
Robust Multi-Robot Coordination in Noisy and Dangerous
Environments*

Sanem Sariel Tucker Balch
Istanbul Technical University Georgia Institute of Technology

Department of Computer Engineering College of Computing Department
Istanbul, TURKEY, TR34496 Atlanta, GA, USA 30332

sariel@cs.itu.edu.tr tucker.balch@cc.gatech.edu

* This work is supported by Siemens TURKEY, Tincel Kultur Vakfi TURKEY and NSF.

 Abstract - In this paper we present the design and
implementation of a complete framework for multi-robot
coordination in which robots collectively execute inter-
dependent tasks of an overall complex mission requiring
diverse capabilities. Given a heterogeneous team of robots and
task dependencies, proposed framework provides a
distributed, robust mechanism for assigning robots to tasks in
an order that efficiently completes the mission. The approach
is robust to unreliable communication and robot failures. It is
market-based approach, and therefore scalable, but it does not
provide guarantees of optimality. In order to obtain optimum
allocations in noisy environments we introduce a coalition
maintenance scheme for dynamic reconfiguration of the
assigned tasks at run time. Additional routines, called
precautions are added in the framework for addressing
different types of failures common in robot systems and
solving conflicts in cases of these failures. Framework has
been tested in simulations that include variable message loss
rates and robot failures. We expect to port the system to
mobile robots in the future. Our experiments illustrate
effectiveness of the proposed approach in realistic scenarios.

 Index Terms – distributed AI, robotics, multi-agent systems.

I. INTRODUCTION

In this work, we present a framework for multi-robot
teams that must coordinate to complete complex missions
including tightly coupled tasks that require diverse
capabilities and collective work. Our approach combines
auctions, coalition maintenance and recovery routines
called precautions to provide an overall system that finds
near optimal solutions in the face of noisy communication
and robot failures. We do not formally establish the
optimality of the proposed approach’s solutions in this
paper, but we do illustrate its capabilities in a series of
simulation experiments that include message loss and robot
failures. Precaution routines embedded in the framework
enable the system to dynamically respond to these failures
at run time and still complete the mission.

Our system relies on a set of task dependencies that are
compiled a priori by a mission commander, or generated by
a planner before the mission. The task dependencies, a
specification of the mission, and a specification of the robot
teams’ capabilities are distributed (reliably) to the robots

before mission execution begins. At that point, negotiation
of task assignments and execution of the mission begins.

In some cases, task assignments are discovered to be
invalid due to conflicts or environmental constraints. Our
framework of precaution routines discovers such conflicts
and resolves them.

Proposed framework strives to provide optimal solutions
while simultaneously responding effectively to
communication losses and robot failures. To our
knowledge, the framework presented in this paper is the
first coordination scheme to address such a broad range of
failures for heterogeneous teams executing tightly coupled
tasks requiring collective work.

II. BACKGROUND AND RELATED WORK

A number of researchers have investigated the dynamic
task allocation problem in the face of robot failures
(including partial and complete failures) or environmental
changes. In most cases the test domain missions include
independent sub-tasks that can be executed by a single
robot. The market-based approach (borrowed from DAI
research) shows great promise in these applications. We
briefly review the existing work in multi-robot coordination
for team tasks.

TraderBots is a market-based approach for multi robot
coordination [1]. Optimality analysis of TraderBots is
implemented on multi-robot exploration problem in which
robots are homogeneous and tasks have same type of
capability requirements. MURDOCH also uses auction
methods for coordination of multi-robot systems for
multiple tasks [2]. In MURDOCH, however, resources are
not exploited in a globally optimal fashion. In L-
ALLIANCE task-oriented missions are embedded in a
behavior based system [3]. The ability for robots to respond
to unexpected events such as robot failures is provided
through the use of motivations. Task allocation is
implemented by motivations by using behavior based
approach. Experiments for this work are implemented on
real robots. Dahl presents a differentiation among
homogeneous robots based on their performances to
improve performance [4]. Communication failure analysis is
not implemented. Chaimowicz’s work addresses the task
dependence issue [5]. His role exchange mechanism is

implemented for a cooperative transportation mission. A
utility calculation is used to provide suggestions for role
exchanges. It is assumed that the robots know their
positions on the environment and there are no errors in the
explicit communication.

Lemarie’s [6] and, separately, Kalra and Stentz’s [7]
work addresses the task dependency issue for tightly
coupled missions. Kalra and Stentz’s system was tested for
a collective perimeter-sweeping mission. Task dependencies
are considered in keeping a formation while simultaneously
obeying some rules. Heterogeneity of the robot team is not
explored. In Lemarie’s work, the main goal is to keep the
architecture distributed among the robots so as to support
scalability, robustness and reactivity. However the solution's
optimality is not guaranteed. Lemarie also takes advantage
of a market-based approach. For controlling auction
generation, a token-ring network approach is used. Only
one auctioneer can initiate an auction. In these approaches,
performance for combined tests of failures is not measured.

Proposed framework is distinct from previous work
because it seeks optimal solutions, recovers from failures
online, supports heterogeneous teams, and supports
dependent tasks that require multiple robots. We assume
that robots are not able to infer the state of others by
observation; although such capabilities would only provide
more reliability (e.g. [8]). The main objective is to provide a
system for allocating tasks in an optimal manner in valid
plans. However, failures most common in robot systems:
communication failure and robot failure are also handled by
the framework. These various failures, including the kinds
of failures that can result from lossy communications during
task negotiations are addressed by precaution routines.
According to the classification given in Gerkey and
Mataric’s work [9], the proposed framework is for single-
task robots, time-extended assignment and multi-robot
tasks.

III. FRAMEWORK OVERVIEW

In this work, a distributed coordination framework for
multi-robot teams implementing complex missions of
tightly coupled tasks requiring diverse capabilities and
collective work is proposed. Optimal solutions (in terms of
task execution cost) are sought using a cost optimal action
selection method. While we do not prove it here, we
believe the plans generated by the framework are cost
optimal when there are no communication failures (proof of
optimality is for later work). However, the framework also
provides responding to communications and robot failures
online. Online (i.e. during execution) failures are addressed
using precaution routines that recognize and recover from
various failure modes including conflicts. The coalition
maintenance scheme also identifies sub-optimal task
assignments, and can direct reassignments during execution
if a lower cost solution would result. To our knowledge,
this is the first complete framework for heterogeneous
robots implementing tightly coupled tasks requiring diverse

capabilities and collective work that addresses optimality
and produces recovery solutions against real environmental
constraints.

We assume we are provided a specification of the
mission to include a set of tasks to be completed as well as
the robot capabilities that are required for accomplishing
each tasks. It is possible that some tasks may require
several robots for completion. We also assume we are
provided a specification of task dependencies that describes
ordering constraints between tasks. This information is
communicated reliably to the robots, whereupon they begin
to negotiate for and execute mission tasks in a fully
distributed manner without a central coordinator or leader.

The framework is robust to message losses and robot
failures. To deal with message losses, each robot maintains
a local model of the mission state. When messages are
received from other robots, their mission model is updated
accordingly. In some cases a new message implies a conflict
with the robot’s model of the task state. In this case,
appropriate precaution routines are activated to either
correct the model, or initiate a recovery. Recovery
operations may include warning other robots of the problem
or changing task allocations. These inconsistencies usually
arise when robots are not informed about tasks that are
completed, under execution or under auction.

A. Task Representation
One of the important mechanisms of the framework is

the validity of the generated plans for executing tasks
among robots. Although there is not a central planner, the
robots execute tasks by considering dependencies among
them. There are some models for task representations for
robots such as TDL [10], however, to our knowledge, a
TDL representation supporting multi-robot coordination has
not been released or published yet.

We use a simple representation for tasks with ordering
and dependency constraints, similar to but simpler than
some representations in TAEMS [11]. We consider Hard
and Soft dependencies. If task T2 is hard dependent on task
T1, it cannot be executed before task T1 is completed. In this
case, there is a strict ordering between tasks. If task T2 is
soft dependent on task T1, it can be executed while task T1 is
being executed or before its execution begins. However task
T2 cannot be completed until task T1 is completed. Therefore
some portion of the two tasks can be executed at the same
time. A sample situation can be seen in Fig. 1. Tasks T2 and
T3 are hard dependent on task T1 while task T3 is also soft
dependent on task T2. The dashed area represents the
waiting time of the robot R3 for task T2 to be completed.

Time

R1

R2

R3

T1

T2

T3

Ta
sk

s
E

xe
cu

te
d

by
 R

ob
ot

s

Fig. 1. Task Dependence Relationship

The required capabilities for executing a task are also
encoded in the representation. Robots lack of necessary
capabilities for tasks are not eligible for executing. They do
not consider such tasks for execution. We also added the
required number of robots to implement the task in the
representation. The tasks can only be executed when
necessary number of robots is ready for executing this task.

The heterogeneity of the system with robots, the task
dependencies, required capabilities and number of robots
restrict the allocation of tasks to the robots.

B. Roles
The framework is designed for missions consisting of

sub-tasks having dependencies and requiring either one or
more than one robot to execute. Therefore the tasks may be
executed by a group of robots. We have chosen the
coalition organizational paradigm to organize the task
execution for our framework [12, 13]. These coalitions can
contain one or more robots according to the required
number of robots to execute the tasks. Auction based
selection of the coalition members are implemented. The
auctioneers are also active robots in the system.

The overall objective is completing a mission (M)
consisting of Ti s (0≤ i<||M||) with a multi-robot team
(rj∈R, 0≤ j<||R||) in a cost optimal manner. Each coalition
(Ci) is formed to execute a task Ti of overall mission M.
Sizes of coalitions vary according to the required number of
robots (reqnoi) to execute the task. The capabilities (capj) of
robots Rj in a coalition should be a superset of the required
capability set for Ti (reqcapi).

A robot (rj) may be in different roles for task Ti such as
auctioneer, bidder (Bij), coalition leader (CLi) and coalition
member (CMi) in different time steps.
• An Auctioneer robot is responsible for managing
auction negotiation steps and selecting reqnoi suitable
members of a coalition.
• A Bidder robot is a candidate to become a member of a
coalition executing a task.
• A Coalition Leader is the robot responsible for
maintaining the coalition and providing synchronization. It
executes a portion of the task.
• A Coalition Member is one of the members of the
coalition, and it executes a portion of the task.

A is the auctioneer set in a time step. Bij is the bidder
robot rj for task Ti. A robot rj may be in more than one Bij
roles for different tasks. However it is not allowed that a
robot rj may be in more than one of roles Ai, CMi, or CLi.

We assume that auctioneer is informed about the
number of necessary robots to execute that task. Therefore it
is responsible to select necessary number of candidates for
task execution. After the auctioneer selects the coalition
leader and members, it finishes the auction. The coalition
leader forms the coalition and keeps track of the coalition
members’ situations and their updated information. After
the execution of the task is completed, the coalition ends.
Each robot is allowed to be in only one coalition until it

leaves the coalition. The auctioneer may either be in the
coalition of which the auction it offered, or not.

Coordination of coalition members are implemented by
synchronization messages. Therefore each coalition member
has responsibilities for the effective coordination. To ensure
maintaining optimality against environmental changes, a
dynamic reconfiguration approach is proposed.

C. Precautions
For dealing uncertainties because of the message losses,

each robot keeps track of the models of known tasks and
other robots in their world knowledge. The up to date
situations of the known tasks are kept track by representing
each known situation in a FSM. The transitions among the
states for the tasks can be seen in Fig. 2. The state
transitions are implemented either by own motivations or
incoming information from other robots. The state transition
details are explained in corresponding sections.

 When the robots get information from the others they
update their world knowledge accordingly. Whenever there
are message loses in the system, the world knowledge of
each robot may be inconsistent. However the framework
ensures an update mechanism when conflicts are detected to
reduce inconsistency. When the robots receive inconsistent
messages, they either warn others or correct themselves.
These inconsistencies occur when robots are not informed
about the tasks that are completed, under execution or under
auction. It is assumed that robots are trusted and benevolent.

Execution conflicts:

For parallel execution of the same task, all the robots
cancel their execution. This is for ensuring optimality. A
new auction is generated to consider all the robots’ costs.
The robots are allowed to generate different auctions for the
same task. However one of them continues the auction
negotiation process the details of which are explained in
section E.

Auctioned
Confirmation

from
the

Auctioneer

Confirmed

Selected

Ready for
Execution

Being
Executed by

own
Free

Selection among
all the eligible tasks

The robot is
the auctioneer

has the
coalition

information

Conflicts
are detected

Waiting for
the soft dependencies

Selected from
candidate free missions

Completed

From any state.
The information

comes
from others

Being
Executed by

others

The information
comes from others

After
being

released

After
being

released

After
being

released

All the coalition information is
sent from the Auctioneer

Fig. 2. FSM of a Known Task

To keep consistency, each robot executing a task is

responsible for broadcasting an execution message for
informing others that the task is under execution and the

Routine Duties
if rj ∈ A
 AuctionNegotitationProcess

if rj is a CMi
if the “synchronization message” has been arrived

Set coalition count down
else if the coalition count down is 0

 Cancel execution of the task; break
 Send leave message to the CLi

else
if the last communication with CLi is more than τ (threshold)

Send “coalition leader query” message
Decrease coalition count down

Send updated cost/bid value to the CLi

if rj is a CLi and ||C||>1
if each CMi has already sent the execution/updated cost message

 Send “synchronization message” to all CMis
 Set coalition count down

Broadcast max cost(CMi)
else if the coalition count down is 0

 Terminate the coalition; break
else

Decrease coalition count down
Broadcast max cost(CMi)

Begin CoalitionMaintenanceProcess

if the robot is not executing a task || the task under execution is released
Begin SelectAction

Send query messages for the tasks which are free
If there is a task selected, execute the own portion

robot is alive. The robots getting this execution message are
informed about the task and they assume that the task is
under execution for a period of time. If a robot cannot get
any message related to a task for a period of time, the task is
assumed to be free. The execution message is also a clue
that the executer robot is still alive and the task is being
executed. The same update is implemented when robots
offer auctions for tasks. In this case the world knowledge is
updated as the robot is not executing a task and the task is
under consideration.

Auction conflicts:

Whenever a robot gets an auction message, it first checks
the validity of the auction by considering the task
information. If it is a valid auction it always sends bid
information to the auctioneer. Therefore a more suitable
task for the robot may be selected in future, whether it is
currently executing a task or not. If the robots get an offer
for an auction of a task that has hard dependencies, then it is
assumed that these dependent tasks are completed and the
world knowledge is updated as so. The same update is
implemented when execution, cancellation messages are
received.

Synchronization for Coordination:

For synchronized coordination, CLi sends
synchronization message to all CMis. If either the CMis or
the CLi believes that there is a problem with the coalition,
they terminate the coalition processes.

Robot Failures:

The robot failures in a coalition can be recognized by
keeping track of the models of the members. Since
synchronization message is sent periodically by the CLi,
CMi s know that the leader is alive. The CLi also receives
updated cost information from CMi s. If members cannot
get these messages for a defined period of time they believe
that there is a problem and then they finish coalition
processes and stop execution of the task.

Since the world knowledge is updated based on the
incoming information from others, if a robot executing a
task fails, after a period of time other robots not receiving
messages from the failed robot mark the related task as
left/free to consider it in the action selection process.

D. Action Selection
Each robot initially updates its world knowledge based

on the incoming messages. Then considering the new
updated world knowledge and the situations of the
processes for different roles, it selects the action. The action
may be joining a coalition executing a task or becoming an
auctioneer auctioning for a task. Before selection of the
action, the robot should perform its routine duties for
different roles. These duties are given in Fig. 3. If it is
leading an auction, it performs the necessary negotiation
process details of which are explained in section E. Duties
of roles CMi and CLi are performed for ensuring
synchronization while coordinating in a coalition. If the
robot is a CLi, it checks the current coalition members’
situations and can decide to reconfigure the coalition when

new robots join or some members are not reachable. This
coalition maintenance and dynamic configuration
mechanism is explained in Section F.

While selecting the action, the robot considers the tasks
confirmed by an auctioneer to be a coalition member, tasks
under execution but with a higher value of costs than the
robot has, the soft dependencies of the current task, and the
free tasks which are not executed or under auction. The
robot should be capable of executing all the tasks under
consideration. The hard dependencies of them should be
completed, and the robot should be able to execute these
tasks with its capabilities. Before the robot decides on one
of these tasks, it ranks these tasks based on the costs for
them and selects the minimum cost task. This ranking
procedure provides the optimum cost selection of the tasks
for the given and known situation. The tasks confirmed by
an auctioneer to make the robot one of the coalition
members have higher priority than free tasks, and the tasks
of coalitions with higher maximum cost value than the
robot’s cost have the highest priority of all. If there are only
free tasks, the robot selects the one with the lowest cost.
However if there are more than one free task with the same
lowest cost, the robot selects the one with the lowest
number of soft dependencies and lowest number of robot
requirements for executing. Therefore if the costs of the
tasks are the same, initially the tasks requiring low
coordination is selected.

Fig. 3. Routine Duties of a Robot

Canceling of the current task when a better task appears
can only be performed if the robot is released from the
coalition of the task. Decision on releasing a robot from a
coalition is only made by the coalition leader. The details
are discussed in Section F. The Action selection algorithm
is given in Fig. 4.

SelectAction
For each known task Ti

if the capi ⊆ reqcapi ∧ hard dep. of Ti are completed
if the task is not in one of the following types skip

The tasks for which the robot is accepted for joining (with higher max cost value
than the robot’s)
Confirmed tasks by the auctioneers
Free tasks which are not under consideration

 else add the task in a priority queue ordered by cost with the priorities in given order
Select the minimum cost task in the priority queue
if Rj is in a coalition

cancel executing the task, send “leave” message to the CLi

if the selected task is a free task
begin AuctionNegotitationProcess

else
set the selected task as the current task
if it is a confirmed task

send “accept become a member” message

E. Auction Negotiation Process
Each robot offers an auction for a free task that is

selected in action selection step. When a robot is an
auctioneer it should maintain the auction negotiation
process. In this process the coalition members and the
leader are selected for the task to be executed.

Fig.4. Action Selection

Initially the auctioneer offers the auction. The robots

can get the necessary task details from the auctions and first
check the validity of the auction. If the auction is invalid, a
warning message is sent to the auctioneer. This invalidity
may occur if the auctioneer has incomplete knowledge
about the mission status. Possible situations may be that the
task is completed or it has already been executing. If the
auction passes the validity check, the candidate robot
becomes a bidder of the task (Bij), calculates the cost and
sends the cost value as a bid. The other candidate robots
behave as so. The auctioneer robot is also a bidder and
generates a bid for the task at hand. It waits until the end of
the deadline. If the auctioneer cannot get the necessary
number of bids from the other robots (including cost of the
own) until the deadline, it cancels the auction. Otherwise it
ranks all the bids. It selects the robot with the minimum cost
as the CLi of the coalition. The remaining robots are selected
among the other bidders in the ranking. If the necessary
number of robots to execute the task is one, the selected
leader is the only member of the coalition. In this ranking
process, the auctioneer may also select itself either as a CLi

or a CMi. In the selection, the current situations of the
robots are also considered. If they are recently marked as
executing a task, they are not selected. That means after
they sent their bids they began execution of another task.

A bidder robot may get confirmation from different
auctioneers. However in the action selection step, it selects
the optimum cost task for it. Therefore it only sends a
message to become a CMi to only one of these auctioneers.
In the current implementation, each robot involves in only
one coalition executing one task.

It is allowed that more than one robot offer an auction
for the same task. In this case, when the robots detect this
conflict, the robot having higher number of robot models is

the winner of this race. We assume that a robot having
higher number of robot models communicated with fewer
robots is and it is likely to be communicated with more in
future. If the number of robot models is the same, the robot
having the smaller identification number is the winner. This
decision only provides to recover the conflict. There may be
other solutions but we avoid adding extra complexity to the
negotiation process. Besides this, since these robots are in
the reliable communication range (they can detect that both
them auctioned for the same task), the bid of each of them is
considered in either case not affecting the optimality.

Cost Calculation:

Cost function calculated by robots highly affects the
overall performance. Since there may be different
constraints for different domains, optimality analysis is
under consideration. In some domains, using penalized cost
functions for forwarding more expensive robots to more
complex tasks may improve overall system’s performance.
A research work on time optimality versus cost optimality
should be implemented. Currently in the bid/cost
calculation, the energy constraint for the task and the
current situations of the robots are considered and a task
exchange cost is added. However analysis of this
calculation is left as a future work.

F. Coalition Maintenance Process
We added a releasing and locking mechanism to prevent

the coalition members leave the coalition until a new more
suitable robot joined to the coalition. The coalition leader is
responsible to broadcast the maximum cost value of the
coalition members in each execution step. Since in the
decision stage, each robot taking these kinds of messages
considers the maximum cost value of each coalition, if they
detect that their cost is lower than the maximum cost of the
coalition and they are released, it sends a join request
message to the coalition leader. The leader getting join
request message, directly adds the robot to the coalition. If
the coalition leader detects that the size of the coalition is
more than required, it can release coalition members having
the maximum cost value for the current mission. If a robot
gets released message, it can select another more suitable
task after then. When the coalition leader considers the size
of the current coalition, it also checks the failures. Since
each robot in the coalition broadcasts under execution and
updated cost messages, their failure can be detected by the
coalition leader. The failed robots are also released if there
is enough number of members. If there is not enough
number of members to execute the task for a period of time,
the coalition leader cancels the coalition.

1

2

3

4auction

5auction

auctionbid

auction

bid

bid

1

2

3

4max cost1

5
max cost1

max cost1

max cost 1
Join request & bid

1

2

3

4max cost 2

5max cost 2
released

max cost 2

Robot with the maximum cost value
(max cost1) in the coalition

a b

c
Fig. 5. Dynamic Coalition Reconfiguration

An illustrative example of coalition reconfiguration is

given in Fig. 5. This kind of situation may occur when a
robot is not reachable when the auction announcement is
made {a}. When the situation is changed {b}, the robot may
take a role instead of the member having the maximum cost
value in this coalition {c}. Therefore the cost optimality is
maintained as much as possible.

IV. EXPERIMENTAL DESIGN

We have conducted two stages of experiments to test
the performance of the framework in terms of time to
complete the overall mission and active execution time of
the robots. In the first stage, we measured the performance
against message losses for a complex mission consisting of
tasks having hard and soft dependencies among each other.
In the second stage, we measured the effectiveness of the
framework and recovery solutions when the robot failures
are added to the system. The conducted experiments are run
on a simulator simulating the message exchange and
execution of the missions. The results are from 100
independent runs with random seeds. The maximum
simulation step number is selected as 200. Field
experiments on real robots are left as a future work.

INITIAL STATE FINAL STATE

Fig. 6. Initial and Final States of the Test Domain

Test Problem Specification
We have selected collective building construction

domain. In the designed experiment, there are three types of
objects: A, B and C. The overall mission for the robots
contains tasks of finding the necessary objects and making
the construction while obeying the specified ordering
restrictions. In the construction, initially the object A should
be pushed into the destination and then object B and C
respectively. The pushing requirements of these objects are
also different. The initial and final stages can be seen in Fig.
6. The objects A, B and C are colored based on their

weights: white, gray and black respectively. This mission
both contains dependent tasks and requires cooperative
work of the robots.

The sub-tasks and dependencies of them are given in
Table 1. The third and fourth columns represent the hard
and soft dependencies respectively. The required
capabilities for the task and the required number of robots
to execute the tasks are given in last two columns. The
capabilities of having blob finder, sonar sensor, prods for
objects A and C and prods for object B are listed as 0, 1, 2
and 3 respectively. Based on the specifications of the
overall mission, the task dependencies can be represented
graphically as in Fig. 7 in which solid lines represent the
hard dependencies and the dashed lines represent the soft
dependencies.

TABLE I
TASK SPECIFICATIONS

ID Description Hard
Dep.

Soft
Dep.

Req.
Cap.

Req.
Rob.
Num

0 Find-object-A - - 0,1 1
1 Find-object-B - - 0,1 1
2 Find-object-B - - 0,1 1
3 Find-object-B - - 0,1 1
4 Find-object-C - - 0,1 1
5 Push-object-A-to-destination 0 - 0, 1, 2 1
6 Push-object-B-to-destination 1 5 0, 1, 3 2
7 Push-object-B-to-destination 2 5 0, 1, 3 2
8 Push-object-B-to-destination 3 5 0, 1, 3 2
9 Push-object-C-to-destination 4 6, 7, 8 0, 1, 2 3

The robot specifications are given in Table 2. We
selected the number of robots suitable for tasks that needs
coordination as one more than the required number of
robots to execute, to see if they can reconfigure themselves
against robot failures. The robots R4 and R7 and are added
for measuring this performance.

Fig. 7. Task dependency graph of the overall mission

V. EXPERIMENTAL RESULTS

The experiments are conducted for the given complex
mission and by using the heterogeneous robot set with
different robot failure numbers. The step number in which
the failure occurs is selected as the most important time step
to complete the mission for all message loss rates. Based on
the results of no failure case, we observed that 25th time step
is a time step that the robots have already finished executing
tasks not requiring coordination, trying to coordinate for the
other tasks for most of the runs. However the failed robot is
selected randomly. The mission completion ratio over all
runs can be seen in Table 3. In this table, the main columns
represent robot systems with no failure, 1 robot failure and
2 robot failure results respectively. An additional column is
added for systems with failures to report the number of runs
in which one or two of randomly failed robot is a CLi.

0

1

2

3

4

5

6

7

8

9

TABLE II

ROBOT SET USED IN THE EXPERIMENTS
Robot Set

RobotID Cap.
0, 8 0, 1

1, 2, 3, 4 0, 1, 2
5, 6, 7 0, 1, 3

It can be seen from these results, the completion of the
mission is difficult when the message loss rate is greater
than 50%. Since the synchronization is highly required for
multi-robot coordination of tasks 6, 7, 8 and 9, the message
losses cause the synchronization to be lost and also the
auction negotiation steps are not completed reliably.
However we can also observe that the framework can easily
handle message loss rates smaller than 50% which is a very
high message loss rate for real experiments. It can also be
seen that although there are robot failures even the failed
robots are CLis, the mission is completed as if there is no
robot failures in the system. In the third column, there are
some runs in which the mission is not completed. This is
because the randomly selected robots are from the same
type and when they are failed, it is not possible to complete
the mission. The number of runs in which the failed robot is
a CLi is 100 for message loss rate is 100. This is because, in
this case each robot is the coalition leader of its own task
not requiring coordination, and since the robots cannot
communicate, the execution of the tasks not requiring
coordination are completed in later steps and all robots try
to execute all the tasks by themselves. The mission
completion time results can be seen in Fig. 8. The mission
completion time increases for increasing message loss rates
logarithmically. However even for message loss rate is 70%
there are some runs in which the mission is completed. It
can be seen that when there is not a robot failure in the
system the result is better. However when the failures are
added, the results are very close to the no failure case. The
framework can easily handle robot failures.

TABLE III
MISSION COMPLETION RATIOS

of runs in which the
mission is completed/all runs

no
failure

1 robot
failure

2 robot
failure

Message
loss rate

(%)

runs #
runs

#CL
i

runs

#CL
i

0 100 100 22 83 39
10 100 100 22 79 45
20 100 100 27 81 33
30 100 100 27 78 42
40 100 100 20 77 31
50 98 95 19 72 27
60 59 48 15 30 27
70 4 3 13 2 18
80 0 0 5 0 19
90 0 0 4 0 25

100 0 0 100 0 100

Fig. 8. Number of Steps to Complete the Mission Analysis

Averaged over 100 runs given with standard deviation

Fig. 9. Total Active Execution Time Analysis

Averaged over 100 runs given with standard deviation

In Fig. 9, the total execution time analysis can be seen.
Here active execution time is counted even the robots
cannot synchronize and waits for the execution. The
gradient of the active execution time curve is greater than
the completion time curve because of the waiting time for
synchronization and some parallel executions of the tasks
not requiring coordination. These parallel executions can
only be eliminated by implicit communication when the
message loss rates are higher. Because of that, the active
execution time for 70% message loss is decreased because
the executions are performed with less waiting time by
chance and also the sample space for this loss rate is small
to decide. Active execution time for no failure case is
greater than the failure cases for some message loss rates
because the number of robots in the system is greater than
the failure cases.

Fig. 10. Number of Messages Analysis

Averaged over 100 runs given with standard deviation

The messages sent for coordination also increase

logarithmically as in Fig. 10. The robots continuously query
the tasks that are free and try to coordinate for the tasks
which need to be executed by more than one robot. The
number of messages for no failure case is also greater when
the message loss rate increases this is also because of the
number of robots and their efforts to coordinate.

It can be observed from the results that the framework
ensures to handle message losses as much as possible. The
graphs increase logarithmically.

VI. DISCUSSION

We propose a framework for multi-robot coordination
suitable even for complex missions containing inter-
dependent tasks requiring heterogeneity and coordination.
The generated plans are always valid because of the task
representation. The recovery solutions provided by
precaution routines for different kinds of failures ensure the
approach is complete. In this framework, close to optimal
solutions are generated with available resources at hand.
Experiments to validate the approach were conducted in a
construction domain. The experiments tested the framework
in the face of message losses and robot failures. Even for
very high message loss rates, robot teams can still complete
their mission using the proposed framework for
coordination. If there were a way to consider implicit
communication in the system, the overall performance may
be increased. Analysis of the effects of the cost calculation,

and proofs of optimality are left as future work. The next
step in this research is real field experiments on real robots
and optimality analysis for different domains.

REFERENCES
[1] M. B. Dias, M. Zink, R. Zlot, A. Stenz, “Robust Multirobot

Coordination in Dynamic Environments”, CMU Technical
Report, 2004.

[2] B. Gerkey and M. J. Matric, “Sold!: Auction Methods for
Multirobot Coordination”, IEEE Transactions on Robotics and
Automation, vol. 18 no.5, pp. 758-768, 2002.

[3] L. E Parker, “ALLIANCE: An Architecture for Fault Tolerant
Multi-Robot Cooperation”, IEEE Transactions on Robotics and
Automation, vol. 14, no.2, pp. 220-240, 1998.

[4] T. S. Dahl, M. J. Mataric, and G. S. Sukhatme, “Emergent Robot
Differentiation for Distributed Multi-Robot Task Allocation”,
Distributed Autonomous Robotic Systems, 2004.

[5] L. Chaimowicz, M. Campos, and V. Kumar, “Dynamic Role
Assignment for Cooperative Robots”, International Conference
on Robotics and Automation, 2002.

[6] T. Lemarie, R. Alami, and S. Lacroix, “A Distributed Task
Allocation Scheme in Multi-UAV Context”, ICRA, 2004.

[7] N. Kalra and A. Stenz, “A Market Approach to Tightly-Coupled
Multi-Robot Coordination: First Results”, ARL Collaborative
Tech. Alliance Symposium, 2003.

[8] T. Balch and R. C. Arkin, “Communication in Reactive
Multiagent Robotic Systems”, Autonomous Robots, pp. 1-25,
1994.

[9] B. Gerkey and M. J Matric, “A Formal Analysis and Taxonomy
of Task Allocation”, Intl. Journal of Robotic Research vol. 23
no.9 pp. 939-954, 2004.

[10] R. Simmons and D. ApfelbaumD, “A Task Description
Language for Robot Control”, Conference on Intelligent
Robotics and Systems, 1998.

[11] K. Decker, “TAEMS: A Framework for Environment Centered
Analysis & Design of Coordination Mechanisms”, Foundations
of Distributed Artificial Intelligence, Chapter 16, pp. 429 – 448,
1996.

[12] H. Bryan and V. Lesser, “A Survey of Multi-Agent
Organizational Paradigms”, UMass Computer Science Technical
Report, pp. 04-45, 2004.

[13] L. Soh, C. Tsatsoulis and H. Sevay, “A Satisficing, Learning,
and Negotiated Coalition Formation Architecture”, Distributed
Sensor Networks: A Multiagent Perspective. Ed.V. Lesser, M.
Tambe, C. Ortiz. Kluwer, 2003.

