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This paper presents the establishment of a closed form expression for the dynamic 
forces as explicit functions of cutting parameters and tool/workpiece geometry in 
milling processes. Based on the existing local cutting force model, the generation 
of total cutting forces is formulated as the angular domain convolution of three 
cutting process component functions, namely the elementary cutting function, the 
chip width density function, and the tooth sequence function. The elemental cutting 
force function is related to the chip formation process in an elemental cutting area 
and it is characterized by the chip thickness variation, and radial cutting configu
ration. The chip width density function defines the chip width per unit cutter rotation 
along a cutter flute within the range of axial depth of cut_ The tooth sequence 
function represents the spacing between flutes as well as their cutting sequence as 
the cutter rotates. The analysis of cutting forces is extended into the Fourier domain 
by taking the frequency multiplication of the transforms of the three component 
functions. Fourier series coefficients of the cutting forces are shown to be explicit 
algebraic functions of various tool parameters and cutting conditions. Numerical 
simulation results are presented in the frequency domain to illustrate the effects of 
various process parameters. A series of end milling experiments are performed and 
their results discussed to validate the analytical model. 

1 Introduction 
The fundamental understanding of the cutting force systems 

plays an important part in the monitoring, planning, and con
trol of machining processes as well as in its traditional role in 
machine tool structure and servomechanisms design. Research 
in the kinematics of the milling process dates back to the work 
of Martellotti (1941, 1945). The basic cutter-chip thickness 
relationship takes the form of: 

tc(O) = tx sin (0) (1) 

which is shown in Fig. 1. In this expression, the tooth trajectory 
of a milling cutter was assumed to be circular instead of tro
choidal, therefore the equation is not an exact solution for the 
chip thickness. However, it is a good approximation when the 
feed per tooth is much less than the cutter diameter, and it 
has been widely used for the analysis of the milling process. 

An empirical tangential cutting force equation for unit chip 
width is often written in an exponemial form (Koenigsbergr, 
Sabberwal, 1961, 1962): 

fr(O) = Ctc(O)p+l 

= k( (O)tx sin 0, with k(O) = C(tx sin oy (2) 

A simplified model has been proposed by Sabberwal and 
Koenigsberger (1961) and used by many researchers (Kline et 
ai., 1983; Fu et ai., 1984; Tlusty and MacNeil, 1975; Subramani 
et ai., 1987; Fussel and Srinivasan, 1989; Atantnis and Spence, 
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1991) to relate the tangential cutting force to the chip thickness 
for a unit chip width by the following form: 

fr= c(ic)Ptx sin O=K(tx sin 0 with K(= C(tc)P (3) 

where K(, the tangential cutting pressure constant, is related 
to the average chip thickness Ie and is often referred to as the 
average cutting pressure constant. Constants C, Cn p, and 
therefore K( are functions of tool edge geometry, the helical 
and rake angles, and tool/workpiece material properties. C( 
and pin Eq. (3) are usually evaluated using the average cutting 
forces from experiments with various average chip thickness 
values. 

Based on the local cutting force model, total cutting force 
models for the milling process have been derived by incor
porating the considerations of cutter geometry, axial and radial 
depth of cut. Among these works were the establishment of 

feed!tooth: t x 

Fig. 1 Geometrical relationship between undeformed chip thickness 
(t.,), feed per tooth (tx) and culling forces (1,(6), f,{6» 
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closed form expressions for the total tangential cutting force 
on a single flute as a function of the cutter angular position 
(Koenigs berger and Sabberwal, 1961; Tlusty and MacNeil, 
1975). Based on the single flute model, Koenigsberger and 
Sabberwal investigated the tangential cutting force pUlsation 
during the multi-flute milling process and developed quanti
tative force relationships for slab and face millings within a 
certain range of cutting conditions. These relationships were 
evaluated and nomograms developed to show the magnitude 
of the average force and the ratio of maximum to average 
forces for different dimensions and positions of the cutter 
relative to the workpiece. Kato et al. (l981a, 1981b) experi
mentally investigated the relationships between cutting force 
variations and cutting conditions for plain milling operation 
with a single-toothed helical cutter and proposed a criterion 
for selecting the optimum cutting conditions to minimize the 
cutting force variation for a multi-toothed helical cutter. 

In addition to Eq. (3), Tlusty and MacNeil (1975) related 
the radial cutting force to the tangential cutting force by a 
constant coefficient K,: 

Jr=Kcft (4) 

and examined the cutting force variation in end milling. It was 
experimentally observed that the cutting force responding to 
a sudden feedrate change can often be characterized by a time 
delay, which may give rise to instability in adaptive control. 
More recently, Yucesan et al. (1990) described elemental cut
ting force components in directions normal and parallel to the 
tool face. The three-dimensional total cutting forces were mod
eled in closed form using three process parameters: the normal 
pressure coefficient, friction coefficient, and the chip flow 
angle. Like K, in Eq. (3), these parameters were assumed to 
be constants relating to the average chip thickness and average 
forces. 

These cutting force models in the literature were based on 
the integration of local cutting forces with respect to the cutter 

angular position and different expressions were needed to eval
uate forces at different angular conditions. Therefore ~he in
tegration solutions were segmented into different formulations 
with different integration boundary points. Most of the in
tegration expressions of the cutting force system applied to 
one cutter flute only. For a multi-flute cutter, care has to be 
taken to determine which flutes are engaged in the cutting and 
which appropriate integration form is to be used. Gygax con
ducted a detailed analysis (1979) and a series of experiments 
(1980) on the dynamics of single-tooth face milling under var
ious cutting parameters. It was indicated that the extension 
from single-tooth to multi-tooth face milling could be achieved 
by convolution integration in the time domain. This is the first 
appearance of convolution modelling concept in the literature. 
However, no cutting force modelling technique was presented 
and more complicated milling situations were not treated. 

With the abundance of computing resources in recent years, 
numerical integration has become a popular approach to 
modelling cutting forces. Kline, DeVor, and Lindberg (1982) 
developed mechanistic discrete models for end milling in which 
cutter is treated as an aggregation of discretized thin disk 
cutters along the cutter axis. At any angular position, chip 
load of each disk cutter can be computed as the product of 
chip thickness and disk thickness. Radial cutting constant K, 
of Eq. (4) was treated like K, of (3) as a function of average 
chip thickness te with 

(5) 

The effect of cutter runout is taken into consideration in form
ing revised chip thickness and average chip thickness expres
sions (Kline and DeVor, 1983). The associated cutting forces 
for the chip load of each disk can then be found from Eqs. 
(3) and (4). Summation of forces from all disks yields the total 
cutting forces. Sutherland and DeVor (1986) improved on the 
previous model by taking into account the effects of system 
deflection on the chip load. Following from Kline's model, 

Nomenclature---------------------------------------------------------------

(3, r, h 

cutter helical angle 
Fourier coefficients at normalized fre
quency k of the total nominal x and y com
ponents cutting force, fx, fy( cjJ) 
angular, radius, and axial position variables 
for cutting point in the cutter cylindrical 
coordinate system 

{3a = angular range of axial immersion of each 
flute within axial depth of cut 

C 

Cr 
C, 

cwd({3) 
cWde((3) 

D 
da, d, 

cjJ 
fr, Jr(O) 

fx, fy(cjJ) 

Jx, Jy(O) 

Jxlo !Vl (0) 

7)a, 7)", 1/, 
K"K, 

angular spacing between adjacent flutes, 
21r/N 
workpiece recess 
radial cutting coefficient 
tangential cutting coefficient 
chip width density function of a cutter flute 
chip width density function of the cutter 
cutter diameter 
axial and radial depth of cut 
cutter angular displacement 
tangential and radial local cutting forces 
per unit chip width 
X and Y components of the total cutting 
force 
X and Y components of the local cutting 
force per unit chip width with constant K, 
and K, 
X and Y components of the local cutting 
force per unit chip width with variable k, 
and k, 
(3al{3p, clD and drlD 
average tangential cutting pressure constant 
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k" kr 

N 

p, 
p,(O) 

Px(O),Py(O) 

o 

Orr 

te 
ts( cjJ) 

w(O) 

X, Y 

and ratio of radial to tangential cutting 
force 
variable tangential cutting pressure coeffi
cient and ratio of radial to tangential cut
ting force 
number of cutter flutes 
tangential cutting force power law constant 
X and Y components of the normalized 
tangential cutting force 
radial cutting force power law constant 
tangential elementary cutting function 
elementary cutting functions in the X and 
Y directions 
cutting point angular position in the work 
entry and exit angles determined from ra
dial configuration 
radial cutting range from radial configura
tion 
cutter radius 
uncut chip thickness 
average chip thickness 
tooth sequence function 
feed per tooth 
frequency normalized with respect to the 
spindle frequency 
cutting window function for the radial cut
ting configuration 
the feed and normal directions in the work 
coordinate system 

Note: Function variables in upper case letter are the Four
ier transforms of the functions in lower case variable. 
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Fu, DeVor, and Kapoor (1984) developed a cutting force model 
for face milling which included the effects of spindle tilt and 
cutter mnout. Alternatives to treat the elemental cutting forces 
differently were reponed in the works of Zhou and Wang 
(1983), Ber et al. (1988), and Armarego and Deshpande (1989, 
1991). Numerical integrations were commonly used in these 
formulations to compute the total milling forces. 

Closed form frequency domain models provide alternative 
approaches to the study of effects of various cutting parameters 
on the different components of the total cutting forces. Based 
on the local cutting force model of Eqs. (3)-(5), this paper 
presents the work of establishing a closed form frequency 
domain expression for the cutting forces in milling as an explicit 
function of cutting parameters and tool/workpiece geometry 
through angular convolution modelling. The angular domain 
analysis is discussed in Section 2 and the frequency domain 
formulation in Section 3. Section 4 validates the analytical 
model based on experimental results and discusses the effect 
of using average cutting constants on the dynamic cutting force 
components. 

2 Convolution Modelling of Multi-Tooth Milling 
Forces 

In the following analysis the cutting force system at any 
instance of cutting is considered as the angular domain con
volution of the cutting forces on any elemental point on the 
cutter, the width of chip produced during unit angular rotation 
of the cutter, and a periodic impulse train representing the 
sequence of tooth engagement. The derivation of these com
ponents, namely the elementary cutting function, the chip width 
density function, and the tooth sequency function, is discussed 
in detail in this section. Attention will be directed to the cases 
of ideal cutting with rigid cutter and workpiece in which cutting 
speed and feedrate are both constant while cutter mnout and 
tilt do not exist, although deviations from ideal cases can be 
treated as well. 

2.1 Elementary Cutting Functions. The analysis begins 
with considering an elemental cutting point on any flute of a 
multi-tooth cutter. As the cutter rotates, the point experiences 
a pattern of cutting forces as a function of the cutter angular 
position 0 with respect to the workpiece. These force functions 
are described in Eqs. (3) and (4), which caIibe expressed in X 
and Y coordinates as follows: 

Q~~O = [~f:: ~~~: 0] ~~~~) (6) 

where Ix and ly represent the feed and normal forces, respec
tively. The elementary cutting functions in the X and Y di
rections, Px and Py, are defined as the normalized forces with 
respect to the maximum tangential cutting force Kttx• That is 

(0) =lx(O) 
Px Kt 

t .< 

(0) =!v(O) 
Py Kttx 

(7) 

Px and Py thus are dimensionless functions of cutting point 
position in the work and can also be interpreted as the cutting 
forces acting on an elemental cutting area of unit chip width 
with unit feed per tooth per unit specific cutting pressure (Kt ). 

From Eqs. (3)-(7), it can be shown that 

(;;~~~) = [ _~, ~,] ~~m) (8) 

where 

(0)=sin20 I-cos 20 
PI 2' P2(0)= 2 (9) 
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Notice that the cutting force expressions in (6) are applicable 
only over an angular range determined by the radial cutting 
configuration. This range of angular position is the difference 
between the cutter entry angle and the cutter exit angle as 
shown in Fig. 1. In the figure it can be seen that 

01,= cos- I(1- 2 * 7)c) 

(10) 

where 

dr C 
7),=- and 7)c=-

D D 
(11) 

A window function w(O) can be defined as 

w(O) = [1, 01,SO~02' (12) 
0, otherwIse 

With the definition of a window function, expression (9) can 
be rewritten in more precise terms as: 

sin 20 I-cos 20 
PI (0) =-2- w(8), P2(0) = 2 w(8) (13) 

These elementary cutting functions, Px and PY' are the same 
for all cutting points anywhere on the cutter since they are 
defined with respect to a unit cutting area. The contributions 
of different cutting points on a flute to the total cutting forces 
differ only in the cutter angular displacement in which they 
engage in the cutting. Since cutting points on a flute engage 
in cutting in a predetermined sequence as dictated by the cutter 
geometry, these points produce orderly shifted functions of 
the same elemental cutting forces. The superposition of these 
shifted force functions sums to the total cutting forces for a 
single flute. Thus, we can treat the elemental cutting process 
as a linear shift-invariant system and think of the force func
tions generated at an elemental cutter point, namely px and 
PY' as the cutting impulse response functions of the local cutting 
process in the X and Y directions. The system impulse response 
function has the cutter rotation displacement q, as its inde
pendent variable and represents the cutting force generated by 
a cutting point starting at q, = O. Assuming the cutting point 
is located at 0 = 0 when the cutter starts to rotate, the cutting 
point position in the work 8 will be the same as the cutter 
rotation variable cpo Therefore, with a change of variable from 
o to q" Eq. (8) represents the system impulse response function 
of the local cutting process. The choice of cutting point position 
at cp = 0 can be arbitrary as long as it is consistently used for 
other process functions. Choosing a different starting position 
will only cause a phase shift in the impulse response functions 
and the final total cutting forces. 

One characteristic of a linear shift invariant system is that 
the system output can be obtained through convolution of its 
input function with the system impulse response, and more 
importantly, the frequency transform of the system output is 
the product of transforms of the input and system impulse 
response functions. These two properties of the linear shift 
invariant system form the basis of the model establishment 
and analysis of the milling force dynamics presented in this 
chapter. 

2.2 Chip Width Density Function. The elementary cut
ting functions are defined with respect to a unit width of cut 
while the chip width density function, cwd (cp), discussed herein 
is concerned with the chip width produced by a flute during 
unit angular rotation of the cutter; therefore the chip width 
density function can be used to weigh each elemental force 
within the range of axial depth of cut. The cwd function for 
an arbitrary flute is defined with cutter rotation variable cp 
starting at 0 with the leading edge of that flute at {3 = 0 
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a. 

b. C. 

cwd 

L dhlL -1L 
a : Ian 11 

Pa fJ fJa rp 

Fig. 2 Relationship between axial depth of cut and chip width density 
function 

positioned at e = 0, Fig. 2(a). It is therefore the chip width 
density observed at e = ° as the cutter rotates. The chip width 
density function is determined from 

dh 
cwd({3) = d{3 (14) 

where h is the axial position function for the chosen flute. 
Figure 2 (b) shows the function h({3) for a cutter flute with a 
constant helix angle ex. Since the position variable (3 observed 
at e = ° is essentially the same as cutter rotation variable cP, 
the chip width density function can be written as 

[~ OScPs{3a 
cwd( cP) = tan ex (15) 

0, otherwise 

where 

(3 
da tan ex 

a R 

is the angular range of axial engagement. Equation (15) is a 
rectangular pulse function as shown in Fig. 2(c). The mag
nitude of this function is a constant dictated by the cutter 
geometry and the width of the rectangular pulse is determined 
by the axial depth of cut and the cutter geometry. 

The chip width density function derived above is applicable 
to any flute on the cutter. As the milling cutter rotates, each 
flute will contribute to the total cutting force system through 
the same chip width density function except that the function 
is shifted by an angle equivalent to the spacing between flutes. 
Therefore, the chip width density function can again be treated 
as the impulse response of a linear shift-invariant process, 
which is termed the chip width generating process. 

2.3 Tooth Sequence Function. For a cutter with ev~nly 
spaced flutes, the tooth sequence function can be detemuned 
from . 
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Fig. 3 The tooth sequence function 
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Fig. 4 Angular convolution model of total cutting force in X direction 

a> 

ts(cP) = ~ o(cP- (k-l){3p) (16) 
k=-a> 

where {3p is the angular spacing between neighboring flutes. 
The function shown in Fig. 3 is essentially a train of unit 
impulses separated by (3p and represents the rotation of the 
cutter and the successive engagement of each flute. The impulse 
for the kth flute is located at cP = (k- 1){3p, which indicates 
the cutter rotation displacement when the leading edge of the 
kth flute passes through the point at e = o. 

2.4 Total Cutting Forces. The total cutting forces are the 
angular domain convolution of the tooth sequence function, 
the chip width density function, and the elementary cutting 
functions. Denoting convolution operation by "*", total cut
ting forces are expressed as: 

(k(r!») =Ktxts(r!» *cwd(cP) * (px(r!») fy(r!» t Py(r!» 

= Ktt}<P i:cWd[(r!>-T) - (k-l)/Jp] (Px( T») dT 
JOk=l Py(T) 

(17) 

This is a unifie~ expression .for the milling force system in 
the angular domam. A graphical representation of the con
voluti?n I?roce,ss ~d its resulting X component of the cutting 
force IS given III Fig. 4. 

3 Frequency Domain Model 

From the prope~ of convolution theorem, the frequency 
spectra of total cutting forces are the product of the frequency 
spectra of three pr~ component functions. Therefore, the 
frequency characteristIcs of cutting forces can be studied by 
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TS 

:-I 2:-1 3N c.J 

Fig. 5 Spectrum plot of tooth sequence function, TS(w) 

. -,~. ----,---- "!~-----:---

Norl"l'lchZea frecuency 

Fig. 6 Frequency spectra of chip width density function CWD(w) for 
various cutter geometries 

examining the three model functions in the Fourier domain. 
In the following discussion, the transforms of these functions 
from the angular domain to the spectral domain is performed 
while the frequency variables are normalized with respect to 
the spindle rotation frequency. In other words a normalized 
frequency of w in the following analysis is equivalent to w times 
the spindle frequency. 

3.1 Fourier Transform of Tooth Sequence Function. The 
Fourier transform of the tooth sequence function can be shown 
from Eq. (16): 

ex> 

TS(w) =N 2: o(w-Nk) (18) 
k=-ex> 

Since (s(O) is a periodic impulse sequence function in the an
gular domain, its Fourier transform is also a periodic discrete 
impulse function with a period of N as shown in Fig. 5. This 
implies that the cutting forces have non-zero frequency content 
only at the harmonics of the tooth passing frequency, Nk, in 
addition' to their DC components. 

3.2 Transform of Chip Width Density Function. The 
Fourier transform of chip width density function can be derived 
as: 

. w 
sm--7r OJ 

CWD(w) =~ NITfa e -j N/~a" (19) 
tan Ct w 

where 

(3a Nda tan Ct 

Tfa= {3p 27rR 

is the ratio of axial engagement angle to the tooth angular 
spacing angle. The magnitude of Fourier transform assumes 
the form of a sinc function, and is contained within an envelope 
which is inversely proportional to w. Figure 6 (a, b, c) illustrates 
the effects of cutter geometry on the frequency spectrum of 
chip width density function. The effect of helical angle in 
reducing the cutting dynamics is clearly demonstrated in Fig. 
6 (b). It can be shown from Eq. (19) and is evident from these 
figures that the DC content of the spectrum is equal to the 
axial depth of cut. In addition, the spectrum has periodic zeros 
located at frequencies in multiples of 21rI{3a or NIT/a. Variations 
in cutter radius and helical angle will change Tfa and hence 
zeroes of the spectrum. When Tfa is an integer, frequencies at 
w = kN are zeroes of the spectrum, and from Eq. (18) only 
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Fig. 7 Frequency spectra of elementary cutting functions, P1(w) and 
Prlw), for various radial cutting geometries 

signal contents at these frequencies are non-zero; therefore, 
the cutting forces will have only DC components. 

3.3 Fourier' Transforms of Elementary Cutting Func
tions. The Fourier transforms ofpx<,O) and py(6) in Eq. (8) 
are 

(px(W») = [ 1 KrJ (PI (W)) 
Py(w) -Kr 1 P2 (w) 

(20) 

PI (w) and Pz(w) are the Fourier transforms of PI and P2 in 
Eq. (13) and can be shown to be 

PI(W)=2(4~W2) [(e-MlrUw sin 261r +2 cos 261r) 

-e-M2r Uw sin 202r +2 cos 202r)] (21) 

P2 (w) 
j2w 

2(4~W2) [e-jwlllrUw cos 20 1r -2 sin 201r) 

-e-jwll2rUw cos 202r -2 sin 202r)] (22) 

The frequency spectrum of the elementary cutting functions 
are shown in Fig. 7 for three values of dr under various radial 
cutting configurations. For each d" spectra for four different 
cutting configurations are obtained. It is seen in the figures 
that the position of the workpiece relative to the cutter has 
significant effects on the dynamics of the cutting force system, 
especially when the radial depth of cut is small. The position 
and width of the window function w(O), defined by the entry 
and exit angles, subtly affects the spectra of these two ele
mentary cutting functions. It can be shown [hat if the cutting 
window is located such that the elemental force has a symmetric 
shape, its spectrum will have clearly defined peaks and valleys 
and a high DC content similar to the frequency response of a 
low pass filter. On the other hand, if the elemental force has 
an anti-symmetric shape, its spectrum will have a low DC 
component and higher dynamic content similar to a high pass 
filter response. These statements are evidenced by the spectra 
shown in Fig. 7. 

3.4 Fourier Transforms of the Total Cutting Forces. From 
the convolution representation of the total cutting forces in 
Eq. (17), the Fourier transforms of the total cutting forces are 
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Fig. 8 Frequency spectra of total cutting forces F~w) = K,t, TS(w) 
CWD(w)P~w). Circles represent the areas of spectral impulses. Assumed 
cutting conditions are: cutter dia. = 7/16 in., helical angie = 30 deg., 
N = 4, d, = 0.04 in., K, = 0.5, down cut 

the product of the transforms of the elementary cutting func
tion, the chip width density function, the tooth sequence func
tion, and the constant Krt. •. That is, 

(~;~:~) =KrtxTS(w)CWD(w) (~;~:~) 

=KrtxNk~ooO(W-Nk)CWD(W) [ _~, ~r] (~~~:O 
(23) 

The total cutting force in the angular domain can be ex
pressed in a more useful form using Fourier integral formula: 

(
lx(tjJ») =..!...roo (Ex(W»)r!"""dW 
fy(tjJ) 27l"Loo Fy(w) 

= NKrtx r i: o(w-Nk)CWED(w) 
27l" -OOk=':'oo 

where 

(
AxfNkl) = NKrtx CWD(Nk) [ 1 Kr] (PI (Nk») (25) 
Ay[Nkl 27l" -Kr 1 P2(Nk) 

are the coefficients of the Fourier series expansion of fx and 
f y , and are expressed explicitly a~ the alge~raic functions. of 
cutting parameters. Once the Founer coefficIents of the cuttmg 
forces are available, the angular domain force profile c~ be 
computed very efficiently using standard inverse FFT routme. 

Figure 8 illustrates the generation of frequency spectra for 
the total cutting forces from the three process components 
funceons. The total cutting forces have non-zero components 
at W = Nk as a result of TS(w) in Eq. (18); spectra magnitude 
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Fig. 9 (a) average tangential and (b) average radial cutting constants 
vs. average chip thickness, to 

at these frequencies is modulated by values of PI' P2, and 
CWD at respective frequencies. Scaled total cutting force fre
quency spectra are calculated based on Eq. (23) and shown as 
circles in the figure for three cutting cases each with different 
axial depth of cut. The last case in Figure 8 (c) was calculated 
with a cutter engagement angle f3a being equivalent to tooth 
pitch angle f3p , i,e., 71a = 1. In this particular case a constant 
cutting force without any dynamic frequency component re
sults as expected. The average cutting forces at W = 0 are 
shown to be proportional to the axial depth of cut. 

4 Experimental Verification and Discussions 
A series of end milling experiments were conducted to eval

uate the validity of the analytical frequency domain model. 
Cutting was performed with 7075-T6 aluminum on a vertical 
milling machine. The cutting force data from a Kistler dy
namometer were digitized at every degree of cutter rotation. 
Ten cycles of data are collected and transformed into the fre
quency domain using standard FFT software. For each cutting 
configuration, average cutting pressure constants Kr and K of 
the process were obtained from the average X and Y fo;ces 
of the experimental cutting force data. It can be shown from 
Eq. (25) that 

( 
Kr ) _ [PI (0) P2(O) ] -I (ArlOl) 27l" 

KrKr - P2(0) -PI (0) Ay[Ol Nt:r!Ia (26) 

in which A.JO] and Ay[O] are the measured average forces and 
PI(O) ~d Pl(O) are from Eqs. (21, 22) with w = O. 

Cutting ~ests were taken with various radial and axial cutting 
con~guratIons. Average cutting pressure constants from these 
~ttmg tests are related to the average chip thickness and shown 
m Figs. 9(a) and 9(b). Clearly, a definite relationship can be 
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Table 1 Culling conditions and comparisons of cutting force dynamic 
components from experimental and theoretical results. Material: 7075-
T6 aluminum: cutter geometry: N = 4, D = 5/8 in., (15.875 mm), flute 
length: 1.75 in. (44.45 mm), helical angle: 30 deg.; cutting speed: 135 
rpm, no coolant, sampling rate: 360 per rev 

:No.1 Cuning Conditions I Me ... Avg. 1M'.: Cunine Consi. X force Dynamic Fourier Coefr. Y force Dynamic Fourier Coeff. 

I 
I Type '1. I, I r, I A,[OJ A,[OJ 

I 

K, 'I K, 
A,[4J I A,[4H A,[81 A,[8J A,[4~ I A,[4H A,[8q A,[8J '1, P.: of (dID) (M~ (10" (10" (Nl 2 (N/mm Mag. Phase Mag. Phase Mag. Phase Mag. Phase 

cui' (Nl sq.) (N) (Deg.) (Nl (Deg.) (Nl (Deg.) (Nl (Deg.) 

I 51 
) 0.2 0.4 64.31 27.7 -129.47 22\.361 ) I 1.688.7 0.46 60.25 226.33 0.64 323.76 97.49 69.03 6.53 222.1 

2i 1.570.02 0.54 64.09 230.45 2.84 312.n 118.35 78.78 14.76 194.79 

6i ) 0.2 0.6 
64.31 27.71-189.42 312.56 )' 1.615.82 0.44 60.6 195.76 2.3 73.92 95.94 39.85 12.11 315.07 

I 2 1.570.02 0.54 62.46 195.22 2.81 64.73 111.62 43.02 13.97 302.96 
I 

i "/ 
I 0.3 I 172.31 89.21-84 1.13 1.328.8 il1.1I3.97 0.26 11.07 271.77 1.09 128.38 7.36 169.94 2.33 184.56 

! 9 I 
21 1.127.9 0.35 0 0 0 0 

IS I 0.6 0.5 35.7 24.2 6.88 504.43 I 1.675.97 0.5 69.84 239.52 2.63 343.56 44.71 204.4 2.55 197.64 

2 1.631.88 0.57 78.24 246.29 0.01 187.38 72.46 198.01 0.01 172.29 

19 0 0.05 0.6 64.3 14.3 108.6 -36.51 I 1.761.22 0.72 44.6 201.91 12.53 207.28 14.7 65.24 5.04 52.66 

2 1.895 0.69 50.15 181.91 11.76 180.76 16.7 10.77 3.76 20.09 

221 
0 0.1 0.37 172.3 53.6 231.88 -2.65 111.198.82 0.47 148.56 301.39 29.07 231.18 24.7 221.07 11.33 179.19 

2 1.303.01 0.43 151.26 193.52 32.38 16.47 14.57 107.34 7.26 312.69 

16 I I 0.43 64.3 40.9 377.84 810.97 I 1.376.29 0.47 37.05 191.98 4.56 8.08 48.48 40.11 5.94 355.54 

2 1.406.27 0.47 0 0 0 0 

18 2 0.6 0.43 64.3 43.5 244.89 557.52 I 1.322.85 0.44 116.26 355.29 13.09 93.99 ! 06.93 273.85 18.43 46.7 

2 1.381.92 0.46 118.11 348.12 8 68.66 124.67 261.5 13.83 17.45 

NOle I: 0.1 and 2 for uP. down and symmetric cuL NOle 2: M.: me3Sured. P.: predicted. 

expressed using exponential equations like (3) and (5) for K t 

and Kr • Two straight lines shown in Fig. 9 are fitted on the 
log-log plot for Kt and Kr of this cutter Iwork combination and 
can be expressed as 

K t = 569. 14(lc) -0.283 N/mm2 (27) 

Kr = 0.1468(lc) -0.364 (28) 

where tc can be expressed as 
- 2'1/r 
tc=-

err 
(29) 

The average chip thickness in the presence of cutter axial offset 
needs to be modified according to Kline et al. (1983) and Wang 
(1992). Since the offset is small in these cutting tests, it is found 
that its effect on the average chip thickness is insignificant. 
The magnitude of these cutting constants are within the range 
reported by Kline et al. (1983) and Altintas and Spence (1991). 

Table 1 summarizes the cutting conditions and experimental 
and analytical results for eight cases of the cutting tests. The 
predicted Kt and Kr from Eqs. (27, 28) are compared with 
experimental results. The model-predicted dynamic Fourier 
series coefficients were calculated by substituting the experi
mental Kt and Kr into Eq. (25). Since the spindle frequency is 
2.25 Hz, the normalized frequencies of w = 4, 8 and 12 in 
Axlwl and Ay[wl correspond to 9, 18 and 27 Hz in the exper
imental data. The Fourier series coefficients of the measure
ment data and those from the analytical model are compared 
at the first harmonic, the second harmonic, and the third 
harmonic of the tooth passing frequency (9 Hz) and are shown 
in Fig. 10. The experimental data are shown in solid line with 
the average forces marked withx. The predicted dynamic Four
ier coefficients are given by o. It is shown that the results from 
experiments agree well in magnitude and phase with that from 
the analytical model. 

For '1/a = 1 in case (3), cutting forces do not have dynamics 
components as predicted in Fig. 8(c). Consequently, the dy
namic components for '1/a = 0.4 and (1-0.4) in cases (1, 2) 
should have the same magnitude given that other cutting con
ditions are the same, and their average force are proportional 
to the axial depth of cut as the experiment results show. Dy
namic components also vanish in the full cut configuration 
with '1/r = 1 for a four-flute cutter as in case (7); this can be 
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proven by showing the PI(w) and P 2(w) and PAw) and p.V<w) 
in Eqs. (20-22) have zeroes at w = ±4, ±6, ±8 ... with 11r 
= 1. Since the constant cutting constants in the model is an 
approximation, the experimental data still show a small mag
nitude of cutting forces in their dynamic components; for the 
case with '1/a = 1, the reason for zero dynamic components is 
in the chip width density function of the cutter, which is geo
metrical in nature and is not an approximation. Therefore the 
prediction of zero dynamic component from the model with 
'1/a = 1 tends to be more accurate. 

Among all cutting configurations, the worst percentage error 
in the dynamic components occur when very small average 
cutting forces are encountered. Small average X force exists 
in down cut at around '1/r = 0.1 while small average Y force 
occurs in up cut at around '1/r = 0.6; the exact value of 11r at 
which zero average cutting forces exist depends on the value 
of Kr and indirectly on the feed per tooth (Wang, 1992). Cases 
(4) and (6) have such two cutting conditions and the large 
percentage error in the prediction of dynamic components are 
observed in Fig. lO(a) for case (4) and Fig. 10(b) for case 
(6). However, the magnitude of these differences is very small 
and can be considered insignificant compared to the cutting 
force in the other direction. Close. comparisons are obtained 
from symmetric cut configurations for all range of '1/" Figure 
10 (b) for case (8) shows the results from one of the symmetric 
cutting tests. 

Notice that spectrum peaks occur at spindle frequency and 
at frequencies which are one spindle frequency above and 
below the harmonics frequencies as a result of cutter runout. 
Kline et al. (1983) have reported the effect of cutter runout 
on the shifting of cutting force from tooth passing frequency 
to spindle frequency. The detailed analysis of cutter runout 
effect has been summarized in Wang (1992). 

The accuracy of the model in predicting dynamic compo
nents is shown to be well supported by the experimental data. 
The validity of cutting force models in predicting average cut
ting forces using expressions such as Eqs. (27) and (28) for 
other cutting configurations has been reported by other re
searchers (Kline et aI., 1982; Fussel, Srinivasan, 1989; Yusesan 
et aI., 1990). However, the effect of using such constant Kt 
and Kr on the dynamic components of the cutting forces has 
not been analyzed. 
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Fig. 10(a) Frequency spectra of measured and predicted forces (given 
by 0) for cases (1-4) in Table 1. x indicates the average forces. 

If the cutting pressure constants are obtained strictly from 
the average forces, it should then be expected that errors exist 
in using these constant process parameters to predict the Four
ier coefficients of the dynamic components of cutting forces. 
It is therefore necessary to investigate to what extent such an 
approximation will affect the accuracy of the model. Following 
from Eqs. (2), (3), (27) and (28), the true variable cutting 
pressure coefficients for the local cutting forces take the ex
ponential forms of: 

kt =569.14(tc)-0.283 N/mm2 (30) 

kr=0.1468(tc) -0.364 (31) 

Note the lower cases k t and kr are used to represent the non
constant values of cutting pressure coefficients. The true or 
ideal local cutting forces are expressed as 

(/XI (0») = kt(O)t<[ 1 kr(O)] (PI (0») (32) 
I y l (8) . -kr(O) 1 P2(0) 

If Kt and Kr are truly constant, the total cutting forces cal
culated from the integration of Eq. (32) should be identical to 
those obtained based on Eqs. (17) and (26). In this study, the 
difference between cutting forces evaluated on these two dif
ferent bases have been examined in appraising the constant Kt 

and Kr assumption. For each case in Table 1, the average 
cutting pressure constants are calculated from the following 
equation: 

( 
Kt) [PI(O) PiO) ] -1 (FXI (0») .!. (33) 

KtKr = P2(O) -PI(O) Fyi (0) tx 

where Fxl(O) and Fyl(O) are the DC components of Fourier 
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Fig. 10(b) Frequency spectra of measured and predicted forces (given 
by 0) for cases (5-8). x indicates the average forces. 

transforms of IdO) and IYl (0) and can be obtained from nu
merical integration. Equation (30) is similar to Eq. (26) except 
that only local cutting forces are considered here. The same 
K, and Kr should be obtained if total cutting forces for a certain 
cutter geometry and axial depth of cut are simulated and Eq. 
(26) is used to calculate K, and Kr • The approximated local 
cutting forces are then expressed as 

~~~~) = Kttx [ -~r ~rJ (;~~~~) (34) 

Two of the simulation results are shown for cases (1) and (6) 
in Fig. 11 (a, b). Solid lines are for the ideal cutting forces in 
part (i) and their frequency spectra in part (ii) of these figures. 
The interpretation of these frequency spectra is similar to that 
for the spectrum plots of 1'.. and Py in Fig. 8. The spectra of 
total forces will be located at Nk and modulated by the spec
trum of chip width density function. The spectra of these two 
cutting cases in Fig. 11 match very well with their respective 
spectra in Fig. 10. This indicates that the error observed in 
Fig. 10 can be largely attributed to the use of constant K, and 
Kr in the analytical model. Additional simulation results with 
various radial cutting configurations show that the differences 
in the magnitude and phases of force spectra are small and 
these differences also reflect the discrepancies shown id Fig. 
10. These r~sults .suggest that the use of constant cutting pres
sure co.efficlents IS reaso~ably adequate in capture the overall 
dynanncs of the local cuttmg forces and the total cutting forces. 

5 Summary 

In this work, the total cutting forces in milling processes 
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Fig. 11(b) Local cutting forces with constant (solid line) and variable 
cutting coefficients for cutting case (6) 

have been derived as the angular convolution of three com
ponent functions, namely the elementary cutting function, the 
chip width density function, and the tooth sequence function. 
A closed form expression in the frequency domain for the 
cutting forces was thus derived as explicit functions of cutting 
conditions and tool/workpiece geometry. The analysis of the 
total cutting forces was performed by deriving and discussing 
the frequency transforms of the three component functions. 
Each process component is characterized with a unique fre
quency spectrum which can be related to specific cutting pa
rameters. The tooth sequence function specifies the frequencies 
w = 0, ±Nk, at which force components exist. The chip width 
density function has a DC component value of da and its 
spectrum is a sinc function with zeroes located at multiples of 
N/7]a. Fourier series coefficients of the cutting forces were 
shown to be algebraic functions of various tool parameters 
and cutting conditions. 
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A series of end milling experiments along with numerical 
simulation were performed to validate the analytical model. 
The Fourier series coefficients of the measured forces agrees 
well with the predictions from the model. In addition, the close 
agreement between cutting forces calculated based on K/ and 
Kr from the average forces and based on variable k/ and kr 
suggests that constant K/ and Kr assumption presented limited 
infidelity in the modeling of dynamic cutting force compo
nents. 
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