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SUMMARY

Millions of people around the world generate large-scale temporal behavior data

from various domains, such as social platforms, economic systems, healthcare systems,

and online service websites. This user generated data provides great opportunities

and challenges to efficiently study the huge volumes of data, and design mathematical

modeling frameworks to properly analyze the complex behavior of users, and to apply

the resulting insights in the real world. In our work, we propose a systematic paradigm

for designing machine learning models and algorithms to improve the understanding of

users’ temporal behaviors. With this novel framework, we contribute in the following

three aspects:

Expressive machine learning models. We first propose a non-parametric

point process model to capture the various user behavior patterns in service plat-

forms and social networks. We develop a robust learning algorithms, despite the

non-convexity of the learning problem, we are able to obtain theoretical guaran-

tees on the generalization error. We then propose a co-evolutionary latent feature

processes model to capture the evolving features of users and items in online service

platforms. We propose an efficient non-negative matrix rank minimization algorithm,

which elegantly inherits the advantages from both proximal methods and conditional

gradient methods to solve the matrix rank minimization problem under non-negative

constraints. We also build the link between recurrent neural network and the point

processes to learn a nonlinear embedding of users and items latent features. Fi-

nally, we are the first to establish a previously unexplored connection between point

processes and stochastic differential equations, which opens the gate to bring the

techniques in stochastic optimal control theory to guiding users’ temporal behaviors.

Scalable predictive algorithms. In addition to designing models to study the

microscopic pattern of users’ behaviors, we develop scalable predictive algorithms for

xvii



macroscopic and collective user activity levels, e.g., expected total number of active

users during a period) by exploiting these models. We develop a unified framework for

predicting user activity levels in point processes. We derive a differential-difference

equation to compute a conditional probability mass function for point processes,

which is applicable to general point processes and prediction tasks. Our framework

provides an unbiased estimator of the probability mass function of point processes

and significantly reduces the required sample size compared with the Monte Carlo

method.

Efficient optimal control algorithms. Besides understanding and predicting

users’ temporal behaviors, it is also important to design “closed loop” systems that

can incorporate users’ feedback adaptively and help users make better strategic de-

cisions. However, existing works are “open loop”: they design policies before the

behavior process unfolds and do not consider users’ feedback. We develop an efficient

framework to incorporate users’ feedback when designing optimal policies. Specif-

ically, we extend the classic control theories, such as Hamilton Jacobian Bellman

equation to point processes. We also propose a novel intensity optimal control prob-

lem, and further design a novel measure-theoretic framework to compute the optimal

policies.

Keywords: Point processes, Hawkes processes, Survival analysis, Low-rank mod-

els, Mass transport, Fokker Planck equation, Stochastic optimal control, Reinforce-

ment learning, Social network analysis, Information diffusion, Recommendation sys-

tems
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CHAPTER 1

INTRODUCTION

Internet is transforming our lives: now people are relying increasingly on Internet

to communicate with their friends, participate in discussions, place advertisements,

make purchases, and stay in touch with the world. Millions of people around the

world generate large-scale temporal behavior data from various domains, such as

social platforms, economic systems, healthcare systems, and online service websites.

As life becomes increasingly digital — behaviors, opinions, interactions, and decisions

are represented as bits, sets, events, and time series — the key challenge to tackle is:

How to make these digital platforms more useful and engaging for online

users and the entire society?

To tackle this challenge, not only computational techniques are required to effi-

ciently study the huge volumes of data, but mathematical modeling frameworks are

necessary to properly analyze the complex behavior of users, and to apply the result-

ing insights in the real world. Despite their importance, rigorous principles to distill

knowledge from these behavior data is still lacking.

For a long time, epoch based methods have been applied to analyze their be-

haviors. Users’ temporal behaviors are asynchronous, interdependent, and contain

high-dimensional information about location, time, and text. However, these models

discretize time into equally spaced intervals, ignore the asynchronous nature of users’

behaviors, and are not able to answer fine-grained time-sensitive queries. Hence it

is urgent to develop new and realistic representations to model users’ behaviors in

a principled way. To fulfill this need, I design machine learning models and

algorithms to improve the understanding of users’ temporal behaviors.

My research strives to understand why users behaves in a particular way and pro-
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vide better insights in decision making. I take a bottom-up approach which starts

by considering the mechanism driving the stochastic behavior of each user to later

produce macroscopic patterns. There are three fundamental problems in understand-

ing users’ behaviors. First, to understand “what is the pattern of a user’s temporal

behavior?”, I design expressive point process models for users’ behaviors [1, 2, 3, 4,

5]. Second, to understand “what will users do by when and where?”, I develop scal-

able predictive algorithms to infer users’ future behaviors by exploiting the learned

models [6, 7]. Finally, to understand “what is the optimal policy for a user when mak-

ing decisions?”, I develop new reinforcement learning algorithms to help users make

optimal decisions [8, 9]. In what follows, I will describe several challenging research

problems and how my research develops rigorous principles for these research topics.

1.1 Research Problems

We investigate the following fundamental research problems.

Non-parametric learning of point processes. Hawkes processes are powerful

tools for modeling the mutual-excitation phenomena commonly observed in event

data from a variety of domains, such as social networks, quantitative finance, and

healthcare records. The intensity function of a Hawkes process is typically assumed to

be linear in the sum of triggering kernels, rendering it inadequate to capture nonlinear

effects present in real-world data. For example, after purchasing a new album, users

may be initially highly engaged, and play the album over and over again. However,

the engagement will saturate at some point as they become bored of the same album.

Such plateau pattern may not be captured by a simple linear relation. In another

scenario, a recent hospital visit may trigger more future visits due to the progression

of a disease into a more severe stage. Such cumulative influence from recent events

may grow faster than a linear model can explain. Hence, the first question that we

aim at addressing is:
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Can we design an expressive point process model which can capture various users’

temporal behaviors?

To address this problem, in Chapter 2 we propose a novel point process — the

Isotonic-Hawkes Process, whose intensity function is modulated by an additional non-

linear link function. We also developed a novel iterative algorithm which learns both

the nonlinear link function and other parameters provably. We showed that Isotonic-

Hawkes processes can fit a variety of nonlinear patterns which cannot be captured by

conventional Hawkes processes, and achieve superior empirical performance in real

world applications.

Time sensitive recommendation and continuous-time evolving graphs.

Matching users to the right items at the right time is a fundamental task in recom-

mendation systems. As users interact with different items over time, users’ and items’

feature may evolve and co-evolve over time. Traditional models based on static la-

tent features or discretizing time into epochs can become ineffective for capturing the

fine-grained temporal dynamics in the user-item interactions. Both users’ interests

and items’ semantic features are dynamic and can evolve over time [10, 11]. The in-

teractions between users and service items play a critical role in driving the evolution

of user interests and item features. Based on the user-item interaction data, we are

interested in the following question:

Can we design an efficient framework that recommends the most desirable item to

a user at the right time? Can we predict when a user would return to the existing

service in the future?

In Chapter 3, we propose a coevolutionary latent feature process model that ac-

curately captures the coevolving nature of users’ and items’ feature. In Chapter 4, we

further extend our framework with recurrent neural networks, and develop a generic

embedding framework for continuous-time evolving graphs.

Scalable prediction for macroscopic activity levels. In addition to designing
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models to study the microscopic pattern of users’ behaviors, I develop scalable predic-

tive algorithms for macroscopic and collective user activity levels (e.g. expected total

number of active users during a period) by exploiting these models. A framework for

doing this is critically important. For example, for online merchants such as Amazon,

an accurate estimate of the number of future purchases of a product helps optimizing

future advertisement placements. However, existing approaches either use expensive

Monte Carlo simulations requiring a large number of samples, or neglect part of the

stochasticity of the stochastic processes, leading to severely biased estimators. Hence

a central question is:

Can we design an efficient predictive algorithm that can estimate the probability

mass function of general point processes?

In Chapter 5, we propose a framework that provides an efficient unbiased estimator

for point processes. In particular, we design a key reformulation of the prediction

problem, and further derive a differential-difference equation to compute a conditional

probability mass function.

Optimal policies for guiding systems driven by point processes. We have

developed point process models for learning and predicting users’ temporal behaviors.

However, these works focus on the “open loop” setting where learned models are used

for predictive tasks. Typically, we are interested in the “closed loop” setting where a

policy needs to be learned to incorporate user feedbacks and guide user activities to

desirable states. Although point processes have good predictive performance, it is not

clear how to use them for the challenging closed loop activity guiding task. Hence, a

key question is:

Can we design efficient policy to control the drift part of the system that is driven

by point processes, such that the system is steered to a target state?

In Chapter 6, we propose a generic framework to reformulate point processes into

stochastic differential equations (SDEs), which allows us to extend methods from
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stochastic optimal control to address the activity guiding problem. We also design

an efficient algorithm that controls the drift part of the SDE system, and show that

our method guides user activities to desired states more effectively than the state of

the art.

Optimal policies for guiding point processes. Besides guiding users’ be-

haviors by influencing drift part of the behavior system, we are also interested in

controlling these point processes to influence user behaviors. A framework for doing

this is critically important. For example, government agents may want to effectively

suppress the spread of terrorist propaganda, which is important for understanding the

vulnerabilities of social networks and increasing their resilience to rumor and false in-

formation; to gain more attention, a broadcaster on Twitter may want to design a

smart tweeting strategy such that his posts always remain on top of his followers’

feeds. Hence a we propose a novel question:

Can we design efficient policy to control the intensity of point processes, such that

the stochastic system driven by the point process is steered to a target state?

In Chapter 7, we exploit the key insight to view this intensity stochastic optimal

control problem from the perspective of finding the optimal measure and variational

inference. We further propose a convex optimization framework and an efficient

algorithm to update the policy adaptively to the current system state.

1.2 Contributions and Organization

To solve these research problems, throughout this dissertation, we mainly take the

following three aspects into consideration:

Expressive models and efficient learning algorithms. We propose simple

probabilistic models with rigorous mathematical specifications, and accurate model-

ing of event data in social platforms. We also develop efficient learning algorithms for

fitting the proposed models to large scale datasets. In Chapter 2, we first propose a
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non-parametric point process model to capture the various user behavior patterns in

service platforms and social networks. We develop a robust learning algorithms, de-

spite the non-convexity of the learning problem, we are able to obtain theoretical guar-

antees on the generalization error. In Chapter 3, we then propose a co-evolutionary

latent feature processes model to capture the evolving features of users and items in

online service platforms. We propose an efficient non-negative matrix rank minimiza-

tion algorithm, which elegantly inherits the advantages from both proximal methods

and conditional gradient methods to solve the matrix rank minimization problem un-

der non-negative constraints. In Chapter 4, we also build the link between recurrent

neural network and the point processes to learn a nonlinear embedding of users latent

features in continuous-time evolving graphs.

Scalable predictive algorithms. Using the models that explain the data, we

design scalable new inference algorithms to make future predictions of users’s macro-

scopic activity levels. In Chapter 5, we develop a unified framework for predicting

user activity levels in point processes. We derive a differential-difference equation to

compute a conditional probability mass function for point processes. It is applicable

to general point processes and prediction tasks. Our framework provides an unbiased

estimator of the probability mass function of point processes and significantly reduces

the sample size compared with the Monte Carlo method.

Efficient optimal control algorithms. We are the first to establish a previously

unexplored connection between point processes and stochastic differential equations

(SDEs), which significantly generalizes existing models, and opens the gate to bring

the techniques in stochastic optimal control theory to guiding users’ temporal behav-

iors. We develop an efficient framework to incorporate users’ feedback when designing

optimal policies to control the SDE system. We study two aspects of the control prob-

lem. In Chapter 6, we study the problem of controlling the drift part of the behavior

system, and extend the classic theories such as Hamilton Jacobian Bellman equation
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to point processes. In Chapter 7, we propose a novel intensity optimal control prob-

lem that directly controls the jump part of the system, and further design a novel

measure-theoretic algorithm to compute the optimal policies.

1.3 Literature Survey

Time series models. Sequence data modeling is a classic topic in machine learning

and data mining. Many time series models, such as Markov chain [12], Hidden Markov

Models [13], Kalman Filters [14], Vector Auto Regressive models [15], are widely

used to study sequential event data. However, one major limit of these models is

that the time is discretized into equally spaced epochs. Since the system evolves in

a synchronized step-by-step way, these models are not expressive enough to capture

the asynchronous characteristics of users’ temporal behaviors. Another limitation is

that the epoch length, as a hyper-parameter, is typically difficult to tune. Moreover,

we need to aggregate many samples in one epoch and deal with the case when there

is no data point in one epoch. The Semi-Markov model [16] seeks to solve this

issue by explicitly modeling the transition time between two states as continuous

exponential random variables. However, such strong model assumption has limited

the applicability of these models. Finally, most of the existing time series models

consider low dimensional data, which are not applicable to model users’ temporal

behaviors that involve high dimensional features and complex interdependencies.

Epoch based behavior modeling. In the area of social network analysis, [17]

studied the problem of predicting links between users using structural properties

of the networks. [18] further used the rich contextual features in the networks to

solve a binary classification problem. The limitation in these works is that the link

prediction is independent among users and the global information of interdependency

among users are not considered. Recently, there is a growing interest in studying the

dynamic interaction among users. [19] studied the relational evens in the longitudinal
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social networks, [20] proposed to model the group dynamics in networks, [21, 22]

studied the macroscopic online user activities using tensor methods. [23] proposed

generative methods to study information cascades. However, most of these models

still reply on the epoch assumption and treat time as discrete indices. Recently, [24]

proposed continuous time Markov processes to model friendship dynamics. However,

the restricted assumption of these models limit their ability to capture the influence

of historical events as well as users’ interactions.

Point processes. Point processes treat time as a random variable and have

been widely applied in modeling users’ temporal behaviors in different applications,

such as criminal analysis [25, 26, 27], information diffusion [28, 29], vision perception

modeling [30], recommender systems [5], and social networks [31, 32, 33, 34]. How-

ever, these works typically do not model the interdependency among users and can

only be applied to small dimensions. To solve these issues, we aim at developing a

generic point process based framework that is applicable to model the asynchronous,

interdependent, and high dimensional event data.

1.4 Background on Point Processes

A temporal point process is a random process whose realization consists of a list of

discrete events localized in time, {ti} with ti ∈ R and i ∈ Z. Let the history Ht− be

the list of event time {t1, t2, · · · , tn} up to but not including time t. The lengths of the

time intervals between neighboring successive events are referred to as the inter-event

times. Given the history of past events, we can explicitly specify the conditional

density function that the next event will happen at time t as f(t) := f(t|Ht−). Then

the joint density of observing the sequence of events is

f({ti}ni=1) =
n∏
i=1

f(ti)
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A temporal point process can be equivalent represented as a counting process, N(t),

which records the number of events before time t. Then in a small time window dt

between [0, t), the number of observed event is

dN(t) =
∑

ti∈Ht−

δ(t− ti)dt

and hence N(t) =
∫ t

0
dN(s). It is often assumed that only one event can happen in a

small window of size dt, and hence dN(t) ∈ {0, 1}.

An important way to characterize temporal point processes is visa the conditional

intensity function – the stochastic model for the next event time given all previous

events. Within a small window [t, t+ dt), λ(t)dt is the probability for the occurrence

of new event given the history Ht− :

λ(t)dt = P[event in [t, t+ dt)|Ht− ]

Intuitively, this intensity function denotes the hazard rate that an event can happen

at time t.

Given a sequence of events Ht− = {t1, . . . , tn}, for any t > tn, we characterize the

conditional probability (survival function) that no event happens during [tn, t) as

S(t|Ht−) = exp

(
−
∫ t

tn

λ(τ) dτ

)

We can also characterize the conditional density f(t|T ) that an event occurs at time

t as

f(t|Ht−) = λ(t)S(t|Ht−)

The function forms of λ(t) are often designed to capture the phenomena fo interests.

Next, we discuss several classic models
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• Poisson processes. It is the simplest point process model, whose intensity func-

tion is a constant, i.e., λ(t) = µ. Hence the generation of future event does not

depend on the historical events. This assumption is too strong and the Poisson

process model is not able to capture the influence of historical evnets.

• Hawkes processes. This model captures the mutual excitation phenomena be-

tween events, and its intensity function is defined as

λ(t) = λ0 + α
∑

ti∈Ht−
κ(t− ti) (1.1)

where λ0 captures the long-term incentive to generate events. κ(t) > 0 models

temporal dependencies, and α > 0 quantifies how the influence from each past

event evolves over time, making the intensity function depend on the history

Ht− . This model has been applied successfully in modeling criminal retalia-

tions [26], online users behaviors [35, 4, 5], and opinion dynamics [9]. In the

Hawkes process, past events affect the occurrence of future events, which makes

it particularly useful for modeling clustered event patterns. However, the linear

link function of the intensity function may be insufficient to model many real

world scenarios.
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CHAPTER 2

NON-PARAMETRIC LEARNING OF POINT PROCESS MODELS

2.1 Introduction

Temporal point processes are powerful tools for modeling the complex dynamics of

events occurrences. In particular, Hawkes processes [36] are well-suited to capture the

phenomenon of mutual excitation between the occurrence of events, and have been

applied successfully in modeling criminal retaliations [26], online users behaviors [35,

4, 5], and opinion dynamics [9].

A Hawkes process is characterized by a linear intensity function, i.e., λ(t) = w ·xt

where xt denotes time-dependent features and w is the weight. The intensity function

parametrizes the likelihood of observing an event in the time window [t, t+ dt) given

that it has not occurred before t. Such linearity may be insufficient to model many real

world scenarios. For example, after purchasing a new album, users may be initially

highly engaged, and play the album over and over again. However, the engagement

will saturate at some point as they become bored of the same album. Such plateau

pattern may not be captured by a simple linear relation. In another scenario, a recent

hospital visit may trigger more future visits due to the progression of a disease into

a more severe stage. Such cumulative influence from recent events may grow faster

than a linear model can explain.

Nonlinear Hawkes process [37] has been introduced to provide more flexibility in

explaining the real-world phenomena. It applies a fixed nonlinear link function g

to the linear combination, i.e., λ(t) = g(w · xt). For computational considerations,

g(·) is often assumed to be in some simple parametric forms, such as exp(u) and

max(0, u) [38, 39]. Although these models are more flexible, they are still restricted
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to a few nonlinear patterns with a fixed parametrization, which may not be correct

for real world data. Ideally, both g(·) and w should be learned from data. Unfortu-

nately, such desideratum leads to a non-convex optimization problem, where efficient

algorithms with provable guarantees do not exist.

To address these challenges, we propose a novel model, referred to as the Isotonic-

Hawkes process, where both g(·) and w can be directly learned from data. Rather

than committing to a fixed parametric form, we instead use a non-parametric, mono-

tonic nonlinear link function. Therefore, it is extremely flexible to capture different

temporal dynamics without the need to select a fixed form in advance.

To solve the non-convex learning problem with guarantees, we propose a differ-

ent loss function than the typical log-likelihood for point processes. Moreover, by

exploiting the problem structure, we are still able to provide theoretical guarantees

on the computational and statistical performance. Our work makes the following

contributions:

• We propose a novel method for nonlinear Hawkes process that can learn both the

link function and other parameters directly from data.

• Although the learning involves a non-convex problem, our algorithm can provably

recover the true link function and the model parameters. This also requires a novel

analysis for non i.i.d. observations.

• Our method achieves superior empirical performance, significantly outperforming

alternatives on both synthetic and real-world datasets.

Related work. Prior work on nonlinear Hawkes process focuses on theoretical

properties [37, 40, 39]. The link function is usually given, and the discretization of

time is needed in order to evaluate the integral of the intensity function. Hence, effi-

cient algorithms are available only for specific link functions [41, 42, 38]. In contrast,

our method is the first algorithm that can learn both the link function and the model

parameters non-parametrically.
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Our work is also closely related to Isotonic regression and Single Index Model

(SIM). The Isotonic regression [43, 44, 45] is a well studied technique to fit an arbitrary

monotonic 1-D function. SIM generalizes the linear regression and estimates both the

nonlinear link function and the feature weights. However, earlier work are usually

heuristics, which are not guaranteed to converge to a global optimum [46, 47, 48, 49].

Only recently algorithms have been proposed with global convergence guarantees [50,

51, 52].

Unlike SIM, which only focuses on regression, our work is concerned with learning

a temporal point process where the response variable is not directly observed. At

the same time, the observations are non i.i.d. , a setting significantly different from

previous works. The added complexity of temporal point processes requires us to

develop a new efficient algorithm and its analysis.

2.2 Isotonic Hawkes Processes

We propose a new family of nonlinear Hawkes processes: Isotonic-Hawkes processes.

We present the moment matching learning framework for the non-convex problem. To

facilitate learning, we optimize the representation of the objective function by showing

that the intensity integral in the objective function can be exactly computed. Then

we present the overall algorithm, which applies an alternating minimization scheme

to update the link function g and weights parameters w.

2.2.1 Model Formulation

In Isotonic-Hawkes processes, we model its intensity as the composition of a mono-

tonic, non-parametric link function and a linear Hawkes intensity.

Definition 1. A Isotonic-Hawkes process is a counting process N(t), with associated
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history Ht = {ti|ti < t}, such that the intensity function λ(t) can be written as:

λ(t) = g

(
λ0 + α

∑
ti∈Ht

κ(t− ti)

)
= g(w · xt) (2.1)

where κ(t) : R+ → R+ is a continuous monotonic decreasing triggering kernel cap-

turing the influence of the history Ht, λ0 > 0 is a baseline intensity independent of

the history, and g ∈ G : R → R+, is a monotonic increasing and G-Lipschitz link

function, i.e.,

0 6 g(b)− g(a) 6 G(b− a) for all 0 6 a 6 b (2.2)

We set w = (λ0, α)>, and xt =
(
1,
∑

ti∈Ht κ(t− ti)
)>

.

We require κ(t) to be monotonically decreasing, such as the exponential kernel

exp(−t)I[t > 0], Gaussian kernel and heavy tailed log-logistic kernel. This property

is useful for computing the integral of the intensity discussed later.

The linear term in Hawkes process alone is not sufficient to capture the general

trend in real-world applications. For instance, linearity leads to unbounded intensity,

which is at odds with the saturation phenomenon. The nonlinear link function g

enables the model to adapt to such nonlinearities in the data, hence achieving better

performance. We assume g is nonparametric and monotonic increasing, which covers

a wide range of functions, and also maintains the properties of the composed intensity

function.

2.2.2 Moment Matching Objective

Maximum Likelihood Estimation (MLE) is often used to learn Hawkes processes,

yielding a convex problem w.r.t. w. The estimator has good statistical rates and is

consistent and asymptotically efficient [53]. However, if we want to learn g(·) and w

jointly, MLE becomes non-convex, and we no longer have statistical guarantees. To

solve this problem, we use a different learning criteria based on the moment matching
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idea [54]. We can establish global convergence guarantees despite the non-convexity

by establishing the connections to Isotonic regression and SIM.

Let Ni = N(ti). Since N(t) is a counting process, the count increases by one at

each time ti. Hence for a list of events {ti}ni=1, we have Ni = i for i ∈ [n]. We have

E[Ni|Hti ] =

∫ ti

0

λ(t)dt =

∫ ti

0

g(w · xt)dt. (2.3)

Therefore, we can estimate the parameters g and w by matching the integral∫ ti
0
λ(t)dt with observations Ni, which leads to the following objective function:

min
g∈G,w

1

n

n∑
i=1

(
Ni −

∫ ti

0

g(w · xt)dt
)2

. (2.4)

Note that we need to optimize an integral w.r.t. a function g, which is challenging

in representation and computation. Instead of optimizing over G, we replace it with

the family of piecewise constant non-decreasing functions, F , and the jumps of g

is defined only at the intensity of each observed event. As shown in Theorem 2,

the integral of such functions can be computed exactly as weighted combinations of

g(w · xti) defined on the observed time points ti. For notation simplicity, we set

xi = xti . The piecewise-constant function will provide a good approximation to the

original function as we increase the number of training samples.

2.2.3 Integral Computation

We assume g is a piecewise constant function defined on each time ti. Then we have

the following result:

Theorem 2. Assume g is piecewise constant, then the integral on [0, ti] is a weighted

sum of yj = g(w · xj) with weights aij. That is,
∫ ti

0
g(w · xt)dt =

∑
j∈Si aijyj.

To efficiently compute the aij’s, we can first compute the integral on intervals

[ti−1, ti], then use cumulative sum to arrive at the final results.
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Figure 2.1: Illustration of integral computation. (A) the function g has 3 pieces and
is constant on intervals I1, I2 and I3. (B) The function z(t) = w · xt is restricted on
the interval [t1, t2]. It is continuous and monotonic decreasing due to the property of
triggering kernel κ. The pre-image of I2 is shown as the light yellow area on the t axis,
and b22 is the intersection of [t1, t2] and z−1(I2). It is found by locating the pre-image
of the endpoints, t′ and another point outside the interval [t1, t2] (not shown here).

Set z(t) = w · xt, since g(·) is a piecewise constant function, we have:

g(z(t)) =
n∑
j=1

yjI [z(t) ∈ Ij]

where I [·] is the indicator function, and Ij denotes the j-th interval where g(·) is a

constant. Therefore, we can write the integral on [ti−1, ti] as:

∫ ti

ti−1

g
(
z(t)

)
dt =

n∑
j=1

yj

∫ ti

ti−1

I
[
t ∈ z−1(Ij)

]
dt

where z−1(Ij) denotes the pre-image of the interval Ij. Next, we need to compute

bij :=
∫ ti
ti−1

I [t ∈ z−1(Ij)] dt. Since it is the length of the intersection of two intervals,

we can compute bij by finding all the endpoints of the pre-images z−1(Ij).

To do this, we first state a property of z−1(Ij). Restricted on [ti−1, ti], z(t) is

a continuous and monotonic decreasing function due to the monotonic decreasing

triggering kernel κ (Figure 2.1(B)). Combined with the fact that Ij are disjoint and

share endpoints (Figure 2.1(A)), the pre-images z−1(Ij) are also disjoint and share

endpoints.
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Algorithm 1 Compute-Coefficient
1: Input: ti, for i = 1, · · · , n
2: Output: aij
3: for j = 1, · · · , n do
4: Compute t′j that satisfies xt′j = xtj .

5: end for
6: for j = 1, · · · , n do
7: Set a0,j = 0
8: for i = 1, · · · , n do
9: Compute bij = min(t′j−1, ti)−max(t′j , ti−1)

10: Compute aij = a(i−1),j + bij
11: end for
12: end for

With this property, we can compute bij easily. According to the definition of

Ij, one endpoint of z−1(Ij) is w · xtj , so we just need to find another endpoint as

t′j = z−1(w · xtj), which is equivalent to solving the equation w · xt′j = w · xtj .

Note xt only has two dimensions, and the first dimension is a constant. Hence,

the above equation does not depend on w, and it suffices to solve xt′j = xtj , where the

left-hand side is a function of the unknown t′j, and the right-hand side is a function

of the observed data. It can be easily solved by root finding algorithms. We can then

compute bij as:

bij = min(t′j−1, ti)−max(t′j, ti−1)

The min and max operator implement the interval intersection. Since z(t) is mono-

tonic decreasing, we have t′j−1 ≥ t′j. Figure 2.1 illustrates the algorithm.

After we have computed bij, aij is readily available by aij =
∑

i′<=i bi′j. The cor-

responding index sets Si contain nonzero aij’s. The detailed procedures are presented

in Algorithm 1.

2.2.4 Overall Algorithm

With Theorem 2, we can replace the integral of an unknown function by the weighted

summation of its values defined at the intensity of each observed event. Hence we
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can represent the g ∈ F non-parametrically, and reformulate the objective function

as:

min
g∈F ,w

1

n

n∑
i=1

(
Ni −

∑
j∈Si

aijg(w · xj)
)2

. (2.5)

We optimize g and w alternatively until convergence. The update rules for w and g

are presented as follows.

Update ŵ. Given ĝk, the update rule for ŵk+1 is:

ŵk+1 = ŵk +
1

n

n∑
i=1

(
Ni −

∑
j∈Si

aij ĝ
k(ŵk · xj)

)∑
j∈Si

aijxj (2.6)

Similar to the Isotron algorithm [50], this update rule is parameter free and Perceptron-

like.

Update ĝ. Note that ĝ is a non-parametric function which is represented by its

values ŷki at ŵk · xi. Therefore, we only need to determine its values on existing data

points.

Given ŵk, we first sort
{
ŵk · xi

}n
i=1

such that it is an increasing sequence. That is,

we re-label the data points according to the sorted order. Then we solve the following

Quadratic Programming problem for
{
ŷk+1
i

}n
i=1

:

min
n∑
i=1

(Ni −
∑
j∈Si

aij ŷ
k+1
j )2 (2.7)

s.t. ŷk+1
i ≤ ŷk+1

i+1 , 1 ≤ i ≤ n− 1 (2.8)

For simplicity we re-write the problem in matrix notations. DenoteN = (N1, · · · , Nn)>,

ŷ = (ŷ1, · · · , ŷn)>, Ai,j = aij if j ∈ Si and Ai,j = 0 otherwise. The monotonic con-

straint in (2.8) can be written as By ≤ 0 where B is the adjacent difference operator:

Bi,i = 1, Bi,i+1 = −1 and other entries are zero. Then we arrive at the following
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Algorithm 2 Learn-Isotonic-Func

1: Input: {Ni}, {aij}, η
2: Output: ŷ
3: Initialize ŷ0 randomly
4: Construct matrices N , A from input
5: t = 0
6: repeat
7: t = t+ 1
8: ŷt+1 = Π

[
ŷt + ηA> (N −Aŷt)

]
9: until convergence

formulation:

min
ŷ
‖N −Aŷ‖2, s.t. Bŷ ≤ 0

This is a convex problem and can be computed efficiently using projected gradient

descent:

ŷt+1 := Π
[
ŷt + ηA>

(
N −Aŷt

)]
where Π [u] is an operator that projects u into the feasible set:

Π [u] = argmin
x
‖x− u‖2 , s.t. Bx ≤ 0

The projection is exactly the Isotonic regression problem and can be solved by

PAV [45] in O(n log n). In addition, the computation of the gradient is also effi-

cient since A is a sparse matrix and it takes time O(n + nnz(A)), where nnz(A)

is the number of nonzero elements. The number of iterations required to reach ε

accuracy is O(1/ε), hence the overall complexity is O((n log n+ nnz(A)) /ε). This

can also be accelerated to O((n log n+ nnz(A)) /
√
ε) using Nesterov’s acceleration

scheme [55]. The algorithm is illustrated in Algorithm 2 and the whole alternating

minimization procedure is summarized in Algorithm 8. Such procedure will efficiently

find the near-optimal ĝ and ŵ.
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Algorithm 3 Isotonic-Hawkes

1: Input: Sequences of events {ti}ni=1

2: Output: ĝ, ŵ
3: Compute xi = (1,

∑
tj∈Hti

κ(ti − tj)> for i ∈ [n]

4: {aij} = Compute-Coefficient({ti})
5: Compute Ni = i for i ∈ [n]
6: Initialize w0, g0 randomly
7: k = 0
8: repeat
9: k = k + 1

10: Sort the data according to ŵk · xi
11: Update ĝk = Learn-Isotonic-Func({Ni}, {aij})
12: Update ŵk+1 using (2.6)
13: until loss(ĝ, ŵ) 6 ε

2.3 Theoretical Guarantees

We now provide the theoretical analysis of convergence property. First we define the

error as:

ε(ĝk, ŵk) =
1

n

n∑
i=1

(
ĝk(ŵkxi)− g∗(w∗ · xi)

)2
(2.9)

where g∗(·) and w∗ are the unknown true link function and model parameters, re-

spectively. The goal is to analyze how quickly ε(ĝk, ŵk) decreases with k.

Notations. Set y∗i = g∗(w∗ ·xi) to be the expected value of each yi. Let N̄i be the

expected value of Ni. Then we have N̄i =
∑

j∈Si aijy
∗
j . Clearly we do not have access

to N̄i. However, consider a hypothetical call to the algorithm with input {(xi, N̄i)}ni=1

and suppose it returns ḡk. In this case, we define ȳki = ḡk(w̄k · xi).

We first bound the error using the squared distance ‖ŵk − w∗‖2 between two

consecutive iterations:

Lemma 3. Suppose that ‖ŵk−w∗‖ ≤ W , ‖xi‖ ≤ 1,
√
c ≤

∑
j∈Si aij ≤

√
C, yj ≤M ,

and

1

n

n∑
i=1

∣∣(Ni − N̄i)
∣∣ ≤ η1,

1

n

n∑
i=1

∑
j∈Si

aij|ŷkj − ȳkj | ≤ η2
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then we have:

‖ŵk − w∗‖2 − ‖ŵk+1 − w∗‖2 ≥ C2ε(ĝ
k, ŵk)− C1(η1 + η2),

where C1 = max{5CW, 4M
√
c+ 2CW}, C2 = 2c− C.

The squared distance decreases at a rate depending on ε(ĝk, ŵk) and the upper

bounds η1 and η2. The following two lemmas provide the concrete upper bounds.

Lemma 4 (Martingale Concentration Inequality). Suppose dM(t) ≤ K, V (t) ≤ k

for all t > 0 and some K, k ≥ 0. With probability at least 1− δ, it holds that

1

n

n∑
i=1

|Ni − N̄i| ≤ O
(

(K +
√

4K2 + 8k2)
(

log(1/δ)
)1/2
)
.

Note Ni − N̄i = Mi, which is the martingale at time ti. A continuous martingale

is a stochastic process such that E[Mt|{Mτ , τ ≤ s}] = Ms. It means the conditional

expectation of an observation at time t is equal to the observation at time s, given

all the observations up to time s ≤ t. V (t) is the variation process. The martingale

serves as the noise term in point processes (similar to Gaussian noise in regression)

and can be bounded using the Bernstein-type concentration inequality.

Lemma 5. With probability at least 1− δ, it holds for any k that

1

n

n∑
j=1

|ŷkj − ȳkj | ≤ O

((
W 2 log(Wn/δ)

n

)1/3
)
.

Lemma 5 relates ŷkj (the value we can actually compute) to ȳkj (the value we could

compute if we had the conditional means of Nj). The proof of this lemma uses the

covering number technique in [51].

We now state the main theorem:

Theorem 6. Suppose E[Ni|Hti ] =
∫ ti

0
g∗(w∗ ·xt)dt, where g∗ is monotonic increasing,
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1-Lipschitz and ‖w∗‖ ≤ W . Then with probability at least 1 − δ, there exist some

iteration k < O

((
Wn

log(Wn/δ)

)1/3
)

such that

ε(ĝk, ŵk) ≤ O

((
W 2 log(Wn/δ)

n

)1/3
)
.

Theorem 6 implies that some iteration has ε(ĝk, ŵk) = O(1/ 3
√
n). It is plausible

the rate is sharp based on the information-theoretic lower bounds in [56].

Proof sketch. We conduct a telescoping sum of Lemma 3 and show that there

are at most O
(
W/(η1+η2)

)
iterations before the error ε(ĝk, ŵk) is less than O(η1+η2).

Set η1, η2 to be the right-hand sides in Lemma 4 and 5. Since η2 is the dominant term

compared with η1, we replace η1 by η2 in the final results. This completes the proof.

2.4 Extensions

We provide several extensions of the Isotonic-Hawkes processes to more general cases.

General point processes. The idea and algorithm of Isotonic-Hawkes can be

easily extended to other point processes. The time-dependent feature xt in Isotonic-

Hawkes is designed to capture the influence of history. However, one can also in-

corporate and extend other features in prior work [57, 58] or design it from users’

experiences and the application domain.

Learning monotonic decreasing functions. Our model can be easily extended

to learn a monotonically decreasing function. We just need to change the sign of the

inequality in (2.8). Note that Theorem 6 still holds in this case.

Low-rank Isotonic-Hawkes processes. We can also use our model to learn

low rank parameters. For example, in the time-sensitive recommendations for online

services [5], we model user u’s past consumption events on item i as an Isotonic-

Hawkes process (Figure 2.2) and need to learn the parameters {λui0 , α
ui, gui} for each

22



tim
e 

Figure 2.2: The sequence of events for each pair is modeled as an Isotonic-Hawkes
process.

user-item pair (u, i). That is, we Since group structure often exists within users’

preferences and items’ attributes, we assume that both matrices λ0 = (λui0 ) and

α = (αui) have low-rank structures. We can then factorize them as product of two

rank r matrices: λ0 = X0Y0 and α0 = XY . Then we formulate the learning problem

by applying our objective function in (2.4) for each observed pair (u, i):

min
X0,Y0,X,Y ,g

∑
Hui∈O

`
(
Hui
)

(2.10)

`
(
Hui
)

=
1

nui

nui∑
j=1

(
Nui
j −

∫ ti

0

gui(wui · xuit )dt

)2

where wui = (λui, αui). nui is total number of events and Hui is the set of history

events for user-item pair (u, i). O = {Hui} is the collection of all observed sequences.

We use the alternating minimization technique to update X0,Y0,X,Y and g.

First keep gk fixed and update the parameters to Xk+1
0 ,Y k+1

0 ,Xk+1,Y k+1, then keep

them fixed and update gk+1. For the unobserved user-item pairs, after the algorithm

stops, we obtain gui by taking average of the user’s link functions learned from data.

Multi-dimensional Isotonic-Hawkes processes. We extend the Isotonic-

Hawkes process to multi-dimension, which is particular useful to model information
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diffusion in social networks. It is defined by a U -dimensional point process N (t),

with intensity for the u-th dimension as:

λu(t) = gu
(
λu0 + αuui

∑
i:ti∈Ht

κ(t− ti)
)

= gu(wu · xut )

where αuu
′

captures the degree of influence in the u′-th dimension to the u-th dimen-

sion. As for learning, the input data is a sequence of events observed in the form of

{(ti, ui)} and each pair represents an event occurring at the ui-th dimension at time

ti. Hence, for each dimension u, set Nu
i = Nu(ti), and we solve the problem:

min
gu,wu

1

nu

nu∑
i=1

(
Nu
i −

∫ ti

0

gu(wu · xut )dt
)2

(2.11)

where the i-th entry of wu and xut is wu(i) = (λu0 , α
uui) and xut (i) = (1,

∑
ti∈Ht κ(t, ti))

respectively. Our goal is to learn w = (wu) and g = (gu). From (2.11) we can see that

learning in each dimension u is independent of others. Hence under this framework,

wu and gu can be learned using Algorithm 8 in parallel efficiently.

2.5 Experiments

We evaluate the performance of Isotonic-Hawkes on both synthetic and real-world

datasets with respect to the following tasks :

• Convergence: investigate how well Isotonic-Hawkes can learn the true parameters

as the number of training samples increases.

• Fitting capability: study how well Isotonic-Hawkes can explain real-world data

by comparing it with the classic Hawkes process.

• Time-sensitive recommendation: demonstrate that Isotonic Hawkes can im-

prove the predictive performance in item recommendation and time prediction.

• Diffusion network modeling: evaluate how well Isotonic-Hawkes can model the

information diffusion from cascades of temporal events.
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Figure 2.3: Convergence by number of samples.

2.5.1 Experiments on Synthetic Data

Experimental setup. Table 2.1 lists the ground-truth setting with four typical link

functions g(·) and the respective model parameters w. The first three link functions

(Linear, Exp, Sigmoid) are monotonically increasing, while the last one is strictly

decreasing. For the Exp link function, we explore the performance of learning self-

inhibition by setting α to be negative. Without loss of generality, we use the unit-

rate exponential decaying function as the triggering kernel. Then, based on the

configuration of each row in Table 2.1, we simulate one million events using Ogata’s

Thinning algorithm [59].

Table 2.1: Model configurations.
Name link function g Weights w

Linear g(x) = x w = (1.2, 0.6)
Exp g(x) = ex w = (0.5,−0.1)
Sigmoid g(x) = 1/(1 + e−4(x−2)) w = (0.5, 1.2)
Decrease g(x) = 1− 1/(1 + e−4(x−3)) w = (0.5, 1.2)

Convergence analysis. We first evaluate the convergence property of our learn-

ing algorithm by increasing the number of samples from 1,000 to 1,000,000. For each

dataset, we repeat the simulations ten times and report the averaged results. Fig-

ure 2.3 (a) shows the Root Mean Squared Error (RMSE) between the values of the
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Figure 2.4: Comparison between learned link function and the ground truth on four
synthetic datasets.

learned function and those given by the ground-truth link function as a function of

training data size. Figure 2.3(b) shows the RMSE of learning the model parameters.

The x-axis is in log scale. Since in all cases, the RMSE decreases in a consistent way,

it demonstrates that Isotonic-Hawkes is very robust regardless of the latent ground-

truth link functions. Furthermore, for the Exp link function, we compare the RMSE

between our method and the likelihood based approach, Exp-likelihood [42], which

has access to the link function and discretizes the time interval to compute the inte-

gral in the likelihood. Our method works better at estimating w. Finally, the ability

to recover the linear link function verifies that Isotonic-Hawkes naturally includes the

classic Hawkes process as a special case and is much more expressive to explain the

data.
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Visualization of recovered link functions. We also plot each learned link

function against the respective ground-truth in Figure 2.4 trained with 1,000,000

events. In all the cases, the algorithm can achieve the global optimal to precisely

recover the true functions.

2.5.2 Experiments on Time-sensitive Recommendation

Experimental setup. For the task of time-sensitive recommendation, we fit a low-

rank Isotonic-Hawkes process with the alternating minimization technique from (2.10)

to solve the following two related problems proposed from [5] : (1) how to recommend

the most relevant item at the right moment; (2) how to accurately predict the next

returning-time of users to existing services. We evaluate the predictive performance

of our model on two real datasets. last.fm1 consists of the music listening histories

of around 1,000 users over 3,000 different albums. We use the events of the first

three months for training and those of the next month for testing. There are around

20,000 user-album pairs with more than one million events. tmall.com2 contains

online shopping records. There are around 100K events between 26, 376 users and

2,563 stores. We use the events of the first four months for training and those of the

last month for testing. The unit time is an hour.

Better data fitting capability. Since the true temporal dynamics governing

the temporal point patterns are unknown, we first investigate whether our new model

can better explain the data compared with the classic Hawkes process. According to

the Time Changing Theorem [60], given a sequence T = {ti}ni=1 and a point process

with intensity λ(t), the set of samples {
∫ ti
ti−1

λ(t)dt}ni=1 should conform to a unit-rate

exponential distribution if T is truly sampled from the process. As a consequence, we

compare the theoretical quantiles from the unit-rate exponential distribution with the

empirical quantiles of different models. The closer the slope of QQ-plot goes to one,

1http://www.dtic.upf.edu/õcelma/MusicRecommendationDataset/lastfm-1K.html
2http://ijcai-15.org/index.php/repeat-buyers-prediction-competition
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Figure 2.5: Experiment results on two randomly picked sequences from last.fm data.
(a-b) and (c-d) correspond to two sequences.

the better a model matches the point patterns. [5] has shown that Hawkes process

fits the data better compared to other simple processes.

In Figure 2.5 (a) and (c), we show that Isotonic-Hawkes achieves much better

fitting capability. Furthermore, (b) and (d) visualize the learned link functions. In

Figure 2.5(b), the function captures the phenomenon that the user’s interests tend

to saturate in the long-run despite that he may be excited about the item initially.

Intuitively, we can also see this from (a), where Hawkes process has larger sample

quantiles than the theoretical one, which means
∫ ti
ti−1

λ(t)dt is larger than the value

it should be. Hence using a saturating function in (b) helps adjusting the Hawkes

intensity λ(t) and make it smaller. In contrast, (d) presents the opposite trend where

the user was not quite interested in the given item initially, but later became addicted
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to it. Since the Hawkes sample quantile is smaller than the theoretical one in (c),

link function helps changing λ(t) to be larger. Hence learning the link function is

important.

Recommendation improvements. We evaluate the predictive performance on

the two tasks following [5] : (1) Rank prediction. At each testing moment, we record

the predicted rank of the target item based on the respective intensity function. We

report the average rank over all test events. Smaller value indicates better perfor-

mance. (2) Arrival-time prediction. We predict the arrival time of the next testing

event and report the mean absolute error (MAE) between the predicted time and

the true value. In addition, besides Hawkes process, we also compare with the com-

monly used Poisson process, which is a relaxation of the Hawkes model by assuming

that each user-item pair has constant base intensity independent of the history, as

well as the state-of-the-art Tensor factorization method [61] which applies Poisson

factorization to fit the number of events in each discretized time slot and has better

performance than methods based squared loss [62]. We use the parameters averaged

over all time intervals to make predictions. The latent rank of the low-rank Isotonic-

Hawkes process and the tensor method are tuned to give the best performance.

We summarize the results in Figure 2.6. First, Hawkes outperforms the Pois-

son process, which means that considering the effects of history is helpful. Second,

Isotonic-Hawkes outperforms Hawkes process for a significant margin thanks to the

better data fitting capability shown in Figure 2.5. For time prediction, since the

MAE’s unit is hour, we can see that the error difference between Isotonic-Hawkes

and Hawkes is about three days. The online shopping services can benefit a lot from

this improvement and make better demand predictions.

29



P
re

d
ic

t
ar

ri
va

l
ti

m
e

IsoHaw HawkePoissonTensor

M
A

E
 (

h
o

u
r)

0

50

100

150

200

IsoHaw HawkePoissonTensor

M
A

E
 (

h
o

u
r)

0

50

100

150

200

P
re

d
ic

t
ra

n
k

IsoHaw HawkePoissonTensor

A
v
g

R
a

n
k

0

300

600

900

IsoHaw HawkePoissonTensor
A

v
g

R
a

n
k

0

50

100

last.fm tmall.com

Figure 2.6: Time-sensitive recommendation results.

2.5.3 Experiments on Modeling Diffusion Networks

Finally, we apply the multi-dimension Isotonic-Hawkes process with the model estima-

tion procedure in (2.11) to recover the latent information diffusion network reflected

by the nonzero patterns of the mutual excitation matrix over the real Network dataset

from [35]. This dataset comprises of all tweets posted by 2,241 users in eight month.

The network has 4,901 edges. We split data into a training set (covering 85% of the

total events) and a test set (covering the remaining 15%) according to time. Being

similar to the time-sensitive recommendation task, we report the average rank of all

testing events and MAE for the arrival time prediction with an increasing propor-

tion of training events. Figure 2.7 verifies that Isotonic-Hawkes outperforms Hawkes

process consistently.
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Figure 2.7: Prediction results on the Network dataset.

2.6 Summary

In this chapter, we have proposed a novel nonlinear Hawkes process, the Isotonic-

Hawkes process, with a flexible nonlinear link function. Along with the model, we

have developed a computationally and statistically efficient algorithm to learn the

link function and model parameters jointly, and rigorously show that under mild as-

sumptions of the monotonicity, our algorithm is guaranteed to converge to the global

optimal solution. Furthermore, our model is very general and can be extended to

many different forms, including monotonically decreasing link functions, low-rank

Isotonic-Hawkes processes model and multi-dimensional Isotonic-Hawkes processes.

Experiments on both synthetic and real world datasets empirically verify the theo-

retical guarantees and demonstrate the superior predictive performance compared to

other baselines.

Besides designing more expressive point process models, sometimes we also want

to incorporate the rich contextual information of users, items, and interactions when

designing models. In online service platforms, users interact with different items at

different times. Their evolving interest in items is captured implicitly by the time

of the interaction. By understand users’ dynamic interests and serving them with

potentially interesting items, these platforms can improve the satisfaction of users,
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and boost the activities or revenue of the sites. In the next Chapter, we present an

efficient framework that is able to model the dynamics of users’ and items’ embeddings

and use these embeddings to design point process models.
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CHAPTER 3

COEVOLUTIONARY FEATURE EMBEDDING FOR

CONTINUOUS-TIME USER-ITEM INTERACTIONS

3.1 Introduction

Online social platforms and service websites, such as Reddit, Netflix and Amazon,

are attracting thousands of users every minute. Effectively recommending the ap-

propriate service items is a fundamentally important task for these online services.

By understanding the needs of users and serving them with potentially interesting

items, these online platforms can improve the satisfaction of users, and boost the

activities or revenue of the sites due to increased user postings, product purchases,

virtual transactions, and/or advertisement clicks [63, 5].

As the famous saying goes “You are what you eat and you think what you read”,

both users’ interests and items’ semantic features are dynamic and can evolve over

time [10, 11]. The interactions between users and service items play a critical role

in driving the evolution of user interests and item features. For example, for movie

streaming services, a long-time fan of comedy watches an interesting science fiction

movie one day, and starts to watch more science fiction movies in place of comedies.

Likewise, a single movie may also serve different segment of audiences at different

times. For example, a movie initially targeted for an older generation may become

popular among the younger generation, and the features of this movie need to be

redefined.

Another important aspect is that users’ interests and items’ features can co-evolve

over time, that is, their evolutions are intertwined and can influence each other. For

instance, in online discussion forums, such as Reddit, although a group (item) is
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initially created for political topics, users with very different interest profiles can

join this group (user → item). Therefore, the participants can shape the actual

direction (or features) of the group through their postings and responses. It is not

unlikely that this group can eventually become one about education simply because

most users here concern about education (item → user). As the group is evolving

towards topics on education, some users may become more attracted to education

topics, and to the extent that they even participate in other dedicated groups on

education. On the opposite side, some users may gradually gain interests in sports

groups, lose interests in political topics and become inactive in this group. Such

coevolutionary nature of user-item interactions raises very interesting questions on

how to model them elegantly and how to learn them from observed interaction data.

Nowadays, user-item interaction data are archived in increasing temporal reso-

lution and becoming increasingly available. Each individual user-item iteration is

typically logged in the database with the precise time-stamp of the interaction, to-

gether with additional context of that interaction, such as tag, text, image, audio

and video. Furthermore, the user-item interaction data are generated in an asyn-

chronous fashion in a sense that any user can interact with any item at any time

and there may not be any coordination or synchronization between two interaction

events. These types of event data call for new representations, models, learning and

inference algorithms.

Despite the temporal and asynchronous nature of such event data, for a long-

time, the data has been treated predominantly as a static graph, and fixed latent

features have been assigned to each user and item [64, 65, 66, 67, 68, 63, 69]. In

more sophisticated methods, the time is divided into epochs, and static latent feature

models are applied to each epoch to capture some temporal aspects of the data [10,

61, 62, 70, 11, 71, 72, 73, 74, 75, 76]. For such epoch-based methods, it is not clear

how to choose the epoch length parameter due to the asynchronous nature of the
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user-item interactions. First, different users may have very different time-scale when

they interact with those service items, making it very difficult to choose a unified

epoch length. Second, it is not easy for the learned model to answer fine-grained

time-sensitive queries such as when a user will come back for a particular service

item. It can only make such predictions down to the resolution of the chosen epoch

length. Most recently, [5] proposed an efficient low-rank point process model for

time-sensitive recommendations from recurrent user activities. However, it still fails

to capture the heterogeneous coevolutionary properties of user-item interactions with

much more limited model flexibility. Furthermore, it is difficult for this approach to

incorporate observed context features.

In this chapter, we propose a coevolutionary latent feature process for continuous-

time user-item interactions, which is designed specifically to take into account the

asynchronous nature of event data, and the co-evolution nature of users’ and items’

latent features. Our model assigns an evolving latent feature process for each user

and item, and the co-evolution of these latent feature processes is considered using

two parallel components:

• (Item → User) A user’s latent feature is determined by the latent features of the

items he interacted with. Furthermore, the contributions of these items’ features

are temporally discounted by an exponential decaying kernel function, which we

call the Hawkes [36] feature averaging process.

• (User → Item) Conversely, an item’s latent features are determined by the latent

features of the users who interact with the item. Similarly, the contribution of

these users’ features is also modeled as a Hawkes feature averaging process.

Besides the two sets of intertwined latent feature processes, our model can also take

into account the presence of potentially high dimensional observed context features

and links the latent features to the observed context features using a low dimen-

sional projection. Despite the sophistication of our model, we show that the model
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(a) Data as a bipartite graph (b) User latent feature process (c) Item latent feature process

Figure 3.1: Model illustration. (a) User-item interaction events data. Each edge con-
tains user, item, time, and interaction feature. (b) Alice’s latent feature consists of
three components: the drift of baseline feature, the time-weighted average of interac-
tion feature, and the weighted average of item feature. (c) The symmetric item latent
feature process. A,B,C,D are embedding matrices from high dimension feature
space to latent space. κω(t) = exp(−ωt) is an exponential decaying kernel.

parameter estimation, a seemingly non-convex problem, can be transformed into a

convex optimization problem, which can be efficiently solved by the latest conditional

gradient-like algorithm. Finally, the coevolutionary latent feature processes can be

used for down-streaming inference tasks such as the next-item and the return-time

prediction. We evaluate our method over a variety of datasets, verifying that our

method can lead to significant improvements in user behavior prediction compared

to the state-of-the-arts.

3.2 Coevolutionary Latent Feature Processes

In this section, we present the framework to model the temporal dynamics of user-

item interactions. We first explicitly capture the co-evolving nature of users’ and

items’ latent features. Then, based on the compatibility between a user’ and item’s

latent feature, we model the user-item interaction by a temporal point process and

parametrize the intensity function by the feature compatibility.
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3.2.1 Event Representation

Given m users and n items, the input consists of all users’ history events: T = {ek},

where ek = (uk, ik, tk, qk) means that user uk interacts with item ik at time tk and

generates an interaction feature vector qk ∈ RD. For instance, the interaction feature

can be a textual message delivered from the user to the chatting-group in Reddit or

a review of the business in Yelp. It can also be unobservable if the data only contains

the temporal information.

3.2.2 Latent Feature Processes

We associate a latent feature vector uu(t) ∈ RK with a user u and ii(t) ∈ RK with an

item i. These features represent the subtle properties which cannot be directly ob-

served, such as the interests of a user and the semantic topics of an item. Specifically,

we model uu(t) and ii(t) as follows:

User latent feature process. For each user u, we formulate uu(t) as:

uu(t) = A φu(t)︸ ︷︷ ︸
base drift

+B
∑

{ek|uk=u,tk<t}

κω(t− tk)qk︸ ︷︷ ︸
Hawkes interaction feature averaging

+
∑

{ek|uk=u,tk<t}

κω(t− tk)iik(tk)︸ ︷︷ ︸
co-evolution: Hawkes item feature averaging

,

(3.1)

Item latent feature process. For each item i, we specify ii(t) as:

ii(t) = C φi(t)︸ ︷︷ ︸
base drift

+D
∑

{ek|ik=i,tk<t}

κω(t− tk)qk︸ ︷︷ ︸
Hawkes interaction feature averaging

+
∑

{ek|ik=i,tk<t}

κω(t− tk)uuk(tk)︸ ︷︷ ︸
co-evolution: Hawkes user feature averaging

,

(3.2)

where A,B,C,D ∈ RK×D are the embedding matrices mapping from the explicit

high-dimensional feature space into the low-rank latent feature space. Figure 3.1

highlights the basic setting of our model. Next we discuss the rationale of each term

in detail.
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Drift of base features. φu(t) ∈ RD and φi(t) ∈ RD are the explicitly observed

properties of user u and item i, which allows the basic features of users (e.g., a user’s

self-crafted interests) and items (e.g., textual categories and descriptions) to smoothly

drift through time. Such changes of basic features normally are caused by external

influences. One can parametrize φu(t) and φi(t) in many different ways, e.g., the

exponential decaying basis to interpolate these features observed at different times.

Evolution with interaction feature. Users’ and items’ features can evolve

and be influenced by the characteristics of their interactions. For instance, the genre

changes of movies indicate the changing tastes of users. The theme of a chatting-group

can be easily shifted to certain topics of the involved discussions. In consequence, this

term captures the cumulative influence of the past interaction features to the changes

of the latent user (item) features. The triggering kernel κω(t − tk) associated with

each past interaction at tk quantifies how such influence can change through time. Its

parametrization depends on the phenomena of interest. Without loss of generality,

we choose the exponential kernel κω(t) = exp (−ωt) to reduce the influence of each

past event. In other words, only the most recent interaction events will have bigger

influences. Finally, the embedding matrices B,D map the observable high dimension

interaction feature to the latent space.

Coevolution with Hawkes feature averaging processes. Users’ and items’

latent features can mutually influence each other. This term captures the two parallel

processes:

• Item → User. A user’s latent feature is determined by the latent features of the

items he interacted with. At each time tk, the latent item feature is iik(tk). Fur-

thermore, the contributions of these items’ features are temporally discounted by

a kernel function κω(t), which we call the Hawkes feature averaging process. The

name comes from the fact that Hawkes process captures the temporal influence of

history events in its intensity function. In our model, we capture both the temporal
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influence and feature of each history item as a latent process.

• User → Item. Conversely, an item’s latent features are determined by the latent

features of all the users who interact with the item. At each time tk, the latent

feature is uuk(tk). Similarly, the contribution of these users’ features is also modeled

as a Hawkes feature averaging process.

Note that to compute the third co-evolution term, we need to keep track of the user’s

and item’s latent features after each interaction event, i.e., at tk, we need to compute

uuk(tk) and iik(tk) in (3.1) and (3.2), respectively. Set I(·) to be the indicator function,

we can show by induction that

uuk(tk) = A
[∑k

j=1
I[uj = uk]κω(tk − tj)φuj(tj)

]
+B

[∑k

j=1
I[uj = uk]κω(tk − tj)qj

]
+C

[∑k−1

j=1
I[uj = uk]κω(tk − tj)φij(tj)

]
+D

[∑k−1

j=1
I[uj = uk]κω(tk − tj)qj

]
iik(tk) = C

[∑k

j=1
I[ij = ik]κω(tk − tj)φij(tj)

]
+D

[∑k

j=1
I[ij = ik]κω(tk − tj)qj

]
+A

[∑k−1

j=1
I[ij = ik]κω(tk − tj)φuj(tj)

]
+B

[∑k−1

j=1
I[ij = ik]κω(tk − tj)qj

]

In summary, we have incorporated both of the exogenous and endogenous influences

into a single model. First, each process evolves according to the respective exogenous

base temporal user (item) features φu(t) (φi(t)). Second, the two processes also inter-

depend on each other due to the endogenous influences from the interaction features

and the entangled latent features. We present our model in the most general form

and the specific choices of uu(t), ii(t) are dependent on applications. For example, if

no interaction feature is observed, we drop the second term in (3.1) and (3.2).

3.2.3 User-item Interactions as Temporal Point Processes

For each user, we model the recurrent occurrences of user u’s interaction with all

items as a multi-dimensional temporal point process. In particular, the intensity in
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the i-th dimension (item i) is:

λu,i(t) = ηu,i︸︷︷︸
long-term preference

+ uu(t)
>ii(t)︸ ︷︷ ︸

short-term preference

, (3.3)

where η = (ηu,i) is a baseline preference matrix. The rationale of this formulation

is threefold. First, instead of discretizing the time, we explicitly model the timing of

each event occurrence as a continuous random variable, which naturally captures the

heterogeneity of the temporal interactions between users and items. Second, the base

intensity ηu,i represents the long-term preference of user u to item i, independent of

the history. Third, the tendency for user u to interact with item i at time t depends

on the compatibility of their instantaneous latent features. Such compatibility is

evaluated through the inner product of their time-varying latent features.

Our model inherits the merits from classic content filtering, collaborative filtering,

and the most recent temporal models. For the cold-start users having few interactions

with the items, the model adaptively utilizes the purely observed user (item) base

properties and interaction features to adjust its predictions, which incorporates the

key idea of feature-based algorithms. When the observed features are missing and

non-informative, the model makes use of the user-item interaction patterns to make

predictions, which is the strength of collaborative filtering algorithms. However, being

different from the conventional matrix-factorization models, the latent user and item

features in our model are entangled and able to co-evolve over time. Finally, the

general temporal point process ingredient of the model makes it possible to capture

the dynamic preferences of users to items and their recurrent interactions, which is

more flexible and expressive.
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3.3 Parameter Estimation

In this section, we propose an efficient framework to learn the parameters. A key

challenge is that the objective function is non-convex in the parameters. However,

we reformulate it as a convex optimization by creating new parameters. Finally, we

present the generalized conditional gradient algorithm to efficiently solve the objective

function.

Given a collection of events T recorded within a time window [0, T ), we estimate

the parameters using maximum likelihood estimation of all events. The joint negative

log-likelihood [54] is:

` = −
∑
ek

log
(
λuk,ik(tk)

)
+

m∑
u=1

n∑
i=1

∫ T

0

λu,i(τ) dτ (3.4)

The objective function is non-convex in variables {A,B,C,D} due to the inner

product term in (3.3). To learn these parameters, one way is to fix the matrix rank

and update each matrix using gradient based methods. However, it is easily trapped in

local optima and one needs to tune the rank for the best performance. However, with

the observation that the product of two low rank matrices yields a low rank matrix,

we will optimize over the new matrices and obtain a convex objective function.

3.3.1 Convex Objective Function

We will create new parameters such that the intensity function is convex. Since uu(t)

contains the averaging of iik(tk) in (3.1), C,D will appear in uu(t). Similarly, A,B

will appear in ii(t). Hence we have the inner product of these matrices as follows:

X =
{
A>A,B>B,C>C,D>D,A>B,A>C,A>D,B>C,B>D,C>D

}
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These matrices will appear in (3.3) after expansion, due to the inner product ii(t)
>uu(t).

For each matrix product in X , we denote it as a new variable Xi and optimize the

objective function over the these variables. We denote the corresponding coefficient of

Xi as xi(t), which can be exactly computed. Denote Λ(t) = (λu,i(t)), we can rewrite

the intensity in (3.3) in the matrix form as:

Λ(t) = η +
∑10

i=1
xi(t)Xi (3.5)

The intensity is convex in each new variable Xi, hence the objective function. We

will optimize over the new set of variables X subject to the constraints that i) some

of them share the same low rank space, e.g., A> is shared as the column space in{
A>A,A>B,A>C,A>D

}
and ii) new variables are low rank (the product of low

rank matrices is low rank). Next, we show how to incorporate the space sharing

constraint for general objective function with an efficient algorithm.

First, we create a symmetric block matrix X ∈ R4D×4D and place each Xi as

follows:

X =


X1 X2 X3 X4

X>2 X5 X6 X7

X>3 X>6 X8 X9

X>4 X>7 X>9 X10

 =


A>A A>B A>C A>D

B>A B>B B>C B>D

C>A C>B C>C C>D

D>A D>B D>C D>D

 (3.6)

Intuitively, minimizing the nuclear norm of X ensures all the low rank space sharing

constraints. First, nuclear norm ‖ · ‖∗ is a summation of all singular values, and

is commonly used as a convex surrogate for the matrix rank function [77], hence

minimizing ‖X‖∗ ensures it to be low rank and gives the unique low rank factorization

of X. Second, since X1,X2,X3,X4 are in the same row and share A>, the space

sharing constraints are naturally satisfied.

Finally, since it is typically believed that users long-time preference to items can
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be categorized into a limited number of prototypical types, we set η to be low rank.

Hence the objective is:

min
η>0,X>0

`(X,η) + α‖η‖∗ + β‖X‖∗ + γ‖X −X>‖2
F (3.7)

where ` is defined in (3.4) and ‖·‖F is the Frobenius norm and the associated constraint

ensures X to be symmetric. {α, β, γ} control the trade-off between the constraints.

After obtaining X, one can directly apply (3.5) to compute the intensity and make

predictions.

3.3.2 Generalized Conditional Gradient Algorithm

We use the latest generalized conditional gradient algorithm [5] to solve the opti-

mization problem (3.7). It has an alternating updates scheme and efficiently handles

the nonnegative constraint using the proximal gradient descent and the the nuclear

norm constraint using conditional gradient descent. It is guaranteed to converge in

O(1
t

+ 1
t2

), where t is the number of iterations. For both the proximal and the condi-

tional gradient parts, the algorithm achieves the corresponding optimal convergence

rates. If there is no nuclear norm constraint, the results recover the well-known opti-

mal O( 1
t2

) rate achieved by proximal gradient method for smooth convex optimization.

If there is no nonnegative constraints, the results recover the well-known O(1
t
) rate

attained by conditional gradient method for smooth convex minimization. Moreover,

the per-iteration complexity is linear in the total number of events with O(mnk),

where m is the number of users, n is the number of items and k is the number of

events per user-item pair.
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3.4 Experiments

We evaluate our framework on synthetic and real-world datasets. We use all the

events up to time T · p as the training data, and the rest as testing data, where T

is the length of the observation window. We tune hyper-parameters and the latent

rank of other baselines using 10-fold cross validation with grid search. We vary the

proportion p ∈ {0.7, 0.72, 0.74, 0.76, 0.78} and report the averaged results over five

runs on two tasks:

• Item recommendation: for each user u, at every testing time t, we compute the

survival probability Su,i(t) = exp
(
−
∫ t
tu,in

λu,i(τ)dτ
)

of each item i up to time t,

where tu,in is the last training event time of (u, i). We then rank all the items in

the ascending order of Su,i(t) to produce a recommendation list. Ideally, the item

associated with the testing time t should rank one, hence smaller value indicates

better predictive performance. We repeat the evaluation on each testing moment

and report the Mean Average Rank (MAR) of the respective testing items across

all users.

• Time prediction: we predict the time when a testing event will occur between

a given user-item pair (u, i) by calculating the density of the next event time as

f(t) = λu,i(t)Su,i(t). With the density, we compute the expected time of next event

by sampling future events as in [5]. We report the Mean Absolute Error (MAE)

between the predicted and true time. Furthermore, we also report the relative

percentage of the prediction error with respect to the entire testing time window.

3.4.1 Competitors

• TimeSVD++ is the classic matrix factorization method [10]. The latent factors

of users and items are designed as decay functions of time and also linked to each

other based on time.
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• FIP is a static low rank latent factor model to uncover the compatibility between

user and item features [68]. TSVD++ and FIP are only designed for data with

explicit ratings. We convert the series of user-item interaction events into an explicit

rating using the frequency of a users item consumptions [78].

• STIC fits a semi-hidden markov model to each observed user-item pair [79] and is

only designed for time prediction.

• PoissonTensor uses Poisson regression as the loss function [61] and has been shown

to outperform factorization methods based on squared loss [72, 73] on recommenda-

tion tasks. There are two choices of reporting performance: i) use the parameters

fitted only in the last time interval and ii) use the average parameters over all

intervals. We report the best performance between these two choices.

• LowRankHawkes is a Hawkes process based model and it assumes user-item inter-

actions are independent [5].

3.4.2 Experiments on Synthetic Data

We simulate 1,000 users and 1,000 items. For each user, we further generate 10,000

events by Ogata’s thinning algorithm. We compute the MAE by comparing esti-

mated η,X with the ground-truth. The baseline drift feature is set to be constant.

Figure 3.2 (a) shows that it only requires a few hundred iterations to descend to a

decent error, and (b) indicates that it only requires a modest number of events to

achieve a good estimation. Finally, (c) demonstrates that our method scales linearly

as the total number of training events grows.

Figure 3.2 (d-f) show that Coevolve achieves the best predictive performance.

Because PoissonTensor applies an extra time dimension and fits each time interval

as a Poisson regression, it outperforms TimeSVD++ by capturing the fine-grained

temporal dynamics. Finally, our method automatically adapts different contributions

of each past item factors to better capture the users’ current latent features, hence it
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Figure 3.2: Estimation error (a) vs. #iterations and (b) vs. #events per user; (c)
scalability vs. #events per user; (d) average rank of the recommended items; (e) and
(f) time prediction error.

can achieve the best prediction performance overall.

3.4.3 Experiments on Real-world Data

Datasets. Our datasets are obtained from three different domains from the TV

streaming services (IPTV), the commercial review website (Yelp) and the online media

services (Reddit). IPTV contains 7,100 users’ watching history of 436 TV programs

in 11 months, with 2,392,010 events, and 1,420 movie features, including 1,073 actors,

312 directors, 22 genres, 8 countries and 5 years. Yelp is available from Yelp Dataset

challenge Round 7. It contains reviews for various businesses from October, 2004 to

December, 2015. We filter users with more than 100 posts and it contains 100 users

and 17,213 businesses with around 35,093 reviews. Reddit contains the discussions

events in January 2014. Furthermore, we randomly selected 1,000 users and collect

1,403 groups that these users have discussion in, with a total of 10,000 discussion

46



IP
T
V

10.4

1.8

150.3
177.2 191.3

1

10

100

Methods

M
A
R

Methods
Coevolving
LowRankHawkes
PoissonTensor
TimeSVD++
FIP

34.5

356

830.2 901.1

10

1000

Methods

M
A
E

Methods
Coevolving
LowRankHawkes
PoissonTensor
STIC

0.4

4.4

10.3

11.2

0.4
0

3

6

9

12

Methods

E
rr

 %

Methods
Coevolving
LowRankHawkes
PoissonTensor
STIC

R
e
d
d
it

13.2

2.5

450.1 510.7 540.7

1

10

100

Methods

M
A
R

Methods
Coevolving
LowRankHawkes
PoissonTensor
TimeSVD++
FIP

8.1

67.2

186.4 203

1

10

100

Methods

M
A
E

Methods
Coevolving
LowRankHawkes
PoissonTensor
STIC

1.1

9.1

25.1

27.2

1.1

0

10

20

Methods

E
rr

 %

Methods
Coevolving
LowRankHawkes
PoissonTensor
STIC

Y
e
lp

80.1 90.1

7800.1 8100.3 8320.5

10

1000

Methods

M
A
R

Methods
Coevolving
LowRankHawkes
PoissonTensor
TimeSVD++
FIP

125.9

724.3 768.4 883

10

1000

Methods

M
A
E

Methods
Coevolving
LowRankHawkes
PoissonTensor
STIC

1.82

17

18.8

21.6

0

5

10

15

20

Methods

E
rr

 %

Methods
Coevolving
LowRankHawkes
PoissonTensor
STIC

(a) Item recommendation (b) Time prediction (MAE) (c) Time prediction (relative)

Figure 3.3: Prediction results on IPTV, Reddit and Yelp. Results are averaged over
five runs with different portions of training data and error bar represents the variance.

events. For item base feature, IPTV has movie feature, Yelp has business description,

and Reddit does not have it. In experiments we fix the baseline features. There is

no base feature for user. For interaction feature, Reddit and Yelp have reviews in

bag-of-words, and no such feature in IPTV.

Figure 6.5 shows the predictive performance. For time prediction, Coevolve out-

performs the baselines significantly, since we explicitly reason and model the effect

that past consumption behaviors change users’ interests and items’ features. In par-

ticular, compared with LowRankHawkes, our model captures the interactions of each

user-item pair with a multi-dimensional temporal point processes. It is more expres-

sive than the respective one-dimensional Hawkes process used by LowRankHawkes,
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which ignores the mutual influence among items. Furthermore, since the unit time

is hour, the improvement over the state-of-art on IPTV is around two weeks and on

Reddit is around two days. Hence our method significantly helps online services make

better demand predictions.

For item recommendation, Coevolve also achieves competitive performance com-

parable with LowRankHawkes on IPTV and Reddit. The reason behind the phenom-

ena is that one needs to compute the rank of the intensity function for the item pre-

diction task, and the value of intensity function for time prediction. LowRankHawkes

might be good at differentiating the rank of intensity better than Coevolve. How-

ever, it may not be able to learn the actual value of the intensity accurately. Hence

our method has the order of magnitude improvement in the time prediction task.

In addition to the superb predictive performance, Coevolve also learns the time-

varying latent features of users and items. Figure 3.4 (a) shows that the user is initially

interested in TV programs of adventures, but then the interest changes to Sitcom,

Family and Comedy and finally switches to the Romance TV programs. Figure 3.4

(b) shows that Facebook and Apple are the two hot topics in the month of January

2014. The discussions about Apple suddenly increased on 01/21/2014, which can be

traced to the news that Apple won lawsuit against Samsung1. It further demonstrates

that our model can better explain and capture the user behavior in the real world.

3.5 Summary

In this chapter, we have proposed an efficient framework for modeling the co-evolution

nature of users’ and items’ latent features. Empirical evaluations on large synthetic

and real-world datasets demonstrate its scalability and superior predictive perfor-

mance.

Our Coevolve framework is based on parametric embeddings for users and items

1http://techcrunch.com/2014/01/22/apple-wins-big-against-samsung-in-court/
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Figure 3.4: Learned time-varying features of a user in IPTV and a group in Reddit.

latent features. A natural extension is to combine our framework with the power of

recurrent neural networks, and learn nonlinear embeddings for users and items. In the

next chapter, we extend our framework and develop a generic embedding framework

which is applicable to many applications that involve the continuous-time evolving

graphs, such as time-sensitive recommendation and knowledge graph reasoning.
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CHAPTER 4

A GENERIC EMBEDDING FRAMEWORK FOR

CONTINUOUS-TIME EVOLVING GRAPHS

4.1 Introduction

Many real world applications involves continuous-time evolving graphs, where the

dynamic edges of the graphs are relational events between entities, and the precise

time stamps of these events are recorded in the datasets. For instance, in online

discussion forums such as reddit, users post different topics in different groups at

difference times, and each post is a dynamic edge between a user and a group. In

online e-commerce sites such as Amazon and Alibaba, users purchases different items

and may leave comments for the item, and each shopping event is a dynamic edge

between a user and an item. In temporal knowledge graphs, different celebrities,

organizations and countries form different relations at different times, such as visiting

each other and signing economic agreement, which are the dynamic edges in the

graphs. In crime behavior analysis, criminal agents commit burglaries at different

locations, and each burglary event is a dynamic edge between the criminal agent and

the location.

Common to these applications are the evolutionary and coevolutionary nature of

the underlying entities:

• In recommendation systems, as users interact with different items, their interactions

further drives the evolution of user interests and item features. The users’ interests

and items’ features can also coevolve over time, i.e., their features are intertwined

and can influence each other. In forums such as Reddit, users with very different

interest profiles can join the same group and contribute discussions. Thus the
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topic of this group may drift over time. On the other hand, users’ interests will

also change due to the evolution of groups’ topics.

• In a temporal knowledge graph, when two entities forge a relationship, the newly

formed edge drives their preferences and behaviors. For instance, two countries

forging an alliance are most likely to take confrontational stands against enemies of

each other. As the saying goes that “people (entities) change over time” and “re-

lationships change over time”, such change is effected by combination of historical

factors (self-evolving) and the factors of the other entities (coevolving).

The complexity of such interaction patterns and fine temporal resolution of the rela-

tional events also raises interesting and challenging questions: How to represent each

entity in the graph? How to deal with multi-edges between a pair of entities? How

to take into account precise timing information?

Recently, point process based models have also been widely applied to capture

the evolving nature of continuous-time event data [1, 2, 4, 5, 8, 6, 7, 9]. However,

these works make strong parametric assumptions about the functional form of the

generative processes, which may not be expressive enough for real world complex

scenarios; hence they are not accurate enough to capture the complex and nonlinear

co-evolution of entity features in real world. Our framework does not make these

restricted assumptions and can adapt to the complexity of coevolutionary dynamics.

In this chapter, we treat the data as a continuous-time evolving graph, and pro-

pose a novel deep coevolutionary network model (DeepCoevolve) which defines deep

learning architectures based on the unrolled evolving interaction graphs. Our model

provide an effective and expressive representation/embedding of the underlying entity

latent features, without assuming a fixed parametric form. In particular, our work

makes the following contributions:

• Novel framework. We propose a novel deep learning framework that captures

the nonlinear coevolution nature of entities’ embeddings in a temporal dynamic
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graph using a nonparametric way. It assigns an evolving feature embedding process

for each entity, and the coevolution of these latent feature processes is naturally

modeled according to the pairwise interactions between entities. Furthermore, with

the fine grained model for event at each individual time point, we are able to predict

the time of events.

• Efficient training. We use RNN to parametrize the interdependent and inter-

twined entity embeddings. The increased flexibility and generality further intro-

duces technical challenges on how to train RNN on the evolving networks. The

coevolution nature of the model makes the samples inter-dependent and not identi-

cally distributed, which is significantly more challenging than the typical assump-

tions in training deep models. We propose an efficient stochastic training algorithm

that makes the BTPP tractable in the co-evolving network.

• Strong performance. We show that our framework has superior performance in

diverse applications, including time-sensitive recommendation systems and tempo-

ral knowledge graph reasoning. Our method leads to significant improvements in

user preference prediction on recommendation tasks, and in knowledge graph link

prediction. The precision of time prediction is improved significantly. It verifies

the importance of using nonparametric point process in temporal graphs. Time

prediction is especially novel and not possible by most prior works.

4.2 Deep Coevolutionary Feature Embedding

In this section, we present a generative process for continuous-time evolving graphs

based on a novel Deep Coevolutionary Network (DeepCoevolve). The high level idea

of our method is to define deep learning architectures based on an unrolled evolving

interaction graph, and this deep learning architecture computes a coevolutionary em-

bedding representation for each entity in the graph. Then, based on the compatibility

between the entity latent embeddings, we model the interaction/relational events by
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a multi-dimensional temporal point process.

4.2.1 Continuous-time Evolving Graphs

We first describe how continuous-time evolving graph G = (V , E ,Y) can be repre-

sented as a sequence of continuous-time events. Here V is the set of entities indexed

from 1 to M , where |V| = M . The notation Y is the set of all possible edge types

indexed from 1 to Y , where |Y| = Y . A directed edge en = (sn, on, rn, tn, qn) rep-

resents the interaction with event type rn ∈ Y between subject entity sn and object

entity on at time tn. Here the optional component qn ∈ Rq represents the interaction

context, e.g., a text review in restaurant recommendation. Then the set of edges E

contains N dynamic edges that occur between entities. Without loss of generality,

E = {en = (sn, on, rn, tn, qn)}Nn=1 is ordered by time in the observation window [0, T ].

Here sn, on ∈ {1, . . . ,M}, tj ∈ R+ and 0 6 t1 6 t2 . . . 6 T .

In the above event representation of continuous-time coevolving graphs, the tem-

poral information is preserved precisely. Furthermore, this event representation also

preserves the ordering of the occurrence of dynamic edges, and it allows multiple

edges with potentially different types to be formed between a pair of entities.

4.2.2 Unrolling Continuous-time Coevolving Graphs

In order to define the deep coevolutionary network, we will design a key network

transformation in this section (Figure 4.1). We call this transformation the unrolling

of a continuous-time coevolving graph. Since the dynamic edges in our continuous-

time evolving graph is ordered, we will unroll the graph by operating on one dynamic

edge event at a time. Every time when a new event happens, the node representa-

tions of each entity involved in the event will be duplicated to reflect the evolution.

Specifically, in a high level, each such edge event will lead to four directed edges in

the unrolled graph, and two duplicated nodes in the unrolled graph. Two edges will
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Figure 4.1: Unrolling transformation for a continuous-time evolving graph. Each
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unrolled graph, and 2 duplicated nodes in the unrolled graph. For instance, edge
event (Jacob, ball, 10.15am, purchase) will be unrolled into edge 1, 2, 3, 4 in the
figure and a duplicated Jacob node and a ball node.

point from the latest nodes to the corresponding duplicated nodes, and the other

two edges will point across. More specifically, the algorithm to produce the unrolled

graph is as follows:

1. Given a continuous-time evolving graph G = (V , E ,Y).

2. Initialize the unrolled graph as G̃ = (Ṽ = ∅, Ẽ = ∅).

3. t0 = 0.

4. For each v ∈ V ,

Create its duplication ṽ(0) and let Ṽ = Ṽ ∪ ṽ(0).

5. For n = 1 . . . , N ,

Retrieve the corresponding dynamic edge event en = (sn, on, rn, tn, qn) ∈ E ;

Relabel the nodes with time stamp as sn 7→ s̃n(tn) and on 7→ õn(tn) respectively;

Add node Ṽ = Ṽ ∪ {s̃n(tn), õn(tn)};
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Add edge

Ẽ = Ẽ ∪ { < s̃n(tn−), s̃n(tn) >, < õn(tn−), õn(tn) >,

< s̃n(tn−), õn(tn) >, < õn(tn−), s̃n(tn) > }

* here the notation ṽ(t−) = ṽ(Γ(v,t)), where Γ(v, t) = arg max{τ : τ < t, ṽ(τ) ∈

Ṽ}. In other words, it refers to the latest duplication of node v before time

t, and Γ(v, t) is the time stamp of the corresponding event.

The benefit of such unrolling operation is that the unrolled graph still preserve order of

the dynamic edge events. Furthermore, the horizontal edges capture self-evolution of

entities, while cross edges capture the coevolution/mutual influence between entities,

allowing information to pass along the unrolled network. One can also make ana-

logue between the unrolled graph to dynamic Bayes Networks from graphical model.

Instead of defining dynamic Bayes Networks, we will define our deep coevolutionary

network architecture based the unrolled graph.

4.2.3 Deep Coevolutionary Networks

In our framework, we user the low-dimension vector fv(t) ∈ Rd to represent the latent

feature embedding of entity v ∈ V at time t. As we described in previous sections,

these embedding vectors will change over time. Specifically, we model the evolution

of embeddings using two symmetric update functions, g(s) and g(o), for subject and

object entities, respectively. These embeddings are initialized as 0, and then the

updates are carried out whenever an event happens between pairs of entities. The

amount of the updates are determined by neural networks which aggregates historical

information of entity embeddings, interaction time and context.

With the help of unrolled coevolving graph, the continuous time evolution of each

node embeddings can be characterized as the embedding of each duplication node in
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the unrolled graph G̃. Each time when an event happens, the embeddings of those

involved entities will change. So it suffices to define the evolution after each event.

The abstract form of the two parallel feature embedding updates are as follows.

DeepCoevolve:

When an event en = (sn, on, rn, tn, qn) happens, the newly created duplication s̃n(tn)

and õn(tn) carries the evolution embedding of node sn and on in the following way:

Subjects’ embedding update. Embedding of s̃n(tn) ∈ Ṽ corresponds to the em-

bedding of entity sn at time tn, thus we have:

f(s̃n(tn)) = fsn(tn) = g(s)

(
(tn − Γ(sn, tn))︸ ︷︷ ︸

drift

, f(s̃n(tn−))︸ ︷︷ ︸
self evolution

, f(õn(tn−))︸ ︷︷ ︸
object feature

, rn, qn︸ ︷︷ ︸
interaction

)

(4.1)

Objects’ embedding update. Embedding of õn(tn) ∈ Ṽ corresponds to the embed-

ding of entity on at time tn, thus we have:

f(õn(tn)) = fon(tn) = g(o)

(
(tn − Γ(on, tn))︸ ︷︷ ︸

drift

, f(õn(tn−))︸ ︷︷ ︸
self evolution

, f(s̃n(tn−))︸ ︷︷ ︸
subject feature

, rn, qn︸ ︷︷ ︸
interaction

)

(4.2)

Each of the two equation incorporates four terms: temporal drift, self evolution,

coevolution and interaction features. The rationale for designing these terms is ex-

plained below:

Temporal drift. The first term is defined based on the time difference between

consecutive events of specific entity. It allows the entities’ basic feature (e.g., user

profile) to smoothly change over time. Such changes of basic features normally are

caused by external influences.

Self evolution. The current entity feature should also be influenced by its own

feature at the earlier time. This captures the intrinsic evolution of entity features.
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Figure 4.2: Parameterization adapted for different applications. (a) Coevolutionary
process for user/item embeddings. (b) Coevolutionary process for subject and object
embeddings in temporal knowledge graph.

For example, in recommendation systems, a user’s current interest should be related

to his/her interest two days ago; in knowledge graphs, a country’s status is highly

dependent to its diplomatic history.

Entity coevolution. This term captures the phenomenon that subject and ob-

ject entity embeddings are mutually dependent on each other. The coevolving ex-

amples in many applications including recommendation and knowledge completion is

explained in Section 4.1.

Interaction features. The interaction feature is the additional information hap-

pened in the entity interactions. For example, in online discussion forums such as

Reddit, the interaction features are the posts and comments. In temporal knowledge

graphs, the features are the actual relation type. This term models influence of inter-

action context. For example, if two countries have tense relationships, they are more

likely to engage in conflicts.

Examples instantiations. We will elaborate how to apply the general DeepCo-

evolve framework to different applications, including recommendation systems and

temporal knowledge graph reasoning. We show that by instantiating (4.1) and (4.2),

we can easily apply the general framework to these applications. Figure 4.2 summa-

rizes the adaptation to each application.
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Time sensitive recommendation

In the temporal recommendation system, each event en = (sn, on, rn, tn, qn) represents

an interaction with type rn between user sn and item on at time tn. The rich feature

qn can be the review text posted by the user, or simply some background information

of corresponding user/item. In this setting we have |Y| = 1, i.e., only one event type.

Thus we omit rn here. Since it is essentially a bipartite graph, the users will only

appear as subject, while items will only appear as object in this event.

Specifically, we use the following form to parameterize the users’ and items’ em-

bedding process:

Users’ embedding process:

f(s̃n(tn)) = fsn(tn) = σ
(
W1(tn − Γ(sn, tn)) +W2f(s̃n(tn−)) +W3f(õn(tn−)) +W4qn

)
(4.3)

Items’ embedding process:

f(õn(tn)) = fon(tn) = σ
(
V1(tn−Γ(on, tn))+V 2f(õn(tn−))+V3f(s̃n(tn−))+V4qn

)
(4.4)

Here the parameter set is θ = {W1−4,V1−4}, whereW4,V4 ∈ Rd×q are the embedding

matrices mapping from the explicit high-dimensional feature space into the low-rank

latent feature space andW1,V1 ∈ Rd, W2,V2,W3,V3 ∈ Rd×d are weights parameters.

σ(·) is activation function, such as commonly used Tanh or Sigmoid function. For

simplicity, we use basic recurrent neural network to formulate the recurrence struc-

ture, but it is also straightforward to design more sophisticated structured using GRU

or LSTM to gain more expressive power.
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Temporal Reasoning for Dynamic Knowledge Graphs

In this application, the edge type rn in event en encodes the actual relation type

between subject and object. Each entity v ∈ V can either be subject or object. The

feature update of entity v depends on whether it appears as subject or object which

helps to capture the direction:

Subjects’ embedding process: if entity appears as subject,

f(s̃n(tn)) = fsn(tn) = σ
(
Ws

t(tn−Γ(sn, tn))+Whhσ
(
Wh[f(s̃n(tn−))⊕f(õn(tn−))⊕W rrn]

))
(4.5)

where A⊕B := [A,B] represents the matrix concatenation operator.

Objects’ embedding process: if entity appears as object,

f(õn(tn)) = fon(tn) = σ
(
Wo

t (tn−Γ(on, tn))+Whhσ
(
Wh[f(õn(tn−))⊕f(s̃n(tn−))⊕W rrn]

))
(4.6)

The parameter set is θ = {W s
t ,W

o
t ,W

hh,W h}, where Ws
t,W

o
t ∈ Rd, Whh ∈

Rd×l and Wh ∈ Rl×(2d+c) are weight parameters in network learned during training.

Ws
t,W

o
t captures variation in temporal drift for subject and object respectively. Whh

is shared parameter that captures recurrent participation effect for each entity. Wh

is a shared projection matrix applied to consider the compatibility of entities in their

previous relationships. Wr ∈ Rc×r is the relationship embedding matrix (r is # of

relationships).

4.2.4 Understanding Coevolutionary Embeddings

Although the recurrent updates in (4.1) and (4.2) involve only the subject and ob-

ject entity pairs directly participating in that specific interaction, the influence of a

particular entity can propagate very far into the entire graph.

For example, in recommendation system, a user’s feature embedding can influence
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Figure 4.3: (a) The arrows indicate the dependency structures in the embedding up-
dates, e.g., Jacob interacts with basketball at 10:15am. Then the feature embeddings
are updated: the new feature embedding at 10:15 am is influenced by his previous
feature embedding and the basketball’s previous feature embedding at 9:45am (arrow
1 and 2); the basketball’s feature embedding is also influenced by Jacob’s previous
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the item feature embedding he directly interacts with, then modified item feature em-

bedding can influence a different user who purchases that item in a future interaction

event, and so on and so forth through the entire network. Such cascading effect is

illustrated in Figure 4.3(a).

Since the feature embedding updates are event driven, the entities’ feature em-

bedding processes are piecewise constant functions of time. These embeddings are

changed only if an interaction event happens. In Figure 4.3(b), a user’s attribute

changes only when he has a new interaction with some item. This is reasonable since

a user’s taste for music changes only when he listens to some new or old musics.

Similarly, an item’s attribute changes only when some user interacts with it.

4.2.5 Intensity Function as the Compatibility between Embeddings

In our paper, we use the generative multidimensional point process to capture the

underlying properties in temporal graphs. Specifically, we build M ×M × Y dimen-

sional process. Each dimension can be represented by a triplet (s, o, r) ∈ V × V × Y .
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Mathematically, we model the intensity function in the (s, o, r)-th dimension (subject

s and object o with type r) as a Rayleigh process:

λs,o,r(t|t′) = exp
(
fs(t

′)>Rrfo(t
′)
)︸ ︷︷ ︸

subject-object-edge type compatibility

· (t− t′)︸ ︷︷ ︸
time lapse

(4.7)

where t > t′, and t′ is the last time point where any entity’s embedding changes

before time t. Rr ∈ Rd×d,∀r ∈ Y is used for bilinear computation of similarity. The

rationale behind this formulation is as follows:

Time as a random variable. Instead of discretizing the time into epochs

as traditional methods [11, 71, 74, 75, 76], we explicitly model the timing of each

interaction event as a random variable, which naturally captures the heterogeneity of

the temporal interactions between entities.

Short term preference. The probability for subject s to interact with object

o depends on the compatibility of their instantaneous embeddings and the event

type r, which is evaluated through the bilinear transformation at the last event time

t′. Because fs(t) and fo(t) co-evolve through time, their inner-product measures a

general representation of the cumulative influence from the past interactions to the

occurrence of the current event. The exp(·) function ensures the intensity is positive

and well defined.

Rayleigh time distribution. The entity embeddings are piecewise constant,

and we use the time lapse term to make the intensity piecewise linear. This form

leads to a Rayleigh distribution for the time intervals between consecutive events

in each dimension. It is well-adapted to modeling fads [54], where the likelihood of

generating an event rises to a peak and then drops extremely rapidly. Furthermore,

it is computationally easy to obtain an analytic form of this likelihood. One can then

use it to make item recommendation by finding the dimension that the likelihood

function reaches the peak.
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4.3 Efficient Learning for Deep Coevolutionary Network

In this section, we will first introduce the objective function, and then propose an

efficient learning algorithm for the generative multidimensional point process model.

4.3.1 Objective Function

With the parameterized intensity function in (4.7), we can sample events according to

it. Due to the interdependency between the feature embeddings and the propagation

of influence over the interaction network, the different dimensions of the point process

can intricate dependency structure. Such dependency allows sophisticated feature

diffusion process to be modeled.

Given a sequence of events observed in real world, we can further estimate the

parameters of the model by maximizing the likelihood of these observed events. Given

a set of N events, the joint negative log-likelihood can be written as [60]:

` = −
N∑
j=1

log (λsn,on,rn(tn|t′n))︸ ︷︷ ︸
happened events

+
M∑
s=1

M∑
o=1

Y∑
r=1

∫ T

0

λs,o,r(τ |τ ′) dτ︸ ︷︷ ︸
survival of not-happened events

(4.8)

We can interpret it as follows: (i) the negative intensity summation term ensures the

probability of all interaction events is maximized; (ii) the second survival probability

term penalizes the non-presence of an interaction between all possible triplets on the

observation window. Hence, our framework not only explains why an event happens,

but also why an event did not happen.

Due to the co-evolution nature of our model, it is a very challenging task to learn

the model parameters since the temporal dynamic graph is time-varying. Next, we

will design an efficient learning algorithm for our model.
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Figure 4.4: (a) Survival probability for a user s and item o. The integral
∫ T

0
λs,o(τ)dτ

is decomposed into four inter-event intervals separated by {t0, · · · , t3}. (b) Item
recommendation using the score of likelihood between user and item pairs (s, o) at
specific time t.

4.3.2 Efficient Learning Algorithm

We propose an efficient algorithm to learn the set of model parameter θ and {Ri}Yi=1.

The Back Propagation Through Time (BPTT) is the standard way to train a RNN.

To make the back propagation tractable, one typically needs to do truncation during

training. However, due to the novel co-evolutionary nature of our model, all the

events are related to each other by the temporal dynamic graph, which makes it hard

to decompose.

Hence, in sharp contrast to works [80, 81] in sequential data where one can easily

break the sequences into multiple segments to make the BPTT trackable, it is a

challenging task to design BPTT in our case. To efficiently solve this problem, we

first order all the events globally and then do mini-batch training in a sliding window

fashion. Each time when conducting feed forward and back propagation, we take the

consecutive events within current sliding window to build the dynamic computational

graph. Thus in our case the truncation is on the global timeline, compared with the

trucation on individual independent sequences in prior works.

Next, we explain our procedure in detail. Given a mini-batch of K ordered events
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Õ = {en}Kn=1, we set the time span to be [T0 = t1, T = tK ]. Below we show how to

compute the intensity and survival probability term in the objective function (4.8)

respectively.

Computing the intensity function. Each time when a new event en hap-

pens between user sn and item on, their corresponding feature embeddings will evolve

according to a computational graph. Figure 4.3(a) shows an illustration in the recom-

mendation system setting. Due to the change of feature embedding, all the dimensions

related to sn or on are also influenced and the intensity functions for these dimensions

change consequently. In our implementation, we first compute the corresponding in-

tensity λsn,on,rn(tn|t′n) according to (4.7), and then update the embedding of sn and

on. This operation takes O(K) complexity, and is independent to the number of

entities.

Computing the survival function. To compute −
∫ T
T0
λs,o,r(τ |τ ′)dτ for each

triplet (s, o, r), we first collect all the time stamps {tk} that have events related to

either s or o. For notation simplicity, let |{tk}| = ns,o and t1 = T0, tns,o = T . Since the

embeddings are piecewise constant, the corresponding intensity function is piecewise

linear according to (4.7). Thus, the integration is decomposed into each time interval

where the intensity is linear, i.e.,

∫ T

T0

λs,o,r(τ |τ ′)dτ =

ns,o,r−1∑
k=1

∫ tk+1

tk

λs,o,r(τ |τ ′)dτ (4.9)

=

ns,o−1∑
k=1

(t2k+1 − t2k) exp
(
fs(tk)

>Rrfo(tk)
)

(4.10)

Figure 4.4(a) illustrates the details of computation in the recommendation system

setting.

Although the survival probability term exists in closed form, it is still expensive to

compute it for each possible triplet. Moreover, since such interaction in the temporal

dynamic graph is very sparse, it is not necessary to monitor each dimension in the
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Algorithm 4 Learning Coevolutionary Process

Input: Dynamic graph G = (V , E ,Y)
Initialize parameters in the set θ randomly.
for i = 1 to max iterations do

Sample K consecutive event edges {en}k+K
n=k uniform randomly from G.

Construct unrolled graph G̃ for the current mini-batch events as in Sec 4.2.2.
for j = k to k +K do

Update embeddings of f(s̃j(tj)) and f(õj(tj)) according to Eq 4.1 and Eq 4.2.
end for
Compute loss function l̃ which approximates the true data likelihood in Eq 4.8.
Update θi = θi−1 + λi∇θi−1 l̃.

end for
return θ

stochastic training setting. To speed up the computation, we use a random-sampling

scheme as follows.

Note that the intensity term in the objective function (4.8) tries to maximize

the bilinear term among (subject, object, type) triplet that has interaction event,

while the survival term normalizes over all such triplets. We observe that this is

similar to Softmax computing for classification problem. Hence, inspired by the noise-

contrastive estimation method (NCE) [82] that is widely used in language models [83],

we keep the dimensions that have events on them, while randomly sample dimensions

without events in current mini-batch to speed up the computation.

Finally, another challenge in training lies in the fact that the entity interactions

vary a lot across mini-batches, hence the corresponding computational graph also

changes greatly. To make the training efficient, we use the graph embedding frame-

work [84] which allows training deep learning models where each term in the objective

has a different computational graphs but with shared parameters. The Adam Opti-

mizer [85] and gradient clip is used in our experiment.
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4.4 Prediction with DeepCoevolve

Since we use DeepCoevolve to model the intensities of multivariate point processes,

our model can make two types of predictions, namely the entity prediction and event

time prediction. The precise event time prediction is especially novel and not possible

by most prior work. More specifically,

Entity prediction. Many applications can be modeled as entity prediction in

a graph. The key to the prediction is a ranking function which uses the conditional

likelihood

ps,o,r(t) = λs,o,r(t)Ss,o,r(t) (4.11)

Next we discuss two applications:

• Next item prediction in recommendation system. Given a pair of user and time

(s, t), we aim at answering the following question: what is the item the user s will

interact at time t? To answer this problem, we rank all items in the descending

order in term of the value of the corresponding conditional density at time t, and

the best prediction is made to the item with the largest conditional density. Using

this formulation, at different point in time, a different prediction/recommendation

can be made, allowing the prediction to be time-sensitive. Figure 4.4(b) illustrates

such scenario.

• Link prediction in dynamic knowledge graphs. Given a test triplet (s, r, t), we aim

at predicting the object that involves in this relationship r with subject s at time

t. Again we use (4.11) to rank all the candidate objects. We also conduct testing

after applying the filtering techniques described in [86] - we only rank against the

entities that do not generate a true triplet (seen in train) when it replaces ground

truth object.

Time prediction. Given a triplet (s, o, r), we aim at answering the following

question: When this subject will interact with this object with event type r in the
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future? We predict this quantity by computing the expected next event time under

ps,o,r(t). Since the intensity model is a Rayleigh model, the expected event time can

be computed in closed form as

Et∼ps,o,r(t)[t] =

√
π

2 exp (fs(t−)>Rrfo(t−))
(4.12)

4.5 Complexity Analysis

In this section, we provide an in depth analysis of our approach in terms of the model

size, the training and testing complexity. We measure these terms as functions of the

number of entities and the number of events. Other factors, such as dimensionality

of latent representations, are treated as constant.

Model size. If the baseline profile feature for entities are not available, we can use

one-hot representation of those entities, and the basic feature embedding takes O(M)

parameters. The interaction features (e.g., bag of words features for reviews) are

independent of the number of users and number of items. Moreover, the parameters

of RNN are also independent of the dataset. Thus, our model is as compact as the

traditional matrix factorization methods.

Training complexity. Using BPTT with a budget limit, each mini-batch train-

ing will only involve consecutive K samples. When an event happens, the embeddings

of the corresponding dimension are updated. Thus we need O(K) operations for up-

dating embeddings. For each dimension triplet (s, o, r) that has event on it, we use

NCE to sample C dimensions that survive from last event to current event as men-

tioned in Section 4.3. This allows us to further reduce the computational cost to

O(C ×K). Thus in summary, each stochastic training step takes O(M) cost, which

is linear to the number of samples in mini-batch.

Prediction complexity. The entity prediction in (4.11) requires comparing

each entity with the current partial information. Since (4.11) has a closed form,
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the complexity is O(M) where M is the number of entities. This can further be

improved by other methods such as fast inner product search [87]. Since the event

time prediction in (4.12) is in closed form, the complexity for this is O(1).

4.6 Experiments

Our DeepCoevolve model can be applied to any application where there is a continuous-

time evolving graph, in this section we focus on the temporal knowledge graph rea-

soning problem.

We use two datasets: Global Database of Events, Language, and Tone (GDELT)

[88] and Integrated Crisis Early Warning System (ICEWS) [89]. GDELT data is

collected from April 1, 2015 to Mar 31, 2016 (temporal granularity of 15 mins).

ICEWS dataset is collected from Jan 1, 2014 to Dec 31, 2014 (temporal granularity

of 24 hrs). Both datasets contain records of events that include two actors, action type

and timestamp of event. We use different hierarchy of actions in two datasets - (top

level 20 relations for GDELT while last level 260 relations for ICEWS) - to test on

variety of knowledge tensor configurations. Note that this does not filter any record

from the dataset. We process both datasets to remove any duplicate quadruples,

any mono-actor events (i.e., we use only dyadic events), and self-loops. We report

our main results on full versions of each dataset. We create smaller version of both

datasets for exploration purposes. Table 4.1 provides statistics about the data and

Table 4.2 demonstrates the sparsity of knowledge tensor.

We use the same evaluation metrics as these in the experiments on recommenda-

tion systems in the previous chapter.

• Link prediction metric. We report Mean Absolute Rank (MAR), Standard Devi-

ation for MAR and HITS@10 (correct entity in top 10 predictions) for both Raw

and Filtered Versions.

• Time prediction metric. We report the Mean Absolute Error (MAE) between the
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predicted and true time in hours.

4.6.1 Competitors

We compare with following relational learning methods: RESCAL [90], Neural Tensor

Network (NTN) [91], Multiway Neural Network (ER-MLP) [92], TransE [86] and

TransR [93]. To the best of our knowledge, there are no existing relational learning

approaches that can predict time for a new fact. Hence we devised two baseline

methods for evaluating time prediction performance:

• Multi-dimensional Hawkes process (MHP): We model dyadic entity interactions as

multi-dimensional Hawkes process similar to [5]. Here, an entity pair constitutes

a dimension and for each pair we collect sequence of events on its dimension and

train and test on that sequence. Relationship is not modeled in this setup.

• Recurrent Temporal Point Process (RTPP): We implement a simplified version of

RMTPP [81] where we do not predict the marker. For training, we concatenate

static entity and relationship embeddings and augment the resulting vector with

temporal feature. This augmented unit is used as input to global RNN which

produces output vector ht. During test time, for a given triplet, we use this vector

ht to compute conditional intensity of the event given history which is further used

to predict next event time.

4.6.2 Experimental Results on Real-world Data

Link prediction. Figure (4.5, 4.6, 4.7) demonstrate link prediction performance

comparison on both datasets. Our method (Know-Evolve) significantly and consis-

tently outperforms all competitors in terms of prediction rank without any deteriora-

tion over time. Neural Tensor Network’s second best performance compared to other

baselines demonstrate its rich expressive power but it fails to capture the evolving

dynamics of intricate dependencies over time. This is further substantiated by its
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Table 4.1: Statistics of Each Dataset.
Dataset Name # Entities # Relations # Events

GDELT-full 14018 20 31.29M
GDELT-500 500 20 3.42M
ICEWS-full 12498 260 0.67M
ICEWS-500 500 256 0.45M

Table 4.2: Sparsity of Knowledge Tensor.

Dataset Name # Possible Entries # Available Entries % Proportion

GDELT-full 3.93B 4.52M 0.12
GDELT-500 5M 0.76M 15.21
ICEWS-full 39.98B 0.31M 7e-3
ICEWS-500 64M 0.15M 0.24
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Figure 4.5: Mean Average Rank (MAR) for Entity Prediction on both datasets.

decreasing performance as we move test window further in time.

The second row represents deviation for MAR across samples in a given test

window. Our method achieves significantly low deviation error. Finally, high perfor-

mance on HITS@10 metric demonstrates extensive discriminative ability of Know-

Evolve. For instance, GDELT has only 20 relations but 32M events where many

entities interact with each other in multiple relationships. In this complex setting,

other methods depend only on static entity embeddings to perform prediction unlike

our method which does effectively infers new knowledge using powerful evolutionary

network and provides accurate prediction results.

Time prediction. Figure 4.8 demonstrates that Know-Evolve performs signifi-

cantly better. MHP uses a specific parametric form of the intensity function which
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Figure 4.6: Standard Deviation (STD) in MAR for entity prediction on both datasets.
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Figure 4.7: HITS@10 for entity prediction on both datasets.

limits its expressiveness. Further, each entity pair interaction is modeled as an inde-

pendent dimension and does not take into account relational feature which fails to

capture the intricate influence of different entities on each other. On the other hand,

RTPP uses relational features as part of input, but it sees all events globally and can-

not model the intricate evolutionary dependencies on past events. We observe that

our method effectively captures such non-linear relational and temporal dynamics.

Sliding window training. We further partition our test set in 12 different slides

and report results in each window. For both datasets, each slide included 2 weeks

of time. Unlike competitors, the entity embeddings in our model get updated after

every event in the test, but the model parameters remain unchanged after training.

To balance out the advantage that this may give to our method, we explore the use

of sliding window training paradigm for baselines: We train on first six months of

dataset and evaluate on the first test window. Next we throw away as many days (2

weeks) from start of train set as found in test set and incorporate the test data into

training. We retrain the model using previously learned parameters as warm start.
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Figure 4.9: Performance comparison of sliding window vs. non-sliding window train-
ing on GDELT-500 data.

This can effectively aid the baselines to adapt to the evolving knowledge over time.

Figure 4.9 shows that the sliding window training contributes to stable performance of

baselines across the time window (i.e.the temporal deterioration is no longer observed

significantly for baselines). But the overall performance of our method still surpasses

all the competitors.

Recurrent facts vs. new facts. One fundamental distinction in our multi-

relational setting is the existence of recurrence relations which is not the case for

traditional knowledge graphs. To that end, we compare our method with the best

performing competitor - NTN on two different testing setups: 1) only Recurrent Facts

in test set, and 2) only New facts in test set. We call a test fact “new” if it was never

seen in training. As one can expect, the proportion of new facts will increase as we
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Figure 4.10: Comparison with NTN over recurrent and non-recurrent test version on
GDELT-500.

move further in time. In our case, it ranges from 40%-60% of the total number of

events in a specific test window. Figure 4.10 demonstrates that our method performs

consistently and significantly better in both cases.

4.7 Summary

In this chapter, we have proposed an expressive and efficient framework to model the

nonlinear coevolution nature of users’ and items’ embeddings. Moreover, the user and

item’s evolving and coevolving processes are captured by a novel recurrent evolving

network. We further developed an efficient stochastic training algorithm for the coe-

volving user-item networks. We demonstrate the superior performance of our method

on both the time and item prediction task in the application of temporal reasoning in

knowledge graphs. They achieve the state of the art predictive performance compared

with the epoch based methods. There are many interesting lines for future work. For

example, we can extend it to other applications in social sciences, such as modeling

the group dynamics in message services. We can also apply this framework to design

more explainable models by exploiting the idea of modeling a fine-grained evolving

network. Our stochastic training algorithm can also be applied in many applications

to improve the efficiency in the dynamic computation for graphs and hyper-graphs.

We have designed expressive models to understand users’ temporal behaviors in
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various applications, such as recommendation systems and knowledge graph reason-

ing. Besides the modeling perspective, another key question is how to fully exploit

these learned point process models and predict users’ temporal behaviors in the fu-

ture. In the next chapter, we will discuss our principled solution to this challenging

problem.
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CHAPTER 5

SCALABLE USER ACTIVITY LEVEL PREDICTION IN POINT

PROCESS MODELS

5.1 Introduction

Online social platforms, such as Facebook and Twitter, enable users to post opinions,

share information, and influence peers. Recently, user-generated event data archived

in fine-grained temporal resolutions are becoming increasingly available, which calls

for expressive models and algorithms to understand, predict and distill knowledge

from complex dynamics of these data. Particularly, temporal point processes are

well-suited to model the event pattern of user behaviors and have been successfully

applied in modeling event sequence data [1, 2, 3, 4, 5, 8, 9, 94, 95, 96, 97].

A fundamental task in social networks is to predict user activity levels based on

learned point process models. Mathematically, the goal is to compute E[f(N(t))],

where N(t) is a given point process that is learned from user behaviors, t is a fixed

future time, and f is an application-dependent function. A framework for doing this is

critically important. For example, for social networking services, an accurate inference

of the number of reshares of a post enables the network moderator to detect trending

posts and improve its content delivery networks [98, 99]; an accurate estimate of

the change of network topology (the number of new followers of a user) facilitates the

moderator to identify influential users and suppress the spread of terrorist propaganda

and cyber-attacks [4]; an accurate inference of the activity level (number of posts in

the network) allows us to gain fundamental insight into the predictability of collective

behaviors [100]. Moreover, for online merchants such as Amazon, an accurate estimate

of the number of future purchases of a product helps optimizing future advertisement
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placements [1, 5].

Despite the prevalence of prediction problems, an accurate prediction is very chal-

lenging for two reasons. First, the function f is arbitrary. For instance, to evaluate

the homogeneity of user activities, we set f(x) = x log(x) to compute the Shannon

entropy; to measure the distance between a predicted activity level and a target x∗,

we set f(x) = (x− x∗)2. However, most works [28, 101, 98, 102, 103, 99] are problem

specific and only designed for the simple task with f(x) = x; hence these works are

not generalizable. Second, point process models typically have intertwined stochas-

ticity and can co-evolve over time [1, 4], e.g., in the influence propagation problem,

the information diffusion over networks can change the structure of networks, which

adversely influences the diffusion process [4]. However, previous works often ignore

parts of the stochasticity in the intensity function [6] or make heuristic approxima-

tions [98, 99]. Hence, there is an urgent need for a method that is applicable to an

arbitrary function f and keeps all the stochasticity in the process, which is largely

nonexistent to date.

We propose Hybrid, a generic framework that provides an efficient estimator of

the probability mass of point processes. Figure 5.1 illustrates our framework. We

also make the following contributions:

• Unifying framework. Our framework is applicable to general point processes and

does not depend on specific parameterization of intensity functions. It incorporates

all stochasticity in point processes and is applicable to prediction tasks with an

arbitrary function f .

• Technical challenges. We reformulate the prediction problem and design a ran-

dom variable with reduced variance. To derive an analytical form of this random

variable, we also propose a mass transport equation to compute the conditional

probability mass of point processes. We further transform this equation to an

Ordinary Differential Equation and provide a scalable algorithm.
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Figure 5.1: An illustration of Hybrid using Hawkes process. Our method first gener-
ates two samples {Hi

t−} of events; then it constructs intensity functions; with these in-

puts, it computes conditional probability mass functions φ̃i(x, s) := P[N(s) = x|Hi
s− ]

using a mass transport equation. Panel (c) shows the transport of conditional mass
at four different times (the initial probability mass φ̃(x, 0) is an indicator function
I[x = 0], as there is no event with probability one). Finally, the average of conditional
mass functions yields our estimator of the probability mass.

• Superior performance. Our framework significantly reduces the sample size to

estimate the probability mass function of point processes in real-world applications.

For example, to infer the number of tweeting and retweeting events of users in the

co-evolution model of information diffusion and social link creation [4], our method

needs 103 samples and 14.4 minutes, while Monte Carlo needs 106 samples and 27.8

hours to achieve the same relative error of 0.1.

Background on Monte Carlo (MC). To compute the probability mass of a

point process, MC simulates n realizations of history {Hi
t} using the thinning al-

gorithm [59]. The number of events in sample i is defined as N i(t) = |Hi
t|. Let

φ(x, t) := P[N(t) = x], where x ∈ N, be the probability mass. Then its es-

timator φ̂mcn (x, t) and the estimator µ̂mcn (t) for µ(t) := E[f(N(t))] are defined as

φ̂mcn (x, t) = 1
n

∑
i I[N i(t) = x] and µ̂mcn (t) = 1

n

∑
i f(N i(t)). The root mean square

error (RMSE) is defined as

ε(µ̂mcn (t)) =
√

E[µ̂mcn (t)− µ(t)]2 =
√

VAR[f(N(t))]/n. (5.1)
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5.2 Solution Overview

Given an arbitrary point process N(t) that is learned from data, existing prediction

methods for computing E[f(N(t))] have three major limitations:

• Generalizability. Most methods [28, 101, 98, 102, 103, 99] only predict E[N(t)]

and are not generalizable to an arbitrary function f . Moreover, they typically

rely on specific parameterizations of the intensity functions, such as the reinforced

Poisson process [98] and Hawkes process [104, 99]; hence they are not applicable to

general point processes.

• Approximation and heuristics. These works also ignore parts of the stochas-

ticity in the intensity functions [6] or make heuristic approximations to the point

process [98, 99]. Hence the accuracy is limited by the approximations and heuristic

corrections.

• Large sample size. The MC method overcomes the above limitations since it

has an unbiased estimator of the probability mass. However, the high stochasticity

in point processes leads to a large value of VAR[f(N(t))], which requires a large

number of samples to achieve a small error.

To address these challenges, we propose a generic framework with a novel estimator

of the probability mass, which has a smaller sample size than MC. Our framework

has the following key steps.

I. New random variable. We design a random variable g(Ht−), a conditional

expectation given the history. Its variance is guaranteed to be smaller than that of

f(N(t)). For a fixed number of samples, the error of MC is decided by the variance of

the random variable of interest, as shown in (5.1). Hence, to achieve the same error,

applying MC to estimate the new objective EHt− [g(Ht−)] requires smaller number of

samples compared with the procedure that directly estimates E[f(N(t))].

II. Mass transport equation. To compute g(Ht−), we derive a differential-
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difference equation that describes the evolutionary dynamics of the conditional prob-

ability mass P[N(t) = x|Ht− ]. We further formulate this equation as an Ordinary

Differential Equation, and provide a scalable algorithm.

5.3 Hybrid Inference Machine with Probability Mass Transport

In this section, we present technical details of our framework. We first design a new

random variable for prediction; then we propose a mass transport equation to compute

this random variable analytically. Finally, we combine the mass transport equation

with the sampling scheme to compute the probability mass function of general point

processes and solve prediction tasks with an arbitrary function f .

5.3.1 New Random Variable with Reduced Variance

We reformulate the problem and design a new random variable g(Ht−), which has

a smaller variance than f(N(t)) and the same expectation. To do this, we express

E[f(N(t))] as an iterated expectation

E[f(N(t))] = EHt−
[
EN(t)|Ht−

[
f(N(t))|Ht−

]]
= EHt−

[
g(Ht−)

]
, (5.2)

where EHt− is w.r.t. the randomness of the history and EN(t)|Ht− is w.r.t. the ran-

domness of the point process given the history. We design the random variable as a

conditional expectation given the history: g(Ht−) = EN(t)|Ht− [f(N(t))|Ht− ]. Theo-

rem 6 shows that it has a smaller variance.

Theorem 7. For time t > 0 and an arbitrary function f , we have VAR[g(Ht−)] <

VAR[f(N(t))].

Theorem 7 extends the Rao-Blackwell (RB) theorem [105] to point processes. RB

says that if θ̂ is an estimator of a parameter θ and T is a sufficient statistic for

θ; then VAR[E[θ̂|T ]] 6 VAR[θ̂], i.e., the sufficient statistic reduces uncertainty of
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θ̂. However, the RB theorem is not applicable to point processes since it studies a

different problem (improving the estimator of a distribution’s parameter), while we

focus on the prediction problem for general point processes, which introduces two

new technical challenges:

(i) Is there a definition in point processes whose role is similar to the sufficient

statistic in RB? Our first contribution shows that the history Ht− contains all the

necessary information in a point process and reduces the uncertainty of N(t). Hence,

g(Ht−) is an improved variable for prediction. Moreover, in contrast to the RB the-

orem, the inequality in Theorem 6 is strict because the counting process N(t) is

right-continuous in time t and not predictable [106] (a predictable process is mea-

surable w.r.t. Ht− , such as the processes that are left-continuous). Appendix B.2

contains details on the proof.

(ii) Is g(Ht−) computable for general point processes and an arbitrary function f?

An efficient computation will enable us to estimate EHt− [g(Ht−)] using the sampling

method. Specifically, let µ̂n(t) = 1
n

∑
i g(Hi

t−) be the estimator computed from n

samples; then from the definition of RMSE in (5.1), this estimator has smaller error

than MC: ε(µ̂n(t)) < ε(µ̂mcn (t)).

However, the challenge in our new formulation is that it seems very hard to com-

pute this conditional expectation, as one typically needs another round of sampling,

which is undesirable as it will increase the variance of the estimator. To address this

challenge, next we propose a mass transport equation.

5.3.2 Transport Equation for Conditional Probability Mass Function

We present a novel mass transport equation that computes the conditional proba-

bility mass φ̃(x, t) := P[N(t) = x|Ht− ] of general point processes. With this defini-

tion, we derive an analytical expression for the conditional expectation: g(Ht−) =∑
x f(x)φ̃(x, t). The transport equation is as follows.
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Theorem 8 (Mass Transport Equation for Point Processes). Let λ(t) := λ(t|Ht−) be

the conditional intensity function of the point process N(t) and φ̃(x, t) := P[N(t) =

x|Ht− ] be its conditional probability mass function; then φ̃(x, t) satisfies the following

differential-difference equation:

φ̃t(x, t)
↑

rate of change in mass

:=
∂φ̃(x, t)

∂t
=


−λ(t)φ̃(x, t) if x = 0

−λ(t)φ̃(x, t)︸ ︷︷ ︸
loss in mass, at rate λ(t)

+ λ(t)φ̃(x− 1, t)︸ ︷︷ ︸
gain in mass, at rate λ(t)

if x = 1, 2, 3, · · ·

(5.3)

Proof sketch. For the simplicity of notation, we set the right-hand-side of (5.3)

to be F [φ̃], where F is a functional operator on φ̃. We also define the inner product

between functions u : N → R and v : N → R as (u, v) :=
∑

x u(x)v(x). The main

idea in our proof is to show that the equality (v, φ̃t) = (v,F [φ̃]) holds for any test

function v; then φ̃t = F [φ̃] follows from the fundamental lemma of the calculus of

variations [107]. Specifically, the proof contains two parts as follows.

We first prove (v, φ̃t) = (B[v], φ̃), where B[v] is a functional operator defined as

B[v] = (v(x + 1) − v(x))λ(t). This equality can be proved by the property of point

processes and the definition of conditional mass. Second, we show (B[v], φ̃) = (v,F [φ̃])

using a variable substitution technique. Mathematically, this equality means B and

F are adjoint operators on the function space. Combining these two equalities yields

the mass transport equation. Appendix B.1 contains details on the proof.

Mass transport dynamics. This differential-difference equation describes the

time evolution of the conditional mass. Specifically, the differential term φ̃t, i.e.,

the instantaneous rate of change in the probability mass, is equal to a first order

difference equation on the right-hand-side. This difference equation is a summation

of two terms: (i) the negative loss of its own probability mass φ̃(x, t) at rate λ(t),

and (ii) the positive gain of probability mass φ̃(x − 1, t) from last state x − 1 at
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Algorithm 5 Conditional Mass Function

1: Input: Ht− = {tk}Kk=1, ∆τ , set t = tK+1

2: Output: Conditional probability mass function φ̃(t)
3: for k = 0, · · · , K do
4: Construct λ(s) and Q(s) on [tk, tk+1]
5: φ̃(tk+1) = Ode45[φ̃(tk),Q(s),∆τ)] (RK Alg)
6: end for
7: φ̃(t) = φ̃(tK+1)

Algorithm 6 Hybrid Mass Transport

1: Input: Sample size n, time t, ∆τ
2: Output: µ̂n(t), φ̂n(x, t)
3: for i = 1, · · · , n do
4: φ̃i(x, t) = Cond-Mass-Func(Hi

t− ,∆τ)
5: end for
6: φ̂n(x, t) = 1

n

∑
i φ̃

i(x, t), µ̂n(t) =
∑

x f(x)φ̂n(x, t)

rate λ(t). Moreover, since initially no event happens with probability one, we have

φ̃(x, 0) = I[x = 0]. Solving this transport equation on [0, t] essentially transports the

initial mass to the mass at time t.

5.3.3 Mass Transport as s Banded Linear Ordinary Differential Equation

To efficiently solve the mass transport equation, we reformulate it as a banded linear

ODE. Specifically, we set the upper bound for x to be M , and set φ̃(t) to be a vector

that includes the value of φ̃(x, t) for each integer x: φ̃(t) = (φ̃(0, t), φ̃(1, t), · · · , φ̃(M, t))>.

With this representation of the conditional mass, the mass transport equation in (5.3)

can be expressed as a simple banded linear ODE:

φ̃(t)′ = Q(t)φ̃(t), (5.4)

where φ̃(t)′ = (φ̃t(0, t), · · · , φ̃t(M, t))>, and the matrix Q(t) is a sparse bi-diagonal

matrix with Qi,i = −λ(t) and Qi−1,i = λ(t). The following equation visualizes the
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Figure 5.2: Illustration of Algorithm 5 using Hawkes process. The intensity is updated
after each event tk. Within [tk, tk+1], we use φ(tk) and the intensity λ(s) to solve the
ODE and obtain φ(tk+1).

ODE in (5.4) when M = 2.


φ̃t(0, t)

φ̃t(1, t)

φ̃t(2, t)

 =


−λ(t)

λ(t) −λ(t)

λ(t) −λ(t)




φ̃(0, t)

φ̃(1, t)

φ̃(2, t)

 . (5.5)

This dynamic ODE is a compact representation of the transport equation in (5.3) and

M decides the dimension of the ODE in (5.4). In theory, M can be unbounded. How-

ever, the conditional probability mass is tends to zero when M becomes large. Hence,

in practice we choose a finite support {0, 1, · · · ,M} for the conditional probability

mass function. To choose a proper M , we generate samples from the point process.

Suppose the largest number of events in the samples is L, we set M = 2L such that

it is reasonably large. Next, with the initial probability mass φ̃(t0) = (1, 0, · · · , 0)>,

we present an efficient algorithm to solve the ODE.

5.3.4 Scalable Algorithm for Solving the ODE

We present the algorithm that transports the initial mass φ̃(t0) to φ̃(t) by solving

the ODE.

Since the intensity function is history-dependent and has a discrete jump when an
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event happens at time tk, the matrix Q(t) in the ODE is discontinuous at tk. Hence

we split [0, t] into intervals [tk, tk+1]. On each interval, the intensity is continuous and

we can use the classic numerical Runge-Kutta (RK) method [108] to solve the ODE.

Figure 5.2 illustrates the overall algorithm.

Our algorithm works as follows. First, with the initial intensity on [0, t1] and φ̃(t0)

as input, the RK method solves the ODE on [0, t1] and outputs φ̃(t1). Since an event

happens at t1, the intensity is updated on [t1, t2]. Next, with the updated intensity

and φ̃(t1) as the initial value, the RK method solves the ODE on [t1, t2] and outputs

φ̃(t2). This procedure repeats for each [tk, tk+1] until time t.

Now we present the RK method that solves the ODE on each interval [tk, tk+1].

RK divides this interval into equally-spaced subintervals [τi, τi+1], for i = 0, · · · , I

and ∆τ = τi+1 − τi. It then conducts linear extrapolation on each subinterval. It

starts from τ0 = tk and uses φ̃(τ0) and the approximation of the gradient φ̃(τ0)′ to

compute φ̃(τ1). Next, φ̃(τ1) is taken as the initial value and the process is repeated

until τI = tk+1.

The RK method approximates the gradient φ̃(t)′ with different levels of accuracy,

called states s. When s = 1, it is the Euler method, which uses the first order

approximation φ̃(τi+1)−φ̃(τi)/∆τ . We use the Ode45 solver in MATLAB and choose

the stage s = 4 for RK. Moreover, the main computation in the RK method comes

from the matrix-vector product. Since the matrix Q(t) is sparse and bi-diagonal with

O(M) non-zero elements, the cost for this operation is only O(M).

5.3.5 Hybrid Inference Machine with Mass Transport Equation

With the conditional probability mass, we are now ready to express g(Ht−) in closed

form and estimate EHt− [g(Ht−)] using the MC sampling method. We present our

framework Hybrid:

(i) Generate n samples {Hi
t−} from a point process N(t) with a stochastic intensity
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λ(t).

(ii) For each sample Hi
t− , we compute the value of intensity function λ(s|Hi

s−), for each

s ∈ [0, t]; then we solve (5.4) to compute the conditional probability mass φ̃i(x, t).

(iii) We obtain the estimator of the probability mass function φ(x, t) and µ(t) by taking

the average: φ̂n(x, t) = 1
n

∑n
i=1 φ̃

i(x, t), µ̂n(t) =
∑

x f(x)φ̂n(x, t)

Algorithm 8 summarizes the above procedure. Next, we discuss two properties of

Hybrid.

First, our framework efficiently uses all event information in each sample. In fact,

each event tk influences the transport rate of the conditional probability mass (Fig-

ure 5.2). This feature is in sharp contrast to MC that only uses the information

of the total number of events and neglects the differences in event times. For in-

stance, the two samples in Figure 5.1(a) both have three events and MC treats them

equally; hence its estimator is an indicator function φ̂mcn (x, t) = I[x = 3]. However, for

Hybrid, these samples have different event information and conditional probability

mass functions, and our estimator in Figure 5.1(d) is much more informative than an

indicator function.

Moreover, our estimator for the probability mass is unbiased if we can solve the

mass transport equation in (5.3) exactly. To prove this property, we show that

the following equality holds for an arbitrary function f : (f, φ) = E[f(N(t))] =

EHt− [g(Ht−)] = (f,EHt− [φ̃]). Then EHt− [φ̂n] = φ follows from the fundamental lemma

of the calculus of variations [107]. In practice, we choose a reasonable finite support

for the conditional probability mass in order to solve the mass transport ODE in

(5.4). Hence our estimator is nearly unbiased.

5.4 Applications and Extensions to Multi-dimensional Point Processes

In this section, we present two real world applications, where the point process models

have intertwined stochasticity and co-evolving intensity functions.
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Predicting the activeness and popularity of users in social networks. The

co-evolution model [4] uses a Hawkes process Nus(t) to model information diffusion

(tweets/retweets), and a survival process Aus(t) to model the dynamics of network

topology (link creation process). The intensity of Nus(t) depends on the network

topology Aus(t), and the intensity of Aus(t) also depends on Nus(t); hence these

processes co-evolve over time. We focus on two tasks in this model: (i) inferring

the activeness of a user by E[
∑

uNus(t)], which is the number of tweets and retweets

from user s; and (ii) inferring the popularity of a user by E[
∑

uAus(t)], which is the

number of new links created to the user.

Predicting the popularity of items in recommender systems. Recent

works on recommendation systems [5, 1] use a point process Nui(t) to model user u’s

sequential interaction with item i. The intensity function λui(t) denotes user’s interest

to the item. As users interact with items over time, the user latent feature uu(t)

and item latent feature iu(t) co-evolve over time, and are mutually dependent [1].

The intensity is parameterized as λui(t) = ηui + uu(t)
>ii(t), where ηui is a baseline

term representing the long-term preference, and the tendency for u to interact with i

depends on the compatibility of their instantaneous latent features uu(t)
>ii(t). With

this model, we can infer an item’s popularity by evaluating E[
∑

uNui(t)], which is

the number of events happened to item i.

To solve these prediction tasks, we extend the transport equation to the multi-

variate case. Specifically, we create a new stochastic process x(t) =
∑

uNus(t) and

compute its conditional mass function.

Theorem 9 (Mass Transport for Multidimensional Point Processes). Let Nus(t) be

the point process with intensity λus(t), x(t) =
∑U

u=1Nus(t), and φ̃(x, t) = P[x(t) =

x|Ht− ] be the conditional probability mass of x(t); then φ̃ satisfies:

φ̃t = −
(∑

u
λus(t)

)
φ̃(x, t) +

(∑
u
λus(t)

)
φ̃(x− 1, t).
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To compute the conditional probability mass, we also solve the ODE in (5.4),

where the diagonal and off-diagonal of Q(t) is now the negative and positive summa-

tion of intensities in all dimensions.

5.5 Experiments

In this section, we evaluate the predictive performance of Hybrid in two real world

applications in Section 5.4 and a synthetic dataset. We use the following metrics:

• Mean Average Percentage Error (MAPE). Given a prediction time t, we compute

the MAPE |µ̂n(t)− µ(t)|/µ(t) between the estimated value and the ground truth.

• Rank correlation. For all users/items, we obtain two lists of ranks according to the

true and estimated value of user activeness/user popularity/item popularity. The

accuracy is evaluated by the Kendall-τ rank correlation [109] between two lists.

5.5.1 Experiments on Real-world Data

We show Hybrid has both accuracy and efficiency improvement in predicting the

activeness and popularity of users in social networks and predicting the popularity of

items in recommender systems.

Competitors. We use 103 samples for Hybrid and compare it with the following

the state of the art.

• Seismic [99]. It defines a self-exciting process with a post infectiousness factor.

It uses the branching property of Hawkes process and heuristic corrections for

prediction.

• Rpp [98]. It adds a reinforcement coefficient to Poisson process that depicts the self-

excitation phenomena. It sets dN(t) = λ(t)dt and solves a deterministic equation

for prediction.

• Fpe [6]. It uses a deterministic function to approximate the stochastic intensity

function.
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Figure 5.3: Prediction results for user activeness and user popularity. (a,b) user
activeness: predicting the number of posts per user; (c,d) user popularity: predicting
the number of new links per user. Test times are the relative times after the end of
train time. The train data is fixed with 70% of total data.

• Mc-1e3. It is the MC sampling method with 103 samples (same as these for

Hybrid), and Mc-1e6 uses 106 samples.

Predicting the activeness and popularity of users in social networks

We use a Twitter dataset [110] that contains 280,000 users with 550,000 tweet,

retweet, and link creation events during Sep. 21 - 30, 2012. This data is pre-

viously used to validate the network co-evolution model [4]. The parameters for

tweeting/retweeting processes and link creation process are learned using maximum

likelihood estimation [4]. Seismic and Rpp are not designed for the popularity pre-
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Figure 5.4: Prediction results for item popularity. (a,b) predicting the number of
watching events per program on IPTV; (c,d) predicting the number of discussions
per group on Reddit.

diction task since they do not consider the evolution of network topology. We use

p proportion of total data as the training data to learn parameters of all methods,

and the rest as test data. We make predictions for each user and report the averaged

results.

Predictive performance. Figure 5.3(a) shows that MAPE increases as test time

increases, since the model’s stochasticity increases. Hybrid has the smallest error.

Figure 5.3(b) shows that MAPE decreases as training data increases since model

parameters are more accurate. Moreover, Hybrid is more accurate than Seismic

and Fpe with only 60% of training data, while these works need 80%. Thus, we make

accurate predictions by observing users in the early stage. This feature is important
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Figure 5.5: Scalability analysis: computation time as a function of error. (a,b) com-
parison between Hybrid and Mc in different problems; (c,d) scalability plots for
Hybrid.

for network moderators to identify malicious users and suppress the propagation

undesired content.

Moreover, the consistent performance improvement shows two messages: (i) con-

sidering all the randomness is important. Hybrid is 2× more accurate than Seismic

and Fpe because Hybrid naturally considers all the stochasticity, but Seismic, Fpe,

and Rpp need heuristics or approximations that discard parts of the stochasticity;

(ii) sampling efficiently is important. To consider all the stochasticity, we need to

use the sampling scheme, and Hybrid has a much smaller sample size. Specifically,

Hybrid uses the same 103 samples, but has 4× error reduction compared with Mc-
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Figure 5.6: Rank correlation results in different problems. We vary the proportion
p of training data from 0.6 to 0.8, and the error bar represents the variance over
different training sets.

1e3. Mc-1e6 has a similar predictive performance as Hybrid, but needs 103× more

samples.

Scalability. How does the reduction in sample size improve the speed? Fig-

ure 5.5(a) shows that as the error decreases from 0.5 to 0.1, Mc has higher computa-

tion cost, since it needs much more samples than Hybrid to achieve the same error.

We include the plots of Hybrid in (c). In particular, to achieve the error of 0.1,

Mc needs 106 samples in 27.8 hours, but Hybrid only needs 14.4 minutes with 103

samples. We use the machine with 16 cores, 2.4 GHz Intel Core i5 CPU and 64 GB

memory.

Rank correlation. We rank all users according to the predicted level of active-
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ness and level of popularity separately. Figure 5.6(a,b) show that Hybrid performs

the best with the accuracy around 80%, and it consistently identifies around 30%

items more correctly than Fpe on both tasks.

Predicting the popularity of items in recommender systems

In the recommendation system setting, we use two datasets from [1]. The IPTV

dataset contains 7,100 users’ watching history of 436 TV programs in 11 months,

with around 2M events. The Reddit dataset contains online discussions of 1,000

users in 1,403 groups, with 10,000 discussion events. The predictive and scalability

performance are consistent with the application in social networks. Figure 5.4 shows

that Hybrid is 15% more accurate than Fpe and 20% than Seismic. Figure 5.5

also shows that Hybrid needs much smaller amount of computation time than Mc-

1e6. To achieve the error of 0.1, it takes 9.8 minutes for Hybrid and 7.5 hours for

Mc-1e6. Figure 5.6(c,d) show that Hybrid achieves the rank correlation accuracy

of 77%, with 20% improvement over Fpe.

5.5.2 Experiments on Synthetic Data

We compare Hybrid with MC in two aspects: (i) the significance of the reduction in

the error and sample size, and (ii) estimators of the probability mass function. We

study a Hawkes process and set the parameters of its intensity function as η = 1.2,

and α = 0.5. We fix the prediction time to be t = 30. The ground truth is computed

with 108 samples from MC simulations.

Error vs. number of samples. In four tasks with different f , Figure 5.7 shows

that given the same number of samples, Hybrid has a smaller error. Moreover, to

achieve the same error, Hybrid needs 100× less samples than Mc. In particular, to

achieve the error of 0.01, (a) shows Hybrid needs 103 and Mc needs 105 samples;

(b) shows Hybrid needs 104 and Mc needs 106 samples.
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Figure 5.7: Error of E[f(N(t))] as a function of sample size (loglog scale). (a-d)
different choices of f .

Probability mass functions. We compare our estimator of the probability

mass with Mc. Figure 5.8(a,b) show that our estimator is much smoother than

Mc, because our estimator is the average of conditional probability mass functions,

which are computed by solving the mass transport equation. Moreover, our estimator

centers around 85, which is the ground truth of E[N(t)], while that of Mc centers

around 80. Hence Hybrid is more accurate. We also plot two conditional mass

functions in (c,d). The average of 1000 conditional mass functions yields (a). Thus,

this averaging procedure in Hybrid adjusts the shape of the estimated probability

mass. On the contrary, given one sample, the estimator in Mc is just an indicator

function and cannot capture the shape of the probability mass.
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Figure 5.8: Comparison of estimators of probability mass functions in Hybrid and
Mc. (a,b) estimators with the same 1000 samples. (c,d) estimator with one sample
in Hybrid.

5.6 Summary

In this chapter, we have proposed Hybrid, a generic framework with a new formula-

tion of the prediction problem in point processes and a novel mass transport equation.

This equation efficiently uses the event information to update the transport rate and

compute the conditional mass function. Moreover, Hybrid is applicable to general

point processes and prediction tasks with an arbitrary function f . Hence it can take

any point process models as input, and the predictive performance of our framework

can be further improved with the advancement of point process models. Experi-

ments on real world and synthetic data demonstrate that Hybrid outperforms the
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state of the art both in terms of accuracy and efficiency. There are many interesting

lines for future research. For example, Hybrid can be generalized to marked point

processes [106], where a mark is observed along with the timing of each event.

Besides understanding and predicting users’ temporal behaviors, it is also impor-

tant to design “closed loop” systems that can incorporate users’ feedback adaptively

and help users make better strategic decisions. In the next chapter, I develop an

efficient framework to incorporate users’ feedback when designing optimal policies.
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CHAPTER 6

A STOCHASTIC DIFFERENTIAL EQUATION FRAMEWORK FOR

GUIDING ONLINE USER ACTIVITIES IN CLOSED LOOP

6.1 Introduction

Online social and information platforms have brought to the public a new style of

social lives: people use these platforms to receive information, create content, and

share opinions. The large-scale temporal event data generated by online users have

created new research avenues and scientific questions at the intersection of social sci-

ences and machine learning. These questions are directly related to the development

of new models as well as learning and inference algorithms to understand and predict

user activities from these data [111, 99, 112, 113, 114, 94, 95, 115].

Recently, point processes have been widely applied to model user activities. In-

stead of discretizing time into intervals, these models treat timestamps as random

variables, and propose a mechanism to link model parameters with the observed

timestamps. Such fine-grained modeling of temporal information has led to improved

predictive performance in diverse applications, such as information diffusion [1, 2, 28,

35, 29], recommender systems [1, 5], and evolutionary networks [4]. However, most

works deal with the “open loop” setting where models are used mainly for prediction,

but user feedbacks are not incorporated into the model. Typically, we are interested

in the “closed loop” setting where we want to design a policy to guide user activities

and incorporate feedbacks timely. It is not clear how the current models can be used

for such “closed loop” task.

For instance, a decision maker seeks to determine the best intervention policy

such that the sentiment in user generated contents can be guided towards a positive
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𝑢∗ 𝑥 𝑡 , 𝑡
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Open loop Control: 
Influence maximization

Activity shaping
𝑢∗ = 	𝑎𝑟𝑔𝑚𝑖𝑛	𝐹(𝑥 𝑇 , 𝑢)

Stochastic 
Differential Equation

𝑑𝑥(𝑡)

Our work

Previous works

Feedback

Execute 
Time-varying policy

Execute fixed policy

ReformulationOptimization for each 𝑡 ∈ [0, 𝑇]

Optimization only at 𝑇

User Activity Models	𝑥(𝑡)

Figure 6.1: Comparison between our work and previous works in guiding user activi-
ties. Given a user activity model that is learned from observed behaviors, our “closed
loop” guiding framework aims to find an optimal policy u(x(t), t) : < × < → < that
maps a user’s current state x(t), e.g., opinion, to an action. On the contrary, previous
works are “open loop”: they only optimize the objective function at terminal time
and compute a fixed scalar policy u ∈ <.

state. This is significantly more challenging than traditional influence maximization

or activity shaping tasks [35, 116, 117, 118, 119], where the policy is determined

before the process unfolds, and they do not take into account the instantiation of

the process. A framework for doing this is critically important for understanding the

vulnerabilities of information networks, designing policies to suppress the spread of

undesired contents, and exploring new ways of performing content recommendation.

For instance, a network moderator may want to effectively contain the spread of

rumors and misinformation, and an online platform may want to promote the level

of long-term user activities rather than the short-term click-through rate.

In this chapter, we provide a novel view of point process models, and reformulate

them into stochastic differential equations (SDEs). This reformulation allows us to
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significantly generalize existing point process models to SDEs, and plays a critical role

in connecting the task of guiding user activities to stochastic optimal control theory,

which are often used in robotics. Hence, we can bring in and extend lots of tools from

stochastic optimal control literature to address the “closed loop” sequential decision

making problem. Figure 6.1 illustrates our framework.

Interestingly, these problems also introduce new technical challenges. Previous

works in stochastic optimal control study SDEs driven by Wiener processes and/or

Poisson processes [120, 121, 122, 123]. Online user activity modeling requires us to

consider more advanced processes, such as (i) Hawkes processes for long term memory

and mutual exciting phenomena in social interactions, (ii) survival processes [54] for

self-terminating behavior in influence propagation and link creation, and (iii) node

birth processes for evolving networks [4, 124]. Thus, many technical results from

control theory need to be extended for the activity guiding problem. In summary, we

make the following contributions:

• We provide a general way to reformulate point process based user activity models

into stochastic differential equations (SDEs), which allows us to bring in and extend

tools from stochastic control literature to address the “closed loop” activity guiding

problem.

• We extend technical results in stochastic optimal control theory and derive gen-

eralized Ito’s lemma and HJB equation for SDEs driven by more general point

processes.

• We propose an algorithm that efficiently guides the dynamics of user activities

towards a target. The algorithm can also deal with the challenging cases of time-

varying networks with node births.

Finally, with synthetic and real networks, we showed our framework is robust, able

to steer user activities to desired states with faster convergence rate and less variance

than the state-of-art methods.
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Further related work. Most previous works in influence maximization [111,

118, 119] focus on selecting sources to maximize the spread of information in infinite

time, which is an “open loop” setting. There is typically no quantitative prescription

on how much incentive should be provided to each user. Moreover, in most cases,

a finite time window must be considered. For example, a politician would like to

maximize his support by a million people in one week instead of fifty years.

Another relevant area is optimal control for epidemic processes [125, 114, 126,

100]. However, the epidemic processes are modeled by deterministic differential equa-

tions. Therefore, these works neither consider the influence of abrupt event nor the

stochastic nature of user behaviors in social networks. Hawkes process models [35,

127] overcome this limitation by treating the user-generated event time as a ran-

dom variable and model users’ stochastic behaviors. They address the problem of

designing the base intensity of Hawkes process to achieve a desired steady behavior.

However, these methods are open loop and do not consider user feedbacks, and the

variance of the dynamics can still be very large. Recently, [124] studied the problem

of controlling network growth in the macroscopic level, while we focus on guiding

users’ microscopic temporal behaviors based on point processes and SDEs.

Background on SDEs. A jump diffusion SDE is a differential equation in which

one or more terms is a stochastic process: dx(t) = f(x)dt + g(x)dw(t) + h(x)dN(t),

where dx(t) := x(t+ dt)− x(t) is the differential of x(t). This SDE contains a drift,

a diffusion and a jump term: the drift term f(x)dt models the intrinsic evolution of

x(t); the diffusion Wiener process w(t) ∼ N (0, t) captures the Gaussian noise; the

jump point process N(t) captures the influence of abrupt events.

6.2 Stochastic Differential Equations for User Activity Models

In this section, we establish a framework to reformulate many point process models

into SDEs. This reformulation framework plays a critical role in connecting the task
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of guiding user activities to stochastic optimal control theory often used in robotics

and designing closed loop policies.

6.2.1 User Activity Models

We first introduce the generic point process models for user activities, and present

three examples.

Definition 10 (User Activity Model). For a network with U users, the point process

Ni(t) models the generation of event times from user i, and its intensity f is defined

as

λi(t) = ηi(t) +
∑U

j=1
βij
∑

tj∈Hj(t)
κω1(t− tj), (6.1)

where ηi(t) is the base intensity, βij > 0 models the strength of influence from user j to

i, Hj(t) is the history of events for user j, and κω1(t) = exp(−ω1t) is the triggering

kernel capturing the influence of past event. We also assume the additional event

feature/content xi(t) follows the model

xi(t) = bi(t) +
∑U

j=1
αij
∑

tj∈Hj(t)
κω2(t− tj)h(xj(tj)) (6.2)

where bi(t) is the base content, αij is the influence from user j to i, the function h(·)

captures the influence of the activity content and typical forms include h = 1 and

h(x) = x.

This model generalizes point processes since it not only models the on-off tempo-

ral behavior, but also the activity content xi(t), e.g., opinion or a vector of interested

topics. It captures both exogenous and endogenous properties of networks. The

exogenous term is the base intensity/activity content, and the endogenous term cap-

tures the fact that one’s intensity/activity content is influenced by neighbors. αij, βij

measure the strength of such influence, the kernel κω(t) captures the decay of influ-
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ence of past events/content over time, and the summation captures the influence of

neighbors’ events. Next we present three examples.

• Continuous-time information propagation [28]. The information propagation

in social networks begins with a set of source nodes, and the contagion is trans-

mitted from the sources along their out-going edges to their direct neighbors. We

set Nij(t) to be the survival process capturing the infection on the edge i→ j, and

Nij(t) = 1 means node j is infected by node i at time t. Since there is only one

event for an instantiation of this process, we set the infection intensity as follows:

λij(t) = ηij(1−Nij(t)) (6.3)

where ηij is intensity that i infects j, and (1−Nji(t)) ensures the infection happens

only once.

• Hawkes processes [36]. This model captures the mutual excitation phenomena

between events, and has been successfully applied to analyze user behaviors in

social networks [5, 35, 4, 1, 2, 6]. The process Ni(t) counts the number of events

generated by user i up to time t and its intensity λi(t) models mutual excitation

between the events from a collection of U users as follows:

λi(t) = ηi +
∑U

j=1
βij
∑

tj∈Hj(t)
κω1(t− tj)

Here, the occurrence of each historical event from one’s neighbors increases the

intensity by a certain amount determined by κω1(t) and αij.

• Opinion dynamics [29, 127]. This model considers both the timing and content

of each event. It assigns each user i a Hawkes intensity λi(t) to generate events and

an opinion process xi(t), where xi(t) = 0 corresponds to neutral opinion and large

positive/negative values correspond to extreme opinions. The opinion of user i is
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modeled as a temporally discounted average of neighbors’ opinion:

xi(t) = bi +
∑

j
αij
∑

tj∈Hj(t)
κω2(t− tj)xj(tj)

This model has superior performance in predicting opinions. However, it is not

clear whether it can be used to design feedback policies to guide the dynamics

precisely to some target states.

6.2.2 Equivalent SDE Reformulation

We are now ready to show the novel SDE reformulation of the user activity model in

Definition 10.

Theorem 11 (Transformation Framework). The equivalent SDE form of the user

activity model is:

dλi(t) = dηi + ω1

(
ηi − λi

)
dt+

∑
j
βijdNj(t) (6.4)

dxi(t) = dbi + ω2

(
bi − xi(t)

)
dt+

∑
j
αijh(xj)dNj(t)

Proof sketch. We first define a convolution operator and reformulate the user

activity model in (6.1) and (6.2), next we apply a differential operator d to the

reformulated equations and derive the differential form of λi(t) and xi(t), which lead

to two SDEs. Appendix C.1 contains details.

These SDEs describe how the intensity λi(t) and content xi(t) change on [t, t+dt);

each consists of three terms:

• Baseline change. The differential dbi(t) captures the infinitesimal change of base

activity content.

• Drift. The change rate of the activity content, dxi(t)/dt, is proportional to −xi(t),

which means the activity content xi(t) tends to stabilize over time. In fact, if ignor-
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ing the jump term and dbi(t), the expected activity content E[xi(t)] will converge

to bi(t) as t increases. This can be proved by setting E[dxi(t)] = 0. Similarly,

equation (6.4) shows a user’s intensity tends to stabilize over time.

• Jump. This term captures the influence of each event in the network and is a

weighted summation of the neighbors’ influence. The coefficient αij ensures that

only neighbors’ effect will be considered, and dNj(t) ∈ {0, 1} models whether user j

generates an event. Similarly, equation (6.4) shows that user i’s intensity increases

by βij if his neighbor j generates an event.

Next, we present three applications of Theorem 11.

• SDE for continuous-time information propagation. The intensity in (6.3) is

a simplified version of (6.1) without the historical influence term. Its SDE version

is:

dλij(t) = −ηijdNij(t)

This SDE keeps the key property of survival process: before an infection happens,

the intensity is constant, i.e., λij(t) = ηij; after the infection happens, the intensity

is 0, i.e., λij(t+ dt) = λij(t) + dλij(t) = 0.

• SDE for Hawkes process. We set ηi(t) = ηi and obtain:

dλi(t) = ω1

(
ηi − λi(t)

)
dt+

∑
j
αijdNj(t)

This SDE shows that the user’s intensity tends to stabilize and its change is influ-

enced by his neighbors’ activities.

• SDE for opinion dynamics. We set bi(t) = bi, hj(xj) = xj, and further generalize

this model by adding a Wiener process term:

dxi = ω2

(
bi − xi

)
dt+ βdwi +

∑
j
αijxjdNj
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where the Wiener process wi(t) captures the Gaussian noise, such as fluctuations in

the dynamics due to unobserved factors and activities outside the social platform.

The jump term models the fact that the change of opinion is influenced by his

neighbors’ opinion.

6.2.3 Benefit of the SDE Modeling Framework

Our SDE formulation opens a new gate to extend tools from optimal control theory.

Hence we can solve many important problems in social sciences, such as the least

square activity guiding and activity maximization problem. Without this view, it

is not easy to design algorithms with closed loop policies. Besides transforming an

existing model to an SDE, we can also directly design an SDE to model many other

factors. For example, one can model the Gaussian noise by adding a Wiener process

to an SDE. Next, we show how to optimally control the SDE to guide user activities.

6.3 A Convex Activity Guiding Framework

In this section, we define the activity guiding problem. Let x(t) = (x1(t), · · · , xU(t))>

be the vector of each user’s activity content, then we study the vector version of the

SDE in (6.4) and reformulate this SDE with an extra control policy u(x(t), t) :

<U ×< → <U as follows.

dx = (f(x) + u)dt+ g(x)dw(t) + h(x)dN (t) (6.5)

This policy u maps the activity content x to an action for all users. Next we present

two examples.

• Guiding Hawkes process. To steer user activities to a desired level, we provide

incentives to users and add a control policy ui(λi(t), t) to the SDE formulation of
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the Hawkes intensity function as follows:

dλi(t) = (ηi + ui(λi(t), t)− λi(t))dt+
∑

j
βijdNj(t),

where ui(λi(t), t) captures the amount of additional influence to change the baseline

intensity ηi.

• Guiding opinion dynamics. We can guide the opinion SDE with a policy

ui(xi(t), t) as follows:

dxi = (bi + ui − xi)dt+ θdwi +
∑

j
αijxjdNj (6.6)

where ui(xi, t) determines how fast the opinion needs to be changed for user i. For

example, a network moderator may request the user to change his opinion from

−3 to 1 in one day, and this control policy quantifies the amount of change in unit

time.

Next we present the objective for optimizing the SDE.

Definition 12 (Stochastic User Activity Guiding Problem). For the SDE in (6.5),

given the initial condition (x0, t0), we aim to find an optimal policy u∗(x, t) for t ∈

(t0, T ], which minimizes the convex objective function:

V (x0, t0) := min
u

E
[
φ
(
x(T )

)
+

∫ T

t0

L(x,u, t)dt
]

(6.7)

where V is called the value function that summarizes the optimal expected cost if u∗

is executed from t0 to T . It is a function of the initial state. The expectation E is

over stochastic processes {w(t),N (t)} for t ∈ (t0, T ]. φ is the terminal cost and L is

the instantaneous cost.

Terminal cost φ. It is the cost at final time T . We discuss several functional

forms as follows:
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• Least square guiding. The goal is to guide the expected state to a pre-specified

target a. For opinion dynamics, the goal can be to ensure nobody believes the

rumor. Mathematically, we set φ = ‖x(T ) − a‖2. Moreover, to influence users’

intensity of generating events, one can set the desired level of the intensity to be

at a high level a and conduct activity guiding: φ = ‖λ(T )− a‖2.

• Information/activity maximization. The goal is to maximize the activity con-

tent of all users. For example, the goal for an educator is to maximize the students’

recognition of the value of education, and we set φ = −
∑

u xu(T ) to maximize each

user’s positive opinion. Moreover, to improve the activity level in social platforms,

one can also maximize the intensity: φ = −
∑

u λu(T ).

Instantaneous cost L. This is the cost at t ∈ [t0, T ] and in the form of

L(x,u, t) = q(x(t))+ρc(u(t)). The state cost q(x(t)) is optional and the control cost

c(u(t)) = ‖u(t)‖2 is necessary. We set q = 0 if the cost only occurs at T ; otherwise

q captures the cost at the intermediate time, e.g., the cost incurred by maximizing

students’ positive recognition of the value of education over consecutive weeks. Its

function form is the same as the terminal cost: q = φ. The control cost captures

the fact that the policy costs money or human efforts. The scalar ρ is the trade-off

between control cost and state cost.

Solving this activity guiding problem is challenging, since the objective function

involves taking expectation over complex stochastic processes. Furthermore, it is a

functional optimization problem since the optimal policy is a function of both state

and time. Fortunately, the SDE formulations allow us to connect the problem to that

of stochastic dynamic programming methods. As a result, we can extend lots of tools

in stochastic optimal control to address sequential decision making problems.
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6.4 Algorithm for Computing Optimal Policy

In this section, we will find the optimal policy posed in (6.7). Prior works in control

theory mostly study the SDE where the jump is a Poisson process [120, 123, 122,

121]. However, in our model, the jump process is a more complex point process with

stochastic intensity functions, e.g., Hawkes process. Hence significant generalizations,

both in theory and algorithms, are needed. We first derive the HJB partial differential

equation (PDE) for a deterministic system, then generalize the procedure to the

activity guiding problem. Further, we extend our framework to guide user activities

in the challenging time-varying networks.

6.4.1 HJB Equation for Deterministic Systems

To obtain the optimal policy, we need to compute the value function V in (6.7)

subject to the constraint of the SDE. We will break down the complex optimization

into simpler subproblems. First, the initial condition x(t0) needs to be replaced by an

arbitrary start x(t), so that the start can be analytically manipulated and we obtain

a time-varying objective V (x, t) amenable to analysis. Next, since the value function

consists of an integral term, we break the integral into [t, t+ dt] and [t+ dt, T ]. If the

system is deterministic, we can further split the value function as:

V (x, t) = min
u

[
φ+

∫ T−

t+dt

L dτ︸ ︷︷ ︸
V (x(t+dt),t+dt)

+

∫ t+dt

t

L dτ︸ ︷︷ ︸
cost t→ t+ dt

]
(6.8)

The first term is V (x(t + dt), t + dt) and the second term is the optimal cost on

[t, t + dt]. Hence (6.8) follows the structure of a dynamic programming and we can

solve it recursively: given V (x(t+ dt), t+ dt), we only need to proceed optimally on

[t, t+ dt] to compute V backward.

To further simplify (6.8), we perform deterministic Taylor expansion up to second
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order of the first term on right-hand side as V (x(t+ dt), t+ dt) := V (x, t) + dV (x, t),

where dV = Vtdt + V >x dx + 1
2
dx>Vxxdx + dx>Vxtdt + 1

2
Vttdt

2. Then we can cancel

V (x, t) on both sides of (6.8), divide it by dt, and take the limit as dt → 0. Since

dx = x′(t)dt, all the second order term in dV goes to 0. Hence we obtain the

Hamilton-Jacobi-Bellman (HJB) equation:

−Vt = min
u

[L(x,u, t) + V >x x
′]

However, our system is stochastic and the above procedure needs to be generalized

significantly.

6.4.2 HJB Equation for Guiding User Activities

To derive the HJB equation for our model, we need to address two challenges: (i)

computing the stochastic Taylor expansion dV under our SDE, and (ii) taking expec-

tation of the stochastic terms in (6.8) before minimization. We first derive Theorem 13

to compute dV , which generalizes Ito’s Lemma and is applicable to SDEs driven by

point processes with stochastic intensity functions. Then we compute the expectation

and derive a HJB equation in Theorem 14.

Theorem 13 (Generalized Ito’s Lemma for Jump Diffusion SDEs). Given the SDE

in (6.5), let V (x, t) be twice differentiable in x and once in t, then we have

dV =
{
Vt +

1

2
tr(Vxxgg

>) + V >x (f + u)
}

dt+ V >x gdw

+
(
V (x+ h, t)− V (x, t)

)
dN (t) (6.9)

Theorem 14 (HJB Equation). Let hj(x, t) be the j-th column of h(x, t). Then the
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HJB Partial Differential Equation for the user activity guiding problem is

−Vt = min
u

[
L+

1

2
tr
(
Vxxgg

>)+ V >x (f + u) (6.10)

+
∑

j
λj(t)

(
V (x+ hj(x, t), t)− V (x, t)

)]

To prove Theorem 13, we derive a new set of stochastic calculus rules for general

point processes and conduct stochastic Taylor expansion in the Ito’s mean square

limit sense. Appendix C.2 contains details. To prove Theorem 14, we combine the

Generalized Ito’s Lemma with the property of point processes. Appendix C.3 contains

details. Next, we solve the HJB equation to obtain the value function V . We will

show that under the optimal parameterizations of V , this HJB equation can be solved

efficiently.

6.4.3 Parameterization of the Value Function

To solve the HJB equation, we first show the structure of the value function in the

following proposition.

Proposition 15. If the SDE in (6.5) is linear in x, and the terminal and instanta-

neous cost are quadratic/linear in x, then the value function V (x, t) in (6.7) must be

quadratic/linear.

This result is intuitive since the V is the optimal value of the summation of

quadratic/linear functions. Appendix C.4 contains the proof. This proposition is

applicable to two important problems, including the least square activity guiding

problem and the linear activity maximization problem.

In this section, we present derivations for the least square guiding problem, and

Appendix C.6 contains derivations for the activity maximization problem. Specif-

ically, we set V (x, t) to be quadratic in x with unknown coefficients v1(t) ∈ <U ,
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Algorithm 7 Optimal Control Policy

1: Input: network A = (αij), model parameters {η, θ, b}, timestamps {τk}mk=1,
events {ti}ni=1, target a

2: Output: v11(τk),v1(τk), k = 1, · · · ,m
3: for k = 1 to m do
4: Compute λu(τk) = ηu+

∑
j:ti<τk

αuuiκ(τk− ti), Λ(τk) =
∑U

j=1 λj(τk)B
j for each

user u
5: end for
6: Compute v11(τk),v1(τk) using Ode45; then compute u(τk) in (6.11).

v11(t) ∈ <U×U and v0(t) ∈ <:

V (x, t) = v0(t) + v1(t)>x+
1

2
x>v11(t)x

To find the optimal control, we substitute V (x, t) to the HJB equation in (6.10) and

set the gradient of its right-hand-side to 0. This yields the optimal feedback control

policy:

u∗(x(t), t) = −Vx/ρ = −
(
v1(t) + v11(t)x(t)

)
/ρ (6.11)

This policy consists of two terms: the feedforward term v1(t) controls the system as

time goes by; the feedback term updates the policy based on the current state x(t).

Moreover, ρ controls the tradeoff between control and state cost, and ρ→∞ means

low budget; hence u∗ → 0.

6.4.4 Stochastic Optimal Control Algorithm

Given the form of optimal policy u∗ in (6.11), the final step is to compute its unknown

coefficients {v1(t),v11(t)}. We substitute this optimal policy to the HJB equation

in (6.10). Since the value function V (x, t) is quadratic, we can separate the HJB

equation into terms that are scalar, linear, and quadratic in x. Grouping coefficients
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of these terms leads to two Ordinary Differential Equations (ODEs) as follows:

−v′11 = I + 2v11(−1 + Λ)− v
2
11

ρ
+
∑

j
λjB

j>v11B
j

−v′1(t) = −a+
(
− 1 + Λ> − v11(t)/ρ

)
v1(t) + v11(t)b

where Λ(t) =
∑

j λj(t)B
j, matrix Bj has the j-th column as (α1j, · · · , αUj)> and

zero elsewhere. The terminal conditions are v11(T ) = I and v1(T ) = −a. We use

the Runge-Kutta method [108] to solve the ODEs offline. Specifically, we partition

(t0, T ] to equally-spaced timestamps {τk} and obtain values of v11(t),v1(t) at these

timestamps. We use the Ode45 solver in MATLAB. Finally we update the policy

online according to (6.11). Algorithm 7 summarizes the procedure.

6.4.5 Extensions to Time-varying Networks

Real world social networks can change over time. Users can follow or unfollow each

other as time goes by and new users can join the network [4]. In this section, we

extend our framework to networks with time-varying edges and node birth processes.

First, for a fixed network, the expectation in the objective function in (6.7) is over

the stochastic pair {w(t),N (t)} for t ∈ (t0, T ]. Since the network is stochastic now,

we also need to take the expectation of the adjacency matrix A(t) = (αij(t)) to derive

the HJB equation. Hence the input to Algorithm 7 is E[A(t)] = (E[αij(t)]) instead

of A. Specifically, we replace hj(x) in the HJB equation (6.10) by E[hj(x)]:

∑
j
λj(t)(V (x+ E[hj(x, t)], t)− V (x, t)) (6.12)

where E[hj(x, t)] = (E[h1j(t)], · · · ,E[hUj(t)])
> and E[hij(t)] = E[αij(t)]xj(t). Next,

we compute E[αij(t)] in two types of networks.

Networks with link creation. We model the creation of link from node i→ j

as a survival process αij(t). If a link is created, αij(t) = 1 and zero otherwise. Its
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intensity function is defined as

σij(t) = (1− αij(t))γi, (6.13)

where the term γi > 0 denotes the Poisson intensity, which models the node i’s own

initiative to create links to others. The coefficient 1− αij(t) ensures a link is created

only once, and intensity is set to 0 after that. Given a sequence of link creation events,

we can learn {γi} using maximum likelihood estimation [54] as follows.

Parameter estimation of the link creation process. Given data ei =

(ti, ui, si), which means at time ti node ui is added to the network and connects

to si, we set E = {ei} and optimize the concave log-likelihood function to learn the

parameters of the Poisson intensity γ = (γ1, · · · , γU)>:

max
γ>0

∑
ei∈E

log(σuisi(ti))−
∑
u,s∈[n]

∫ T

0

σus(τ)dτ

This objective function can be solved efficiently with many optimization algorithms,

such as the Quasi-Newton algorithm.

Next, given the learned parameters, we obtain the following ordinary differential

equation (ODE) that describes the time-evolution of E[αij(t)]:

dE[αij(t)] =
(a)

E[dαij(t)] =
(b)
σij(t)dt =

(c)
(1− E[αij(t)])γidt, (6.14)

where (a) holds because the operator d and E are exchangeable, (b) is from the defini-

tion of intensity function, and (c) is from (6.13). The initial condition is E[αij(0)] = 0

since i and j are not connected initially. We can easily solve this ODE in analytical

form:

E[αij(t)] = 1− exp(−γit)

Networks with node birth. The network’s dimension can grow as new users join it.
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Since the dimension of A(t) changes over time, it is very challenging to control such

network, and it remains unknown how to derive the HJB equation for such case. We

propose an efficient method by connecting the stochasticity of the node birth process

to that of link creation process. More specifically, we have the following observation.

Observation. The process of adding a new user v to the existing network A ∈

<(N−1)×(N−1) and connects to user s is equivalent to link creation process of setting

A(t) ∈ <N×N to be the existing network and letting αvs(t) = 1.

With this observation, we can fix the dimension of A(t) beforehand, and add a

link whenever a user joins the network. This procedure is memory-efficient since we

do not need to maintain a sequence of size-growing matrices. More importantly, we

transform the stochasticity of the network’s dimension to the stochasticity of link

creation process with a fixed network dimension. Finally, the difference between link

creation and node birth is: we control each node in the link creation case, but do not

control the node until it joins the network in the node birth case.

6.5 Experiments

We focus on two tasks: least square opinion guiding (LSOG) and opinion influence

maximization (OIM). We compare with the following state-of-art stochastic optimiza-

tion methods that are applicable to control SDEs and point processes.

• Value Iteration (VI) [128]: we directly formulate a discrete-time version of the opin-

ion dynamics and compute the optimal policy using the value iteration algorithm.

The discretized timestamps are the same as that for solving the HJB PDE.

• Cross Entropy (CE) [129]: it samples policies from a normal distribution, sorts them

in ascending order w.r.t. the cost and recomputes the distribution parameters from

the first K elite samples. This procedure repeats with new distribution until costs

converge.
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Figure 6.2: Results in Least Square Opinion Guiding (LSOG). (a) total cost for LSOG
and total opinion for OIM per user. Error bar is the variance; (b) instantaneous
cost/opinion per user. Line is the mean and pale region is the variance; (c,d) sample
trajectories of five users.

• Finite Difference (FD) [130]: it generates samples of perturbed policies and compute

perturbed costs. Then it uses them to approximate the gradient of the cost w.r.t

the policy. The cost in CE and FD is evaluated by executing the policy on the

SDE.

• Greedy: It controls the SDE when the state cost is high. We divide time horizon

into n timestamps. At each timestamp, we compute the state cost and control

the system based on pre-specified rules if current cost is more than k times of the

optimal cost of our method. We vary k from 1 to 5, n from 1 to 100 and report

the best performance.

• Slant [127]: It sets the open loop control policy only at the initial time.
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Figure 6.3: Results in Opinion Influence Maximization (OIM). (a) total opinion for
OIM per user. Error bar is the variance; (b) instantaneous cost/opinion per user.
Line is the mean and pale region is the variance; (c,d) sample trajectories of five
users.

6.5.1 Experiments on Synthetic Data

We generate a synthetic a network with 1000 users, where the topology matrix is

randomly generated with a sparsity of 0.001. We simulate the opinion SDE on [0, 10]

using the Euler method [123] to compute its difference form. The time window is

divided into 100 equally spaced intervals. We set the base opinion uniformly at

random, bi ∼ U [−1, 1], ω = 1, noise level θ = 0.2, αij ∼ U [0, 0.01], and xi(0) = −10.

The Wiener process is simulated from the Gaussian distribution and the Hawkes

process is simulated using the Thinning algorithm [59]. We set the budget level

parameter ρ = 10, and our results generalize beyond this value. We repeat simulations

of the SDE for ten times and report the averaged performance.
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Figure 6.4: Robustness analysis when parameters are learned with different sizes of
training data. (a) and (b) instantaneous cost; (c) and (d) opinion trajectory for one
randomly sampled user.

Total cost. For LSOG, we set the target ai = 1. The total cost per user is

computed by dividing the value function by # users. Since OIM aims to maximize

positive opinions, the total opinion per user is computed by dividing the negative

value function by # users. Figure 6.2(a) and Figure 6.3(a) show that our method has

around 2.5× improvement over CE and 4× improvement over FD. CE assumes the

policy is sampled from a Gaussian distribution, and FD approximates the gradient.

However, our method does not have such restrictions or approximations, and it exactly

minimizes the cost.

Importance of the SDE formulation. Our framework significantly outper-

forms VI, since our SDE reformulation of user activity models preserves the continu-

ous time property and our policy exactly optimizes the objective function using the
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Figure 6.5: Results in LSOG and OIM over real-world networks with node birth
processes. (a,b) total cost (for LSOG) and opinion (for OIM) in two datasets.

HJB equation. In contrast, discretizing the original opinion model introduces approx-

imation errors, which further influences the policies in VI. Hence it is important to

directly reformulating these user activity models into SDEs and study the continuous

time control problem.

Instantaneous cost & trajectory. Figure 6.2(b) and Figure 6.3(b) shows the

instantaneous cost per user over time. Our method has the fastest convergence rate to

the optimal cost and the cost is much smaller than competitors. Moreover, our method

has the smallest variance and is stable despite multiple runs and the stochasticity

in the SDE. Figure 6.2(c,d) and Figure 6.3(c,d) compare opinion trajectories. The

jumps in the opinion trajectories correspond to the opinion posting events that are

modulated by the Hawkes process. For LSOG, the opinion converges to the target

the fastest. For OIM, our method maximizes the opinion from the negative initial
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Figure 6.6: Prediction results in LSOG and OIM over real-world networks with node
birth processes.

value quickly: around time 2.5, all users’ opinion are positive. Moreover, our method

achieves the largest opinion value, e.g., 20, while that of CrossEntropy is smaller than

10.

Robustness. Since error exists between estimated parameters and ground truth,

we investigate how our method performs with this discrepancy. We generate data

with 10 and 100 events per user, and learn parameters by maximum likelihood esti-

mation [131]. Figure 6.4(a,c) show that learned parameters are close to ground truth

as the training data increases. Moreover, even with less accurate parameters, our cost

and trajectories are close to ground-truth, while CE has high variance.
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Figure 6.7: Budget sensitivity analysis: prediction accuracy as a function of ρ on
Twitter.

6.5.2 Experiments on Real-world Data

We study the least square opinion guiding problem over two node birth networks.

Twitter [4] contains nearly 550,000 tweet, retweet and link creation events from

around 280,000 users. We use events from Sep. 21-30, 2012 and use the data be-

fore Sep. 21 to construct the initial social network. We consider the links created in

the second 10-day period to be the node birth. MemeTracker [132] contains online

social media activities from August 2008 to April 2009. Users track the posts of others

and the network growth is captured by hyperlinks of comments on one site to others.

We extract 11,321,362 posts among 5000 nodes. We use the data in Aug. 2008 to

construct the initial network and use the LIWC [133] toolbox to extract opinions from

posts. We learn parameters of the opinion dynamics and the link creation process by

maximizing the likelihood [131].

We use two evaluation procedures. First, we have a real network and learned pa-

rameters; hence we simulate user behaviors, control simulated behaviors, and evaluate

the total cost of different policies. The second and more interesting evaluation scheme

would entail carrying real policy in a social platform. Since it is very challenging to

evaluate on a real platform, we mimic such procedure using held-out data. The key
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idea is to predict which real trajectory reaches the objective better (has lower cost),

by comparing it to the optimal trajectory x∗. Different methods yield different x∗,

and the prediction accuracy depends on how optimal x∗ is. If it is optimal, it is

accurate if we use it to order the real trajectories, and the predicted list should be

similar to the ground truth, which is close to the accuracy of 1.

Total cost. Figure 6.5(a,b) show that our method performs the best for the

two time-varying networks. Compared with CrossEntropy, it achieves around 6×

improvement on LSOG and 3× on OIM. This result suggests that controlling the

SDE over time-varying networks is a challenging problem for traditional stochastic

optimal control algorithms. Moreover, the total costs of all methods for Twitter are

higher than that of Memetracker. This is because Twitter has a much higher frequency

of node birth, i.e., users join the network in the timescale of minute-to-minute rather

than day-to-day in Memetracker. Hence it is more challenging to control due to the

high stochasticity in the network.

Prediction accuracy & budget sensitivity. Figure 6.6(a,b) show that our

method achieves more than 0.4+ improvement over CrossEntropy. It means that

our method accommodates 40% more of the total realizations correctly. An accurate

prediction means that if applying our control policy, we will achieve the objective

better than alternatives. Figure 6.7 shows that our method performs the best as the

budget level decreases. Large value of the cost tradeoff parameter ρ means small

budget.

6.6 Summary

In this chapter, we have proposed a novel SDE reformulation for user activity models

and presented the activity guiding problem, which builds a new bridge between the

problem of guiding of user activities in “closed loop” and stochastic optimal control

theory. Moreover, we have shown that it is important to incorporate the system
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status information to design a feedback control policy, which will achieve a lower cost

with faster speed. Our method also provides an efficient way to guide user activities

over time-varying networks with link creation and node birth processes.

Besides controlling the drift part of user’s behavior system represented as as SDE,

another relevant and important question is to design policies to control the jump

part of the system, i.e., controlling users’ intensity function of generating events.

This problem is challenging and the techniques developed in this chapter are not

applicable. In the next chapter, we propose a novel measure-theoretic view of this

problem and design a generic framework that is applicable to general nonlinear SDE

systems.
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CHAPTER 7

VARIATIONAL POLICY FOR GUIDING POINT PROCESSES

7.1 Introduction

Nowadays, user generated event data are becoming increasingly available. Each user

is typically logged in the database with the precise time-stamp of the event, together

with additional context such as tag, text, image, and video. Furthermore, these data

are generated in an asynchronous fashion since any user can generate an event at

any time and there may not be any coordination or synchronization between two

events. Among different representations of user behaviors, temporal point processes

have been widely applied to model the complex dynamics of online user behaviors [1,

2, 3, 9, 29, 5, 97, 134, 113, 135].

In spite of the broad applicability of point processes, there is little work in the

area of controlling these processes to influence user behaviors. In this chapter, we

study the problem of designing the best intervention policy to influence the intensity

function of point processes, such that user behaviors can be influenced towards a

target state.

A framework for doing this is critically important. For example, government

agents may want to effectively suppress the spread of terrorist propaganda, which

is important for understanding the vulnerabilities of social networks and increasing

their resilience to rumor and false information; online merchants may want to promote

users’ frequency of visiting the website to increase sales; administrators of Q&A sites

such as StackOverflow design various badges to motivate users to answer questions

and provide feedbacks to increase the online engagement [136]; to gain more attention,

a broadcaster on Twitter may want to design a smart tweeting strategy such that his
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Direct optimization:
min
$
𝐸&[𝑆 𝑥 + 𝐶(𝑢)]

Optimal Policy
𝑢∗ 𝑡 , 𝑡 ∈ [0, 𝑇]

Our work

Previous works

Simple solution

Find optimal measure 𝑄∗
min
7
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Variational Inference
min
$
𝐷9:(𝑄∗||𝑄(𝑢)]

• Not scalable
• Need approximation
• Proper control cost?

𝑄∗in closed form

Optimal measure 
perspective

Figure 7.1: Illustration of the measure-theoretic view and benefit of our framework
compared with existing approaches.

posts always remain on top of his followers’ feeds [137].

Interestingly, the social science setting also introduces new challenges. Previous

stochastic optimal control methods [120, 121, 122, 123] in robotics are not applicable

for four reasons: (i) they mostly focus on the cases where the policy is in the drift part

of the system, which is quite different from our case where the policy is on the intensity

function; (ii) they require linear approximations of the nonlinear system and quadratic

approximations of the objective function; (iii) to obtain a feedback control policy,

these methods require the solution of the Hamilton-Jacobi-Bellman (HJB) Partial

Differential Equation, which have severe limitations in scalability and feasibility to

the nonlinear systems, especially in social applications where the system’s dimension

is huge; (iv) the systems they study are driven by Wiener processes and Poisson

processes. However, social sciences require us to consider more advanced processes,

such as Hawkes processes, which are models for long term memory process and mutual

exciting phenomena in social interactions.
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To address these limitations, we propose an efficient framework by exploiting the

novel view of measure-theoretic formulation and variational inference. Figure 7.1

illustrates our method. We make the following contributions:

• Unified framework. Our work offers a generic way to control nonlinear stochastic

differential equations driven by point processes with stochastic intensities. Unlike

prior works [122], no approximations of the system or the objective function are

needed.

• Natural control cost. Our framework provides a meaningful control cost function

to optimize: it arises naturally from the structure of the stochastic dynamics. This

property is in stark contrast with the stochastic dynamic programming methods in

control theory, where the control cost is imposed beforehand, despite the form of

the dynamics.

• Superior performance. We propose a scalable model predictive control algo-

rithm. The control policy is computed with forward sampling; hence it is scalable

with parallel sampling and runs in real time. Moreover, it enjoys superior empirical

performance on diverse social applications.

Related work. We first review relevant works in the machine learning commu-

nity. Some works focus on controlling the point process itself, but they are not gen-

eralizable for two reasons: (i) the processes are simple, such as Poisson process [106]

and a power-law decaying function [138]; (ii) the systems only contain point process.

However, in social sciences, the system can be driven by many other stochastic pro-

cesses. Based on Hawkes process, [35] designed its baseline intensity to achieve a

steady state behavior. However, this policy does not incorporate system feedback.

Recently, [139] proposed to control a user’s posting intensity, which is driven by a

homogeneous Poisson process. The intensity of this user’s competitors is driven by

Hawkes processes, and the SDE system has linear coefficients. This method computes

the optimal policy by solving a HJB PDE.
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In the area of stochastic optimal control, a relevant line of research focuses on

event triggered control [140, 141, 142, 143]. But the problem is different: their

system is linear and only contains a diffusion process, with the control affine in drift

and updated at event time. The event times are driven by a fixed point process.

However, we study jump diffusion SDEs and directly control the intensity that drives

the time of event. Hence our work is unique among previous works.

7.2 Intensity Stochastic Control Problem

In this section, we first define the control policy and the controlled stochastic pro-

cesses; then formulate the stochastic intensity control problem.

Definition 16 (Controlled Stochastic Processes). Set λi(t) as the original (uncon-

trolled) intensity for Ni(t), ui(t) > 0 as the control policy, and λ̃i(ui(t), t) as the

controlled intensity of controlled point process Ñi(ui(t), t). Let the uncontrolled SDE

be

dxi = f(xi)dt+ g(xi)dwi +
∑M

j=1
h(xj)dNj(t) (7.1)

Then this uncontrolled SDE is modified as the controlled SDE:

dxi = f(xi)dt+ g(xi)dwi +
∑M

j=1
h(xj)dÑj(uj, t) (7.2)

For each user i, the form of control policy is:

λ̃i(ui(t), t) = λi(t)ui(t), i = 1, · · · ,M (7.3)

The control policy ui(t) helps each user i decide the scale of changes to his original

intensity λi(t) at time t, and controls the frequency of generating events. The larger

ui(t), the more likely an event will happen. Moreover, the control policy is in the

multiplicative form. The rationale behind this choice is that it makes the policy easy
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to execute and meaningful in practice. For example, a network moderator may request

a user to reduce his tweeting intensity five times if he spreads rumors, or double the

original intensity if he posts educational topics. Alternative policy formulations that

are based on addition are less intuitive and not easy to execute in practice. For

example, if the moderator asks the user to decrease his posting intensity by one, this

instruction is difficult to be interpreted in a meaningful way. Finally, since intensity

functions are positive, we set ui(t) > 0.

Our goal is to find the best control policy such that this controlled SDE achieves

a target state. Next, we formulate the stochastic intensity control problem.

Definition 17 (Intensity Control Problem). Given the controlled SDE in (7.2), the

goal is to find u∗(t) for t ∈ [0, T ], such that the following objective function is mini-

mized:

u∗ = argminu>0 Ex
[
S(x) + γC(u)

]
, (7.4)

where x := {x(t)|t ∈ [0, T ]} is the controlled SDE trajectory on [0, T ], u denotes

the policy on [0, T ], The expectation Ex is taken over all trajectories of x, whose

stochasticity comes from the Wiener process w(t) and controlled point process Ñ (u, t)

on [0, T ]. The function C(u) is the control cost, and S(x) is the state cost defined as

follows:

S(x) = φ(x(T ), T ) +

∫ T−

0

q(x(t), t)dt (7.5)

It is a function of the trajectory x and measures its cost on [0, T ]. q(x(t), t) is the

instantaneous state cost at time t, and φ(x(T ), T ) is the terminal state cost. The

scalar γ controls the trade-off between state cost and control cost.

The state cost is a user-defined function and its form depends on different ap-

plications. We will provide detailed examples in section 7.5 later. The control cost

captures the budget and effort, such as time and money, to control the system.
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7.3 Solution Overview

Directly computing the optimal policy in (7.4) is difficult using previous control meth-

ods [121, 122, 123]. The challenges are as follows.

Challenges. The first two challenges lie in different problem scopes. First, the

control policy in these works is in the drift of SDE, and not directly applicable to

the intensity control problem. Second, these works typically consider simple Poisson

processes with deterministic intensity. However, in our problem the intensity can also

be stochastic, which adds another layer of stochasticity. Besides the problem scopes,

these works have two fundamental technical challenges:

I. Choice of control cost. These works need to define the form of control cost

beforehand, which is nontrivial. For example, ui(t) = 1 means there is no control.

However, it is not clear which of the two heuristic forms works better:

∫ T

0

‖u(t)− 1‖2,

∫ T

0

∑
i

(ui(t)− 1)− log
(
ui(t)

)
dt (7.6)

Unfortunately, prior works need tedious and heuristic tuning of the function forms of

control cost C(u).

II. Scalability and approximations. Prior works rely on the Bellman optimal-

ity condition and use stochastic programming to derive the corresponding Hamilton-

Jacobi-Bellman (HJB) partial differential equation (PDE). Solving this PDE for

multi-dimensional nonlinear SDEs is difficult due to scalability limitations, i.e., curse

of dimensionality [123]. This is especially challenging in social network applications

where the SDE has thousands or millions of dimensions (each user represents one di-

mension). Efficient solution for the PDE only exists in the special case of linear SDE

and quadratic control cost and state cost. This case is restrictive when the underlying

model is a nonlinear SDE, and the state cost is arbitrary function.
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Our approach. To address the above challenges, we propose a generic framework

with the following key steps.

I. Optimal measure-theoretic formulation. We establish a novel view of

the intensity control problem by linking it to the optimal probability measure. The

key insight is to compute the optimal measure Q∗, which is induced by optimal

policy u∗. With this view, the control cost comes naturally as a KL-divergence term

(Section 7.4.1):

Q∗ = argminQ

[
EQ[S(x)] + γDKL(Q||P)

]
II. Variational inference for the optimal policy. It is much easier to find the

optimal measure Q∗ compared with directly solving (7.4). Based on its form, we then

parameterize Q(u), and compute u∗ by minimizing the distance between Q∗ and

Q(u). This approach leads to a scalable and simple algorithm, and does not need

any approximations to the nonlinear SDE or cost functions (Section 7.4.2):

u∗ = argminu>0 DKL

(
Q∗||Q(u)

)
Finally, we transform the open-loop policy to the feedback policy and develop a

scalable algorithm.

7.4 A Variational Policy Framework

In this section, we will present technical details of our framework, Variational Policy.

We first provide a measure-theoretic view of the control problem, and show that

finding optimal measure is equivalent to finding the optimal control. Then we compute

the optimal measure and find the optimal control policy from the view of variational

inference.
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7.4.1 Optimal Measure-theoretic Formulation of Intensity Optimal Control Problem

Each trajectory (sample path) of a SDE is stochastic. Hence we can define a proba-

bility measure on all possible trajectories, and a SDE uniquely induces a probability

measure. At a conceptual level, the SDE and the measure induced by the SDE are

equivalent mathematical representations: obtaining a trajectory from this SDE by

simulation (forward propagating the SDE) is equivalent to generating a sample from

the probability measure induced by the SDE.

Next, we link this probability measure view to the intensity control problem. The

problem in (7.4) aims at finding an optimal policy, which uniquely determines the

optimal controlled SDE. Since the SDE induces a measure, (7.4) is equivalent to the

problem of finding the optimal measure.

Mathematically, we set P as the probability measure induced by the uncontrolled

SDE in (7.1), and set Q as the measure induced by the controlled SDE in (7.2). Hence

Ex = EQ, i.e., taking the expectation over stochastic trajectories x in the original

objective function is essentially taking expectation over the measure Q. Moreover,

the difference between P and Q is just the effect of the control policy. Therefore, u∗

uniquely induces Q∗. Figure 7.2 demonstrates P and Q.

Based on this idea, instead of directly computing u∗, we aim at finding the optimal

measure Q∗, such that EQ[S(x)] is minimized. We set the constraint such that Q is

as close to P as possible, and propose the following objective function:

min
Q

[
EQ[S(x)] + γDKL(Q||P)

]
, s.t.

∫
dQ = 1 (7.7)

where
∫

dQ = 1 ensures Q is a probability measure, and dQ is the probability density.

DKL(Q||P) = EQ[log(dQ
dP )] is the KL divergence between these two measures.

Natural control cost. This KL divergence term provides an elegant way of

measuring the distance between controlled and uncontrolled SDEs. Minimizing this
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Figure 7.2: Explanation of the measures induced by SDEs. (a) the three green
uncontrolled trajectories are in the region of Ω1. Since P is induced by the uncontrolled
SDE, naturally it has high probability on the region Ω1 compared with Q. Similarly,
the three yellow trajectories are in Ω2, and Q has high probability in this region since
Q is induced by the controlled SDE.

term sets Q to be close to P; hence it provides an implicit measure of the control cost.

Mathematically, we express it as follows:

DKL(Q||P) := EQ[log(
dQ
dP

)] (7.8)

= EQ

[ ∫ T

0

∑
i

(
log(ui(t)) +

1

ui(t)
− 1
)
λi(t)ui(t)dt

]

Appendix D.4 contains derivations. With this formulation, we set the control cost

C(u) = log(dQ
dP ). This function reaches its minimum when ui(t) = 1, since the

function f(x) = (log(x) + 1
x
− 1)x reaches the minimum when x = 1. Interestingly,

C(u) is none of the heuristics in (7.6). Hence our control cost comes naturally from

the dynamics.

Another benefit of our formulation is that the probability measure that min-

imizes (7.7) is easy to derive (Appendix D.1 contains derivations). The optimal

measure is

dQ∗

dP
=

exp(− 1
γ
S(x))

EP[exp(− 1
γ
S(x))]

(7.9)

The term dQ∗
dP is called the Radon-Nikodym derivative [144, 145]. This expression is

intuitive: if a trajectory x has low state cost, then dQ∗
dP is large. This means that
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this trajectory is likely to be sampled from Q∗. In summary, our first contribution

is the link between the problem of finding optimal control to that of finding optimal

measure. Computing the optimal measure is much easier than directly solving (7.4).

However, the main challenge in our measure-theoretic formulation is that there is

no explicit transformation between the optimal measure Q∗ and the optimal control

u∗. To solve this problem, next we design a convex objective function by matching

probability measures.

7.4.2 Finding Optimal Policy with Variational Inference

We formulate our objective function based on the optimal measure. More specifically,

we find a control u which pushes the induced measure Q(u), as close to the optimal

measure as possible. Mathematically, we have:

u∗ = argminu>0 DKL

(
Q∗||Q(u)

)
(7.10)

From the view of variational inference [146, 147], our objective function describes the

amount of information loss when Q(u) is used to approximate Q∗. This objective is

in sharp contrast to traditional methods that solve the problem by computing the

solution of the HJB PDE, which have severe limitations in scalability and feasibility

to nonlinear SDEs [122, 123].

Next, we simplify the objective in (7.10) and compute the optimal control policy.

From the definition of KL divergence and chain rule of derivatives, (7.10) is expressed

as:

DKL(Q∗||Q(u)) = EQ∗
[

log
(dQ∗

dP
dP

dQ(u)

)]
. (7.11)

The derivative dQ∗/dP is given in (7.9), and we only need to compute dP/dQ(u).

This derivative is the relative density of probability distribution P w.r.t. Q(u). The

change of probability measure happens because the intensity is changed from λ(t) to
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λ̃(u, t). Hence dP/dQ(u) is essentially the likelihood ratio between the uncontrolled

and controlled point process. We summarize its form in Theorem 18.

Theorem 18. For the intensity control problem, we have: dP/dQ(u) = exp
(
D(u)

)
,

where D(u) is expressed as:

∑M

i=1

∫ T

0

(
ui(s)− 1

)
λi(s)ds−

∫ T

0

log
(
ui(s)

)
dNi(s)

Appendix D.2 contains details of the proof. Next we substitute dQ∗/dP and

dP/dQ(u) to (7.11). After removing terms independent of u, the objective function

is simplified as:

u∗ = argminu>0 EQ∗ [D(u)]

Next, we will solve this optimization problem to compute u∗. As in traditional

stochastic optimal control works [122, 123], a control policy is obtained by solving

the HJB PDE at discrete timestamps on [0, T ]. Hence it suffices to parameterize our

policy u(t) as a piecewise constant function on [0, T ].

We denote the k-th piece of u as uk, which is defined on [k∆t, (k + 1)∆t), with

k = 0, · · · , K − 1, tk = k∆t and T = tK . Now we express the objective function as

follows.

EQ∗ [D(u)] =
∑

i

∑
k

(
EQ∗

[ ∫ tk+1

tk

(uki − 1)λi(s)ds
]
− EQ∗

[ ∫ tk+1

tk

log(uki )dNi(s)
])

(7.12)

where uki denotes the i-th dimension of uk. We just need to focus on the parts that

involves uki and move it outside of the expectation. Further we can show the final

expression is convex in uki . Finally, setting the gradient to zero yields the following
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optimal control policy, denoted as uk∗i :

uk∗i =
EP
[

exp(− 1
γ
S(x))

∫ tk+1

tk
dNi(s)

]
EP
[

exp(− 1
γ
S(x))

∫ tk+1

tk
λi(s)ds

] (7.13)

Appendix D.3 contains complete derivations. Note we have transformed EQ∗ to EP

using (7.9). It is important because EQ∗ is not directly computable. Inspired by

the idea of importance sampling, since we only know the SDE of the uncontrolled

dynamics in (7.1) and can only compute the expectation under P, the change of

expectation is necessary.

To compute EP, we use the Monte Carlo method to sample I trajectories from

(7.1) on [0, T ] and take the sample average. To obtain the m-th sample xm, we use

the classic routine: sample point process Nm(t) (e.g., Hawkes process) using thinning

algorithm [59], sample Wiener process wm(t) from Gaussion distribution, and apply

the Euler method [123] to obtain xm. Since each sample is independent, it can be

scaled up easily with parallelization.

Next, we compute wm = exp(−S(xm)/γ) by evaluating the state cost, and com-

pute
∫ tk+1

tk
dNm

i (s) as the number of events that occurred during [tk, tk+1) at the i-th

dimension. Moreover, since λmi (t) is history-dependent, given the events history in

the m-th sample, λmi (t) is fixed with a parametric form. Hence
∫ tk+1

tk
λmi (s)ds can also

be computed numerically or in closed form. The closed form expression exists for the

Hawkes process. In summary, the sample average approximation of (7.13) is:

uk∗i =

∑I
m=1 w

m
∫ tk+1

tk
dNm

i (s)∑I
m=1 w

m
∫ tk+1

tk
λmi (s)ds

(7.14)

Next, we discuss the properties of our policy.

Stochastic intensity. The intensity function λi(t) is history independent and

stochastic, e.g., Hawkes process. Since λi(t) is inside the expectation EP in (7.13),

our policy naturally considers its stochasticity by taking the expectation.
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Algorithm 8 KL - Model Predictive Control

1: Input: sample size I, optimization window length T̃ , total time window T , times-
tamps {tk} on [0, T ].

2: Output: optimal control u∗ at each tk on [0, T ].
3: for k = 0 to K − 1 do
4: for m = 1 to I do
5: Sample dN (t), dw(t) and generate xm on [tk, tk + T̃ ] according to (7.1) and

the current state.
6: S(xm) =

∫ T
0
q(xm)dt+ φ(xm), wm = exp(− 1

γ
S)

7: end for
8: Compute uk∗i from (7.14) for each i, and execute uk∗, receive state feedback

and update state.
9: end for

General SDE & arbitrary cost. Since we only need the SDE system to sample

trajectories, our framework is applicable to general nonlinear SDEs and arbitrary cost

functions.

7.4.3 From Open-loop Policy to Feedback Policy

The current control policy in (7.14) does not depend on the system’s feedback. How-

ever, a more effective policy should consider the current state of SDE, and integrate

such feedback into the policy. In this section, we will transform the open-loop policy

into a feedback policy.

To design this feedback policy, we use the model predictive control (MPC) scheme,

where the Model of the process is used to Predict the future evolution of the process to

optimize the Control [148]. In MPC, online optimization and execution are interleaved

as follows.

(i) Optimization. At time t, we compute the control policy u∗ on [t, t+ T̃ ] using (7.14)

for a short time horizon T̃ � T in the future. Therefore, we only need to sample

trajectories on [t, t+ T̃ ] for computation instead of [0, T ].

(ii) Execution. We apply the first optimal move u∗(t) at this time t, and observe the

new system state.
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(iii) Feedback & re-optimization. At time t + 1, with the new observed state, we re-

compute the control and repeat the above process. Algorithm 8 summarizes the

procedure.

The advantage of MPC is that it yields a feedback control that implicitly depends

on the current state x(t). Moreover, separating the optimization horizon T̃ from T is

also advantageous since it makes little sense to consider choosing a deterministic set

of actions far out into the future.

7.5 Applications

In this section, we apply our framework to two real-world applications in social sci-

ences.

Guiding opinion diffusion. The continuous-time opinion model considers the

opinion and timing of each posting event [127, 29]. It assigns each user i a Hawkes

intensity λi(t) and an opinion process xi(t) ∈ R where xi(t) = 0 corresponds to neutral

opinion. Users are connected according to a network adjacency matrix A = (αij).

The opinion change of user is captured by three terms:

dxi(t) =
(
bi − xi

)
dt+ βdwi(t) +

∑
j
αijxjdNj(t) (7.15)

where bi is the baseline opinion, i.e., personal characteristics. The noise process dwi(t)

captures the normal fluctuations in the dynamics due to unobserved factors such as

activity outside the social platform and unexpected events. The jump term captures

the fact that the change of user i’s opinion is a weighted summation of his neighbors’

influence, and αij ensures only the opinion of a user’s neighbor is considered.

How to control users’ posting intensity, such that the opinion dynamics is steered

towards a target? We can modify each user’s opinion posting processNj(t) as Ñj(uj, t)

with policy uj(t). Common choices of state costs are as follows:
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• Least square opinion shaping. The goal is to make the expected opinion to achieve

the target a, e.g., nobody believes the rumor during the period. Mathematically,

we set q = ‖x(t)− a‖2 and φ = ‖x(T )− a‖2.

• Opinion influence maximization. The goal is to maximize each user’s positive

opinion, e.g., a political party maximizes the support during the election period.

Mathematically, we set q = −
∑

i xi(t) and φ = −
∑

i xi(T ).

Guiding broadcasting behavior. When a user posts in social network, he

competes with others that his followers follow, and he will gain greater attention if

his posts remain top among followers’ feeds. His position defined as the rank of his

post among his followers. [137] models the change of a broadcaster’s position due to

the posting behavior of other competitors and himself as follows.

dxj(t) = dNo(t)−
(
xj(t)− 1

)
dNi(t) (7.16)

where i is the broadcaster and j ∈ F(i) denote one follower of i. The stochastic

process xj(t) ∈ N denotes the rank of broadcaster i’s posts among all the posts that

his follower j receives. Rank xj = 1 means i’s posts is the top-1 among all posts

j receives. Ni(t) is a Poisson process capturing the broadcaster’s posting behavior.

No(t) is the Hawkes process for the behavior of all other broadcasters that j follows.

How to change the posting intensity of the broadcaster, such that his posts always

remain on top? We use the policy to change Ni(t) to Ñi(ui, t) and help user i decide

when to post messages. The state cost minimizes his rank among all followers’ news

feed. Specifically, we set the state and terminal cost as q =
∑

j∈F(i) xj(t) and φ =∑
j∈F(i) xj(T ).
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7.6 Experiments

We focus on two applications in the previous section: least square opinion guiding and

smart broadcasting. We compare with suitable stochastic optimization approaches

that are popular in reinforcement learning and heuristics.

• Cross Entropy (CE) [129]: It samples controls from a Gaussian distribution, sorts

the samples in ascending order with respect to the cost and recomputes the distri-

bution parameters based on the first K elite samples. Then it returns to the first

step with a new distribution until the cost converges.

• Finite Difference (FD) [130]: It generates I samples of perturbed policies u + ∆u

and computes perturbed cost S + ∆S. Then it uses them to approximate the true

gradient of the cost with respect to the policy.

• Greedy: It controls the system when local state cost is high. We divide the window

into n state cost observation timestamps. At each timestamp, Greedy computes

state cost and controls the system based on pre-specified control rules if current

cost is more than k times of the optimal cost of our algorithm. It will stop if it has

reached the current budget bound. We vary k from 1 to 5, n from 1 to 100 and

report the best performance.

• Base Intensity (BI) [35]: It sets the policy for the base parameterization of the

intensity only at initial time and does not consider the system feedback.

We provide both Mpc and open-loop (OL) versions for our KL algorithm, Finite

Difference and Cross Entropy. For Mpc, we set the optimization window T̃ = T/10

and sample size I = 10, 000. It is efficient to generate these samples and takes less

than one second using parallelization.
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7.6.1 Experiments on Opinion Guiding

We generate a synthetic network with 1000 users. We simulate the opinion SDE

on window [0, 50] by applying Euler forward method [149] to compute the difference

form of the SDE in (7.1). The time window is divided into 500 timestamps. We set

the initial opinion xi(0) = −10 and the target opinion ai = 1 for each user. For

model parameters, we set β = 0.2, and adjacency matrix A generated uniformly on

[0, 0.01] with sparsity of 0.001. We simulate the Hawkes process using thethinning

algorithm [59]. We set the base intensity in the Hawkes process to be µ = 0.01; the

influence matrix is the same as the adjacency matrix A. We set the cost tradeoff

parameter to be γ = 10.

Figure 7.3 shows the controlled opinion at different times. Our method works

efficiently with fast convergence speed. Figure 7.4(a) shows the instantaneous cost

‖x(t)−a‖ at each time t. The opinion system is gradually steered towards the target,

and the cost decreases over time. Our Kl-Mpc achieves the lowest instantaneous cost

at each time and has the fastest convergence to the optimal cost. Hence the total

state cost is also the lowest.

Figure 7.4(b) shows that Kl-Mpc has 3× cost improvement than Ce-Mpc, with

less variance and faster convergence. This is because Kl-Mpc is more flexible and

has less restrictions on the control policy. Ce-Mpc is a popular method for the tra-

ditional control problem in robotics, where the SDE does not contain the jump term

and control is in the drift. However, Ce-Mpc assumes the control is sampled from

a Gaussian distribution, which might not be the ideal assumption in the intensity

control problem. Fd performs worse than Ce due to the error in the gradient esti-

mation process. Finally, for the same method, the Mpc always performs better than

open-loop version, which shows the importance of incorporating state feedback to the

policy.

Figure 7.5(a,b) compare the controlled intensity with the uncontrolled intensity
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Figure 7.3: Controlled opinion dynamics of 1000 users. The initial opinions are
uniformly sampled from [−10, 10] and sorted, target opinion a is polarized with −5
and 10. (a) shows the opinion value per user over time. (b-d) are network snapshots
of the opinion polarity of 50 sub-users. Yellow/blue means positive/negative.

at the beginning. Since the goal is to influence everyone to be positive, (a) shows that

if the user tweets positive opinion, the control will increase its intensity to influence

others positively. On the contrary, (b) shows that if the user’s opinion is negative, his

intensity will be controlled to be small. (c) and (d) show scenarios near the terminal

time. Since the system is around the target state, the policy is small and the original

and controlled intensity are similar for positive and negative users.

7.6.2 Experiments on Smart Broadcasting

We evaluate on a real-world Twitter dataset [4], which contains 280,000 users with

550,000 tweets/retweets. We first learn the parameters of the point processes that cap-

ture each user’s posting behavior by maximizing the likelihood function of data [137].

For each broadcaster, we track down all followers and record all the tweets they posted
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Figure 7.4: Experiments on least square guiding. (a) Instantaneous cost vs. time.
Line is the mean and pale region is the variance; (b) state cost; (c,d) sample opinion
trajectories of five users.

and reconstruct followers’ timelines by collecting all the tweets by people they follow.

We use two evaluation schemes. First, similar to the synthetic case, with learned

parameters, we simulate posting events on [0, 10] and conduct control over the sim-

ulated dynamics with the cost tradeoff parameter as γ = 10. The time window is

divided into ten timestamps. We repeat this simulation procedure ten times.

The second and more interesting scheme is to carry the policy in a real platform.

Since it is very challenging to do so, we mimic it using held-out data. We partition

the data into ten intervals and use one interval for training and others for testing.

Each method essentially predicts which interval has smaller cost, by measuring the

optimal position computed from that method to real position. Specifically, for each
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Figure 7.5: Intensity comparison. (a-d) Opinion guiding experiment: visualization
for users with positive (POS) and negative (NEG) opinions during different periods.
(e) Smart broadcasting: visualization for one randomly picked broadcaster and his
competitors.

broadcaster, the procedure is as follows: (i) Estimate model parameters using data

in interval 1. (ii) Compute the optimal policy and obtain the broadcaster’s optimal

position x∗i in each other interval i. Then sort intervals according to |xi − x∗i |. (iii)

Sort intervals according to the actual value of xi. (iv) Compute prediction accuracy

by dividing the number of pairs with consistent ordering in step 2 and step 3 by total

number of pairs. We report the accuracy over ten runs by choosing each different

interval for training once.

Figure 7.7(a) compares the average rank of the broadcaster of different methods.

We compute the average rank by dividing the state cost by window length, and

average over all broadcasters. Kl-Mpc achieves the lowest average rank and is 4×
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Figure 7.7: Real world experiment with two evaluation schemes.

lower than the Ce-Mpc. Specifically, it achieves the rank around 1.5 at each time,

which is nearly the ideal scenario where the broadcaster always remains on top-1.

Figure 7.7(b) further shows that our method performs the best: it achieves more

than 0.3+ improvement over Ce-Mpc; hence our method has 30% more of the total

realizations correctly. Accurate prediction means that if applying our control policy

to the users, we will achieve the objective much better than alternative methods.

Figure 7.6 compares the controlled intensity of one broadcaster with the uncon-

trolled intensity of his competitors. It shows that Kl-Mpc increases his intensity

when that of other competitors is large, and decreases his intensity when competi-

tor’s intensity is small. For example, around timestamp 2 and 4, competitors have
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large intensities; hence to remain on top, this broadcaster needs to double his intensity

to create more posts. Moreover, on [6.5, 8], others are not active and this broadcaster

keeps a low intensity. His behavior is adaptive since our control cost ensures the

broadcaster not to deviate too much from his original intensity.

7.7 Summary

In this chapter, we have presented a generic framework to control the stochastic

intensity function of a general point process, such that a nonlinear SDE driven by

the point process is steered towards a target state. We exploit the measure-theoretic

view of the stochastic intensity control problem, derive an analytical form of the

optimal measure, and compute the optimal policy using a KL divergence objective.

We provide a scalable algorithm with superior performance in diverse social problems.

There are many interesting venues for future work. For example, we can apply our

method to other interesting problems, such as influence and activity maximization [35,

111].
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CHAPTER 8

CONCLUSIONS

With the goal to make the digital platforms more useful and engaging for online

users and entire society, this dissertation provides a generic framework that consists

of expressive models for users’ temporal behaviors, scalable predictive algorithms for

users’ macroscopic activity levels, and efficient optimal control policies for guiding

users’ behaviors. Our framework models the asynchronous and interdependent event

data, which often require much more complex models and learning algorithms far

beyond the existing epoch based methods. The design of our framework adheres

to the following three steps: (1) we first develop expressive models and learning

algorithms to capture various patterns of user’s behaviors and their features; (2)

based on the learned models, we next develop scalable algorithms for large scale

inferences on users’ behaviors, (3) finally, we consider the “closed loop” setting, and

design feedback control policies to guide users’ behaviors by utilizing the learned

model as well as the predicted behaviors in the future. Specifically, we make the

following contributions:

Model:

• We propose a novel Isotonic-Hawkes process model, which can better capture

users’ various behaviors in service platforms. We further develop a theoretically-

guaranteed learning algorithm to learn both the link function and the parame-

ters of our model.

• We develop a co-evolutionary feature embedding framework to capture the evo-

lution of different entities’ feature in continuous-time evolving graphs.

• We design a generic feature embedding framework that learns a general rep-

144



resentation of users and items, which innovatively connects recurrent neural

networks with point processes.

Prediction:

• We develop an efficient time-sensitive recommendation algorithm, which is able

to (1) recommend the proper item to the user at a particular time, and (2)

predict the next returning of a user to the service.

• We design a novel framework to compute an unbiased estimator of the prob-

ability mass function of general point processes. It requires significantly less

number of samples compared with the state of the art Monte Carlo method.

Control:

• We design a generic framework to reformulate point process based user activity

models into stochastic differential equations, which allows us to bring in and

extend tools from stochastic optimal control theory to address the closed loop

activity guiding problem.

• We develop a novel measure theoretic view of the intensity control problem

and design a scalable model predictive control algorithm, which enjoys superior

performance in diverse social applications.

We believe these contributions can open several interesting research directions

towards understand users’ temporal and strategic behaviors. My long-term research

aim is to develop rigorous foundations for the design of service platforms by using the

large-scale temporal behavior data to advance our understanding of users’ behavior,

and then apply this knowledge to improve the various service platforms that now

support our world. Having recently obtained the massive data and the computational

ability to process it, we are clearly only at the start of this road. In the following, I

will describe several future directions that I am passionate to pursue.
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Developing a computational understanding of users’ objectives. My

work [8, 9] focus on designing policies to achieve an objective, but sometimes we

are facing the inverse problem: “How to learn the objective of a user from observed

temporal strategic behaviors?”. This is an important problem in recommender sys-

tems, healthcare, and economics. In recommender systems, users make decisions on

the recommended items, and receives utilities after the choice. We can treat users as

online learning algorithms, parameterize the utility by a deep neural network, and de-

sign a parameter learning mechanism that links the observed choices with his utility.

Similarly, in health data analytics, it is valuable to accurately understand doctor’s

true objectives and find the optimal treatments.

Brining automation in economic decision making. One of the most impor-

tant problem in economic decision making is to measure causation. To make a better

policy in a complex economy, it is vital to understand the mechanism that drives

the human behavior. I have developed models and learning algorithms to under-

stand advertisers’ bidding behaviors in sponsored search auctions, and I am excited

to apply this knowledge to other applications, such as measuring the effectiveness of

advertising strategies, and designing of incentives for desirable sales and education

outcomes.

Running online experiments. Online experimentation is an ever-increasing

part of the machine learning, computational social science, and economics toolkit. I

plan to continue collaborating with industry partners to run experiments that are

both scientifically illuminating and practically impactful. There are many intriguing

and hard problems to deal with when running randomized experiments online, and

I also plan to contribute methodological tools and practices in working with online

participants to help advance the modern practice of scientific experimentation.
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APPENDIX A

PROOF OF THEOREMS IN CHAPTER 2

A.1 Proof of Theorem 6

Theorem 6. Suppose E[Ni|Hti ] =
∫ ti

0
g∗(w∗ ·xt)dt, where g∗ is monotonic increasing,

1-Lipschitz and ‖w∗‖ ≤ W . Then with probability at least 1 − δ, there exist some

iteration k < O

((
Wn

log(Wn/δ)

)1/3
)

such that

ε(ĝk, ŵk) ≤ O

((W 2 log(Wn/δ)

n

)1/3
)
.

Notations. We define some extra notations. First we rewrite the integral as∫ ti
0
g∗(w∗ · xt)dt =

∑
j∈Si aijg

∗(w∗ · xj). Set y∗i = g∗(w∗ · xi) to be the expected value

of each yi. Let N̄i be the expected value of Ni. Then we have N̄i =
∑

j∈Si aijy
∗
j .

Clearly we do not have access to N̄i. However, consider a hypothetical call to the

algorithm with input {(xi, N̄i)}ni=1 and suppose it returns ḡk. In this case, we define

ȳki = ḡk(w̄k · xi). Next we begin the proof and introduce Lemma 3-5.

Analysis roadmap. To prove Theorem 6, we establish several lemmas. The

heart of the proof is Lemma 3, in which we show a property of the learned parameters

ŵk at iteration k. That is, the squared distance ‖ŵk −w∗‖2 between ŵk and the true

direction w∗ decreases at each iteration at a rate which depends on ε(ĝk, ŵk) and

some other additive error terms η1 and η2, which can be bounded respectively:

‖ŵk − w∗‖2 − ‖ŵk+1 − w∗‖2 ≥ C2ε(ĝ
k, ŵk)− C1(η1 + η2) (A.1)

Lemma 4 bounds η1 = O
(

(K +
√

4K2 + 8k2)
(

log(1
δ
)
)1/2
)

using martingale concen-

tration inequality.
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Lemma 5 bounds η2 = O

((W 2 log(Wn/δ)
n

)1/3
)

. It relates ŷkj (the value we can

actually compute) and ȳkj (the value we could compute if we had N̄i). ȳ
k
j and ŷkj will

show up when we decouple ‖ŵk − w∗‖2 − ‖ŵk+1 − w∗‖2.

Finally, we plug in the values of η1 and η2 to Lemma 3. Then we conduct tele-

scoping sum of (A.1) and show there is at most O

(
W/(η1 + η2)

)
iterations before

the error ε(ĝk, ŵk) is less than O(η1 + η2). Since η2 is the dominant term compared

with η1, we replace η1 by η2 in the final results. This completes the proof.

Now we introduce Lemma 3-5 as follows.

Lemma 3. Suppose that ‖wk − w‖ ≤ W , ‖xi‖ ≤ 1,
√
c ≤

∑
j∈Si aij ≤

√
C,∀i ∈

[n], j ∈ [n] and yj ≤M,∀j ∈ [n], and

| 1
n

n∑
i=1

(Ni − N̄i)| ≤ η1,
1

n

n∑
i=1

∑
j∈Si

aij|ŷkj − ȳkj | ≤ η2

then the following formula holds:

‖ŵk − w∗‖2 − ‖ŵk+1 − w∗‖2 ≥ C2ε(ĝ
k, ŵk)− C1(η1 + η2) (A.2)

where C1 = max{5CW, 4M
√
c+ 2CW}, C2 = 2c− C.

The complete proof of Lemma 3 is in Appendix C.

Lemma 4 (Martingale Concentration Inequality). Suppose dM(t) ≤ K, V (t) ≤ k

for all t > 0 and some K, k ≥ 0. With probability at least 1− δ, it holds that

1

n

n∑
i=1

|Ni − N̄i| ≤ O
(

(K +
√

4K2 + 8k2)
(

log(1/δ)
)1/2
)
.

Note Ni − N̄i = Mi, which is the martingale at time ti. A continuous martingale

is a stochastic process such that E[Mt|{Mτ , τ ≤ s}] = Ms. It means the conditional

expectation of an observation at time t is equal to the observation at time s, given
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all the observations up to time s ≤ t. V (t) is the variation process. It is shown in

[54] that V (t) = Λ(t) =
∫ t

0
λ(s)ds, which is the compensator for point process N(t).

The martingale serves as the noise term in point processes (similar to Gaussian noise

in regression) and can be bounded using the Bernstein-type concentration inequality.

The proof is in Appendix 4.

Lemma 5. With probability at least 1− δ, it holds for any k that

1

n

n∑
j=1

|ŷkj − ȳkj | ≤ O

((W 2 log(Wn/δ)

n

)1/3
)
.

Lemma 5 relates ŷkj (the value we can actually compute) to ȳkj (the value we could

compute if we had the conditional means of Nj). The proof of this lemma uses the

covering number technique and can be found in [51].

Proof of Theorem 6. With Lemma 3, we can conduct telescoping sum. There

can be two cases: either ε(ĝk, ŵk) ≤ 3C1(η1 + η2)/C2 or ε(ĝk, ŵk) ≥ 3C1(η1 + η2)/C2.

If it is the first case, then we are done. If it is the second case, then we have:

‖wk − w‖2 − ‖wk+1 − w‖2 ≥ C1(η1 + η2)

Since ‖wk+1 − w‖2 ≥ 0, and ‖w0 − w‖2 ≤ 2W 2, by telescoping sum, at iteration K,

we have:

2W 2 ≥ ‖w0 − w‖2 − ‖wK − w‖2 ≥ KC1(η1 + η2)

Set K = 2W 2/C1(η1 + η2), if k > K, then the above inequality does not hold,

which means ε(ĝk, ŵk) ≥ 3C1(η1 + η2)/C2 does not hold. Hence there can be at most

2W 2/C1(η1 + η2) = O(W/(η1 + η2)) iterations before ε(ĝk, ŵk) ≤ 3C1(η1 + η2)/C2.

The remaining step is to bound η1 and η2. We use Lemma 4 to bound η1 and use

Lemma 5 to bound η2. Clearly η2 is the dominant term. Plugging the values of η1

and η2, we have the conclusion that there is some hk such that
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ε(ĝk, ŵk) ≤ O

((W 2 log(Wn/δ)

n

)1/3
)

A.2 Proof of Lemma 7

To prove Lemma 3, a key technique is the generalized calibration property. It gener-

alizes that of isotonic regression in [50] since our objective function is more general.

We first state Lemma 7 and then provide the proof.

Lemma 7 (Generalized Calibration Property). The solutions to Quadratic Problem

in (2.7) is partitioned into disjoint blocks {Pl}ml=1, and for each block Pl:

n∑
i=1

(Ni −
∑
j∈Si

aij ŷ
k
j )
∑
j∈Pl

aij = 0 (A.3)

Proof. First we define aij such that

aij =


aij if j ∈ Si

0 else

Hence we have
n∑
j=1

aij =
∑
j∈Si

aij (A.4)

We can rewrite the objective function as:

f =
1

2

n∑
i=1

(Ni −
∑
j∈Si

aij ŷ
k
j )2 =

1

2

n∑
i=1

(Ni −
n∑
j=1

aij ŷ
k
j )2
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Set {λi}n−1
i=1 to be the Lagrange multipliers. To update ŷkj , we apply the KKT condi-

tions to (2.7) and obtain the following formulas:

∂f

∂ŷk1
=

n∑
i=1

(Ni −
n∑
j=1

aij ŷ
k
j )ai1 + λ1 = 0 (A.5)

∂f

∂ŷkj
=

n∑
i=1

(Ni −
n∑
j=1

aij ŷ
k
j )aij + λj − λj−1 = 0, 2 ≤ j ≤ n− 1 (A.6)

∂f

∂ŷkn
=

n∑
i=1

(Ni −
n∑
j=1

aij ŷ
k
j )ain − λn−1 = 0 (A.7)

λj(ŷ
k
j − ŷkj+1) = 0, 1 ≤ j ≤ n− 1 (A.8)

λj ≥ 0, 1 ≤ j ≤ n− 1 (A.9)

Depending whether ŷkj ’s are equal, we can divide the subscript of ŷkj into disjoint

sets {Pl}ml=1 such that in each Pl, the values of ŷkj are the same. Hence there exists

j1 < j2 < · · · < jm−1 < n, such that

P1 = {1, · · · , j1},P2 = {j1 + 1, · · · , j2}, · · · ,Pm = {jm−1 + 1, n} (A.10)

Figure A.1 illustrates an example when m = 3. in this case, P1 = {1, 2}, P2 = {3, 4},

and P3 = {5, 6}. Now we show the following equality holds for l = 1, · · · ,m in three

cases,
n∑
i=1

(Ni −
n∑
j=1

aij ŷ
k
j )
∑
j∈Pl

aij = 0

Case 1: the first block. For P1, we sum up equations ∂f
∂ŷkj

= 0 according to the index

in P1. we have


∑n

i=1(Ni −
∑n

j=1 aij ŷ
k
j )
∑

j∈P1
aij + λj1 = 0

λj1 = 0

(A.11)
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Figure A.1: Demonstration for the block partition in (A.10). P1, P2 and P3 are the
first, intermediate and last block respectively. In each block, ŷ has the same value.

Since ŷkj1 6= ŷkj1+1, from (A.8) we have λj1 = 0.

Case 2: the intermediate blocks. For 2 ≤ l ≤ m − 1, in Pl, we sum up equations

∂f
∂ŷkj

= 0. Then we have


∑n

i=1(Ni −
∑n

j=1 aij ŷ
k
j )
∑

j∈Pl aij + λjl − λjl−1
= 0

λjl = λjl−1
= 0

(A.12)

Since ŷkjl 6= ŷkjl+1 and ŷkjl−1
6= ŷkjl−1+1, from (A.8) we have λjl = λjl−1

= 0.

Case 3: the last block. For Pm, similarly we have


∑n

i=1(Ni −
∑n

j=1 aij ŷ
k
j )
∑

j∈Pm aij − λjm−1 = 0

λjm−1 = 0

(A.13)

From (A.4), we have for all l = 1, · · · ,m

n∑
i=1

(Ni −
∑
j∈Pl

aij ŷ
k
j )
∑
j∈Pl

aij = 0

This completes the proof.
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A.3 Proof of Lemma 3

First, we have

‖ŵk − w∗‖2 − ‖ŵk+1 − w∗‖2 = 2(ŵk+1 − ŵk) · (w∗ − ŵk)− ‖ŵk+1 − ŵk‖2 (A.14)

=
2

n

n∑
i=1

(Ni −
∑
j∈Si

aij ŷ
k
j )(
∑
j∈Si

aijxj · (w∗ − ŵk))︸ ︷︷ ︸
A

−

∥∥∥∥∥ 1

n

n∑
i=1

(Ni −
∑
j∈Si

aij ŷ
k
j )
∑
j∈Si

aijxj

∥∥∥∥∥
2

︸ ︷︷ ︸
B

(A.15)

First we simplify A. Using the following equality:

Ni −
∑
j∈Si

aij ŷ
k
j = Ni −

∑
j∈Si

aijy
∗
j +

∑
j∈Si

aijy
∗
j −

∑
j∈Si

aij ȳ
k
j +

∑
j∈Si

aij ȳ
k
j −

∑
j∈Si

aij ŷ
k
j ,

we can rewrite A into three parts:

A =
2

n

n∑
i=1

(Ni −
∑
j∈Si

aijy
∗
j )(
∑
j∈Si

aijxj) · (w∗ − wk) (A.16)

+
2

n

n∑
i=1

(
∑
j∈Si

aijy
∗
j −

∑
j∈Si

aij ȳ
k
j )(
∑
j∈Si

aijxj · (w∗ − wk)) (A.17)

+
2

n

n∑
i=1

(
∑
j∈Si

aij ȳ
k
j −

∑
j∈Si

aij ŷ
k
j )(
∑
j∈Si

aijxj · (w∗ − wk)) (A.18)

The term (A.16) is at least −2CWη1, the term (A.18) is at least −2CWη2 since

|
∑

j∈Si aij(w − w
k) · xj| ≤

√
CW and assuming C ≥ 1. We thus bound(A.17).

First define v, the inverse of g as

v(y) = inf{z ∈ dom(g)|g(z) = y}
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Note that v is well defined since g is monotonic. We also split (A.17) into three parts,

2

n

n∑
i=1

(
∑
j∈Si

aijy
∗
j −

∑
j∈Si

aij ȳ
k
j )(
∑
j∈Si

aijxj · (w∗ − ŵk))

=
2

n

n∑
i=1

(
∑
j∈Si

aijy
∗
j −

∑
j∈Si

aij ȳ
k
j )
∑
j∈Si

aijv(ȳkj ) (A.19)

− 2

n

n∑
i=1

(
∑
j∈Si

aijy
∗
j −

∑
j∈Si

aij ȳ
k
j )
∑
j∈Si

aijŵ
k · xj (A.20)

+
2

n

n∑
i=1

(
∑
j∈Si

aijy
∗
j −

∑
j∈Si

aij ȳ
k
j )
∑
j∈Si

aij(w
∗ · xj − v(ȳkj )) (A.21)

As for (A.19), it is 0 by Lemma 7. To see this, remember that N̄i =
∑

j∈Si aijy
∗
i

and ȳkj is the output of the algorithm in Eq. (2.7) with input {(w̄k · xi, N̄i)}. Apply

Lemma 6 and we have the pools {Pl}ml=1 and

n∑
i=1

(N̄i −
∑
j∈Si

aij ȳ
k
j )
∑
j∈Pl

∑
j∈Si

aij = 0

Define function v to be the inverse of g. v is defined as v(y) = inf{z ∈ dom(g)|g(z) =

y}. Since g is monotonic, v is well-defined. Since all ȳkj in the same set Pl has the

same value, then the value v(ȳkj ) (the inverse mapping) is also the same. Hence

n∑
i=1

(Ni −
∑
j∈Si

aij ȳ
k
j )
∑
j∈Si

aijv(ȳkj ) = 0

Now sum the above equation up for all sets Pl, l = 1, · · · ,m, note that
⋃m
l=1P =

{1, · · · , n}, we have
n∑
i=1

(N̄i −
∑
j∈Si

aij ȳ
k
j )
∑
j∈Si

aijv(ȳkj ) = 0

As to (A.20), we show it is always no greater than 0. To see this, we first claim that
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for any δ > 0,

n∑
i=1

(N̄i −
∑
j∈Si

aij ȳ
k
j )2 ≤

n∑
i=1

(N̄i −
∑
j∈Si

aij ȳ
k
j − δ(

∑
j∈Si

aijxj) · ŵk)2

This is because
∑

j∈Si aij ȳ
k
j minimizes the sum of squared difference w.r.t. N̄i over

all such sequences. Rewriting this as a difference of squares gives,

∑
i

δ(
∑
j∈Si

aijxj) · ŵk
(

2Ni − 2
∑
j∈Si

aij ȳ
k
j − δ(

∑
j∈Si

aijxj) · ŵk
)
≥ 0

Dividing both sides by 2δ > 0, we have

∑
i

(
∑
j∈Si

aijxj) · ŵk
(
N̄i −

∑
j∈Si

aij ȳ
k
j −

δ

2
(
∑
j∈Si

aijxj) · ŵk
)
≥ 0

Setting δ → 0, by continuity we obtain

2

n

n∑
i=1

(N̄i −
∑
j∈Si

aij ȳ
k
j )
∑
j∈Si

aijŵ
k · xj ≥ 0

Hence we have (A.20) always no greater than 0.

As to (A.21), by 1-Lipschitz property of g, the first term can be bounded as

2

n

n∑
i=1

(
∑
j∈Si

aijy
∗
j −

∑
j∈Si

aij ȳ
k
j )
∑
j∈Si

aij(v(y∗j )− v(ȳkj ))

≥ 2

n

n∑
j=1

c(y∗j − ȳkj )(v(y∗j )− v(ȳkj ))

≥ 2

n

n∑
j=1

c(y∗j − ȳkj )2 = 2cε(ḡk, w̄k) (A.22)

Plugging to the definition of A, we get

A ≥ 2cε(ḡk, w̄k)− 2CW (η1 + η2) (A.23)
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Next we bound B. First rewrite B as:

B =

∥∥∥∥∥ 1

n

n∑
i=1

(Ni −
∑
j∈Si

aijy
∗
j +

∑
j∈Si

aijy
∗
j −

∑
j∈Si

aij ŷ
k
j )
∑
j∈Si

aijxj

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

n

n∑
i=1

(Ni −
∑
j∈Si

aijy
∗
j )
∑
j∈Si

aijxj

∥∥∥∥∥
2

(A.24)

+ 2

∥∥∥∥∥ 1

n

n∑
i=1

(Ni −
∑
j∈Si

aijy
∗
j )
∑
j∈Si

aijxi

∥∥∥∥∥×
∥∥∥∥∥ 1

n

n∑
i=1

(
∑
j∈Si

aijy
∗
j −

∑
j∈Si

aij ŷ
k
j )
∑
j∈Si

aijxj

∥∥∥∥∥
(A.25)

+

∥∥∥∥∥ 1

n

n∑
i=1

(
∑
j∈Si

aijy
∗
j −

∑
j∈Si

aij ŷ
k
j )
∑
j∈Si

aijxj

∥∥∥∥∥
2

(A.26)

From the condition in Lemma 3, we have

‖ 1

n

n∑
i=1

(Ni −
1

n

n∑
i=1

∑
j∈Si

aijy
∗
j )
∑
j∈Si

aijxj‖2 ≤ Cη2
1 (A.27)

Use Jensen’s inequality and consider the upper bound C for ‖
∑

j∈Si aijxi‖
2, we show

that

∥∥∥∥∥ 1

n

n∑
i=1

(
∑
j∈Si

aijy
∗
j −

∑
j∈Si

aij ŷ
k
j )
∑
j∈Si

aijxi

∥∥∥∥∥
2

≤ C× 1

n

n∑
i=1

(y∗j − ŷkj )2 = Cε(ĝk, ŵk) (A.28)

Combining (A.27) and (A.28) into (A.24), (A.25), (A.26), assuming η1 ≤ 1, C ≥ 1,

we have

B ≤ Cη2
1 + 2Cη1

√
ε(ĝk, ŵk) + Cε(ĝk, ŵk) ≤ Cε(ĝk, ŵk) + 3Cη1 (A.29)

Hence the we have:

B ≤ Cε(ĝk, ŵk) + 3Cη1 (A.30)

Combining the bound for A in (A.23) and the bound for B in (A.30) into (A.15), we
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get

‖ŵk − ŵ‖2 − ‖ŵk+1 − ŵ‖2 ≥ 2cε(ḡk, w̄k)− Cε(ĝk, ŵk)− CW (5η1 + 2η2) (A.31)

To finish the proof, we establish the relationship between ε(ḡk, w̄k) and ε(ĝk, ŵk) as

follows: we claim that the difference between ε(ḡk, w̄k) and ε(ĝk, ŵk) can be lower

bounded:

ε(ḡk, w̄k)− ε(ĝk, ŵk) ≥ −2Mη2/
√
c (A.32)

To see this, we have:

ε(ḡk, w̄k) =
1

n

n∑
j=1

(ȳkj − y∗j )2

=
1

n

n∑
j=1

(ȳkj − ŷkj + ŷkj − y∗j )2

=
1

n

n∑
j=1

(ŷkj − y∗j )2 +
1

n

n∑
j=1

(ȳkj − ŷkj )(ȳkj + ŷkj − 2y∗j )

= ε(ĝk, ŵk) +
1

n

n∑
j=1

(ȳkj − ŷkj )(ȳkj + ŷkj − 2y∗j )

and we have |ȳki + ŷki − 2y∗i | ≤ 2M . Plugging this and the following inequality leads

to (A.32).

1

n

n∑
j=1

|ŷkj − ȳkj | ≤
1

n

n∑
j=1

∑
j∈Si

aij/
√
c|ŷkj − ȳkj | ≤ η2/

√
c

Combine (A.32) and (A.31), we have

‖wk − w‖2 − ‖wk+1 − w‖2 ≥ (2c− C)ε(ĝk, ŵk)− 4M
√
cη2 − CW (5η1 + 2η2)

≥ C2ε(ĝ
k, ŵk)− C1(η1 + η2)

where C1 = max{5CW, 4M
√
c+ 2CW}, C2 = (2c− C), this completes the proof.
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A.4 Proof of Lemma 4

We have Ni − N̄i = Mi, which is the martingale at time ti. The martingale serves

as the noise term in point processes (similar to Gaussian noise in regression) and can

be bounded using the Bernstein-type concentration inequality. First, we have the

following martingale inequality [54, 150]: for each ε and some t, we have

P[|M(t)| > ε] ≤ exp

(
− ε2

2(k2 + εK)

)

In our case, for each i, we have Ni = Λ(ti) + M(ti), where Λ(t) is the compensator

and M(t) is the zero-mean martingale. Also we have N̄i = E(Ni) = Λ(ti). Hence

Ni − N̄i = M(ti) = Mi. Now we set δ = P[|M(t)| > ε], then with probability at least

1− δ, |M(t)| ≤ ε. Set δ = exp

(
− ε2

2(k2+εK)

)
, then we have the equation

ε2 − 2K log(
1

δ
)ε− 2k2 log(

1

δ
) = 0

Hence

ε =
2K log(1

δ
) +

√
4K2

(
log(1

δ
)
)2

+ 8k2 log(1
δ
)

2

≤ K log(
1

δ
) +
√

4K2 + 8k2

(
log(

1

δ
)

)1/2

≤ (K +
√

4K2 + 8k2)

(
log(

1

δ
)

)1/2

Here we have used the fact that
(

log(1/δ)
)2 ≤ log(1/δ) ≤

√
log(1/δ). We can obtain

that

ε = O

(
(K +

√
4K2 + 8k2)

(
log(

1

δ
)
)1/2
)
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Hence we have

1

n

n∑
i=1

|Ni − N̄i| =
1

n

n∑
i=1

|Mi| ≤ O

(
(K +

√
4K2 + 8k2)

(
log(

1

δ
)
)1/2
)
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APPENDIX B

PROOF OF THEOREMS IN CHAPTER 5

B.1 Proof of Theorem 8

Theorem 8 (Mass Transport Equation for Point Processes). Let λ(t) := λ(t|Ht−) be

the conditional intensity function of the point process N(t) and φ̃(x, t) := P[N(t) =

x|Ht− ] be its conditional probability mass function; then φ̃(x, t) satisfies the following

differential-difference equation:

φ̃t(x, t) :=
∂φ̃(x, t)

∂t
=


−λ(t)φ̃(x, t) + λ(t)φ̃(x− 1, t) if x = 1, 2, 3, · · ·

−λ(t)φ̃(x, t) if x = 0

(B.1)

Proof. For the simplicity of notation, we define a functional operator F [φ̃] as

follows:

F [φ̃] = −λ(t)φ̃(x, t) + λ(t)φ̃(x− 1, t)I[x > 1],

where I(·) is an indicator function.

Our goal is to prove F [φ̃] = φ̃t. For the simplicity of notation, we define the inner

product [151] between functions f(x) and g(x) as the summation of the product of

of f(x) and g(x), where x ∈ N:

(f, g) =
∞∑
x=0

f(x)g(x)

To prove the equality φ̃t = F [φ̃], we will prove that the equality (v, φ̃t) = (v,F [φ̃])

holds for any test function v(x). Then the equality φ̃t = F [φ̃] follows from the famous

Fundamental Lemma of Calculus of Variations [107]. To show the above equality, we
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start by computing (v, φ̃t).

Computing (v, φ̃t). According to the definition of expectation and the fact that

φ̃(x, t) is the conditional probability mass, we have

E[v(N(t))|Ht− ] =
∑∞

x=0
v(x)P[N(t) = x|Ht− ] =

∑∞

x=0
v(x)φ̃(x, t) = (v, φ̃).

Taking the gradient with respect to t yields

∂E[v(N(t))|Ht− ]

∂t
=
∑∞

x=0
v(x)φ̃t(x, t) = (v, φ̃t). (B.2)

Next, we obtain another expression for (v, φ̃t). First we show the following property

of dv(N(t))

dv(N(t)) =
(
v(N(t) + 1)− v(N(t))

)
dN(t) (B.3)

In fact, from the definition of the differential operator d, we have the following prop-

erty:

dv(N(t)) := v
(
N(t+ dt)

)
− v
(
N(t)

)
= v
(
N(t) + dN(t)

)
− v
(
N(t)

)
Since dN(t) = {0, 1}, if dN(t) = 0, we have dv(N(t)) = 0; otherwise, we have

dv(N(t)) = v(N(t) + 1)− v(N(t)). For both cases, equation (B.3) holds.

Next, we integrate both sides of (B.3) on [0, t] and express v(N(t)) as follows:

v(N(t)) = v(N(0)) +

∫ t

0

(
v(N(t) + 1)− v(N(t))

)
dN(t) (B.4)

Given Ht− , we take the conditional expectation of (B.4) and obtain the following

expression:

E[v(N(t))|Ht− ] = v(N(0)) + E
[ ∫ t

0

(
v(N(t) + 1))− v(N(t))

)
λ(t)dt

∣∣∣Ht−

]
(B.5)
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Now we differentiate both sides of (B.5) with respect to time t and obtain the following

expression:

∂E[v(N(t))|Ht− ]

∂t
= E

[
∂

∂t

∫ t

t0

(
B[v](N(s))

)
ds
∣∣∣H(t−)

]
= E

[
B[v](N(t))

∣∣∣Ht−

]
=
∑∞

x=0
B[v](x(t))φ̃(x, t)

= (B[v], φ̃) (B.6)

where B[v] is another functional operator defines as

B[v]
(
N(t)

)
=
(
v(N(t) + 1)− v(N(t))

)
λ(t) (B.7)

Since (B.6) and (B.2) are equivalent, we have:

(v, φ̃t) = (B[v], φ̃)

Now we have finished the first part of the proof. In the second part, our goal is to

move the operator B from test function v to the conditional probability mass function

φ and prove (B[v], φ̃) = (v,F [φ̃]). We start by computing (B[v], φ̃) as follows.

Computing (B[v], φ̃). We define a new post-jump variable as y = x + 1, and

conduct a change of variable from x to y = x+ 1 in (B[v], φ̃). Specifically, we express

(B[v], φ̃) as follows

∞∑
x=0

(
v(x+ 1)− v(x)

)
λ(t)φ̃(x, t) =

∞∑
x=0

v(x+ 1)λ(t)φ̃(x, t)−
∞∑
x=0

v(x)λ(t)φ̃(x, t)

=
∞∑
y=1

v(y)λ(t)φ̃(y − 1, t)−
∞∑
x=0

v(x)λ(t)φ̃(x, t)

(B.8)
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Next, we use an indicator function and let the value of y to start from 0 in the first

term of (B.8):

∞∑
y=1

v(y)λ(t)φ̃(y − 1, t) =
∞∑
y=0

v(y)λ(t)φ̃(y − 1, t)I[y > 1]

=
(
v(y), λ(t))φ̃(y − 1, t)I[y > 1]

)
(B.9)

Now we substitute (B.9) back to (B.8) and obtain the following equation:

∞∑
x=0

(
v(x+ 1)− v(x)

)
λ(t)φ̃(x, t) =

(
v(y), λ(t))φ̃(y − 1, t)I[y > 1]

)
−
(
v(x), λ(t)φ̃(x, t)

)
=
(
v(x), λ(t))φ̃(x− 1, t)I[x > 1]

)
−
(
v(x), λ(t)φ̃(x, t)

)
= (v,F [φ̃]) (B.10)

Hence, for an arbitrary function v(x), we have shown the following equality:

(v, φ̃t) = (B[v], φ̃) = (v,F [φ̃]).

This yields φ̃t = F [φ̃] and the proof is now complete.

B.2 Proof of Theorem 7

Theorem 7. For time t > 0 and an arbitrary function f , we have:

VAR[g(Ht−)] < VAR[f(N(t))] (B.11)

Proof. The proof contains two steps. We first compute the expected value of the

conditional variance E
[
VAR

[
f(N(t))|Ht−

]]
, and next compute the variance of the

conditional expected value VAR
[
g(Ht−)

]
.

(i) Expected value of the conditional variance. Since VAR[f(N(t))|Ht− ] is a ran-
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dom variable, we can compute its expected value. Using the definition of variance, i.e.,

VAR[f(N(t))|Ht− ] = E[f(N(t))2|Ht− ]− [E[f(N(t))|Ht− ]]2, we have

E
[
VAR

[
f(N(t))|Ht−

]]
= E

[
E
[
f(N(t))2|Ht−

]]
− E

[[
f(N(t))|Ht−

]2]
(B.12)

= E[f(N(t))2]− E
[[
E[f(N(t))|Ht− ]

]2]
(B.13)

(ii) Variance of the conditional expected value. We express VAR
[
g(Ht−)

]
as follows

VAR
[
g(Ht−)

]
= VAR

[
E
[
f(N(t))|H(t)

]]
(B.14)

= E
[
E
[
f(N(t))|Ht−

]2]
−
[
E
[
E[f(N(t))|Ht− ]

]]2

(B.15)

= E
[
E
[
f(N(t))|Ht−

]2]
− E[f(N(t))]2 (B.16)

Combining (B.13) and (B.16) yields the following equation:

VAR[g(Ht−)] + E
[
VAR

[
f(N(t))|Ht−

]]
= VAR[N(t)]

Next, we show that the inequality in our theorem is strict. According to the definition

of counting process, we have N(0) = 0. Moreover, we are only interested in the

scenarios where the number of events are positive, i.e., N(t) > 0 for future time t > 0.

Since the point process N(t) is right continuous and not a predictable process [106],

we obtain the fact that conditioning on Ht− , there is a stochastic jump at time t and

the value of f(N(t)) is random and not a constant. Hence the conditional variance

VAR
[
f(N(t))|Ht−

]
is positive and we have E

[
VAR

[
f(N(t))|Ht−

]]
> 0. The proof

is now complete.
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APPENDIX C

PROOF OF THEOREMS IN CHAPTER 6

C.1 Proof of Theorem 11

Theorem 11 (Transformation Framework). The equivalent SDE form of the user

activity model is:

dλi(t) = dηi + ω1

(
ηi − λi

)
dt+

∑
j
βijdNj(t) (C.1)

dxi(t) = dbi + ω2

(
bi − xi(t)

)
dt+

∑
j
αijh(xj)dNj(t)

Proof. Given any two function f(t) and g(t), we first define a convolution operator

? as follows

f(t) ? g(t) =

∫ t

0

f(t− s)g(s)ds (C.2)

Therefore, the user activity model for xi(t) can be expressed as

xi(t) = bi(t)
↑

base

+
∑U

j=1
αijκω2(t) ?

(
h(xj(t))dNj(t)

)
︸ ︷︷ ︸

social neighbor influence

(C.3)

Before we apply the differential operator d to (C.3), we also need the following two

properties:

• dκω2(t) = −ω2κω2(t)dt for t > 0 and κω2(0) = 1.

• The differential of the convolution of two functions is expressed as: d(f ? g) =

f(0)g + g ? df .

With the above two properties, we set f = κω2(t) and g =
∑

j αijh(xj)dNj(t), and
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take the differential of xi(t) in (C.3) as follows

dxi(t) = dbi(t) + d(f ? g) (C.4)

= dbi(t) +
∑U

j=1
αijh(xj)dNj(t)− ω2

(∑U

j=1
αijkω2(t) ? (h(xj) · dNj(t))

)
dt

(C.5)

= dbi(t) +
∑U

j=1
αijh(xj)dNj(t)− ω2(xi(t)− bi(t))dt (C.6)

= dbi(t) + ω2(bi(t)− xi(t))dt+
∑U

j=1
αijh(xj(t))dNj(t) (C.7)

This completes the proof for the SDE formulation of xi(t).

Similarly, we can express the intensity function using the convolution operator as

follows

λi(t) = ηi(t)
↑

base

+
∑U

j=1
βijκω1(t) ? dNj(t)︸ ︷︷ ︸

social neighbor influence

(C.8)

Then we set f = κω1(t), g =
∑

j βijdNj(t), and can show the following equation:

dλi(t) = dηi(t) + ω1

(
ηi(t)− λi(t)

)
dt+

∑
j
βijdNj(t) (C.9)

This completes the proof.

C.2 Proof of Theorem 13

Theorem 13 (Generalized Ito’s Lemma). Given the SDE in (6.5), let V (x, t) be

twice-differentiable in x and once in t; then we have:

dV =
{
Vt +

1

2
tr(Vxxgg

>) + V >x (f + u)
}

dt+ V >x gdw +
(
V (x+ h, t)− V (x, t)

)
dN (t)

(C.10)

Proof. To prove the theorem, we will first provide some background and useful
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formulas as follows [123].

(dt)2 = 0, dtdN (t) = 0, dtdw(t) = 0, dw(t)dN (t) = 0, dw(t)dw(t)> = dtI (C.11)

All the above equations hold in the mean square limit sense. The mean square

limit definition enables us to extend the calculus rules for deterministic functions and

properly define stochastic calculus rules such as stochastic differential and stochastic

integration for stochastic processes.

We first restate the SDE in (6.5) as follows

dx =
(
f(x) + u

)
dt+ g(x)dw(t) + h(x)dN (t)

= F (x) + h(x)dN (t),

where F (x) denotes the continuous part of the SDE and is define as

F (x) =
(
f(x) + u

)
dt+ g(x)dw(t)

Note that the term hdN (t) denotes the discontinuous part of the SDE. For the

simplicity of notation, we set F (x) = F and h(x) = h and omit the dependency on

x.

Next, we expand dV according to its definition as follows

dV (x, t) = V (x(t+ dt), t+ dt)− V (x, t)

With the definition x(t+ dt) = x(t) + dx, we can expand V (x(t+ dt), t+ dt) using
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Taylor expansion on variable t as follows

V (x(t+ dt), t+ dt) = V (x+ dx, t+ dt) (C.12)

= V (x+ dx, t) + Vt(x, t)dt (C.13)

Next, we expand V (x+ dx, t) as follows

V (x+ dx, t)

= V (x+ F + hdN (t), t) (C.14)

=
(
V (x+ F + h, t)− V (x+ F , t)

)
dN (t) + V (x+ F , t) (C.15)

=

[
V (x+ h, t) + Vx(x+ h)>F +

1

2
FVxx(x+ h)F>︸ ︷︷ ︸

Taylor expansion 1

(C.16)

−
(
V (x, t) + V >x F +

1

2
FVxxF

>︸ ︷︷ ︸
Taylor expansion 2

)]
dN (t) (C.17)

+ V (x, t) + V >x F +
1

2
FVxxF

>︸ ︷︷ ︸
Taylor expansion 2

(C.18)

=
(
V (x+ h, t)− V (x, t)

)
dN (t) +

(
Vx(x+ h)− Vx

)>
FdN (t) (C.19)

+ V (x, t) + V >x F +
1

2
FVxxF

> +
(1

2
FVxx(x+ h)F> − 1

2
FVxx(x)F>

)
dN (t)

(C.20)

Next, we show the reasoning from (C.14) to (C.18).

First, we derive a stochastic calculus rule for the point process. Specifically, since

dN (t) ∈ {0, 1}, there are two cases for (C.14): If a jump happens, i.e., dN (t) = 1,

(C.14) is equivalent to V (x + F (x) + h(x), t); otherwise, we have dN (t) = 0 and

(C.14) is equivalent to V (x + F (x), t). Hence (C.15) is equivalent to (C.14). This

stochastic rule essentially takes dN (t) from inside the value function V to the outside.

Second, from (C.15) to (C.18), we have used the following Taylor expansions.
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Taylor expansion 1. For V (x+F +h, t), we expand it around V (x+h, t) on the

x-dimension

V (x+ F + h, t) = V (x+ h, t) + Vx(x+ h)>F +
1

2
FVxx(x+ h)F>

Taylor expansion 2. For V (x + F , t), we expand it around V (x, t) along the x

dimension

V (x+ F , t) = V (x, t) + V >x F +
1

2
FVxxF

>

Next, we simplify each term in (C.19) and (C.20). We keep the first term and

expand the second term,
(
Vx(x+ h)− Vx

)>
FdN (t) as follows

(
Vx(x+ h)− Vx

)>
FdN (t) =

(
Vx(x+ h)− Vx

)>
((f + u)dt+ gdw(t))dN (t)

=
(
Vx(x+ h)− Vx

)>(
(f + u)dtdN (t) + gdw(t)dN (t)

)
,

= 0 (C.21)

where we have used the equations: dtdN (t) = 0 and dw(t)dN (t) = 0 in the Ito

mean square limit sense from (C.11).

We keep the third term and expand the fourth term V >x F as

V >x F = V >x (f + u)dt+ V >x gdw(t) (C.22)
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The fifth term 1
2
FVxxF

> is expanded as follows

1

2
FVxxF

>

=
1

2

(
(f + u)dt+ gdw(t)

)
Vxx

(
(f + u)dt+ gdw(t)

)>
=

1

2

(
(f + u)Vxx(f + u)>(dt)2 + 2(f + u)dtVxx(gdw(t))> + (gdw(t))Vxx(gdw(t))>

)
=

1

2

(
0 + 0 + tr(Vxxgg

>)dt
)

=
1

2
tr(Vxxgg

>)dt, (C.23)

where we have used the property that (dt)2 = 0, dtdw = 0, and dw(t)dw(t)> = dtI

from (C.11).

Finally, the last term is expressed as

(1

2
FVxx(x+ h)F> − 1

2
FVxx(x)F>

)
dN (t)

=
1

2
tr(Vxx(x+ h)gg>)dtdN (t)− 1

2
tr(Vxxgg

>)dtdN (t) = 0− 0 = 0 (C.24)

Substituting equation (C.21), (C.22), (C.23), and (C.24) to equation (C.19) and

(C.20), we have:

V (x+ dx, t) =
(
V (x+ h, t)− V (x, t)

)
dN (t) + V >x (f + u)dt+ V >x gdw(t)

+ V (x, t) +
1

2
tr(Vxxgg

>)dt (C.25)

Plugging (C.25) to (C.13), we have:

V (x(t+ dt), t+ dt) =
(
V (x+ h, t)− V (x, t)

)
dN (t) + V >x (f + u)dt+ V >x gdw(t)

+ V (x, t) +
1

2
tr(Vxxgg

>)dt+ Vt(x, t)dt
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Hence after simplification, we obtain (C.10) and finishes the proof:

dV = V (x(t+ dt), t+ dt)− V (x(t), t)

=
{
Vt +

1

2
tr(Vxxgg

>) + V >x (f + u)
}

dt+ V >x gdw +
(
V (x+ h, t)− V (x, t)

)
dN (t)

C.3 Proof of Theorem 14

Theorem 14. The HJB equation for the user activity guiding problem in (6.7) is

−Vt = min
u

[
L+

1

2
tr
(
Vxxgg

>)+ V >x (f + u)

+
∑U

j=1
λj(t)

(
V (x+ hj(x), t)− V (x, t)

)]

where hj(x) is the j-th column of h(x).

Proof. First we express the value function V as follows

V (x, t) = min
u

E
[
V (x(t+ dt), t+ dt) +

∫ t+dt

t

L dτ
]

(C.26)

= min
u

E
[
V (x, t) + dV + L dt

]
(C.27)

= min
u

E
[
V (x, t) +

{
Vt +

1

2
tr(Vxxgg

>) + V >x (f + u)
}

dt

+ V >x gdw +
(
V (x+ h, t)− V (x, t)

)
dN (t) + L dt

]
(C.28)

= min
u

[
V (x, t) +

{
Vt + L+

1

2
tr
(
Vxxgg

>)+ V >x (f + u)
}

dt

+
∑U

j=1
λj(t)

(
V (x+ hj(x), t)− V (x, t)

)
dt,
]

(C.29)

where (C.27) to (C.28) follows from Theorem 13, and (C.28) to (C.29) follows from the

properties of Wiener processes and point processes, i.e., E[dw] = 0 and E[dN (t)] =

λ(t)dt.

Finally, cancelling V (x, t) on both sides of (C.29) and dividing both sides by dt

yields the HJB equation.
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C.4 Proof of Proposition 15

For the quadratic cost case (the opinion least square guiding problem), we have:

φ = 1
2
‖x(T ) − a‖2, L = 1

2
‖x(t) − a‖2 + ρ

2
‖u(t)‖2. Since the instantaneous cost L

is quadratic in x and u, and terminal cost φ is quadratic in x, if the control u is a

linear function of x, then the value function V must be quadratic in x, since it is the

optimal value of the summation of quadratic functions.

Moreover, the fact that u is linear in x is because our SDE model for user activities

is linear in both x and u. Since V (T ) = φ(T ) is quadratic, as illustrated in [123], one

can show by induction that when computing the value of V backward in time, u is

always linear in x.

Similarly, one can show that the value function V is linear in the state x for

the linear cost case (opinion maximization problem), where φ = −
∑

u xu(T ), L =

−
∑

u xu(t) + ρ
2
‖u(t)‖2.

C.5 Derivation of the Optimal Control Policy for Least Square Opinion

Guiding

In this section, we derive the optimal control policy for the opinion SDE defined in

(6.6) with the least square opinion guiding cost. First, we restate the controlled SDE

in (6.6) as follows.

dxi(t) =
(
bi + ui(x, t)− xi(t)

)
dt+ θdwi(t) +

∑U

j=1
αijxj(t)dNj(t)

Putting it in the vector form, we have:

dx(t) =
(
b− x+ u

)
dt+ θdw(t) + h(x)dN (t)
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where the j-th column of h(x) captures how much influence that xj has on all other

users and is defined as hj(x) = Bjx, where the matrix Bj ∈ <U×U and has the j-th

column to be (α1j, · · · , αUj)> and zero elsewhere.

We substitute f = b − x(t) + u(,t), g = θ and h to (6.10) and obtain the HJB

equation as

−∂V
∂t

= min
u

{
L(x,u, t) +

θ2

2
tr
(
Vxx(x, t)

)
+ Vx(x, t)>(b− x(t) + u(t))

+
U∑
j=1

λj(t)
(
V (x+ hj(x), t)− V (x, t)

)}
(C.30)

For the least square guiding problem, the instantaneous cost and terminal cost are

defined as

L(x,u, t) =
1

2
‖x− a‖2 +

1

2
ρ‖u‖2, φ(T ) =

1

2
‖x(T )− a‖2

Hence we assume that value function V is quadratic in x with unknown coefficients

v1(t) ∈ <U , v11(t) ∈ <U×U and v0(t) ∈ <:

V (x, t) = v0(t) + v1(t)>x+
1

2
x>v11(t)x (C.31)

To find the optimal control, we substitute (C.31) to HJB equation and take the

gradient of the right-hand side of the HJB equation (C.30) with respect to u and set

it to 0. This yields the optimal feedback control policy:

u∗(x, t) = −1

ρ
Vx = −1

ρ

(
v1(t) + v11(t)x

)
(C.32)

Substitute u∗ in (C.32) to the HJB equation, we first compute the four terms on the

right side of the HJB equation. Note that the minimization is reached when u = u∗.

In the following derivations, we will use the property that v11 = v>11 and a>b =
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b>a for any vector a and b.

The first term is:

L(x,u∗, t) =
1

2
x>x− x>a+

1

2
ρu∗>u∗

=
1

2
x>x− x>a+

1

2ρ
(v1 + v11x)>(v1 + v11x)

=
1

2
x>x− x>a+

1

2ρ
v>1 v1 +

1

ρ
v>1 v11x+

1

2ρ
x>v11v11x

=
1

2ρ
v>1 v1︸ ︷︷ ︸

scalar

+x>(
1

ρ
v11v1 − a)︸ ︷︷ ︸
linear

+
1

2
x>(

1

ρ
v11v11 + I)x︸ ︷︷ ︸

quadratic

Note that in line 1 of the expansion of L, we dropped the constant term 1
2
a>a.

The second term is a scalar: tr
(
Vxx(x, t) = θ2

2
tr(v11). The third term is

V >x (b− x+ u∗)

= (v1 + v11x)>(b− x− u∗) = (v1 + v11x)>(b− x− 1

ρ
(v1 + v11x))

= (v>1 b−
1

ρ
v>1 v1)− (v>1 x+

1

ρ
v>1 v11x+

1

ρ
v>1 v11x− b>v11x)− x>v>11x−

1

ρ
x>v>11v11x

= (v>1 b−
1

ρ
v>1 v1)︸ ︷︷ ︸

scalar

−x>(v1 +
2

ρ
v11v1 − v11b)︸ ︷︷ ︸

linear

− 1

2
x>(2v11 +

2

ρ
v11v11)x︸ ︷︷ ︸

quadratic

The fourth term is

U∑
j=1

λj(t)(V (x+ hj(x), t)− V (x, t))

=
U∑
j=1

λj(t)(v
>
1 B

jx+
1

2
x>Bj>v11B

jx+
1

2
x>2v11B

jx)

= x>Λ>v1︸ ︷︷ ︸
linear

+
1

2
x>(

U∑
j=1

λjB
j>v11B

j + 2v11Λ)x︸ ︷︷ ︸
quadratic
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where Λ(t) =
∑U

j=1 λj(t)B
j. Next, we compute the left side of HJB equation as:

−Vt = −v′0(t)− x>v′1(t)− 1

2
x>v′11(t)x

By comparing the coefficients for the scalar, linear and quadratic terms in both left-

hand-side and right-hand-side of the HJB equation, we obtain three ODEs as follows.

First, only consider all the coefficients quadratic in x:

−v′11(t) = I + 2v11(t)(−1 + Λ(t)) +
U∑
j=1

λj(t)B
j>v11(t)Bj − 1

ρ
v11(t)v11(t)

Second, consider the linear term:

−v′1(t) = −a+ (−1 + Λ>(t)− 1

ρ
v11(t))v1(t) + v11(t)b

Third, consider the scalar term:

−v′0(t) = b>v1(t) +
θ2

2
tr(v11(t))− 1

2ρ
v>1 (t)v1(t)

Finally, we compute the terminal condition for the three ODEs by V (x(T ), T ) =

φ(x(T ), T ):

V (X(T ), T ) = v0(T ) + x(T )>v1(T ) +
1

2
x(T )>v11(T )x(T )

φ(x(T ), T ) = −x(T )>a+
1

2
x(T )>x(T )

Hence v0(T ) = 0, v1(T ) = −a and v11 = I. Note here we drop the constant term

1
2
a>a in terminal cost φ.

Finally, we just need to use Algorithm 7 to solve these ODEs to obtain v11(t) and

v1(t). Substituting v11,v1 to (C.32) leads to the optimal control policy.
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C.6 Derivation of the Optimal Control Policy for Opinion Influence Max-

imization

In this section, we solve the opinion influence maximization problem. The solving

scheme is similar to the least square opinion shaping cost, but the derivation is dif-

ferent due to different cost functions.

First, we choose ω = 1 and restate the controlled opinion SDE in (6.6) as

dxi(t) =
(
bi + ui(x, t)− xi(t)

)
dt+ θdwi(t) +

∑U

j=1
αijxj(t)dNj(t)

Putting it in the vector form, we have:

dx(t) =
(
b− x+ u

)
dt+ θdw(t) + h(x)dN (t)

where the j-th column of h(x) captures how much influence that xj has on all other

users and is defined as hj(x) = Bjx, where the matrix Bj ∈ <U×U and has the j-th

column to be (α1j, · · · , αUj)> and zero elsewhere. We substitute f = b − x, g = θ

and h to (6.10) and obtain the HJB equation as follows

−∂V
∂t

= min
u

{
L(x,u, t) +

θ2

2
tr
(
Vxx(x, t)

)
+ Vx(x, t)>(b− x(t) + u(t))

+
U∑
j=1

λj(t)
(
V (x+ hj(x), t)− V (x, t)

)}
(C.33)

For opinion influence maximization, we define the cost as follows. Suppose the goal

is to maximize the opinion influence at each time on [0, T ], the instantaneous cost L

is defined as:

L(x,u, t) = −
U∑
j=1

xi(t) +
1

2
‖u(t)‖2 = −x(t)>1 +

1

2
‖u(t)‖2
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where 1 is the column vector with each entry to be one. For the terminal cost, we

have: φ(T ) = −x(T )>1.

Following the similar reasoning as the least square opinion guiding problem. Since

the terminal cost φ is linear in the state x, the value function must be linear in x, since

it is the optimal value of a linear function. Hence we set the value function V (x, t)

to be a linear function in x with unknown coefficients v1(t) ∈ <U and v0(t) ∈ <:

V (x, t) = v0(t) + v1(t)>x (C.34)

To find the optimal control, we substitute (C.34) to (C.33) and take the gradient of

the right-hand-side of (C.33) with respect to u and set it to 0. This yields the optimal

control policy:

u∗(t) = −1

ρ
Vx = −1

ρ
v1(t) (C.35)

Next, we just need to compute v1(t) to find u∗. Substitute u∗ in (C.35) to the HJB

equation, we will compute the four terms on the right side of the HJB equation and

derive the ODEs by comparing the coefficients. Note that the minimization is reached

when u = u∗.

First, L(x,u∗, t) is expanded as:

L(x,u∗, t) = −x>1 +
1

2
‖u∗‖2 =

1

2ρ
v>1 v1︸ ︷︷ ︸

scalar

−x>1︸︷︷︸
linear

Since V is linear in x, Vxx = 0. The third term is:

V >x (b− x+ u∗) = v>1 (b− x− 1

ρ
v1) = v>b− 1

ρ
v>v1︸ ︷︷ ︸

scalar

−x>v1︸ ︷︷ ︸
linear
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The fourth term is:

U∑
j=1

λj(t)(V (x+ hj(x), t)− V (x, t)) =
U∑
j=1

λj(t)v
>
1 hj(x) = x>Λ>v1︸ ︷︷ ︸

linear

where Λ(t) =
∑U

j=1 λj(t)B
j. Next, we compute the left-hand-side of HJB equation

as:

−Vt = −v′0(t)− x>v′1(t) (C.36)

Then by comparing the coefficients for the scalar and linear terms in both left side

and right side of the HJB equation, we obtain two ODEs.

First, only consider all the coefficients linear in x:

v′1(t) = 1 + v1(t)−Λ>v1(t) (C.37)

Second, consider the linear term:

v′0(t) = − 1

2ρ
v>1 v1 − v>1 b+

1

ρ
v>1 v1 = −v1(t)>b+

1

2ρ
v1(t)>v1(t)

Hence we just need to solve the ODEs (C.36) to obtain v1 and then compute the

optimal control u∗(t) from (C.35).

Finally we derive the terminal conditions for the above two ordinary differential

equations. First, V (T ) = φ(T ) = −x(T )>1 holds from the definition of the value

function. Moreover, from the function form of V , we have = v0(T ) +x>v1(T ). Hence

by comparing the coefficients, we have v0(T ) = 0 and v1(T ) = −1.

With the above terminal condition and (C.37), we will use Algorithm 7 to solve

for v1(t) and obtain the optimal control policy.

179



APPENDIX D

PROOF OF THEOREMS IN CHAPTER 7

D.1 Derivation of the Optimal Measure

The problem of finding the optimal measure is as follows:

min
Q

[
EQ[S(x)] + γDKL(Q||P)

]
, s.t.

∫
dQ = 1 (D.1)

The minimum in (D.1) is attained at optimal measure Q∗ given by:

dQ∗

dP
=

exp(− 1
γ
S(x))

EP[exp(− 1
γ
S(x))]

(D.2)

Next, we show the derivations of (D.2), which contain two parts. First, we will show

the following inequality:

γ log

(
EP

[
exp

(
− 1

γ
S(x)

)])
6

[
EQ[S(x)] + γDKL(Q||P)

]
(D.3)

The second part is to show the minimum of the above inequality is reached at (D.2).

To prove the first part, we first express EP in the left-hand-side of (D.3) as a

function of the expectation EQ. More specifically, we have:

log

(
EP

[
exp

(
− 1

γ
S(x)

)])
= log

(∫
exp

(
− 1

γ
S(x)

)
dP
)

(D.4)

= log

(∫
exp

(
− 1

γ
S(x)

) dP
dQ

dQ
)

(D.5)

>
∫

log

(
exp

(
− 1

γ
S(x)

) dP
dQ

)
dQ (D.6)

where (D.6) is due to the Jensen’s inequality that puts the log operator inside the
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integral. The measure P is absolute continuous with respect to Q, hence the derivative

dP
dQ exists.

Moreover, using the property that log(ab) = log a + log b and log(1/a) = − log a,

the right-hand-side of the above inequality can be written as:

∫
log

(
exp

(
− 1

γ
S(x)

) dP
dQ

)
dQ =

∫ (
− 1

γ
S(x) + log

dP
dQ

)
dQ

=

∫
−1

γ
S(x)dQ +

∫
log

dP
dQ

dQ

=

∫
−1

γ
S(x)dQ−

∫
log

dQ
dP

dQ

= −1

γ
EQ[S(x)]− DKL(Q||P) (D.7)

Hence, combining (D.6) and (D.7), we have:

log

(
EP

[
exp

(
− 1

γ
S(x)

)])
> −1

γ
EQ[S(x)]− DKL(Q||P) (D.8)

Finally, since γ > 0, multiply both sides of (D.8) by −γ yields:

−γ log

(
EP

[
exp

(
− 1

γ
S(x)

)])
6 EQ[S(x)] + γDKL(Q||P) (D.9)

This finishes the proof of (D.3), the first part of the theorem. Next, we will show the

minimum is reached at Q∗ given by (D.2).

To prove the second part, we will substitute (D.2) to the right-hand-side of (D.8)
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to show that the infimum is reached with this Q∗. More specifically,

EQ∗ [S(x)] + γDKL(Q∗||P) (D.10)

= EQ∗ [S(x)] + γ

∫
log

dQ∗

dP
dQ∗

= EQ∗ [S(x)] + γ

∫
log

exp(− 1
γ
S(x))

EP[exp(− 1
γ
S(x))]

dQ∗

= EQ∗ [S(x)] + γ

∫
−1

γ
S(x)dQ∗ − γ

∫
log

(
EP

[
exp

(
− 1

γ
S(x)

)])
dQ∗ (D.11)

= EQ∗ [S(x)]−
∫
S(x)dQ∗ − γ log

(
EP

[
exp

(
− 1

γ
S(x)

)])∫
dQ∗

= EQ∗ [S(x)]− EQ∗ [S(x)]− γ log

(
EP

[
exp

(
− 1

γ
S(x)

)])
(D.12)

= −γ log

(
EP

[
exp

(
− 1

γ
S(x)

)])

where (D.11) is due to the property log(a/b) = log a − log b and (D.12) is because

Q∗ is a probability measure hence
∫

dQ∗ = 1. Hence the infimum is reached and this

finishes the proof of the second part.

D.2 Proof of Theorem 18

Theorem 18. For the intensity control problem in (7.3), we have: dP
dQ(u)

= exp
(
D(u)

)
,

where D(u) is expressed as

M∑
i=1

∫ T

0

(
ui(s)− 1

)
λi(s)ds−

∫ T

0

log
(
ui(s)

)
dNi(s)

Proof. Intuitively, the derivative dP/dQ(u) means the relative density of proba-

bility distribution P with respect to Q. The change of probability measure happens

because the intensity of the point process that drives the SDE in (6.6) is changed

from λ(t) to λ(u, t) in (7.3). Hence dP/dQ(u) describes the change of probability

measure for point processes and is the likelihood ratio between the uncontrolled and
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controlled point process [106]:

dP
dQ(u)

=
exp

(
L(λ)

)
exp

(
L(λ(u))

) = exp
(
D(u)

)
,

where L is the log-likelihood for the multi-dimension point process with L(λ) =∑M
i=1 L(λi). It is defined as the summation of log-likelihood L(λi) of each dimension

i, where L(λi) is defined as follows [54]:

L(λi(t)) =

∫ T

0

log(λi(t))dNi(t)−
∫ T

0

λi(t)dt (D.13)

where the operation
∫
f(t)dN(t) is defined as the summation of the value of function

f at each event time:
∫
f(t)dN(t) :=

∑
i f(ti).

Hence, D(u) denotes the difference of the log-likelihood between these two point

processes:

D(u) = L(λ(t))− L(λ̃(u(t), t))

=
M∑
i=1

(∫ T

0

(
λ̃i(ui(s), s)− λi(s)

)
ds−

∫ T

0

log
( λ̃i(ui(s), s)

λi(s)

)
dNi(s)

)

=
M∑
i=1

(∫ T

0

(
ui(s)λi(s)− λi(s)

)
ds−

∫ T

0

log
(
ui(s)

)
dNi(s)

)
(D.14)

=
M∑
i=1

(∫ T

0

(
ui(s)− 1

)
λi(s)ds−

∫ T

0

log
(
ui(s)

)
dNi(s)

)

where M is the dimension of point process. (D.14) comes from the form of control in

(7.3). λi(t), Ni(t), ui(t) denote the i-th dimension of λ(t),N (t),u(t).

D.3 Derivation of the Optimal Control Policy

In this section, we will show the derivation of the optimal control policy in (7.13).

We will formulate our objective function based on the form of optimal measure Q∗
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in (7.9). More specifically, we find a control u which pushes the controlled measure

Q(u), as close to the optimal measure as possible. This leads to minimizing the

Kullback-Leibler (KL) distance:

u∗ = argmin
u>0

DKL(Q∗||Q(u)) (D.15)

This objective function is in sharp contrast to traditional methods that solve the

optimal control problem by computing the solution the HJB PDE, which have severe

limitations in scalability and feasibility to nonlinear jump diffusion SDEs.

Next we simplify the objective function. According to the definition of KL diver-

gence and chain rule of derivatives, we have:

DKL(Q∗||Q(u)) = EQ∗

[
log

(
dQ∗

dQ(u)

)]
= EQ∗

[
log

(
dQ∗

dP
dP

dQ(u)

)]
(D.16)

The derivative dQ∗/dP is given in (D.2) and dP/dQ(u) is given in Theorem 18.

Hence, we then substitute dQ∗/dP and dP/dQ(u) to (D.16). After removing terms

which are independent of u, the objective function (D.15) is simplified as:

u∗ = argmin
u>0

EQ∗ [D(u)]

Next we parameterize u(t) as a piecewise constant function on [0, T ] as follows.

u(t) =


...

uk for t ∈ [k∆t, (k + 1)∆t)

...

More specifically, the k-th piece is defined on [k∆t, (k + 1)∆t) as uk, where k =
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0, · · · , K − 1, tk = k∆t and T = tK . Then we have:

EQ∗ [D(u)] =
M∑
i=1

K∑
k=1

(
EQ∗

[ ∫ tk+1

tk

(uki − 1)λi(s)ds
]
− EQ∗

[ ∫ tk+1

tk

log(uki )dNi(s)
])

(D.17)

where uki is the i-th dimension of uk. To compute uki , we can neglect the two summa-

tion terms in (D.17) and only focus on the parts that involves uki . Then we move uki

outside of the expectation and discard any constant terms. This yields the function

that only involves uki :

f(uki ) = ukiEQ∗
[ ∫ tk+1

tk

λi(s)ds
]
− log(uki )EQ∗

[ ∫ tk+1

tk

dNi(s)
]

(D.18)

We can then show f(uki ) is convex in uki . More specifically, it is in the form of

f(x) = ax − log(x)b with a > 0, b > 0 and f ′′(x) > 0. Finally, setting f ′(uki ) = 0

yields uk∗i :

uk∗i =
EQ∗

[ ∫ tk+1

tk
dNi(s)

]
EQ∗

[ ∫ tk+1

tk
λi(s)ds

] (D.19)

However, uk∗i is still not computable since the expectation is taken under the optimal

probability measure Q∗. Since we only known the SDE of the uncontrolled dynamics

and can only compute the expectation under P, we need to change the expectation

from EQ∗ to EP to compute uk∗i .

To do this, we will use the following lemma.

Lemma 19. Let the probability measure Q∗ be defined as dQ∗
dP =

exp(− 1
γ
S(x))

EP[exp(− 1
γ
S(x))]

in

(7.9), and g(x) : Ω→ < be any measurable function. Then we have:

EQ∗ [g(x)] =
EP

[
exp

(
− 1

γ
S(x)

)
g(x)

]
EP[exp(− 1

γ
S(x))]
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Proof. The proof of this lemma uses the idea of importance sampling as follows.

EQ∗ [g(x)] =

∫
g(x)dQ∗

=

∫
g(x)

exp(− 1
γ
S(x))dP

EP[exp(− 1
γ
S(x))]

=

∫ (
g(x) exp

(
− 1

γ
S(x)

))
dP

EP[exp(− 1
γ
S(x))]

=
EP

[
exp

(
− 1

γ
S(x)

)
g(x)

]
EP[exp(− 1

γ
S(x))]

Finally, applying Lemma 19 to (D.19) yields the following expression for the op-

timal policy:

uk∗i =
EQ∗

[ ∫ tk+1

tk
dNi(s)

]
EQ∗

[ ∫ tk+1

tk
λi(s)ds

] =

EP

[
exp(− 1

γ
S(x))

∫ tk+1
tk

dNi(s)
]

EP

[
exp(− 1

γ
S(x))

]
EP

[
exp(− 1

γ
S(x))

∫ tk+1
tk

λi(s)ds
]

EP

[
exp(− 1

γ
S(x))

] =
EP
[

exp(− 1
γ
S(x))

∫ tk+1

tk
dNi(s)

]
EP
[

exp(− 1
γ
S(x))

∫ tk+1

tk
λi(s)ds

]
(D.20)

The derivation of the optimal policy is now complete.

D.4 Derivation of the Control Cost

We will derive the control cost in (7.8), which comes naturally from the dynamics.

According to the definition of the KL divergence, we have:

DKL(Q||P) := EQ[log(
dQ
dP

)] = EQ[C(u)] (D.21)

Hence, the next step is to compute the derivative dQ
dP . This derivative means the

relative density of probability distribution Q with respect to P. According to [106],
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we have:

dQ
dP

= exp

(∑
i

∫ T

0

log
( λ̃i(ui(t), t)

λi(t)

)
dNi(ui(t), t)−

∫ T

0

(λ̃i(ui(t), t)− λi(t))dt
)
,

(D.22)

Using the relationship that λi(ui(t), t) = λi(t)ui(t), we have:

EQ[log(
dQ
dP

)] (D.23)

= EQ

[∑
i

∫ T

0

log
( λ̃i(ui(t), t)

λi(t)

)
dÑi(ui(t), t)−

∫ T

0

(λ̃i(ui(t), t)− λi(t))dt
]

(D.24)

= EQ

[∑
i

∫ T

0

log
(
ui(t)

)
dÑi(ui(t), t)−

∫ T

0

(
1− 1

ui(t)

)
λ̃i(ui(t), t)dt

]
(D.25)

= EQ

[∑
i

∫ T

0

log
(
ui(t)

)
λ̃i(ui(t), t)dt+

∫ T

0

(
1− 1

ui(t)

)
λ̃i(ui(t), t)dt

]
(D.26)

Note that (D.25) to (D.26) follows from the Campbell theorem [60]. Therefore, the

control cost is:

C(u) =

∫ T

0

∑
i

(
log(ui(t)) +

1

ui(t)
− 1
)
λ̃i(ui(t), t)dt

=

∫ T

0

∑
i

(
log(ui(t)) +

1

ui(t)
− 1
)
ui(t)λi(t)dt
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