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CHAPTER I
INTRODUCTTION

Most of the 1imit processes of elementary analysis can be studied

in terms of segquences. TFor example, if T is a real-valued function de-

fined on the real line, lim f£(x) = b if and only if the sequence {f(xn)}
x=g, :
converges to b whenever {Xn} is =z sequence converging to a.

Indeed, a quite satisfactory theory of convergence in metric spaces

can be based on seguences, Thus, a metric space X is compact if and conly

if every sequence in X has a convergent subsequence, There is also the

well-known result that a Sequence in a metric space has a point x as a

cluster polint 1f and conly if it has a subsequence converging to x. Fur-

thermore, closures, accumulation points, and continuity can all be char-
acterized in metric space topology in terms of sequences.

In fact, except for the characterization of compactness, these re-

sults hold in all first countable spaces. However, in spaces which are

net first countable sequences de not generally provide a fruitful theory
of convergence,

Cne well-known way to consiruct a theory of convergence wvalid for
general topological spaces (including those which are not first countable)
is to employ nets, which are a generalization of sequences. A net is de-

fined to be a function from a directed set into a topological space, a

directed set beling 2 set S with a relation £ which is reflexive and transi-

tive and has the property that for each palr of elements x and y in 8 there




exists an element z in S such that x € 2z and y € z, Clearly, any sequence
in a space may be viewed as a net since any linearly orderéd set,in particular
the positive integers with the usual order, 1s a directed set. The defini-
tions of subnet, convergence of a net, and cluster polint of a net are in
varying degrees motivated by the corresponding notions relating to sequences.
The primary object of investigationhin this volume ieg the extent to
which it is possible to establish a theory of convergence employing only
these nets whose domains are linearly ordered., We shall, in fact, limit
our attention to nets with well-ordered domains; for, as will be indicated
in Theorem L.3, theorems involving nets with linearly ordered domains can
generally be translated into theorems involving nets with well-ordered do-
mains, By "well-ordered set" we mean, of course, any linearly ordered set
each of whose nonempty subsets containg a smellest element., A net whose

domain is well-ordered will henceforth be called a well-ordered net.

In Chapter IITI we shall discover that compactness, closures, accumu-
lation peints, and continuity can be characterized in general spaces in
terms of the cluster points of well-ordered nets, though no such character-
ization holds in terms of the cluster points of sequences. However, it
will algo be found that no satisfactory general theory of convergence can
be constructed in terms of well-ordered nets.

Chapter IV will investigate those spaces in which closures, accumu-
lation points, and continuity can be characterized in terms of convergent
well-ordered nets and the points to which they converge,

Chapter V will explore possible extensions tc well-ordered nets

and to other spaces of the theorem that in a first countable space a point

X 1s a cluster point of a sequence & if and only if & has a subsequence




converging to x.

In Chapter VI we shall introduce a generalization of metric spaces
and use it to characterize some of_the spaces discussed in Chapter IV, thus
generalizing a theorem of‘Arhangeléki! which-characterizes those Hausdorff
spaces in which the closure of each subset is the collection consisting of
each point to which some sequence in that subset converges. We shall also
generalize in connection with well-ordered nets certain facts about com-
pactness such as the equivalence of compactness and sequential compactness
in metric spaces,.

Chapter IT will provide necessary background material concerning
transfinite numbers and general topolegy. HThere we shall define the term
filter and describe briefly how filfers are used to construct a second
well-known thecry of convergence in general topology. Filters and nets
generate essentially equivalent theories of convergence in the sense that
any thecrem involving nets can be translated into a theorem involving fil-

ters [4]. We shall introduce well-ordered filters and, in Chapters III-VI,

1llustrate by an occasicnal example how one may obtain from the theorems

concerning well-ordered nets analogous results on well-ordered filters,




CHAPTER TI
PRELIMINARIES

This chapter will provide a résumé of those facts concerning trans-
finite numbers, néts, and filters which will be needed in later chapters.
No proofs will be given for the better known propositions. TFor these the
reader can consult Abian [1] on transfinite numbers, Kelley [6] on nets,

and Bartle [4] or Kowalsky [7] on filters.

Cardinal and'Ordinal Numbers

There exists a class of sets known as the ordinal numbers with the
properties that each element of an ordinal number 1s an ordinal number
and that a set S of ordinsl numbers is an ordinal number if and only if
wSS for every weS. Also, if S is any set of ordinal numbers, the rela-
tion € is a well-ordering of S. Any ordinal number w is equal to {ordinale
w' ww'< w}, where'< means ;.

Definitions. A partial ordering is a reflexive and transitive relstion.

Let Sl and 82 be sets with partial orderings < and X, respectively. A

function @:Sl - 82 is said to be an order homomorphism if x £ y implies

that 8(x) S &(y), & is said to be an order isomorphism if ¢ is a bijective

order homomorphism and @Hl,:s2 - Sl is an c¢rder homomorphism. It is easily

ghewn that a bijective order homomorphism whose domain and range are
linearly ordered is an order isomorphism. If there is an order isomorphism
from Sl to 82, Sl

fied that the relation of being order isomorphic is an equivalence relation.

is said to be order isomorphic to SE' It 18 easily veri-




BEvery well~ordered set 18 order isomorphic to a unique ordinal
number. Thus, distinct ordinal numbers cannot be order isomorphic.
.Definition., Twoc sets are equipollent if there is a bijective function
from one to the other. This, too, is an equivalence relation.
Definitions., If w is an ordinal number, there is a set consisting of all
crdinal numbers equipcllent to w. The smallest cordinal number in this set

is called the cardinal number corresponding to w. If & is any set, there

is a cardinal number eguipollent to S since S can be well-ordered. This
cardinal number is unique since, as can be easily shown, twe cardinal
numbers are equal if and only if they are equipollent. The unique cardinal

number eguipollent to 8 1s called the cardinal number of S, or the cardinal-

ity of S.
Any set of cardinal numbers is a set of ordinal numbers and is there-

fore well-ordered by the relation €. If Sl and 82 are sets and there exists

then the cardinality of Sl is less than or

If there exists a surjective function

an injective function Q:Sl - 82,

equal to the cardinality of 82.

¥Yi8. - then the cardinality of 8

1 82 >
cardinality of 82.

1 is greater than or equal to the
There 18 a commutative and assoclative addition of cardinal numbers
whereby c+d is the cardinality of (cx{0})U (ax{1}). There is also a com-
mutative and assoclative multiplication of cardinal numbers under which
c.d is the cardinality of cxd. If either ¢ or d is infinite, c+d =
max{c,al. If, in addition, neither ¢ nor d is zero, then c-d = max{c,d}.
Under the usual Cartesian products notation, cd represents the
collection of all functions from d into ¢. The symbol cd is also used to

dencte the cardinality of this collection. If S is a set of cardinality c,




the power set of S (set of all subsets of S} has cardinality 20, which
can be shown to be strictly greater than c.

The cardinality of the set of non-negative integers is denoted by
A%. In fact, 1f we regard the non-negative integers as ordinal numbers,
%% is equal to the set of all non-negative integers. It is easily shown
that.N(D is the gmallest Infinite cardinal. The cardinality of the set of

s
real numbers is 2 ,

There 18 a more scphisticated form of addition of cardinal numbers
than the binary operation mentioned above. Let {ca:aeﬂ] be an indexed
collecticn of cardinal numbers. The sum of this collection is defined to
be the cardinality of U{cax{a}:aeA}.

Definition. An infinite cardinal number K is called a regular aleph if,

. Tor every indexed collection {ca:aaA} of cardinal numbers with sum 2z ¥,
either the cardinality of A is 2 K or there is an aeA such that the care
dinality of c, is z K.

}{O is an example of g regular aleph. If fcr each non-negative
integer we inductively define}(ﬁ+l tc be the smallest cardinal greater
than)ih, then the sum of LNL:nao} exemplifies a non-regular infinite aleph.

Definition. ILet D be & directed set and let E be a subset of D. E is

said to be a cofinal subset of D 1f for every deD there exists eeE so that

d £ e.

Definition, An ordinal number is called an irreducible ordinal if it is

order isomorphic to each of 1its cofinal subsets.
The finite irreducible ordinals are clearly O and 1. Theporem 2.2 -
below eguates the infinite irreducible ordinals with the regular zlephs. E |

The proof employs the principle of transfinite inductive definition, which




we now state.

Let w be a non-zerc ordinal number and let S be a set. Let k he
a function whose range is 8§ and whose domain is the set of all functions
having an ordinal number less than w as domain and having S as range. Let
8 be an element of S, Then there exists exactly one function h:w —- S such
that n(o) = s and n{w’) = x(h|w’) for all w'ew-{0}.

For Thecrem 2.2 we shall alsc need thé following lemma.
Temma 2,1. If w is an ordinal number and 8 is a subset of w, then the
ordinal number corresponding to S 1s less than or equal to w.
Proof. BSuppose, to the contrery, there is some ordinal number for which
Lemma 2.1 fails to hold. Let w be the smallest such ordinal number, Then
there is a subset SE€w so that the ordinal number w’ corresponding to § is
greater than w. Let §:w'— § be an order isomorphism. Now @]W is an order
isomorphism of w onto {seS:s < §(w)} = 8N&(w). Since #(w)essw, &(w) < w.
From the way in which w was chosen we conclude that Lemma 2.1 holds for
3(w). Hence, the ordinal number w’ corresponding to SN3(w) is less than or
equal to &(w). Bubt w = w’ since &|w is an order isomorphism ontc SN&(w).
We thus have w = w'' < §(w) < w. This is the desired contradiction. H
Theorem 2.2, An infinite ordinal 1s irreducible if and only if it is a
regular aleph.
Proof. Let w be an infinite irreducible ordinal. Let K be the cardinality
of w. We first show that K = w, TLet ;K = w be a bijection. For each
w'eK and function g:w’ - w, we choose an element h{g) in w as follows.
Since w' has cardinality less than K, {g(w’ ):w'ew’{f(w" )w" < w’'} = Sg
ig a subset of w of cardinality less than XK. Hence, the ordinal number

corresponding to Sg is lesg than K which is less than or equal tc w. Since




w 18 irreducible, Sg cannot be cofinal in w. Hence, w has elemenis which
are greater than any element in Sg. Define k{g) to be the smallest such
element of w. By the principle of transfinite inductive definition, there
exists a function h:K — w so that h(c) = O and h(w’) = k(h|w’) for each
w'eK-{O}. It is eaglily verified that h is an order isomorphism onto a
cofinal subset of w, BSince w is irreducible, we conclude that K = w.

We now show that X must be a regular aleph. If not, then there is
an indexed set of cardinal numbers {ca:aeA} such that A and each <, have
cardinality less than K and such that the sum of {ca:aeA} is greater than
or egual to K. Bince K is irreducible and A has cardinality less than K,

{ca:aek} cannot be a cofinal subset of K. Let w’ be an ordinal in K which

exceeds every element of {ca:aeA}. Let K’ be the maximum of the cardinality

of A and the cardinality of w'. It is easily seen that K’ < K, and it can
be shown that the sum of {ca:aeA} does not exceed K'-K’, which is certainly
less than K. This contradicts the previous statement that the sum of
{ca:aeA} is greater than or equal to K. Thus, X must be a regular aleph.

Now we assume that K 1s a regular aleph and show that it must be an
irreducible ordinal. Let S be any cofinal subset of K. The ordinal number
corresponding to S5 is less than or egual to K by Lemma 2.1. We thus need
only to show that the ordinal number corresponding to 8 is greater than or
equal to K; It clearly will suffice to show that the cardinality of S 1is
greater  than or equal to K.

Consider the indexed set of cardinal numbers {CS:SGS] where CS is
the cardinality of s. For each s5el, let g 18 ~ Csx{S} be a bijection,

Then for eachweK let &(w) be the smallest element of S which is greater

than or equal to w. Define f:K ~lJ{Csx{s]:seS} by letting f(w) = g@(w)(w)'




It is easily verified that f is an injection. Hence the sum of {Cs:seS}
is greater than or equal to K. BSince each CS is less than K, the cardinsl-
ity of 8 must be greater than or equal to XK,for K is a regular aleph. This
completes the proof that K must be an irreducible ordinal. |

Theorem 2.4 will reveal the principal importance of irreducible
ocrdinals for our purposes. We ghall need the following lemma.
Lemma 2.3. Every linearly ordered set has a cofinal well-ordered subset.
Proof. Let L be a linearly ordered set. Let W = {subsets of L which are
well-ordered}. Clearly W is nconempty since it contains the singleton sub-
sets of L. Define the relation < on W by w < w’ if:
either i)
or ii)

there exists xew’ such that w = fyew':y is less
than x in L}.

Tt is easily checked that this relation is a partial ordering of W.

Now let C be any chain (linearly ordered subset)of W. We seek ©to
show that C is bounded above in W. Let w’ = [J{w:weC}. If w'eC, then it
is easily seen that w’' is a bound for C.

Now suppose that w’¢c. We wish to show that weW. Iet T be a
nonempty subset of w’. ILet w be a member of C such that Tflw is nonempfy.

Let t be the smallest element of Thw. We assert that t is the smallest

element of T. Suppose tle T. Choose wleC such that tlgwl. Since C is a
chain, either Wy < WOr w< Wy It Wy < w, then tlFWf;w and thus tl e Thw

10 then there exists xew, S0 that w = {yswl:y < x}.

<x, b€ Tw and t < ¢ If x < tl, then t < x < t,. Hence

s0 that t < tl. If w<w

Now, if tl 1

t is the smallest element of T. Thus, w' is well-ordered and belongs to W.




10

Still working on the assumption that wﬁfﬁc,wé now show that w' is
an upper bound for C. Let weC be given., Since w;w', w!-w is nonempty.
Iet x be the smallest element of w'-w. Choose Wl € C so that x ¢ wl.

Since € is a chain, w < Wy for Wl is not a subset of w and thus vy ig not
less than or equal to w. So there exists z ¢ w, such that w = {yewl:y < z}.
Since x ¢ wl-w, z < x. BSince z ¢ w'-w and x is the smallest element of
w-w, x=2. Sows= {yewl:y < xl=lyew vy < x}. Now let u efyew’:y < x}
be given. Since x is the smallest element of w'-w, U ¢ w. Thus, W =
{yew':y < x}. Hence, w = w'. Hence, w’ is an upper bound for C.

By Zorn's Lemma, W has a maximal element m. Because m 1s a member
cf W, it 1s a well-ordered subset of L. We need only show that m is co-
final in L. Suppose, to the contrary, that there is an element x ¢ L which

is greater than every element of m. Then mU{x} belongs to W. But m <

mU{x}. This denies the maximality of m, and thus m is cofinal in L. I

Theorem 2.4, For every linearly ordered set L there is a unique irreducible

ordinal w such that L has a cofinal subset order isomorphic to w.

Proof, Let L be a linearly ordered set, Let w be the smallest ordinal

number crder isomorphic to a cofinal subset of I, ILet C be a2 cofinal sub-
set of L such that there ig an order isomorphism hiw - C. Let 5 be any co-
final subset of w. Then h\S is an order isomorphism cnto a cofinal subset
of L. Hence, by the way w was chosen, the ordinai number corresponding to
S is greater than or equal to w. By Lemma 2,1 the ordinal number correr
sponding to S is less than or equal to w. Hence, every cofinal subset of
w is order isomorphic to w, and thus w is an irreducible ordinal. :
Now we wish to show that w i1s the only irreducible ordinal order

isomorphic to a cofinal subset of L. Let w’ be any ordinal number not
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! is order isomorphic to C’, a cofinal subset of L.

equal to w such that w
Since w < w’, we need only show that w’ has a cofinal subset order iscmor-
phic to an ordinal number less than or equal to w in order to preve that

w' is not irreducible.

For each v ¢ w, let ¥(v) be the smallest element of C’ such that
¥(v) 2 h(v)., If v <v’, then n(v) < h(v’) s ¥(v’), and hence ¥(v) = ¥(v').
We now show that the image set of the function ¥:w — ¢’ is cofinal in C’.
Let ¢’ ¢ ¢’ be given. Since € is cofinal in L, there exists ¢ e C sc that
¢/ < ¢. Hence, ¢/ sc = Y(h-l(c)). Now we define a function &:¥(w) — w by
letting &{c’) be the smallest element of w such that ¥(&(c’)) = ¢’. & is

clearly injective., TNow let ¢/, ¢! ¢ ¥(w) be given where ¢! <!, Suppose

1”72 1 2
@(ci) = @(cé). Then ci = Y(@(ci)) > Y(@(cé)) = cé, which is a contradics
tion., 8o @(ci) < @(cé). Thus, ¢ is an order isomorphism from ¥{w) to a
subset of w. By Lemma 2.1 ¥(w) is order iscmorphic to an ordinal less
than or equal to w. Since ¥(w) is cofinal in C’, and since ¢’ is order
isomorphic to w’, w’ has a cofinal subset order isomorphic to an ordinal
less than or equal to w. “
Definition., Let L be a linearly ordered set, Then the irreduecible ordinal
which is order isomorphic to a cofinal subset of L is called the final order
of L.

It is easily seen that a linearly crdered set and each of its co-

final subsets have the same final order.

Definition. A limit ordinal is an ordinal number having no largest element.

Any regular aleph is a limi%t ordinal since it 1s an infinite irre-
ducible ordinal ard cannot, therefore, have a singleton cofinal subset.

OQur last lemma of this chapter gives a property of limit crdinals which
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will be used in an example in Chapter V.

Lemma 2.5. Every limit ordinal is a union of two disjeoint cofinél subsets,
Proof. Let w be a limit ordinal. Let w’ be an element of w. w’ is said
to be the predecessor of w’' if w” is the largest ordinal less than w’'. By
using the principle of transfinite inductive definition, we can clearly
define a function fiw — {0,1} so that f(w’) = 0 if w' has no predecessor
or if £ evaluated at the predecessor is 1 and f(w’) = 1, otherwise, It is
g

clear that £ ~(0) and f-l(l) are disjoint cofinal subsets whose union is

W, |

Netes and Filters

Definitions. Let $:D = X be a net and let A be a subset of X. & is said

to be freguentiy in A if @-l(A) is a cofinal subset of D. & is eventually

in A if there exists d ¢ D so that §(d’) ¢ A for all 4’ = d. & is in A if

8(D)SA. A point x e X is called a cluster point of & if & is frequently

in every neighborhood of x, & i1s said to converge to x if ¢ 1s eventually

in every neighberhood cof x.

Definitions, Let D and E be directed sets., A function ¥:E - D is said to
be cofinal if for every 4 e D there exists e ¢ E so that ¥{e’) = d for
every e/ = e. If &D —-X is a net and ¥:E - D is a cofinal function, then
.¥ is said tc be a subnet of §.

Theorem 2.6. A space X is compact if and only if every net in X has a
convergent subnet.

Proof. See Kelley [6], p. 136. I
Thorem 2.7. A point x of a space X belongs to the closure of a subset A

of ¥ iff and only if there is a net in A converging to x.




13

Proof. See Kelley (6], p. 66. I
Theorem 2.8. A point x of a space X is an accumulation point of a subset
A of X if and only if there exists a net in A—{x} converging to x.

Proof. See Kelley [6], p. 66. {
Theorem 2.9. ILet X and Y be spaces and let x be a point in ¥X. A function
f:X = Y is continuous at x if and only if f.§ converges to f(x) whenever &
is a net converging to x.

Proof. See Kelley [6], p. 86. I

Theorem 2.10. A net & clusters at a point x if and only if it has a subnet
converging to x.
Proof. See Kelley (6], p. 71. |
Definitions., Let 5 be a set. A nonempty collection F of subsets of S is
a filter in 8 1if,
i) ARB e F for every A, B e F;
iT) if A ¢ F and ASBSS, then B ¢ F; and,
1i1) the empty set is not a member of F,

If AsSS and A meets every member of F, then F is said te be frequently in

A. If A eF, then we say that F is eventually in A. Another filter G in

S is called a refinement of F if F&G.
Definitions, If F is a filter in a topological space X, then a point x ¢

X is called a cluster point of F if F is frequently in every neighborhood

of x. F is said to converge to x if F is eventuvally in every neighbcrheod

of x.
It is easily seen that the neighborhecod system of a point x in a

space X is a filter and that a filter ¥ in X converges to x if and only

if F 1s a refinement of the neighborhood system at x.




1h

Theorems 2.6 through 2.10 form the core of the theory of conver-

gence based on nets. There are corresponding theorems relating to filters

such as the following analogue of Theorem 2,10,

Theorem 2,1). A space X is compact if and only if every filter in X has

a convergent refinement.
Proof. See Bartle [4]. l

Definition., A subset B of & filter F is called a base for I if for every

F ¢ F there exists B ¢ B so that BEF,.

Tt is-easily verified that a nonvold collection B of nonempty sub-
gets of a set S is a base for some filter in 8§ if and only if for every
A, B.e B there exists C e E so that C=ANB.

Definitions. Let B be a filter base. If we define the relation £ on the

set B by requiring that A £ B if and only 1if BEA, it is clear that B

with the relation < is a directed set. We shall refer to the £ as the

natural order of §. A filter will be called a well-ordered filter if it

has a base which is well-ordered under the natural order.

We are now ready tc begin our investigations into the use of well-

ordered nets and filters in general topological spaces.
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CHAPTER III

THE CLUSTER POINTS OF WELL-ORDERED NETS

Theorems 2.6 - 2.9 in the preceding chapter are classical results
of general topology characterizing compactness, closures, accumulation
points, and continuity in terms of convergent nets. The theorems in this
chapter show how these same things can be characterized by means of the
cluster points of well-ordered nets. Following the thecrems examples are
given %o show that these characterizations cannot be made in a natural
way in terms of either convergent well-ordered nets or the cluster points
of sequences.

The following lemma is needed in the proof of Theorem 3.2.

TLemma 3.1. If U is an open cover of a Space X and U has infinite cardinal-
ity K and if every net %:X — X has a cluster point, then U has a subcover
of cafdinality less than K.

Proof. Iet f:K =U be a bijection. For k ¢ K, define U_ = {r(x"):k’ e K
and k' € k}. Assume that U has no subcover of cardinality less than K.

Now the cardinality cf Uk is less than K. Thus, by the assumption that U
has no subcover of cardinality less than X, Uk is not a subcover. Hence,
we may choose an element #(k) of X - (U{f(k’):k’ = k}),thus constructing
a net €:K —X. By hypothesis, & must have a cluster point x. Since U is
a cover of X, there exists some k ¢ K such that x ¢ f(k). Since x is a
cluster point of &, there exists some k = kX such that &(k) e f£(k). Then,
since f(k) e U _, 8(x) ¢ U{f(k’):x’ < x}. But this contradicts the way

§(k) was chosen. Hence U must have a subcover of cardinality less than K.
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Theorem 3.2, A space X is compact if and only if every well-grdered net

In X has a cluster point.

Proof. TNecessity. Since X is compact, by Theorems 2.6 and 2,10 every net

in X has a cluster pocint,

Sufficiency. Let U be any infinite open cover of X. Let K be the
least infinite cardinal such that U has a subcover of cardinality K. By
hypothesis every net $:K — X has a cluster point; Hence, by Lemma 3.1,
U has a subcover of cardinality X’ < K. By the minimality of X, K’ is
finite. Hence X is compact. | H
Theorem 3.3. A point x of a space X belongs to the closure of a subset A
of X if and cnly if there is a well-ordered net in A clustering at 'x.

Proof. Necessity. If x belongs to the closure of A, then every neighbor-

hood of x meets A. Let K be @he sméllest cafdinai number such that ¥ has
a neighborhood basis of that cardinality, and let N e a neighborhood basis
for x of cardinality K. Let f:K — N be a bijection, and define $:K - X by
choosing &(k) e f{k)N A for each k é K. Let V be any member of N and let
k' be an element of K. We wish to show that there exists k = k’ such

that &(k) e V. If not, then for each k 2 k' f(k) is not a subset of V.
But {V'eN:N:VEV} is a neighborhood basis for x. Note that {V'eN:Vvivle
{£(k):k < k’}. This contradicts the minimality of K since {f(k):k < k’}
has cardinality less thén K. Hence, there exists k = k' such that $(k) e
V. Thus, & is a net in A clustering at x,

Sufficiency. By Thecrems 2.7 and 2,10, x is in the closure of A if there

is a net in A clustering at x. H

Theorem 3.4. A point x of a space X is an accumulation point of a subset

A of X if and only if there exists a well-ordered net in A-{x} clustering
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at x.

25322. Clearly, x is an accumulation point of A if arnd only if x is in
the closure of A-{x}. The conclusion then follows from an application of
Theorem 3.3, H
Theorem 3.5, Let X and Y be spaces and let x be a point in X. A function
f:X = Y 1s continuous at x if and only if f.& clusters at f(x) whenever

¢ is a well-ordered net clustering at x.

Proof. Necessity. Let U be an open neighborhocd of f(x). Since f is

continuous at x, there exists an open set V< X such that x € V and £(V)<
U. If & is a well-ordered net clustering at x, for every element d in
the domain of § there exists e = d such that &(e) € V. Then f-3(e)} e

f(V) =U. Hence, £+& clusters at f(x).

Sufficiency. Suppose f i not continuous at x. Then there exists an

open set U containing f(x)} so that £(V)A (Y-U) 74 ¢ whenever V is a neigh-
borhood of x. Hence, for any neighborhocod V of x, V meets f-l(Y-U). Thus
¥ is in the closure of f"l(Y-U). By Theorem 3.3, there is & well-ordered
net & in f_l(Y-U) clustering at x. It is clear that f-3 does not cluster
at f(x) since f£+§ is never in U. | i

It might seem reasonable to conJec¢ture that the preceding theorems
would hold even if the term '“sequence" were substituted for "well-ordered
ﬁet." Example 3.6 is a counterexample to such a modification of Theorem
3.2, and Example 3.7 1s a counterexample toc the corresponding modifications

of Theorems 3.3, 3.4, and 3.5.

Definiticn, Let 8 be a linearly ordered set, For each s ¢ S, let LS be

the set of all elements of § less than s,and let RS be the set of all

elements of S greater than s. The order topology on S is the topology
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having [LS:seS] U [Rs:seS} as a subbasis.

Example 3.6. Let X be the space of all ordinals less than the least un-
countable ordinal () with the order topolegy. By Theorem 3.2, X fails to
be compact since the identity map or X is a well-crdered net which has
no cluster point, We shall show, however, that every sequence in X has
a cluster point,

Let {xﬁ] be a sequence in X. Recalling that x, = {x:% is an
ordinal and x < x }, let T = U{Xm:m = n}. T, is a countable set since
it is a union of countably many countable sets. Since X is uncountable,
X--Tn is nonempty. Let ¥y be the least element of U{X-Tn:n is a pcsitive
intege?} = X-ﬂ[Tn:n is a positive integer}. It is easily shown that y
is a cluster point of {Kn}w |
Example 3.7. Let Y be the space of all ordinals less than or equal to the
least uncountable ordinal Q with the order topology. Clearly, (@ is in the
closure of Y-[Q} and is an accumunlation point of Y. ¥Yet, as we shall
ghow presently, no sequence in Y-{Q} clusters at Q. Hence, Thecrems 3.3
and 3.4 do not hcld if "well-ordered net" is replaced by "sequence."

Since no sequence in Y-[Q} clusters at Q, if a sequence in Y clus-
ters at 0 it must be frequently in {Q}. Thus, if f is any function with
domain ¥ and & is a sequence in Y clustering at {3, the sequence f-§ is
frequently in {f(Q)} and, hence, clusters at f(Q). Yet the characteristic
functicn of {0}, the function which is 1 at Q and O elsewhere in Y, is
digcontinuous at (), Consequently, Y provides a counterexample to Theorem
3.5 with "sequence" substituted fTor "well-ordered net."

We now give the easy proof that no sequence in Y-{Q} clusters at

. Let [Xn] be a sequence in Y-{Q} and let T = U{xn:n is a positive
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integer}. Just as in Example 3.6 (Y-{Q})-Tis nonempty, for Y-{Q} is
uncountable and T is countable, Let x be & point in (Y—{Q})—T. The sget

of all ordinals in Y greater than x is a neighborhood of {} not meeting

3. n
Another reascnable conjecture stemming from the theorems in this
chapter is that Theorems 2.6 through 2.9 would hold even if the terms
"well~-ordered net" and "well-ordered subnet" were substituted for "net"
and "subnet" respectively. Example 3.8 is a counterexample to such modi-
fications of Theorems 2.6 through 2.9,
Example 3.8. Let T be the closed unit interval, and leb I' be the seb of
Tunctions from I intc I with the Tychonoff product topology. Let A =
{geII:For finitely meny values of xel g(x)=1, and for 2ll other values of
x g(x)=0.1. Let f be the function on I which is constantly equal to 1.
Clearly, f is an accumulation poiht of A. We shall later show that there
is no well-ordered net in A converging to . Hence, neither Theorem 2.7
nor Theorem 2.8 holds if the term "net" is changed to "well-crdered net."
Consider the function h:IT — T such that h(g) = 1 if g € A and
h(g) = 0 if g £ A. Since h(f) = 0 and h(A) = {1}, h is clearly discon-
tinuous at f. If @ 1s any well-ordered net in II converging to f, then

$ must be eventually in 1'-A, For é—l(A) must fail to be a cofinal sub-

set of the domain of &, since otherwise @‘@'l(A) would be a well-ordered

net in A converging to f. As & is eventually in II-A, h'd is eventually

in h(II-A) = {0} and thus h-3 converges to h(f) = 0. So Theorem 2,9 does
not hold if "neb" is replaced by "well-ordered net."
We now show that there is no well-ordered net in A converging to

f. Suppose, on the contrary, that the net §:W - II with W well-ordered
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and §(W) € A converges to f, For each x ¢ I, let U, = [geII:g(x) > 31,
As Ux is a neighborhced of f in II, 3 is eventually in Ux' Now define
the function F:T = W by requiring F(x) to be the smallest element of W
)

is a finite set; and we shall also show that F(I) is a countable subset.

such that {8(w):w = F(x)} €U . We shell show that for each w e W, F

But then I = F-l(W) = U{F-l(w):weF(I)} would be a countable union of
finite sets, which is the desired contradiction since T is uncountable.

Suppose X € F'l(w). Then F(x) = w and, by the definition of F,

3(w) e U .. Since it is assumed that §(w) ¢ A, then, by the definition of
A, [8(w)] (x) > L for at most finitely many values of x. Hence, &(w) ¢
Ux for at most finitely many values of x. F‘l(w) is thus a finite set.

Let w be an element in F(I). Let V be the set of all elements
v ¢ F(I) such that v € w. TFor each v ¢ V, choose G(v) ¢ I so that
F{@{v)) = v. Clearly, G is injective. Now since F(G(v)) = v < w, then,
by the definition of F, 3(w) e UG(V). Since &(w) e U, for at most finitely
many values of x, G(V) is a finite set. Since G is injective, V is then
finite. So w has finitely many predecesgsors in F(I), and F(I) is thus
counfable. This completes the proof that there is no well-ordered net
in A converging to f.

In Example 5.5 it will be shown that although IP(h%) is compact,
where P(NB) is the power set of N%, there exlists a sequence in IP(N;)
having no convergent well-crdered subnet. Now P(N;) has the same car-
dinality as I. Since the Tychonoff ftopology is not affected by any pro-
perty of the exponent except its cardinality, IP(N;) and II are homeomor-

phic. Thus, II also provides a counterexample to Theorem 2.6 modified by

substituting "well-ordered net" and "well-ordered subnet" for "net" and
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“subnet," H

In summary, this chapter has shown how certain important topolbgi-
cal properties and relations can be characterized by the cluster points
of well-ordered nets though they cannot be characterized in a natural
way by the cluster points of sequences. However, Example 3.8 uses II to
show that a satisfactory theory of convergence'cannot be based on well-
ordered nets. The importance of II, particularly in applicaticns of
topology to analysis, dramatizes this failure. The remaining chapters
will concentrate primarily on the properties of those particular spaces
for which it is indeed possible to construct a satisfactory theory of
convergence based on the clags of well-crdered nets or subclasses thereof.

But before we proceed to Chapter IV, it is appropriate to ment%on
that analogues of the theorems éf this chapter are available invelving
the cluster points of well-ordered filters. Furthermore, our counter-
examples to possible extensions of Theorems 3.2 - 3.5 are also counter-
examples to the corresponding extensions of the filter analogues of these
theorems.

For illustrative purposes we shall prove the analogue to Thecrem
3.2,
Theorem 3.9, A space X is compact if and only if every well-ordered
filter in X has a cluster point.

Proof, Necessity. Let F be a filter in X with a well-ordered base B.

Define a net 3:B — X by choosing &(B) ¢ B for each B ¢ B. By Theorem
3.2, % has a cluster point x, which is then eaglily shown to be a cluster
point of F.

Sufficlency. Let §:W = X be a well-ordered net in X. For each w e W,
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let CW = {8(w’):w’ 2 w}. Clearly, each C_ is nonempty and CWIT C,r =
CW” where w” is the larger of w and w'. If B = {Cw:weW}, then B is
clearly a filter base for a filter F. F 1s a well-ordered filter since
E ig clearly well-ordered by set inclusion. Thug, E has a cluster point
%. Sc every neighborhood of % meets every member of F, and in particu-
lar, each CW meets every neighborhood of x. Clearly, then, § clusters at
x, and by Theorem 3.2 X ig compact, H
Theorem 3.9 18 actually very close tpo the classical result that a
space X is compact if and only if every nest of nonempty closed subsets
of X has 2 nonempty intersection. (A nest is a nonempty collection of
sets which is linearly ordered by set inclusion.) Each of the two re-
sults may be easily proven from the cother by using the fact that every
linearly ordered set has a cofingl well-ordered subset and observing
that a filter F has a point x as one of its cluster points if and only

if x is in the closure of each element of E.
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CHAPTER IV
i
SEMI-ERECT, ERECT, AND K-FRECHET SPACES

Our obJjective in this chapter is to investigate those spaces in
which closures, accumulaticn peints, and continuity can be characterized
in a straightforward way in terms of the convergence of well-crdered nets.
A number cof definiticns and the first {hree thecrems of this chapter,
none of which deal with well-ordered nets per se, will enable us to g}ve a
unified exposition.

Definition. Let Dl and D2 be directed sets. A function h:Dl - D2 will be
called an order homomorphism if d £ d’ implies that h(d) < h(a’).
Definitions. Let D be a class of directed sets. A net will be called =z
D-net if its domain belongs to D. A filter will be said to be a D-filter

if it has a base which under its natural order 1s an order-homomorphic image
of a member of D. It is clear that a filter is well-ordered if and only

if it is a {W}-filter for some well-ordered set W.

Definition. Iet X be a space and let x be an element of X. A clags of

directed sets D will be said to describe the topology of X at x if for

every subset A of ¥ such that x is in the closure of A there is a D-net
in A converging to x.

Theorem 4.1. Let X be a space and let x be an element of X. Let 2 be a
nonempty class of directed sets, Then the following statements are equi-

valent:

(a) D describes the topology of X at x.
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(b) For every subset A of X such that x is an accumulation point
of A, there is & D-net in A-{x} converging to x.

(¢) For every space Y and function f:X = ¥, f is continuous at x
if and only if -3 converges to £(x) whenever & is a D-net in X converg-
ing to x.

(d) For every subset A of X such that x is 'in the closure of 4,
there is a D-filter in X which is eventually in A and converges to x.

(e) For every subset A of X such that x is an accumulation point of

A, there 18 a D-filter in X which is eventually in A-{x} and converges to

(f) For every space Y and function f:X — Y, £ is continuous at x
if and only if the filter in Y for which {f(F):FeF} is a base converges
to f(x) whenever F is a D-filter in X converging to x.

(g) The neighborhood system of x in X is an intersection of D-
filters,

Proof. (a) Implies (b). Since x is an accumulation point of A, x is in

the closure of A-{x}. By (a), there is a D-net in A-{x]} converging to x.

(v) Implies (c¢). If £:X - Y is continuous at x, then for every neighbor-

hood U of f(x) in Y there is a neighborhood V of x in X such that £(V) € U.
If & is a D-net in X converging to x, then & is eventually in V and thus
f+3 is eventually in U. Since U was arbitrary, f£-§ converges to f(x).
Suppese £:X — Y is not continuous aft x, Then there is a neighbor-
hood U of f£(x) in Y such that £(V}-U is nonempty whenever V is a neighbor-
hood of x in X. Thus, % is an accumulation point of f-l(Y-U). By (b),
there is a D-net § in f'l(Y-U) converging to x. Clearly, f+& does nct

converge to f(x)since it is never in U.
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(¢) Implies (d). Suppose x is in the closure of A. If x ¢ A, then (d)

holds trivially. If x #rA, then £:X = T,defined by f(y) =0 for y ¢ A
and f(y) = 1 for ydé A, is clearly discontinuous at x. By (c), there
exists D e D and a net $:D = X converging to x such that £+3% does not
converge to f{x). Clearly f-3% must be frequently at O and, hence, & must
be frequently in A. If F is the filter in X generated by the filter base
{{#8(a’):d"=2 d}:deD}, then clearly every element of F meets A and {FRA:
FqE} is a base for a D-filter in X which 1s eventually in A and ccnverges
to x.

{(d) Tmplies (e). If x is an accumulation point of A, then x is in the

closure of A-{x} and by (d) there is a D-filter in X which is eventually
in A-{x} and converges to x.

{e) Implies (f). This is quite similar teo the prcof that (b) implies (c).

(f) Implies (g). Let N be the neighborhcod system of x in X and let _Ig’ be

the intersection of all D-filters in X converging to x. We clearly need
only show that N = E'. If V e N then V is & neighborhcod of x and thus
any D-filter converging to x is eventually in V. Hence, V e EJ. Now
suppose'ij_g. Then x 1s in the closure of X-V. If x ¢ X-V, let F be the
filter in X having as a base the single set {x}. Tt is easily seen that
F is a D-filter converging to x. Since V # F, it follows that vg!_lg’.

If x f X-V, consider the function £:X = I defined by f£(y) = 0 if ¥ ¢ X-V
‘and f{y) =1 if yiﬁ'X-V. T is clearly discontinuous at x. By (f), there
1s a D-filter F in X converging Yo x such that the filter in ¥ having
{f(F):FqE} as a base does not converge te f(x). Clearly 0 e¢ f(F) for
every F ¢ F,and hence every F ¢ F meets X-V. If it were true that V ¢ g',

then we would have that V e F. Since this contradicts the fact that every
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element of F meets X-V, then V ﬁl I_\T' .

(g) Implies (a). We are supposing that the neighborhood system N at x is

an intersection of a set S of D-filters in X. Suppose that x 1s in the
closure of a subset A of X. Now ANV ig nonempty for every V e y. Hence,
X-A ¢_§. Thus, there is a P-filter E in § such that X-A ¢ E. So AT is
nenempty for every F ¢ F. Let B be a base for F such that there is a
directed set D ¢ 2 and a surjective order homomorphism h:iD *_E. Define

a net $:D — X by choosing &(d) to be a point in Afh(d). & is then a D-net
in A converging tc x. Hence, D describes the topclogy of X at x. H

The equivalence of (a) to (g) is an approximate generalization of a
theorem of Kowalsky [7], p. T4, stating that N; describes the topology of
a space X at each of its points if and only if each neighborhoeod system
in X is an intersection of filters generated by sequences. (A filter F
is said to be generated by a sequence & if {{3(m):m = n}:n is a positive
integer} is a filter base for F.)

It is interesting to note that for any space X there exists a
directed set D so that {D] describes the tepology of X at each of its
points. 1In fact, if X i1s the cardinality of the open sets in X, we may
choose D to be the collection of finite nonempty subsets of K with Sl < 82
ifl and only if SlE 82. If x is in the closure of a subset A of X, we
choose a neighborhood basis B for x of cardinality nct greater than K and
let £:X = B be a surjection. We then define &:D - X by choosing @({wl,
Vo5 eees Wn} e f(wl)nf(wa)ﬂ ...ﬁf(wn)ﬂA. 8 is then a {D}-net in A con-

verging te x. This is somewhat similar to Thecrem 1 of Venkataramen's

paper [9].

Theorem L4.2. Suppose that D and D’ are classes of directed sets such
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that for every member D of D there is a member D’ of Q’ which is order-
isomorphic to a cofinal subset of D. If D degcribes the topology of X
at x, then D’ describes the topology of X at x.
EEEEE' Suppose x 18 in the closure of the subset A of X. Then there
exists a directed set D ¢ D such that there is a net §:D — A converging
to x. By hypothesis there is a directed set D’ e D’ such that there is
an order isomorphism ¥:D’ = D onto a cofinal subset of D. Clearly, &Y
is a D'-net in A converging to x. I
Theorem %,3, If D is a class of linearly crdered sets, then there is a
class 2' of regular alephs such that for every space X and point x ¢ X
E’ describes the topology of X at x if D describes the topology of X at
¥. If D has only cne non-zero element,_g' ¢an be chosen to have only
cone element,
Proof. Let D" be the class of non-zero final orders of elements of D.
By Thecrem 4.2, D” describes the topology of X at x if D does. If 1 is
not an element of D”, let D' =D”. If 1 is an element of D”, let D be
2” with bg substituted for 1. Clearly, 2' has one element if D has one
non-zerc element, I

Because of Theorem 4.3, we may restrict our attention to regular
alephs when ceonsidering the construction of a theory of convergence based
on linearly oraered nets.
Definitions, If the class of all regular alephs describes the topolegy
of X at each of 1ts points, then X will be said to be semi-erect,

If for each x € X there is a regular aleph K_ such that {Kx} de-

scribes the topology of X at x, then X will be sald to be erect.

If X is a regular aleph and [K} degceribes the topology of X at each
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of its points, then X will be called K-Fréchet,

In Example 3.8 we showed that II contains a point f such that the
class of all well-ordered sets does not describe the topology cf II at f.
(In fact,-the class of all well-ordered sets does not describe the topo-
logy of II at any of its points.) Thus, II is an exemple cf a space that

fails to be semi-erect,.

Theorem L.k, Every linearly crdered set L with the order topology is

semi-erect,

Proof'. Let x be a point in L which is in the closure of a subset A of L.

We need only show that there is a net in A which has a linearly ordered

domain and converges to x. Let A, = {aeA:a < x} and let 4, = {aecA:a = x}.

1 2
Now C1(A) = 01(A1UA2) = cl(A‘l)Ucl(AE). So either x e Cl(Al) or X € Cl(A2).
If x ¢ Cl(Al), then the inclusion map @:Al - L c¢learly is a net in
A which has a linearly ordered domain and converges to X.

If x e Cl(Ag), let < be the reverse order of < on A That is, -for

o
each pair of elements a and b in Ag, we requlre that a < b 1f and only
if b £ a. Then the inclusion map ‘Ia:A2 — L, using < as the ordering on
A2, clearly is a net having the desired properties. H
From the definitions it is evident that every K-Fréchet space, for
any regular aleph K, is erect and that every erect space is semi-erect.

We now wish to provide examples showing that these concepts are in fact

distinct from one another. We shall need the following lemma.

ILemma 4.5, If K is a regular aleph such that {K} describes the topology

of X at x and if x is in the closure of & subset A of X, then either there
exists a € A so that x is in the closure of {a} or the cardinality of A

is not less than K.
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EEEEE' Suppose that A contains no point a such that x is in the closure
of fa}. Then, for every a ¢ 4, X-{a} is a neighborhood of x. Since {x?}
describes the topology of X at x, there is a net $:K — A converging to x.
Now, for each a ¢ A, let ¥(a) be the smallest element in X such that
8(w) ¢ X-{a} for all w = ¥(a). The existence of ¥(a) follows from the
fact that & converges to x and X-{a} is a neighborhood of x. From the
definition of ¥ it is clear that w < ¥(¥(w)). Thus, ¥(A) is a cofinal
subget of K. Since K is a regular aleph, we know by Theorem 2.2 that Y(A)
must have cardinality K. Hence, the cardinality of A is not less than
X. |
Example 4.6, We now provide an example of a linearly ordered set with the
order topology which is not erect, though by Thecrem 4.4 it is semi-erect.
Let X = ((»1) x {o})U(,}{) x {1}) where (+1 is the set of all ordi-

nals less than or equal to the smallest uncountable ordinal Q. We define
the relation <4 on X by (xl,i) { (x2,j) if:

15 i=0and j=1
or

2) 1 =] = 0 and x; < X%,

or

= .
1 and x2 xl :

it

3y 1=

It is easily shown that <4 is a linear order. Let A = {xeX:x<4 (Q,0)

and x # (Q,0)3},and let B = {xex:(Q,0)4 x and (Q,O);{x}. It is clear that
(2,0) is in the closure of A and is also in the closure of B, Suppose

that a regular aleph K describes the topology of X at (Q,0). By an argu-

ment similar to that in Example 3.7, there i1s nc sequence in A converging

to (Q,0). Hence, K ;‘J«g Now it is clear that there is nc element b ¢ B




30

such that (Q,0) is in the closure of {b}. Thus, by Lemma 4.5 the
cardinality of B is not less than K. Since the cardinality of B is Né
we have N% z K. But this contradicts the fact that }i)iﬁ the smallest
regular aleph. X then fails to be erect. ”
Theorem L4.7. Every well-ordered set with the order topology is erect.
Proof. Let X be a well-ordered set with the order topology and let x be
a point in X. Now W = {{yeX:y s x}}U {{yexX:a <y = x}:a < x} is a base,
well-ordered by set inclusion, for the neighborhood system at x, 8o the
neighborhood system at x in X is a {W}-filter. Hence, by Theorem 4.1(g),
{W} describes the topology of X at x. By Theorem L.3 there is s regular
aleph Kx such that {Kx} describes the topology of X at x. Hence, x is
erect, H

Example 4.8, We now give an example of a space that is erect but is not

K-Fréchet for any regular aleph K,

Let X be the set of all ordinals less than or equal to the least
uncountable ordinal Q with the order topology. By the preceding theorem
X is erect, By an argument simlilar to the one employed in Example 4.6 no
regular aleph greater than Ng describes the topology of X at &; and%ﬁ)
does not describe the tovology of X at {J, Hence, no regular aleph de-
scribes the topology of X at each of its points and X consequently fails
to be K-Fréchet for any regular aleph K. H
Theorem 4.9, If K is a regular aleph and X is a space such that every
neighborhood system is a {K}-filter, then X is K-Fréchet.

Proof. Let x be any point in X. By Theorem b.1(g), {X} describes the
topology of X at x. Hence, X is K-Fréchet. ”

Corcllary 4.10, Every first countable space is k%-Fréchet.
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Proof. ILet {Un}_be a neighborhood basis at a point x e X. For each

sl
positive integer n, let V.= [] U,.

n =1 J
basis at x which is an order-homomorphic image of the pesitive integers.

Clearly, {Vn}-is a neighborhood

Thus, the neighborhood system at x is an-ﬂ%}-fiiter, and by Theorem 4.9
X is ¥ -Fréchet, [

Example 4,11, We are now in a 'pesition to give examples of K-Fréchet

gpaces for each regular aleph K.

Irf K'is a regular aleph, let X be the set of all crdinals less
than or equal to K. A basis for the topolegy of X will consist of all
subsgets of the form {xeX:w é.ﬁ} a8 well asrall subsets nct containing the
element K. Thus, a neighborhcod basis at a point x ;leis {x}, and a
neighborhood basis at K is {{xeX: w < x}: w < X}. Clearly, each neigh-
borhood basis is a {K}-filter. By Theorem L.,9, X is K-Fréchet.

It should be noted that X is not K’-Fréchet for any regular aleph
K’ < XK, If, on the contrary, X were K'~Fréchet there would be a net
3:K' - X-{K} converging to K. But then #(K’) would be a cofinal subset
of X-{X} = K. This cannot happen since every cofinal subset of K is
order-isomorphic tc K, whereas 8(K’) has cardinality less than K. I

Theorem 4.1 yields a good deal of information about the properties
of semi-erect, erect, and K-Fréchet spaces. For example, from (a), (b),
and (c) of this theorem, along ﬁith Corollary 4.10, we obtain the classi-
cal results on first countable spaces mentioned in the third paragraph
of Chapter I. The remainder of this chapter will investigate a few addi-
tional properties of semi-erect, erect, and K-Fréchet spaces.

Theorem 4,12, Every subspace of a semi-erect (erect)(K-Fréchet) space is

semi-erect (erect)(K-Fréchet).
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Proof. We shall prove only the semi-erect, the proofs of the érect and
K-Fréchet being quite similer.

Let X’ be a subspace of a semi-erect spaée X, Buppcose a point
x € X’ lies in the closure of A © X’ relative to the topology of X’.
Let U be an open set in X containing x. Since A meets UNX’, A meets U.
Thus, x is in the closure of A relative to the topology of X. Thus,
there 1s a regular aleph K and a net $:K = A such that & converges to x
in the topology of X. Let V' be any open neighborhood of x in X’. Then
there is a set V which is open in X such that V' = vNX'. Now & is
eventually in VAAS VNX’ = V'. Thus, & converges to x in the topology
of X', Hence, X' is semi-erect. ”
Definition. Let {Xm:meM] be an indexed collection of spaces. Then let
X = égMXm' We define a topology T for X by reguiring that U ¢ T if and
only if Uf]Xm is open in X for every m ¢ M. Then (X,‘E), denoted by

L X , is called the sum of the collection {Xm:meM} of spaces.

meM ™
Theorem 4.13. The sum of a pairwise disjoint indexed collection of

semi-erect (erect)(K-Fréchet)spaces is semi-erect (erect)(X-Fréchet}.
Preof. We shall prove only the semi-erect, since the proofs of the erect
and K-Fréchet are similar.

Let {Xm:meM} be a pairwise disjoint collection of semi-erect
spaces indexed by M. Let x be any point in X. ILet m be the unique mem-
ber of M such that x ¢ Km. ir £ is in the c¢losure of a subset A of X,

A must meet every neighborhood of x in Xm. Thus, x is in the closure of
AI\Xm relative to the topolegy of Xm. Hence, there is a regular aleph
K and a net %:X —'AIWXm which converges to x in the topology of Xm.

Since the neighborhoods of x in Xm form a neighborhood basis for x in X,
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$® converges to x in the topolcegy of X. Hence, X is semi-erect, ”

Example L4.1L4. We now show that for each regular aleph K there exist K-

Fréchet spaces X and Y so that X x ¥ fails to be semi-erect., Thus, none
of the properties of being semi-erect, erect, or K-Fréchet extend even
to finite products.

Let X = (KxK)U {x} where x is an object not in X x K. For each i
and j in K, let Bij = {{1i,k) e KxK: k > j}U {x}. Let C be the collection
of all subsets of K X K, aﬁd let D be the family of all sets of the form
U{Bij(i):ieK} where j{i) is a member of K, depending on i. We shall let
X have the topology for which QIJQ is a basis. X is clearly discrete
everywhere except at x. For each i € K, let’Ei be the filter in X having
{Bij:jeK} as a base. Tt is easily seen that each F, is a {K}-filter and
that the neighborhcod system of x in X is the intersecticn of in:ieK}.

By Theorem L.1(g), {K} cescribes the topology of X at x and, thus, X is

‘ K-Fréchet.

Let Y = KU{y} where y is an object not in K. For each i ¢ K, let
¢, ve {kek:k > 1}U{y}. We shall give Y the topology having {C,:ieK}
united with the family of all subsets of K as a basis. Clearly, Y is
K-Fréchet with {Ci:ieK] forming a base for the neighborhood system at y.

Let A be set of all points in X X Y of the form ((i,j),i) where i
and j are arbitrary members of K. We shall show that (x,y) is in the
closure of A. Let U be any neighborhood of (x,y) in X x Y. U must have
a subset of the form (U{Bij(i):ieK]) X C, . This subset meets A at the
point ({k+1,j(k+1l) + 1), k+l).

Now we show that there is no well-crdered net in A converging to

X . Suppose, to the contrar that there is a regular aleph K’ and
(x,¥) ppose, Vs g
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a net §:K’ — A converging to (x,y). Then, if p is the projection from
X X Y into ¥, p*% is a net in K converging to y. By Lemma 4.5 X' < K.
Since p-®#(K’) must be cofinal in K, and since every cofinal subset of
K has cardinality X, K’ = K. Hence, K’ = K. For each k € K, let ¥(k) .
be the smallest element of K such that p+d(k’) > k for every k’ = ¥(X).
The existence of ¥(k) is insured by the fact that p-& is eventually in
Ck for every k. Now,lby the définition'of Y, we know that for any 1 e K
k < ¥(i) if p-&(k) = i. Hence, for a fixed i.e K, {keK:p-3(k) = i}=
{keK:k < ¥{i)} which has cardinality less than K. Thus, {jeK:({(i,j),i)
e®(K)} has cardinality less than K. Hence, there exists j(i) e K so
that j < j{i) for all j such that (ki,j),i) e 8(K). Thus, & is never in
the neighborhood (U{Bij(i):ieK}) X € of (x,y). Hence, & cannot converge
to (x,y) and we have thus completed the proof that X X Y is not semi-
erect. H
Under very restrictive hypotheses it is sometimes pqssible tc con-
clude that a product space is K—Fréchet. For example, if X and Y are
spaces in which every neighborhood system is a {K3}-filter, then X X Y is
clearly of the same type and is thus K-Fréchet. This result does not
extend to infinite producte except that it applies to countable products

when K = }%. This last reference is, of ccurse, to the well-known fact

that the countable product of first ceountable spaces is first countable,
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CHAPTER V

WELL-CRDERED SUBNETS

Suppose that the analogue of Theorem 2,5 for well-ordered nets
and well-ordered subnets could be proven., That is, suppose it weré
true that for each cluster point x eof any well-ordered net § there should
exist a well-ordered subnet of & converging to x. By Theorems 3.3 and
4.3 and the definition of a semi-erect space we would then have the
(false) result that every space is semi-erect. Thus, from one peint of
view, the failure of well-ordered nets to yield a satisfactory theofy of
convergence in general spaces is due to the fact that a well-ordered net
does not necessarily have well-ordered subnets converging to each of its
cluster points. In this chapter we shall investigate conditions uncder
which a well-ordered net & with a cluster point x will have a well-ordered
subnet converging to x.
Definition. If &:D — X is a net and D’ is a cofinal subset of D, then

3|D’ is called a cofinal restriction of 3.

The following theorem shows that we may restrict our attention to
cofinal restrictions when studyling well-ordered subnets of well-ordered
nets.

Theerem 5.1, If W is a well-ordered set and &:W — X has a well-ordered
subnet converging tc a point x ¢ X, then & has a.cofinal restriction con-
verging to x. |

Proof. By hypothesis there exists a well-ordered set W’ and a cofinal

function ¥:W’' — W such that &.¥ converges to x. Let us define vw -w
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by letting ¥'(w’) = min{¥(w"):w” = w’}. We now show that &Y' converges
to x. Let U be zny neighﬁofhood of x. Bince &Y converges to x, there
exists w' e W so that 3-Y(w”) € U for all w’ 2 w’'. 8ince ¥'(w") = ¥(w)
for some w 2 w”, then for each w” 2 w’ Q-Y'(w”) e U.

Let V= ¥'(W'). Now let U be a neighborhood of x. Choose w’ e
W' so that &-¥Y'(w’) ¢ U for a1l w” 2 w’'. Denote ¥'(w’) by v'. Now for

v’ ¢ V such that v’ = v’, there exists w” ¢ W' so that v’ = w’' and ¥'(w")

= v”., The fact that w” can be chosen to be greater than or equal to w’
follows from the monotonicity of ¥’, By the way in which w’ was chosen,
3(v") = & ¥’ (w’) e U. Hence, 8|V converges to x. Since Y is a cofinal
function, ¥’ is also a cofinal function and V is thus a cofinal subset
of W. “
The next theorem gives a sufficient condition for = {K}—net with
a cluster pcint x to have a cofinal restriction converging to x.
Theorem 5,2. Let K be a regular aleph, and suppose that {K} describes
the topolegy of X at x. Then every [K}-net in X having x as a cluster
point has a cofinal restriction converging to x.
Proof. Let & be a {K}-net in X clustering at x. For each k ¢ K, let
C, = {k'ex:x’'2 x}. Clearly, x is in the closure of @(Ck) for every k.
Supppse that for every k there exists Yy in é(Ck) such that x is in the
closure of {yk}. Then yk is an element of every neighborhood of x. Thus,
if K’ = {keK:x is in the closure of &(k)}, then K’ is a cofinal subset of
K and 8|X’ converges to x.
Suppose, on the other hand, that there exists some k in K so that

@(Ck) contains no element y such that x is in the closure of {y}. Since

x is in the closure of @(Ck) and since {K} describes the topology of X
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at x, there is a net ¥:K = @(Ck) converging to x. Clearly, x is in the
closure of ¥(K). Since ¥(K) & Q(Ck), ¥(X) contains no element y such
that x is in the closure of {y}. By Lemma 4.5, ¥(K) has cardinality K.
For each a ¢ ¥(K), choose y(a) ¢ K such that Y.y(a) = a. Clearly, y is
injective and, if W = v{¥(K)), W has cardinality K. W is thus a cofinal
subset of K. It is easily seen that Y‘W is injective and converges to x.
For each w e¢ W, choose f(w) in K so that ¥(f{w)) = ¥{w). Since
Y|W is injective, £ is injective. We wish to show that £:W - K is a co-
final function. For any k e K, {weW:f(w) < k} has cardinality less than
K since £ is injective and {k’eK:k’< k} has cardinality less than K.
Since W is cofinal in K and is therefore order-isomorphic to K, {weW:f(w)
< x} cannot be cofinal in W. Thus, there exists w’eW such that f£(w) 2 k
for all w = w’. So f is a cofinal function and ¥|W = &-f is a well-
ordered subnet of & converging to x. By Theorem 5.1, ¢ has a cefinal
restriction converging to =x. _ H

Corollary 5.3. Let K be a regular aleph and let X be a K-Fréchet space,

Suppose that & is a {K}-net in X. TFor each cluster point x of &, there
is a c¢cofinal restriction of & converging to x.
Proof, Since X is K-Fréchet, {K} describes the topology of X at each of
its points, I
Corollaries 4,10 and 5.3 yield the classical result that in a
Tirst countable space a point x is a cluster point of a sequence § only
if 3 has a subsequence converging to x.
It should be noted that the converses of Theorem 5.2 and Corollary
5.3 are trivially true, for if any net § has a cofinal restriction con-

verging te a point x  then x must be a cluster point of &,
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Theorem 5.2 and Corollary 5.3 are the main results of this
chapter. In Example S.4 we shall provide a counterexample to a possible
strengthening of the conclusion of Corollary 5.3. Example 5.5 is a

counterexample to a possible weakening of its hypotheses.

Example 5.4. It might reasonably be conjectured that in a "sufficiently

well-behaved" space every C-net (where C is the class of regular alephs)

would have a cofinal restriction converging to each of its cluster points.

Indeed it is easily seen that discrete spaces have this property. How=
ever, we shall now show that in as nicely behaved a space as the real
numbers R there is a C-net having a cluster point to which no cofinal
restriction converges,

Let W =.R; X Q. Well-order W by requiring that (nl,wl) < (ne,w2)

if (1) W, < W, or (2) Wy =W and n, < n,, It is rather easily seen

2 2 1 2

that W is order-isomorphic te () since W has cardinality greater than or
equal to (I whereas every initial segment of W is countable. Define

&:W = R by &((n,w)) =-%. % clearly clusters at 0. Suppose there is a
cofinal subset V of W such that @‘V canverges to 0, Clearly, for each
positive integer n there exists v e V such that &(v) < % for every v ¢
V such that v 2 vy Clearly, [Vn:n. a positive integer} must be cofinal
in V, for if there existed v e¢ V such that v, < v for every positive n
then §(v) would be less than;% for each positive integer n. But then
[vn:n a positive integer} is a countable cofinal subset of W. This,
however, is impossible since W is order-isomorphic to (). Hence, % has
no ¢ofinal restriction converging to 0. H

Example 5.5. We now show that there is no regular aleph K such that

every {K}-net, in any space whatsoever, has a cofinal restriction con-
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verging to each cluster point. This example is a generalization of one
appearing in Schubert [8], p. 65.

Let K be & regular aleph and let X = IP(K) with the Tychonoff
product topology where I is the closed unit interval and P(K) is the
power set of K. Since X is compact by the Tychonoff Product Theorem,
every {Kl-net in X has a cluster point. We shall complete this example
by producing a {K}-net in X which has no convergent cofinal restriction.
By Lemma 2.5, K is the unicn of two disjoint cofinal subsets, which we
shall label A and B. We define a net $:K — X as follows. Let k be any
element of K and let S be any member of P(K). If S is not cofinzl in K,
let the Sth coordinate of §(k) be 0., If S is cofinal in K, then there
18 an order isomorphism iS from K onte 5, Define the Sth coordinate of
8(k) to be 0 if k is not a member of S or if k ¢ iS(A) and to be 1 if
k e iS(B). Now let V be any cofinal subset of K. We shall show that
8|V cannot convergé to any point in X. Consider p-(&|V) where p is the
projection from X into its‘Vth coordinate space. _p-é(iv(A)) = {0} and
p-@(iv(B)) = {1}. Since iV(A) and iv(B) are cofinal subsets of V,
v.(3|V) is frequently at O and freguently at 1 and thus fails to con-
verge. Hence, @‘V fails to converge. ”

It has been mentioned previously that the theory of convergence
with nets ig equivalent te the theory of convergence with filters in the
sense that every true thecorem concerning nets can be translated into a
true theorem concerning filters. However, the statement of the ftrue
theorem concerning filters is sometimes different from what one might °
have expected at first thought. For example, because of Corollary 5.3

one might suspect that in a K-Fréchet space each {K}-filter has, corre-
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sponding to each cluster point, a {K}-refinement converging to that
cluster point. However, a-c;unterexample to this conjecture will be
given in Example 5.7, the last result of this chabter. The true theorem
concerning filters which corresponds to Corcllary 5.3 is that in a K-
Fréchet space each filter generated by a {K}-net has, corresponding to
each cluster point, a {K}-refinement converging to that cluster point.
(A filter F is said to be generated by a {K}-net & if {{8(x"):k'= k}:k
¢k} is a filter base for F.) The proof is easy and will not be given
here.

We shall utilize the following lemma in Example 5.7.
Lemma 5.6. Let K be a regular aleph. SupposSe that some pointix ¢ X
has the property that for every {K}-filter F in X, F clusters at x only
if F has a {K}-refinement converging to x. Then, if W is any well-
ordered set having final order K and if &:W = X is a net clustering at
X, & has a cofinal restriction converging to x.
E{ggﬁ. By Theorem 5.1 it is sufficient to show that & has a well-ordered
subnet converging to x. Let K’ be a cofinal subset of W order-iscmorphic
to K under the isomorphism i:X = K’. For each k ¢ K let Bk = {@(W):wew
and w =2 i(k)}. Now {Bk:keK} is clearly a base for a {K}-filter F cluster-
ing at x. By hypothesis, F has a {K]-refinement G converging to x. Let
C be a base for G such that there is a surjective order homomorphism
h:K = C. Since F € G, {Bkﬂ h(k):keK} is a base for G. In particular,
Bkﬂ h(k) is nonempty for each k e X, and for each neighborhood U of x
there exists a k' e X such that B, /N h(k’) @ U. We now define a function
¥:K = W by choosing, for each k ¢ K, ¥(k) to be an element of W such that

¥(k) =z i(k) and &(¥(k)) ¢ ka\h(k). This can be done because of the
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definition of Bk and the fact that Bkﬂ h{k) is nonempty. It is easily

seen that Y is a cofinal function. If U is a neighborhood of x there
exists, as noted above, a k' ¢ K such that Bk,ﬂ h(kx’) € U. Now for k =

k', 8(¥(k)) e Bkn h(k) gBk,-ﬂ h(k’) € U. Hence, 3:¥ converges to x and
thus ¥ determines a well-ordered subnet of ¢ converging to x. H
Example 5.7. We now produce an example of a K-Fréchet space in which there
is a {K}-filter F clustering at a point x though there is no {K}-refinement
of F converging to x. We shall proceed by showing that there is a well-
ordered set W of final crder X and a net §:W — X clustering at x such that
there is no cofinal restriction of & converging to x, The existence of F
will then follow from Lemma 5.6.

Consider the space X defined in Example L.1L. TLet W = K x K with
the well-ordering < defined by requiring that (i,j) < (i/,j") if (1) i <
i"or (2) i =41’ and J < j'. Let &:W — X be the inclusion map. It is
easily seen that ¢ clusters at x.

Let S be any cofinal subset of W. For each k ¢ K, choose k' as
follows:

(1) if ({k} x ¥) Q1 8 is empty, let k’ be any element of K, and

(2) if ({x} x X) N S is nonempty, choose k' so that (k,k’) e S.

Now let N = U{Bk k,:keK}. N is a neighborhood of x. But {(k,k’):keX} is
2

a cofinal subset of S not meeting N. Hence, §|S does not converge to x. ”
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CHAPTER VI
K-METRIC SPACES

The following definition is motivated by the fact that a uniform
space is pseudometrizable if and cnly if the uniformity is an {N%]-filter
in X x X, This is a conseguence of the well-known thecrem that a uniform
space 1is pseudometrizable if and only if its uniformity has a ccuntable
base,

Definition. Let K be a regular aleph. If X is a uniform space whose
uniformity is a {K}-filter in X x'X, then X will be called a K-pseudo-

metric space. If X is also Hausdorff, it will be called a K-metric space.

The first peortion of this chapter will be devoted to z characteri-
zation of K-Fréchet spaces in terms of K-metric spaces. This result
generalizes ArhangelékiY%5[3] characterization of Hausdorff N%-Fréchet
spaces 1in terms of metric spaces.

In the remainder of the chapter we shall prove & theorem general-
izing a number of facts concerning compactness and associated properties.
Part of the results relate to XK-pseudometric spaces.

Theorem 6.1. A K-pseudometric space is K-Fréchet.

Proof. Let X be a K-pseudometric space and let B be a base for its

uniformity such that there is a surjective order-homomorphism h:K - B.
Since {B[x]:BgE} forms a nelghborhood base for any point x, the neighbor-
hood system at each point in X is a {K}-filter. By Theorem 4.9, X is

K-Fréchet,




pseudo-open if for each y € Y and for any neighborhood U of £~

L3

Definition. A surjective continuous functicn £:X — ¥ is sald to be

1 .
(¥), v is

in the interior of £(U).

Theorem 6.2, If a space Y is the image of a K-Fréchet space X under a

pseudo-open map £, then ¥ is K-Fréchet.

Proof. ILet y be z point in ¥ and let A be a subset of Y such that y is

in the closure of A, We need only show that there is a X-net in A con-
verging to v.
. -1 -1 - -1 -
We first .show that f ~(y) meets [f “(A)] . If not, then X-[f ~(A&)]

l(y). Since f is pseudo-open, f(X—[f-l(A)]d) is a

is a neighbdrhood of f~
neighborhood of y. Since Ar¥f(x-[f“l(A)]_) is empty, this contradicts
the fact that y is in the closure of A.

Let x be some point in f_l(y)r][f-l(A)]-. Since X is K-Fréchet,
there is a {K}-net & in f_l(A) converging to x. f+& is a {K}-net in A

which, by the continuity of f, converges to £(x) = y. I

Corcllary 6.3, Every pseudo-cpen image of a K-metric space is K-Fréchet.

Proof. This follows from Theorem 6.1, \

We now prove the converse of Corollary 6.3.

Theorem 6.4. Every K-Fréchet space is a pseudo-open image of a K-metric

space.

Proof. Let X be a K-Fréchet space. Let S be the collection of all

ordered pairs (&,x) such that & iz a {K}-net in X, x is a point in X,

and & converges to x. Give 8 the discrete topology and let W =“Y X S.
with the Tychoneff product topology, where Y is the space Y defined in
Example 4,1k, Récali that ¥ = KU {y} where y is an object not in K. Now

we define a function f£:W = X by f(k,(&,x)) = &(k), for each k ¢ X, and
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£(y,(8,x)) = x. It is easily seen that f is surjective. We shall show
that f is a pseudo-open map and that W 1s a K-metric space.

For each k ¢ K and (8,x) ¢ 8, {(k,(8,x))} is an open set in W and,
hence, f must be continuous at (k,(®,x)). We need now to show that f is
continuous at any point of the form (y,(&,x)). Now f(y,(%,x)) = x. Let
N be any neighborhood of x in X, Since § converges to x, there exists a
k ¢ K such that §(k’) ¢ ¥ for all ¥’ > k. Recall from Example 4,14 that

€. is a neighborhood of ¥ in ¥ where C, = {k’'eK:k’ > k}U{y3}. so

k k
C, % {(8,x)} is a neighborhood of (y,(&,x)) in W. From the definition of
f it is clear that f(Ck x {(8,x)})SN. Hence, f is continuous at (y,(&,x)).
Now we wish to show that f is pseudo-open. Buppose not. Then for
some point x ¢ X and some neighborhood U of f_l(x) in W, x is not an
interior point of f£(U). Hence, x is in the closure of .| X-f(U). Since X
is K-Fréchet, there is a {K}-net & in ,X-f(ﬁ) converging to x. Thus, (&,x)
e S. So (y,(3,x)) ¢ f_l(x) = U, Since U is an open set and since every

neighborhood of y in ¥ contains C,_ for some k ¢ K, we have (y,(&,x)) ¢

k
C, X {(8,x)] €U. Choose any k' > k., Clearly ¥(k’) = £(k’,(&,x)) e £(U).
Thus, & could not have been in X-f£(U).  Hence, f must be pseudo-open.

Now we show that W is K-metric by exhibiting a uniformity for W
which has a {K}-filter as a base and which induces the topology of W. Let
A be the diagorel in W X W. For ecach k ¢ K, let B, = AU {(ck x {(8,x)1)
X (Ck x 1(8,2)}):(&,x) e8}). Since Bkr\Bk; = B, 4 where k" = max{k,k’},
{Bk:keK} is a base for a {K}-filter in W x W. Since A SB,; Bl-:l = B, and
Bk o} Bk = Bk for each kX ¢ K, the {K}-filter is a uniformity for W. It re-
mains te show that the uniformity induces the topology of W. For that, it

is sufficlent to show that the neighborhood system at each point of W is
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exactly the nelghborhood system induced by the uniformity. First we con-
sider a point of the form (k,(%,x)) where k ¢ K. WNow {(k,(&,x))} is a base
for its neighborhcod system in W. A base for the ﬁeighborhood system in-
duced by the uniformity is {Bk,[(k,(@,x))]:k’eK}. Ir k' > k, Bk,[(k,(§,x))]
= {(k,(8,x))}. Thus, {(k,(8,x))} is also a base for the neighborhood system
induced by the uniformity. Now we consider a point of the form (y,(%,x)).
A base for its neighborhood system in W is {Ck X {(@,x)}:keK}. Since
Bk[(y,(é,x))] = Cp X {(8,x)}, this is exactly the neighborhood system in-
duced by the uniformity. Since W is clearly Hausdeorff, it is then K-
metric. H
We thus have the following characterizaticn of K-Fréchet spaces.

Corollary 6.5. A space is K-Frechet if and only if it is a pseudc-open

image of a K-metric space.
Proof. Combine Corollary 6.3 and Theorem 6.4, H

Arhangeléki¥s result [3] was thatra Hausdorff space isl{O-Fréchet
if and only if it is a pseudo-open image of a metric space. Franklin (5]
gives a proof. We have adopted here some of Franklin's methodology.

It is interesting to note that what we have done up to now in this
chapter could have been done for all directed sets rather than just the
regular alephs. More specifically, suppose that D is any directed set
and we define a space X to be E-Fréchet if D describes the topology of X
at each of its points. BSuppose further that we define a Hausgdorff unifprm
space to be E-metric if and only if the uniformity is a [D}—filter. We
could then prove by the methods ef this chapter that a space is D-Fréchet
if and only if it is a pseudo-open image of a D-metric space. In the

paragraph preceding Theorem 4.2 we have already noted that every topological
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space is D-Fréchet for some directed set D.
The following theorem and its ccorollary are our final results,
They generalize a number of propositions related to compactness. We shall

first need a few definiticns.

Definitions. Let K be a regular aleph. A space X will be said to be K-

Lindelof if every open cover of X has a subcover of cardinality < K. X
will be said to belg*-compact if every cpen cover of X has a subcover cof
cérdinality < K.

Note that an ”h;-Lindelﬁf” space is what islusually called a
"Lindeldsf" space, Similarly, "3;*-compact” simply means '"compact." The
star in "K*—pompact” is used to differentiate our term from Kowalsky's [7]
"kecompact"which denotes the property that every open cover of cardinality

< k has a finite subcover.

Definition, Let K be any cardinal number, If X is a space, then x ¢ X

is said to be a K-accumulation point of A € X if the cardinality of Ut A
is greater than or equal to K whenever U is a neighborhood of x.

Theorem 6.6. Let K be a regular aleph. Then, if X is a space, the state-
ments below have the following relationsﬁips: For all spaces {a) is equi-

valent to (b),and (d) implies (a). If X is K-Fréchet then (a), (b), and

(c) are all equivalent. If X also is K-Lindeldf then all four conditions

are equivalent. If X is a K-pseudometri¢ space then each of the four con-

ditions implies that X is K-Lindeldf and all four are equivalent.
(a) Every subset of X of cardinality = K has a K-accumulation pocint.
(b) Bvery {K}-net in X has a cluster point.
{c) For each K-net in X there is a cofinal restriction converging

to a poinE of X.
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*
(d) The space X is K -compact.

Proof. We first show that for all spaces (a) implies (b) for any space X.

Let & be a {K}-net in X. If there is a point x € §(K) such that Q_l(xo)
has cardinality K, then é-l(xo) is a cofinal subset of K and thus & clus-
ters at X On the other hand, suppose that for each x ¢ ¥ the cardinality
of é-l(x) is less than K. Then, for each x e &(K), Q-l(x) fails to be
cofinal in K and we can choose an element f(x) e K such that k < f(x) for
each k e @-l(x). So we have a function £:8(K) — K. Clearly, f{3(K)) is

a cofinal subset of K and is thus of cardinality K, and hence &(K)} is of
cardinality K. By (2), &(K) thus has a K-accumulation point y. Let U be

a neighborhocd of y. Let k ¢ K be given. Now UM &(K) must have cardinal-
ity 2 X since y is a K-accumulation point of &(K). It follows that &(k’)

e U for some k¥’ 2 k and hence § is frequently in U. Thus, & clusters at y.

Now we show that (b) implies (a) for any space X. ILet A be a sub-
set of X of cardinality 2 K. Let &:K — A be any injective function. By
(b), & has a cluster point x ¢ X. Let U be any neighborhocd of x. Since
$ clusters at x, @ﬁl(U) mugt be cofinal in K and hence must have cardinal-
ity XK. Since & is injective @(@”l(U)) must have cardinality K. But
é(@'l(U)) =3(K)N U € AN U. Hence, A N U has cardinality = K. Thus,
% 18 a K-accumulation point of A.

To show that (d) implies (a), it is sufficient tc show that {(4)
implies (b) since (a) and (b) are equivalent. Let § be a {K}-net in X,
Suppose that & has ﬁo clustef point. Then, for each k e K, let Ck be the
closure of {&(k’'):k’ 2 k}. Since & has no cluster point,(\{ck:keK] is
empty. Hence, {X-C :keK} is an open cover of X. By (d)}, there is a sub-

k
set A € K of cardinality less than K such that X = U{X-Ck:keA} =
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X-ﬂ{Ck:keA}. This implies that n{Ck:keA} is empty. It is easily seen
that- A must then be a cofinal subset of K. But this contradicts the fact
that K is a regular aleph while A has cardinality less than K. Hence, @
must have a cluster point.

We can easily see that (b) and (c¢) are equivalent if X is K-
Fréchet, for (c) implies (bj in any space and Corollary 5.3 shows that
(b} implies (¢) if X is K-Fréchet.

Now we show that all four conditions are equivalent if X is K-
Lindel8f as well as K-Fréchet. From the preceding we know that the first
three are eguivalent and that (d) implies (a). Hence, it will be suffi-
cient to show that (b) implies (d). Let U be any open ccver of X. Since
X is K-Lindel&f, U has a subcover V of cardinality < K. If V has cardinal-
ity < K, we are through. If V has cardinality K, we can appeal to (b) and
Temma 3.1 to get the result that V has a subcover W of cardinality less
than K. Thus, X must be K*—compact.

Finally, we show that if X is K-pseudometric each of the four con-
ditions implies that X is K-Lindel®f. It will then follow from the pre-
ceding paragraph and the fact that K-pseudometric spaces are K-Fréchet
that all four conditions will be equivalent. We shall actually show that
each of the four conditions implies that X has a basgsis for its topology
of cardinality < K. We will then show that this latter property implies
that X is K-LindelSf.

Suppose that X satisfies (a). This is equivalent tc assuming that
X satisfies (b) or {c), since K-pseudometric spaces are K-Fréchet and in
K-Fréchet spaces (a), (b), and (¢) are equivalent. Since X is K-pseudo-

metric there is a base B for its uniformity such that there exists a sur-
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Jective order homomorphism $:K — B. B can clearly be chosen so that each
of its elements is symmetric. Noﬁ, for each k, we can choose a symmetric

member V, of the uniformity of X so that Vi o VKEE (k). By Zorn's Lemma

it is easily shown that there exists a maximal subset Ak of X such that

€ @(k)[al] then a; = a,. Now let x e X be

15 85 € Vk[X] where a,, a, € A . Then (al,x), (x,ae) €

o] G =
V. 8o (al,ae) e v OV < (k). Thus, a, e Q(k)[al], and hence a, = a,.

So Vk[x] is a neighborhood of x which meets at most one point in Ak. Since

whenever a 8. € Ak, and a

1’ "2 2

given, ©Suppose a

2

X was arbitrary, Ak has no K-accumulation points. Thus, by (a), Ak has
cardinality less than K. Hence, A = U[Ak:keK] has cardinality <= K. By

the meximality of A , &(k)[x] meets A, for each k ¢ K and x ¢ X. Hence,

k
A is dense in X. Now let C = {#(k){aJ:keK and aeA}. C clearly has car-
dinality < K. We shall show that C is a basis for the topology of X. Let
U be an open set containing a given poirt x. There is a k ¢ K so that
3(k)[x] SU. Choose k' ¢ X so that &(k’) S7V,. Now there exists a point
a ¢ A so that a ¢ 8(k’)[x], since A is dense in X. If y e &(k’)[a], then
(a,y) e 8(kx’) and thus (x,y) ¢ &(k’) © &(x’) SV, °V € (k). Soy e
§(k)[x]) € U. Hence, x ¢ 3(k’)[a] € U. Since &(k’)[a] ¢ C, we have that
€ is a basis for the topology of X.

Suppose now that X satisfies (d). We showed earlier that (d) im-
plies (a). By the previous paragraph, X has a basis of cardinality < K,

All that remains i8 te show that X is K-lindelSf if X has a basis
for its topology of cardinality < K. Let B be such a basis. Let U be an
cpen ceover of ¥. For each x ¢ X, we can find Ux € U and Bx e B so that

xeB SU . Let C = {Bx:xeX}. For each B e C, choose U, ¢ U so that

B

B U Let V = {UB:qu}. It is easily verified that V is a subcover of

B
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U of cardinality < K. Hence, X is K-LindelSf. I
The space Y defined in Example 4.14 is an example of & K-Fréchet

(in fact, K-pseudometric) space which is K*-compact. K*-compactneés is,

in a sense, the "best" compactness property that a non-trivial Tl K-Fréchet

space can satisfy. More specifically, if K and Kl are regular alephs with
«
K, <K, and if X is a K-Fréchet space which is K-

discrete. To prove this, we note that if X is not discrete then there is

compact, then X must be

a point x o that x is in the closure of X-{x}. By Lemma 4.5 and the fact
that X is Tl’ we have that X-{x} has cardinality = K. Thus, there exists
an injective function §:K; — X. By Theorem 6.6(b), & must have a cluster
point y. Clearly y must be in the closure of @(Kl)-{y}. But Lemma 4.5
implies that Q(Kl)—{y] must have cardinality = K. This is the desired
contradiction. Hence, X must have been discrete. In particular, if X >
h% and X is a Tl compact K-Fréchet space, then X must be a finite discrete
space. |

We close with a corollary to Theorem 6.6.

Corollary 6.7. Theorem 6.6 holds if "is K-Fréchet" is replaced by "has

a tK}-filter as its neighborhood system at each point” and "is K-Lindeldf"
is replaced by "has a basis for its topology of cardinality =< K."

Proof. If X has a {K}-filter as its neighborhood system at each point,
then X is K-Fréchet by Theorem 4.9 and thus (a), (b), and (c) are all equi-
valent, If X also has a basis for its topology of cardinality < K, then,
‘as shown in the last paragraph of the proof of Theorem 6.6, X is K-LindelSf
and hence all four conditions {(a),(b),(c), and (d)} are equivalent. We
showed in the proof to Theorem 6.6 that if X is a K-pseudometric space,

each of the four conditions implies that X has a basis for its teopology of
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cardinality € K; it follows from the preceding sentence that all four con-
ditions are then equivalent. I
Ncte that in the special case K = h% Corollary .7 becomes Theorem

5 on page 138 of Kelley [6].
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