Figure 6.6. The posterior distributions are listed in Table 6.2. Note that the 

variances of the posterior distribution are much smaller than those of the prior. This should make 

intuitive sense given that the prior represents a vague estimate of the parameters while the 

posterior is a refinement of that estimate in light of data. There are a number of interesting 

implications indicated by the posterior distribution over the fit parameters. The first is the 

collection of high activation energy curves that comprise the signal. In addition to the prominent 

feature ascribed to grain boundary sites, there are three other sites with higher desorption 

enthalpies the external and pore sites that contribute to the main peak. The two lower-energy 

unknown peaks, labelled Unknown 1 and Unknown 2 in Table 6.2, may be external or shallow 

pore sites at locations of unusual surface topography such as corrugated regions induced by 

buried grain boundaries.  
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 The concentration of grain boundary defects was found to comprise nearly a quarter of 

the entire surface with relatively small uncertainty in this parameter. This suggests that, if this 

peak is indeed associated with desorption from unsaturated metal sites, that there are a large 

number of such sites relative to saturated sites. This population likely includes grain boundary 

defects as well as other missing linker defects more generally.  

 

6.4 Conclusion 
 
Temperature programmed desorption was used in combination with X-ray diffraction and BET 

surface area analysis to explore the mechanism for the increased binding affinity for CO2 of 

CuBDC nanosheets compared to bulk CuBDC. Variational Bayesian inference via stochastic 

gradient ascent was used to incorporate information from auxiliary measurements into the 

nonlinear fit of the TPD profile. All CO2 adsorption sites on CuBDC nanosheets were found to 

have higher activation enthalpies than those on the bulk crystals. The desorption activation 

energy from the bulk crystal was measured to be roughly 26.0 kJ/mol, while it was found to 

range from 31.14 to 41.5 kJ/mol for the nanosheet samples.  

The bimodal nanosheet TPD profile indicates a high density of defect sites on the 

material’s surface. These defects play a role in the increased affinity for CO2 observed by 

Rodenas et al but do not entirely explain the phenomenon given that the peaks from pristine sites 

are also shifted to higher temperatures than that of the bulk material. High resolution surface 

imaging via scanning probe microscopy may shed more light on this problem by characterizing 

the distribution of surface topographies present on the nanosheet sample.  

 

6.5 References 
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CHAPTER 7. REACTIVE SO2 ADSORPTION ON METAL-ORGANIC 
FRAMEWORK NANOSHEETS IN HUMID ATMOSPHERE 

 

7.1 Introduction 
 

This chapter appeared in The Journal of Physical Chemistry C in May of 2018.1 It is 

reproduced here with permission. Metal-organic frameworks (MOFs) are a class of porous 

materials that are promising candidates for application in molecular separation technologies.2 

These materials are composed of metal nodes linked by bridging ligands to form ordered 

coordination networks. Open-metal-site MOFs are a subclass of MOFs in which the metal 

coordination sites are not fully saturated by structural ligands or linkers.3 After an activation 

procedure in which solvent molecules are released from the open metal site by heating the 

material under vacuum, these open metal sites are available to react with guest molecules as 

Lewis acids, which may be advantageous for applications such as gas storage and separation.4-6 

Open-metal-site MOFs such as HKUST-1 have been proposed for removal of harmful gases 

from fuel and exhaust streams.3, 7-9 Sulfur dioxide is a toxic contaminant in coal combustion flue 

gas and a major contributor to acid rain. It is also a gas for which open metal MOFs have a 

particularly strong affinity.10-12 While such materials are stable under dry SO2 exposure, the 

relative humidity in flue gases is very high (> 90%).10, 13-15 Ideally, material candidates should be 

stable under exposure to the acidic products of reactive adsorption of humid SO2.
16 The stability 

of the pore structure of the material is particularly important because this determines the 

accessibility of sites.17  
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MOF-2 is an open metal MOF comprised of 1,4-benzenedicarboxylate (BDC) linker 

molecules that bridge metal atoms in a two-dimensional (2D) network. The structure of the 

nodes in these MOFs is chemically identical to that of HKUST-1 and thus MOF-2 can be thought 

of as a 2D analog for HKUST-1.18 The 3D structure of MOF-2 is composed of ordered stacks of 

the 2D networks held together by non-bonded polar interactions.18 Other 2D MOFs similar to 

MOF-2 have recently received attention for applications in catalysis and membrane separation.19-

23 While the 2D coordination networks of these materials are identical to that of MOF-2, their 

stacking is disordered and as a result, their specific surface area (i.e., that accessible to molecules 

like SO2) is limited to the external surfaces.20 Additionally, the high aspect ratios and highly 

oriented structures of the particles provide advantages in experimental design including 

straightforward interpretation of diffraction patterns and X-ray photoelectron spectra. The above 

factors present an opportunity to understand the changes induced in the 2D surfaces by acid gas 

exposure, without having to exfoliate the material into individual nanosheets. 

Towards this end, in the present work we synthesized copper, zinc, and cobalt 

benzenedicarboxylate nanosheets (CuBDC, ZnBDC, and CoBDC respectively) and exposed 

them to different dose durations of 40 ppm SO2 under high relative humidity (85 % R.H.) in air. 

The effects of this exposure were characterized by a suite of techniques: X-ray photoelectron 

spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), powder X-ray diffraction 

(PXRD), and scanning electron microscopy (SEM). These measurements were compared to 

control groups in humid environments as well as the pristine activated materials to determine the 

chemical and structural changes induced by humid SO2 exposure. Trends in the structural 

dynamics as a function of the metal center were established. We consider the chemical, 

structural, and morphological data together to yield insights into the mechanism of catalytic 
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oxidation of SO2 in MOF nanosheets, the nature of lattice defects created by SO2 exposure, and 

the stability of the chemisorbed SO2.  

 

7.2 Experimental Section 
 
7.2.1 Synthesis of MOF nanosheets 
 

MOF nanosheets were synthesized by the layered, diffusion-mediated method reported 

by Rodenas et al.20 The procedure was modified for larger-scale nanosheet production using 

standard laboratory glassware. Details specific to each material are included in the following 

subsections. In general, the miscible layers of the reaction system consist of mixtures of N,N-

dimethylformamide (DMF) and acetonitrile (CH3CN) in varying ratios. Layers were added 

sequentially in order of decreasing density such that mixing was minimal. The three layers, 

referred to as the metal layer, the spacer layer, and the linker layer, initially contain dissolved 

ionic metal compounds, no solute, and benzenedicarboxylic acid (BDCA) respectively. A 

standard 100 ml beaker (14 mm radius) was used as the reaction vessel in each case. Precipitated 

MOF crystals were recovered by centrifugation at 6000 rpm for 20 minutes. MOF product was 

washed three times with CH3CN and twice with dichloromethane, allowing at least three hours 

between each wash for solvent exchange. All samples were activated under vacuum at 150 °C for 

24 hours.  

Copper benzenedicarboxylate (CuBDC). The linker layer was prepared by dissolving 300 mg 

BDCA in a mixture of 20 ml DMF and 100 ml CH3CN and poured into the reaction vessel. A 

spacer layer comprised of a mixture of 10 ml DMF and 10 ml CH3CN was poured over to the 

linker layer. The metal layer was then prepared by dissolution of 300 mg Cu(NO3)2• 3H2O in a 
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mixture of 10 ml DMF and 20 ml CH3CN and poured over the spacer layer. The layered mixture 

was then allowed to react at 40 °C for 24 hours before MOF precipitate was recovered.  

Zinc benzenedicarboxylate (ZnBDC). The linker layer was prepared by dissolving 200 mg 

BDCA in a mixture of 20 ml DMF and 100 ml CH3CN and poured into the reaction vessel. A 

spacer layer comprised of a mixture of 10 ml DMF and 10 ml CH3CN was poured over to the 

linker layer. The metal layer was then prepared by dissolution of 100 mg Zn(CH3COO)2• 2H2O 

in a mixture of 10 ml DMF and 20 ml CH3CN and poured over the spacer layer. The layered 

mixture was then allowed to react at 40 °C for 24 hours before MOF precipitate was recovered. 

Cobalt benzenedicarboxylate (CoBDC). The linker layer was prepared by dissolving 70 mg 

BDCA in a mixture of 20 ml DMF and 100 ml CH3CN and poured into the reaction vessel. A 

spacer layer comprised of a mixture of 10 ml DMF and 10 ml CH3CN was poured slowly over to 

the linker layer. The metal layer was then prepared by dissolution of 70 mg anhydrous 

Co(CH3COO)2 in a mixture of 10 ml DMF and 20 ml CH3CN and poured slowly over the spacer 

layer. The layered mixture was then allowed to react at room temperature for 24 hours before 

MOF precipitate was recovered. 

 

7.2.2 Exposure to humid atmosphere with trace SO2 
 

To minimize diffusion effects associated with exposure of a powdered material, the 

samples were prepared as thin films coated on glass slides. Activated samples were exposed to 

40 ppm of SO2 in air with relative humidity of 85% for time intervals of 1 and 2 days at room 

temperature (25 °C). The acid gas mixture was prepared according to previous literature reports 

and is described in our previous work in detail.24-25 Briefly, the SO2 gas was generated from a 

400 ml aqueous solution of 0.5 mg/ml NaHSO3 at a pH of 3.7 at 45 °C. Air at 60 ml/min was 
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bubbled through the solution and carried humid SO2 gas stream to the exposure unit (Secador 

mini-desiccator). Gas concentration inside the transparent exposure unit was continuously 

monitored with the portable PAC 7000 SO2 detector (Dräger). The relative humidity was 

continuously monitored by a commercial humidity sensor (Ambient Weather). The water bath, 

acid gas generator and exposure unit were all placed inside a fume hood with high exhaust rates 

and handled with caution. All samples of a given dose were exposed at the same time in the same 

chamber to maintain consistency. A control set was also tested by placing activated samples 

inside the exposure chamber for 1 and 2 days at 85% relative humidity and 0 ppm SO2. In order 

to generalize these results for comparison with analogous work on other MOFs, we report the 

doses in terms of overall exposure in ppm-days, by multiplying the average concentration (40 

ppm) with the dose duration to yield 0, 40, and 80 ppm-days.25-26 Small quantities of exposed 

samples were transferred to gold coated silicon following exposure for XPS and SEM 

characterization. 

 

7.2.3 Characterization of Exposure Effects 
 

X-ray photoelectron spectra were measured using a Thermo Scientific K-Alpha+ X-ray 

Photoelectron Spectrometer System. Fourier Transform Infrared (FTIR) spectra were measured 

using a Bruker Vertex 70 FTIR spectrometer. SEM images were recorded using a Hitachi 

SU8230 field emission scanning electron microscope. X-ray diffraction patterns were measured 

using a Panalytical X’Pert Pro with an X’celerator detector and copper Kα source (λ = 1.54056 

Å). 

 

7.3. Results and Discussion 
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 The evolution of the surface structure and sulfur adsorption chemistry will be considered 

in the context of the crystal structures and the metal chemistries of the three MOFs. All three 

types of 2D sheets take the MOF-2 structure, in which the unidirectional rhombohedral pores 

shown in Figure 7.1a are formed by four BDC linkers bridging two metal ions at each corner. 

The coordination complexes at the corners have the paddle wheel geometry (Figure 7.1b), with 

each metal bound to four oxygen atoms. The 3D structure consists of ordered stacking of these 

2D networks (Figure 7.1c). The nanosheets show preferred orientation, with CuBDC favoring 

the (2�01) orientation while that of ZnBDC and CoBDC favors (011). This difference in 

orientation is shown in Figure 1d and e. A graphical representation of the lattice planes and 

comparison of measured and simulated XRD patterns can be found in Figure A1. The degree to 

which the stacking is ordered determines the accessibility of the internal pore structure to guest 

molecules. The electronic configuration of the metal center also affects the stacking pattern by 

influencing the orientation of the aromatic rings with respect to the stacking direction.14  
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Figure 7.1 Models of crystal orientations of CuBDC (above) and ZnBDC (below). Top-

down view of the pore opening of CuBDC nanosheets shown in (a), off-axis view of paddle-

wheel coordination complex in (b), and side-view of laminar stacking pattern in (c). Top-

down view of ZnBDC laminar stacking pattern shown in (d) and side-view of pore opening 

shown in (e). Copper atoms are shown in blue,  zinc in grey, carbon in brown, oxygen in 

red, and hydrogen in grey. 

  



 122 

 
As noted by Rodenas et al, the internal pore structure is not easily accessible even to 

small molecules such as nitrogen.20 The nitrogen BET surface areas of CuBDC, ZnBDC, and 

CoBDC are 50, 22, and 46 m2/g respectively, and are exclusively due to their external surfaces.20 

This is likely due to disordered stacking of the internal layers of the sheets, as will be discussed 

in greater detail below. As will be shown, these materials also have an abundance of native 

lattice defects as well as variations in pore shape, that introduce the potential for interesting 

chemical interactions with guest gases. The following discussion aims to understand the reaction 

between the sulfur atmosphere and MOF nanosheet materials by starting with the local chemical 

changes and subsequently observing the crystallographic and morphological degradation of the 

particles. The chemical state of the samples measured by XPS is presented first, followed by the 

progression of the vibrational spectra over the course of the exposure, with the structural impact 

of these chemical changes presented in the evolution in the XRD patterns and SEM images. 

Because humidity is known to induce structural and chemical changes in carboxylate MOFs, 

FTIR spectra and X-ray diffraction patterns of the control group samples are included in the 

appendix.27  The most significant structural change observed across relative humidity exposures 

was the change in inter-laminar lattice spacing of CuBDC as the material became loaded with 

water. This is consistent with literature reports for water-induced decomposition of carboxylate 

MOFs, in which structural changes occur over a period of weeks rather than days.28  

 

7.3.1 Reactive adsorption and chemical evolution  
 

We first examine the distribution of oxidation states of sulfur in each material after 80 

ppm-days of exposure. Figure 7.2 shows the sulfur 2p XPS signals from each sample. These 

spectra all exhibit peaks at 169 and 162 eV with different intensities. The absence of a peak from 
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molecular SO2 at 167 indicates that adsorbed sulfur has been oxidized or reduced.29 The higher 

energy peak may correspond to sulfur in the +4 or +6 oxidation state, indicating a conversion of 

sulfur dioxide to sulfite or sulfate respectively.30  This result is unsurprising given that aqueous 

oxidation of SO2 is known to proceed in both the presence and absence of transition metals.13, 31 

The lower energy peak indicates sulfur present in the +1 or +2 oxidation state.30 Sulfur is in the 

+4 oxidation state in SO2 and the reduction to the +2 state in an oxidizing humid environment is 

surprising. The relative intensities of these peaks vary across the materials. CuBDC shows a 

larger presence of the reduced sulfur product while ZnBDC and CoBDC show a preference for 

the oxidized product. Table 7.1 gives the integrated peak areas and corresponding relative 

concentrations. Doublets are reported as the sum of both peak integrals with the location given as 

the center of the lower-energy (j = 1/2) peak. The relative concentrations represent the fractions 

of the total sulfur content of the material comprised of sulfide and sulfate. The number of sulfur 

atoms per unit cell were computed as the ratio of sulfur concentration to half of the associated 

metal concentrations given that there are two metal atoms per unit cell. Concentrations were 

computed as the fraction of the integrated signal associated with a given element scaled by the 

appropriate ionization cross sections.  Based on these concentrations, the three materials have 

comparable sulfur dioxide uptake, and after 80 ppm-days every metal site is associated with at 

least one sulfur atom. 
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Figure 7.2 Sulfur 2p region of XPS spectra of CuBDC (a), ZnBDC (b), and CoBDC (c) 

measured after 80 ppm-days of exposure. Measured data are represented by green 

triangles, overall fits shown by red solid lines, and decomposition by red dashed lines. 
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Table 7.1 Integrated Sulfur Peak Intensities after 80 ppm-days Humid SO2 Exposure 

Material Position 

(eV) 

Integrated 

Absolute Intensity 

(eV x Counts) 

Relative Concentration Sulfur 

atoms per 

unit cell 

CuBDC 162 2758 69 % 1.41 

 169.1 1257 31 % 0.64 

ZnBDC 162 571.0 11% 0.29 

 169.5 4456 89 % 2.27 

CoBDC 161.9 1074 31 % 0.85 

 169.1 2346 69 % 1.85 

 

Normalized overlays of the deconvoluted Cu 2p, Co 2p, and Zn 2p XPS spectra of the 

three materials before and after humid SO2 exposure are shown in Figures 7.3a-c. The Cu 2p 

spectrum shows a dramatic change after exposure, with a second large doublet peak shifted by 2 

eV higher than the doublet associated with the pristine material. A shake-up satellite peak at 

943.9 eV is visible in the exposed spectrum (red).30, 32 Such features generally coincide with 

paramagnetism, indicating the presence of an unpaired electron in the Cu 2p level. The shifted 

doublet at 936 eV corresponds to a copper atom in which the shielding of the 2p level from the 

nucleus is reduced.30 In other words, the local electron density in the shifted peak is lower than 

that of the original peak at 932 eV, indicating a change in the ligand environment, such as linker 

removal.  The Zn 2p spectrum also shows two doublet peaks after exposure where there was a 

single doublet before. Like the shifted Cu 2p doublet, the shifted Zn 2p doublet is consistent with 

loss of electron density from the zinc atom corresponding to linker removal. The Co 2p signal 
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shows much less change with exposure than the other two metals. Two doublets centered at 

782.2 and 786.8 eV are present both before and after exposure. This suggests a high defect 

density in pristine CoBDC and that it increases with humid SO2 exposure. 
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Figure 7.3 Cu 2p (a), Zn 2p (b), and Co 2p (c) fits of XPS spectra measured from CuBDC, 

ZnBDC, and CoBDC after 0 (black) and 80 (red) ppm-days of exposure to humid SO2. 

Data points have been removed for clarity and can be found in the appendix. Peaks have 

been normalized to the signal envelope and the background has been subtracted for 

comparison.  
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Table 7.2 Integrated Metal Peak Intensities after 80 ppm-days Humid SO2 Exposure. 

Material Position (eV) Integrated 

Absolute Intensity 

(eV x Counts) 

Relative Intensity Notes 

CuBDC 932.0 2852 12 % doublet 

 936.0 16547 65 % doublet 

 943.9 6100 23 % satellite 

ZnBDC 1023 2091 67 % doublet 

 1026 1038 33 % doublet 

CoBDC 782.2 1900 50 % doublet 

 786.8 1893 49 % doublet 

 

The normalized C 1s XPS spectra from samples after activation (black) and 80 ppm-days 

humid SO2 exposure (red) are shown in Figure 7.4. The integrated peak intensities are given in 

Table 7.3. The strong peak at 284.8 eV in each spectrum is associated with carbons in the 

aromatic ring of the BDC. The spectra also show a peak near 287 eV corresponding primarily to 

the O-C-O carbons on the carboxylate linker as well as residual C-O methanol carbons.30 The 

carbon XPS spectrum of CuBDC prior to exposure also contains large π-π* satellite features at 

290.6 and 294.5 eV. These peaks are normally found in graphitic carbons and correspond to the 

high delocalization of π electrons in those materials.30 In CuBDC, the copper’s electronic 

configuration ([Ar]3d104s1) is unfilled, allowing a large degree of π electron delocalization in 

network prior to exposure. After exposure, defects induced in the lattice prevent this 

delocalization and the peak is reduced. The O-C-O peak at 286.8 eV is very strong both before 
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and after exposure and a carbonyl peak is not resolvable from the signal. In the case of ZnBDC, 

there are no π- π* satellite features because the metal’s electron shell is full and long-range 

delocalization is not possible in this material. Prior to exposure, ZnBDC shows an O-C-O peak at 

286.8 eV and the aromatic ring peak at 284.8 eV. These peaks remain after exposure, with an 

additional carboxylic acid peak at 288.8 eV which may correspond to linkers that have been 

protonated and separated from the metal center. In CoBDC, the spectrum from the pristine 

activated sample provides further evidence that the material has a high defect density prior to 

exposure, since a large carbonyl peak is present and corresponds to uncoordinated linkers. This 

peak grows somewhat with exposure, similar to Figure 7.3.  
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Figure 7.4 Carbon 1s XPS fits from CuBDC (a), ZnBDC (b), and CoBDC (c). Black spectra 

were measured from pristine samples and red spectra were measured from samples after 

80 ppm-days. Data points have been removed for clarity and can be found in the appendix. 

Peaks have been normalized to the signal envelope and the background has been 

subtracted for comparison. 
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Table 7.3 Integrated Carbon Peak Intensities after 80 ppm-days Humid SO2 Exposure 

Material Position (eV) Integrated 

Absolute Intensity 

(eV x Counts) 

Relative Intensity Functional 

group 

CuBDC 284.8 18941 45 % C=C 

 286.8 19539 47 % O-C-O 

 290.6 3178 8 % C=C, satellite 

ZnBDC 284.8 3536 25 % C=C 

 287.1 4328 31 % O-C-O 

 288.8 6303 45 % O-C=O 

CoBDC 284.8 10255 66 % C=C 

 286.6 1889 12 % O-C-O 

 288.6 3309 21% O-C=O 

 

Chemical changes within the MOF nanosheets were also probed using transmission FTIR 

spectroscopy (Figure 7.5). The widths of the particles range from 5 nm to 20 µm, causing 

Rayleigh scattering of visible and infrared wavelengths. This resulted in irregular baseline 

features in the FTIR spectra that have been computationally corrected via baseline interpolation. 

All FTIR signals have been normalized to the aromatic C=C peak at 1510 cm-1, which is unlikely 

to have changed across exposures given the relatively high stability of the linker’s ring structure. 

The prominent features of the CuBDC FTIR spectra include an acid C=O stretch at 1691 cm-1, 

C=C stretches at 1557 and 1510 cm-1, and the symmetric and asymmetric O-C-O stretches at 

1384 and 1572 cm-1 respectively.33  
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Figure 7.5 Transmission FTIR spectra of CuBDC (a), ZnBDC (b), and CoBDC (c), after 0 

(black), 40 (blue), and 80 (red) ppm-days of humid SO2 exposure.  
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The acid C=O absorption at 1691 cm-1 indicates a substantial quantity of terephthalic acid 

trapped inside the material. This is consistent with the inaccessibility of the pore structure due to 

irregular stacking, as discussed above. A new peak at 1605 cm-1 appears after exposure with a 

stronger intensity than the C=C peaks adjacent to it, this is attributable to the bending mode of 

adsorbed water, the loading of which increases as defects are induced in the lattice. The 

hydrogen bonding peak at 3441 cm-1 also grows relative to the isolated symmetric and 

asymmetric water stretches at 3620 and 3568 cm-1 respectively, owing to increased heterogeneity 

in the degraded sample. The peak at 1285 cm-1 is in a region typically attributed to ether v(C-O) 

absorptions.30 Given that its intensity decreases with SO2 exposure, we attribute this peak to the 

M-C-O stretch.34 There were no significant changes in the region below 1285 cm-1. The FTIR 

spectrum of the CuBDC control sample (Figure A2) showed much more prominent water 

absorption than the sample exposed to the humid sulfur atmosphere, as indicated by very strong 

peaks at 3451 and 1600 cm-1. The control sample spectrum also shows large overtone aromatic 

C-H stretches at 2959 and 2956 cm-1 that are not otherwise visible in CuBDC spectra but are 

visible in all the ZnBDC and CoBDC spectra.33 This may be the result of an increase in 

interlayer spacing with water uptake. The major deviations across exposure times in the ZnBDC 

FTIR spectra are mainly due to irregularities in the baseline. There are notable differences 

between the ZnBDC and CuBDC spectra. Specifically, none of the ZnBDC spectra contain a 

peak near 1690 cm-1. This can also be interpreted as an absence of uncoordinated terephthalic 

acid inside the material. The FTIR spectra of CoBDC illustrates the dynamics of the acid-gas 

induced change in the local bond structure of the material and also contains mechanistic 

information in sulfate formation within the material. The behavior of the peak at 1690 cm-1 in 

CoBDC contrasts with that of CuBDC, in that it grows dramatically with exposure to humid SO2. 
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This peak is attributed to free carboxylate functionalities associated with unbound linker defects 

that are introduced by acid exposure. The increased intensity of the metal-oxygen-carbon stretch 

at 1286 cm-1 with exposure appears to contradict the previous statement, but it should be noted 

that this peak overlaps a broad sulfite peak at 1090 cm-1.35 This is consistent with the CoBDC 

S2p XPS spectra, which shows comparable sulfate and reduced sulfur concentrations.  
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Figure 7.6 Proposed mechanisms for oxidation of adsorbed SO2 (a), oxidation of adsorbed 

bisulfite (b), acid-induced linker separation (c), and chemisorption of SO2 on the resulting 

defect site (d). Zinc or Cobalt atoms are indicated by “M”. 
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The oxidation states of sulfur, when considered in the context of the changes in in the local 

bonding structure of these MOFs, point to a stepwise mechanistic pathway for the reactive 

adsorption of SO2 in Zn and Co-BDC MOFs. Previous work describes mechanisms of gas-phase 

oxidation of SO2 in dark, humid atmosphere.25 While these may be sources of sulfite and sulfate, 

we focus our discussion here on possible mechanisms of oxidation at the MOF surface. Given 

that these materials have a high affinity for water, we expect these reactions to proceed 

comparably oxidation of aqueous SO2.31 A schematic of the proposed mechanisms is given in 

Figure 7.6. The sulfite peak present at 1090 cm-1 in the CoBDC spectrum after exposure supports 

the first step of the mechanism in which co-adsorbed water and SO2 react to form a bisulfite ion 

shown in Figure 7.6a.31 The sulfite signal is absent in the ZnBDC FTIR spectrum but the sulfur 

XPS spectrum shows a large concentration of oxidized sulfur. There is a small, broad peak at 

1111 cm-1 in the ZnBDC FTIR spectra that is absent prior to exposure and grows with dose. This 

peak is attributable to SO4
2-, indicating oxidation of bisulfate produced by the initial reaction as 

shown in Figure 7.6b.36 The acidic species produced by the first two reactions then attack the 

oxygens bound to the metal centers, causing the linkers to separate and leaving two unsaturated 

metals for subsequent SO2 adsorbates to bridge through oxygen-metal bonds (Figure 6c and d). 

Metal-sulfur dioxide complexes formed through metal-oxygen bonds, while uncommon, are not 

unheard of in transition metals and this configuration is consistent with the reduced sulfur XPS 

signal.37 The dramatic increase in intensity of the C=O peak at 1690 cm-1 indicates a conversion 

of metal-bound oxygens to uncoordinated carboxylic acids. The resulting unsaturated metal 

center is then susceptible to chemisorption by SO2.  

The disproportionate ratio of reduced sulfur to oxidized sulfur in CuBDC suggests either a 

different mechanism or a very high concentration of native missing linker defects. A single-step 
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linker displacement reaction mechanism is consistent with the decrease in the C-O-M IR peak at 

1284 cm-1 as well as the strong preference for reduced sulfur. This mechanism is shown in 

Figure 7.7. We note that both the multistep and single step mechanisms resulting in reduction of 

sulfur dioxide are hypothetical and are proposed here as a possible explanation for the XPS 

results.  

 

Figure 7.7 Single step linker displacement by SO2 in CuBDC. 

 
7.3.2 Structural Evolution 

 

The impact of the interaction between the MOFs and the humid SO2 atmosphere on the 

crystal structure was measured using grazing-angle X-ray diffraction. The XRD patterns for 

CuBDC, ZnBDC, and CoBDC, measured after 0, 40, and 80 ppm-days exposure, are given in 

Figure 7.8. Samples were mounted on glass slides, and hence the broad amorphous silica 

background peak is often visible. Miller indices of the peaks were assigned using the Vesta 

package based on Cu MOF-2, Zn MOF-2, and Co MOF-2 crystal structures. The indices and d-

spacings of the pristine materials are listed in Table 7.4. As shown in Figure A1, only a subset of 

the brag peaks appear in each pattern due to the highly oriented crystal structures of the 

nanosheets. The CuBDC pattern shows reflections indexed at (201�) and (402�)which are 

perpendicular to the basal plane of the material and thus a measure of interlayer separation. As 

the CuBDC nanosheets are exposed to larger doses of humid SO2, the (201�) peak at 18.63˚ 

recedes and new peaks at 17.73˚ and 15.57˚ appear. 
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Figure 7.8 XRD patterns of CuBDC (a), ZnBDC (b), and CoBDC (c) after 0, 40, and 80 

ppm-days of exposure to humid SO2. 
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The peak at 17.73˚ (𝑑𝑑 = 5.06 Å) corresponds to regions in which the layers have been separated 

by water saturation (see appendix, Figure A3). The peak at 15.57˚ (𝑑𝑑 = 5.68 Å) is not present in 

the control samples and is attributed to sulfate or sulfide species separating the layers. This peak 

diminishes after 80 ppm-days as a critical fraction of linkers are replaced by bridging SO2 

ligands and the crystallinity of the lattice itself degrades. The layer stacking in ZnBDC is shifted 

relative to that of CuBDC due to the coordination chemistry of the metal nodes.14 Because the 

orientation of the crystals sees the pores running perpendicular to the plane of the particle, the 

lower index (110) peak at 9.83˚ gives information about the intra-pore spacing of Zn atoms while 

changes in the higher index (301) peak at 19.33˚ can result from changes in the inter-layer 

spacing. Note that the (110) peak does not change with exposure but the (301) peak splits into a 

small peak at 19.73˚ and a larger peak at 19.29˚ after two days of exposure. This indicates that 

some layers of the crystal have been pushed apart while others have been pushed together. This 

change also occurs in the control sample and can be attributed to water adsorption. The CoBDC 

structure, which exhibits no change in the control sample, is seen to undergo a large change in 

the test sample that results in the loss of the intra-pore (110) peak at 8.81˚ and the appearance of 

a number of other peaks at higher angles. As with the FTIR spectrum, most of the change takes 

place between 0 and 40 ppm-days and there is little difference between the 40 and 80 ppm-days 

patterns, indicating that the structural changes occur early in the exposure duration.  

  



 140 

Table 7.4 XRD Peak Assignments for Pristine MOF nanosheets (0 ppm-days) 

Material Peak Position d-spacing (Å) Index 

CuBDC 18.63˚ 4.83 (201�) 

 38.11˚ 2.49 (402�) 

ZnBDC 9.83˚ 8.99 (110) 

 14.79˚ 5.98 (111�) 

 19.27˚ 4.63 (301) 

 26.17˚ 3.40 (131) 

CoBDC 8.81˚ 10.03 (110) 

 15.87˚ 5.58 (111�) 

 17.77˚ 5.00 (201�) 

 27.35 3.26 (131) 

 30.51 2.93 (331�) 

 32.55 2.75 (150) 
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7.3.3 Morphological Evolution 
 

Figure 7.9 shows representative SEM images of the CuBDC material after 0, 40, and 80 ppm-

days exposure. Erosion of the particle shapes appears to proceed from the edges toward the 

center. As indicated by arrows, CuBDC nanosheets have the most sharply defined edges, and this 

process is therefore most easily observed in this case. As the particles are exposed to larger doses 

the edges become more irregular, with an increasing number of the top surfaces of the sheets 

becoming wrinkled as well. SEM images of the control samples after two days of exposure to 

85% relative humidity are shown in Figure A4.  

The ZnBDC particles also show degradation at the edges but the top surface does not visibly 

change under any exposure (Figure S5). This effect occurs both in the presence and absence of 

SO2 and thus is attributed to effects of humidity. Both CuBDC and ZnBDC particles change 

relatively little compared to CoBDC particles, which are seen to curl and aggregate after 40 ppm-

days of exposure (Figure S5). These aggregates are likely dense (nonporous) structures with 

significant crystalline order, as indicated by the XRD patterns in Figure 7c. Given that the 

CoBDC particles are fully intact in the control sample group, this effect is fully attributable to 

the acidic atmosphere. 
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Figure 7.9 Scanning electron micrographs of CuBDC nanosheets after 0 (a), 40 (b), and 80 

(c) ppm-days of exposure (from top to bottom respectively). 
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7.5. Conclusion 
 

We have investigated in detail the chemical and structural modifications induced in 2D 

MOF nanosheets by exposure to humid SO2 atmosphere, using a combination of vibrational 

spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron 

microscopy. These modifications, when considered in the context of induced defect densities as 

well as the environments of the chemisorbed sulfur species, provide critical information about 

the microscopic surface structure. Both the rate of catalytic oxidation of SO2 and the material 

stability in the resulting acidic environment, are important to determining their usefulness in 

applications where SO2 is present. While the dramatic structural changes observed in CoBDC 

make it unsuitable for use in SO2 separation, the large presence of sulfite inside the material 

lends insight into the oxidation reaction mechanism and its dependence on the chemical 

properties of the material. ZnBDC exhibits minimal structural change after exposure and its 

FTIR spectrum indicates the presence of sulfate species.  After 80 ppm-days of exposure all three 

materials are effectively “fully loaded” with at least one sulfur atom associated with each metal 

atom. In CuBDC, 88% of adsorbed sulfur dioxide was found in a reduced oxidation state. The 

hypothetical bridging configuration for this state was proposed in Figures 7.6 and 7.7 will be the 

subject of future computational work. Given that SO2 captured in this way is not converted to 

sulfuric acid, such a mechanism might be useful in wet desulfurization technologies.  

 

Supporting Information 

Additional experimental data and control results can be found in the appendix. Figures A1 and 

A2 show FTIR spectra and XRD patterns respectively of control samples. Figure A3 shows 

scanning electron micrographs of ZnBDC and CoBDC before and after humid SO2 exposure. 
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Figures A4 and A5 respectively show metal and carbon XPS signal data before and after 

exposure. 
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CHAPTER 8. CONCLUSIONS 

 Surface engineering is a crucial step in the development of next generation gas separation 

and catalysis technologies. Reliable techniques for characterizing distributions of surface 

functionalities are fundamentally important to this discipline. Mature surface analysis methods, 

such as X-ray photoelectron spectroscopy, provide a starting point for creating ever more 

sensitive and robust experiments. The ultimate goal of this branch of research is to be able to 

quantitatively determine the physical and chemical properties of solid surfaces in order to predict 

their utility engineering problems.  The numerical techniques introduced and applied in this 

thesis bring us closer to that goal by enabling rational analysis of complex surface data.  

 The methods developed herein were targeted toward temperature programmed 

desorption. This experiment is frequently performed by members of the gas capture and catalysis 

communities. However, the existing literature on the topic of data analysis of TPD signals from 

complex surfaces is severely lacking. The forthcoming publication of concepts discussed in 

chapters 2, 3, 5, and 6 will address this problem and provide a rigorous foundation upon which 

more complex experiments and analysis techniques can be developed. The C++ software 

developed for variational Bayesian inference of surface distributions using TPD signals will also 

soon be released under an open source license. As demonstrated, this Bayesian approach can also 

be applied to Gaussian signal decomposition. In principle, it could also in principle be extended 

to deconvolution of mixtures of Gaussian and Lagrangian peaks.  

 There are a number of other directions that future work in this area could take. A 

particularly interesting addition would be to fit alternative parameterizations for amorphous 

surfaces presented in chapter 2.7. A wide range of distribution parameterizations could be used 

to probe the chemical structure of glass or polymeric surfaces. Additionally, experimental 
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apparatus with a wider range of temperature ramp rates and initial loadings could be used to 

explore surface and internal diffusion coefficients as well as pore-exit activation barriers. Finally, 

tandem TPD and XPS apparatus could be employed to measure the electronic structure of 

adsorbed gases in order to arrive at detailed mechanistic descriptions of solid-gas interactions at 

low temperatures.  
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APPENDIX A: SUPPORTING INFORMATION FOR CHAPTER 7 

 

A.1 Crystal Orientation 

 
Figure A1. X-ray diffraction patterns of pristine M-BDC nanosheets and simulated 

diffraction pattern of CuBDC (left). Model of CuBDC nanosheets with lattice planes 

(right). 
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A.2 Control data 

 
Figure A2. FTIR spectra of CuBDC (a), ZnBDC (b), and CoBDC (c) before (black), and 

after (violet) 2 days exposure to 85% relative humidity. 
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Figure A3. X-ray diffraction patterns of activated and control samples (exposed to 85% 

relative humidity for 2 days). CuBDC, ZnBDC, and CoBDC labelled (a), (b), and (c) 

respectively. 
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Figure A4. Scanning electron micrographs of CuBDC, ZnBDC, and CoBDC nanoparticles 

after two days exposure to 85% relative humidity. 
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A.3 Additional exposure data 
 

 
Figure A5. SEM images of ZnBDC and CoBDC nanosheets over progress of exposure to 
humid SO2. 
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Figure A6. Metal XPS data from CuBDC (a), ZnBDC (b), and CoBDC (c) (Cu2p, Zn2p, and 
Co2p regions respectively). Data recorded after activation shown on the left and after 80 
ppm-days humid SO2 exposure shown on the right. 
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Figure A7. Carbon C1s XPS data from CuBDC (a), ZnBDC (b), and CoBDC (c). Data 
recorded after activation shown on the left and after 80 ppm-days humid SO2 exposure 
shown on the right. 
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