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Abstract— Environmental monitoring of spatially-distributed
geo-physical processes (e.g., temperature, pressure, or humidity)
requires efficient sampling schemes, particularly, when employ-
ing an autonomous mobile agent to execute the sampling task.
Many approaches have considered optimal sampling strategies
which specialize in minimizing estimation error, while others
emphasize reducing resource usage, yet rarely are both of
these performance parameters used concurrently to influence
the navigation. This work discusses how a spatial estimation
process and resource awareness are integrated to generate an
informed navigation policy for collecting useful measurement
information. We also enable a direct comparison between this
informed navigation method and more common approaches
using two performance metrics. We show that our informed
navigation outperforms these approaches based on performance
evaluation as a function of estimation error and resource usage
for a useful range of coverage within the sampling area.

Index Terms— Earth-observing systems (EOS), robotic sur-
vey system (RSS), inertial measurement unit (IMU).

I. INTRODUCTION

In an effort to increase the information gain of Earth-

observing systems (EOS), it is necessary to integrate robotic

technology into different geodetic frameworks currently de-

ployed [1]. In the past decade, robotic surveying has surfaced

repeatedly as a reliable measurement tool for collecting mea-

surements of different geo-physical processes (e.g., elevation,

humidity, pressure or temperature), particularly in remote or

hazardous locations [2], [3], [4]. Other applications, includ-

ing precision farming and mapping of natural gases, have

also found success employing mobile robotics to conduct

surveying (or sampling) tasks [5], [6]. Given their prevalence,

we determine navigation strategies which enhance a mobile

agent’s ability to autonomously select useful samples [7].

Our work considers the task of using a mobile agent to collect

science samples for spatial reconstruction of environmental

phenomena. This paper provides a contrast between the

reconstruction error achieved (from collected samples) using

specific navigation policies and the resources required to

execute those policies. We introduce an informed navigation

scheme driven by specific parameters in situ, allowing the

mobile agent to make sampling decisions that yield low

reconstruction error while requiring minimal resources.

II. BACKGROUND

Previous efforts have focused on efficiently quantifying

the performance of a sampling task based on reduced re-

construction error generated from collected samples. The

resources required to execute that task are, however, rarely

considered concurrently in the performance evaluation, i.e.,

when making sampling decisions, reducing error matters, but

not cost. Rahimi, et al. uses very specific sampling policies,

including a variant of stratified random sampling [6], but

does not consider the physical resources for completing the

sampling task, e.g., battery or time of experiment. As a

complementary example, Tunstel et al. also addresses robotic

sampling within the context of planetary surveying. In their

work, they specify a quality of performance (QoP) metric to

quantify the navigation schemes that are the least resource-

intensive, yet does not address sampling scientific data to

yield accurate spatial models [8].

When constrained to collecting a limited number of

samples, solutions are developed as pre-planned site sur-

veys. Many robotic approaches to environmental monitoring

employ spatially static patterns as solutions for sampling

data, i.e., the sampling locations are pre-determined [9].

Specifically, Spike, et al., and others [5], [10], emphasize

the usefulness of the “lawnmower” motion such that the

trajectory of the mobile agent outlines a series of evenly

spaced swaths and collected samples are taken along the

path traversed. Alternatively, a spatially random sampling

distribution would achieve an improvement in coverage

[11], yet, the widespread placement of samples requires

increased resources to navigate to each sampling location.

While these options may considerably reduce resources or

improve reconstruction, independently, there are a lack of

navigation strategies for sampling that are driven by them

both, collectively. We enable the direct contrasting of recon-

struction error and resources achieved by multiple navigation

strategies employed for environmental sampling. We also

demonstrate the preferability of one strategy over others

specifically designed to account for these two performance

parameters.

III. APPROACH

Several elements are required to fully outline the theory

in our work. In Section III-A, we discuss the unique nature

of the phenomena from which we are interested in collecting

samples and how it differs from other approaches. In Section

III-B, we introduce the theory behind the metrics used

to evaluate our informed navigation algorithm, relative to



baseline strategies proposed in this work. We conclude with

Section III-C, formally outlining the method of navigation

used to collect information from the sample space and how

it relates to the metrics outlined.

A. Sampling Environment

We first discretize our environment to define physical

constraints on the boundaries of where our mobile agent

will navigate. The entire sample space is defined by S =
Xdim × Ydim, where Xdim = [0, δ, . . . , δ(M − 1)], and

Ydim = [0, δ, . . . , δ(N − 1)]. M and N represent the

number of rows and columns of samples along the x and

y dimensions, respectively, and δ is the user-defined spatial

resolution. Additionally, for all xi belonging to Xdim and

for all yj belonging to Ydim, there exists a sample from the

terrain, z(si,j). Let si,j = (xi, yj) for i ∈ 1 : M and j ∈
1 : N .

Many environments are modeled mathematically as a set

of real-valued functions, Z, defined in R
2. We quantize this

set of functions into a dual-class set of functions as our

ground truth, re-labeling the new quantized set, F (Figure

1). This representation of environmentally-monitored data is

Fig. 1: Quantization of example function z (left) into analo-

gous dual-class function f (right).

supported by geostatistical literature, particularly in instances

when only the absence or presence of data is required as

a measurement [12]. We use a mobile agent to execute

each navigation strategy to collect samples of this data.

An example scenario is chemical monitoring and measuring

whether or not sample locations exhibit a toxicity level

that exceeds a pre-defined maximum. The set, C, represents

the possible values within the dual-class system to which

each sample in S can belong, where C = [c1, c2]. For

each function, z, from the set Z, we assign a threshold to

define the classification of values at all corresponding sample

locations, subsequently defining a new function, f , and new

values, f(si,j), for all si,j (Equation (1)).

f =

{

c1 if z > z̄

c2 if z ≤ z̄
(1)

We will investigate the methods by which a mobile agent

collects a set of B samples from one of these functions, f ,

according to different navigation algorithms. Our goal is to

design an algorithm A that enables the reconstruction of a

function, f̂A, such that f is approximated with some minimal

amount of error and requires minimal resources to collect B

samples.

B. Robotic Performance Metrics

When reconstructing spatially distributed data with an

autonomous (or remote) sampling robot, two parameters are

most dominant for evaluating performance of the sampling

task executed, i.e., reconstruction error and resource usage.

The former is an assessment of how samples collected

will be processed to generate an accurate spatial model of

the phenomena, while the latter associates a cost with the

accuracy achieved. In the context of robotics and dynamic

sensor selection, different work highlights spatial interpola-

tors specifically designed for continuously-valued data within

a space. In some cases, these spatial interpolators are chosen

only to estimate samples off line [6], whereas in other

cases, they are selected specifically to influence the sample

selection process in real time [13]. Throughout the design of

our navigation/sampling strategy discussed in this paper, we

perform the latter, designing our navigation decisions around

a dual-class interpolator as an example estimator for data

represented as belonging to one of two classes (Section III-

A). To the authors’ knowledge, this is the first example of

such an algorithm designed for collecting data within a dual-

class environment.

For the entire space, S, we label a set of B total sampled

locations as s. We also label the complementary set of

MN − B unsampled locations as ŝ, such that (s ∪ ŝ) = S.

Our interpolator is inspired by a set of L-point nearest-

neighbor rules analogous to kNN classification [14], enabling

the estimation of information at all the MN −B unsampled

locations.

The estimation of a value at an unknown location, ŝi,j ,

for example, is determined by the values at and proximity

to neighbor locations, each identified as sk,l. From this, we

generate an expected error for each unsampled location and

therefore a total expected error associated with the unique

configuration, q. This configuration, q, is one of QB possible

configurations for B samples in the space.

f̂A(ŝi,j) =







c1 if σc1 > σc2

c2 if σc1 < σc2

w(ρ) Otherwise

(2)

In Equation (2), f̂A(ŝi,j) generates an estimate at the unob-

served location ŝi,j using samples acquired according to A.

We select ρ as a uniform random variable defined between

0 and 1 and the function w(ρ) to generate an estimate in the

event that σc1 equals σc2 . We set the output of w(ρ) equal

to c1 if ρ < γ and c2 if ρ ≥ γ, where γ is defined between 0

and 1. Both of the values, σc1 and σc2 , are variables weighted

based on the likelihood that the estimate at ŝi,j belongs to

one class versus the other (Equations (3)-(4)).

σc1 =
u1

L
[1−

dc1,Avg

R
] (3)

σc2 =
u2

L
[1−

dc2,Avg

R
] (4)

η = |σc1 − σc2 | (5)



The values, dc1,Avg
and dc2,Avg

, are the average proximities

measured between all L nearest neighboring samples and

the estimated location, ŝi,j , that belong to classes c1 and c2,

respectively. The weights, u1 and u2, bias f̂A(ŝi,j), so that

the unsampled location is assigned a value most similar to

known samples surrounding it and u1+u2 = L. The value R

represents a maximum distance between an estimate and its

neighbors. We define the value η as a confidence measure in

each estimated value from ŝ (Equation (5)). Finally, to assess

actual error, errorActual
q , Equation (6) allows us to contrast

our estimation associated with a sampling configuration, q,

with ground truth data, f .

errorActual
q =

MN−B
∑

g=1

ǫg

MN −B
(6)

ǫg =

{

0 if f̂A(ŝ)g = f(ŝ)g
1 if f̂A(ŝ)g 6= f(ŝ)g

(7)

The second performance parameter, resource usage, is quan-

tified using average nearest neighbor distance for sampling

configuration q [11]. The metric, dNN
b , is calculated by

averaging the distances of each sample in q from its nearest

neighbor (Equation (8)).

DNN
Avg =

B
∑

b=1

dNN
b

B
(8)

This measure is a raw cost associated with a specific con-

figuration yielding a specific error. Resources are calculated

based on a ratio of the average nearest-neighbor distance

for the given configuration and a maximum possible average

nearest-neighbor distance, DNN
Max (Equation 9) [15].

Resources = 100 ∗
DNN

Avg

DNN
Max

(9)

Both metrics (reconstruction error and resources) are com-

bined to produce a quantitative understanding of how a

sampling configuration, resulting from one particular naviga-

tion scheme, fares against another (Figure 2). Each diamond

Fig. 2: A pictorial representation of how individual sampling

configurations, q, can be compared in terms of performance

metrics, reconstruction error and resources.

shown in Figure 2 represents a unique sampling configura-

tion, q, from QB . The error and resource constraints are user-

specific and aid a scientist in selecting the most appropriate

navigation algorithm. We introduce our unique method of

generating these configurations via navigation in the next

section.

C. Intelligent Sampling for Navigation

Previous work in sampling spatially-distributed phenom-

ena, given certain assumptions, has produced many intelli-

gent navigation options [16], [17]. As discussed in Section

II, we re-introduce the navigation solutions that serve as

a baseline, providing the context in which our specific

algorithm has made improvements.

To generate an even distribution of samples within an

area, we turn to traditional lawnmower navigation, referred

to hereafter as lawnmower-traditional [5], [10]. By directing

navigation in a back-and-forth motion, the desired spatial

allocation of samples is achieved. Additionally, this nav-

igation policy is conservative in the amount of required

resources, due to the uniformity in the agent’s trajectory

between samples. In contrast, requiring greater resources, but

potentially achieving greater reconstruction accuracy, we also

employ a lawnmower-random navigation. This navigation

allows the collection of samples at varying distances from

each other within the sample space, introducing an element

of randomness to the way a mobile agent moves between

subsequent samples [18], [19].

We can leverage the benefits of spatially-diverse sampling,

commonly achieved by randomized patterns, while also

conservatively considering the resources necessary to com-

plete the navigation task, as seen with a lawnmower-based

structure. We introduce lawnmower-informed navigation, in-

fluenced by the theory in Section III-B, to intelligently collect

samples at locations that will yield lower reconstruction error

while actively reducing required resources.

Based upon scientists’ requirements for a given survey,

we designate a finite number of evenly-spaced reference

swaths (and consequently B samples to be collected) a priori.

If, for example, the measurement device (e.g., altimeter or

spectrometer) can only be deployed aboard the mobile agent

long enough to allow collection of B samples, then that

limitation will map to a specific number of reference swaths.

An agent navigates along each swath as a reference, of either

length M or N (Section III-A), adjusting its heading based

on a custom function. This function, rs, uses two parameters

calculated at each time step, ηmin
s′ and ds′ , to determine

which sample, from a subset of candidate samples, will serve

as the next navigation waypoint, and therefore sampling

location (Algorithm 1). This type of navigation is considered

a greedy approach [20], since a global goal is not sought.

The algorithm only selects the sample that best satisfies 1)

low error (based on a low average estimation confidence)

and 2) low resources, i.e., the closest sample to the current

location at an individual time step (Figure 3-5). While we

note that the error is priviledged relative to resources as a

metric, the contribution to the Earth scientist is the ability

to give one metric preferential treatment over another for



Algorithm 1 Navigation function, rs

Require: Candidate set of subsequent sampling locations, s′.

σs′

c1
{Class 1 membership weights}

σs′

c2
{Class 2 membership weights}

ds′

for j ≤ size(s′) do

ηs′(j) = |σs′

c1
− σs′

c2
|

end for

ηmin
s′ = min(ηs′)

5: if size(min(ηs′)) > 1 then

From the remaining available samples with ηmin
s′ ,

select closest sample according to ds′ .

end if

return {(x,y) location of best sample according to ηmin
s′

and ds′ .}

Fig. 3: Initial scene for sample selection.

Fig. 4: Identify potential sample locations, from a local

subset, with lowest confidence measure, ηmin
s′ .

determining their desired navigation strategy as a sampling

scheme [15].

IV. RESULTS

We evaluate our lawnmower-informed navigation (Section

III-C) with respect to two navigation methods (lawnmower-

traditional and lawnmower-random), illustrating how the

most suitable sampling scheme can be selected, specifically

according to the performance metrics of reconstruction error

Fig. 5: Identify potential sample locations, from a local

subset, with lowest confidence measure, ηmin
s′ , located closest

to current location based on ds′ .

and resource usage.

A. Simulation Trials

To demonstrate the success of our lawnmower-informed

navigation algorithm, we generated 100 simulated dual-class

data maps, using a custom DEM maker in MATLAB R©

[21]. Recall from Section III-A, that our proposed navigation

is exclusively designed to assist with the collection of

threshold-relevant (or dual-class) data, i.e., data that falls

above or below a pre-defined scientific threshold (Figure 1).

We selected elevation as our primary phenomenon and our

simulation tool enabled us to produce terrain maps exhibiting

realistic features found in nature, e.g., hills and valleys. We

subsequently applied a threshold (the statistical mean, z̄) to

the value of each sampling location within S. Each location

is, thus, defined as belonging to class c1 or c2 depending on

whether the elevation value at a particular location, z(si,j),
is below or above z̄, respectively.

We chart the reconstruction error of each unique sampling

configuration (generated by each navigation algorithm) as

a function of its corresponding resource usage for multiple

percent coverages (Figure 6). There are 100 unique sample

configurations, representing the output from applying these

navigation schemes to our data maps. For a majority of cover-

ages tested, the lawnmower-informed navigation consistently

generates configurations that lead to lower reconstruction

error than lawnmower-traditional and lawnmower-random.

Additionally, lawnmower-informed navigation consistently

required fewer resources than lawnmower-random navigation

for coverages less than 15 percent (Figure 6). There exists

a gradual shift to the right for the sampling configurations

produced by lawnmower-informed, indicating an increase

in required resources as coverage increases. We attribute

this increase to a physical limitation in the amount of

spatial diversity that can be exhibited by different navigation

schemes, according to a lawmower-based framework. This

limitation is discussed more in [15].

B. In-field trials

Using the SECT-II platform (www.bluebotics.com),

we performed an informal topographical survey to obtain a

realistic terrain model for testing the navigation algorithms.



Fig. 6: Comparison of algorithms as a function of error and resource metrics for as applied to simulated DEM data.

We equipped the mobile unit with several commercially

available devices for data collection and processing including

an inertial measurement unit and microcontroller that enabled

wireless communication with and operation of the SECT-

II. Specifically, the SECT-II was mounted with a low-cost

dual-axis accelerometer (ADXL322) that provided resolu-

tions of 8.31 [mV/degree] and 8.38 [mV/degree] for each

axis, x and y, respectively. To process this inertial data,

a Connex 400XM (www.gumstix.com) with a 400MHz

ARM processor, wireless 802.11g ethernet, and bluetooth

capabilities were integrated with the sensing suite. A Ro-

bostix board provided an analog-to-digital converter (ADC)

unit for conversion of continuous analog voltages from the

ADXL322 into useful inertial measurements (Figure 7). With

(a) Test site for field trials. (b) SECT-II robotic platform with ac-
companying sensors and processing.

Fig. 7: Robotic survey system testing.

the relevant tilt measurements collected, we derived a digital

elevation map corresponding to a section of a local park

to consider the impact of a physically-realizable space on

our navigation strategies. From the continuous, raw elevation

data acquired, we repeated trials of each navigation strategy

on a quantized, i.e., dual-class, version of the real terrain

produced from our survey. We, again, use elevation as our

measured phenomena, collecting data at locations where the

elevation detected falls below or exceeds the statistical mean

of all elevations within the testing space, S.We repeat analy-

sis of how each navigation algorithm performs on this single

terrain, a real data map and confirm an improvement in our

performance metrics when using lawnmower-informed nav-

igation to dictate sample selection (Figure 8). This improve-

ment is consistent with our results from Section IV-A. The

graphic shown in Figure 8 is further validated with tabulated

TABLE I: Relevant performance and resource data for nav-

igation strategies applied to realistic DEM data at specific

coverages.

Coverage Error Resources

(%) (%) (%)

Lawnmower-traditional 5.841 2.563
Lawnmower-random 2 4.786 8.721

Lawnmower-informed 3.134 4.477

Lawnmower-traditional 3.109 4.541
Lawnmower-random 4 2.866 11.752

Lawnmower-informed 1.612 7.609

Lawnmower-traditional 2.328 7.670
Lawnmower-random 7 1.746 15.328

Lawnmower-informed 1.035 12.341

Lawnmower-traditional 1.756 12.403
Lawnmower-random 12 0.871 20.268

Lawnmower-informed 0.786 18.263

Lawnmower-traditional 1.756 16.440
Lawnmower-random 16 0.766 23.529

Lawnmower-informed 0.453 22.540

Lawnmower-traditional 1.224 24.254
Lawnmower-random 24 0.756 28.704

Lawnmower-informed 0.353 29.961

data confirming the balance of improved performance met-

rics for lawnmower-informed navigation versus lawnmower-

traditional or lawnmower-random (Table I). Consistent with

our simulation results from Section IV-A, for coverages less

than 15 percent, lawnmower-informed navigation required

less resources than lawnmower-traditional and lawnmower-

random, while selecting samples that generated the lowest

reconstruction error for our realistic terrain model. Further-

more, this improvement provides strong evidence for the

value in incorporating both the estimation theory (planned for

use off line following sample collection) and greedy resource

conditions to inform the navigation of a robotic sampling

system.

V. CONCLUSIONS AND FUTURE WORK

This work has shown the benefit of incorporating an es-

timation methodology with resource-awareness for sampling

decisions into a navigation strategy for a robotic survey

system (RSS). With respect to scale, we anticipate that,

should this experiment be considered for a larger space, i.e.

several orders of magnitude greater, the need for a robotic

sampling agent would not be as great and scientists could

rely more heavily on remote sensing capabilities. If, however,



Fig. 8: Comparison of algorithms as a function of error and resource metrics for as applied to realistic DEM data.

the monitored area of interest is occluded, such that in

situ sampling is the only viable option, we consider our

work to scale well, provided a sufficient discretization of

the space. Another issue is the robustness of this work given

a temporally-dynamic phenomena. All examples considered

in this work were presumed temporally-static, thus a major

step forward will include designing methods that account for

changes across the spatially-distributed phenomena studied.

Of foremost importance is the integration of localization

and sampling error. We did not account for these types

of errors within our framework, considering our simulation

environment as error free, but future runs with this update

will generate more interesting statistical work. Future work

also includes updating the estimation process to account for

the spatial variability of the dual-class data being sampled,

i.e., spatial frequency of the data sampled from one adjacent

location to another. It is expected that expanding this work

to consider spatial frequency will assist in quantifying the

performance limitations on our lawnmower-informed navi-

gation and any subsequent navigation designed to include

the estimation process and resource usage concurrently.
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