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SUMMARY

This dissertation presents a study of linearization techniques that have been ap-

plied to power amplifiers in the cellular communication industry. The objective of this

work is to understand the limitations of power amplifiers, specifically the limitations

introduced by the use of spectrally efficient modulation schemes. The digitization

of communication systems has favored the use of new techniques and technologies

capable of increasing the efficiency of costly power amplifiers. The work explores

traditional and digital linearization systems; an algorithm based on the principles

of natural recombination is proposed to directly address the limitations of previous

embodiments. Previous techniques, although effective, have significant implementa-

tion costs that increase exponentially with the increasing signal bandwidths. The

proposed software-hardware architecture significantly reduces implementation costs

and the overall complexity of the design without sacrificing performance.

To fulfill the requirements of this study, multiple systems are implemented through

simulation and closed-loop hardware. Both simulation and hardware embodiments

meet the expected performance metrics, providing validation of the proposed algo-

rithm. The application of the algorithm to memory power amplifier linearization is a

new approach to adaptive digital pre-distortion using narrowband feedback. The work

will show performance improvements on an amplifier with memory effects suggesting

that this technique can be employed as a lower-cost solution to meet requirements

when compared to typical system implementations.

xi



CHAPTER I

INTRODUCTION

1.1 Motivation

Efficiency is and has always been a primary concern in electrical engineering and many

other industries. Most often this greatly sought after efficiency comes at a financial

cost. In the automotive industry, for example, if an assembly line is operating at its

highest possible level of efficiency, the quality control over each vehicle may diminish.

The cellular industry is no different from other business in its efforts to reduce cost

by maximizing efficiency. In the case of the cellular industry, a large portion of the

costs are attributed to basestations. The basestation is the infrastructure that is

responsible for transmitting and receiving speech and data between cellular devices.

A significant portion of the costs are attributable to the high power amplifiers (HPA)

located within these infrastructures. When a PA is operating at higher efficiency, the

linearity of the PA is adversely affected. The motivation for this work is to maximize

the efficiency and linearity of HPAs thus breaking the antipodal relationship between

the two.

To compound the problem, the rapidly increasing number of mobile communica-

tion system users has driven the demand for spectrally efficient modulation schemes.

In first-generation systems, constant envelope modulation techniques such as fre-

quency modulation (FM) were employed because they allowed the power amplifier

(PA) to operate near saturation with increased PA efficiency. These modulation

techniques do not generate spectral regrowth or intermodulation distortion (IMD)

products in the nearby channels; however, they are spectrally inefficient with low

data to bandwidth ratios. Wireless systems share a common transmission medium
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thus maximizing the information that can be carried over a particular bandwidth will

effect the profit of the system. Second-generation systems addressed the problem with

the introduction of time domain multiple access (TDMA) modulation schemes. These

schemes allowed for multiple users to be multiplexed over a particular bandwidth, in

the case of Global System for Mobile Communications (GSM) as many as eight users

were multiplexed. Finally, the growth in users stimulated the development of varying

envelope modulation schemes that we now see in third-generation (3G) systems.

Non-constant envelope digital modulation techniques such as universal mobile

telecommunications system (UMTS), code-division multiple access (CDMA) and wide-

band CDMA (WCDMA) are spectrally more efficient [1]; however, they are subject

to severe IMD when the PAs are operated near saturation. The increase in channel

capacity has driven the need for linear PAs; therefor, the increased spectral efficiency

has resulted in less efficient PAs. Higher linearity is necessary because distortion

is strictly limited by FCC and ETSI regulations [2] that define maximum levels for

adjacent channel leakage ratio (ACLR). A second type of distortion resulting from

nonlinear operation is harmonic distortion, contrary to IMD, this appears far from

the fundamental band and is easily filtered out.

The most recent advances in modulation techniques have also favored the trend

towards multicarrier power amplifiers (MCPA) in basestation architecture. As op-

posed to single carrier power amplifier which require expensive combiners to achieve

equivalent bandwidth, MCPAs are more cost effective and easily scalable. They are

however predisposed to the tradeoff between linearity versus efficiency. A simple

method to maintain linearity is to operate the PA at a lower average power level, this

technique is referred to as backoff. The term headroom is used to indicate the differ-

ence between average power and saturation level at the output of a PA. The backoff

technique increases the amount of headroom, thus decreasing efficiency. A second

2
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Figure 1: Amplifier efficiency performance.

obvious disadvantage to this technique is the increased cost of a more powerful am-

plifier with a higher saturation level. The inefficiency of these HPAs also contributes

to cooling problems within the basestations due to high power dissipation.

Fortunately, there are linearization techniques [3–5] that allow a PA to be oper-

ated at higher power with minimal ACLR to meet efficiency and linearity require-

ments. Since power and cost are directly related, linearization allows for a lower-cost

more-efficient PA to be used in place of a high-cost less-efficient PA. PAs in the field

today are predominately linearized by some form of feedforward technology, a con-

cept originally proposed by Black during the 1930’s [6]. In recent years, there has

been growing interest in linearization by digital pre-distortion (PD). Compared to
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feedforward, designs based on digital pre-distortion are showing higher efficiency at

lower cost, and with recent advances in technology, digital pre-distortion can now

support signal bandwidths in excess of 20MHz. Adaptive PD designs utilize a feed-

back signal to compensate for variations in the PA nonlinearity over time. Faulkner

describes adapting a PD look-up table (LUT) [7] by comparing the PD input and

PA output on a sample by sample basis in both amplitude and phase [8, 45]. This

technique is applied to the adaptation of a PD polynomial in [10]. Accounting for

intermodulation products in the PA output, the feedback bandwidth for sample-by-

sample comparison can reach 100MHz. In such cases, system cost is largely driven

by the high-performance analog-to-digital converters (ADC) in the feedback path.

Such a high performance ADC can end up being the most expensive component in

the transmitter and can greatly diminish any power amplifier cost savings gained

using pre-distortion. A less costly alternative adapts the PD using only narrowband

feedback. Stapleton et al. propose a direct search algorithm to adjust polynomial co-

efficients to minimize out-of-band emissions in [11]. This method is slow to converge

and requires a quadratic cost function. Results are given for third-order polynomials

where the linear gain term is fixed.

This work presents adaptation results using narrowband feedback and a genetic

algorithm (GA). Genetic algorithms are optimization techniques that use natural

selection and recombination to generate new sample points in a search space [12–14].

These algorithms are well-suited to nonlinear optimization problems and converge

well even on complicated non-convex cost functions [15, 16]. Typical wideband, or

sample-by sample optimization methods are undesirable because their adaptation is

prone to locating false peaks in multimodal search spaces. The GA adapts using a

rich database of points or population of strings; many peaks are therefore climbed in

parallel, consequently reducing the probability of locating a false peak. This technique

readily affords the adaptation of higher-order polynomials with varying linear gain.
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We also investigate the use of crest factor reduction (CFR) as a preprocessor

to PD. This linearization technique further improves the PD performance. The 3G

digital modulation schemes also result in signals with a larger peak-to-average ratio

(PAR), the CFR technique reduces the crest factor of the input signal in such a way

that the signal spectrum, particularly the adjacent channel spectrum, is preserved.

Thus, using CFR, a PA may be operated at higher output levels by decreasing the

amount of headroom required to maintain acceptable levels of ACLR. The work also

reveals the importance of memory effects which are often present in HPAs and severely

limit the performance of linearization techniques. The causes of these memory effects

are reported followed by efforts targeted at suppressing them through system and

algorithm development.

1.2 Thesis Organization

The goal of this dissertation is to study both algorithms and systems used to increase

the efficiency and linearity of power amplifiers. Previous techniques used to address

this problem will be discussed and their limitations will be identified to create a start-

ing point for the research. The research presented here will address the limitations of

the previous techniques and demonstrate new methods of linearization. A new system

architecture and algorithm are proposed which address critical issues in pre-distortion

systems, such as cost and overall complexity of the design. This new architecture will

be characterized and its limitations will be identified.

In Chapter 2, the origin and history of the problem are discussed. Some funda-

mentals will be discussed along with PA modeling and characterization techniques.

The reader will also be introduced to a state-of-the-art digital pre-distortion archi-

tecture in which the advantages and short comings of such an implementation are

highlighted. Chapter 3 introduces the genetic algorithm and its application to PA

linearization. The chapter also compares the GA to more conventional adaptation

5



algorithms. Chapter 4 describes adaptive digital pre-distortion of power amplifiers

through simulation and implementation of a closed-loop system. The chapter will also

characterize the limitations of the proposed system and algorithm. Chapter 5 will

introduce crest factor reduction and present performance results when applied with a

typical pre-distortion system. Chapter 6 will show the expansion of the algorithm to

include memory effects. This chapter will also introduce a system architecture capa-

ble of linearizing PAs with memory effects. Finally, in Chapter 7, a brief summary of

the work is presented along with a discussion of the major contributions of the work

and potential future directions for research in the field.

6



CHAPTER II

ORIGIN AND HISTORY OF THE PROBLEM

2.1 Linearization Fundamentals

Power amplifiers are one of the most expensive and power-consuming devices in com-

munication systems. Conflicting design objectives in PAs make optimal performance

difficult to achieve. Specifically, the trade-off between efficiency and linearity is the

primary concern for PA design. For a PA operating at a high percentage of its power

rating, an external linearization technique must be employed to maintain linearity.

For a given RF output power level, a lower-power amplifier operating more efficiently

consumes substantially less dc power than an inefficient high-power amplifier. PA

efficiency is described by Equation 1 [17].

η =
POUT

Pdc

(1)

The desired linearity performance is achieved by maintaining appropriate levels of

output power. This is commonly referred as ”back-off”. The resulting efficiency of

Class A, AB, and B amplifiers falls of rapidly as back-off increases, as illustrated

previously in Figure 1. The illustration results from the analysis given in [17] for a

PA governed by a strong nonlinearity in transconductance [18]. The minimum back-

off required for linear operation is equal to the peak-to-average ratio (PAR) of the

transmitted signal for an ideal strong nonlinearity. Further back-off is required in real-

world PAs due to the existence of weak nonlinearities. The linearization of the PA

reduces back-off, thus increasing efficiency. Typical values for added efficiency due to

linearization are summarized in Table 1. The benefits are even more pronounced for

multicarrier applications where PARs tend to be large. Linearization of such systems
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may be improved further through crest factor reduction (CFR), a method capable of

reducing the PAR of the signal [19].

Table 1: Linearization Benefits

Pre-distortion No Yes
TX Power 10W 10W

PAR 9dB 9dB
Backoff 12dB 9dB

PA Power Rating 160W 80W
Efficiency 9% 18%

Power Dissipation 101W 45W

2.2 Power Amplifier Modeling

The typical PA is designed to achieve maximum efficiency. Thus, understanding

the nonlinear behavior of the PA is critical to applying an external linearization

technique. An accurate representation of the nonlinear effects in PAs is achieved

using a polynomial expression. The output of such a system could be determined

using a 3rd degree polynomial as shown in Equation 2

y = a1 · x + a2 · x2 + a3 · x3 (2)

where a1 describes the linear small signal gain, and a2 and a3 are the gain constants for

the quadratic and cubic nonlinearities, respectively. If the coefficients are real valued,

the system is considered nonlinear and memoryless. It is important to distinguish the

difference between a system with memory and memory effects. The use of complex

valued coefficients indicates a constant, frequency-independent phase shift which is

used to model a nonlinear system with memory [17, 20]. The term memory effects

refers to the bandwidth-dependant nonlinear effects often present in PAs. These

encompass envelope memory effects and frequency memory effects. Envelope memory

effects are primarily a result of thermal hysteresis, and electrical properties inherent

to PAs. Frequency memory effects are due to the variations in the frequency spacing

8



Figure 2: Power amplifier input-output diagram.

of the transmitted signal [21]. Memory effects are omitted from our simple model,

however they are subject to further discussion in this work.

2.3 Power Amplifier Characterization

The input-output block diagram of a PA is illustrated in Figure 2, where vi(t) and

vo(t) are the input and output signals respectively. The two-tone test, where the input

signal is composed of two distinct frequency components, has long been employed as

an effective PA characterization method. It is especially useful for defining the spec-

tral regrowth in a nonlinear and memoryless system, such as a PA. The polynomial

model in Equation 2 can be characterized with the two-tone input generated by the

following equation.

vi(t) = Acos(w1t) + Acos(w2t) (3)

The mathematical expansion is found in Appendix A. By grouping the terms at

the fundamental frequencies or IM1 and third-order frequencies or IM3, it is easily

observed that Equations 4 and 5 describe the PA output at such frequencies.

vIM1
o (t) = [a1A +

9

4
a3A

3 +
25

4
a5A

5]cos(w1,2t) (4)

vIM3
o (t) = [

3

4
a3A

3 +
25

8
a5A

5]cos((2w1,2 − w2,1)t) (5)

The resulting spectral regrowth from the two-tone test is shown in Figure 3 using
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Figure 3: Spectral regrowth of a two-tone signal.

the polynomial PA model previously defined by Equation 2, with real-valued coeffi-

cients.

From these results one can determine that the linear term a1x amplifies the fun-

damental tones, while the quadratic nonlinearity a2x
2 rectifies the signal down to dc

band and is responsible for generating the second harmonic band. Finally, the cubic

nonlinearity a3x
3 generates the IM3 terms and is also responsible for generating the

third harmonic band. As previously indicated, the second and third harmonic bands

are of no concern as they are easily filtered out. Only odd-order nonlinearities will

generate in-band distortion products, thus one can eliminate the quadratic nonlinear-

ity from the polynomial PA. A common simplification is to further eliminate all even

power terms from our polynomial model because our amplifier is assumed to have

narrow fractional bandwidth, greater but comparable to the carrier spacing [22, 25].

The simplified polynomial model is shown in Equation 6 for real-valued coefficients.

vo(t) = a1 · vi(t) + a3 · v3
i (t) + a5 · v5

i (t) (6)
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The two-carrier excitation is represented in [25] by the following equation

vi(t) = 2Acos(wmt)cos(wct) (7)

Using the simplified polynomial model, the nth degree term can be written as

shown in Equation 8 from which the modulation on the fundamental carrier is sum-

marized into Equation 9. The magnitude of the IMn−2k products for the nth degree of

nonlinearity is described by the bracketed term from which the results are summarized

in Table 2, these are also called power series coefficients.

vo(t) = an2nAncosn(wmt)cosn(wct) (8)

vo(t) = an2nAn n!

2n−1(n−1
2

)!(n+1
2

)!

1

2n−1

[
cos(nwm) + ncos(wmt(n− 2)) + n!

(n−k)!k!
cos(wmt(n− 2k))

]
cos(wct)

(9)

Table 2: Power Series Coefficients

n 3 5 7
a3A

3 a5A
5 a7A

7

IM1 9/4 25/4 1225/64
IM3 3/4 25/8 735/64
IM5 - 5/8 245/64
IM7 - - 35/64

The distortion components caused by 3rd and 5th degree nonlinearities are illus-

trated in Figures 4(a) and 4(b).

The previous two figures are indicative of the relationship between input power

and resulting intermodulation products. The relationship is shown with respect to

input-output power in Figure 5. The figure illustrates that for low signal amplitudes,

where the 5th order intermodulation products can be neglected, the amplitude of the

IM3 tones vary at a 3:1 rate with respect to the input power; as such, are proportional

to the 3rd power of the input amplitude. Therefor, a decrease of 3dB in input power

should decrease the IM3 tones by 9dB. As the input signal amplitude increases, the

11
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Figure 4: Distortion components from 3rd and 5th degree nonlinearities.

5th order distortion products begin to affect IM3 levels. Depending on the phases

between the 3rd and 5th degree nonlinearities, the IM3 distortion may increase or be

reduced.

Often the performance of a PA is characterized by its amplitude-amplitude (AM-

AM) and amplitude-phase (AM-PM) transfer characteristics. The nonlinear poly-

nomial model specified in Equation 6 is adequate for determining AM-AM transfer

characteristics however, it is unable to model AM-PM effects. Volterra proposes a

general form for Equation 6 which has the ability to model these effects [24]. The

work states that each degree of nonlinearity has a corresponding constant phase angle,

ϕ1, ϕ3, ϕ5 in the case of a fifth degree polynomial above.

The 1dB compression point (P1dB) is defined as the input power at which the

12
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Figure 5: Intermodulation components as a function of input amplitude.

amplifier’s output power is 1dB below the linear response. The saturation point is

simply the input level that results in the largest output power. A sinusoid may be

applied to an amplifier to determine P1dB by increasing the amplitude of the sinusoid

until the measured gain at the output decreases by 1dB. The PA output at the

fundamental frequency is easily shown by Equation 10 where the small signal gain is

equal to a1.

vfund
o (t) =

{
a1A + 3a3A3

4

}
cos(wt) (10)

A compression of 1dB corresponds to a linear voltage gain degradation of 10(−1/20)

or 0.89125. Thus, at P1dB, Equation 10 is described as follows

a1A +
3a3A

3

4
= A(0.89125)a1 (11)

from which A1dB =
√

0.145|a1/a3|. For typical linearization efforts, the approximate

small signal gain a1 and P1db of the PA are known. Using Equation 12 to determine

the third order coefficient, the transfer characteristic of the PA can be determined to

propose initial inverse transfer functions for pre-distortion efforts.

|a3| = 0.145
|a1|
A2

1dB

(12)
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A complex baseband model from [11, 18, 22] is considered in which the output

can be expressed by Equation 13. The amplifiers AM-AM and AM-PM transfer

characteristics are represented by ga (|vi(t)|2) and gφ (|vi(t)|2), respectively. Without

memory effects, nonlinearities depend only on the instantaneous input power and not

its phase which justifies the use of the magnitude squared of the real bandpass input

signal [23].

vo(t) = g
(|vi(t)|2

)
vi(t) = ga

(|vi(t)|2
)
ejgφ(|vi(t)|2)vi(t) (13)

From Volterra’s work, the summation of the nonlinear components is accomplished

vectorially. The AM-AM and AM-PM polynomials can be expressed as follows in

Equations 14 and 15, respectively.

ga

(|vi(t)|2
)

= a1 + a3 · |vi(t)|2 + a5 · |vi(t)|4 (14)

gφ

(|vi(t)|2
)

= ϕ1 + ϕ3 · |vi(t)|2 + ϕ5 · |vi(t)|4 (15)

2.4 The Simple Case

The simplest possible case is now investigated to show a typical PA model charac-

terization in which only the third degree nonlinearity is considered in the AM-AM

and AM-PM characterizations. Generally, the constant phase offset ϕ1 is of no con-

cern and will be omitted from further models. As such, Equations 14 and 15 can be

expressed as follows

ga

(|vi(t)|2
)

= G
(
1− 1|vi(t)|2

)
(16)

where G corresponds to a gain of 35 dB and

gφ

(|vi(t)|2
)

= −0.3|vi(t)|2 (17)

The amplifier’s linear characteristic is defined by

ḡa

(|vi(t)|2
)

= G (18)
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and

ḡφ

(|vi(t)|2
)

= 0 (19)

The linear region is defined as that set of inputs for which ga ' ḡa and gφ ' ḡφ. From

the above equations, the AM-AM and AM-PM characteristic curves are plotted in

Figures 6(a) and 6(b) with respect to the input power. These figures, although

simulations, are typical of measurements for PAs. For this particular model, the 1dB

compression point occurs at 20dBm input power while the saturation point occurs

at 25dBm. The PAR of a two-tone signal, or sinusoid, is calculated as the name

implies where the peak of the normalized signal is 1 and the average of a sinusoid

is 0.707 giving a PAR of 3dB. The input tones are defined with w1 = 5MHz and

w2 = 9MHz and an average power of 17dBm. Figures 7(a) and 7(b) illustrate the

input and output spectra from the defined PA model. Figures 8(a) and 8(b) illustrate

the individual amplitude and phase components at the output of the PA.

It is evident from Figures 8(a) and 8(b) that the phase response has an infi-

nite number of spectral components, but the amplitude of these components falls off

rapidly. The amplifier’s output can be equivalently shown to be the convolution of

the input spectrum with the amplitude and phase spectra.
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Figure 6: Characterization of a memoryless nonlinearity.
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(a) Spectrum of two-tone input.
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(b) Spectrum of two-tone PA output.

Figure 7: Input and output spectral response of two-tone test.
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(a) Spectrum of PA amplitude component.
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(b) Spectrum of PA phase component.

Figure 8: Amplitude and phase spectral response of two-tone test.
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2.5 Digital Pre-Distortion

To maintain linearity and efficiency, one can apply linearization to the PA through sev-

eral techniques such as feedback [26,27], feedforward [6,28,29], and pre-distortion [5,8,

10,11,18,30,45]. Typical performance indices of the basic linearization techniques are

illustrated in Table 3. It is pre-distortion that is the focus of this research, specifically

digital base-band pre-distortion.

Table 3: Comparison of the three linearization techniques

Technique IMD Cancellation Bandwidth Power Added Efficiency Size

Feedback Good Narrow Medium Medium
Feedforward Good Wide Low Large

Pre-distortion Medium Wide High Small

A pre-distortion system effectively performs a mathematical inversion of the PA

Volterra model described in the previous section. The implementation of a PD-PA

cascade is illustrated in Figure 9.

Figure 9: PD-PA cascade.

The PD output is vd(t) and the output of the PD-PA cascade is expressed by the

following.

vo(t) = g
(∣∣f (|vi(t)|2

)
vi(t)

∣∣2
)

f
(|vi(t)|2

)
vi(t) (20)

Clearly, the PA is linearized when

G = g
(∣∣f (|vi(t)|2

)
vi(t)

∣∣2
)

f
(|vi(t)|2

)
(21)

A pre-distorter applies distortion to the input signal in order to drive the PA harder.

The PD-PA cascade attempts to combine two nonlinear systems into one linear result

19



which allows the PA to operate closer to saturation. Beyond this point, no increase

in power will suffice to linearize the PA. The PAR of the signal greatly restricts

optimal performance of the PD system. A CDMA signal, for example, may have a

PAR as high as 13dB. A PA transmitting such a signal must operate with significant

back-off to prevent peaks from occurring beyond saturation. There are two common

types of PD implementations, the first is an analog implementation using a physical

nonlinear device [32, 33]. The second and perhaps more popular choice, is a digital

signal processor (DSP) hardware implementation where the PD function is defined

algorithmically through software [34,35].

Digital pre-distortion (DPD) has become an effective linearization technique due

to the renewed possibilities offered by the computational power of next generation

DSP. Typical adaptive PD designs utilize feedback to compensate for variations in

the PA nonlinearity over time. The application of DPD is often performed through

the adaptation of a look-up table (LUT). Each sample of the complex baseband

signal is modified according to the LUT which ideally contains the inverse of the

PA characteristics [8,31,45]. Faulkner describes a gradient adaptation method which

updates entries in the LUT by comparing the PD input and PA output on a sample-

by-sample basis. The LUT is generated by a complex polynomial such that both

AM-AM and AM-PM correction is applied; the PD functions can be expressed as

follows

f
(|vi(t)|2

)
= fa

(|vi(t)|2
)
ejfφ(|vi(t)|2) (22)

where

fa

(|vi(t)|2
)

= Aa + Ba · |vi(t)|2 + Ca · |vi(t)|4 + Da · |vi(t)|6 (23)

fφ

(|vi(t)|2
)

= Bφ · |vi(t)|2 + Cφ · |vi(t)|4 + Dφ · |vi(t)|6 (24)

To account for 3rd and 5th order intermodulation products at the PA output,

the feedback bandwidth for sample-by-sample adaptation must be 5 times the signal

bandwidth. Multicarrier systems today can reach signal bandwidths of 20MHz, thus

20



the required feedback signal must have a minimal bandwidth of 100MHz as illustrated

in Figure 10.

Frequency (Hz)

A
m

p
lit

u
d

e
 (

d
B

m
)

Third-Order Intermod

(IM3)

Input Signal

Fifth-Order Intermod

(IM5)

Figure 10: Input signal and intermodulation bandwidth.

The cost of a system with high bandwidth requirements is greatly driven by the

high performance ADCs in the feedback path, which are required to provide intermod-

ulation distortion and transmitted signal information to the DSP. The DSP, through

a computational algorithm, then adjusts the PD function to achieve optimal lineariza-

tion results. A digital pre-distortion architecture with wideband feedback is shown

in Figure 11.

A popular, gradient based optimization algorithm is the least-mean-square (LMS)

method. As previously mentioned, the implementation of this algorithm requires a

costly feedback path. The algorithm is further restricted in that, although effective

at determining a single minimum, it requires additional search schemes to determine

the global minimum. The algorithm uses the gradient of the cost function to deter-

mine the steepest downhill path; however, the gradient cannot be calculated when

dealing with cliffs and boundaries [13]. In attempting to reduce linearization costs,

adaptation through narrowband feedback presents itself as an attractive alternative.

Stapleton et al. propose a direct search algorithm to adjust polynomial coefficients

which minimize IMD in [11]. This method is slow to converge and requires a quadratic
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Figure 11: State-of-the-art digital pre-distortion using wideband feedback.

cost function. Genetic algorithms present themselves as an ideal alternative to typical

gradient solutions and they are the focus of the presented research.
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CHAPTER III

THE GENETIC ALGORITHM

3.1 Introduction

The term genetic algorithms (GA) refer to a subset of evolutionary algorithms that

model biological processes to optimize highly complex cost functions. A GA allows a

population of composed of individuals (population members) to evolve under specified

genetic processes to a state which minimizes the cost function [12]. The algorithm

itself has evolved from its first conception; however, it is suitable to define it as a

population-based model that uses selection, recombination and mutation operators

to generate new sample points in a search space. The GA is capable of yielding

a robust search by implicitly sampling hyperplane partitions of a search space. A

single hyperplane, commonly referred to as schema, is the theoretical foundation on

which the algorithm was developed as first introduced by John Holland in 1975 [36].

The advances in DSP technology are largely responsible for the growing interest in

GAs, specifically due to the computational complexity often associated with their

use. GAs have most recently been applied to antenna design, power electronic circuit

optimization, schedule optimization and even cancer detection and treatment [37,38].

3.2 Theoretical Foundations of Genetic Algorithms

The most general description of the GA indicates that optimization through this

technique is achieved by identification, emphasis and recombination of good ”building

blocks” of solutions in a highly parallel fashion. These building blocks are also referred

to as schemas or schemata. The algorithm bases itself on the notion that combining

good schemata will lead to good solutions. A schema is a template made up of
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ones, zeros and don’t cares (*) used to describe a set of bit strings. The schema

H = 1**0 describes all 4-bit strings that begin with a one and end with a zero.

The strings that match the schema are called instances of H, in this case they are:

1000,1010,1100,1110. Oddly enough, if we consider a binary string of length 4 there

exists 24 or 16 possible solutions from which the best can be located; however, by

adding the *’s, there are 34 or 81 possibilities. It would seem that we have increased

the difficulty in determining the best possible solution; however, the algorithm does

not evaluate strings as individuals but instead in parallel, as a population. Schemas

allow the algorithm to focus on the important bits rather than all at once. The

following example in Table 4 clearly illustrates the point.

Table 4: Genetic Algorithm Interpretation

String Fitness

1101 2197
1000 512
0100 64
0011 27

Looking at the strings as individuals rather than members of a population reveals

four pieces of information, it may be difficult to see the relationship between the

string and the fitness which is simply f(x) = x3. However, if one looks at the strings,

their fitness and the similarities between strings the importance of certain bits over

others is revealed. The question remains, how does the GA mathematically process

the information that we can observe? If any given bit string of l length is an instance

of 2l different schemas then the string 11 is an instance of ** which represents all four

possible bit strings of length 2. Therefore, any population of N members has instances

between 2l and N ∗ 2l different schemas. For any given population, while the GA is

explicitly evaluating the fitness of the individual members, it is in fact implicitly

estimating the fitness of a much larger number of schemas. It can be shown that

the average fitness of a schema is evaluated by the average fitness of all the possible
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instances of that schema [14]. The GA does not explicitly store the schemas that

yield optimal levels of fitness, it does however increase their number of instances in

future populations. The increase or decrease of schema instances from one population

to the next is described by the Schema Theorem introduced by Holland [36].

The theorem can be broken down as follows. If H is a schema with at least one

instance present in the population at generation or iteration i, then m(H, i) is the

number of instances of H at iteration i. The average fitness of the instances of H at

iteration i is defined as û(H, i) and expressed as follows in Equation 25.

û(H, i) =
∑

kεH

f(k)/m(H, i) (25)

Therefore, the expected number of instances of H at iteration i+1 is represented

by E(m(H, i+1)). Through a selection process described later, the expected offspring

of a particular population member k is equal to f(k)/f̄(i) where f(k) is the fitness

of k and f̄(i) is the average fitness of the population at iteration i. The expected

number of instances is represented in Equation 26 and through simple substitution

expressed in Equation 27.

E(m(H, i + 1)) =
∑

kεH

f(k)/f̄(i) (26)

E(m(H, i + 1)) = û(H, i)/f̄(i)m(H, i) (27)

The previous equations describe the expected instances in the next population

i+1 due to a selection from the current population; however, it does not reflect the

effects of recombination (often referred to as crossover) and mutation. These genetic

operators can create and destroy the instances of H in following populations. For the

sake of simplicity, we will only consider the lower bound or the destructive effects of

these operators. The probability that the selected instance of H will ”survive” after
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crossover is expressed in Equation 28 where pc is the probability that crossover will

occur, d(H) defines the length of the instance H and l remains the length of the bit

strings in the search space. The shorter schemas have a higher probability of survival

through crossover, as determined by their length d(H).

Sc(H) ≥ 1− pc
d(H)

l − 1
(28)

The mutation operator is now added to the analysis; similar to crossover, pm is

the probability that mutation will occur. The ”survival” of H through mutation

is described in Equation 29 where o(H) is the number of defined bits in H (i.e.,

ones and zeros). Therefore, increasing the ”don’t cares” increases the probability

of survival through mutation. The previous equations are consolidated to form the

Schema Theorem, as shown in Equation 30.

Sm(H) = (1− pm)o(H) (29)

E(m(H, i + 1)) ≥ û(H, i)

f̄(i)
(1− pc

d(H)

l − 1
)(1− pm)o(H) (30)

Although the previous analysis describes the fundamental basics of the genetic

algorithm, there exist numerous interpretations that are modified to meet the re-

quirements of the desired optimization. The following section describes a variation as

it applies to the field of PA linearization and gives greater detail as to the functionality

of the genetic operators customized for this application.

3.3 Application of the Genetic Algorithm

Linearization is achieved through the optimization of the coefficients in Equations 23

and 24. In this embodiment of the GA, adaptation is the result of a process similar to

”natural selection” or survival of the fittest. The optimization or ”evolution” of the

PD solution occurs through the use of genetic operators, such as elitism, sampling,
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crossover and mutation. Using biological terms, a ”chromosome” is used to describe

a PD solution consisting of 7 coefficients or ”genes”. Four of the genes are used for

amplitude correction and the remaining three are for phase correction. Finally, a set

of chromosomes is called a ”population.” Thus the kth member of the ith population

is denoted as follows

Aa(k, i), Ba(k, i)), Ca(k, i)), Da(k, i)), Bφ(k, i)), Cφ(k, i)), Dφ(k, i)) (31)

The adaptation process is initiated through the creation of a randomly generated

population. The chromosomes are defined within a predetermined search space. Sec-

ondly, the chromosomes are individually evaluated to determine their fitness. For this

PD application, the fitness is a normalized measure of the adjacent channel power

(ACP), often referred to as adjacent channel power ratio (ACPR). The optimal chro-

mosome is verified for convergence and the adaptation is then terminated if the fitness

is acceptable. When the fitness is not acceptable, the GA must create a new popula-

tion to evaluate.

Elitism is the first step to generating a new population. This genetic operator

selects the best chromosomes of the current population and duplicates them into the

new population. The number of chromosomes duplicated depends on the rate of

elitism defined by the user. This operator prevents the GA from losing the optimal

solution. To generate the remaining chromosomes of the new population, the algo-

rithm must first select parents from which to model them. Stochastic sampling with

replacement is performed on the current population to select two chromosomes as

parents. In a manner similar to natural selection or what biologists call ”viability

selection”, chromosomes are selected according to their fitness. Thus, the fitter chro-

mosomes produce more offspring. The two selected parents are combined to form an

offspring through uniform crossover. This genetic operator selects elements, called

”alleles”, from each parent chromosome to create a new offspring, roughly mimicking

biological recombination between two single-chromosome organisms. The application
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of crossover varies anywhere from single-point crossover to multi-point crossover. The

type of crossover is typically application dependant; in this case, a random binary

string pc is generated in which the probability of 1 in each bit position is equal to

the crossover rate. The implementation of crossover is represented by the following

boolean expression in Equation 32. Other forms of crossover are available, but this

is the preferred embodiment.

Aa(kcross, i + 1) = [Aa(parent1, i) · pc] + [Aa(parent2, i) · pc] (32)

The equation only describes the crossover of a single coefficient; however, the

equation is also valid for the remaining complex coefficients. Finally, before the new

member can join the population, it is subjected to the mutation operator. Similarly

to crossover, the mutation rate creates a binary mutation string pc which randomly

changes the allele values of some locations in the new chromosome. This unique

feature prevents the algorithm from ”getting stuck” in a local minimum solution. The

mutation operator is applied to the coefficients resulting from crossover, as described

in Equation 33.

Aa(k, i + 1) = Aa(kcross, i + 1)⊕ pm (33)

The genetic operators repeat themselves for the N members of the new population

and over each successive new population, i, commonly referred to as an iteration. The

entire GA is summarized by the following steps:

1. Generate random population of N chromosomes.

2. Evaluate the fitness of each chromosome in the population.

3. Test for convergence. Stop if fitness is acceptable.

4. Generate new population.
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(a) Elitism. Select best K chromosomes of the current population.

(b) Selection. Identify parents by stochastic sampling with replacement.

(c) Crossover. Apply uniform crossover.

(d) Mutation. Apply random changes.

5. Loop to step 2 and repeat for new population.

The adaptation of the GA in problem solving is determined by its ability to

converge to a desired solution. Convergence is achieved when the fitness of a solution

reaches an adequate level. In the case of linearization, the desired solution is ACP

reduction and the adequate level is when the ACP meets regulatory requirements.

A simple example is proposed next to show the GAs iterative process. The example

begins with the creation of a random population in Equation 34, in this case N =

5; however, practical experience will show that populations must be greater than

25 to achieve any kind of linearization improvement. The larger population size is

necessary to evaluate enough of the search space on a given iteration, increasing the

rate at which the algorithm is able to ”learn” from erroneous solutions.

Pop.(i = 0) =




Aa(1, 0) Ba(1, 0) Ca(1, 0) Da(1, 0) Bφ(1, 0) Cφ(1, 0) Dφ(1, 0)

Aa(2, 0) Ba(2, 0) Ca(2, 0) Da(2, 0) Bφ(2, 0) Cφ(2, 0) Dφ(2, 0)

Aa(3, 0) Ba(3, 0) Ca(3, 0) Da(3, 0) Bφ(3, 0) Cφ(3, 0) Dφ(3, 0)

Aa(4, 0) Ba(4, 0) Ca(4, 0) Da(4, 0) Bφ(4, 0) Cφ(4, 0) Dφ(4, 0)

Aa(5, 0) Ba(5, 0) Ca(5, 0) Da(5, 0) Bφ(5, 0) Cφ(5, 0) Dφ(5, 0)




(34)

The fitness of each population member is evaluated and normalized as shown in

Equation 35. The population members are sorted with respect to their fitness and

shown in Equation 36. The results indicate that k=3 is the best member while k=2

29



is the worst.

Fitness(f) =>




f1

f2

f3

f4

f5




=




0.20

0.05

0.40

0.10

0.25




(35)

Pop.(i = 0) =




Aa(3, 0) Ba(3, 0) Ca(3, 0) Da(3, 0) Bφ(3, 0) Cφ(3, 0) Dφ(3, 0)

Aa(5, 0) Ba(5, 0) Ca(5, 0) Da(5, 0) Bφ(5, 0) Cφ(5, 0) Dφ(5, 0)

Aa(1, 0) Ba(1, 0) Ca(1, 0) Da(1, 0) Bφ(1, 0) Cφ(1, 0) Dφ(1, 0)

Aa(4, 0) Ba(4, 0) Ca(4, 0) Da(4, 0) Bφ(4, 0) Cφ(4, 0) Dφ(4, 0)

Aa(2, 0) Ba(2, 0) Ca(2, 0) Da(2, 0) Bφ(2, 0) Cφ(2, 0) Dφ(2, 0)




(36)

In a population of 5 members, an elitism rate set at 20% corresponds to duplicating

exactly one member from the ith iteration into the ith + 1. The remaining 4 members

result from selection, crossover and mutation. In the given example, the generation of

the 2nd member of the ith+1 results from crossover between the 3rd and 1st members of

the ith iteration. An example of crossover is shown in the Equation 37. Afterwards,

mutation is applied to the respective offspring resulting in the 2nd member of the

ith + 1 iteration as shown in Equation 38.

Aa(3, 0) = 001110010011

Aa(1, 0) = 100101100010

pc = 100100100010

Aa(2cross, 1) = 000101010010 (37)
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Aa(2cross, 1) = 000101010010

pm = 010000000000

Aa(2, 1) = 010101010010 (38)

The genetic operators are repeated for the remaining coefficients and population

members. The iterative process repeats itself until satisfactory results are achieved.

Although proven effective in various system implementations, the implementation

of a GA as a polynomial solver is the desired investigation. This is a good starting

point as linearization is often seen as a polynomial curve fit. In the case of a sim-

ple polynomial curve fitting, the GA uses Equation 39 to calculate the fitness of a

chromosome. Although this calculation of fitness is effective for a simple curve fitting

problem, careful consideration of the cost function is required for linearization efforts

and will be examined further in great detail.

f =
1∑

x=0

√
(ChromoReal(x)− IdealReal(x))2 + (ChromoImag(x)− IdealImag(x))2

(39)

Although the fitness, f , is calculated using LMS like in wideband architectures, the

solution here adapts on the difference between the curve generated by the chromosome-

polynomial and the curve generated by the ideal-polynomial and does so for both real

and imaginary curves simultaneously. The initial population of solutions for both real

and imaginary polynomials are shown in Figures 12(a) and 12(b), respectively. The

solid-line curves show the elite chromosomes of the population.

Finally, Figures 13(a) and 13(b) show the final convergence of the real and imag-

inary polynomials versus the ideal case, respectively. The implementation, although

simple, proves the algorithm is able to adapt the coefficients of two distinct polyno-

mials simultaneously while provided with a single measure of fitness.
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(b) Initial population imaginary-valued polynomial curves.

Figure 12: Initial polynomial solutions.
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(a) Final real-valued polynomial solution versus ideal.
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(b) Final imaginary-valued polynomial solution versus ideal.

Figure 13: Final polynomial solutions versus ideal curves.
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The use of narrowband feedback in the adaptation of a polynomial PD is not a

new one [11]; however, this is the first known application of GA adaptation to the

field of PA linearization. As such, the simulated linearization of a polynomial PA

model is the next focus of discussion.
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CHAPTER IV

PRE-DISTORTION AND THE GENETIC

ALGORITHM

4.1 Introduction

In the previous chapter, it was shown that the GA is effective at solving two poly-

nomial curves simultaneously. The application of PD was previously described in

Chapter 2; the platform used to implement PD solutions was based on a LUT ar-

chitecture proposed by Intersil Corporation, the original supporter of these research

efforts. The memoryless pre-distortion function implemented by Intersil’s ISL5239

PD processor is shown in Figure 14. The LUT features 1024 entries, each with a

16 bit unsigned real and 16 bit signed imaginary value. The LUT is operated in

the linear voltage mode, all the entries are confined to a range of 60dB with most

entries allocated to the higher power region. All input levels below the 60dB range

are mapped to the first entry in the LUT [47]. The adaptive scaling and indexing

of LUTs can provide further improvement in terms of correction and efficiency per-

formance [48]; however, in this work, this adaptation is not included to reduce the

overall complexity of the implementation.

The following software model and hardware implementations adapt polynomial

coefficients by generating complex LUTs. Each successive LUT is evaluated to deter-

mine the optimal PD coefficients.
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Figure 14: ISL5239 Memoryless pre-distortion function.

4.2 Simulation of LUT-based Pre-distortion

In simulation work, linearization is applied to the PA model represented by Fig-

ures 6(a) and 6(b) [56]. The chromosomes or polynomial coefficients are optimized

over predetermined search spaces for AM-AM and AM-PM correction; these are

shown in Figure 15. These further indicate that the search space for this GA in-

cludes PD solutions that may have up to 8dB of amplitude expansion and 30 degrees

of phase shift. The convergence principles of genetic algorithms seem to be nothing

more than a random search technique. To disprove this assumption, PD was applied

using both a random search technique and the GA technique. The random search

technique was constrained to the same search space as shown in Figure 15. Both

techniques used identical initial populations with N = 25 chromosomes and the sim-

ulations were allowed to run over i = 20 iterations. The GA adaptation results were

achieved by defining the genetic operators with an elitism rate of 15%, a mutation

rate of 12% and a crossover rate of 50%. The simulation optimization was achieved by

minimizing the cost function described in Equation 40 for each population member.

The fitness was only dependant on the high-side intermodulation products (IM3H).

f = IM3H(dBm) (40)
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Figure 15: Search space for the genetic algorithm.
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For each population, the value of the minimum ACP is shown for both techniques

in Figure 16 . The two techniques began with identical populations and therefore

equal minimum ACP at iteration 0. With each iteration the GA solution is continually

improving toward the lower bound, while the random search shows only minimal

improvement. Also shown is the average ACP from which it is evident that the GA

is improving while the random search average ACP remains relatively constant. It is

this trend toward populations with improved fitness that allows the GA to outperform

a random search. Figure 17 compares the final GA and random search solutions

with non-linearized performance. Without linearization, the ACPR is 35 dBc. This

improves to 43 dBc with the random search technique, and finally, to over 65 dBc

with the GA. This is near the noise floor of 75 dBc, which corresponds with expected

levels from the 13 bit DAC model used in the simulations. The noise floor defines

the lower bound of optimization. ACP reduction here is limited by the noise floor

which is governed by the DAC performance and the PA gain. The DAC performance

is fixed therefore, the noise level into the PA is constant, but the signal level is not.

Since the PA gain is a function of the total average input power, the output noise

floor can vary with input signal power. The output noise floor is actually lower for a

PA operating in compression than when operating in its linear region. PD solutions

are allowed to vary gain over a 1dB range, a possibility uninvestigated in [11]. In this

case, optimum ACP enhancement is achieved when the PD gain is at its maximum

level and the resulting output noise floor is at a minimum. Results show nearly

optimal performance in a limited number of iterations suggesting that this technique

can be employed as a low-cost solution to meet ACLR requirements. The algorithm

will now be applied to a typical basestation test bed.
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4.3 Closed-Loop Pre-distortion with Laboratory

PA

The GA is used to linearize a 0.5W laboratory PA during transmission of a multi-

carrier CDMA2000 waveform centered at 881MHz using narrowband feedback [57].

It is important to redefine the polynomial coefficients. A chromosome was previously

defined in Equation 31. To facilitate convergence, each gene is now composed of two

variables Aa and Ãa; these represent the nominal and delta coefficients, respectively.

The bar terms represent the average of the search space, they are constant and chosen

a priori in the neighborhood of an expected solution. The tilde terms represent a

particular member of the population. These parameterizations restrict the search

space to keep the algorithm stable. The algorithm may also be modified to allow

optimization of the bar terms as well. The adaptation of the nominal coefficients is

subject to future investigations.

The implementation of the digital pre-distortion hardware test bed is illustrated

in Figure 19. Our forward path uses direct RF conversion. However, for our test bed,

the spectrum analyzer is used to replace the feedback path. The Intersil ISL5217

evaluation board was used to generate a three-carrier CDMA2000 waveform, with

each carrier having a signal bandwidth of 1.23MHz for a total bandwidth of 3.75MHz.

The CDMA2000 waveform has a PAR of approximately 12.4dB. This waveform was

pre-distorted using the Intersil ISL5239 evaluation board. The ISL5239 is a baseband

look-up table (LUT) pre-distortion device. The ISL5239 also included gain, phase,

and offset correction to improve image rejection and carrier leakage of the direct

upconverter. The ISL5239 evaluation board includes the Intersil ISL5929 dual DAC

and interfaces with the Sirenza [41] STQ-2016 direct upconverter to generate the

881MHz pre-distorted RF waveform, the evaluation platform described above is shown

in Figure 18.
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Figure 18: Intersil pre-distortion evaluation platform.

The waveform was driven by a Mini-Circuits [55] ZHF-1000 amplifier. The wave-

form was then amplified by a Sirenza SHF-0189 PA. The output was fed back to a

computer through an Agilent E4404B Spectrum Analyzer. The data was processed

in Matlab to implement a LUT solution in the ISL5239. In this implementation, lin-

earization is achieved through the adaptation of a LUT in which polynomial functions

are used to correct for amplitude and phase, as in [10].

Optimal linearization results were achieved by defining the genetic operators with

an elitism rate of 20%, a mutation rate of 3% and a crossover rate of 50%. The

initial populations were comprised of N = 25 members and the simulations were

allowed to run over i = 20 iterations. Figures 20(a) and 20(b) show the AM-AM

and AM-PM correction curves of the LUT after the algorithm has converged. The

P1dB of the laboratory PA is −3.5dBm thus both tables remain constant up to an

input power of approximately -4dBm after which correction is applied. The hardware
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Figure 19: Testbed of the closed-loop adaptive digital pre-distortion system.

optimization was achieved by minimizing the cost function described in Equation 41

for each population member. The fitness, similar to the software model, depends on

the difference between the IM3H and the in-band power (IM1).

f = IM1− IM3H (41)

The GA adaptation curves are shown in Figure 21 demonstrating the progress

of the algorithm as a function of the number of iterations. The results shown prior

to iteration 0 indicate ACP measurements without pre-distortion. The uppermost

line shows the average adjacent channel power for the population. The second line

corresponds to the GA optimal solution. Even though the adjacent channel power

decreases for each iteration the optimal solution does not remain constant due to

varying input power levels. Finally, the lowest line represents the minimum possible

adjacent channel power as defined by the noise floor of the system. As explained

in [2], the output noise floor is lower for a PA operating in compression than for a

PA operating in its linear region. As was shown through simulations, optimum ACP

performance is achieved when the PD gain is at its maximum level and the resulting

output noise floor is at a minimum. The increase in PD gain also causes the PA to

operate with higher efficiency.
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(a) AM-AM Pre-Distortion Curve for the 0.5W PA.

(b) AM-PM Pre-Distortion Curve for the 0.5W PA.

Figure 20: Pre-Distortion Curves for 0.5W Laboratory PA.

43



Figure 22 shows the PA output with and without pre-distortion. The PA output

power is held constant for both cases. Without linearization the ACPR is measured

to be 34dBc. This improves to 49dBc with the pre-distortion defined by the GA.

The low-cost implementation is able to improve APC performance by approximately

15dB, thus meeting the 3GPP specifications.

Figure 21: Convergence profile.

It can be observed from Figure 22 that this laboratory PA does not show spectral

regrowth asymmetry in the adjacent and alternate channels which indicates a virtually

memoryless amplifier. The ideal behavior of the PA facilitates the convergence of the

algorithm. The same architecture is used to evaluate the performance of a high power

amplifier (HPA).
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Figure 22: Linearization performance.

4.4 Closed-Loop Pre-distortion with a Basesta-

tion PA

The laboratory PA from the previous section was shown to be quite linear with no in-

dication of spectral regrowth asymmetry in the adjacent and alternate channels, thus

a virtually memoryless amplifier. The ideal conditions of the 0.5W amplifier facilitate

the convergence of the algorithm. The HPA used in the second implementation is a

45W device that is known to show memory effects [43]. Consequently, this results

in significant asymmetry in the adjacent and alternate channels as explained in [42].

The algorithm uses measurements of adjacent channel power, as before. Thus, incon-

gruities between the low and high side will affect the convergence of the originally

proposed formulation of the GA. The setup described in the previous section is used

again; however, in this configuration a Stealth Microwave linear PA is used to drive
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the device-under-test (DUT). Prior to pre-distortion efforts this amplifier was char-

acterized using a network analyzer to determine the AM-AM and AM-PM transfer

curves shown in Figures 23(a) and 23(b), respectively. The seemingly odd behavior

for a input power of 37dBm is due to a built-in protection circuitry.

To compensate for the asymmetry, the algorithm was modified such that it mea-

sures both high and low side ACLR and then seeks to minimize the higher of the two,

ideally forcing the pre-distortion function to linearize the PA symmetrically. This

was achieved by modifying the cost function of the GA such that the fitness of each

population member now depends on the sum of the differences between the linear

measurements for IM3L, IM3H and the IM1 as described in Equation 42. The use

of linear terms ensures that the imbalance between the high and low side will be

properly weighted.

f = 10(IM1−IM3L)/20 + 10(IM1−IM3H)/20 (42)

However, it was observed that this modification was unable to completely eliminate

the asymmetries in the adjacent and alternate channels. The adaptation curves for

the 45W PA are shown in Figure 24. As in Figure 21, the average, optimal and noise

floor curves are shown. The convergence of the optimal solution is impeded by the

significant memory effects which account for the irregular results. The results indicate

the presence of memory effects; these are responsible for the observed asymmetry in

Figure 25. The GA implementation applies pre-distortion functions to this PA and

achieves approximately 12dB of ACP improvement on the low-side (ACPL). However,

the high-side ACP (ACPH) improvement is only 10dB. The results are significant as

previous wideband implementations in [44] were only able to achieve approximately

3dB of ACP improvement.
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(b) AM-PM Characteristic Curve for the 45W PA.

Figure 23: Characteristic Curves for 45W Basestation PA.
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Figure 24: Convergence profile.

Figure 25: Linearization performance.
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CHAPTER V

CREST FACTOR REDUCTION AND

PRE-DISTORTION

5.1 Introduction

The effectiveness of the PD technique is substantially dependant on signal character-

istics. A CDMA signal, for example, may have a PAR as high as 13dB. A basestation

PA transmitting CDMA signals must operate with significant back-off to allow for

the high PAR while maintaining linearity. The back-off levels in this case translate

into undesirable power efficiency losses. The PAR of a signal can be calculated with

Equation 43 using typical mathematical manipulations where σ(x) is the standard

deviation of the signal x.

PAR = 20log10(
max|x|
σ(x)

) (43)

The PAR of the transmitted signal is also often referred to as the crest-factor

(CF) of the signal calculated as the peak-to-rms voltage. The relationship between

the two terminologies is described by Equation 44.

CF =
√

PAR (44)

A crest factor reduction (CFR) technique has been described which allows the

PA to operate at higher input/output power levels while maintaining linearity at the

output of the amplifier [19]. When CFR is applied to typical modulated signals,

significant efficiency improvements can be observed through the PA.

It is important at this time to introduce yet another system requirement that

needs to be met by the basestation transmitter. With linearization efforts the trade-

off for added efficiency is increased levels of ACP. Similarly, the tradeoff for reducing

49



the CF of the signal could include signal degradation measured as error vector mag-

nitude (EVM), or composite EVM (cEVM). These are measures of the difference

between the input waveform prior to CFR and the modified output waveform. For

the measurement to be accurate, the input and output signals must be time aligned

to account for processing and filter tap delay length. The amplitude of the signals

must also be normalized. The EVM calculations are summarized in Equations 45 and

46. The composite EVM calculation function can be found in Appendix B.

error(n) = out(n− d) ∗
1
N

∑N
n=1 |input(n)|

1
N

∑N
n=1 |output(n− d)| − in(n) (45)

EV M(%) =
1
N

∑N
n=1 |error(n)|2

1
N

∑N
n=1 |in(n)|2 ∗ 100 (46)

Peak code domain error (PCDE) is also regulated, it is a measure of how much

cross-talk exists between different channels within the signal. Although PCDE is a

concern, measurement requires specific instrumentation that was unavailable at the

time of publication. The application of CFR can also affect the ACP measurements.

The WCDMA standards are summarized in Table 5. In this chapter, results for CFR

implementation are reported; wideband DPD is also applied both with and without

CFR to show performance improvements.

Table 5: WCDMA Standards

Requirement Limit
IM3 ≥ 45dBc
IM5 ≥ 50dBc
EVM ≤ 17.5%
PCDE ≤ −33dB
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5.2 Crest Factor Reduction

It is perhaps relevant at this point to look at the conceptual principles of WCDMA

modulation. It can be shown that the linear combination of sinusoids of equal am-

plitude but different frequency create a combined waveform in which the amplitude

of the signal has significantly increased, however the average power has not changed

significantly. The average power grows by a factor of N when N contributors of equal

average power are combined. Simultaneously, the peak voltage increases by a fac-

tor of N and equivalently the peak power increases by N2. The resulting combined

waveform has a PAR that increases by N for every added contributing signal. The

typical Vin-Vout performance of a PA transmitting a CDMA signal can be observed

in Figure 26.

Figure 26: PA Vin-Vout response for a typical CDMA signal.

There exist numerous methods to achieve CFR; code selection, digital clipping
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and pulse injection are among the most popular methods [39,40]. The chosen imple-

mentation uses pulse injection in combination with digital clipping to achieve optimal

results. Figure 27 illustrates the method by which a peak is reduced.

Figure 27: Typical peak cancelation through pulse injection.

When CFR is applied to a signal prior to amplification, the added efficiency illus-

trated in Figure 28 is observed. Added efficiency results for an ideal PA model are

summarized in Table 6

Table 6: Typical Efficiency Improvement using CFR

- Without CFR With CFR
Average PA Output Power 10W 20W

DC Power 125W 125W
Efficiency 8% 16%

Figure 29 illustrates the complementary cumulative distribution function (CCDF)

of the transmitted signal before and after CFR implementation. The research will

investigate the added improvement to PD with the implementation of CFR.
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Figure 28: PA Vin-Vout response for a CDMA signal with CFR.

dB

Figure 29: CCDF of the transmitted signal with and without CFR.

53



The architecture of the CFR approach is proposed by Texas Instruments through

the use of their GC1115 preprocessor. The preprocessor identifies peaks in the input

signal that are above a specific level. The detected peak location is within 1/256th

of the sample rate. The peak location is then used to drive a digital signal generator

which effectively generates a scaled waveform that locates and cancels the pre-existing

peak. Figure 30 illustrates the real and imaginary components of the generated pulse.

Care must be taken in choosing a waveform to cancel the envelope peak so as to

preserve out-of-band spectrum, and hence the ACP.

Figure 30: Real and imaginary components of canceling pulse.

The CFR process includes four processing stages used to cancel new peaks that

may result from the added cancelation peaks in the previous stage. Digital clipping

is implemented through an output limiter to eliminate the rare occurrence of peaks

after the fourth stage. A detailed block diagram of the four-stage CFR is illustrated

in Figure 31. The peak detection limits are defined by specifying the desired output

PAR to levels of 5 to 8dB. Signal processing of the input signal in the time domain is
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shown in Figure 32. The detection threshold is set below 6x104, thus any peaks that

trigger the threshold are processed. The gain threshold is set to a limit slightly lower

than the detection threshold; after processing, the peaks will not surpass this second

specification. The peak canceling waveform is also shown in the same figure for the

given input signal.

The CFR technique is applied to a 4-carrier UMTS signal, a 1-carrier CDMA

signal, and a 15-carrier CDMA signal to show the effective PAR after preprocessing

has been applied to the original signals. The figures also show the corresponding

EVM levels that increase as the PARs of the signals decrease. The results are also

summarized by the following tables.
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Figure 31: Block diagram of GC1115 CFR processor.

Figure 32: Corrected and uncorrected signal with canceling peaks and detection
threshold.
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(a) CCDF for CFR data using a 4-carrier UMTS signal.
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(b) PSD for CFR data using a 4-carrier UMTS signal.

Figure 33: GC1115 performance with 4-carrier UMTS signal of PAR=11.2dB.

Table 7: PAR and EVM of 4-carrier UMTS signal.

Desired PAR 8dB 7dB 6dB 5dB 4dB
Effective PAR 8.01dB 7.07dB 6.18dB 5.4dB 4.75dB

Estimated EVM 1.91% 3.87% 6.9% 11.15% 16.71%
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(a) CCDF for CFR data using a 1-carrier CDMA signal.
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(b) PSD for CFR data using a 1-carrier CDMA signal.

Figure 34: GC1115 performance with 1-carrier CDMA signal of PAR=12.03dB.

Table 8: PAR and EVM of 1-carrier CDMA signal.

Desired PAR 8dB 7dB 6dB 5dB 4dB
Effective PAR 7.99dB 6.94dB 6.22dB 5.42dB 5.02dB

Estimated EVM 2.96% 5.43% 8.17% 12.66% 20.61%
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(a) CCDF for CFR data using a 15-carrier CDMA signal.
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(b) PSD for CFR data using a 15-carrier CDMA signal.

Figure 35: GC1115 performance with 15-carrier CDMA signal of PAR=12.41dB.

Table 9: PAR and EVM of 15-carrier CDMA signal.

Desired PAR 8dB 7dB 6dB 5dB 4dB
Effective PAR 8.02dB 7.11dB 6.29dB 5.53dB 7.71dB

Estimated EVM 3.44% 5.87% 9.17% 13.97% 20.56%
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Finally, CFR is applied to a Mini-Circuits ZRL-2300 laboratory PA using the

UMTS test signals shown in Figure 33(a) [58]. The results for added available output

and corresponding ACP levels are shown in Figure 36. It is important to understand

that although the application of CFR decreases the peak signal power, the improve-

ment does not linearly translate to added PA output power. Experimental results

indicate that, for constant ACP levels, a signal which has a 6dB reduction in PAR

will increase the PA output power by no more than 3dB. When CFR is applied to the

signal, a higher percentage of samples will be located closer to the 1dB compression

point of the PA. CFR is a technique that allows the PA to operate more efficiently

and is not a linearization technique. As such, PA backoff is still required to maintain

appropriate ACP levels. DPD will be responsible for linearizing the PA after CFR

has been applied to the input signal.

The following section describes the application of both CFR and DPD while re-

porting performance improvements for the individual techniques along with their

combined enhancement.

5.3 Adaptive Pre-Distortion with Crest Factor Re-

duction

The application of CFR and pre-distortion were investigated to determine the added

linearization performance. In this implementation, linearization results for the LMS

algorithm introduced in [45] are compared to results obtained exclusively by CFR.

Finally, the two implementations will be cascaded from which increased output power

and added efficiency are quantified while maintaining the 3GPP specification for ACP.

The combined techniques are applied to a CREE Microwave 30W PA module

operating at 1.96GHz [46], this particular PA shows very little memory effects. The

PAR of the IS-95 signal is reduced from 9.6dB to 5dB prior to the pre-distortion

process when CFR is applied. Figure 37 shows the hardware test bed that is used
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Figure 36: CFR performance as applied to a Mini-Circuits ZRL-2300 PA.

to implement a LUT based approach to digital pre-distortion. The process of CFR

is performed by the PC along with the pre-distortion; the linearized signal is then

loaded into the Agilent arbitrary waveform generator. The feedback data collected by

the oscilloscope adjusts values in the LUT such that optimal linearization is achieved.

The investigation compares CFR results for both the original signal with 9.6dB PAR,

and the processed signal with 5dB PAR. Performance results are also shown with

and without pre-distortion. Figure 38 compares ACP improvement results for output

power levels with the given test conditions.

Figure 38 indicates an increased output power for a given ACP (or ACPR) of

45dBc in a 30kHz bandwidth at an offset of 885kHz. This increase in ACP can

be translated to added PA efficiency. As the increasing input power level approaches

P1dB of the PA, the performance of the PD degrades as shown by a decrease in output

power. The limited dynamic range of the test bed prevents measurements at lower
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Figure 37: CFR-DPD linearization platform.
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Figure 38: ACPR improvement with respect to output power.

output power levels. The figure suggests that without such limitations the output

power improvement would be greater for a lower level of ACP, as may be required for

some multi-carrier applications. The results for increased output power and efficiency
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for the given ACP are shown in Table 10.

Table 10: Power and efficiency improvement.

With PD Without PD

PAR 9.6dB 5dB 9.6dB 5dB
Pout 38.7dBm 40.0dBm 37.3dBm 38.3dBm

Efficiency 21.5% 23.9% 18.3% 20.5%

The above table suggests that PD is responsible for a greater percentage of effi-

ciency improvement. The CFR of the input signal increases the efficiency by 2.2% in

the absence of pre-distortion improvements. With pre-distortion, the improvement

due to CFR is 2.4% with an additional 1.2dB of output power. The total added out-

put power due to pre-distortion and crest factor reduction is 2.7dB. Previous work

suggests that the efficiency improvement would be greater for input signals with larger

PAR.
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CHAPTER VI

PRE-DISTORTION OF POWER AMPLIFIERS

WITH MEMORY EFFECTS

6.1 Introduction

This chapter investigates the application of genetic algorithms to linearize power am-

plifiers with strong memory effects using digital pre-distortion. As was explained ear-

lier, the term memory effects refer to the bandwidth-dependant nonlinear effects often

present in PAs. These encompass envelope memory effects and frequency memory

effects. Spectral regrowth asymmetry in the adjacent and alternate channels indi-

cates the presence of memory effects and is commonly referred to as IMD imbalance.

Envelope memory effects are primarily a result of thermal hysteresis and electrical

properties inherent to PAs. Frequency memory effects are due to the variations in

the frequency spacing of the transmitted signal and are characterized by shorter time

constants. Both wideband and narrowband algorithms use the memory polynomial

pre-distorter model to achieve optimal linearization performance. The model uses the

diagonal kernels of the Volterra series; although there are many terms to solve for,

the wideband LMS algorithm is quite capable of solving for them as shown in [49,50].

This work is the first documented attempt at solving these same kernels using only

narrowband feedback information. The wideband approach is described next as it

applies to a PA model with strong memory effects.
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6.2 Memory Polynomial and Wideband Pre-Distortion

The wideband LMS adaptation algorithm described uses an indirect learning ar-

chitecture and requires little or no characterization of the amplifier. The memory

polynomial PD function is described by Equation 47 where x(n) represents the input

waveform to the PD and y(n) represents the output of the PD.

y(n) =
K∑

kodd=1

D∑

d=0

akd · x(n− d)|x(n− d)|k−1 (47)

For Equation 47, the k term defines the order of the PD polynomials and are only

permitted to be odd valued. The D term identifies the tap delay, or memory between

the polynomials. In the case of memoryless PD, D = 0 and the equation resembles

those defined by Equations 23 and 24 in Chapter 2 for which the polynomial was re-

stricted to K = 7 terms. The previously defined coefficients in Chapter 2 correspond,

as follows, to those defined here.



Aa + j · Aφ

Ba + j ·Bφ

Ca + j · Cφ

Da + j ·Dφ




=




a10

a30

a50

a70




(48)

It is evident from the above notation that the akd coefficients are complex valued.

It is also noteworthy that Aφ was previously omitted from calculations as constant

phase offset should not affect the PA behavior. Figure 39 represents the block diagram

for the PD equation described above with D = 2.

Adaptation of the akd coefficients is first accomplished through wideband PD. As

such, an LMS algorithm is able to optimize the indirect learning architecture shown in

Figure 40. The DPD blocks shown in the architecture are duplicates of one another,

the second is used as a training block for the first. The delay, although unimportant in

simulations, is critical in a real-world implementation as the analog delay in the signal

path must be accounted for to accurately perform sample-by-sample adjustments in
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Figure 39: Block diagram for memory PD with D=2.

the PD coefficients. The mean-squared error is used determine the effectiveness of

the PD coefficients.

x(n) y(n) z(n)

2

1

p(n)

Figure 40: Indirect learning architecture.
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Given that all PA and PD gains are normalized, vkd(n) can be defined as follows

vkd(n) = z(n− d)|z(n− d)|k−1 (49)

we further define

a = [a10, · · · , aK0, · · · , a1D, · · · , aKD]T

ukd = [vkd(0), · · · , vkd(N − 1)]T

V = [u10, · · · ,uK0, · · · ,u1D, · · · ,uKD]

y = [y(0), · · · , y(N − 1)]T

As the mean-squared error decreases, y(n) ' p(n) the latter being the output of

the training PD block. When the algorithm converges, Equation 50 should hold true.

y = Va (50)

Finally, the LMS solution for the previous equation is described by Equation 51 where

ς is used to ensure the stability of the adaptation.

â = (V ·V′ + ς · I)−1 ·V′ · y (51)

The LMS wideband algorithm is applied to a PA model that resembles the memory

polynomial pre-distorter. The PA model will be restricted in the number of taps and

the order of the polynomials used. In the software implementation of the algorithm,

the output of the PA is described by Equation 52. The coefficients of the PA model

are represented by bkd while K = 5 and D = 1; therefore, the PA model is a 5th order

model with a single memory delay tap. The coefficients of the PA model are listed in

Equation 53.

z(n) =
K∑

kodd=1

D∑

d=0

bkd · y(n− d)|y(n− d)|k−1 (52)




b10 = 1.0 + 0i b11 = 0− 0.2i

b30 = −0.2− 0.2i b31 = 0.3 + 0.1i

b50 = −0.1− 0.1i b51 = 0.25 + 0.01i




(53)
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The memoryless AM-AM and AM-PM characteristics of the PA model are esti-

mated in Figures 41(a) and 41(b), respectively.

To achieve optimal results, the order of the PD polynomials is selected to be

greater than the PA model being pre-distorted, or KPD = KPA +1. They are also se-

lected to have more taps than the PA model, or DPD = DPA +1. The PD polynomial

order could be greater than that indicated above; the inclusion of additional terms

only proves to increase the computational complexity of the algorithm with little per-

formance improvements. The work done in [51] indicates that added performance is

achieved by including even ordered terms as well. The added even ordered coefficients

are not considered here. The purpose of this work is not intended to determine the

optimal PD configuration, it will instead demonstrate that similar performance for a

given configuration is achievable with a more cost effective hardware implementation.

One distinct advantage of using wideband feedback and an LMS type algorithm is

that the coefficients of akd are all solved simultaneously. The simultaneous processing

of coefficients does not guarantee that the ideal PD solution will be determined, only

that the time of convergence is optimal. It is interesting to observe the performance

of the LMS algorithm while varying DPD. This analysis demonstrates the added im-

provement for each additional tap and PD polynomial in Figure 42(a) for DPD = 0,

Figure 42(b) for DPD = 1, Figure 43(a) for DPD = 2, and Figure 43(b) for DPD = 3.

The solution is optimized when using a tap delay of DPD = 2 for wideband feed-

back and an LMS algorithm as shown in Figure 43(a). This figure indicates an ACP3L

improvement of approximately 24dB while the ACP3H improvement is approximately

23dB. Typical performance is defined by the worst-case result, consequently the ac-

tual ACP improvement from 40dBc to 62dBc gives a net improvement of 22dB. The

results are summarized in Table 11 where the improvement is described relative to

the original ACP levels. It can be observed that results for the memoryless case
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(b) Memoryless AM-PM Characteristic Curve for the PA model.

Figure 41: Characteristic Curves for the memory PA model.
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(a) Wideband PD using LMS algorithm and DPD = 0.
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(b) Wideband PD using LMS algorithm and DPD = 1.

Figure 42: Spectral output of wideband PD using LMS algorithm.
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(a) Wideband PD using LMS algorithm and DPD = 2.
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(b) Wideband PD using LMS algorithm and DPD = 3.

Figure 43: Spectral output of wideband PD using LMS algorithm. (cont.)
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where DPD = 0 are not significant, and for DPD = 3 the results are worse than those

obtained for DPD = 2.

Table 11: ACP performance of wideband PD using LMS algorithm.

DPD ACP3L ACP3H
0 -3dB 3dB
1 -15dB -11dB
2 -24dB -23dB
3 -24dB -20dB

Finally, the optimal coefficients determined using wideband feedback and an LMS

algorithm are shown in 54 for a tap delay of DPD = 2. The following section describes

the GA implementation of the memory PD polynomial.




a10 = 1.0099− 0.0064i a11 = −0.0198 + 0.2193i a12 = −0.0276− 0.0225i

a30 = 0.1570 + 0.2603i a31 = −0.3381− 0.2182i a32 = 0.0667− 0.0252i

a50 = −0.0403 + 0.0287i a51 = −0.0990− 0.1127i a52 = 0.0692 + 0.0481i

a70 = −0.0231− 0.0025i a71 = −0.0226− 0.0356i a72 = 0.0266 + 0.0224i




(54)

6.3 Memory Polynomial and Sequential Narrow-

band Pre-Distortion

It was shown that the GA, although effective at linearizing memoryless PAs, did not

achieve significant performance on a PA with memory effects. Generally, only limited

linearization results can be achieved with a memoryless pre-distorter [21]. To meet

performance requirements already achieved by conventional linearization approaches,

the algorithm was modified to include memory polynomials [59]. The application

of the memory polynomials with the GA is computationally identical to the LMS

algorithm described in the previous section.

The optimal solution for memoryless PD was determined through the optimization
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of a specific cost function. For the memory GA, the cost function is now a measure

of the linear power of IMD3L and IMD3H relative to the fundamental linear power

or IMD1, as illustrated in Figure 44 and defined by Equation 42 from [Chapter 4].

While the LMS algorithm adapts all 12 of the complex coefficients simultaneously

(a10...a73), similar adaptation of 3 polynomials (DPD = 2) with the GA is ineffective

at reducing ACP levels without prior definition of a narrow search space. Regardless

of search space definition, the ACP improvement was insignificant compared to the

LMS implementation. In the memory GA, the search spaces must adapt sequen-

tially to maintain the overall stability of the algorithm. The algorithm was therefore

parameterized to sequentially optimize the 3 polynomial sets.
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Figure 44: Cost function for the GA.

The sequential adaptation of the memory GA is summarized by the following

steps:

1. Characterize approximate P1dB of the amplifier using two-tone test.
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2. Optimize coefficients of P0(n).

(a) Define search space from P1dB calculations.

(b) Iterate the 4 complex coefficients.

(c) Stop if ACP levels are constant.

3. Optimize coefficients of P0(n) and P1(n− 1).

(a) Define narrow search space for P0(n).

(b) Define search space for P1(n− 1).

(c) Iterate the 8 complex coefficients.

(d) Stop if ACP levels are constant.

4. Optimize coefficients of P0(n), P1(n− 1) and P2(n− 2).

(a) Define narrow search space for P0(n).

(b) Define narrow search space for P1(n− 1).

(c) Define search space for P2(n− 2).

(d) Iterate the 12 complex coefficients.

(e) Stop if ACP levels are constant.

The convergence profile of polynomial PD using the sequential genetic algorithm

is shown in Figure 51. For each iteration, the average and best GA solutions are

shown along with the minimum attainable performance as defined by the noise floor

of the system. Each process is permitted to optimize over a maximum of 20 iterations;

however, if the improvement remains constant for multiple iterations the algorithm

proceeds to the following step. The PA characterization including P1dB determination

are completed in STEP 1 and are not shown in the convergence profile. The results

indicate an ACPR improvement of 13dB from the 1st polynomial adaptation, 2dB
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Figure 45: Convergence profile for the sequential GA.

improvement with the inclusion of the 2nd polynomial and 5dB of improvement with

the inclusion of the 3rd polynomial. The profile also indicates a trend that would seem

to suggest further improvement is possible with the addition of a 4th polynomial.

The GAs sequential linearization performance is illustrated for each additional

tap and PD polynomial in Figure 46(a) for DPD = 0, Figure 46(b) for DPD = 1,

and Figure 46(c) for DPD = 2. The results using narrowband GA show an ACLR of

40dBc to 60dBc for a net improvement of 20dB, indicating a performance comparable

to that of the wideband LMS algorithm.

For the memoryless case, where DPD = 0, the initial characterization of the PA

model and subsequent adaptation of the PD polynomial show significant ACP im-

provement contrary to what was observed with wideband feedback and the LMS al-

gorithm. The results are summarized in Table 12 where the improvement is described

relative to the original ACP levels.

Finally, the optimal coefficients determined using narrowband feedback and the

75



−50 −40 −30 −20 −10 0 10 20 30 40 50
−70

−60

−50

−40

−30

−20

−10

0

10

20

A
m

pl
itu

de
 (

dB
m

)

Frequency from carrier (MHz)

With PD
No PD
Input

(a) Narrowband PD using the GA and DPD = 0.
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(b) Narrowband PD using the GA and DPD = 1.

(c) Narrowband PD using the GA and DPD = 2.

Figure 46: Spectral output of narrowband PD using the GA.
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Table 12: ACP performance of narrowband PD using the GA.

DPD ACP3L ACP3H
0 -8dB -5dB
1 -15dB -11dB
2 -24dB -23dB

GA are shown in 55 for a tap delay of DPD = 2. The following section describes the

hardware that is assembled to verify performance of the GA as applied to ”real-world”

PAs.




a10 = 0.9482 + 0.0613i a11 = −0.2597 + 0.0165i a12 = 0.0090 + 0.0108i

a30 = 0.0220 + 0.0197i a31 = −0.0480− 0.0236i a32 = 0.0230 + 0.0075i

a50 = 0.0078 + 0.0145i a51 = −0.1630− 0.2699i a52 = 0.0183− 0.1876i

a70 = 0.1543 + 0.0468i a71 = 0.0379 + 0.7060i a72 = −0.0575 + 0.4521i




(55)

6.4 System Architecture for Wideband Pre-Distortion

The implementation of a LUT-based pre-distortion system was shown in Chapter 4.

Although effective at correcting for memoryless non-linearities, the platform was un-

able to accurately correct the PA memory effects. Consequently, the implementation

of this system was only able to guarantee minimal performance improvements. The

research efforts now demand the need for a test platform capable of evaluating the

performance of a pre-distortion algorithm that includes the implementation of the

memory polynomial described in the previous sections. A typical hardware architec-

ture is configured to give 60MHz of feedback bandwidth. Including 3rd and 5th order

intermodulation products, the transmitted signal is capable of reaching bandwidths

of up to 1/5th of the feedback bandwidth which in this case is 12.5MHz. The sys-

tem architecture is designed to accommodate feedback bandwidths of up to 100MHz;

however, this would require a second ADC in the feedback path and is not the focus
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Figure 47: Block Diagram of Wideband Pre-Distortion System.

of this work. The new algorithm evaluation platform is also used to implement a

Texas Instruments Corporation (TI) proprietary algorithm which requires wideband

feedback. A simplified version of the initial platform is shown in Figure 47.

The application of DPD to the transmitted signal is done within the Matlab

environment. The pre-distorted signal is then uploaded to an Agilent l6702-Logic

Analyzer with pattern generation capabilities. The complex digital signal is con-

verted to the analog domain through a dual-DAC up to a 92.16MHz intermediate

frequency (IF). The signal is filtered, and modulated up to a 2.14GHz frequency. The

test platform incorporates a digitally controlled step-attenuator to regulate the RF

transmit power. A duplicate device is used to control the RF receive power to main-

tain optimal performance of the feedback path. The transmit and receive power is

measured through dual power meters. The board also includes a switch at the output

of the transmit chain. This is used as a PA protection device designed to cut-off the

RF transit power. The protection feature is designed to reduce the risk of applying

excessive power levels to the PA, thus preventing the damage or destruction of these

expensive devices. The receive chain includes an analog mixer to reduce the RF signal

back to the 92.16MHz IF frequency. The signal is amplified, filtered and digitized.

The digital signal is captured with the logic analyzer and the data is downloaded to
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Figure 48: Schematic design for the 90MHz bandbass filter.

the Matlab environment for signal processing. The platform is optimized for UMTS

signal encoding. A full frame of UMTS data is 1.2288Msamples while the bandwidth

of a single UMTS carrier is 3.84MHz. The carrier spacing, or occupied bandwidth,

for the test signal is approximately 5MHz. Consequently, the data converters in the

transmit and receive data path are clocked at a frequency of 122.88MHz. The detailed

block diagram for this system implementation is shown in Figure 47, and illustrated

in Appendix C.

The detailed diagram illustrates the use of a custom analog filter between the

mixer and ADC in the feedback path. The filter requires good stop band attenuation

to eliminate mixer products while the passband requires a constant phase delay, or

a group delay of less than 3ns; as such, a custom filter design was required for this

application. The schematics for this filter design are illustrated in Figure 48, the

simulated spectral data and group delay performance are also included in Figure 49;

finally, the measured filter performance was similar to the simulated results.

For wideband feedback, the input and output data must be time aligned to apply

accurate DPD on a sample by sample basis. The digital and analog delay can be

determined by applying the cross-correlation of a signal with itself, the result is the
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Figure 49: Spectral and group delay performance of the 90MHz bandpass filter.

autocorrelation of the signal which can be represented by Equation 56 and Equa-

tion 57. The delay is assumed to remain constant throughout the PA linearization

process.

r̂x(l) , 1

N
(x ? x)(l) , 1

N

N−1∑
n=0

x(n)x(n + l) (56)

The autocorrelation function is Hermitian:

r̂x(−l) = r̂x(l) (57)

The above platform illustrates the complexity and accuracy required to achieve

optimal linearization performance with wideband feedback. These results further

support the development of a narrowband feedback algorithm that is not bounded by

strict design specifications.
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6.5 Sequential Memory Pre-Distortion using the

Genetic Algorithm

The original Volterra series model is often used to represent memoryless PAs with

nonlinearities [54]. However, when including memory effects, the added complexity

of this model outweighs its usefulness. The work presented here assumes that the

actual PA can be accurately represented by a pseudo-Volterra based model [60]. The

PD linearization architecture is implemented by cascading the inverse Volterra model

with the PA. It is shown through experimentation that the inverse system, for the

PAs described in this section, requires three cascaded 4th order polynomials each

separated by a variable-tap delay, as shown in Figure 50.

Figure 50: Pre-distortion block diagram.

The general form of the polynomials used to linearize the PA are expressed in

Equation 58, where d represents the delay at the input to the summing node. The

coefficients described below are complex to include both amplitude and phase infor-

mation. The input to the PA can be expressed as the sum of the delayed polynomials

as shown in Equation 59. Although this truncated polynomial model is only an
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approximation, considerable results are achieved through this type of PD implemen-

tation.

fd(x(n)) = Adx(n− d) + Bdx(n− d)x|n− d|2 +

Cdx(n− d)x|n− d|4 + Ddx(n− d)x|n− d|6 (58)

y(n) = f1(x(n− d1)) + f2(x(n− d2)) + f3(x(n− d3)) (59)

The application of the memory polynomials, described by Equations 58 and 59,

is shown in Figure 50. The GA application of these PD polynomials is similar to

that implemented using wideband feedback and an LMS algorithm. However, the

LMS algorithm adapts all 12 of the complex coefficients simultaneously. Previous

work indicated that similar adaptation of 3 polynomials with the GA was ineffective

at reducing ACP levels. As described earlier, the GA adaptation of the polynomials

and their individual bounding functions is accomplished in a sequential manner to

maintain stability and performance.

The sequential adaptation of the memory GA is summarized by the following

steps:

1. Characterize approximate P1dB of the amplifier using two-tone compression test.

2. Determine Output Power IM1woPD and Initial ACP levels.

(a) Define search space for P1(n− d1).

(b) Iterate the 4 complex coefficients.

(c) Stop at i iterations or if ACP is minimized.

3. Optimize coefficients of P1(n− d1) and P2(n− d2).

(a) Define narrow search space for P1(n− d1).
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(b) Define search space for P2(n− d2).

(c) Iterate the 8 complex coefficients.

(d) Stop at i iterations or if ACP is minimized.

4. Optimize coefficients of P1(n− d1), P2(n− d2) and P3(n− d3).

(a) Define narrow search space for P1(n− d1).

(b) Define narrow search space for P2(n− d2).

(c) Define search space for P3(n− d3).

(d) Iterate the 12 complex coefficients.

(e) Stop at i iterations or if ACP is minimized.

The hardware implementation described in the previous section is now used to

evaluate the performance of the memory polynomial GA. The local oscillator (LO)

frequency of 2.05GHz results in a transmission frequency of approximately 2.14GHz.

A Stealth Microwave SL0825-40 5W laboratory PA is used to drive the device under

test (DUT). In this implementation, the DUT is a two-stage PA. The first stage is a

CREE Microwave UPF21010 10W amplifier, while the second is a CREE UGF21090

90W amplifier [46].

Although the hardware is designed for wideband PD, the GA requires only nar-

rowband information. It is convenient to test multiple PD solutions, using only

narrowband information, with a single frame of data to minimize the total simula-

tion and adaptation time. The performance of individual population members for

this implementation is dependant on the average power of each member. To accu-

rately compare the fitness of the N individual population members, the average power

(mean square) of each PD member is normalized to the average power of the original

input of data x(n), as defined in Equation 60 where F is the number of samples in

the frame of data and P is the number of samples for a given population member,
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(or P = F/N). These conditions help ensure the PA average output power remains

constant for a given iteration.

1

P

P∑
n=1

|y(n)|2 ≡ 1

F

F∑
n=1

|x(n)|2 (60)

The adaptation of the GA is critically dependant on the cost function that in-

dicates the viability or fitness of each individual PD solution. For the hardware

implementation of the sequential memory GA, the cost function is a measure of the

linear power of IM3L and IM3H relative to the fundamental linear power or IM1, as

defined in Section 6.3. In actual implementation, certain population members pro-

vide solutions with decreased fundamental output power or IMD1, this precipitates

the need for cost function modification. First, the fundamental output power for an

ideal amplifier is determined. Second, the measured IMD1 output power is compared

to the ideal output power. Finally, the fitness of the population members is adversely

affected for measured values that are below the expected ideal value. The fitness f

of the individual population members is now defined by Equations 61 and 62.

For IMD1Measured ≥ IMD1Ideal,

f = 10(IM1−IM3L)/20 + 10(IM1−IM3H)/20 (61)

while IMD1Measured < IMD1Ideal

f = 10(IM1−IM3L)/20 + 10(IM1−IM3H)/20 + Θ · 10(IM1Measured−IM1Ideal)/20 (62)

where Θ defines an experimentally determined weighting value.

The convergence profile of polynomial PD using the sequential genetic algorithm

is shown in Figure 51. For each iteration, the average and best IM3L/IM3H GA

solutions are shown along with the minimum attainable performance as defined by

the noise floor of the system. Each process is permitted to optimize over 20 iterations.

The PA characterization including P1dB determination is completed in STEP 1 and

indicates an initial IM3L of approximately 37dBm and an IM3H of approximately
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38dBm. The software control interface for the algorithm is illustrated in Appendix

C. It is important to note that the progress results are measured from the individual

PD solutions contained in a frame and as such, are only an approximation. The

optimal solutions are validated over the entire frame of data after the completion of

each step described above. These actual ACP optimization results are summarized

in Table 13 and the sequential linearization performance is illustrated in Figure 52.

Table 13: Genetic Algorithm Optimization Results

Step ACP3L ACP3H
1 33dBc 34dBc
2 42.5dBc 44.5dBc
3 46dBc 49dBc
4 51dBc 50dBc

Total 18dB 16dB
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Figure 51: Convergence Profile for the Sequential GA.

The results indicate a total ACP3L improvement of 18dB, while the ACP3H

showed a total improvement of 16dB. The tap delay lengths were experimentally
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Figure 52: Sequential GA Linearization Performance.
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optimized: the first polynomial was used to remove memoryless distortion, thus the

delay was 0, a delay of 1 for the second polynomial (or first memory polynomial)

and a delay of 4 for the third polynomial (second memory polynomial). The output

clock rate of the DAC was 122.88MHz thus a single tap delay is equal to an analog

delay of 8.138ns. The profile also indicates a trend that would seem to suggest further

improvement is possible with the addition of possibly a 4th polynomial. This concept

was not supported by hardware results or software simulations. The additional poly-

nomial adds more degrees of uncertainty, and performance of the algorithm degrades

as it did with wideband feedback. The longest pre-distortion polynomial delay is

4*8.138ns or approximately 32.6ns which implies correction is specifically applied to

frequency memory effects.
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6.6 Sequential Memory Pre-Distortion, Crest Fac-

tor Reduction, and the Genetic Algorithm

In the previous section, linearization was applied to the PA module without initially

reducing the PAR of the input signal. Previous work had also shown that the com-

bination of an LMS algorithm with CFR yielded greater improvements than the sum

of their individual improvements. The purpose of this work is also to determine the

effect of applying CFR to the input signal on the GA linearization performance with

memory effects. The test platform is now optimized for 2-UMTS carriers thus the

total occupied signal bandwidth is 10MHz. In this section, the work is applied to

a high efficiency Doherty amplifier. Previous DPD and CFR efforts were applied to

class A and AB amplifiers. The specific implementation of this type of PA is not the

focus of this work; however, a simple block diagram illustrating the implementation

of such a device is included in Figure 53. The drawback to using a Doherty PA is that

this PA is not very linear and requires DPD to maintain acceptable levels of ACP.

The theoretical efficiency that can be achieved by a Doherty amplifier is shown in Fig-

ure 54 as compared to a typical class B amplifier. In theory, efficiencies greater than

50% can be achieved; however, practical results have not shown efficiencies greater

than 35%.

Figure 53: Doherty amplifier implementation.
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Figure 54: Efficiency of the Doherty amplifier versus a Class B amplifier.

The Doherty amplifier used in this research is a Bravo Tech Inc. 50W ampli-

fier [53]. The amplifier requires a 28V DC supply with currents varying between 1.7A

and 4A, depending on the input-output power levels. The system used to evaluate

the performance of the GA was introduced in the previous chapter and has minor

changes for this evaluation.

The GA with narrowband feedback was applied both with and without CFR. The

adaptation coefficients were optimized for varying power levels, Figure 55 illustrates

the performance of the algorithm.

The results for the narrowband feedback GA are summarized in Table 14 for an

ACP level of 50dBc. These results are 5dB greater than the 3GPP specification of

45dBc. The results indicate that for a given ACP level, the GA was able to increase

the output power by approximately 9.5dB. The efficiency was also increased by 24.8%.

The considerable improvement is due, in part, to the biasing of the Doherty amplifier

which is designed to operate at high efficiency in conjunction with a linearization

technique.

The convergence profile of polynomial PD using the sequential genetic algorithm

is shown in Figure 56. The results indicate linearization performance results using
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Table 14: Power and efficiency improvement.

With PD Without PD

PAR 10dB 6dB 10dB 6dB
Pout 41.5dBm 45.5dBm 36dBm 39.2dBm

Efficiency 18.6% 32.9% 8.1% 13.4%

a 10MHz bandwidth signal with a PAR of 6dB. The sequential linearization perfor-

mance is illustrated in Figure 57. The convergence profile for the GA using an input

signal of 10dB is shown in Figure 58 and the sequential linearization performance is

illustrated in Figure 59.

The performance of the algorithm is limited by the linearity and dynamic range

of the transmit and feedback paths. In all applications of linearization using this test

platform, the optimal performance was limited to approximately 50dBc. As much as

8dB of additional improvement has been achieved using a TI proprietary linearization
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technique prior to PD coefficient adaptation. The technique equalizes the signal chain

correcting for memoryless nonlinearities and I/Q imbalance. The linear equalization

technique is not applied to this work, and is subject to future research efforts. The

optimized DPD coefficients for a PAR of 10db and 6dB are included in Equations 63

and 64, respectively.




a10 = 0.8640 + 0.3225i a11 = 0.4463 + 0.0015i a12 = −0.4758 + 0.1372i

a30 = −0.2436 + 0.2244i a31 = −0.2270 + 0.3435i a32 = 0.2366− 0.1198i

a50 = 0.4401 + 0.2747i a51 = 0.0984 + 0.1639i a52 = −0.0625 + 0.1005i

a70 = −0.0361 + 0.4018i a71 = 0.3285− 0.3180i a72 = −0.2905− 0.0692i




(63)

91



−30 −20 −10 0 10 20 30
−70

−60

−50

−40

−30

−20

−10

0

Frequency (MHz)
A

m
pl

itu
de

 (
dB

m
)

Original
Stage #1

(a) Memoryless PA distortion compensation from P1 adaptation.

−30 −20 −10 0 10 20 30
−70

−60

−50

−40

−30

−20

−10

0

Frequency (MHz)

A
m

pl
itu

de
 (

dB
m

)

Stage #1
Stage #2

(b) Memory PD with 1st memory tap and P2 adaptation.

−30 −20 −10 0 10 20 30
−70

−60

−50

−40

−30

−20

−10

0

Frequency (MHz)

A
m

pl
itu

de
 (

dB
m

)

Stage #2
Stage #3

(c) Memory PD with additional taps and P3 adaptation.

Figure 57: Sequential GA Linearization Performance with a 6dB PAR input signal.

92



0 10 20 30 40 50 60 70

35

40

45

50

Iteration (i)

A
C

P
R

 (
dB

c)

Mean ACPR

Optimal−L

Optimal−H

Figure 58: Convergence Profile for the Sequential GA with a 10dB PAR input signal.




a10 = 1.0145 + 0.2611i a11 = 0.3476− 0.1656i a12 = −0.2429− 0.4326i

a30 = −0.3044 + 0.0271i a31 = 0.0755 + 0.4095i a32 = 0.0020 + 0.1364i

a50 = 0.3246 + 0.2723i a51 = −0.2583− 0.0879i a52 = 0.1160 + 0.0587i

a70 = 0.1974 + 0.5661i a71 = 0.1009 + 0.0031i a72 = −0.0362− 0.3576i




(64)

Contrary to the class AB amplifier tested in the previous section, the coefficients

for this correction are separated by unit tap delays for both PAR levels. The im-

plication is that Doherty amplifiers exhibit strong short-term memory effects when

a 10MHz bandwidth signal is applied. The sampling rate determines the length of

the memory effects which are corrected. The first polynomial is memoryless, the

second corrects for memory effects up to 8.138ns, and the final polynomial corrects

for memory effects up to 16.276ns. In this implementation, delays of up to 10 taps
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were applied without added improvement which indicated that the remaining memory

effects, if any, were greater than 81.38ns in length.
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CHAPTER VII

CONCLUSION AND FUTURE WORK

This concluding chapter presents a brief summary of the work presented in this dis-

sertation. This is followed by a discussion of possible applications, a highlighting of

the contributions made by the work, and a brief discussion of potential areas of future

research.

7.1 Summary

This dissertation presented a study of linearization techniques that have been applied

to power amplifiers in the cellular communication industry. Previous techniques,

although effective, have significant implementation costs that increase exponentially

with the increasing signal bandwidths. In this work, a new technique was proposed

that significantly reduces implementation costs and the overall complexity of the

design.

The first embodiment of the algorithm was a simple polynomial solver. This was

used to determine the curve fitting capabilities of the algorithm. With only limited

information, the algorithm was used to simultaneously determine the coefficients of

two independent polynomials.

The algorithm was then applied to a power amplifier software model. The exer-

cise was used to demonstrate the algorithm performance versus an exhaustive ran-

dom search technique. The algorithm was then applied to a closed loop hardware

system. The system was implemented using laboratory equipment while adaptation

was applied through a sponsor evaluation platform. The entire system was controlled

through a software-computer interface. The system was characterized in terms of
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adjacent channel power improvement for varying algorithm parameters.

A new system was introduced to validate crest factor reduction. The benefits and

consequences of reducing the peak-to-average ratio of a test signal were quantified.

The work extended itself to the application of CFR and wideband DPD on a hardware

power amplifier.

The performance limitations of the algorithm on power amplifiers with strong

memory effects dictated the need for memory pre-distortion. A wideband memory

polynomial pre-distorter was introduced in software. The genetic algorithm using

narrowband feedback was modified to correct for memory effects and a performance

analysis was done between the two embodiments. The work introduced the concept

of a sequential adaptation of the memory polynomials to maintain stability.

Finally, a new system was designed capable of implementing both wideband and

narrowband pre-distortion. The system closely represents a typical basestation imple-

mentation for DPD including memory effects. The sequential genetic algorithm was

allowed to adapt the memory polynomials using data with and without CFR. The

implementation confirmed the combined benefits of DPD and CFR with greater sig-

nal bandwidths. The algorithm performance was indicated through increased output

power and efficiency.

The application of genetic algorithms to memory PA linearization is a new ap-

proach to adaptive digital pre-distortion using narrowband feedback. The algorithm

has been shown to adapt PD polynomials using only ACP feedback on software and

hardware platforms. In this work, closed-loop hardware results for the adaption of a

sequential memory polynomial have shown performance improvements on an amplifier

with memory effects suggesting that this technique can be employed as a lower-cost

solution to meet ACP requirements when compared to typical system implementa-

tions.
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7.2 Comparison to Previous Techniques

In the past, several different techniques have been proposed to handle the problem

of PA linearization. Previous implementations and techniques have been shown to

achieve significant efficiency improvements. The most effective systems utilized ei-

ther analog feedforward, analog feedback, or digital pre-distortion with wideband

feedback. Although each successive method has achieved noticeable performance at

a continually decreasing cost, the trend for cost reduction remains. This trend and

the ongoing desire to push the digital domain out closer to analog favors digital pre-

distortion. Performance and cost of DPD implementations is driven by the ADCs in

the feedback path. These tradeoffs will be even more prevalent with the increasing

bandwidth of 3.5G and 4G systems. The linearization efforts of PAs operating under

4th generation orthogonal frequency-domain modulation (OFDM) systems will fur-

ther illustrate the limitations of DPD algorithms that require wideband feedback to

achieve efficiency improvements. The 4G systems will occupy signal bandwidths ex-

ceeding 60MHz, these will require over 300MHz of feedback bandwidth to correct 3rd

and 5th order intermodulation products. The ADCs required to accomplish this will

have to sample at rates exceeding 400MHz. The cost of such devices will outweigh

the benefits of pre-distortion.

As compared to previous results, this work produces linearization enhancements

that exceed that of published techniques for closed-loop systems. This work ac-

knowledges that many DPD implementations do not publish results to maintain the

intellectual property of their proprietary algorithms.

7.3 Applications

One of the motivating factors for this work was the applicability to various modula-

tion schemes with varying signal bandwidths. Implementation cost of the narrowband
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feedback DPD using the GA is independent of the bandwidth of the transmitted sig-

nal. Power amplifiers, regardless of size, benefit from added efficiency. The applica-

tion lends itself well to picocell basestations which typically require 5W of transmitted

power, 20W PAs are typically used for this type of application at significant levels of

backoff. In this case, it is less expensive to operate a PA in significant backoff than

to implement wideband feedback DPD. The application is further idealized by the

fact that PAs rated for greater than 20W are predominantly affected by frequency or

short memory effects.

Any system that requires some form of signal amplification will be subject to

distortion. Linearization techniques can be utilized in any of these applications with

minimal impact on system performance while achieving considerable cost savings.

Linearization could be applied in the field of audio engineering, the implementation

would mostly lend itself to high-fidelity systems. The most important tradeoff is

the complexity of the design. In the simplest case, backoff is sufficient to achieve

acceptable distortion levels. A second tradeoff may be that PA modules were designed

to generate and dissipate specific levels of power. Operating a PA outside of these

levels may affect the lifetime of the PA module. Therefor to maintain the thermal

behavior of the module, the PA may also require additional cooling fans and heat

sinks. In most cases, these tradeoffs will still suggest that at least one linearization

technique should be employed.

7.4 Contributions

The key contributions of this work are:

1. An novel linearization algorithm that requires only narrowand feedback.

• The genetic algorithm was parameterized to be used as a polynomial solver.

• The algorithm was applied to a typical power amplifier model.
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• The algorithm parameters and cost function were optimized to significantly

reduce distortion levels in the software model.

2. Closed-loop implementations of the algorithm.

• Software was used to control test equipment capable of representing a

closed loop system with narrowband feedback.

• A second system was implemented capable of supporting larger signal

bandwidths and crest factor reduction.

• A final system was designed capable of supporting significant bandwidths

for both narrowband and wideband feedback algorithms.

3. Memory pre-distortion and the genetic algorithm.

• A sequential adaptation genetic algorithm was proposed in software and

validated in hardware.

• The implementation confirms that the algorithm is not subject to typical

system constraints present in wideband feedback architectures.

• The simple, cost-effective solution is shown to significantly increase the

efficiency and output power of a base station power amplifier.

7.5 Future Work

Based on the work presented here, there exist several potential directions for future

research. The first extension of this work is to apply the genetic algorithm using

only narrowband feedback to correct the I/Q imbalance and LO feedthrough in the

transmit chain that are often present in direct upconversion systems. Techniques

have been proposed for correcting gain, phase, and offset imbalance [52]. Previous

work defines the gain imbalance indicated in Equation 65 where α and β represent
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Figure 60: Model of imbalance introduced by a direct upconversion circuit.

the amplitude gains of both the I and Q channels, respectively.

ε = α/β − 1 (65)

Direct upconversion is modeled in Figure 60, where a1 and a2 define the resulting

DC offset. The input to the direct upconversion model is shown in Equation 66.

r(t) =




ri(t)

rq(t)


 (66)

The direct upconversion output is given by Equation 67



vi(t)

vq(t)


 =




h11 h12

h21 h22










ri(t)

rq(t)


 +




a1

a2





 (67)

where 


h11 h12

h21 h22


 =




αcos(φ/2) βsin(φ/2)

αsin(φ/2) βcos(φ/2)


 (68)

A typical correction circuitry is suggested in Figure 61 which requires only 6

parameters to achieve additional performance, the I and Q gain offset parameters, or
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Figure 61: Direct upconversion imbalance correction circuit.

b1 and b2 would correct for LO feedthrough while the g11, g12, g21, and g22 parameters

would correct the I/Q imbalance. The correction implementation is summarized by

Equation 69. 


ri(t)

rq(t)


 =




g11 g12

g21 g22







si(t)

sq(t)


 +




b1

b2


 (69)

The LO feedthrough would be measured simply at the LO frequency with a nar-

rowband power detector, the I/Q imbalance would be measured at the carrier location

and the image location. Equation 67 can be expressed as v(t) = H(r(t) + a)) while

Equation 69 is summarized as r(t) = Gs(t)+b. The GA could adapt the 6 parameters

until b = −a and G = H−1.

In a wideband system implementation that was suggested in the previous chapter,

there is no method to measure the image of the transmitted versus received signal

for a single LO solution. The single LO solution is preferred as it maintains the

phase alignment of the transmitted and received signal. As was indicated in the

previous chapter, an equalization step would allow for greater algorithm performance
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Figure 62: Dual LO configuration for I/Q imbalance correction in a wideband feed-
back system.

by optimizing the transmit and receive chains. During this calibration process, a

novel system implementation would utilize a dual voltage controlled oscillator (VCO)

topology to allow measurement of the transmit and receive image. If the VCO offset

was marginal there would be little impact on the phase characteristics of the system.

It would be simple to measure and eliminate the images of the signals during this

calibration. The system implementation is illustrated in Figure 62.

Enhanced characterization of the PA performance and memory effects could also

increase the performance of the algorithm. A multi-tone test could be used to ac-

curately predict memory effects by varying the tone-spacing and amplitude. The

spectral information could then be used to formulate more accurate search spaces for

the three memory polynomials. It may also be desirable to allow the GA adaptation

of the tap delay length which, in this case, was optimized experimentally. Future

embodiments of the algorithm could also be made to include envelope memory effects

which are characterized by their longer time constants, improving the linearization

performance of the algorithm.
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Fourth generation modulation schemes are now defined to be orthogonal frequency-

division multiplexing signals (OFDM). A specific characteristic of these signals is that

they are time division duplexing(TDD); thus the PA will transmit frames of data that

contain data and no data. The on/off behavior will produce new unquantified mem-

ory effects in PAs. A second characteristic of such signals is their large bandwidth,

which look to exceed 60MHz. Wideband feedback would require over 300MHz of

feedback bandwidth for wideband architectures. The cost advantages of the genetic

algorithm and narrowband feedback are evident here.

Finally, the implementation of a physical device which accomplishes DPD using

the genetic algorithm and narrowband feedback in an ASIC or FPGA evaluation

platform could show the actual cost savings over wideband feedback architectures.
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APPENDIX A

TWO-TONE COEFFICIENT EXPANSION
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APPENDIX B

CCDF AND COMPOSITE EVM

CALCULATIONS

The following code calculates the complementary cumulative distribution function

and the composite error vector magnitude. This can be run as an m-file using Matlab.

Figure 67: Complementary cumulative distribution function.
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Figure 68: Composite error vector magnitude calculations (Part 1).
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Figure 69: Composite error vector magnitude calculations (Part 2).
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APPENDIX C

EVALUATION PLATFORM AND GENETIC

ALGORITHM GRAPHIC USER INTERFACE

Figure 70: Wideband and narrowband digital pre-distortion evaluation platform.

Figure 71: Genetic algorithm graphic user interface.
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