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SUMMARY 

 

 The purpose of this thesis is to evaluate a new definition of the diffusion 

coefficient used in reactor physics types of calculations.  The currently used definitions 

encompass certain approximations, and are only accurate when used in the types of 

calculations they were intended.  The diffusion coefficient evaluated here is based on 

naturally flux-limited (Levermore) diffusion theory, which has its own set of 

approximations, and this work determines what types of calculations it is most accurate 

in.  Another diffusion coefficient more loosely based on flux-limited diffusion theory is 

also evaluated in this work. 

 The evaluations are performed using fine-mesh diffusion theory.  They are in one 

spatial dimension and in 47, 4, and 2 energy groups. 

 The results show that the flux-limited diffusion coefficient (FD) outperforms the 

standard diffusion coefficient in calculations of single assemblies with vacuum 

boundaries, according to flux- and eigenvalue-errors.  In single assemblies with reflective 

boundary calculations, the FD yielded smaller improvements, and tended to improve only 

the fast-group results, while, on average, worsened the thermal-group and eigenvalue-

errors.  With reflective boundaries, combinations of the FD in fast groups and the 

standard diffusion coefficient in thermal groups produced lower flux- and eigenvalue 

errors than either of the diffusion coefficients used by itself for the entire energy range. 

 xii 
  



1 INTRODUCTION 

 

1.1 REACTOR PHYSICS CALCULATIONS 

 

 The current status of reactor core calculations can be divided into two stages; an 

assembly-level transport theory calculation, followed by a core-level diffusion theory 

calculation.  A transport calculation is performed for each fuel assembly type in a fine 

energy group structure.  This calculation outputs diffusion theory parameters by 

homogenizing the heterogeneous materials in and around the assembly into a single cell 

having a coarse group structure.  Many of these homogenized cells are assembled to 

create a core and used as input into the diffusion code.  It is presently not practical to 

replace this process with whole-core calculations using fine-mesh transport theory, 

despite recent advances in computational capability, although less computationally 

expensive fine-mesh diffusion theory is sometimes used. 

 In addition to broad group cross sections, usually in two to twenty energy groups, 

multigroup diffusion coefficients and/or transport cross sections are provided by the 

transport calculation.  The diffusion coefficient is important in diffusion theory 

calculations because it accounts for the anisotropy of the scattering and cell-leakage.  An 

exact relation exists for the diffusion coefficient in one energy group, but no such relation 

exists for more than one energy group.  This can be seen in the definition of the energy 

dependent diffusion coefficient, 
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 where the current J(r,E) is unknown, and from its multigroup definition 

  (1.2) 
1

( ) ( ) ( , ) ( , )   ,
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E

D dE D Eφ
−

∇ ⋅ ∇ ≡ ∇ ⋅ ∇∫r r r r Eφ

 
which has no exact analytical solution.  But because of the significance of the diffusion 

coefficient, many methods of estimating it have been developed, with each one 

presenting a different level of accuracy or specialization to a certain type of application.  

In addition, the various definitions are not always in agreement, and the choice of which 

one to use may require an extensive analysis of the case under consideration. 

 

1.2 STANDARD DIFFUSION COEFFICIENT AND DIFFUSION THEORY 

LIMITATIONS 

 

 One widely used diffusion coefficient is defined as 

 ( )
( )( ),

1
3g

tr g

D r
rσ

=  (1.3) 

with 

 , , 1,   ,tr g t g g gσ σ σ →= −  (1.4) 

where 1,g gσ →  is the first order Legendre moment of scattering, and its presence accounts 

for linearly anisotropic scattering only for self-scattering, which presents a limitation of 

this definition of the transport cross section.  Because this definition is widely used, in 
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this work it will be referred to as the standard transport cross section (Std), and used as a 

point of comparison for the new methods examined in this thesis. 

 A limitation of diffusion theory that is often overlooked is related to the use of 

Fick's Law, 

 D    ,φ= − ∇J  (1.5) 

in the diffusion equation used to relate the neutron current to the scalar flux.  Fick's Law 

is a first order approximation, not an exact definition.  One consequence of this 

approximation occurs in regions of a large spatial gradient, where the right hand side of 

Eq. (1.5) becomes large, causing the left hand side, the current, to also become large to 

the point where its magnitude is greater than the scalar flux.  However, based on the exact 

analytical definitions of the neutron current, 

 ( )
4

  ,d
π

ψ= ΩΩ Ω∫J  (1.6) 

and the scalar flux, 

 ( )
4

  ,d
π

φ ψ= Ω Ω∫  (1.7) 

where ( )ψ Ω  is the angular flux, the magnitude of the current must always be less than or 

equal to the scalar flux.  To see this, consider that in the integrand of Eq. (1.6), the unit 

vector Ω has positive and negative values as it spans 4π steradians, and is multiplied by 

the value of ψ(Ω) that points in the same direction as Ω is pointing in.  When the integral 

of this product is compared to the integral in Eq. (1.7), the latter integral will be greater 

because its integrand doesn't have any negative values in it.  Another way to explain this 

is with a simple one-dimensional example, representing the two possible extremes.  If 

two neutrons are traveling to the right, and two to the left, the application of Eq. (1.6) 
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yields zero neutron current.  If all four neutrons are traveling to the right, or to the left, 

the magnitude of the neutron current is four neutrons (per unit area per second).  In both 

cases the scalar flux is four neutrons (per unit area per second), with the current being 

less than the scalar flux in the first case (the isotropic extreme), and exactly equal to the 

scalar flux in the second case (the monodirectional extreme).   

 This work evaluates a novel method to estimate a diffusion coefficient based on 

flux-limited diffusion theory (FDT) that has neither of the shortcomings of the standard 

transport cross section described in Eq. (1.4) above, that is the lack of anisotropic 

scattering across all energy groups and, more significantly, the calculation of a neutron 

current whose magnitude exceeds the scalar flux.  It evaluates the new diffusion 

coefficient and another transport cross section that is more loosely based on FDT 

alongside the standard transport cross section by comparing them against transport 

benchmarks. 
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2 PROPOSED METHOD 

 

 The primary feature of the new diffusion coefficient investigated in this thesis is 

its ability to prevent the neutron current calculated with it using Fick's Law from 

exceeding the scalar flux, a property known as flux-limiting.  FDT has, and continues to 

have, great success in the field of radiative transfer (Szilard and Pomraning 1992).  These 

diffusion coefficients usually contain a gradient term that adjusts the diffusion 

coefficient, so that as the gradient becomes large flux-limiting is enforced.  Some of these 

diffusion coefficients are  ad hoc in nature that perform well for specific applications 

(Olson, Auer, and Hall 2000), but the FDT examined here is naturally flux-limited 

diffusion theory developed by Levermore and Pomraning (1981), sometimes referred to 

as Levermore diffusion theory.  This was adapted to multigroup neutron diffusion by 

Pomraning (1984), which serves as the basis for the work here.  It was modified to be 

used in one spatial dimension and has the external source replaced by a fission term. 

 

2.1 BRIEF DERIVATIONS AND DESCRIPTIONS OF FLUX-LIMITED 

PARAMETERS 

 

 A brief introduction to the flux-limited diffusion coefficient, with notes of major 

assumptions and the final equations solved, is given in this subsection.  For a detailed 

derivation refer to the APPENDIX. 

 

 

 17 
  



( )FDD2.1.1 Flux-limited Diffusion Coefficient  

 The starting point is the time-independent multigroup transport equation,  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ' '
' 1 4

' , ' '
' 1 4

, , ' ,

1 ' ,    ,
4

G

g g g s g g g
g

G
g

g f g g
g

I I d I

Χ r
r r d I

k

π

π

σ σ

ν σ
π

→
=

=

′ ′⋅ + = ⋅

′

∑ ∫

∑ ∫

Ω ∇ Ω Ω Ω Ω Ω Ω

Ω Ω

r r r

r

+

 (2.1) 

its angle-integrated result, the time-independent multigroup conservation equation 

 ( ) ( ) ( ) ( ) ( ), ' ' ' , ' '
' '

+    ,
G G

g g g 0 g g g g g f g g
g 1 g 1

1 Χ r r r
k

σ φ σ φ ν σ φ→
= =

⋅ + = ∑ ∑∇ J r r  (2.2) 

the separation of the angular flux  into two components as  ( , )gI r Ω

 ( , ) ( ) ( , )   ,g g gI φ ψ=Ωr r r Ω  (2.3) 

where ( )gφ r  is the scalar flux with its usual definition  

  (2.4) ( )   ,g g
4

d I
π

φ = ∫ Ω Ω

and the normalization of the angular flux ( , )gψ Ωr  as 

  (2.5) ( , ) 1   .g
4

d
π

ψΩ =∫ r Ω

 The assumption is made that the spatial and energy dependencies of  are 

carried mostly by the scalar flux 

( )gI Ω

( )gφ r , which implies that 

 0gψ⋅∇ =Ω  (2.6) 

and 

   .g gψ ψ ′=  (2.7) 

With a reduction to one spatial dimension, one arrives at the set of equations  

 18 
  



 ( ) ( )2
, ,

1

1 2 11 (
2 2

N

g g g g n n g n g
n

nR R P Kλ µ ψ µ µ ψ
=

+⎛ ⎞+ − = + ⎜ ⎟
⎝ ⎠

∑ )   ,  (2.8) 

where  

 
ˆ11 coth    ,

ˆ1
g g

g
g g g

R
R R

µ
λ

µ

⎧ ⎫⎡ ⎤ −⎪ ⎪= −⎢ ⎥⎨ ⎬−⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
 (2.9) 

with 

 

' , '
'

' , ' ' ' , '
' '

ˆ   ,

                        

G

g 1 g g
g 1

g G G

g 0 g g g g g f g
g 1 g 1

1
k

φ σ
µ

φ σ Χ φ ν σ

→
=

→
= =

=
+

∑

∑ ∑
 (2.10) 

 ( ) ( ) ( ) ( )
  ,g

g
g g g

d dx
R x

x x x
φ

σ ω φ
−

=  (2.11) 

where 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0, ' ' ' , ' '
' 1 ' 1

1 1    ,

g

G G

g g g g g f g g
g gg g

x

x x Χ x x x x
x x k

ω

σ φ ν σ φ
σ φ →

= =

=

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∑ ∑

 (2.12) 

and  is the nth order Legendre polynomial, ,n gK

  (2.13) , ( ) ( )   ,
1

n g n g
1

K d P Kξ ξ ξ
−

= ∫

of the Legendre expansion for the expression 

 ( ) ( )' , ' ' ' , '
' 1 ' 1

2 1    .
4

G G
g

g g s g g g
g gg g g

K
k
Χπµ µ φ σ µ µ φ ν σ

σ ω φ π→
= =

g f g

⎡ ⎤
′ ′⋅ = ⋅ +⎢ ⎥

⎣ ⎦
∑ ∑  (2.14) 

With the only unknown in Eq. (2.8) being ( )gψ µ , it is assumed that it can be adequately 

approximated by the function 
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 ( ) 2

ˆ1
,    

ˆ2 1
g

g
g g g g

x
R R

.
µ

ψ µ
λ µ µ

−
=

⎡ ⎤+ − −⎣ ⎦
 (2.15) 

One can combine these terms to yield a spatially-dependent flux-limited diffusion 

coefficient as 

 

 

( ) ( )

0 1
1 1 1

0 1
1 1 1

coth
1

1

         .

gFD
g

g

g
G G G

g ' ,g ' g g ' ,g ' g g g ' g ' f ,g '
g ' g ' g '

G G G

g ' ,g ' g g ' ,g ' g g g ' g ' f ,g '
g ' g ' g '

g

x
D x

d dx

d dx

Χ
k

Χ
k

d dx

φ
φ

φ

φ σ φ σ φ ν σ

φ σ φ σ φ ν σ

φ

→ →
= = =

→ →
= = =

−
= ×

⎧ ⎡ ⎤
⎪ ⎢ ⎥−⎪ ⎢ ⎥⎨ ⎢ ⎥⎪ − +⎢ ⎥⎪ ⎣ ⎦⎩

⎫− + ⎪⎪+ ⎬
⎪
⎪⎭

∑ ∑ ∑

∑ ∑ ∑

 (2.16) 

 

 This flux-limited diffusion coefficient will be referred to as FD.  Note than in Eqs. 

(2.16) and the presence of the first order Legendre moment for scattering, 1,g ' gσ → , which 

accounts for linearly anisotropic across all groups.  This diffusion coefficient has been 

shown analytically (Pomraning 1981) to be flux-limited, that is, a neutron current 

calculated by using it in Fick's Law will never exceed the scalar flux.  This property will 

be confirmed computationally in this thesis. 

 Note also the presence of the gradient term of the scalar flux.  Because the 

gradient is not typically output by transport lattice and cross section codes, the method 

used in this thesis to calculate it requires examination of its accuracy. 
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( )FXσ2.1.2 "Flux-limited" Transport Cross Section   

 By starting with the assumptions of Eq. (2.3), Eq. (2.7), and the  approximation 

to the transport equation, it is possible to derive a "flux-limited" transport cross section 

(FX) as 

1P

 '
, , '

'
  .

G
gFX

tr g g 1 g g
g 1 g

φ
σ σ σ

φ→
=

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (2.17) 

Flux-limited is enclosed in quotation marks to indicate that it has never been shown 

analytically that the transport cross section in Eq. (2.17) actually is flux-limited.  It will 

be determined in this thesis if it is.  The FX has the advantage over the FD that it is much 

simpler to calculate. 

 

2.2 DIFFUSION COEFFICIENT EVALUATION PROCESS AND 

COMPUTATIONAL MODELS 

 

 The performance of the flux-limited diffusion coefficient from Eq. (2.16), , 

also referred to as FD, the possibly flux-limited transport cross section from Eq. (2.17), 

FDD

FX
trσ , referred to as FX, and the standard transport cross section in Eq. (1.4), referred to as 

Std, were evaluated with fine-mesh diffusion calculations.  The output, described in 

section 4, based on each type of diffusion coefficient were concurrently compared against 

a transport benchmark.  All computations and the analytical methods they are based on 

use one spatial dimension. 

 There were calculations using individual single-assemblies of 4 types, each with 

varying levels of heterogeneity, modeled one at a time, and three core types consisting of 
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combinations of these assemblies.  Each of the four individual assembly types were 

modeled with vacuum boundary conditions and with reflective boundary conditions on 

both sides of the assembly, on a fine-mesh.  The full-core calculations all had vacuum 

boundary conditions.  The diagrams of the assemblies, cores, and their components are 

shown in Figure 2.1. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

Figure 2.1: Assembly and core types used in the calculations. 
 

 

 Each assembly consists of 4 fuel regions composed of fuel type I or II, or a fuel 

and gadolinium mixture, bordered by water channels.  Each fuel region is divided into 

sixteen 0.2032 cm subregions, and each water region is divided into sixteen 0.06985 cm 
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subregions, for a total of 96 subregions, and a width of 15.24 cm (6 in) per assembly.  

This spatial discretization is used in the transport benchmark and fine-mesh diffusion 

models. 

 Three energy structures were used for the diffusion and transport calculations, a 

47-group, a 4-group, and a 2-group structure, with the 4- and 2-groups being subsets of 

the 47-groups.  The use of the same energy structures and cross sections for the transport 

and fine-mesh diffusion calculations allowed direct comparisons to be made between the 

calculations, with the only difference among them being their diffusion or transport 

theory bases. 
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3 LITERATURE REVIEW 

 

 There have been many previous definitions of the diffusion coefficient for infinite 

uniform lattices and homogeneous regions, based on deterministic as well as Monte Carlo 

methods.  Their applicability depends on many factors, such as the type of calculation 

being performed, parameter to be conserved, and problem geometry. 

 

3.1 DETERMINISTIC METHODS FOR THE DIFFUSION COEFFICIENT 

 

3.1.1 B-1 and B-3 Buckling Dependent Methods 

 One of the most frequently used methods to calculate a diffusion coefficient for a 

single homogenized lattice cell in a critical spectrum is the B-1 method (Stamm'ler and 

Abbate 1983, 360).  The angular flux is separated into spatial and angle-energy modes as  

 , ,( , , ) ( , ) ( )g n g
n

E F Eµ µΨ = n gφ∑r r  (3.1) 

where n is set to equal 1 assuming the fundamental mode, in which case  

 ( , , ) ( , ) ( )   .g g gE F Eµ µ φΨ =r r  (3.2) 

 The angular dependence of ( , )gF E Ω  is expanded in Legendre polynomials to first order, 

with its zeroth order moment being, for group g, 

 ( )2 ,   g gF E d ,ψ π µ= µ∫  (3.3) 

and the diffusion coefficient for group g is then calculated as  

 
1

i  
  .g

g
g

J
D

B ψ

±±
=  (3.4) 

 24 
  



The critical buckling 1B  is found by first inserting Eq. (3.2) into the transport equation, 

separating the results into solutions for ( )gφ r  and ( ),gF E µ .  The solution for ( )gφ r  is 

( ) [ ]exp ig Bφ =r r ,  and ( ,gF E )µ is expanded in first order Legendre polynomials.  The 

resulting equations are solved starting with a zero  buckling, and solved iteratively with a 

slightly different buckling until a multiplication factor of 1 is achieved.  The final 

buckling is the sought critical spectrum buckling used in Eq. (3.4).  The final results for 

gD  is real because the current components gJ +  and gJ −  are purely imaginary.  This 

method accounts for linearly anisotropic scattering across all energy groups, and if 

F(E,Ω) is expanded to third order Legendre polynomials it will yield the B-3 method 

which accounts for third order scattering.  

 

3.1.2 Other Buckling Dependent Methods 

 There have been several other buckling dependent diffusion coefficients, and they 

start with the assumption that the flux can be separated as 

 { }( , , ) Re ( , , ) exp( )ψ E F E iΩ = Ωr r Br  (3.5) 
 
with the source 

 { }( , , ) Re ( , ) exp( )    .S E s E iΩ =r r Br  (3.6) 
 
The term accounts for the macroscopic variation in the flux shape, and 

 accounts for the periodic variation of the flux caused by the lattice cells, and 

has the period of a lattice cell.  This method is similar to the B

exp( )iBr

( , , )F E Ωr

n method, but modified for 

lattices. 
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3.1.2.1 Benoist 

 Several definitions of the diffusion coefficient can be attributed to Benoist.  His 

method is valid only for small buckling and conserves the relation between the average 

flux within the cell and the leakage from the cell.  It sometimes produces diffusion 

coefficients that are infinite in regions containing voids of certain size and shape. 

 

Benoist uncorrected (Benoist Modified) (Benoist 1959)  3.1.2.1.1 

In this definition, the diffusion coefficients in the x and y directions are given by 

  ( )    =BU

cell cell

D j dV r dVν ν φ ν= ∫ ∫ x, y  (3.7) 

with the x-direction being normal to the surface of the fuel plates and  

  (3.8) 
1 1

1 1

 ,        ,x
x x y yj I j I

− −

= − Ω = − Ω∫ ∫ y

with Ix and Iy being the solutions to 

 0
( , ) 1( ) ( , ) ( ) '  ( , ')   ,

2

x
x x

t s
I x µµ x I x µ x dµ I x µ µR

x
∂

+ Σ = Σ −
∂ ∫  (3.9) 

  (3.10)   ,y y
yI h= Ω

 0
( , ) ( ) ( , )   ,

y
y

t
h x µµ x h x µ R

x
∂

+ Σ = −
∂

 (3.11) 

 0
0 0

( , ) 1( ) ( , ) ( ) '  ( , ') ( ) , 
2 2t s

R x µ 1µ x R x µ x dµ R x µ g x
x

∂
+ Σ = Σ +

∂ ∫  (3.12) 

with 1  and s
2xµ g
π

≡ Ω ≡  ,  

which can be solved by the usual transport methods. 

 The uncorrected Benoist coefficient can also be written as  
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 21
2

BU
ν a νD = Σ L  (3.13) 

where aΣ  is the absorption cross section weighted with the asymptotic flux, and 2
νL  is the 

mean-square of the crow-flight distance from birth to absorption in the ν direction. 

 

3.1.2.1.2 Corrected Benoist (Modified Benoist) (Benoist 1964) 

It replaces the diffusion coefficient in the x-direction of Eq. (3.7) with  

 0 ( ) ( )  ( ) BC x
x x

cell cell cell

j
D j x dV x x dV x

x
φ

⎡ ⎤∂
= + −⎢ ∂⎣ ⎦

∫ ∫ ∫  dV⎥

3.1.2.1.3 

 (3.14) 

where x0 is the center of a cell about which the cell is symmetric.  This equation is called 

the corrected Benoist coefficient because it contains the absorption correction.  The 

absorption correction sometimes causes the x-direction diffusion coefficient to have 

multiple values, with the number of multiple values depending on the number of 

definitions of a cell. 

 

Classical/Collision Probabilities. (Benoist 1968) 

 Benoist used the collision probability method, which he also used to co develop 

the ABH method to calculate the thermal utilization, to derive a widely used diffusion 

coefficient, sometimes referred to as the classical or practical Benoist diffusion 

coefficient.  It is, for direction ν   

 

*
,

( ) ( )

( )

1
3

i i J ij
j cell i cellBP

j j
j cell

V P
D

V

ν

ν

φ λ

φ
=

∑ ∑
∑

 (3.15) 
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where Vi (or Vj ) is the volume of region i (or j), φi is the scalar flux in region  i (or j), λj is 

the transport mean free path in region j, and Pij,ν, the so-called transport probabilities, are 

current averaged on the volume of medium j produced by an anisotropic source in 

medium i. 

 

3.1.2.2 Deniz (1967) 

 Using a method that is asymptotic in space and time and preserves the asymptotic 

lattice period, Deniz used perturbation theory to derive directional diffusion coefficients.  

He started with an angularly dependent neutron balance equation with zero buckling, and 

introduced a non-zero buckling as an operator perturbation.  The Deniz diffusion 

coefficient can be stated in different forms, and one of them is, in direction ν   

 0

1
0 0

  

  
v νD

v

dτ f E
D

dτ f υ f

+

+ −

Ω
= ∫
∫

 (3.16) 

where f0 is the angular flux f0
+ is the angular adjoint flux,  is the neutron velocity, Ωυ ν is 

the νth component of neutron direction, and Eν is the solution of  

 0
0ν ν

α
H E

υ
⎛ ⎞− = Ω⎜ ⎟
⎝ ⎠

f  (3.17) 

where H is the Boltzmann operator, and α0 is the eigenvalue in the unperturbed system. 

 

3.1.2.3 Deniz-Gelbard 

In the Deniz-Gelbard (Gelbard 1974) method Gelbard adapted Deniz's approach and 

defined a homogenized diffusion coefficient that preserves the eigenvalue.  In one group 

for direction ν it is 
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2

ˆ( ) ( )
4

R R

f
G L L

R

f
L L

d R I dx
D

dx dx

ν ν

ν R

dxµ ν φ
π

ν φ φ

Ω Ω − Ω Σ
= −

Σ

∫ ∫ ∫

∫ ∫
 (3.18) 

where ( )R µ−  is defined by  

 
0

1  , 
4 4

f
t s

R R
x

ν
µ φ φ

π πλ
Σ∂

+ Σ = Σ +
∂

 (3.19) 

   ,φ Rd≡ Ω∫  (3.20) 

and the νI  defined  

 
0

 ,
4 4

fx s
t x x

νIµ I X X µR
x π πλ

Σ∂ Σ
+Σ = + −

∂
 (3.21) 

  ,     .y
t y y x x

I
µ I R X d I

x
∂

+ Σ = −Ω ≡ Ω
∂ ∫  (3.22) 

 

3.1.2.4 Kohler (1975) 

Kohler derived directional diffusion coefficients from leakage rates based on minimizing 

the mean square differences between the absorption rates in the heterogeneous cell and 

the least square fit to the absorption rates.  He defined the diffusion coefficient as 

 

(1,0)

(0,0)

ˆ ˆ( , )

( )

x
K cell
x

cell

dx d f x
D

dxX x

− Ω Ω Ω
=

∫ ∫

∫
 (3.23) 

where the functions f(m,n) and X(m,n) are defined by the expansions 

 ( , )

, 0

ˆ( , ) ( )  ( , )m n n m n m
x y

n m
f x i B B f x

∞
+

=

ˆΩ = ∑ Ω  (3.24) 

 ( , )

, 0
( ) ( ) ( )m n n m n m

x y
n m

X x i B B X
∞

+

=

= ∑ x  (3.25) 

and , and ˆ( , )f x Ω ( )X x  are the lattice-periodic components of  

 29 
  



  (3.26) ˆ ˆ( ) ( , ) exp( )  and  ( ) ( ) exp( )   ,F f x i X x iΩ = Ω Φ =r, Br r Br

)where  is the angular flux and  ˆ(F Ωr, ( )Φ r  is the scalar flux in the transport equation  

 1 1ˆ ˆ ˆ( , ) ( ) ( , ) ( ) ( ) ( )   .
4 4t sF x F x S
π π

Ω∇ Ω + Σ Ω = Σ Φ +r r r r  (3.27) 

 
3.1.2.5 General Transport Theory Diffusion Coefficient 

 A buckling dependent diffusion coefficient valid in homogeneous isotropic 

scattering mediums is based on transport theory in lattices where the medium was treated 

as an infinite lattice of point cells.  Its primary definition is 

 

 2

( )( )
( )

H B ED E
B Eφ
⋅

= −
B j  (3.28) 

where B is the buckling vector, B2 = B·B, and its explicit definition is 

 
2 4

61 4 44( ) 1 ( )    .
3 ( ) 15 ( ) 315 ( )

H

t t t

B BD E O B
E E E

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= − + +⎜ ⎟ ⎜ ⎟Σ Σ Σ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (3.29) 

 
3.1.3 Other Deterministic Methods 

 
3.1.3.1 Larsen 

 In a more recent deterministic definitions, Larsen (Larsen 1976) used an 

asymptotic theory where the mean free path is small compared to the reactor spatial 

domain.  He derived the solution to the dimensionless transport equation  

 '
4

ψ cψ ψ ψd
t π

∂ q+ Ω ⋅∇ + − Ω =
∂ ∫  (3.30) 

 1as    ( , ) ( , ) ( )A x t x Oψ φ µ ε= +  (3.31) 
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where A(x,t) is the solution to the diffusion equation  

 
2 2 2

1 22 2 2
1 2 3

a
A A A AD D A
t x x x

⎛ ⎞∂ ∂ ∂ ∂
= + + − Σ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

Q+  (3.32) 

and φ(x1,µ) is lattice-periodic and is determined by a cell calculation.  The diffusion 

coefficient in the x-direction is  

 

1
† 1

1 1
0 1

1
†

1 1 1
0 1

( , )( )( , )

( , ) ( , )

p

a
x p

1x T x m d d
D

x x d dx

µφ µ µφ µ

φ µ φ µ µ

−

−

−

=
∫ ∫

∫ ∫

x
 (3.33) 

and in the z-direction is 

 

1
2 †

1 1
0 1

1
†

1 1 1
0 1

(1 ) ( , )( )( , )

2 ( , ) ( , )

p

a
y p

1x H x m d dx
D

x x d dx

µ φ µ φ µ

φ µ φ µ µ

−

−

−
=
∫ ∫

∫ ∫
 (3.34) 

 

where †
1( , )xφ µ  is defined as 1( , )xφ µ− and T-1 is the pseudo-inverse of T, where the 

operator T is defined as  

 
0 1

1 1 1 1 1
1

( )
0 ( , ) ( , ) ( , ') ' ( , ) ,  0

4
(0, ) ( , )

c x
x x x d T x

x
p

µ φ φ φ φ
π

φ φ

∂
= Ω + Ω − Ω Ω ≡ Ω <

∂
Ω = Ω

∫ x p<

1

 (3.35) 

and the operator H is defined in the solution  

 1( , ) ( )( , )f x Hg xΩ ≡ Ω  (3.36) 

to the problem 

 1 1 1
1

( , ) ( , ) ( , )µ f x f x g x
x
∂

Ω + Ω =
∂

Ω  (3.37) 

 (0, ) ( , ) ;   (0, ) ( , )   .f f p g g pΩ = Ω Ω = Ω  (3.38) 
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 Larsen compared results of calculations using his asymptotic diffusion coefficient, 

Benoist corrected (Benoist 1964), and the Deniz-Gelbard (Gelbard 1974), and found their 

values differed depending on the level of lattice heterogeneity.  Although Larsen doesn't 

indicate his coefficients are more accurate than the others based on the numerical results, 

he does imply that his might be more suited to be used in the diffusion equation because 

of assumptions and hypotheses used by the Benoist and Deniz-Gelbard coefficients that 

aren't used in his. 

 

3.2 MONTE CARLO METHODS FOR THE DIFFUSION COEFFICIENT 
 

3.2.1 The RCP01 Code 

 The RCP01 (Candelore, Gast, and Ondis 1978, Gast 1981) code evaluates the 

equation 

 
 ( , ) ( , )

  .
  ( , )

TR
f V
TR

V

dr du r u r u

dr du r u

φ

φ

Σ
Σ =

∫ ∫

∫ ∫
 (3.39) 

It does not evaluate 

 
 ( , ) ( , )

  ( , )
V

V

dr du r u D r u
D

dr du r u

φ

φ
=
∫ ∫

∫ ∫
 (3.40) 

because Eq. (3.40) does not yield the same result as Eq. (3.39) and may not be correct if 

the flux is not separable in space-energy. 

 To evaluate Eq. (3.39) RCP01 computes, for few group f, 

 

( ) 20( ) ( ) 10j

j j

j

j

j

C
C T S C

Cf
TR

C
C

u u νφ µ

φ

−⎡ ⎤Σ − Σ +⎣ ⎦
Σ =

∑ ∑

∑
jC
φ

 (3.41) 
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where 
jCφ  is the space-integrated flux per source neutron from collision Cj.  The term 

sum   accounts for delta, or forward, scattering. 2010
j

j

C
C
φ −∑

 A better approximation of the diffusion coefficient can be made by weighing the 

transport cross section with the current instead of the flux,  

 
 ( , ) ( , )

  ,
  ( , )

TR
f V
TR

V

dr du J r u r u

dr du J r u

Σ
Σ =

∫ ∫

∫ ∫
 (3.42) 

but the calculation of the current is subject to inaccuracies that the flux is not, so RCP01 

computes Eq. (3.41) for few-group f, uses it to calculate the diffusion coefficient for few-

group f as 1/(3 )f
f trD = Σ , and then multiplies it by a few-group independent correction 

factor k, making the diffusion coefficient for few group f equal to 

   .
3 

f
TC f

TR

kD =
Σ

 (3.43) 

The correction factor k which is used only for the fast groups, preserves the neutron age 

to thermal, and is calculated in an infinite reactor. RCP01 doesn't calculate a scattering 

matrix.  The few group diffusion coefficients and cross sections calculated by RCP01 

agree reasonably well in most cases with deterministic calculations. 

 

3.2.2 Ilas and Rahnema 

 Ilas and Rahnema (Ilas and Rahnema 2003) used Monte Carlo methods for 

loosely coupled spent fuel storage racks using two different methods.  In the Monte Carlo 

normalized diffusion method, the node homogenized diffusion coefficient in the thermal 
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group was defined as simply Dth= 1/(3Σt,th), where Σt,th is the cell homogenized total cross 

section in the thermal group.  For the fast group the diffusion coefficient was defined as 

 

2
3

1

3

  
  ,

 

k
f f

k k
f

f
cell

D d r
D

d r

φ

φ
=

⎛ ⎞
⎜ ⎟
⎝=

∑ ∫

∫
⎠  (3.44) 

where k
fD  is the fast diffusion coefficient in region k, where k=1 for the homogenized 

fuel and water region and 2 for the water region. In the fuel and water region 1
fD  is 

defined as  and in the water region it is determined using the following iterative 

process.  Two-group total cross sections are calculated using MCNP (BRIESMEISTER 

1997) with continuous energy, and are used to calculate a fast diffusion coefficient as 

)3/(1 1
tΣ

2 1/(3 )f tD = Σ .  The fast group water region diffusion coefficient is input into a fine mesh 

calculation and varied until multiplication factor results from it agree with MCNP 

continuous energy, and this final diffusion coefficient is used as the fast group water 

region diffusion coefficient, 2
fD , in Eq. (3.44). 

 Ilas and Rahnema also used Monte Carlo methods to evaluate the diffusion 

coefficient based on its conventional definition.  In this method, the diffusion coefficient 

is determined from a continuous energy Monte Carlo simulation of the lattice cell using 

MCNP.  This approach is similar to that used by Gast (1981) in the code RCP01, but no 

correction of the fast diffusion coefficient is made.  The nodal diffusion coefficient for 

group g is defined as ( ),tr g1 3Σ , where the node-averaged transport cross section in 

group g, ,tr gΣ , is given by: 
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( ) ( )

( ),

, ,

,

tr
g r

tr g

g r

dE dr r E r E

dE dr r E

Σ Φ

Σ =
Φ

∫ ∫

∫ ∫
 (3.45) 

where  represents the spatial variable, E the neutron energy,  r ( ),r EΦ  the scalar flux, 

and  is given by: ( ,tr r EΣ )

 ( ) ( ) ( ) ( ), , ,    tr t sr E r E E r EµΣ = Σ − Σ .  (3.46) 

In Eq. (3.46)  µ(E) is the average cosine of the scattering angle in the laboratory system,  

 and  are the total and the scattering cross sections, respectively.  The 

value of µ(E) for a collision is calculated as a scalar product of the incident and emergent 

unit direction vectors. 

( ,t r EΣ ) )( ,s r EΣ

 The numerator in Eq. (3.45) is estimated by tallying the following in MCNP: 

 ( ) ( ) ( ) ( ) ( ){ } ( ), , , , ' ' ' ,  t t c fr E r E r E r E uu vv ww r E⎡ ⎤Σ − Σ − Σ − Σ + + Φ⎣ ⎦ ,

)

 (3.47) 

where  is the capture cross section, ( ,c r EΣ ( ),f r EΣ the fission cross section, ( ), ,u v w   

the incident direction cosines, and ( )', ', 'u v w  the emergent direction cosines. A patch file 

is added to MCNP to define the fission cross section and to define user bins through the 

TALLYX subroutine to tally the quantity in Eq. (3.47). The denominator in Eq. (3.45) is 

obtained from a standard MCNP F4 (flux) tally.  This method and the Monte Carlo 

normalized diffusion method described previously yield results of varying accuracy, 

depending on the level of heterogeneity. 
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3.2.3 Pounders 

 Pounders examined some methods for stochastically estimating diffusion 

coefficients.  He tallied first order Legendre moments and applied them to what he refers 

to as the classical,  

  (3.48) ( ) ( ) ( ),
' 1

  ,
G

C
tr g g s

g

r r rσ σ σ ′

=

= −∑ ,1
gg

and exact 

 ( ) ( )
( )

( )

,1
'1

,

G
g g
s g

gP
tr g g

g

J r
r r

J r

σ
σ σ

′
′

= −
∑

 (3.49) 

definitions of the diffusion coefficient.  He also stochastically calculated a higher order 

diffusion coefficient,  

 
( )

  ,g TS
g

g g T

J V
D

Aφ φ+ −
= −

−
 (3.50) 

and a cross section partially based on FDT,  

 ( ) ( ) ( ) ( )
( )

,1
,

1

g gG
s gFL

tr g g
g g

r r
r r

r
σ φ

σ σ
φ

′
′

′=

= −∑  (3.51) 

which is also evaluated in more detail and with more applications in this work. 

 

3.2.4 Milgram 

 Milgram (Milgram 1997) modified the MCNP code to calculate few group 

diffusion coefficients in the axial direction for a CANDU reactor using the definition 

g gJ D gφ= − ∇ .  He calculated the current using an ordinary current tally, and used one of 

three methods to determine the gradient of the flux in the axial direction of the channel.  
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The first one used current tallies along the length of the channel to calculate a value of 

zB  from the relationship 0 cos[ ]zB zφ φ= .  The gradient was then calculated from  

0 sin[ ]z zB B zφ φ∇ = − .  The second method fitted cubic splines to the flux shape to get its 

slope, while the third used a least squares polynomial fit. 

 

3.2.5 Other Monte Carlo Estimates of the Diffusion Coefficient 

 Gelbard and Lell (Gelbard and Lell 1977) used Monte Carlo techniques to 

calculate one-speed diffusion coefficients in an infinite and uniform but complicated 

lattice.  It is defined as one-half the product of the cell averaged absorption cross section, 

weighted with the zero-buckling scalar flux, and the mean square distances from birth to 

fission.  Gelbard and others (Gelbard et al. 1977) used Monte Carlo to calculate the 

modified Benoist coefficients for voided regions in a gas-cooled reactor. 
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4 RESULTS AND ANALYSIS 

 

 Because a very large number of graphs was used to analyze the results, the only 

graphs shown in this section are examples and ones that are directly referred to in the 

text. 

 All of the graphs plot a particular output as a function of fine-mesh location.  

There are energy-integrated plots, a 4-group case being labeled as "4 groups", and 

individual energy group plots, labeled as "group 1 of 4", for example.  The individual 

energy group results have the advantage of being insusceptible to error cancellation 

across energy, and also allow analysis in individual groups, while the energy integrated 

results have neither of these features. 

 For the single-assembly cases, with vacuum and reflective boundary conditions, 

47- and 4-group energy-integrated results, and 4- and 2-individual-group results are 

included.  For the whole-core cases 2-individual-group results are shown. 

 The first type of graph plots the spatial shape of the normalized fluxes obtained 

from the transport benchmark calculation and the fine-mesh mesh diffusion calculation 

using each of the three diffusion coefficients tested throughout the entire problem space, 

which would be an entire half-assembly or an entire half-core.  Figure 4.1 shows an 

example for the case of assembly type 1 with vacuum boundary conditions, group 1 of 

the 4-group calculation.  The normalized flux for mesh point n is defined as 

n n
N

N nφ φ= ⋅ ∑φ , where N is the number of mesh points.  This type of plot provides a 

graphic presentation of the fluxes throughout the entire problem in one view.  The 
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Figure 4.1: Normalized flux, Heterogeneous half-assembly 1, Vacuum BCs, group 1 of 4, Transport and Diffusion Thy. w/Std, FX, 

FD. 
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normalized flux-error spatial profiles are also plotted, with the error at mesh-point n 

defined as 

 ( )diffusion transport transport100    ,n n n ne φ φ φ= −  (4.1) 

and with the assembly 1 group 1 example in Figure 4.2.  The final type of graph is the 

current/flux ( )φJ  ratio.  The current here is the neutron current calculated with Fick's 

Law,  

 D    d
dx

,φ
= −J  (4.2) 

where the diffusion coefficient is either one of the three diffusion coefficients tested.  

This current is then divided by the scalar flux output from the transport calculation.  The 

derivative of the flux used in Eq. (4.2) is also based on the transport calculation.  Because 

the magnitude of the current calculated with the Fick's Law approximation can exceed the 

scalar flux under certain conditions, yielding a non-physical result, a current/flux ratio 

greater than 1 is also non-physical, and the behavior of each current/flux ratio had to be 

analyzed throughout the problem.  These analyses were performed only for output from 

individual energy groups, and the results for assembly 1 group 1 are shown in Figure 4.3. 

 As an aid to analyze the errors in the fluxes per mesh interval, three collective 

error measures were used, the AVG (average), RMS (root mean square), and MRE (mean 

relative error) error measures.  With en being the per cent error in the normalized flux at 

mesh point n, as defined in Eq. (4.1), 
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Figure 4.2: Normalized flux percent error, Heterogeneous half-assembly 1, Vacuum BCs, group 1 of 4, Diffusion Thy. w/Std, FX, FD. 
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Figure 4.3: Current to flux ratio, Heterogeneous half-assembly 1, Vacuum BCs, group 1 of 4, Diffusion Thy. w/Std, FX, FD.
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 The MRE error is sometimes referred to as the flux-weighted error, and its value 

approaches that of AVG when the normalized fluxes are spatially flat, because in that 

case each φn would be close to 1. 

   Because the results and conclusions based on comparisons using the RMS and 

MRE measures are consistent with those based on the AVG, only the AVG measures are 

shown in the tables of results to save space.  However, the results that have plots of flux-

error profiles also have all three error measures embedded in the graph plot area, as in 

Figure 4.2. 

 

4.1 SINGLE-ASSEMBLIES 

 

4.1.1 47, 4, and 2 Groups with Vacuum Boundary Conditions 

 Because individual energy-group results for 47 groups would make the results 

even more voluminous than it already is, these results are not shown.  However, as will 

be seen below, because the errors in the individual 4-group results are consistent with 
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their energy-integrated counterpart, error cancellation is largely absent in 4 groups, and is 

likely absent in 47 groups as well, and 47 integrated group results provide an accurate 

indication of the methods' errors.  One can also confirm the absence of error cancellation 

in 4 groups by noting that for a constant mesh location, the flux-errors usually do not 

change signs across energy groups.  In the 2-group results, however, there was significant 

error cancellation in the energy-integrated results, and therefore only individual group 

results will be shown for 2-group calculations.  The eigenvalue errors, however, are the 

same in energy-integrated groups as in individual energy groups because they're always 

calculated as energy-integrated neutron production to loss ratios. 

 The plots in Figure 4.4 and Figure 4.5 show the normalized flux spatial profiles 

for 47 and 4 energy-integrated groups, respectively, while Figure 4.6 and Figure 4.7 show 

the energy-integrated flux-errors in these energy structures, for the case of assembly type 

1.  For both of these energy structures the error profiles show that all of the diffusion 

theories perform much worse approaching the boundary of the assembly, where the 

vacuum boundary condition causes diffusion theory to break down because of transport 

effects.  This effect is typical in all of the energy structures and assemblies using vacuum 

boundary conditions. 

 The results in the previous four figures, and for the remaining assembly types, are 

summarized in Table 4.1 through Table 4.4, which contain eigenvalues from the transport 

and diffusion calculation in one type of table and the AVG and eigenvalue errors for all 

assemblies in 47 and 4 integrated groups.  In the tables such as Table 4.2, the column 

underneath "Egy Grp" indicates for which energy group the AVG error is shown in the 

table, which in this case is "All", indicating integration over all groups.  The row to the 
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right of "errork" contains eigenvalue per cent errors, defined as 

( )100k Diff Transp Transperror k k k= × − .  The shaded values denote the lowest errors.  These 

graphs and the tables indicate that the FD reduces flux errors by about half, and 

eigenvalue errors even more significantly, by between 70% and two orders of magnitude.
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Figure 4.4: Normalized flux, Heterogeneous half-assembly 1, Vacuum BCs, 47 groups, Transport and Diffusion Thy. w/Std, FX, FD.
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Figure 4.5: Normalized flux, Heterogeneous half-assembly 1, Vacuum BCs, 4 groups, Transport and Diffusion Thy. w/Std, FX, FD.
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Figure 4.6: Normalized flux percent error, Heterogeneous half-assembly 1, Vacuum BCs, 47 groups, Diffusion Thy. w/Std, FX, FD.
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Figure 4.7: Normalized flux percent error, Heterogeneous half-assembly 1, Vacuum BCs, 4 groups, Diffusion Thy. w/Std, FX, FD.
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Table 4.1: Eigenvalues, Forty-seven groups, Heterogeneous half-assemblies, Vacuum 
BCs, Diffusion Thy. w/Std, FX, FD. 

Assy 1 Assy 2 
Transport Std FX FD Transport Std FX FD 
0.394703 0.359498 0.363693 0.394477 0.432455 0.393417 0.398723 0.429497

Assy 3 Assy 4 
Transport Std FX FD Transport Std FX FD 
0.194984 0.179625 0.182263 0.197830 0.163047 0.150736 0.154258 0.164708

 

 

Table 4.2: Errors, Forty-seven Energy Integrated groups, Heterogeneous half-assemblies, 
Vacuum BCs, Diffusion Thy. w/Std, FX, FD. 

Assy 1 Assy 2 
Egy Grp Std FX FD Std FX FD 

All 5.84 4.73 2.12 6.49 5.20 2.78 
errork  -8.92 -7.86 -0.06 -9.03 -7.80 -0.68 

Assy 3 Assy 4 
Egy Grp Std FX FD Std FX FD 

All 4.71 3.62 2.20 6.31 4.96 1.89 
errork  -7.88 -6.52 1.46 -7.55 -5.39 1.02 

 

 

Table 4.3: Eigenvalues, Four groups, Heterogeneous half-assemblies, Vacuum BCs, 
Diffusion Thy. w/Std, FX, FD. 

Assy 1 Assy 2 
Transport Std FX FD Transport Std FX FD 
0.406697 0.379676 0.381692 0.407890 0.445855 0.416123 0.418813 0.444870

Assy 3 Assy 4 
Transport Std FX FD Transport Std FX FD 
0.196958 0.183907 0.185068 0.199071 0.166116 0.157561 0.159401 0.168409
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Table 4.4: Errors, Four Energy Integrated groups, Heterogeneous half-assemblies, 
Vacuum BCs, Diffusion Thy. w/Std, FX, FD. 

Assy 1 Assy 2 
Egy Grp Std FX FD Std FX FD 

All 5.00 4.43 2.35 5.43 4.74 2.84 
errork  -6.64 -6.15 0.29 -6.67 -6.07 -0.22 

Assy 3 Assy 4 
Egy Grp Std FX FD Std FX FD 

All 4.21 3.17 2.46 5.46 4.75 2.26 
errork  -6.63 -6.04 1.07 -5.15 -4.04 1.38 

 

 

 A more in-depth analysis is possible for the 4- and 2-group calculations because 

the results are broken down into individual groups and current/flux ratios were also 

calculated to help analyze the results.  Starting with the 4 individual-group calculations, 

the AVG error measures in Table 4.5 indicate that the flux-errors using FD were 

significantly reduced in all groups and assemblies except in group 3, which showed 

increased errors compared to the Std method in all but assembly type 3, and in group 4 of 

assembly type 2, which showed about the same level of errors as the other two methods. 

 In spatial profiles of the 4-group current/flux ratios the FD method produces the 

smallest current/flux ratio approaching the boundaries of the assemblies, with the other  

two methods approaching 1 and with the FX even exceeding 1, as in Figure 4.8, Figure 

4.9, Figure 4.10, and Figure 4.11, for group 3 in every assembly at the first mesh point in  

the water region, indicating that it is not flux-limited.  It is in these boundary mesh points  

that the flux gradient, hence the current, and hence the current/flux ratio, is the largest,  

and where the FD is expected to yield the greatest improvement over the other diffusion 
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Table 4.5:  Errors, Four Individual groups, Heterogeneous half-assemblies, Vacuum BCs, 
Diffusion Thy. w/Std, FX, FD. 

Assy 1 Assy 2 
Egy Grp Std FX FD Std FX FD 

1 6.90 5.82 2.95 7.34 6.15 3.45 
2 2.95 3.05 1.75 3.49 3.52 2.30 
3 1.43 2.26 2.00 1.64 2.52 2.26 
4 1.34 1.23 1.17 1.34 1.30 1.33 

errork  -6.64 -6.15 0.29 -6.67 -6.07 -0.22 
Assy 3 Assy 4 

Egy Grp Std FX FD Std FX FD 
1 5.73 4.72 2.98 6.98 5.89 2.86 
2 1.92 2.20 1.16 2.86 3.00 1.67 
3 1.71 2.19 0.98 1.42 2.02 1.64 
4 3.50 4.31 3.06 6.68 6.82 4.93 

errork  -6.63 -6.04 1.07 -5.15 -4.04 1.38 
 

 

coefficients, which it does.  But the FD also reduces flux-errors in some groups and 

assemblies in mesh points far from the assembly boundary, in the water and fuel region,  

and towards the assembly center.  This occurs even though the current/flux ratios in the 

corresponding regions are low.  For examples of this we refer to group 1 of assembly 

type 1 and group 2 of assembly type 2.  The normalized fluxes, flux-errors and 

current/flux ratios, respectively, are shown in Figure 4.1 on page 39, Figure 4.2 on page 

41, and Figure 4.3 on page 42 for group 1 assembly 1, and in Figure 4.12,  Figure 4.13, 

and Figure 4.14 below for group 2 assembly 2.  In some of these small-gradient regions, 

not only is the current/flux ratio small, but the difference between the FD and Std ratios is 

also very small.  Error-reductions in these regions using the FD do not occur in all 

assemblies and groups, but occur in all four assembly types for groups 1 and 2 as in the  

previous examples, and because the current/flux ratios in these regions are about the same 

for all of the diffusion coefficients, there might be something other than the flux-limiting 
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Figure 4.8: Current to flux ratio, Heterogeneous half-assembly 1, Vacuum BCs, group 3 of 4, Diffusion Thy. w/Std, FX, FD.
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Figure 4.9: Current to flux ratio, Heterogeneous half-assembly 2, Vacuum BCs, group 3 of 4, Diffusion Thy. w/Std, FX, FD.
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Figure 4.10: Current to flux ratio, Heterogeneous half-assembly 3, Vacuum BCs, group 3 of 4, Diffusion Thy. w/Std, FX, FD.
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Figure 4.11: Current to flux ratio, Heterogeneous half-assembly 4, Vacuum BCs, group 3 of 4, Diffusion Thy. w/Std, FX, FD.
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characteristic of the FD that reduces errors. 

 One might also notice that the current/flux ratios for the group 1 calculations in 

every assembly type oscillate at the first few mesh points, as in Figure 4.3 and Figure 

4.15 through Figure 4.17, located between zero and approximately 1 cm.  These 

oscillations are caused by convergence issues during the transport calculations and only 

affect the current/flux ratios in group 1 out of all of the energy structures, near vacuum 

boundary conditions.  Apparently they affect the current/flux ratios but do not 

significantly affect the flux calculated using the FD as will be shown in section 4.3, 

which discusses the accuracy of the calculation of the derivative. 

 From the 2-group calculations, the eigenvalue results in Table 4.6 and errors 

results in Table 4.7 below show that FD reduces errors significantly in group 1, either 

slightly reduces or worsens errors in group 2, and significantly reduces eigenvalue errors.  

Overall, the single most accurate method is the FD. 

 In the 2-group calculations the group 1 current/flux ratios do not oscillate at the 

boundary of the assembly, for example in Figure 4.18, as the group 1 calculations do in 

the 4-group calculations, resulting from better convergence of the transport calculation. 

 Also, although the FX method yields the largest current/flux ratio near the 

boundaries of the problems, it never exceeds 1 as it did for all assembly types in group 3 

of the 4-group calculations. 

 An interesting observation is that for all group 1 calculations of the current/flux 

ratio, in the 2- and 4-group energy structures, at the first few data points in the water, 

there is an almost horizontally asymptotic approach to a value less than 1 approaching the 

assembly boundary, while the Std and FX methods approach 1 at a faster rate, as 
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Figure 4.12: Normalized flux, Heterogeneous half-assembly 2, Vacuum BCs, group 2 of 4, Transport and Diffusion Thy. w/Std, FX, 

FD.
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Figure 4.13: Normalized flux percent error, Heterogeneous half-assembly 2, Vacuum BCs, group 2 of 4, Diffusion Thy. w/Std, FX, 

FD.
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Figure 4.14: Current to flux ratio, Heterogeneous half-assembly 2, Vacuum BCs, group 2 of 4, Diffusion Thy. w/Std, FX, FD.
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Figure 4.15: Current to flux ratio, Heterogeneous half-assembly 2, Vacuum BCs, group 1 of 4, Diffusion Thy. w/Std, FX, FD.
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Figure 4.16: Current to flux ratio, Heterogeneous half-assembly 3, Vacuum BCs, group 1 of 4, Diffusion Thy. w/Std, FX, FD.
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Figure 4.17: Current to flux ratio, Heterogeneous half-assembly 4, Vacuum BCs, group 1 of 4, Diffusion Thy. w/Std, FX, FD.
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Table 4.6: Eigenvalues, Two groups, Heterogeneous half-assemblies, Vacuum BCs, 
Diffusion Thy. w/Std, FX, FD. 

Assy 1 Assy 2 
Transport Std FX FD Transport Std FX FD 
0.414214 0.392580 0.393433 0.415074 0.455391 0.431747 0.432876 0.454412

Assy 3 Assy 4 
Transport Std FX FD Transport Std FX FD 
0.199868 0.189060 0.189108 0.201069 0.169543 0.162758 0.163318 0.171596

 

 

Table 4.7:  Errors, Two Individual groups, Heterogeneous half-assemblies, Vacuum BCs, 
Diffusion Thy. w/Std, FX, FD. 

Assy 1 Assy 2 
Egy Grp Std FX FD Std FX FD 

1 4.94 4.75 2.69 5.19 4.98 3.08 
2 1.03 1.09 0.96 1.10 1.14 1.15 

errork  -5.22 -5.02 0.21 -5.19 -4.94 -0.22 
Assy 3 Assy 4 

Egy Grp Std FX FD Std FX FD 
1 4.13 3.95 2.53 4.94 4.79 2.60 
2 3.19 4.17 3.66 3.86 4.74 4.18 

errork  -5.41 -5.38 0.60 -4.00 -3.67 1.21 
 

 

in Figure 4.18 through Figure 4.21.  This is less apparent in the 4-group calculations in 

Figure 4.3, Figure 4.15, Figure 4.16, and Figure 4.17 because of instability of the 

current/flux ratio in this region, but is more noticeable in the 2-group results. 

 Another observation related to the reduction of the mesh-wise errors in 2, 4, and 

47 groups is that in most of the regions that are far from the large-gradient boundaries 

and where error reduction takes place, the error reductions are about the same as in the 

large-gradient boundary regions.  Examples of this can be seen in the 47- and 4-group 

energy-integrated results for assembly type 1 in Figure 4.6 and Figure 4.7, and for the 2-

group calculations in Figure 4.22 for group 1 of assembly type 4.
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Figure 4.18: Current to flux ratio, Heterogeneous half-assembly 1, Vacuum BCs, group 1 of 2, Diffusion Thy. w/Std, FX, FD.
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Figure 4.19: Current to flux ratio, Heterogeneous half-assembly 2, Vacuum BCs, group 1 of 2, Diffusion Thy. w/Std, FX, FD.
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Figure 4.20: Current to flux ratio, Heterogeneous half-assembly 3, Vacuum BCs, group 1 of 2, Diffusion Thy. w/Std, FX, FD.
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Figure 4.21: Current to flux ratio, Heterogeneous half-assembly 4, Vacuum BCs, group 1 of 2, Diffusion Thy. w/Std, FX, FD.
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Figure 4.22: Normalized flux percent error, Heterogeneous half-assembly 4, Vacuum BCs, group 1 of 2, Diffusion Thy. w/Std, FX, 

FD.
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4.1.2 47, 4, and 2 Groups with Reflective Boundary Conditions  

 The results obtained with the FD method in single-assemblies with reflective 

boundary conditions generally worsen the pointwise flux-errors and eigenvalue errors, 

although in groups 1 and 2 they reduce flux-errors in three out of four assembly types.  

 We begin the analysis with the 47-group energy-integrated results, whose 

eigenvalues are shown in Table 4.8 and error summary in Table 4.9.  The results in Table 

4.9 show that the FD method reduces the flux-errors in three out of the four assembly 

types, while worsening the eigenvalue errors compared to the Std method.  

 

 

Table 4.8: Eigenvalues, Forty-seven groups, Heterogeneous half-assemblies, Reflective 
BCs, Diffusion Thy. w/Std, FX, FD. 

Assy 1 Assy 2 
Transport Std FX FD Transport Std FX FD 
1.181493 1.181073 1.180740 1.180664 1.235674 1.235433 1.235268 1.235228

Assy 3 Assy 4 
Transport Std FX FD Transport Std FX FD 
0.614124 0.622972 0.618595 0.608026 0.322396 0.327948 0.328396 0.328023

 

 

Table 4.9:  Errors, Forty-seven Energy Integrated groups, Heterogeneous half-assemblies, 
Reflective BCs, Diffusion Thy. w/Std, FX, FD. 

Assy 1 Assy 2 
Egy Grp Std FX FD Std FX FD 

All 1.14 0.90 0.81 1.50 1.16 1.08 
errork  -0.04 -0.06 -0.07 -0.02 -0.03 -0.04 

Assy 3 Assy 4 
Egy Grp Std FX FD Std FX FD 

All 1.62 1.64 1.82 2.35 1.87 1.25 
errork  -1.44 -0.73 -0.99 1.72 1.86 1.75 
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 The 4-group energy-integrated results, whose eigenvalues and flux-errors are 

shown in Table 4.10 and Table 4.11 , also indicate that in most of the assemblies the FD 

reduces flux-errors and worsens eigenvalue errors compared to the Std method.  This 

might cause one to conclude that in 4 groups the FD method reduces flux-errors most of 

the time. 

 

 

Table 4.10: Eigenvalues, Four groups, Heterogeneous half-assemblies, Reflective BCs, 
Diffusion Thy. w/Std, FX, FD. 

Assy 1 Assy 2 
Transport Std FX FD Transport Std FX FD 
1.182742 1.183262 1.183235 1.183226 1.236897 1.237432 1.237559 1.237615

Assy 3 Assy 4 
Transport Std FX FD Transport Std FX FD 
0.608375 0.604507 0.600772 0.596936 0.322793 0.327468 0.327850 0.328404

 

 

Table 4.11: Errors, Four Energy Integrated groups, Heterogeneous half-assemblies, 
Reflective BCs, Diffusion Thy. w/Std, FX, FD. 

Assy 1 Assy 2 
Egy Grp Std FX FD Std FX FD 

All 1.06 0.83 0.76 1.34 1.03 0.97 
errork  0.04 0.04 0.04 0.04 0.05 0.06 

Assy 3 Assy 4 
Egy Grp Std FX FD Std FX FD 

All 1.62 1.64 1.83 1.51 1.11 0.89 
errork  -0.64 -1.25 -1.88 1.45 1.57 1.74 

 

 

But the individual 4-group results in Table 4.12 below show that the FD results for group 

1 and 2 reduce errors in 3 of the 4 assembly types (6 results), while they worsen errors in 

the remaining groups and assembly types (10 results), thus worsening the flux errors most 
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of the time.  This contradiction between energy-integrated and individual energy group 

results is caused by error cancellation, which can be seen by comparing the two types of 

results in 4 groups, as in the assembly type 2 case shown in Figure 4.23 through Figure 

4.27.  These figures show that for a particular mesh point the errors alternate between 

positive and negative values when going from group 1 to group 4 in Figure 4.23 through 

Figure 4.26, and when they're "averaged" during the calculation of the energy-integrated 

error, shown in Figure 4.27, the value is between the four values.  It has also been 

confirmed that error cancellation took place in the 2-group calculations.  Because of this, 

the strong possibility exists that error cancellation also took place in the 47-group energy-

integrated flux-errors, which makes those results questionable.  For the purpose of 

calculating the eigenvalue errors, however, the 47-group energy-integrated results shown 

Table 4.9 above are perfectly useful.  From hereon only individual group errors will be 

shown for the single assemblies with reflective boundary condition.   

 

Table 4.12: Errors, Four Individual groups, Heterogeneous half-assemblies, Reflective 
BCs, Diffusion Thy. w/Std, FX, FD. 

Assy 1 Assy 2 
Egy Grp Std FX FD Std FX FD 

1 3.08 2.85 2.78 3.33 3.02 2.98 
2 0.99 0.88 0.83 1.33 1.07 1.03 
3 0.84 0.95 0.95 0.85 0.92 0.92 
4 1.47 1.74 1.78 1.47 1.84 1.87 

errork  0.04 0.04 0.04 0.04 0.05 0.06 
Assy 3 Assy 4 

Egy Grp Std FX FD Std FX FD 
1 2.86 2.75 2.80 3.30 3.02 2.97 
2 0.72 0.72 0.76 1.17 1.03 0.98 
3 1.62 1.97 1.98 1.48 1.79 1.85 
4 2.36 3.27 4.55 8.00 10.25 13.34 

errork  -0.64 -1.25 -1.88 1.45 1.57 1.74 
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 According to the 2-group eigenvalues and errors in Table 4.13 and Table 4.14 on 

page 79, the 2-group calculations yield the same general results as the 4-group 

calculations.  The FD method slightly improves the flux-errors in group 1 and slightly 

worsens them in group 2, and slightly worsens the eigenvalues.  In 2 groups, as in 4 

groups, and unlike the vacuum boundary condition results, there is no clearly superior 

diffusion coefficient with reflective boundary conditions, for all groups. 

 There are a couple of other useful observations from results thus far.  The 

current/flux ratio graphs show that the ratios near the assembly boundary with the 

reflective boundaries are much lower than in the vacuum case, but there are other regions 

where the current/flux ratios reach a strong local peak with both type of boundary 

conditions.  These are regions where gadolinium borders another material, and occur in 

assembly types 3 and 4, group 4 in the 4-group calculations and group 2 in the 2-group 

calculations, which are the thermal groups.  For example, Figure 4.28 and Figure 4.29 

show the current/flux ratios and flux-errors, respectively, for assembly type 4 with 

vacuum boundary conditions, and for comparison, Figure 4.30 and Figure 4.31 show the 

same type of output with reflective conditions.  In both the vacuum and reflective cases, 

the current/flux ratios are high in these gadolinium interface regions, located at about 1.1 

cm, and the FD does not reduce flux errors here in either case.  But there is a difference 

between the vacuum and reflective results, which is that with vacuum boundaries the FD 

method reduces errors in most of the other regions, while with reflective boundaries the 

FD worsens errors throughout the entire assembly. 

 In the analysis of single assemblies with vacuum boundary conditions in section 

4.1.1, there was discussion of error reductions in regions not having large gradients and
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Figure 4.23: Normalized flux percent error, Heterogeneous half-assembly 2, Reflective BCs, group 1 of 4, Diffusion Thy. w/Std, FX, 

FD.
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Figure 4.24: Normalized flux percent error, Heterogeneous half-assembly 2, Reflective BCs, group 2 of 4, Diffusion Thy. w/Std, FX, 

FD.
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Figure 4.25: Normalized flux percent error, Heterogeneous half-assembly 2, Reflective BCs, group 3 of 4, Diffusion Thy. w/Std, FX, 

FD.
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Figure 4.26: Normalized flux percent error, Heterogeneous half-assembly 2, Reflective BCs, group 4 of 4, Diffusion Thy. w/Std, FX, 

FD.
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Figure 4.27: Normalized flux percent error, Heterogeneous half-assembly 2, Reflective BCs, 4 groups, Diffusion Thy. w/Std, FX, FD.
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Table 4.13: Eigenvalues, Two groups, Heterogeneous half-assemblies, Reflective BCs, 
Diffusion Thy. w/Std, FX, FD. 

Assy 1 Assy 2 
Transport Std FX FD Transport Std FX FD 
1.182357 1.184616 1.184689 1.184688 1.236606 1.238704 1.238901 1.238966

Assy 3 Assy 4 
Transport Std FX FD Transport Std FX FD 
0.608448 0.605303 0.602343 0.598567 0.323357 0.327861 0.328012 0.328567

 
 
 

Table 4.14: Errors, Two Individual groups, Heterogeneous half-assemblies, Reflective 
BCs, Diffusion Thy. w/Std, FX, FD. 

Assy 1 Assy 2 
Egy Grp Std FX FD Std FX FD 

1 1.58 1.53 1.51 1.71 1.65 1.63 
2 0.86 1.05 1.09 0.83 1.04 1.06 

errork  0.19 0.20 0.20 0.17 0.19 0.19 
Assy 3 Assy 4 

Egy Grp Std FX FD Std FX FD 
1 1.75 1.74 1.78 1.56 1.52 1.51 
2 1.98 2.67 4.07 5.31 7.08 10.06 

errork  -0.52 -1.00 -1.62 1.39 1.44 1.61 
 

 

current/flux ratios.  These error reductions also occur in these same mesh points and 

energy groups using reflective boundary conditions, but to a smaller extent.  The 

corresponding results for the reflective cases for assembly 1 group 1 have flux in Figure 

4.32 (Figure 4.1 is with vacuum), flux-errors in Figure 4.33 (Figure 4.2 vacuum), and 

current/flux ratios in Figure 4.34 (Figure 4.3 vacuum).  Figure 4.33 shows that the FD 

reduces errors at points greater than 2 cm, completely inside the fuel region, where 

according to Figure 4.34, the current/flux ratios are lower than with the vacuum case in 

Figure 4.3, and where Figure 4.32 shows that the gradients are relatively low, ranging 

from about 0.89 to 1.06, while in the vacuum case in Figure 4.1 the flux ranges from 
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Figure 4.28: Current to flux ratio, Heterogeneous half-assembly 4, Vacuum BCs, group 4 of 4, Diffusion Thy. w/Std, FX, FD.
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Figure 4.29: Normalized flux percent error, Heterogeneous half-assembly 4, Vacuum BCs, group 4 of 4, Diffusion Thy. w/Std, FX, 

FD.
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Figure 4.30: Current to flux ratio, Heterogeneous half-assembly 4, Reflective BCs, group 4 of 4, Diffusion Thy. w/Std, FX, FD.
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Figure 4.31: Normalized flux percent error, Heterogeneous half-assembly 4, Reflective BCs, group 4 of 4, Diffusion Thy. w/Std, FX, 

FD.

 83 
  



about 0.4 to 1.5.  The assembly 2 group 2 fluxes are in Figure 4.35, flux-errors in Figure 

4.36, and the current/flux ratios in Figure 4.37, and can be compared against Figure 4.12, 

Figure 4.13, and Figure 4.14.  All of these plots further indicate that even in the absence 

of large gradients the FD method sometimes reduces flux-errors, resulting from a 

characteristic other than flux-limiting. 

 As a verification of the validity of the results, we see that for both the 2- and 4-

group energy structures, the flux-error profiles with their accompanying collective error 

measures, and eigenvalue errors, show that the errors based on each of the three diffusion 

coefficients are smaller using the reflective boundary conditions than they are with 

vacuum boundary conditions because of diminished transport effects.  The errors near the 

assembly boundary also don't peak as high as in the vacuum boundary conditions.
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Figure 4.32: Normalized flux, Heterogeneous half-assembly 1, Reflective BCs, group 1 of 4, Transport and Diffusion Thy. w/Std, FX, 
FD.
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Figure 4.33: Normalized flux percent error, Heterogeneous half-assembly 1, Reflective BCs, group 1 of 4, Diffusion Thy. w/Std, FX, 

FD.
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Figure 4.34: Current to flux ratio, Heterogeneous half-assembly 1, Reflective BCs, group 1 of 4, Diffusion Thy. w/Std, FX, FD.
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Figure 4.35: Normalized flux, Heterogeneous half-assembly 2, Reflective BCs, group 2 of 4, Transport and Diffusion Thy. w/Std, FX, 

FD.
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Figure 4.36: Normalized flux percent error, Heterogeneous half-assembly 2, Reflective BCs, group 2 of 4, Diffusion Thy. w/Std, FX, 

FD. 
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Figure 4.37: Current to flux ratio, Heterogeneous half-assembly 2, Reflective BCs, group 2 of 4, Diffusion Thy. w/Std, FX, FD. 
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4.2 WHOLE CORES  

 

 For the whole-core fine-mesh diffusion calculations (no discontinuity factors), the 

eigenvalue and error summaries in Table 4.15 and Table 4.16 show that, compared to the 

Std, the FD reduces the errors in group 1 but worsens them in group 2, and the 

eigenvalues rank worse for cores 1 and 2 and best for core 3. 

 

 

Table 4.15: Eigenvalues, Two groups, Heterogeneous cores, Diffusion Theory w/Std, FX, 
FD. 

Core 1 
Transport Std FX FD 
1.166131 1.168036 1.168600 1.169037 

Core 2 
Transport Std FX FD 
0.929130 0.925152 0.925173 0.923461 

Core 3 
Transport Std FX FD 
0.760879 0.751909 0.752677 0.754904 

 

 

Table 4.16: Errors, Two Individual groups, Heterogeneous cores, Diffusion Theory 
w/Std, FX, FD. 

Core 1 Core 2 Core 3 
Egy Grp Std FX FD Std FX FD Std FX FD 

1 2.00 1.95 1.82 2.57 2.47 2.13 3.58 3.38 3.35 
2 1.08 1.26 1.15 1.62 2.13 2.92 3.02 3.72 5.53 

errork  0.16 0.21 0.25 -0.43 -0.43 -0.61 -1.18 -1.08 -0.79 
 

 Figure 4.38 through Figure 4.46 show the flux-errors and current/flux ratios for 

group 1 for all three cores, with each half-core error-plot followed by an error-plot and a 

ratio-plot in assembly region 1 of that particular core.  To see if there are any flux-
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limiting benefits, we first look near the core boundary, where the FD method is expected 

to yield the greatest flux-error reductions compared to the Std diffusion coefficient.  

However, in group 1, in all 3 full-cores, the flux-error reductions in the water region (data 

points 1 through 16, 0-1.1176 cm in Figure 4.39, Figure 4.42, and Figure 4.45) is not 

present, with the FD errors being either equal to or larger than those of the Std and FX, 

with the exception of about the first three data points in the water region for core 1.  We 

then turn to the graphs of current/flux ratios, shown in Figure 4.40, Figure 4.43, and 

Figure 4.46, to help explain the flux-error results, and compare it to the single assembly 

result using vacuum boundary conditions in section 4.1.1.  The single assembly in this 

location of the core is assembly type 2, and we examine the current/flux ratio from two-

group results, with vacuum boundary conditions, shown in Figure 4.19 on page 66.  One 

can see that in the water region, near the assembly boundary, the Std and FX current/flux 

ratios are closer to those of the FD in the whole-core calculations than they are in the 

single assembly result.  Because the FD current/flux ratio is guaranteed not to be non-

physically large, other current/flux ratios that are close to it are also less likely to be non-

physically large than current/flux ratios that are farther away from it, and this might be 

causing the Std and FX flux-errors to compare more favorably against the FD in the 

whole-core than in the single-assembly/vacuum calculation. 

 Just like Figure 4.38 through Figure 4.46 did for group 1, Figure 4.47 through 

Figure 4.55 show the flux-errors and current/flux ratios for group 2 for all three cores, 

with each half-core flux plot followed by a flux-error plot and a current/flux ratio plot in 

assembly region 1 of that particular core.  Contrary to the results in group 1, in group 2 
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Figure 4.38: Norm'ed flux percent error, heterogen. half-core 1, Group 1 of 2, Diffusion Thy. w/Std, FX, FD.
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Figure 4.39: Normed flux Perc Err, group 1 of 2, Hetero Assy region 1 (Assy type 2) in-core 1, Diffusion Thy. w/Std, FX, FD.
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Figure 4.40: Current to flux ratio, group 1 of 2, Hetero Assy region 1 (Assy type 2) in-core 1, Diffusion Thy. w/Std, FX, FD.
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Figure 4.41: Norm'ed flux percent error, heterogen. half-core 2, Group 1 of 2, Diffusion Thy. w/Std, FX, FD.
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Figure 4.42: Normed flux Perc Err, group 1 of 2, Hetero Assy region 1 (Assy type 2) in-core 2, Diffusion Thy. w/Std,  FX, FD.
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Figure 4.43: Current to flux ratio, group 1 of 2, Hetero Assy region 1 (Assy type 2) in-core 2, Diffusion Thy. w/Std, FX, FD.
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Figure 4.44: Norm'ed flux percent error, heterogen. half-core 3, Group 1 of 2, Diffusion Thy. w/Std, FX, FD.
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Figure 4.45: Normed flux Perc Err, group 1 of 2, Hetero Assy region 1 (Assy type 2) in-core 3, Diffusion Thy. w/Std,  FX, FD.
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Figure 4.46: Current to flux ratio, group 1 of 2, Hetero Assy region 1 (Assy type 2) in-core 3, Diffusion Thy. w/Std, FX, FD.
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the spread between the Std and FD current/flux ratios are about equally large at the 

boundary of the whole-core as they are at the boundary of the single-assembly/vacuum.  

Therefore, one might expect the FD method to improve the flux errors in the full-core as 

they do in the single-assembly, but the flux-error results in Figure 4.48, Figure 4.51, and 

Figure 4.54 show that they do not.  A possible explanation for the lack of improvement 

using the FD in both energy groups is that even though the Std and FX current/flux ratios 

are high, caused by a large exiting neutron current, this is not necessarily wrong or non-

physical.  The definition of the neutron current in Eq. (1.6) states that the magnitude of 

the current can not be greater than the scalar flux, but it can approach or be equal to it, as 

would be the case when a large number of neutrons are traveling in one direction.  

Because the whole-core produces a greater number of neutrons than a single assembly 

does, the large current/flux ratios produced by the Std and FX diffusion coefficients in 

the water region of the fine mesh whole-cores are not necessarily too large for this 

specific problem, and the lower current/flux ratios of the FD might be an indication that 

the FD diffusion coefficients are too small.  Also, even when flux-limiting is a benefit, 

the other characteristics of FD alluded to in previous subsections also contribute to 

improving or worsening (in this region worsening) the flux errors. 

 Despite all of this, the FD diffusion coefficients do slightly reduce flux errors in 

group 1 outside of regions of large flux gradients, but they slightly increase the errors in 

group 2.  This is consistent with the calculations using single-assemblies with reflective, 

and to a lesser extent vacuum boundary conditions, in that FD improves results in faster 

groups more than in thermal.  However, the spatial regions in the full-core where FD 

improves flux-errors do not usually occur in the region of the core where error reductions 
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Figure 4.47: Norm'ed flux percent error, heterogen. half-core 1, Group 2 of 2, Diffusion Thy. w/Std, FX, FD.
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Figure 4.48: Normed flux Perc Err, group 2 of 2, Hetero Assy region 1 (Assy type 2) in-core 1, Diffusion Thy. w/Std, FX, FD.
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Figure 4.49: Current to flux ratio, group 2 of 2, Hetero Assy region 1 (Assy type 2) in-core 1, Diffusion Thy. w/Std, FX, FD.

 105 
  



-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

18

20

22

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
Distance [cm]

Pe
rc

en
t e

rr
or

Diffusion/Std
Diffusion/FX
Diffusion/FD

Stand. % Err
AVG=1.62
RMS=2.53
MRE=0.99

FX % Err
AVG=2.13
RMS=2.96
MRE=1.32

FD % Err
AVG=2.92
RMS=4.40
MRE=1.45

k TRANSP = 0.929130
Std % error

k DIFFUS = 0.925152 -0.43
FX % error

k DIFFUS = 0.925173 -0.43
FD % error

k DIFFUS = 0.923461 -0.61
 D-X

X
⎛ ⎞
⎜ ⎟
⎝ ⎠

%err = 100

 
Figure 4.50: Norm'ed flux percent error, heterogen. half-core 2, Group 2 of 2, Diffusion Thy. w/Std, FX, FD.
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Figure 4.51: Normed flux Perc Err, group 2 of 2, Hetero Assy region 1 (Assy type 2) in-core 2, Diffusion Thy. w/Std, FX, FD.
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Figure 4.52: Current to flux ratio, group 2 of 2, Hetero Assy region 1 (Assy type 2) in-core 2, Diffusion Thy. w/Std, FX, FD.
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Figure 4.53: Norm'ed flux percent error, heterogen half-core 3, Group 2 of 2, Diffusion Thy. w/Std, FX, FD.
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Figure 4.54: Normed flux Perc Err, group 2 of 2, Hetero Assy region 1 (Assy type 2) in-core 3, Diffusion Thy. w/Std, FX, FD.
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Figure 4.55: Current to flux ratio, group 2 of 2, Hetero Assy region 1 (Assy type 2) in-core 3, Diffusion Thy. w/Std, FX, FD.
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are present in the corresponding single-assembly calculation with either reflective or 

vacuum boundary conditions.  For example, in fine-mesh full-core 1, in assembly region 

4, which is located near the center of the core and made up of assembly type 1 and shown 

in detail in Figure 4.56, there is an improvement in flux errors with the FD in the water 

region which extends slightly into the fuel region (45.7 through 47 cm) and an increase in 

errors everywhere else.  On the other hand, in the single-assembly type 1 calculation with 

reflective boundary conditions, group 1 of 2, shown in Figure 4.57, the improvement in 

the water region extending slightly into the fuel region (0.07 through 1.5 cm in the half-

assembly calculation) using the FD is barely noticeable, and the FD slightly improves the 

errors towards the center of the assembly instead of worsening them as in the full-core. 
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Figure 4.56: Normed flux Perc Err, group 1 of 2, Hetero Assy region 4 (Assy type 1) in-core 1, Diffusion Thy. w/Std, FX, FD. 

 113 
  



-1.6

0.0

1.6

3.2

0 1 2 3 4 5 6 7 8
Distance [cm]

Pe
rc

en
t e

rr
or

Diffusion/Std
Diffusion/FX
Diffusion/FD

Stand. % Err
AVG=1.58
RMS=1.75
MRE=1.55

FX % Err
AVG=1.53
RMS=1.70
MRE=1.51

FD % Err
AVG=1.51
RMS=1.68
MRE=1.48

k TRANSP = 1.182357
Standard

k DIFFUS = 1.184616
% error = 0.19

FX
k DIFFUS = 1.184689
% error = 0.20

FD
k DIFFUS = 1.184688
% error = 0.20

 D-X
X

⎛ ⎞
⎜ ⎟
⎝ ⎠

%err = 100

 
Figure 4.57: Normalized flux percent error, Heterogeneous half-assembly 1, Reflective BCs, group 1 of 2, Diffusion Thy. w/Std, FX, 

FD. 
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4.3 COMBINATION OF THE STANDARD AND FLUX-LIMITED DIFFUSION 

COEFFICIENTS 

 

 Based on the results above the FD diffusion coefficients tend to reduce flux-errors 

in the faster groups and worsen them in the thermal groups.  This trend is not as apparent 

in single assemblies with vacuum boundaries as with reflective boundaries, and the 

whole-cores.  Therefore, it is the latter two types of calculations that have the most to 

gain by using a combination of the FD in the faster groups and the Std in the thermal 

groups.  The results of these types of calculations are presented in this section.  In four-

group calculations the FD was used for groups 1 and 2, and the Std was used for groups 3 

and 4, and in two-group calculations the FD was used for group 1 and the Std was used 

for group 2.  In the results below, the method that uses these combinations of diffusion 

coefficients is noted as FDSt. 

 The four-group single assembly/reflective boundary eigenvalue results are shown 

in Table 4.17, and the flux-error results in Table 4.18.  When a result under the FDSt 

column in Table 4.18 is bold that result is the lowest error, but compared only against the 

Std method.  The results in Table 4.18 indicate that the combination FDSt method has 

lower errors than the Std method in the two fast groups for all assembly types, and in 

groups 3 and 4 improves the errors in some assembly types and worsens them in others.  

Overall, the FDSt method is the most accurate because the amount of improvement in the 

fast groups is greater than the amount of worsening in the thermal groups.  For example, 

in assembly type 1, the FDSt reduces the flux-errors by 0.28 percentage points in group 1 

and 0.14 percentage points in group 2, but increases them only less than 0.01 points in 
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group 3 and 0.03 points in group 4.  The results in the FD column, based on results using 

the FD for all energy groups, reduce errors slightly more than the FDSt does in the fast 

groups, but in the thermal groups worsen the errors more than the FDSt does.  Overall, 

the combination of diffusion coefficients in the FDSt method is the most accurate.     

 

 

Table 4.17: Eigenvalues, Four groups, Heterogeneous half-assemblies, Reflective BCs, 
Diffusion Thy. w/Std, FD, FDSt. 

Assy 1 Assy 2 
Transport Std FD FDSt Transport Std FD FDSt 
1.182742 1.183262 1.183226 1.183212 1.236897 1.237432 1.237615 1.237400

Assy 3 Assy 4 
Transport Std FD FDSt Transport Std FD FDSt 
0.608375 0.604507 0.596936 0.604540 0.322793 0.327468 0.328404 0.327620

 

 

Table 4.18: Errors, Four Individual groups, Heterogeneous half-assemblies, Reflective 
BCs, Diffusion Thy. w/Std, FD, FDSt. 

Assy 1 Assy 2 
Egy Grp Std FD FDSt Std FD FDSt 

1 3.08 2.78 2.80 3.33 2.98 3.02 
2 0.99 0.83 0.85 1.33 1.03 1.05 
3 0.84 0.95 0.84 0.85 0.92 0.84 
4 1.47 1.78 1.50 1.47 1.87 1.52 

errork  0.04 0.04 0.04 0.04 0.06 0.04 
Assy 3 Assy 4 

Egy Grp Std FD FDSt Std FD FDSt 
1 2.86 2.80 2.75 3.30 2.97 2.99 
2 0.72 0.76 0.70 1.17 0.98 0.99 
3 1.62 1.98 1.62 1.48 1.85 1.49 
4 2.36 4.55 2.36 8.00 13.34 8.11 

errork  -0.64 -1.88 -0.63 1.45 1.74 1.50 
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 Similar conclusions can be drawn from the results of the two-group single-

assembly calculations shown in Table 4.19 and Table 4.20.  The FDSt combination 

method reduces the flux-errors in the fast group for all assembly types,  while it slightly 

worsens them in the thermal group.  The margin of improvement is slightly larger than 

the margin of worsening, although not by much.  There are fewer energy groups in the 

two-group calculations for the linearly anisotropic scattering characteristic of the FDSt to 

take advantage of.  The FD reduces flux-errors slightly more than the FDSt does in the 

fast group, but worsens them more in the thermal group, especially in assembly types 

three and four.    

 
 

Table 4.19: Eigenvalues, Two groups, Heterogeneous half-assemblies, Reflective BCs, 
Diffusion Thy. w/Std, FD, FDSt. 

Assy 1 Assy 2 
Transport Std FD FDSt Transport Std FD FDSt 
1.182357 1.184616 1.184688 1.184588 1.236606 1.238704 1.238966 1.238697

Assy 3 Assy 4 
Transport Std FD FDSt Transport Std FD FDSt 
0.608448 0.605303 0.598567 0.605401 0.323357 0.327861 0.328567 0.327896

 
 
 

 
Table 4.20: Errors, Two Individual groups, half-assemblies, Reflective BCs, Diffusion 

Thy. w/Std, FX, FD, and FDSt. 
Assy 1 Assy 2 

Egy Grp Std FD FDSt Std FD FDSt 
1 1.58 1.51 1.53 1.71 1.63 1.66 
2 0.86 1.09 0.88 0.83 1.06 0.84 

errork  0.19 0.20 0.19 0.17 0.19 0.17 
Assy 3 Assy 4 

Egy Grp Std FD FDSt Std FD FDSt 
1 1.75 1.78 1.73 1.56 1.51 1.51 
2 1.98 4.07 1.96 5.31 10.06 5.35 

errork  -0.52 -1.62 -0.50 1.39 1.61 1.40 
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 According to the full-core results in Table 4.21 and Table 4.22 the FDSt improves 

flux-errors in group 1, and also in group 2, and the FD by itself provides a slightly larger 

error reduction than the FDSt in the fast group, but increases errors in the thermal group.  

The single anomalous result in the full-core calculations, and the entire set of results 

using combinations of diffusion coefficients, is the result from core-type three in Table 

4.22, where the FDSt doesn't improve over the Std in either group 1 or 2.  This core 

configuration, containing the all-gadolinium assembly-type four, is the most difficult for 

any type of diffusion theory to manage, and might invalidate one method's assumptions 

more than another's.  

 

Table 4.21: Eigenvalues, Two groups, Heterogeneous cores, Diffusion Theory w/Std, FD, 
FDSt. 
Core 1 

Transport Std FD FDSt 
1.166131 1.168036 1.169037 1.168924 

Core 2 
Transport Std FD FDSt 
0.929130 0.925152 0.923461 0.926255 

Core 3 
Transport Std FD FDSt 
0.760879 0.751909 0.754904 0.752900 

 

 

Table 4.22: Errors, Two Individual groups, Heterogeneous cores, Diffusion Theory 
w/Std, FD, FDSt. 

Core 1 Core 2 Core 3 
Egy Grp Std FD FDSt Std FD FDSt Std FD FDSt 

1 2.00 1.82 1.84 2.57 2.13 2.22 3.58 3.35 3.70 
2 1.08 1.15 0.95 1.62 2.92 1.56 3.02 5.53 4.25 

errork  0.16 0.25 0.24 -0.43 -0.61 -0.31 -1.18 -0.79 -1.05 
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4.4 CALCULATION OF THE DERIVATIVE OF THE FLUX 

 

 In the final section the calculation and accuracy of the derivative of the flux, 

which is a term of the FD diffusion coefficient, is examined.  Two methods of calculating 

the derivative were considered.  One used nth order least squares polynomials and the 

other used cubic splines.  Each method uses a polynomial to approximate the spatial 

shape of the flux, and the first derivative of the polynomial is analytically determined to 

calculate the flux gradient. 

 Figure 4.58 shows the normalized flux in group 2 of a two-group calculation in 

assemblies 3 and 4, both having highly absorbing regions.  Because of the strong spatial 

variation of the flux in these two assemblies a single least squares polynomial, of order as 

high as 7, would not fit all of the flux data points with adequate accuracy, and the domain 

would have to be divided into two separate regions with a separate polynomial for each 

region.  However, the point at which this division is made varies with energy group and 

assembly type.  When performing calculations in 2, 4, and 47 energy groups, with four 

different assembly types, and also three different fine-mesh full-cores, this process would 

require excessive user input and become prohibitively tedious and time-consuming. 

 The cubic spline method does not have these drawbacks and was eventually used 

for all of the gradient calculations.  There are also limitations of the cubic spline method, 

but the only one of major concern that was analyzed in depth is the adequate smoothness 

of the flux output by the transport calculation that was used to calculate the cubic spline 

polynomials.  The fluxes in Figure 4.58 present some of the most significant spatial 
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Figure 4.58: Normalized flux, Heterogeneous half-assemblies 3 and 4, Transport Theory Results, Vacuum BCs, group 2 of 2.
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variations encountered in this thesis, but the gradients in Figure 4.59 calculated based on 

them using cubic splines are smooth. 

 A problem that presents a greater challenge to the splines method is the fine-mesh 

full core case for energy group 1, mainly in the water region near the problem boundary.  

The plot in Figure 4.60 shows the transport theory scalar flux output in the water region 

and the first fuel region, with slightly noticeable instabilities in the water region and to a 

lesser degree in the beginning of the fuel region, which all comprise about the first two 

dozen points inside the assembly.  The lines connecting the data points have been added 

to make the trends more apparent.  Also shown in Figure 4.60 is the gradient calculated 

based on cubic splines using these flux data points.  The more noticeable instabilities in 

the gradient are caused by the instabilities in the flux.  The important consideration is the 

effect these oscillations in the gradient have on the diffusion coefficient that uses these 

gradients in Eq. (2.16) on page 20.   The FD diffusion coefficients calculated using these 

gradients are shown in Figure 4.61, along with the Std diffusion coefficients for 

comparison.  The flux-errors obtained from using these FD and Std diffusion coefficients 

in a fine-mesh diffusion theory model of the full-core are shown in Figure 4.62, and 

indicate that the oscillations in the flux gradient and the FD diffusion coefficients have 

not significantly affected the flux calculated using the FD diffusion coefficient. 

 Only group 1 of the fine-mesh full-core calculations exhibit instabilities in the 

gradient as severe as in Figure 4.61, which occur because of insufficient convergence.  

The single-assembly calculations were all much more converged.  Because the group 1 

fine-mesh full-core cases represent the worst case scenarios as far as flux-gradient 

stability is concerned, and its final flux result was not significantly affected by these 
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Figure 4.59: Gradient, calculated using cubic splines, in heterogeneous half-assemblies 3 and 4 with vacuum BCs, group 2 of 2.
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Figure 4.60: Unnormalized transport flux and its cubic splines gradient, Group 1 of 2, Heterogeneous assembly region 1 (Assy type 2) 

in core 1.
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Figure 4.61: Diffusion Coefficients, Group 1 of 2, Hetero Half-assy region 1 (Assy type 2) in core 1.
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Figure 4.62: Normed flux Perc Err, group 1 of 2, Hetero Half-assy region 1 (Assy type 2) in core 1, Diffusion Thy. w/Std, FD.
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instabilities, the other calculations in this thesis are affected to an even lesser extent and 

the accuracy of the gradient calculation is not a concern. 
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5 CONCLUSIONS 

 

 A new diffusion coefficient based on flux-limited diffusion theory (FDT) was 

evaluated for use in reactor physics calculations.  The new diffusion coefficient, referred 

to as FD, has the advantage over the standard transport cross section, referred to as Std, 

of having greater accuracy in regions of large spatial gradients, and accounting for 

linearly anisotropic scattering across all energy groups.  Another transport cross section 

more loosely based on FDT was also evaluated, and is referred to as FX.  The evaluations 

were performed in one spatial dimension using models of single assemblies with vacuum 

and reflective boundary conditions, and full-cores consisting of combinations of the 

assemblies.  The diffusion results were compared against transport benchmarks, and the 

energy structures consisted of 47, 4, and 2 groups. 

 The most significant finding is that in models of single assemblies with vacuum 

boundary conditions, the FD method produced the smallest pointwise flux-errors in 

almost all energy groups, and the smallest eigenvalue-errors, when compared against the 

Std and FX diffusion coefficients.  The most significant improvements were flux-error 

reductions by about half and eigenvalue-error reductions by more than an order of 

magnitude when compared against the Std.  These improvements took place in all energy 

structures tested, and resulted from the FD's advantage over the Std in the large gradients 

present using vacuum boundary conditions. 

 With single-assembly reflective boundary conditions the improvements using FD 

are more mixed.  There are some reductions in flux-errors, but there is a strong tendency 

for the FD to reduce flux-errors in the fast groups while worsening them in the thermal 
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groups, and most of the time the eigenvalue errors increase using the FD because the 

systems modeled were thermally dominated light water assemblies.  It was not practical 

to perform analyses in 47 individual energy groups, so the energy-integrated 47-group 

flux-errors that indicate improvements in all but assembly type 3 are suspect, and the 

eigenvalues worsened for all four assembly types. 

 In the 2-group full-core fine-mesh calculations, the FD improved flux-errors in 

the fast group and worsened them in the thermal group for all three core types.  The 

eigenvalue errors were improved in only one of the core-types. 

 Because the single assemblies with reflective boundaries and full-cores do not 

have the strong flux-gradients inherent in single assemblies with vacuum boundaries, the 

only significant advantage of the FD compared to the Std is its accounting of linearly 

anisotropic scattering across all energy-groups.  Because this effect is most significant in 

faster energy ranges, a set of calculations using the FD in fast and resonance groups (1 

and 2 of 4, or 1 of 2 group calculations) and Std in epithermal and thermal groups was 

performed.  These results show that this combination type of calculation yields the 

smallest flux-errors compared to any single type of diffusion coefficient used by itself. 

 One important result from the fine-mesh diffusion calculations is that they are 

consistent with previous results in the field of radiative transfer, from which FDT was 

derived.  Levermore and Pomraning (1981) compared FDT to two other diffusion 

theories in a purely absorbing slab of varying thickness, and found that FDT yielded the 

greatest improvements over the other two with the thinnest slab, and their accuracies 

approached each other with the greatest slab thickness.  The results in this thesis show 

that FD yielded the greatest improvement using single assemblies with vacuum 
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boundaries, and smaller improvements using single assemblies with reflective 

boundaries.  The latter can be considered to be slabs of greater thickness, because they're 

infinite. 

 The results using FX are less impressive.  In the models of single assemblies with 

vacuum boundary conditions, in both 4 and 2 individual groups, where the FD yielded the 

most significant improvements, the FX reduces flux-errors in about half as many energy 

groups as the FD, and the amount of error reductions are not as large.  It also slightly 

reduces eigenvalue errors, to a much smaller extent than the FD does.  In the single 

assembly reflective cases, as in the vacuum cases, the FX also reduces flux-errors in 

fewer groups than FD does, and their error reductions are not as great.  The FX never 

reduces eigenvalue errors in these cases.  In the full-core cases, it reduces flux-errors in 

every core type in group 1, but once again with a smaller reduction than the FD, and it 

reduces the eigenvalue errors in two of the three cores.  The FX has been shown to be not 

flux-limited, so the term "flux-limited" should not be applied to it. 

 There is a strong tendency for both FD and FX to yield flux-error improvements 

in the higher energy groups, that is groups 1 and 2 in 4-group calculations, or group 1 in 

2-group calculations.  Considering both the vacuum and reflective single assembly cases, 

in groups 1 and 2 of the 4-group results, the FD produced the lowest flux-error 14 of 16 

times, while in groups 3 and 4 it produced the lowest error only 4 of 16 times.  In the 2-

group results, including the 2-group fine-mesh whole-core results, the FD produced the 

lowest flux-error 10 out of 11 times in group 1, and only 1 out of 11 times in group 2. 

 Some of the improvement, or lack of it, using the FD method can be traced to its 

assumptions.  The validity of these assumptions depend, in part, on energy group and 
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boundary conditions.  The first assumption is the separability of the angular flux, 

, into two components as ( , )gI Ωr

 ( , ) ( ) ( , )   .g g gI φ ψ=Ωr r r Ω  (4.6) 

The scalar flux is assumed to carry most of the spatial and energy dependence, which 

allows for the approximations  

 0gψ⋅∇ =Ω  (4.7) 

and 

 g gψ ψ ′=  (4.8) 

to be used in the derivation of the FD.  These assumptions are necessary to derive the FD.  

There is also the assumption that gψ  can be approximated by the function  

 ( ) 2

ˆ1
,    

ˆ2 1
g

g
g g g g

x
R R

.
µ

ψ µ
λ µ µ

−
=

⎡ ⎤+ − −⎣ ⎦
 (4.9) 

which avoids solving a transcendental equation. 

 The assumptions used to derive the FX include that in Eqs. (4.6) and (4.8), and 

also those inherent in the second of the P1 equations' approximation to the transport 

equation, 

 ( ) ( ) ( ) ( ) ( ), ' '
'

1    ,
3

G

g g g 1 g g g
g 1

r r J r r J rφ σ σ →
=

∇ + = ∑  (4.10) 

which include linearly anisotropic scalar flux and no fission source. 
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6 POSSIBLE IMPROVEMENTS AND RECOMMENDATIONS FOR FUTURE 

WORK 

 

 Because linearly anisotropic scattering is most significant in faster energy ranges, 

the FD method is potentially very useful in fast reactors applications. 

 Something that would help improve the accuracy of the results using the FD 

method, but increase the computational expense, is the use of the transcendental formula 

to find a solution for the normalized angular flux ( ),xψ µ , namely 

 ( ) ( )1 2
2

1
tanh 2 1 1

1

N

n n n
n

RR n K Q R R
R

ψ λ
λ

−

=

⎡ ⎤ ⎡ ⎤= + + +⎢ ⎥ ⎣ ⎦+⎣ ⎦
∑  (6.1) 

 
instead of the approximation in Eq. (4.9). 

 Because reactor physics calculations are frequently performed in two or three 

spatial dimensions, it would also be useful to evaluate the FD method in more than one 

dimension.  This would also increase the computational expense because possibly in two 

dimensions (depending on the coordinate system used), and definitely in three 

dimensions, one of the axes in the coordinate system has to be aligned in the direction of 

the gradient of the flux in order to derive the FD, and the gradient might point in different 

directions for each energy group. 

 It is also suggested to examine one of the ad hoc FDT theories.  One ad hoc 

method might work well in a certain application, while in other situations another ad hoc 

method would work well. 

 It is also suggested to examine the application of the flux-limited diffusion 

coefficient in a framework using homogenization theory using discontinuity factors. 
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APPENDIX 

 

A.1 FLUX-LIMITED DIFFUSION COEFFICIENT 

 

 The following is a re-derivation of the flux-limited diffusion coefficient adapted 

from the work by Pomraning (1984), modified for one spatial dimension and with the 

external source replaced by a fission source.  

 Start with time-independent multigroup transport equation with fission and no 

external source 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ' '
' 1 4

' , ' '
' 1 4

, , ' ,

1 ' ,
4

G

g g g s g g g
g

G
g

g f g g
g

I I d I

Χ r
r r d I

k

π

π

σ σ

ν σ
π

→
=

=

′ ′⋅ + = ⋅

′

∑ ∫

∑ ∫

r r r

r

Ω ∇ Ω Ω Ω Ω Ω Ω +

Ω Ω

 (A.1) 

and its angle-integrated result, the multigroup conservation equation 

 ( ) ( ) ( ) ( ) ( ), ' ' ' , ' '
' '

+    .
G G

g g g 0 g g g g g f g g
g 1 g 1

1 Χ r r r
k

σ φ σ φ ν σ φ→
= =

⋅ + = ∑ ∑J r r∇  (A.2) 

Separate the angular flux into two components as 

 ( , ) ( ) ( , )g g gI φ ψ=Ωr r r Ω  (A.3) 

where ( )gφ r  is the scalar flux with 

  (A.4) ( )   ,g g
4

d I
π

φ = ∫ Ω Ω

( , )gψ Ωr  is the normalized angular flux, with 

  (A.5) ( , ) 1   ,g
4

d
π

ψΩ =∫ r Ω

 
the current is defined as 
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  (A.6) ( )   ,g g
4

d I
π

= ∫J ΩΩ Ω

 
and the normalized current defined as 

   ,g
g

gφ
=

J
j  (A.7) 

 
or equivalently as  

 ( ) ( ),    g g
4

d
π

ψ= ∫j r rΩΩ Ω .

)

 (A.8) 

 

Put Eq. (A.3) into Eqs. (A.1) and (A.2) to get 
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and 
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1    .
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g g g g g g g g g g g f g g
g g

Χ
k

φ φ σ φ σ φ ν σ→
= =

⋅ + ⋅ + = +∑ ∑j j∇ ∇ φ  (A.10) 

 
Multiply Eq. (A.10) by ( )gψ Ω  and subtract from Eq. (A.9) to get 
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or 
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 From the assumption of Pomraning (1984), that the spatial and energy 

dependences are primarily carried by the scalar flux ( )gφ r  and not by the normalized 

angular flux ( )gψ r , 

 0gψ⋅∇ =Ω  (A.13) 

and 

   ,g gψ ψ ′=  (A.14) 

which implies that 

 0   .∇ ⋅ =j  (A.15) 

 
 With the assumptions of Eqs. (A.13) and (A.15), Eq. (A.12) can be rewritten as 
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where 
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and Rg, the dimensionless gradient of the scalar flux, is 

 

 ( ) ( )
( ) ( ) ( )

  .g
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g g g
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σ ω φ
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r
R r

r r r
 (A.18) 

 

 In one dimension the functions ( )gj x  and ( )gR x  are now a function of only one 

spatial dimension, and  is proportional to ( )gj x ( )gR x  , thus 

 ( ) ( )   ,g g gj x R xλ=  (A.19) 

which can replace g g⋅j R  in Eq. (A.16).  The constant of proportionality gλ  will be 

determined later.  Also in one dimension, gRµ  replaces g⋅Ω R , where µ  is the cosine of 

the polar angle φ , (note that this φ  is not the same as the scalar flux φ , and [ ]cosµ φ=  

(cosine of the polar angle) is used from here forward), the normalized angular flux 

becomes  
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with the normalization 
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and the differential scattering cross section becomes 
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with 
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 Using the one dimensional assumptions the scattering and fission terms are 

rewritten as 
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 Equation (A.16) can be now be written as 
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 (A.26) 

 

or 
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 (A.27) 

 

and Eq. (A.17) can be rewritten as 
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 (A.28) 

 

and ( )gR r  in Eq. (A.18) becomes 

 ( ) ( ) ( ) ( )
  .g

g
g g g

d dx
R x

x x x
φ

σ ω φ
−

=  (A.29) 

Using Eqs. (A.7), (A.18), and (A.19), a new form of Fick's Law can be derived as 

 g g
g

g g

d
J

dx
λ φ

σ ω
= −  (A.30) 

where the flux-limited diffusion coefficient FD
gD  can be defined as 

 ( ) ( ) ( )
  .gFD

g
g g

D x
x x
λ

σ ω
=  (A.31) 

 where gλ  is still undefined.  Once it is found, the expression for the flux-limited diffusion 

coefficient is complete. 

 To determine gλ  , we continue by defining an integrand on the RHS of Eq. (A.27)  

as  
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so that 
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Now assume gK  can be expanded in Legendre polynomials as  
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where 

  (A.35) , ( ) ( )   ,
1

n g n g
1

K d P Kξ ξ ξ
−

= ∫

with .  To prove that 0, 1gK = 0, 1gK = , simply put the definition of gK  given by Eq. 

(A.32) into Eq. (A.35) and use the definition of ( )xω  given by Eq. (A.28), 
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 (A.36) 

which implies that 

  (A.37) , = 1   .0 gK
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Similarly, one can explicitly prove 1, 1gK ≤  by writing  
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and 
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 (A.39) 

 
and the  converge. ,n gK

The results of Eqs. (A.37) and (A.39) will be used later.  Note that the expression derived 

in Eq. (A.39) for ˆgµ  is the same as Pomraning's (1984) expression for ˆgµ  with the 

external source once again replaced by a fission source, and also that ˆgµ  would equal the 

standard gµ , the average of the cosine of the neutron scattering angle, with the absence 

of the fission source, as with Pomraning's ˆgµ  with the absence of an external source. 

 With the approximation of Eq. (A.34), Eq. (A.33) can be rewritten as 
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or by using Eq. (A.37) as 
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where 

 ( ) ( )
1

,
1

  .n g n gd Pψ µ µ ψ µ
−

= ∫  (A.42) 

and with the normalization in Eq. (A.21) and Eq. (A.42) one has, 

 0, 1   .gψ =  (A.43) 

By integrating Eq. (A.41) over the polar angle µ , using Eq. (A.42) and the orthogonality 

condition of Legendre polynomials one has  
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and 

 1,   .g g gRψ λ=  (A.45) 

The results of Eq. (A.45) will also be used later. 

 To find a solution to Eq. (A.41) the function 

 
( )
1

2 1
g

g g g gC R R
ψ

λ µ
=

⎡ ⎤+ −⎣ ⎦
 (A.46) 

is assumed to adequately represent the solution.  Functions similar to this have previously 

been used for ψ  (Levermore and Pomraning 1981, Sanchez and Pomraning 1991).  The 
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constant gC  is determined using a Galerkin type of procedure.  Equation (A.41) is 

multiplied by a weight function Wg, which is chosen to be ( )1 g g g gC R Rλ µ+ − , and 

integrated over all µ to get 
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The LHS of Eq. (A.47) is 
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The first term on the RHS of Eq. (A.47) is 
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The second term on the RHS of Eq. (A.47) can be rewritten using the orthogonality 

relation of Legendre polynomials, and Eq. (A.39) and (A.45) is, 
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 (A.50) 

 

Adding the above result to Eq. (A.49) to complete the rewritten RHS of Eq. (A.47) and 

equating it to the rewritten LHS side of Eq. (A.47), which is now Eq. (A.48), yields,  

 ( )2 2 ˆ1 1 1g g g g gR C R gλ λ+ = + − µ  (A.51) 

which can be solved to yield an expression for Cg as 

 1   .
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 (A.52) 

 The solution to Eq. (A.41) now is 
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or 
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When this expression for gψ  is used in the normalization condition, Eq. (A.21), one gets 
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and by solving the integral in Eq. (A.55), which is equal to 1, an explicit expression for 

gλ  is found as 
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 (A.56) 

or 
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 (A.57) 

 This value of gλ  can now be used in Eq. (A.31), and an explicit expression for the 

flux-limited diffusion coefficient is found.  By inserting the expression for gλ  in Eq. 

(A.57) into the expression for the diffusion coefficient in Eq. (A.31), and using the 

definitions of gω  in Eq. (A.28), gR  in Eq. (A.29), ˆgµ  in Eq. (A.39), one arrives at a 

single expression for the spatially dependent flux-limited diffusion coefficient as 
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A.2 "FLUX-LIMITED" TRANSPORT CROSS SECTION 

 

 The "flux-limited" transport cross section can be derived by separating the angular 

flux  into a product of two components as ( ,gI r Ω)

 ( ) ( ) ( ),g g gI r r rφ ψ ,Ω = Ω  (A.60) 

where  is the scalar flux and can be written in terms of the angular flux as ( )g rφ

 ( ) ( )
4

,  g gr d I r
π

φ ,= Ω Ω∫  (A.61) 

and ( ,g r )ψ Ω  is the normalized angular flux and is normalized as 

 ( )
4

,  gd r
π

ψ 1 .Ω Ω =∫  (A.62) 

If it is assumed that the ( ,g r )ψ Ω  is independent of energy group, Eq. (A.60) can be 

written as 

 ( ) ( ) ( ),g gI r r rφ ψ ,Ω = Ω  (A.63) 

and we can also write 
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The linear operator  can be applied to Eq. (A.64) to get 
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d
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 (A.65) 

and because the neutron current is defined as 

 ( ) ( )
4

,  g gJ r d I r
π

,= ΩΩ Ω∫  (A.66) 
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Eq. (A.65) can be rewritten as 
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 The P1 approximation to the transport equation is 
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By substituting the value of 'gJ  in Eq. (A.67) for 'gJ  in the vector P1 equation, 

Eq. (A.69), the following equation can be derived, 
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that yields the spatially dependent "flux-limited" transport cross section 
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