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 Abstract - In this paper we present the design and 
implementation of a complete framework for multi-robot 
coordination in which robots collectively execute inter-
dependent tasks of an overall complex mission requiring 
diverse capabilities. Given a heterogeneous team of robots and 
task dependencies, proposed framework provides a 
distributed, robust mechanism for assigning robots to tasks in 
an order that efficiently completes the mission. The approach 
is robust to unreliable communication and robot failures.  It is 
market-based approach, and therefore scalable, but it does not 
provide guarantees of optimality. In order to obtain optimum 
allocations in noisy environments we introduce a coalition 
maintenance scheme for dynamic reconfiguration of the 
assigned tasks at run time. Additional routines, called 
precautions are added in the framework for addressing 
different types of failures common in robot systems and 
solving conflicts in cases of these failures.  Framework has 
been tested in simulations that include variable message loss 
rates and robot failures.  We expect to port the system to 
mobile robots in the future. Our experiments illustrate 
effectiveness of the proposed approach in realistic scenarios.  
 
 Index Terms – distributed AI, robotics, multi-agent systems. 

I. INTRODUCTION 

In this work, we present a framework for multi-robot 
teams that must coordinate to complete complex missions 
including tightly coupled tasks that require diverse 
capabilities and collective work. Our approach combines 
auctions, coalition maintenance and recovery routines 
called precautions to provide an overall system that finds 
near optimal solutions in the face of noisy communication 
and robot failures.  We do not formally establish the 
optimality of the proposed approach’s solutions in this 
paper, but we do illustrate its capabilities in a series of 
simulation experiments that include message loss and robot 
failures. Precaution routines embedded in the framework 
enable the system to dynamically respond to these failures 
at run time and still complete the mission.  

Our system relies on a set of task dependencies that are 
compiled a priori by a mission commander, or generated by 
a planner before the mission. The task dependencies, a 
specification of the mission, and a specification of the robot 
teams’ capabilities are distributed (reliably) to the robots 

before mission execution begins.  At that point, negotiation 
of task assignments and execution of the mission begins.  

In some cases, task assignments are discovered to be 
invalid due to conflicts or environmental constraints.  Our 
framework of precaution routines discovers such conflicts 
and resolves them.  

Proposed framework strives to provide optimal solutions 
while simultaneously responding effectively to 
communication losses and robot failures. To our 
knowledge, the framework presented in this paper is the 
first coordination scheme to address such a broad range of 
failures for heterogeneous teams executing tightly coupled 
tasks requiring collective work.   

II. BACKGROUND AND RELATED WORK 

A number of researchers have investigated the dynamic 
task allocation problem in the face of robot failures 
(including partial and complete failures) or environmental 
changes. In most cases the test domain missions include 
independent sub-tasks that can be executed by a single 
robot. The market-based approach (borrowed from DAI 
research) shows great promise in these applications. We 
briefly review the existing work in multi-robot coordination 
for team tasks. 

TraderBots is a market-based approach for multi robot 
coordination [1]. Optimality analysis of TraderBots is 
implemented on multi-robot exploration problem in which 
robots are homogeneous and tasks have same type of 
capability requirements. MURDOCH also uses auction 
methods for coordination of multi-robot systems for 
multiple tasks [2].  In MURDOCH, however, resources are 
not exploited in a globally optimal fashion.  In L-
ALLIANCE task-oriented missions are embedded in a 
behavior based system [3]. The ability for robots to respond 
to unexpected events such as robot failures is provided 
through the use of motivations. Task allocation is 
implemented by motivations by using behavior based 
approach. Experiments for this work are implemented on 
real robots. Dahl presents a differentiation among 
homogeneous robots based on their performances to 
improve performance [4]. Communication failure analysis is 
not implemented. Chaimowicz’s work addresses the task 
dependence issue [5]. His role exchange mechanism is 



implemented for a cooperative transportation mission. A 
utility calculation is used to provide suggestions for role 
exchanges. It is assumed that the robots know their 
positions on the environment and there are no errors in the 
explicit communication.  

Lemarie’s [6] and, separately, Kalra and Stentz’s [7] 
work addresses the task dependency issue for tightly 
coupled missions.  Kalra and Stentz’s system was tested for 
a collective perimeter-sweeping mission. Task dependencies 
are considered in keeping a formation while simultaneously 
obeying some rules. Heterogeneity of the robot team is not 
explored.  In Lemarie’s work, the main goal is to keep the 
architecture distributed among the robots so as to support 
scalability, robustness and reactivity. However the solution's 
optimality is not guaranteed. Lemarie also takes advantage 
of a market-based approach. For controlling auction 
generation, a token-ring network approach is used. Only 
one auctioneer can initiate an auction. In these approaches, 
performance for combined tests of failures is not measured. 

Proposed framework is distinct from previous work 
because it seeks optimal solutions, recovers from failures 
online, supports heterogeneous teams, and supports 
dependent tasks that require multiple robots.  We assume 
that robots are not able to infer the state of others by 
observation; although such capabilities would only provide 
more reliability (e.g. [8]). The main objective is to provide a 
system for allocating tasks in an optimal manner in valid 
plans.  However, failures most common in robot systems: 
communication failure and robot failure are also handled by 
the framework.  These various failures, including the kinds 
of failures that can result from lossy communications during 
task negotiations are addressed by precaution routines. 
According to the classification given in Gerkey and 
Mataric’s work [9], the proposed framework is for single-
task robots, time-extended assignment and multi-robot 
tasks. 

III. FRAMEWORK OVERVIEW  

In this work, a distributed coordination framework for 
multi-robot teams implementing complex missions of 
tightly coupled tasks requiring diverse capabilities and 
collective work is proposed. Optimal solutions (in terms of 
task execution cost) are sought using a cost optimal action 
selection method.  While we do not prove it here, we 
believe the plans generated by the framework are cost 
optimal when there are no communication failures (proof of 
optimality is for later work). However, the framework also 
provides responding to communications and robot failures 
online. Online (i.e. during execution) failures are addressed 
using precaution routines that recognize and recover from 
various failure modes including conflicts. The coalition 
maintenance scheme also identifies sub-optimal task 
assignments, and can direct reassignments during execution 
if a lower cost solution would result.  To our knowledge, 
this is the first complete framework for heterogeneous 
robots implementing tightly coupled tasks requiring diverse 

capabilities and collective work that addresses optimality 
and produces recovery solutions against real environmental 
constraints. 

We assume we are provided a specification of the 
mission to include a set of tasks to be completed as well as 
the robot capabilities that are required for accomplishing 
each tasks.  It is possible that some tasks may require 
several robots for completion.  We also assume we are 
provided a specification of task dependencies that describes 
ordering constraints between tasks.  This information is 
communicated reliably to the robots, whereupon they begin 
to negotiate for and execute mission tasks in a fully 
distributed manner without a central coordinator or leader.  

The framework is robust to message losses and robot 
failures. To deal with message losses, each robot maintains 
a local model of the mission state.  When messages are 
received from other robots, their mission model is updated 
accordingly. In some cases a new message implies a conflict 
with the robot’s model of the task state.  In this case, 
appropriate precaution routines are activated to either 
correct the model, or initiate a recovery. Recovery 
operations may include warning other robots of the problem 
or changing task allocations.  These inconsistencies usually 
arise when robots are not informed about tasks that are 
completed, under execution or under auction.  

A. Task Representation 
One of the important mechanisms of the framework is 

the validity of the generated plans for executing tasks 
among robots. Although there is not a central planner, the 
robots execute tasks by considering dependencies among 
them. There are some models for task representations for 
robots such as TDL [10], however, to our knowledge, a 
TDL representation supporting multi-robot coordination has 
not been released or published yet.  

We use a simple representation for tasks with ordering 
and dependency constraints, similar to but simpler than 
some representations in TAEMS [11]. We consider Hard 
and Soft dependencies. If task T2 is hard dependent on task 
T1, it cannot be executed before task T1 is completed. In this 
case, there is a strict ordering between tasks. If task T2 is 
soft dependent on task T1, it can be executed while task T1 is 
being executed or before its execution begins. However task 
T2 cannot be completed until task T1 is completed. Therefore 
some portion of the two tasks can be executed at the same 
time. A sample situation can be seen in Fig. 1. Tasks T2 and 
T3 are hard dependent on task T1 while task T3 is also soft 
dependent on task T2. The dashed area represents the 
waiting time of the robot R3 for task T2 to be completed.    
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Fig. 1. Task Dependence Relationship 

 



The required capabilities for executing a task are also 
encoded in the representation. Robots lack of necessary 
capabilities for tasks are not eligible for executing. They do 
not consider such tasks for execution. We also added the 
required number of robots to implement the task in the 
representation. The tasks can only be executed when 
necessary number of robots is ready for executing this task.  

The heterogeneity of the system with robots, the task 
dependencies, required capabilities and number of robots 
restrict the allocation of tasks to the robots. 

B. Roles 
The framework is designed for missions consisting of 

sub-tasks having dependencies and requiring either one or 
more than one robot to execute. Therefore the tasks may be 
executed by a group of robots. We have chosen the 
coalition organizational paradigm to organize the task 
execution for our framework [12, 13]. These coalitions can 
contain one or more robots according to the required 
number of robots to execute the tasks. Auction based 
selection of the coalition members are implemented. The 
auctioneers are also active robots in the system.  

The overall objective is completing a mission (M) 
consisting of Ti s (0≤ i<||M||) with a multi-robot team 
(rj∈R, 0≤ j<||R||) in a cost optimal manner. Each coalition 
(Ci) is formed to execute a task Ti of overall mission M. 
Sizes of coalitions vary according to the required number of 
robots (reqnoi) to execute the task. The capabilities (capj) of 
robots Rj in a coalition should be a superset of the required 
capability set for Ti (reqcapi).  

A robot (rj) may be in different roles for task Ti such as 
auctioneer, bidder (Bij), coalition leader (CLi) and coalition 
member (CMi) in different time steps. 
• An Auctioneer robot is responsible for managing 
auction negotiation steps and selecting reqnoi suitable 
members of a coalition. 
• A Bidder robot is a candidate to become a member of a 
coalition executing a task. 
• A Coalition Leader is the robot responsible for 
maintaining the coalition and providing synchronization. It 
executes a portion of the task. 
• A Coalition Member is one of the members of the 
coalition, and it executes a portion of the task. 

A is the auctioneer set in a time step. Bij is the bidder 
robot rj  for task Ti. A robot rj may be in more than one Bij 
roles for different tasks. However it is not allowed that a 
robot rj may be in more than one of roles Ai, CMi, or CLi.   

We assume that auctioneer is informed about the 
number of necessary robots to execute that task. Therefore it 
is responsible to select necessary number of candidates for 
task execution. After the auctioneer selects the coalition 
leader and members, it finishes the auction. The coalition 
leader forms the coalition and keeps track of the coalition 
members’ situations and their updated information. After 
the execution of the task is completed, the coalition ends. 
Each robot is allowed to be in only one coalition until it 

leaves the coalition. The auctioneer may either be in the 
coalition of which the auction it offered, or not. 

Coordination of coalition members are implemented by 
synchronization messages. Therefore each coalition member 
has responsibilities for the effective coordination. To ensure 
maintaining optimality against environmental changes, a 
dynamic reconfiguration approach is proposed. 

C. Precautions 
For dealing uncertainties because of the message losses, 

each robot keeps track of the models of known tasks and 
other robots in their world knowledge. The up to date 
situations of the known tasks are kept track by representing 
each known situation in a FSM. The transitions among the 
states for the tasks can be seen in Fig. 2. The state 
transitions are implemented either by own motivations or 
incoming information from other robots. The state transition 
details are explained in corresponding sections. 

 When the robots get information from the others they 
update their world knowledge accordingly. Whenever there 
are message loses in the system, the world knowledge of 
each robot may be inconsistent. However the framework 
ensures an update mechanism when conflicts are detected to 
reduce inconsistency. When the robots receive inconsistent 
messages, they either warn others or correct themselves. 
These inconsistencies occur when robots are not informed 
about the tasks that are completed, under execution or under 
auction. It is assumed that robots are trusted and benevolent. 

 
Execution conflicts: 

For parallel execution of the same task, all the robots 
cancel their execution. This is for ensuring optimality. A 
new auction is generated to consider all the robots’ costs. 
The robots are allowed to generate different auctions for the 
same task. However one of them continues the auction 
negotiation process the details of which are explained in 
section E. 
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Fig. 2. FSM of a Known Task 

 
To keep consistency, each robot executing a task is 

responsible for broadcasting an execution message for 
informing others that the task is under execution and the 



Routine Duties 
if rj ∈ A 
 AuctionNegotitationProcess 

if rj is a CMi  
if the “synchronization message” has been arrived 

Set coalition count down 
else if the coalition count down is 0 

 Cancel execution of the task; break 
 Send leave message to the CLi 

else  
if the last communication with CLi is more than τ (threshold) 

Send “coalition leader query” message   
Decrease coalition count down 

Send updated cost/bid value to the CLi 

if rj is a CLi and ||C||>1  
if each CMi has already sent the execution/updated cost message  

 Send “synchronization message” to all CMis 
 Set coalition count down 

Broadcast max cost(CMi) 
else if the coalition count down is 0 

 Terminate the coalition; break 
else  

Decrease coalition count down 
Broadcast max cost(CMi) 

Begin CoalitionMaintenanceProcess 

if the robot is not executing a task || the task under execution is released 
Begin SelectAction 

Send query messages for the tasks which are free 
If there is a task selected, execute the own portion 

robot is alive. The robots getting this execution message are 
informed about the task and they assume that the task is 
under execution for a period of time. If a robot cannot get 
any message related to a task for a period of time, the task is 
assumed to be free. The execution message is also a clue 
that the executer robot is still alive and the task is being 
executed. The same update is implemented when robots 
offer auctions for tasks. In this case the world knowledge is 
updated as the robot is not executing a task and the task is 
under consideration. 
 
Auction conflicts: 

Whenever a robot gets an auction message, it first checks 
the validity of the auction by considering the task 
information. If it is a valid auction it always sends bid 
information to the auctioneer. Therefore a more suitable 
task for the robot may be selected in future, whether it is 
currently executing a task or not. If the robots get an offer 
for an auction of a task that has hard dependencies, then it is 
assumed that these dependent tasks are completed and the 
world knowledge is updated as so. The same update is 
implemented when execution, cancellation messages are 
received.  

 
Synchronization for Coordination: 

For synchronized coordination, CLi sends 
synchronization message to all CMis. If either the CMis or 
the CLi believes that there is a problem with the coalition, 
they terminate the coalition processes. 
 
Robot Failures: 

The robot failures in a coalition can be recognized by 
keeping track of the models of the members. Since 
synchronization message is sent periodically by the CLi, 
CMi s know that the leader is alive. The CLi also receives 
updated cost information from CMi s. If members cannot 
get these messages for a defined period of time they believe 
that there is a problem and then they finish coalition 
processes and stop execution of the task. 

Since the world knowledge is updated based on the 
incoming information from others, if a robot executing a 
task fails, after a period of time other robots not receiving 
messages from the failed robot mark the related task as 
left/free to consider it in the action selection process. 

D. Action Selection 
Each robot initially updates its world knowledge based 

on the incoming messages. Then considering the new 
updated world knowledge and the situations of the 
processes for different roles, it selects the action. The action 
may be joining a coalition executing a task or becoming an 
auctioneer auctioning for a task. Before selection of the 
action, the robot should perform its routine duties for 
different roles. These duties are given in Fig. 3. If it is 
leading an auction, it performs the necessary negotiation 
process details of which are explained in section E. Duties 
of roles CMi and CLi are performed for ensuring 
synchronization while coordinating in a coalition. If the 
robot is a CLi, it checks the current coalition members’ 
situations and can decide to reconfigure the coalition when 

new robots join or some members are not reachable. This 
coalition maintenance and dynamic configuration 
mechanism is explained in Section F. 

While selecting the action, the robot considers the tasks 
confirmed by an auctioneer to be a coalition member, tasks 
under execution but with a higher value of costs than the 
robot has, the soft dependencies of the current task, and the 
free tasks which are not executed or under auction. The 
robot should be capable of executing all the tasks under 
consideration. The hard dependencies of them should be 
completed, and the robot should be able to execute these 
tasks with its capabilities. Before the robot decides on one 
of these tasks, it ranks these tasks based on the costs for 
them and selects the minimum cost task. This ranking 
procedure provides the optimum cost selection of the tasks 
for the given and known situation. The tasks confirmed by 
an auctioneer to make the robot one of the coalition 
members have higher priority than free tasks, and the tasks 
of coalitions with higher maximum cost value than the 
robot’s cost have the highest priority of all. If there are only 
free tasks, the robot selects the one with the lowest cost. 
However if there are more than one free task with the same 
lowest cost, the robot selects the one with the lowest 
number of soft dependencies and lowest number of robot 
requirements for executing. Therefore if the costs of the 
tasks are the same, initially the tasks requiring low 
coordination is selected.  

Fig. 3. Routine Duties of a Robot 
 

Canceling of the current task when a better task appears 
can only be performed if the robot is released from the 
coalition of the task. Decision on releasing a robot from a 
coalition is only made by the coalition leader. The details 
are discussed in Section F. The Action selection algorithm 
is given in Fig. 4. 



SelectAction  
For each known task Ti  

if the capi ⊆ reqcapi ∧ hard dep. of Ti are completed 
if the task is not in one of the following types skip 

The tasks for which the robot is accepted for joining (with higher max cost value 
than the robot’s)  
Confirmed tasks by the auctioneers 
Free tasks which are not under consideration 

  else add the task in a priority queue ordered by cost with the priorities in given order 
Select the minimum cost task in the priority queue 
if Rj is in a coalition 

cancel executing the task, send “leave” message to the CLi 

if the selected task is a free task  
begin AuctionNegotitationProcess 

else  
set the selected task as the current task 
if it is a confirmed task  

send “accept become a member” message 

E. Auction Negotiation Process 
Each robot offers an auction for a free task that is 

selected in action selection step. When a robot is an 
auctioneer it should maintain the auction negotiation 
process. In this process the coalition members and the 
leader are selected for the task to be executed.  

Fig.4. Action Selection 
 
Initially the auctioneer offers the auction. The robots 

can get the necessary task details from the auctions and first 
check the validity of the auction. If the auction is invalid, a 
warning message is sent to the auctioneer. This invalidity 
may occur if the auctioneer has incomplete knowledge 
about the mission status. Possible situations may be that the 
task is completed or it has already been executing. If the 
auction passes the validity check, the candidate robot 
becomes a bidder of the task (Bij), calculates the cost and 
sends the cost value as a bid. The other candidate robots 
behave as so. The auctioneer robot is also a bidder and 
generates a bid for the task at hand. It waits until the end of 
the deadline. If the auctioneer cannot get the necessary 
number of bids from the other robots (including cost of the 
own) until the deadline, it cancels the auction. Otherwise it 
ranks all the bids. It selects the robot with the minimum cost 
as the CLi of the coalition. The remaining robots are selected 
among the other bidders in the ranking. If the necessary 
number of robots to execute the task is one, the selected 
leader is the only member of the coalition. In this ranking 
process, the auctioneer may also select itself either as a CLi 

or a CMi. In the selection, the current situations of the 
robots are also considered. If they are recently marked as 
executing a task, they are not selected. That means after 
they sent their bids they began execution of another task. 

A bidder robot may get confirmation from different 
auctioneers. However in the action selection step, it selects 
the optimum cost task for it. Therefore it only sends a 
message to become a CMi to only one of these auctioneers. 
In the current implementation, each robot involves in only 
one coalition executing one task.  

It is allowed that more than one robot offer an auction 
for the same task. In this case, when the robots detect this 
conflict, the robot having higher number of robot models is 

the winner of this race. We assume that a robot having 
higher number of robot models communicated with fewer 
robots is and it is likely to be communicated with more in 
future. If the number of robot models is the same, the robot 
having the smaller identification number is the winner. This 
decision only provides to recover the conflict. There may be 
other solutions but we avoid adding extra complexity to the 
negotiation process. Besides this, since these robots are in 
the reliable communication range (they can detect that both 
them auctioned for the same task), the bid of each of them is 
considered in either case not affecting the optimality. 
 
Cost Calculation: 

Cost function calculated by robots highly affects the 
overall performance. Since there may be different 
constraints for different domains, optimality analysis is 
under consideration. In some domains, using penalized cost 
functions for forwarding more expensive robots to more 
complex tasks may improve overall system’s performance. 
A research work on time optimality versus cost optimality 
should be implemented. Currently in the bid/cost 
calculation, the energy constraint for the task and the 
current situations of the robots are considered and a task 
exchange cost is added. However analysis of this 
calculation is left as a future work. 

F. Coalition Maintenance Process 
We added a releasing and locking mechanism to prevent 

the coalition members leave the coalition until a new more 
suitable robot joined to the coalition. The coalition leader is 
responsible to broadcast the maximum cost value of the 
coalition members in each execution step. Since in the 
decision stage, each robot taking these kinds of messages 
considers the maximum cost value of each coalition, if they 
detect that their cost is lower than the maximum cost of the 
coalition and they are released, it sends a join request 
message to the coalition leader. The leader getting join 
request message, directly adds the robot to the coalition. If 
the coalition leader detects that the size of the coalition is 
more than required, it can release coalition members having 
the maximum cost value for the current mission. If a robot 
gets released message, it can select another more suitable 
task after then. When the coalition leader considers the size 
of the current coalition, it also checks the failures. Since 
each robot in the coalition broadcasts under execution and 
updated cost messages, their failure can be detected by the 
coalition leader. The failed robots are also released if there 
is enough number of members. If there is not enough 
number of members to execute the task for a period of time, 
the coalition leader cancels the coalition.  
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An illustrative example of coalition reconfiguration is 

given in Fig. 5. This kind of situation may occur when a 
robot is not reachable when the auction announcement is 
made {a}. When the situation is changed {b}, the robot may 
take a role instead of the member having the maximum cost 
value in this coalition {c}. Therefore the cost optimality is 
maintained as much as possible. 

IV. EXPERIMENTAL DESIGN 

We have conducted two stages of experiments to test 
the performance of the framework in terms of time to 
complete the overall mission and active execution time of 
the robots. In the first stage, we measured the performance 
against message losses for a complex mission consisting of 
tasks having hard and soft dependencies among each other. 
In the second stage, we measured the effectiveness of the 
framework and recovery solutions when the robot failures 
are added to the system. The conducted experiments are run 
on a simulator simulating the message exchange and 
execution of the missions. The results are from 100 
independent runs with random seeds. The maximum 
simulation step number is selected as 200. Field 
experiments on real robots are left as a future work. 
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Fig. 6. Initial and Final States of the Test Domain  

Test Problem Specification 
We have selected collective building construction 

domain. In the designed experiment, there are three types of 
objects: A, B and C. The overall mission for the robots 
contains tasks of finding the necessary objects and making 
the construction while obeying the specified ordering 
restrictions. In the construction, initially the object A should 
be pushed into the destination and then object B and C 
respectively. The pushing requirements of these objects are 
also different. The initial and final stages can be seen in Fig. 
6. The objects A, B and C are colored based on their 

weights: white, gray and black respectively. This mission 
both contains dependent tasks and requires cooperative 
work of the robots. 

The sub-tasks and dependencies of them are given in 
Table 1. The third and fourth columns represent the hard 
and soft dependencies respectively. The required 
capabilities for the task and the required number of robots 
to execute the tasks are given in last two columns. The 
capabilities of having blob finder, sonar sensor, prods for 
objects A and C and prods for object B are listed as 0, 1, 2 
and 3 respectively.  Based on the specifications of the 
overall mission, the task dependencies can be represented 
graphically as in Fig. 7 in which solid lines represent the 
hard dependencies and the dashed lines represent the soft 
dependencies. 

TABLE I 
TASK SPECIFICATIONS 

ID Description Hard 
Dep. 

Soft 
Dep. 

Req. 
Cap. 

Req. 
Rob. 
Num 

0 Find-object-A - - 0,1 1 
1 Find-object-B - - 0,1 1 
2 Find-object-B - - 0,1 1 
3 Find-object-B - - 0,1 1 
4 Find-object-C - - 0,1 1 
5 Push-object-A-to-destination 0 - 0, 1, 2  1 
6 Push-object-B-to-destination 1 5 0, 1, 3 2 
7 Push-object-B-to-destination 2 5 0, 1, 3 2 
8 Push-object-B-to-destination 3 5 0, 1, 3 2 
9 Push-object-C-to-destination 4 6, 7, 8 0, 1, 2 3 

The robot specifications are given in Table 2. We 
selected the number of robots suitable for tasks that needs 
coordination as one more than the required number of 
robots to execute, to see if they can reconfigure themselves 
against robot failures. The robots R4 and R7 and are added 
for measuring this performance. 

Fig. 7. Task dependency graph of the overall mission 

V. EXPERIMENTAL RESULTS 

The experiments are conducted for the given complex 
mission and by using the heterogeneous robot set with 
different robot failure numbers. The step number in which 
the failure occurs is selected as the most important time step 
to complete the mission for all message loss rates. Based on 
the results of no failure case, we observed that 25th time step 
is a time step that the robots have already finished executing 
tasks not requiring coordination, trying to coordinate for the 
other tasks for most of the runs. However the failed robot is 
selected randomly. The mission completion ratio over all 
runs can be seen in Table 3. In this table, the main columns 
represent robot systems with no failure, 1 robot failure and 
2 robot failure results respectively. An additional column is 
added for systems with failures to report the number of runs 
in which one or two of randomly failed robot is a CLi. 
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TABLE II  

ROBOT SET USED IN THE EXPERIMENTS 
Robot Set 

RobotID Cap. 
0, 8 0, 1 

1, 2, 3, 4 0, 1, 2 
5, 6, 7 0, 1, 3 

It can be seen from these results, the completion of the 
mission is difficult when the message loss rate is greater 
than 50%. Since the synchronization is highly required for 
multi-robot coordination of tasks 6, 7, 8 and 9, the message 
losses cause the synchronization to be lost and also the 
auction negotiation steps are not completed reliably. 
However we can also observe that the framework can easily 
handle message loss rates smaller than 50% which is a very 
high message loss rate for real experiments. It can also be 
seen that although there are robot failures even the failed 
robots are CLis, the mission is completed as if there is no 
robot failures in the system. In the third column, there are 
some runs in which the mission is not completed. This is 
because the randomly selected robots are from the same 
type and when they are failed, it is not possible to complete 
the mission. The number of runs in which the failed robot is 
a CLi is 100 for message loss rate is 100. This is because, in 
this case each robot is the coalition leader of its own task 
not requiring coordination, and since the robots cannot 
communicate, the execution of the tasks not requiring 
coordination are completed in later steps and all robots try 
to execute all the tasks by themselves. The mission 
completion time results can be seen in Fig. 8. The mission 
completion time increases for increasing message loss rates 
logarithmically. However even for message loss rate is 70% 
there are some runs in which the mission is completed. It 
can be seen that when there is not a robot failure in the 
system the result is better. However when the failures are 
added, the results are very close to the no failure case. The 
framework can easily handle robot failures.  

TABLE III 
MISSION COMPLETION RATIOS 

# of runs in which the 
mission is completed/all runs 

no 
failure 

1 robot 
failure 

2 robot 
failure 

Message 
loss rate 

(%) 

# runs # 
runs 

#CL
i 

# 
runs 

#CL
i 

0 100 100 22 83 39 
10 100 100 22 79 45 
20 100 100 27 81 33 
30 100 100 27 78 42 
40 100 100 20 77 31 
50 98 95 19 72 27 
60 59 48 15 30 27 
70 4 3 13 2 18 
80 0 0 5 0 19 
90 0 0 4 0 25 

100 0 0 100 0 100 

 

 
Fig. 8. Number of Steps to Complete the Mission Analysis 

Averaged over 100 runs given with standard deviation  

 
Fig. 9. Total Active Execution Time Analysis 

Averaged over 100 runs given with standard deviation  
 

In Fig. 9, the total execution time analysis can be seen. 
Here active execution time is counted even the robots 
cannot synchronize and waits for the execution. The 
gradient of the active execution time curve is greater than 
the completion time curve because of the waiting time for 
synchronization and some parallel executions of the tasks 
not requiring coordination. These parallel executions can 
only be eliminated by implicit communication when the 
message loss rates are higher. Because of that, the active 
execution time for 70% message loss is decreased because 
the executions are performed with less waiting time by 
chance and also the sample space for this loss rate is small 
to decide. Active execution time for no failure case is 
greater than the failure cases for some message loss rates 
because the number of robots in the system is greater than 
the failure cases.  



 
Fig. 10. Number of Messages Analysis 

Averaged over 100 runs given with standard deviation  
 
The messages sent for coordination also increase 

logarithmically as in Fig. 10. The robots continuously query 
the tasks that are free and try to coordinate for the tasks 
which need to be executed by more than one robot. The 
number of messages for no failure case is also greater when 
the message loss rate increases this is also because of the 
number of robots and their efforts to coordinate.  

It can be observed from the results that the framework 
ensures to handle message losses as much as possible. The 
graphs increase logarithmically. 

VI. DISCUSSION 

We propose a framework for multi-robot coordination 
suitable even for complex missions containing inter-
dependent tasks requiring heterogeneity and coordination. 
The generated plans are always valid because of the task 
representation. The recovery solutions provided by 
precaution routines for different kinds of failures ensure the 
approach is complete. In this framework, close to optimal 
solutions are generated with available resources at hand. 
Experiments to validate the approach were conducted in a 
construction domain. The experiments tested the framework 
in the face of message losses and robot failures. Even for 
very high message loss rates, robot teams can still complete 
their mission using the proposed framework for 
coordination. If there were a way to consider implicit 
communication in the system, the overall performance may 
be increased. Analysis of the effects of the cost calculation, 

and proofs of optimality are left as future work. The next 
step in this research is real field experiments on real robots 
and optimality analysis for different domains. 
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