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Abstract 

The explicit, non-recursive symbolic form of the dynamic model of robotic manipulators with com­
pliant links and joints are developed based on Lagrangian- assumed modes formulation. This form 
of dynamic model is suitable for controller synthesis, as well as accurate simulations of robotic 
applications. The final form of the equations are organized in a form similar to rigid manipula­
tor equations. This allows one to identify the differences between rigid and flexible manipulator 
dynamics explicitly. Therefore, current knowledge on control of rigid manipulators is likely to be 
utilized in a maximum way in developing new control algorithms for flexible manipulators. 

Computer automated symbolic expansion of the dynamic model equations for any desired manipu­
lator is accomplished with programs written based on commercial symbolic manipulation programs 
(SMP, MACSYMA, REDUCE). A two-link manipulator is used as an example. Computational 
complexity involved in real-time control, using the explicit, non- recusive form of equations, is 
studied on a single CPU and multi- CPU parallel computation processors. 



Nomenclature 

XU,j, Y2i,j, Z2i,j 

WU-l 

- lh generalized coordinate associated with element 2i 
- number of generalized coordinates associated with element 2i 
- lh mode shapes for the deflections of element 2i in the Xu, Y2i, Zu axes 

directions, respectively. 
- homogeneous transformation matrix from coordinate frame to inertial coor­

dinate frame 
- homogeneous transformation matrix from coordinate frame (2i + 1) to coor-

dinate frame (2i). 
J( - kinetic energy of the system 

- gravitational potential energy 
- elastic potential energy 
- mass distribution of element 

/-Lo - uniform mass distribution value 
ql - generalized coordinates associated with joint angles between links 
q2 - generalized coordinates associated with link flexibilities 
q3 - generalized coordinates associated with joint flexibilities 
m2i 

E 
G 

(Ixhi' (Iyhi' (Iz)2i 

- mass of element 2i (link i). 
- Young's Modulus of Elasticity of the material 
- Shear Modulus of Elasticity 

- area moment of inertia of element 2i cross section about X2i, Y2i, Zu naxes, 
respectively. 

(Ax)u - cross section area of element 2i. 
intm - maximum rounded integer, i.e: intm(5.2,6.3) = 7 

m2i-l - mass of element 2i - 1 (link i). 
12i-l - inertia tensor of element 2i - 1 with respect to a coordinate frame fixed at 

its center of mass. 
[ J ] - generalized inertia matrix of all joints. 

9 - gravity vector, [gx,gy,gz,OV 
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I. Introduction 

1. 1. Motivation for the Work 

Computer controlled robotic manipulators are very versatile elements of modern flexible manufac­
turing systems. Their versatility stems from two main characteristics: 1. mechanical reconfigura­
bility, 2. reprogrammability with the control computer. There is an increasing demand for the 
utilization of robotic manipulators in many manufacturing operations such as milling, grinding, 
drilling, deburring. Furthermore, manipulators are required to complete their part of job in shorter 
times, in order to reduce the cycle time and thus improve productivity. This requires manipulators 
to move faster and faster. 

The compliance of the manipulators due to links and joints becomes a significant factor effecting 
the precision of manipulation, as the manipulator move at high speeds and/or interact with large 
contact forces. In order to operate within a desired precision range, the computer control algo­
rithms must account for once neglected manipulator compliance. Understanding and appropriately 
accounting for the compliance in control is a prerequisite for the utilization of manipulators in the 
forementioned high- performance tasks. Therefore, effective means of modeling the dynamics of 
manipulators including the link and joint compliance is needed. 
In general, there are two different reasons for mathematical modeling of any dynamic system, and 
for that matter, compliant manipulators. 
1. Study and simulate a system before it is actually built. For that purpose, the model should 
be as accurate and detailed as possible to closely represent (model) the actual system, so that the 
predicted behavior will be close to the actual behavior of the real system. 
2. Model only the major characteristics of the system so that it is simple enough to synthesize 
an appropriate control algorithm, and implement in real-time. Explicit, symbolic form of the 
flexible manipulator dynamics presented in this paper offers important insights to the dynamic 
characteristics, which is crucial for the development of an appropriate controller. 

1.2. Literature Review 

Dynamics and control studies of flexible manipulators have been concentrated on a single joint­
single link example [1-3]. The single flexible beam is modeled as a Bernoulli-Euler beam and infinite 
dimensional vibration coordinates are truncated by a finite number of mode shapes. Joint flexibility 
is considered as a torsional spring which couples actuator rotor/gear assembly to the link. 

Previous work on the Lagrangian formulation based dynamic modeling of multi-link flexible ma­
nipulators can be classified into two groups: 

1. Lagrangian - Finite Element based methods 
2. Lagrangian - Assumed modes based methods. 

The small vibration dynamic models of flexible mechanisms and manipulators are developed about 
a known nominal joint variable trajectories [4]. The coupling effects of deformation coordinates 
on the joint motions were neglected. This assumption is removed in [5]. Static deflection modes 
are included in the model in addition to dynamic deflection modes, thus improving the accuracy 
of model [6]. A two-link flexible arm is modeled with Lagrange- finite element based method, 
and performance of LQR with prescribed degree of stability is studies [7]. In a recent work, 
Newton-Euler formulation and Timoshenko beam theory is used [8]. Stiffness matrix accounting 
for combined flexibility of joints and links is derived for again two-link example [9]. The main 
advantage of finite element based methods is that the can be applied to complex shaped systems, 
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covering a wide class of problems. However, the main disadvantage is that they do not give much 
insight to the dynamic structure of the system. 

A general Lagrangian-assumed modes based method is presented in [10]. The equations of motion 
are developed in recursive form to reduce the real-time computation in inverse dynamic control. A 
symbolic modeling method based on [10] is developed in [11]. Transfer matrices are used to develop 
linear frequency domain model of servo controlled manipulators [12]. The method of [10] is more 
attractive than other methods for the following reasons: 

1. It is an easy-to-understand conceptual approach; therefore, utilization of the results by other 
researchers in the robotics field will be maximum. 

2. As a result of using independent set of relative coordinates in kinematic description, dynamic 
model has a similar form to the rigid manipulator models. Therefore, it provides more insight 
to the dynamics of the system and may suggest modification of rigid manipulator control 

algorithms for use on flexible manipulators by exploiting the rigid and flexible manipulator 
dynamics differences. 

II. Problem Statement 

Explicit, non-recusive, symbolic modeling of robotic manipulators with compliant links and joints 
is the problem dealt with in this work. In order to accurately study and simulate the behavior 
of the system, modeling method should yield accurate models. Yet, simpler models conveying 
only dominant characteristics of the dynamics are needed for successful controller design. The 
Lagrangian-assumed modes based method described in [10] fulfill these requirements. Recursive 
formulation is useful and critically important in computed-torque control. However, the non­
recursive, direct dynamic form of equations is needed for more general simulation and controller 
synthesis studies. If the multi-cpu parallel computation is needed in order to implement a detailed 
dynamic model based controller, the recursive form of equations is not suitable, rather, explicit, 
non-recursive form is desirable. 

III. Symbolic Modeling of Flexible Manipulators 

III. 1. Flexible-Arm Kinematic Description 

Consider the kinematic structure shown in (Fig.l) representing a manipulator with serial links 
connected by revolute joints. The elements of the manipulator are numbered, and body fixed 
moving coordinates are assigned as shown, where DoXY Z is the inertial coordinate frame. (4x4) 
homogeneous transformation matrices are used to describe the position and orientation of one 
coordinate frame with respect to another. Let qL = (qk,l, qk,2, ... ,qk,nk) be the generalized 
coordinates associated with element k degrees of freedom (d.o.f.). For instance, if element k is 
a single d.o.f. revolute joint, then qk,j = qk,l, if it is a two d.o.f. revolute joint, then qk,j = 
(qk,l,qk,2)T. If element k is flexible link, qk,j is vector of modal coordinates, if the link is rigid 
(zero d.o.f.), qk,j is a null vector. The position vector of a differential element along link i 
(element 2i) with respect to coordinate frame 2i is given by 

n2i 

2i h2i = [1J2i, 0, 0, 1 f + 2:= q2i,j [X2i,j, Y2i,j, Z2i,j, 0 f 
j=l 

(1) 

The second summation term in (eqn.l) describes the deflection of the element 2i at that point in 
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terms of modal coordinates approximately. The X2i,i, Y2i,i, Z2i,i are the jth mode shape functions 
of the element in X2i, Y2i, Z2i directions, respectively, q2i,i is the generalized modal coordinate, n2i 
is the number of modes used to describe the deflection of element 2i. The absolute position of this 
point with respect to the inertial frame DoXY Z is given by 

(2) 

where °W2i_l is the (4x4) homogeneous transformation matrix from coordinate frame 2i to the 
inertial coordinate frame (Fig.1)t. 

(3) 

Note that if a link is considered rigid, the corresponding link transformation will be a constant 
matrix. Approximations are involved in the definition of link transformation, A2i , as described 
below. If link i (element 2i ) were rigid, slender beam, would be (Fig. 2). 

[

1 0 0 l2i] o 1 0 0 
A2i = 0 0 1 0 

o 0 0 1 

(4) 

The change in the position and orientation of (2i+ l)th coordinate frame due to flexible deflection of 
link i is described by a differential coordinate transformation (Fig. 2). This is an approximation in 
the kinematic description. The approximation is valid to the extend that the orientation change of 
coordinate frame (2i + 1) due to deft.ections is small enough to justify the following approximation: 

(5) 

where B2i is the equivalent rotation angle about an axis of rotation to transform the orientation of 
(2i + 1)' to that of (2i + 1). This approximation is well satisfied in robotic applications. Finally, 
the link transformation A2i , 

(6) 

dA' , A', A 
2i = A2i · 2. L..l. (7) 

Invoking the modal approximation for the deflections 

A;; LI. = [ (0 ~)2i 
-(BZ )2i (BY)2i 

X"] [ (o'~",j 
-(B )2' , (By hi,i 

X",j 1 z t,) 

0 -(BX)2i 
n2i 

0 -(B h' ' Y2i L Q2i,i 
x t,) Y2i,i 

-(BY)2i (BX)zi 0 Z2i - (By )2i,i (Bxhi,i 0 Z2i,i 
0 0 0 0 i=l 0 0 0 0 

(8) 
Hence 

A" = [~ 
0 0 In [ (O'~",j 

-(B h- . (Byb,i 
X",j 1 n2i 

z t,) 

1 0 + L Q2i,i 
0 -(B )2' , Y2i,i (9) x t,) 

0 1 -(B h' , (Bxhi,i 0 Z2i,i i=l y t,) 

0 0 0 0 0 0 

tPreceding superscript 0 will be dropped for notational simplicity. 
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A2i-l, ( for i 
description. 

1, ... , N), are joint transformations and no approximations involved in their 

III. 2. Flexible-Arm Kinetics: Lagmngian-Assumed Modes Formulation 

Once the kinematic description of the system is set up, the next step in Lagrangian formulation 
is to form the kinetic and potential energies and take the necessary derivatives of the equations of 
motion: 

where 

{p= 1, ... ,2N; {r = 1, ... ,np}} 

N 

K = L K2i - total kinetic energy 
i=l 

N 

P = L P2i - total potential energy 
i=l 

Q - the generalized force vector p,r 

(10) 

(11) 

(12) 

(13) 

Here only the link dynamics are considered. Inclusion of the joint dynamics into the model will be 
discussed in Section IlIA. Kinetic energy of element 2i (link i) 

(14) 

This equation neglects the rotary self-inertias of individual differential elements, which is consistent 
with the common practice of finite element based formulations. 

(15) 

(16) 

where; 

_ 2~~ (8W2i-l) '. 
- L.J L.J 8 qJ,k 

j=l k=l qj,k 
(17) 

n2i 

. '"' T 2i h2i = L.J Q2i,j [X2i,j, Y2i,j, Z2i,j, 0 1 (18) 
j=l 

Substituting (15 - 18) into (14) and summing over i as in (11) yields the kinetic energy of the 
manipulator links 



N 2i-1 n. (aw [n2i n2i n2i 1 ) 
+ L L LTr a 2i-1 I: C 2i,j q2i,j + L I: CU,j,k Q2i,k Q2i,j Wl'-l Qs,t 

i=l s=l t=l Qs,t j=l j=l k=l 

N ( [n2i n2i 1) + 1/2 LTr W2i-1 L L C 2i ,j,k Q2i,j Q2i,k W2~-1 
i=l j=l k=l 

where; 

C 2i,j,k = li2i [ X2i,j, Y2i,j, Z2i,j, 0 f [X2i,j, Y2i,j, Z2i,j, 0] f-L( ry) dry 

The potential energy of the system is given by 

N 

P = Pg + Pe = I: [(Pg )2i + (Pehd 
i=l 

The gravitational potential energy, Pg , 

Substituting 2ih2i from (1) into (22) 

where; 

5 

(19) 

(20.a) 

(20.b) 

(20.c) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 
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Incidentally, me2i,j is same as the bottom row of C2i ,j in (20.b). 
Elastic potential energy expression, considering bending in y, z, extension in x, and torsion about 
x directions, is given by: 

p, = t,1/2 t { E [(I,)u (8;;:,)' + (Iv)" (8;~:')' + (Ax)" (8;;,) '] + G (Ix)" (8(~~2i)'} d~ 
(27) 

Noting the truncated model approximations for the deformation coordinates of the links (eqn. 1 
and 9) 

N n2i n2i 

Pe = 1/2 L L L k2i ,j,k q2i,j q2i,k (28) 
i=l j=l k=l 

where; 

(29) 

(29.a) 

(29.b) 

(29.c) 

(29.d) 

Note that the k2i ,j,k term is same structural stiffness values that would be obtained numerically 
from finite element methods. 

III. 3. Dynamic Model: Direct Dynamic Form 

For general purposes, such as simulation, controller synthesis studies non-recursive dynamic form 
of the model is needed. For computer-torque (inverse dynamic) control which is a specific control 
algorithm, the recursive form is desirable [10]. The components of dynamic model should be 
explicitly separated out to inertial, centrifugal and coriolis, gravitational, and structural stiffness 
forces terms, so that this information can be embedded in the structure of the real-time control 
algorithm. For instance, generalized inertia matrix plays a critical role in decoupled joint control 
of robotic manipulators. In order to implement a real-time decoupled joint controller for a given 
manipulator, the generalized inertia matrix must be known explicitly so that it can be used in 
control action calculations. In contrast, the recursive formulation avoids such separations for the 
sake of least operation needed for inverse dynamic calculations. The non-recursive explicit form of 
the dynamic model is presented below. If the necessary derivatives are taken and cancellations 
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are done between the terms Dgenerated by 1t(8K/fJqp,r) and (8K/8qp,r) in eqn(10), and resultant 
system of equations can be organized in matrix form (30), 

[M(q)] q + C(q,q) + G(q) + [K] q = Q (30) 

where 

qT = [( ql,l, ql,2, ... , ql,nl)' (q2,l, ... ,q2,n2)' ... ,(q2N,l, ... ,q2N,n2N)] 
One row of this matrix equation (30) corresponding to qp,r may be written as; 

2n n. 2N n. 

I: I: m(p,r),(s,t) qs,t + C(p,r) ( q, q) + G(p,r) ( q) + I: I: k(p,r),(s,t) qs,t = Q(p,r) (31) 
s=lt=l s=lt=l 

where 

p-l 

(p, r) = I: ni + r - indicating row number and 
i=l 
s-1 

(8, t) = I: ni + t - indicating column number in eqn.(30). 
i=1 

Elements of generalized inertia matrix; 

m - m (1) + m (2) + m (3) (p,r),(s,t) - (p,r),(s,t) (p,r),(s,t) (p,r),(s,t) (32) 

m (1) - ;... Tr (8:2i - 1 
(p,r),(s,t) - L..J 

i=intm qs,t 
(~,'~l) 

(32.a) 

(2) (8W
S-l [C ~ ] T) m(p,r),(s,t) = Tr 8 s,t + L..J Cs,t,k qs,k Ws- 1 

qp,r k=1 
(32.b) 

m (3) _ { W p- 1 Cp,r,t W;_1 ; 8 = P 
(p,r),(s,t) - 0 ; 8::j:. P (32.c) 

Elements of nonlinear centrifugal and coriolis terms vector; 



------------~---~---------------

Elements of the gravity vector 

N 

G(p,r) ( q) = L 
i=intm 

(1!:}l, ';1) 

T 8W2i-l 
g 

8qp,r 

Elements of structural stiffness matrix 

k _ {.kp,r,t for p = s 
(p,r),(s,t) - 0 for p -:p s 

Note some simplifying fact as follows: 

for p - odd 

8 

(33) 

(34) 

(35) 

(36.a) 

8Ws- 1 = 0 for s - 1 < P (36.b) 
8qp,r 

In symbolic expansion of eqns. (32) through (35) for a manipulator, these facts (36.a - -36.b) 
will be automatically utilized and will cancel out the terms that are already known to be zero. 
Such capabilities are conveniently provided by commercial symbolic manipulation programs (SMP, 
MACSYMA, REDUCE). 
Considering the facts (35) - (36), and rearranging generalized coordinate vector into two groups 
associated with joint and link flexibility. 

[ qf, qf] = [( ql ,j , q3,j, .... ) T , ( q2 ,j, q4 ,j , .... ) T J 

The equations of motion (30) can be shown to have the following form: 

(37) 
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IIL/. Inclusion of Joint Dynamics 

Inclusion of joint dynamics into model involves 

1. modifications of eqn. (20.a - c), (25), and (26) by redefining mass distribution of links, 
2. augmenting a set of second order equations to (38) as a result of joint flexibility and inertia. 

DC motor-driven revolute joints whose rotor/gear arrangement is elastically coupled to the links 
will be considered. Joints can have more than one degree of freedom. Elastic mechanical coupling 
between a joint and link is modeled as a torsional spring. The following assumptions are made 
regarding the joint assembly mass distribution. 

Assumption 1: Rotational kinetic energy of each joint about its own center of mass is only due to 
its own rotation. Rotational kinetic energy due to rotation of previous joints and links is neglected. 
This amounts to neglecting terms in the order of gear reduction ratio, which is typically in the 
order of 1 : 100. Translational kinetic energy due to both previous joints and elastic deformations 
is taken into account. 

Assumption 2: Rotor/gear assembly inertia is symmetric about the rotor axis of rotation such that 
gravitational potential energy, and translational velocity of joint center of mass are independent 
of rotor position [3]. This assumption is generally satisfied by joint assemblies of most industrial 
robots. 

L t T - [( (j) (j) ) ( (j) (j) ) ( (j) (j) )] e q3 - ql,I,···,ql,nl' Q3,1,···,q3,n3 , ....... Q2N-I,I'····'Q2N-I,n2N_1 

be the generalized coordinates associated with joints (Fig. 3). The relative motion between a joint 

rotor and elastically coupled link is (qZi-l,r - qH~I,r)' The contribution of the joint dynamics to 
the equation of motion will be reflected through kinetic, potential energies and generalized forces. 
The kinetic energy of joint i (element 2i - 1 ) is 

J(Zi-l = 1/2 m2i-1 (Va )~-I . (Va )2i-1 + 1/2 W?;_I [hi-I] w2i-1 (39) 

where m2i-1 is the mass, (Va )2i1 velocity of center of mass, W2i-1 angular velocity vector, [I2i-I] 
inertia tensor with respect to a coordinate frame fixed at the center of mass of joint. From assump­
tion 2, (Va )2i-1 will be function of the generalized coordinates of proximal elements and will not 
depend on q~{~1 r' Therefore, translational kinetic energy of joint i can be included in the formula­
tion by conSidering its mass as part of the proximal link. This is accomplished by redefining mass 
distribution of link (i -1) as 

/-l2i-2 = Ilo + mZi-1 8(7]- lzi-2) 

where 

{ 
1 for 7] = l2i-2 

8(7] - l2i-2) = 0 
for 7] =/: l2i-2 

and evaluate eqn.(20.a - c) with new definition of /-l as in (40). 
From assumption 1, W2i-1 ~ i~~~1 r , 

For all joints of the manipulator 

[J. ] . (j) 
2i-1 q. -2'-I,r 

( 40) 

( 41) 

( 42) 
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N 

]((j) = I: ](U-1 1/2 itI [J] q3 (43) 
i=intm 

( E:}!-,!f1-) 

The contribution of joint potential energy to the dynamic model equations 

v(j) = V(j) + V(j) 
9 e (44) 

From assumption 2, the gravitational potential energy of joint i may be included in that of link 
(i - 1) by the evaluation of (25) and (26) with f.L(TJ) as defined in eqn(40). The elastic potential 
energy stored in elastic coupling between joint and links 

( 45) 

As a result of the contributions of (43) and (45) equations of motion (38) is modified to the following 
form: 

(46a,b) 

IV. A Case Study 

The described modeling method is applied to a two-link planar flexible arm, with single d.o.f 
revolute joints (Fig. 4). In this case study, only the link flexibilities are considered, the joint 
flexibilities are not included. The bending deflections of links are approximated with two assumed 
mode shapes for each link. Mode shapes are chosen from the analytical solution of a Euler- Bernoulli 
beam eigenfunction analysis but, of course, could also be obtained using a finite element analysis 
program. The mathematical model is symbolically obtained using SMP symbolic manipulation 
program and simulated with a VAX-ll/750 microcomputer with the following objectives: 

1. Verify that the model generated by the above algorithm is correct 
2. Demonstrate the ease of changing mode shapes for the given example manipulator, and study 

the effect of using different mode shapes on the predicted dynamic response of the system. 

Model verification is supported by comparing the response of the flexible arm model with that 
of rigid arm model. Clearly, as the flexural rigidity, Elz , of the links increase, joint angle re­
sponse of flexible model should converge to that of rigid model. This is observed as shown in 
Fig. 5 and Fig. 6.a,b. In simulations of Fig. 6, mode shapes corresponding to clamped-free 
boundary conditions of a beam were used in the model. Now, let us consider the case that one 
would like to use a different set of mode shapes. The necessary change required in the model 
is to re-evaluate the following terms with new mode shapes (considering the fact that selected 
mode shapes form an orthogonal set): { C2i,j, C2i,j,k, ](2i,j,k for i = 1,2 and j = k = 1,2 : 
(C2 ,1, C2 ,2, C4 ,1, C4 ,2), (C2 ,1,1, C2 ,2,2, C4 ,1,1, C4 ,2,2), (](2,1,1, ](2,2,2, ](4,1,1, ](4,2,2)}, me2i,j must be 
updated with the new values offorth row of C2i,j. Fig. 7a-b show the same simulation case results 
of flexible model with clamped-clamped mode shapes. The reason for faster convergence of joint 
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angle responses to those of rigid model is that clamped-clamped modes shape results in a stiffer 
model than clamped-free mode shapes. 

Computational complexity of the resultant model is studied for real-time dynamic control of flexible 
manipulators. These computational results give us an idea about the algebraic complexity of 
the explicitly symbolic model and the computational power need for real-time control. Since we 
have obtained the equations in explicit, symbolic form, we could simply equally distribute the 
computational load over a multi-CPU architecture where each processor could work independent 
of each other. The computation time for the inverse dynamics of the example flexible manipulator 
(Fig. 4) is as follows: 

1. Computer: VAX-ll/750 
a) without floating point accelerator: 7 Hz. 
b) with floating point accelerator: 14 Hz. 

2. Computer: 8 transputer (T414) configured in parallel computation architecture (estimated 
value, not fully implemented): 80 Hz. 

It seems that real-time dynamic control of large dimensional flexible systems can only be realized 
by distributing the real-time computation load over an array of processors, for the dynamic model 
equations are, in general, too complicated to be handled by a single processor at a fast enough rate 
for real-time control. Explicit non-recursive form of equations readily lends itself for multi-CPU 
implementation. This is not possible using recursive form of model. 

V. Summary and Conclusion 

The elastic deformations are described by summation of a finite number of mode shapes which 
may either be assumed or obtained from a finite element analysis program. Link deformations are 
assumed to be small enough to justify differential coordinate transformation and linear elasticity 
theory (eqn. 6 - 9, and 27). 
The modeling method considers all dynamic couplings (linear and nonlinear) between deflection 
and joint coordinates. Links are assumed to be slender beams. Revolute joints with multiple 
degrees of freedom are allowed. Joint flexibility as well as link flexibility are included. 

Explicit symbolic form of the equations are directly useful for simulation and control studies. 
Computer automated symbolic expansion of equations (32 - 35, and 46) to obtain dynamic model 
for any desired manipulator structure is studied and an example case is presented. Dynamic model 
is presented in an analogous way to the dynamic model of rigid manipulators. This displayed the 
way link and joint flexibility enter the model, i.e. C2i,j, C2i,i,k terms in the elements of generalized 
inertia matrix. The mode shape dependent model parameters are identified and changing mode 
shapes for a given model is simplified ( only C2i,j, C2i,i,k, K2i,i,k need to be re-evaluated for new 
mode shapes). 
Explicit symbolic modeling method presented here has the following advantages: 

1. improves the insightful understanding of dynamics of flexible manipulators. 
2. often equations must be simplified for real-time control implementation. The importance of 

each term can be determined by simulations and simply wipe off the non-major terms in the 
symbolic equations. 

3. equations readily lend themselves for multi-CPU parallel computation for real- time control. 
4. changing mode shapes for a given model is very simple. 
5. the approach is conceptually easy-to-understand and similar to rigid manipulator formulations. 
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