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NOMENCLATURE

full cross-sectional area of the sphere

elementary projected area of the sphere
coefficient defined in Equation (A. 3)

cds §; ~ COS @, coefficieﬁts used for Equation (10)
sin ®; - sin Py coefficients used for Equation (10)
couple |
C/(C Kr), couple coefficient

couple coefficient associated with C‘-I
FD/ (CK), drag coefficient

drag coefficient associated with CI

drag coefficient for free faliing s‘and grains

MF/ (€ Kr), coefficient of the weight-restoring moment at the
final stage |

MI/ (C Kr), coefficient of fluid-driving moment, MI

maximum value of CI for a given force system .

FL/ (CK), lift coefficient

1ift coefficient associated with C-I
MR/ (CKr), coefficient of static weight-restoring moment,. MR
coefficients defined in Equation (8)
C -.CR , coefficients used for Equation (10}

Ri 0




impulsive-moment coefficient defined in Equation 22)
diameter of the sphere

2.73...., Napierian base

resultant fluid-dynamic force

dragr force paésﬁg through thé centroid of th.e sphere

hﬁ force passing through the centroid. of the sphere
reactional force from the base

gravii-:ati'onal acceleration

protrusion height of the sphere br- the dista.nce.from the top of
the sphere to the plate

v1rtua.l 'ﬁlomént of inertia of“ the sphere in-fhe'-ﬂuid-

ﬂszui,/ 8, reference force parameter

Nikuradse sand-grain diameter-

Laplace transform operator

" magmitude of the positive net-driving moment

fluid-driving moment:

static weight-restoring moment at the final stage

fluid-damping: moment |

static wgighf—festoring moment at the initial 'staé,e or the moment
level which éxceeds the fluctuating ﬂuid—dz'iving moment 95 per
cent of the time |

Wr sin v, static weight-restoring moment

impulsive moment .




ti' i=,2,...n=
t -

U =

_ratio of the negative net-driving moment to the positive net-
driving moment

sediment number, defined in Equation (32)

fotal number of timé increments of the sainple

cumulative probﬁbility distribution of the fluid-driving moment,
Mp

pin height above the base

radiﬁs of the sphere

effective rolling fadiﬁs or the shortest distance between the cen—
troid of the sphere mid the rotating axis

parameter used in Laplace transform

total sampling time

time

duration of positive net-driving momeﬁt

excursion time of the sphere

increméntal contact time

t/to, Vtime in dimensionless form

unit step function defined in Equation (A. 2)

velocity of flow

bbttom velocity of ﬂow‘

flow velocity at the protrusion height, h

- representative flow velocity defined in Equation (31)'

mean flow velocity




(L]

imérséd)wéight of the sphei'e

half of tile width between the’ sphe‘re—pin-contaét points:.
distance above the boundarj

&eﬁtil of fldw

half of the clearance between the neighbdring uniform spheres -
angle of inclination of the bed

angular .displacement, velocity, and acceleratiﬁn of the sphere,
respectively |

specific weight of the fluid

speciﬁc weight of the Sphére or sediment grains-

dist?mce from the protrusion heigﬁt, h, to the height of the
representative velocity,. u6

momentﬁm correction coefficient defined in .Equation (30)
factor defined in Equai:ion {29)

Laplace transform of 8 (t)

small perturbed angular displacement, velocity, and acceleration

of the sphere, -respectively

static equilibrium angle

dimensionless angular displacément defined in Equaﬁoﬁ (A.5)
kinematic“ viscosity of the fluid- |

constant

3.1415 ....

| density of the ‘fluid




boundary shear stress
angle of repose

angle of repose defined in Eduation (8)
angle of repose corresponds to C

IM
initial angular velocity of the sphere




SUMMARY

The mechanics of the process hy which a sediment particle is removed
from a stream bed was i;lvestigated. An idealized model, consisting of a one-~inch
diameter sphere protruding through a flat plate, a sphere-supporting base, and two -
equal height sphere-restraining pins aligned perpendicﬁlar to the flow direction, was
used to simulate the condition of a 'cohesionless particle lying on a stream bed. By
means of this model, the statistical variablega of the angle of repose, the protrusion
condition, and the approach velocity distribution became controllable at determinis-
tic values. | | |

In spite of the replacement of most of the statistical yariables by the deter-
ministic variables, initial mption of the particle is a fluctuating phenomenon £vhich
must be described in probabilistic terms because the fluid-dynamic force is fluctu—
ating in nature. The t_rar;sitio_n from a stationary state to the removal of the spheri-
cal particle was found to be gradual rather than instantaneous. The transition is
characterized by the random rocking motion of the spﬁer.e. The initial stage of the
transition is defined as the condition at which the cumulative per cent time of contact
between the spheré and the basé is 95 per cent. The final stage is defined as the
condition at which the sphere would be rolled over definitely. The condition of
- initial stage is established by equating the static weight-restoring moment to a
mofnent level which exceeds the fluctuating fluid-driving moment 95 per cent of thé

time. The final stage is established by equating an additional impulsive moment to
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the difference of the driving moment and the restoring moment as used in establishing

the initial stage. The flow condition associated with the transition is expressed in

‘terms of the mean velocity at the height of the protruding sphere. .The effect of non-

uniform velocity distributibn is accounted for by the use of a momentum correction
coefficient.

The fluid-dynamic moments and forces were determined experimentally in |
air flow with both uniform and non-uniform approach velocity profiles. Since the
transitional stage is aséociated with the balance of moments, a method has been
developed using the weight-restoring moment at the transitioﬁal stage as a gauge to
measure the vnknown fluid-driving moment. The corresponding fluid-driving force
pattern was then determined through a set of three algebraic equati(;ns defining the
equilibrium of moments due to the driving force and the restoring force. Experi-
mental results indicated that the ratio of the coefficient of lift to drag decreased
from approximately 1.6 to 0.4 as the ratio of the protrusion height to the sphere
diameter increased from 25 per cent to 100 per cent. Also, the resultant fluid-
driving force could he considered as passing through the centroid of the sphere for

protrusion height equal to or less than 75 per cent of the sphere diameter.




CHAPTER 1
INTRODUCTION

| Sedimént transport occurs by intermittent moirement' of individual bed

particles in the fluid stream.* Of course, only the surface particles protrudiﬁg'

| iﬁto the fluid stream are subjé’ct to removal from the bed. Depending upoh the -

| turbulence in the. streaﬁ:l and the séttling velocity of the particle, some .of the
removed particles may have a high probability o£ a trajectoxry iﬁto the main body
of 'thé fluid stream before coming to rest again on the surface of the bed.. Coﬁ-
Versély some removed particles have a low probability of movement into the main |
stream and will roll, slide, or bounce along over the surface of the bed before
coming to rest again. rBased ﬁpon this distinction, sediment transport is classi-
fied as suSpended 1oad 61' bed ioad. Irrespective of the .trajectory during move-
ment, sediment tra,nsport is limited to the rate that sediment particles can be
remc)ved'ffom the sui'face of the bed. The probability that an individual g'ré,in
will be removed -framf the surface of the bed. depends upon the geometry of the grain,
upen protrusion abt_:ve the mean bed level, upon position of bearing pc;ints with under-

lying particles {angle of repose), upon submerged weight, upon the hydrodynamic

*The exception to intermittent movement is the movement of particles so
small or so nearly buoyant that these particles are non-settling. Sediment trans—
ported as non-settling particles is called wash load. Particles which are transported
as wash load are absent from the bed of a movable bed stream. Thus sediment trans-
port as used here refers to bed-material load. : '




force exerted on ﬁhe‘surfaéé' of the p-article by the ﬂuld, and upon the probability
of the surface grain being dislodged by another moving particle. Because each of | ' .

the variables listed above is a ‘statistical variable, formulation of models to repre-

sent sediment transport is and will remain a challlenge.

Formulation of sensible Iﬁodels, 9ithér throﬁgh ﬁathem‘atical 6r experi-
mentally determined functions, requ.ires'an understanding of the physical process
particularly in regard to the relative impoffance of the independent variables. In
order to establish the felaﬁve iﬁlportance ahd the effect of the indepéndent variables,
the independent statistical variables have to be controlled preferably at determi-
nistic values. To simplify the problem of partiélé removal from a bed surface,

many studies have been performed in which dislodgement of surface grains by other

moving grains is precluded. Quite logically the removal of surface grains in the
absence of other inoving grains is called 'incipient motion.! While incipient motion
is generally visualized in reference to the beginhing of éediment transport, the prob-
ability of incipient motion of a bed particle could well be the central concept of sedi-
ment transport provided that particle dislodgeinent by other moving particles is a
mi.nor efiect in the pickup of sediment grains from the bed surface.

Among the existing metiaods, there are two general approgches toward the
fofmulatiouof 4inci.pient.motion éondi-tioh for noncohesive sediment: the critical-
tractive-force approach and the critical-velocity approach. |

The be's.t known treatise on critical tractive force was published by Shields
(28) in 1936. In his theoretical analysis, a functional relationship between the flow

and the sediment was proposed as follows:




-

The ratio of the effect:ve force of water parallel to the bed to the resistance
of a grain on the bed is a universal function of the ratio of the grain size to the-
tlﬁckqess of the laminar boundary lgyer.

Shields then related these dimens:ionless p'a,rameters' by éxperimental methods for
the case with level bed and uniform particle size. White (32) made a similér anal—
ysis by considering the balance of the moments due to drag and immersed weight.
Since th.en, many investigators have obiained results similar fo Shields but with
somewhat different numerical values for the dependent parameter. A general
review on this matter was given by Vanoni {31). |

Critical velocity is evaluated by recognizing that the fluid driving force is

proportional to the square of the local ﬂow. velocity and the projected area of the
particle. Mavis and Laushey (21).used th’ef*b&l’hnc’:‘e,betWeen.ethe tractive foree of

the flow and the weight resisting force of the particle to establish a competent velo—-
city formula under conditions of incipient motion. Allen (2) formulated theoretically
and experimentally the stability criteria of blocks, broken stones and sands in
stream flow, in terms of flow velocity. Novak 7(24) also investigated the stability

of prisms on the bottom of a flume similar to the work 6f Alleﬁ. In his study of
equilibrium of talus blbcks._ downstream of stilling basins, Naib (22) established
critical veloeity formulae fo:; both sliding and overturning in the light of 1ift and

drag measurcments. Neill (23) formulated his critical-velocity criterion from the

standpoint of dimensional analysis. He also compared his formula with the previous -

design curves and formulae. Also, Goncharov (12), Ippen and Verma (14) and
Carstens, Neilsoh and Altinbilek (5) developed critical velocity criteria by consid- -

ering the balance of moments due to the drag and lift forces of the flow and the




immersed bodsr force of 1.:h_e:;pa‘rticle.

The purpose of fhe present study-is to investigate the process of removal
of an individual particle from the nnden13fing be_d“and to formulate the conditions
under which the particle undergoes a transition from a stationary .state fo an.
entrainment state. The transitional conditions of particle removal will be expres-
sed in terms of the velocity in the vicinity of the protruding particle, rather than
in terms of the bed shear stress. The use of a \}elocity perameter is considered
to be more nearly' universal inasmuch as velocity distributinn is susceptible to
either expe;‘imental measurement. or analytical determination in non-uniform and/
or unsteady flows whefeas bed shear stress is extremely difficult to determine
under these conditions. In fact, bed sheéar stress can not'be measured directly
even in uniform steady .ﬂow. |

In order to determine the individual effects of the independent variables of
particle protrusion, angle of repose, and apprloach velo‘c_'i.ty' distribution a simpli-
fied model was chosen to approximate a protruding surface particle on the bed of
a stream. In this study the movement of a .single spherical particle was observed.
The Sphefical particle was restrained from sliding in the direction of flow by two
pins of equal height which w_ere‘ aligned perpendicular to the direcfié;n of flow. By
adjusting the height of the pins, the angle of repose beceme a controllable determi-
nistic independent variable. Because the base and supporting pins, upon which the
sphere res-ted,_ coulci be moved with respect to the.ﬂ'at Iet}el plate over which flow
occurred, prot‘rﬁsion was a controlled deterministic variable. The approach velo-

city distribution was controﬂed by naeans of a vvire grid placed upstream from the
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particle.

In spite of the replacement of most of the independent statistical variables -
by the i.ndependent deterministic variables, initial motion of the particle is'a
fluctuating phenomenon which must be described in probabilistic terms because.. -

the fluid dynamic surface force is fluctuating in nature.
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CHAPTER I
PROBLEM FORMULATION

In order to understand the mechanics of particle removal in a flowing
stream, a detailed exalﬁination of the force system acting upon the sediment par-
ticle is essential. The relationship between the flow éharacteriétics and the sedi-
ment properties at the beginning of particle removal can the.n' be determined from
the Enowledge_of the force system involved. For a non-cohesive, granular particle

immersed in a2 moving fluid, the forces which determine particle motion are the

“resultant fluid driving force, the particle restoring force, and the reaction forces

from the contact with other surrounding particles.

The fluid-driving force is the resultant of shéar stress and pi'essure over
the sufface of the partiele. This resultant force is usuailly resolved into a drag
force in the direction of the approach ﬂpw and 2 lift force normal to the flow direc-
tion. In general, both the force mégnitude and line of application vary with time in
turbulent flow. Even for laminar flow pﬁst a bed particle, the driving for.ce may
ﬂuétuate. Kalinske (19) considered the eddies shed behind the particle as the
cause of force fluctuation in a laminar flow field whereas Grass (13) related the
shear s_fress fluctuation in laminar sublayers to the turbulence of the background

flow close to the boundary. In addition to time dependency, the fluid driving force

varies with the approach velocity profile, the particle protrusion conditions, and

the shape and size of the particle.




Thé pafticle .r_estor.ing force, for ﬁon—cohesive 'grariular particlés, is the
immersed weight of the particle. ,The infergranu_lar reaction forces act through:
a singlé axis of confact on neighboring parﬁcles as the particle rbl].-s. * If the axis
for the angular momentum equatic;n coincides with the axis about which rolling-

occurs, the intergranular forces do not appear in the angular momentum equation. -

A, E.quation' of Motion of the System

In order to sfudy the response cha_racterisﬁcs of a sediment pafticle sub-
ject to dynamic ﬂﬁ_id driving loads, an idealized sphere-pin model as shown in:-
Figure 1 igs chosen. The model consists of a sphere, two equal-height pins, and
a supporting base. The sphere is lying on a plane horizontal base and the move~

ment of the sphere is restricted to rotation without slipping about the axis, 0-0,

of sphere-pin contact points.

When a particle .undergoes"ang'ula.r accelera’cioq thi'oqgh é fluid, a moment
is required to accelerate the pa.fticle and an additional moment is required to' accel-
eraté some mass of the fluid set into motion by the particle. The moment of inertia
associated IWith- the mass of the fluid set into motién by the particle is called the
a&déd moment of inertia. The moment of inerﬁa of the particle plus the added mo-
ment of inertia of the fluid is the virtual, or eff'ective, -moment of inertia of thew
particle in the fluid.

Since the sphere rotates about the axis of its contact with the pins without

*Although a sediment particle may be picked up from the bed by the lift force -
alone, as observed by Thompson (29), the general mode of the particle removal from

‘a bed is the rolling motion of the particle about the points of contact with the support-
‘ing particles. _ : : -




Top View - Side Elevation

Figure 1. Force System on the Sphere-Pin Model.

slip, an equation of angular motion, as given below, will be sufficient to describe

the general motion of the sphere,
Iﬁ-—jMD-Mf-Wrcosﬁ‘+Fchosﬁ _ KO

in which, Iis the virtuai moment of inertia of the sphere in the fluid with respect
to the -axis of rotation, - O-0; B is the angular displacement of the sphere mea-
sured positive clockwise. from . the horizon; [§ is the corresponding angular
acceleration; r is the shqrtest distance between the centrdid of the sphere and the
rotating axis O-0O Wh;‘ch by geometry is (R2 - wz)%, where w is half 6f the width be-
tween the contact points; Wis fhe immersed weight of the sphere; and FR is the

reactional force from the base. The left-hand side of Equation (1) is the product

of the virtual moment of inertia of the sphere in the fluid and' the angular accelera-

tion of the sphere. The terms on the right-hand side of Equation (1) from left to

i
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" right represent the moméni due to fluid-driving forece;  the fluid-damping or resis-

ting force, the weight—-fest&ring force of the sphere, ‘and the ground-reactional
force, respectively. In Equaﬁon (1), the angular displaéement, B can not be less

than the static equilibrium aﬁiglé,‘ E.‘S.,' dpt to the 'p:eSence of the supporting bhase.

The static equilibrium :ingle, BS-, is the angle between the rolling arm, r, and the.

horizon when the sphere is at rest on the supporting base. By geometry, 9s is

equal to arcsin (R-p)/_r_, "in which p is the height of the pins above the hase and R-
is the radius of the sphere.:
The moment associated with the reactional force can be eliminated from

Equation (1) inasmuch as F_ = 0 whenever B>es.

R

IB=MD-Mf-Wrcosﬁ @)

The weight-restoring moment, Wr cos B8, decreases as the displacement 8
increases.
The nonlinear ferm cosp associated with the weight-restoring moment in

Equation (2) can be linearized for rocking motion with small displécement by con-

-sid‘éri_ng the angular displacement §(t) as the sum of a constant static equilibrium

angle, es, and a time-dependent angnlar displacement, (1),

B(t) = 6, + (1) -

For small angular displacement, sin 8= 6 and cos 8= 1 resulting in"~
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o

- cos R = cos B, - @ sin es (4)

Substituting Equations (2) and {4) into Equation (2),

o

16+ Mf- - {(Wr sinﬁé)’«e = MD - Wr cos’ GS {5)

Here, the weight-restoring moment has been decomposed into two terms: a con-
stant term, Wr cos BS, associated with the st_atic equilibrium angle, BS, and a
linearized time-dependent term, (Wr sin BS) 6, associated with the perturbed dis-
placément, 6. Since Wr sin GS is always positive, the negative sign before the per-
turbed restoring-moment term again indicates this restoring moment reduces as

@ increases (17). The right-hai;d side of Equation (5) is the net driving moment

applied to the sphere. .

- B. Determination of Fluid-Dynamic Moment and Forces.

In general, the fluid-dynamic forces and moments acting on a solid body

can be either indirectly determined by integrating the measured pressure distribution

around tﬁe body surface or directly determined with the aid of a bﬁla.nce system
(mechanical balances or strain-gage balanceé)..

Particle removal. can occur only when the net driving moment, right-hand
side of Equation (5), is 'positive.. Conversely, whenever the nét driving moment
is negative the particle will remain on the bed or will rotate back toward the bed.
The liﬁu'ting condition, v;rhen the net driving moment crosses from negative to posi-

tive is simply a condition of static equilibrium in which FR = (. Because the net
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driving momeént varié's mth £ime, the zlimiti;ng condition must be interpreted statis-
tically. For example, the beginning of pa'rticlé ferﬁoval is deﬁned.herei.u as the

- gituation in which the net driving moment is positive 5 per cent of the time, For
static equilibrium three independent equations are satisfied, that is, (1) the
summation of the vertical forces equal zero, (2) the summation of the horizontal
forces equal zero, and (3) the summatioﬁof the moments equal zero. Instead of

-~ experimentally measuring the lift.and drag forces directly, a much simpler
experimental method is to make three independent determinations of the limiting
condition (moment) from which the equilibrium conditions can be used to calculate
lift and drag., The three independent experimental measurements can be ﬁiade by
determining BS at'the beginning of particle motion With- spheres which differ oniy
in weight in the same flow field.

In the past, O'Brien and Morison. (25) applied a similar concept in
determining the wave force exerted on a submerged spherical object. Young (33)
also ufilized the concept of force balance to determine lift and drag forces
exerted on a spherical particle resting on the bottom of a sloping cylindrical
tubg. Howevef, Young's proposition that the friction force vanishes at the
condition of impending lifting motion is questicnable and his measurement was
restricted to laminar flow conditions only. In their study for establishing a length
criterion for 'the hydraulic jump, Behera and Qureshy (4) determined the length of

jump as the distance from the toe to thesection where a cylinder piaced on the floor

of the flume would just topple. They felt thelength criterion shouldbe closely related ’

" to the scouring action and the transportation of sediment; and that the effects of all
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‘the intricate forces could be measured with a fair degfee of accuracy by placing
a siﬁall cylinder_ in the flow after the jump.

In the présent study, however, direct observation of the incipient motion
phenoménon for an individual particie revealé that the particle undergoes a random
rocking _motion, withbut being physically rolled, | for a range of differences between
the fluid-driving morent and tiie particle-restoring moment. 'The duration of par-
ticié rocking above the bed floor increases as the difference between the driving
| moment and the restoring moment increases. Eventually, the particle will roll
over after a critical angular impulse has been feached. There is no defini_te con-
dition at which a stationary bed particle is placed in motion suddenly.

Although previous works in the field of sediment incipient motion are mainly
based on the concept of static equilibrium, there are many investigators who did
recognize the important role played by the fluctuating force on particle removal.

In analyzing the critical condition for the motion of sand and gravels in rivers,
Prandtl (26) states that Whether.a particle remains stationary or is swept'away
depends upon the largest force occurring in turbulent fluctuations, rather than the
mean force. Thompson (22) has reported that the force exerted upon a stone on the
stream bed is fluctuating in nature. He also asserted thaf the 'impulsive' force is
responsible for the incipient motion of gravels in streams.

White (32) observed the maximum fluctuating velocity above the sediment
grain to be about twi¢e the mean and hence estimated the maximum drag is four
timeé the mean for turbulent flow, whereas the maximum drag is twicé the mean

if the sediment is immersed in the laminar sublayer. Kalinske (19) has indicated
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that the velocity ﬂuctuatmn in'tarbulent flow near the bottomof rivers is distributed in -
a_dcordancé with the normal error law _and the ratio of sféndard deviation to the-
mean is about ons-fourth. He considered the shear stress at three standard devia-.
tions above the mean as the maximum shea‘r in practice and thus concludéd the
maximum shear is about three times the mean val_ue sincg shear varies as the square -
of the velocity. Einstein and E1-Samni (10) observed that the pfessu‘re fluctuations
at the top and the bottom' of a' hemisphere, lying on a stream bed consisting of iden~
tical hemispheres, are irregular and only a statistical description of these fluctu-- -
é,ti;)ns apﬁeared td be adequate. A éarefﬁl statistical analysis showed that the
probabiiity distribution of the ins’téhténéous pressure difference betweén the tof; and
-th\e bottom of the hemi'sphere, or lift forces at the stream bed, can be approximated.
by the normal error law. In a wind tunnel study- of the nature of the forces on soil
grains by wind, Chepil (8) found that the probability distribution of tlle ﬂuctuating
pressure of lift and drag followed a somewhat skewed normal-error lﬁw. The ratio
of the mean pressure to the standard deviation was constant for _vari;:)us grain sizés
and fluid veldcieies. This ratio was foﬁﬁd roughly equal to two. Chao and Sandborn
{6) and Tieleman and Sandborn (30) have shown the randoemness of the pressure
fluctuations around a single sbhere and around a sphert_a resting among identiéa.l
roughness elements in turbulent flow. |

In a theoretical and expefimental' study of the beginning of sediment mdtion,‘
Gessler (11) utilized the armoring phenomena of non—cohésiVe sediment mixtures
to determine the ﬂuctuating pattefﬁ of the bottom shear stress exerted by the flow.

He assumed that i:he fluctuations of the bed shear stress are distributed according
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to the normal error lav_# ér..iﬂe"ith‘at a grain is set into motmnwhen the effective
.momentary shear s'tress.acti.ng on the g'ram exceeds a critical value which is a
function of the Reynolds Number of the grain. 'Furthérmofe, he defined the criti-
cal shear éfress for-a particular grain as the average bott.om shear stress of the
| stream flow when the probability of éroding of that grain size is equal to the proba-
bility of re1:|:1ai1'1in,¢;,'v still. Based on the above propositions, he concluded from the
exj)erimental meas—urements that the fluctuations ﬁf the bed shear stress are statis-
tically distributed according to a Gaussian normal law. The ra_tio of the standard
deviation to the mean was determined to be 70. 57 as compared to a value of 0.5
used by Einstein 7(9) in his bed—load transport formula. By the use of a statisticai
treatment, Gessler was able to establish a systematically deﬁﬁablefelaﬁon for the
beginning of se(iiment mofion. However, C%eésler's definition of critical shear siress,
for a pafticular grain size, as the average bed shear stress at which the probability
of a grain being eroded is one-half is incorrect. This definition would bé correct
only if the response of the grain to the flow excitation is instantaneous and static in
nature. Following Gessler's argument, when the mean bed shear stress is equal to
the critical shear for a particular grain, the probability for the grain to be eroded
is 50%. 'This in turn implies 50% of the fluctuating shear stre.sses exceed this
critical shear level; according to his assumption that a grain is eroded when the
effective shear stress exceeds the critical shear stress. However, for a dynamic-
system of sediment grain subject to ﬂuctua.t.ing loads, the fact that the fluctuating

shear exceeds the critical shear with 50% probability does not imply that the prob-

ability of the grain's being eroded is also 50%. In fact, a grain may be set into
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motion with 50% probabiiit‘jz of occurrence when the instantaneous shear stress
exceeds a critical shear level othef_than‘t_he aVerage shear.

In Cheng's work (7),

a for P dynamornete: was used to measure the lift and

B

drag forces exerted on a oneifdd.f dianid . -spliere, émbedded with identical parti--
cles, by the stream flow. Statistical analysis -shows that the probability densities
of the ﬂuctuaﬁng lift and the: drag' forces ai‘e' no_rmaﬂy disfributed. However, the:
standard déviations of both the lift -and_fhe drag are not constant as was proposed by
Einsteil;a (9) and Gessler (il). _InStead, the standard deviations vary with flow:
conditions. In his study of incipieht motion of a sphere, Cheng observed that the:
mean hydrodynamic forces do not necessarily have to exceed the weight of th.e sphere'l
to cause motion. Rather, an .rin.stantanéous excess of force aboir’e the weight may be
caﬁable of removing the sphere. Apperley (3) has made transducer measurements
of force components on a%—inc.h-diameter sphere with various protrusioné above*

‘a flat bed of similar particles due to a turbulent water ﬂow of 9 inch depth. The:
frequency distribution of the fluctuating drag and lift shows a skewed normal distri-
bution. In the study of initial instability of fine bed-sand well immersed in a laminar:
sublayer, Grass (13) was able to determine the distri}sution of instantaneous bed shear
stresses from knowledge of the instantaneous longitudinal .Velocity gradient inside the
viscous sublayer adjacent to the boundary. The velocity profile was ébtained through-
a high- speed' camera tracking of fhe progress of a h‘fdrogen bubhble tfacer in space
and time. The instantanéous bed shear stresses also show a skewed normal distri-

bution,

All these investigations either direcﬂy or indirectly support the idea that the
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pressure field or the resulting force acting upon a three-dimensional roughness

element on a stream bed is random in nature. The randomness of the particle

rocking motion before roll-owgier g:ar__i thus.-be%rg%sone% as the particle response to
. . W J S a'i‘i;- 5

s I o1 B 1
el St Wenog

the randomly fluctuating flu1d-dr1v1nglb'ads .'I‘hé"‘”st.gti_stical regularity of the ran-
dom response and excitation alsc; suggests that the instability phenomenon ass.ociated
with the beginning of particle removal can be better defined and understood through
probabilistic considerations. |

1. Probability Distribution of the’Fluid-Driving Moment

Direct observation of the sphere at the transition ¢f removal indicates the
random motion of the sphere follows a stati sticall-y regular pattern. Measureme.nts
of pressure or forces acting .on a bed element subject to stream flow also indicate .
this regularity in the fluctuation pattern (7 , 8, 10). This significant behavior of
statistical regularity has led to the assumption that both the fluctuating fluid-driving
moment and the response of the sphere are stationary random processes. By
'stationary' we imply that the probability distribution of a random process is inva-

.riant to é shift of time ofigin of the sampling.

For the purpose of determining the fluctuating fluid-driving moment pattern,

the sphere is assumed to be displaced above the static equilibrium position when |

-Wr cos es

the net driving moment applied to the sphere is greater than zéro, or MD

> 0. In other words, the cumulative per cent of time the sphere, during its rocking
motion, contacts the base is equal to the cumulative per cent of time that the given
static weight-restoring moment exceeds the fluctuating fluid-driving moment. This

assumption of equivalence between the response and the excitation of the sphere-pin




system can be expressed by:

in which, PM is the cumulative probability distribution of the ﬂuid—driﬁﬁg moment,
MD(t), Z 'ti is the summation of the_increméntal contact time, ti’ .during which
MD- < Wr cos -BS or = es from the first to the last increment of the sample, and

T is the total sampling time which must be large enough so.that a statistically sig-
nificant number of samples is made.

The principle used in determining the statistical information concerning the
fluid-driving moment is illustrated by Figure 2. In Figure 2, "the:ﬂ_uid-driv-ing mom-
ent, MD(t), is shown as a .random function of the time, ' t, and thé static weight-
restoring moment is shown as a time-independent constant crossing the fluctuating:
driving moment at a moment level of Wr cos G'S. In reélity, the.du‘ration. at which
the angular displacement, B(t), exceeds SS is longer than the duratipn. at which the-
fluctuating driving momént, 'MD(t)’ exc,geds Wr cos BS due to the time lag of the:
response. * In other words, the cumulative per cent time of contact is less than the
cumulatif.re probébility of the driviﬁg mo'ment,- MD(t), being less than Wr cos es.
The incremehtal éontact_ durations-betweeln-the sphere and the bése are shown in
Figure 2 as sql_id iines at thé angular diaplacemént, 68. However, when the statie”

weight-restoring moment crosses the fluctuating fluid-driving moment at high

) *Deterministic analysis of the dynaimic response of the sphere-pin system -
subject to idealized impulsive loads, based onthe linearized equation of angular
motion - Equation (5}, are shown in Appendix A.
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Curve 1 is the cumulative per cent time of contact
between the sphere and the base at various
levels of the weight-restoring moment,
Wr cos 63.

Curve 2 is the cumulative probability distribution of
the fluid-driving moment, MD ,

Figure 2. Method of Determining the Probability Distribution

of the Fluctuating Fluid-Driving Moment.
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moment 1e§e1, as is shown in Figure 2, the proposition of Equation (6) is generally
valid since the cumulative - lag:time'bé_tlweep the rQS?dﬂ-se and the excitation is very
-short as compared to. the cumu.lafive tiﬁle of contact.

Based on the propositifoxil oquuahoa. 3(6), “‘:f-};g;éisplacement of the sphere,.
B(t), is equal to the static equilibrium angle; BS, or the sphere is in contact with-

the base when the static weight-restoring moment exceeds the fluctuating fluid-

driving moment. The curnulative probability of the fluctuating fluid-driving moment

which is below the moment level of a known restoring moment can then be readily
determined experimentally by meaéuring the per cent of time that the sphere is in
contact with the base. |

The per cent time of contgct is determined from the reading of an eleétric-
clock, which runs whenever the sphere is in contact with the metal-plated base, in
reference to another clock reading which 'registers the total sampling time. The
statie weight-restoring moment, Wr cos Bs, can be varied accﬁrately by injecting
liquids of different densities into the stainless steel hollow sphere. The hollow
sphere is filled in full to avoid possible sloshing effect. In this way, the restoring
moment is changed without altering the characteristics of the fluid driving moment.
The cumulative probability distributionl of the fluctuating driving moment can thus
be obtainéd from the cumulative per cent time of contact, by systematically varying
the level of the weight-restoring moment while maintaining the fluid-driving moment
unaltered. |

In Figure 2, the measured cumulative per cent time of contadt versus the

weight-restoring moment is shown as curve '1 and the cumulative probability

AT A raamemae oo
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distribution of the ﬂhid—driving'moment is shown as curve 2. At high moment -
level, the cumulative per cert time of 'erfxtz}ct is representative of the cumulative
probability .of the fluid-driving lxgib.rj_iﬁ\enf.‘ - At 1ow_er_- _.iﬁléjment levels, the cumulative

per cent time of contact deviates from thé ¢umulative probability of the driving

2. Pattern of Fluid-Driving Force

If the sphere-pin system is subjected to an idealized steady fluid-driving -

moment, then the sphere would be barely lifted above the ground when the fluid

driving moment barely overcomes the static Weight-rest;:)ring moment. For a

"sphere-pin System subject to a fluctuating fluid-driving moment, both the response

and the excitation are considered to be stationary random processes. At the begin-
ning of the transition, the sphere performs a random rocking motion with very

small displacements. Therefore, the condition at which the sphere has a high
probability of being in contact with the base (say 95 per cent of fhe time) can be
tr‘eated as if the system is under static equilibrium in which the fluid-driving zﬁo-

ment exceeds the static restoring moment with a corresponding probability (about

5 per cent of the time). The determination of the fluid driving force pattern can

then be achieved through a set of thfee static-equilibrium moment equations.
The static fluid-driving moment, MD’ can he resolved into a couple, C,

and moments due to a drag force, F_, and a lift force, FL, passing through the

D

centroid of the sphere. These decomposed forces FD and FL and couple C are

shown in Figure 1. The equation of angular motion of the sphere-pin system under

static equilibrium conditions can thus be expreséed as
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C+FD-r'coscp+FL'rsincp=Wrsincp ' (7

in which, ¢ is the angle of repose and is related to the static-equilibrium ahgle,.

' Bs’ by o = % - 98 for the case of horizontal bed; Wr sin ¢ is the static restoring '

moment.. All clockwise moments are considered positive..

The drag force; FD, the lift force, F._, and the couple, C, are the three

L’
unknowns v&hereas the angle of repose, ¢, the moment arm, r, and the immersed
weight of the sphere, W, are the knowns in the static-equilibrium Equation (7).-
Experimentally, we can set up three static equilibrium conditions, subject to the
same unknown ﬂuid;dz_'i\'ing force pattern, each equilibrium conditionr having dif-
ferent values of the angle of repose, v, and different values of the weight, W.
The fhree unaltered unktnowns can thus be determined by s_olviﬁg the set of three

simultaneous equations each associated with one static—equilibrium condition.

Equation (7) is normalized by dividing by a reference force parameter

2
K = ApuT/Z

: ) o * :
in which, A=m D /4 is a reference area, D is the diameter of the sphere,

Uy is the reference approach velocity taken at a height equal to the top of the

sphere, and p is the density of the fluid..

* _

~ Since the resultant force or moment applied to the sphere as a whole is
of major interest, the full cross-sectional area of the sphere is chosen as a-
reference area. '
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By defining the folibwing dimensionless coefficients,

CD = _FD/ ({{K) = Drag coefﬁment

Cp = FL/ (CX) = Lift coefficient

Co = C/(CKr) = Couple coefficient

CR = Wr sin v /({C Kr) = Weight—festoring moment coefficient

in which r is the rolling radius or thé shortest distance between the centroid of
the sphere and the axis of sphere-pin contact points, { is the momentum correc-
tion coefficient taking into account the effect of non-uniform veloeity distribution
(see IV. A. 3), the set of three equilibrium equations can be written in dimen-

sionless form as follows:

CC +Cpy cos ¢ + C  sing, = CRO (8a)
CC+CD coscp1+CLsmcp1 = CRl (8b)
CC + CD cos. 9, + CL sin g, = CR2 (80)\

in which the subscripts i = 0, 1, 2 denote the number of the test set.
Eliminating the couple coefficient Cc, the above equations are reduced

to two equations

~ sin ch)CL =C__~-C (9a)

Rl RO

(cos ® cog ch)CD + (sin tpl

(cos P, = COS ch)CD + {sin ¢, sin cpo)CL = CRZ_ RRO (9b)




”

Since all values, éxcepf CD and C-L, are known from experimental measure-

ments at the equilibrium conditions, after substituting

a, = COSp; - CO8P,

=2
I

siﬁ'tpi - sing,

% = Cri~ CRo

i =1,2

values foi’ CD and CL are obtained as follows

C, = (clb

D - czbl)/(albz -a_b) | _ (10a)

2 21

C., = (a2

L (10b)

183 ~ 2,0,/ (@b, - ab))

The unknown couple coefficient, C c’ can then be obtained by substituting
the values C_ and C_, determined from above, into the moment equilibrium

D L
equation, Equation (8).

-C cos ¢, - C

'CC-= CRi D L smcpi, i=0,1,2 (11)

C. Limits of Transiﬁon'

Because of the random nature of the motion of a sphere subject to a fluc-
tuating fluid-driving moment, there is no critical condition at which motion begins
suddenly. In fact, the transition from a stationary state to the removal of a bed

particle is gradual rather than instantaneous, The limits of this transition will
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hereafter be referred to as. 'si:éges, that is the ini-tial §tage at which the sphere
starts random rocking motion and the final stage at which the sphere rolls over,

1. Initial Stage

The initial stage is defined as the condifion at which 95 per cent of the time
the sphere is in contact with the base, that. is, FR > OT In other words ,.5 per cent
of the time the sphere is not in contact with the base, that is,FR = 0

The cc;ndition of initial instability for a particle lying on a plane bed with
slope & can be formulated, according to the definition, by equating the static
weight-restorihg moment, MR’ to a moment M[ which Qmeeds the fluctuating
fluid driving moment 95 per cent of fhe time,

Assuming the moment MI is directly proportional to the fluid density, p;
the rolling radius, r, the Square of the reference approach velocity, U the |

2
momentum coefficient, {, and the reference area 7D /4, then the fluid driving

moment at the initial stage can be expressed as:

2 2
MI = clgwp rpu,f/s (12)

in which, CI is the fluid-driving moment coefficient at the initial stage, { is the

momentum correction coefficient to account for the effect of non-uniform velocity

=“The choice of 95 per cent probability is based upon the following reasons:
(i) the initial stage is associated with high cumulative per cent
time of contact between the sphere and the base; and
(ii) reliable experimental data of cumulative per cent time of contact
are obtainable up to the maximum value of about 95 per cent.
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distribution. The moment coefficient, CI, is a function of the angle of repose,
, and the particle protrusion condition.
The static weight-resforing moment, MR, of the sphere lying on a plane

o =

bed with slope ot-is

3 ' |
M= (v - V) gD T sin ¢ -a) (13)

~ in which, Yg is the specific weight of the Sphére, v is the specific weight of the

fluid, o is the angle of repose, and & is the angle of inclination of the bed meas-
ured from the horizon being positive for a downward slope and negative for an
upward slope. Figure 3 shows the moment balance condition schematically.

Equating M and M, from Equations (12) and (13),

2
u

c L =
[(’YS/Y)‘ 1]gD 1

sin p-®) a4

in which g is the gravitational acceleration. Equation (14) defines the condition
at the initial stage of the transiﬁon.

2. Final Stage

'Un_fortunately tﬁe final stagé can not be logically defiﬁed by tﬁe contact
time with the base but necessarily involves another definition based upon the
experimental method. In the. experiment the pin héi‘ght'was rédu_ced in small
increments until the sphere rolied over the I'ji_fns‘.' At least fen repetitions of a

roll-over determination were made. In order to analyze thesé experimental

data within a rational framework, the following analysis is presented.




26

Natural Condition-

Idealized Model Condition

Figure 3. Stability Condition of CoheSionless Particle on Sloping Bed.
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To study the motion of the sphere-pin system from the static equilibrium

' position to the roll-ovef'positiOn, the non<linear differential equation of motion,

Equation (2), should be used since the displacement is no longer small. Consid-

ering

I.B=.- wr cosB. (15)
Mulfiplying both sides by the angular velocity ;3,

I 3;§ = -(Wr cos B)ﬂ (16)

Integrating Equation (16) and evaluating the constants of integration in terms of

, generated by

the initial displacement B(0) = Gs and the initial velocity B(O) =® 0

an angular impulse,
22 2 - .
(B - wo)/z = - Wr(sin B - sin 98) 17

The above equation representis the mathematical expression for the theorem of
conservation of .energy as applied to the sphere-pin system; the left side repre-
senté the change in kinetic energy, the right side represénts the work done by
the moment (-Wr cos f§), or the change of potential enérgy.

The limiting coﬁdition for the sphere to reach its maxi_mum height, or roll-

over position, 8= 7/2, can be obtained by setting 8 = 0 in Equation (L7).

w(z] = 2Wr(1- sin BS)/I = 2Wr[l-cos (9-0)]/1 _ (18)

in which - & =g - BS, @ is t}ije angle of repose, and ¢ is the angle of inclination
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of the bed. Here 0 can be "inéterpreted as the critical, or minimum, initial angu-

lar velocity required to achiéve this crit_ica_l roll-oirér condition.
Consider that this critical initial velocity @ of the system is established

as a result of the application of a critical angular impulse or a net impulsive
moment M6 over a very short period of time t 0 {in comparison with the time of

*
traverse from 8= QS to B= %). Then, the following relation between w_ and M

0 ]

can be obtained by the angular impulse-momentum principle;

‘to
I(@,~0)= ‘[ Mg dt | (19)
0

in which the sphere is assumed to be at rest on the bed before the application of

the angular impulse. Assuming M6 is constant over duration t 0’ then
w, = (MG/I) to (20)

Substituting the above relation into equation (18),

M; = 41—?21‘— sin’ %—a_ ' (21)
0 :

*If t_ were of the same order as the time of traverse from 8 =8 to
B =7/2, there would be no need of an additional angular impulse (or Fhe result-
ing velocity w_ ) to roll the sphere over. With sufficient duration, the fluid driving
moment which is barely equal to the static restoring moment will be able to roll

the sphere over since the restoring moment decreases as the sphere rolls up
(See I1. A.).
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_ *
Since 1 = E(W/ g)r2 ‘where & is a constant,

T3 i+ :
= - ITne Tk _ 99
_M5 Ca(\(S Y ) 6 D r sin 5 (22)

in which C 5" 2 \[5/( '\1/ g/t to) is an impulsive-moment coefficient. Equation (22)
indicates that the impulsive moment is directly proportional to the immersed -

weight of the sphere, the effective radius of rolling, and the sine function of

(- a)/2.

The final stage of transition can be expressed as.

M;-Mp = M
or

M, - M, = cﬁ(ys-y)—gDBr sin—‘ﬂz?—“-— | (23)

In Appendix A, a positive muare-@ve net-driving moment which persists
for a time, t 0’ fo.llowed by a constant negative. net-driving moment is utilized in
Equation (5) to obtain a solution for the excursion time of the sphere. As shown
in Table A.1, the Sphere will roll over if the vaiue of at 0 exceeds the li.n':.iﬁng'
value delineated by the heavy-line curve. By definition of the coefﬁcient a, the
The pbint is that the ah,alysis

parameter, at_, is invérsely proportional to C

5
pfesente_d in Appendix A reinforces the validity of C

0

5 ds a significant parameter.

Values of C 5 can be determined from experiments by means of Equation (23).

While the effect of the added moment of inertia of the fluid is implicitly
included in € and C,, the experiments were conducted in flowing air in which the
effect of the added moment of inertia was negligible.
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Silbstitﬁting Equations (12) and (13), for the expressions of M-I and MR’

into Equation (23),

2 .
u
' T 2l e g
g[(vs/v)—llgD 3 cI[.Sm(tP @) + Cysin 5=

Equation (24) defines the condition at the final stage of the transition.

(24)
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CHAPTER III
EXPERIMENTS

The process of removal of an individual particle from a stream bed depends
mainly upon the characteristics of the fluid-dynamic forces exerted on the pro-

truding particle and upon the properties of the bed particles. Because of the fluc-

tuating nature of the fluid-dynamic forces and because of the random pattern of the

particle's rocking motion at the fransition stage of particle removal, experiments -
were required in order to evaluate the fluid-dynamic forces. In these experiments,
the weight-restoring moment of the particle was used as a gauge to determine the

magnitude of the fluid-driving moment. The probability distribution of the fluctuating

| fluid-driving moment was evaluated by the per cent time of contact of the sphere

with the underlying bed.

A. Apparatus

The experimental set-up for studying the proceés of particle removal and
for determining the effects of the angle of repose, the particle protrusion, aﬁd the
velocity distributioﬁs oﬁ .particlé removal, is shown in Figures 4 and 5. The
sphere~pin model consists of a sph‘ere, two equal-height pins aligned perpendicu~
larly to the flow direction, and a supp(:;l;ting base for the sphere. The height of the

pins in reference to the base can be adjusted to simulate the variation in the angle

. of repose. The level of the sphere-supporting base relative to a horizontal flat
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Figure 4. Photograph of Experimental Apparatus.
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plate over which the flow occurs can be controlled to simulate the variation of the

particlé protrusion above the bed. “The horizontal flat plate is placed at the open

3

end of a contraction section which is 7 5

inches in ué_qth by 4 inches in height.

The air flow is direéted to the cﬁﬁtx%cﬁuoﬁ‘ 'F;e;.ctidﬁ from a 20-inch-wheel centrifu-
gal air blower through a series of 96-degree guicie vanes. . The velocity of the air
flow could be controlled by a variable speed selector aligned between the air blower:
and a 5-horsepower induction motor. The .».'elocity distribution of the approach flow
could be empirically generated by-adjusting thelspacing of a wire g;'id, placed at

the end of the contraction section, upstream from tﬁe leading plate. The mean
velocity profile at the front section of the leading plate could be determined by
means of a movable Pitot-tube.

A one-incﬁ diameter stainless-steel hollow ball was chosen as the test
sﬁhere. A very thin brass sheet was glued to the top of the sphere-supporting base.
The cumulative time of contact between the sphere and the base could be registered
by connecting electﬁc circuits from the ends of the two steel pins and from the end
of the brass sheet of tiie base to the input of an electroniec relay, and connecting the
cutput of the relay to an electric digital counter clock. The sphere which rocked
against the pins served as a swifch to actuate the relay. The relay actuated the
counter clock. The circuit was closed when the sphere was in contact with the brass
sheet of the base, and opened when it was not. The electronic relay served to reduce-
the maxnnum input 'ciréuit current to 5 milliamperes and thus av‘oided'the poésible’
error-due to the a‘lrcing'-ef_flect: The input sensitivity of the relay was 0-50 megohms -

and the felay response time was-10 milliseconds.. The cumulative per cent time of




‘contact between the .sphére and .the base wés pbtainéd by ﬁéing another electric !
timer clock which regi-.stered_ the total sam‘pling'time o'_f the test. Variation of the
weight of .the test sphere was made possible by injectiﬁg liquids of different specific
weights to fill up the hollow ball fhrough a small machine-drilled hole of 0,018~
inch diameter. Liquids with varying specific gravities ffom 2.96 tb 0 78 were
obtained from solutions of various concentrations of acetylene. tetrabromide

(CHB rz' CH Brz) in alcohoi. Othei' heavy liquids, such as bromoform (CH Br3),

with a specific gravity of 2. 86, and carbon-tetrachloride (C Cl 4) with a specific
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gravity of 1.58, were also mixed with alcohol to produce other solutions.

In performing experiments on the final, or roll-over, stage of particle

removal, a series of one-inch diameter spheres made of different materials were

used in addition to the hollow balls. A list of the materials of these balls and their

corresponding weights is given in Table 1.

Table 1. Material and Weight of Different Test Spheres (1-inch diameter)

Material Weight Material Weight
(grams) (grams)
Stainless steel 66.57 . Lexan 10.27
Aluminum 23.53 Acrylic 9.865
Glass 21.30 Nylon 9.85
Teflon 18.45 Stainless Steel (hollow) 7.08
Delron 12. 065 Wood 6.52
Acetate 10.55 Wood chip 1.84
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B. Procedure

Before .starting eﬁch experiment,_ the desired particle protrusion was
sét‘ by adj-usﬁng the. levei of the sphere-supporting base relative to the flat
pl_é.te over which. flow occurred. _The. desired apprecach velocity distribution
was achieved by trial arrangement of the size and spacing of the horizontally
.fastened wire gfids. The veiocity profile was measured by a Pitot-tube tra-
verse across the upstream section of the flat plate in the absence of the
sphere.‘ The angle of repose was calculated from the height, p, of the two
vertical pins measured aﬁove the top of the bfass sheet glued to {ke base, the
radius, R, of the sphere, and {the width, éw, between the two pins.

An exi:erimént was started with the heaviest possible weight of the sphere.
With the sphére resting against the pins; the height of the piﬁs wa.s then adjusted
to a value at which the cumulative per cent ftime of contact beﬁveen the sphere and |
the base was greater than 95 per cent. With the pin height fixed, the cumulative
per cent time of contéct was obtainr;:d from the reading of the counter clock and that
of the timer clock. The eleciric timer clock recorded the total sampling period
whereas the electric.dig'ta_l-counter clock registered the cumulative time of contact
between the sphere and the base during .the sampling period. The data of per cent
time. of contact for affiXEd Weight-restoring momént condition was gen’erallﬁr taken
from a set of nin_e- or more samples:. While theﬂ spﬁei:e ‘was set in the testing posi-
tion, three sets of samples. (each with a 100- seéond"sa,mpling period) were obtained

consecutively. Then, the sphere was removed from the base and reset in position
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for ano'thér. three sets of loé;sé_cond'sample;s. This rémdvél and rgset process

~ was repeated tﬁro or more timés. This procedure of daté. sampling was mainly

for co;wenience' and reliability. However, the method was-a good test'for-the
stationarity of the random rocking motibﬁ since consistent results were obtained
from the consecutive sa;mpl-ing'.. The distribution of the cumulative per cent time
of contact undef various 'Weigh-t-—restoi'ing moments was r;;btained by repeating the
sampling i)rocess fof differenf weight-restoring moment conditions. The weight-
rerstoring moments were varied by incrementally changing the wéight of the liquid
mixture in the hollow sphere. Experiments for determining the distribution of the
cumulative i)er cent time .of éontact were terminated at a restoring moment level
at which either the cumulative per cent time of contact was very low, 5 per .cent

or léss, or tﬁe sphere would roll frequently within the 100-second sampling period,
whichever occurred first. | | ‘

| At each angle of repose, the same procedure for determining the distribution

of cumulative per cent time of contact under various restoring-moment levels was
repeated.

Experiments for determining the condition of the ﬁnal or roll-over stage of
particle remdval were performed differently. With the test sphere in position, the
~ pin height was lowered gradually in very small increments until the sphere would -
roll. .Tes.ts on roll-over conditions were also performed with one-inch diametet
balls listed in Ta:ble' 1 other than the stainless steel ball -injecte_dﬁdth liquid mix~
tures. Experiments to determine the ‘roll—over'conditién for each fixed weight of -

the sphere were repeated ten or more times.
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C. Results
All exﬁerirﬁental results are presented in Appendix B, The experiments

were conducted under both uniform and non-uniform approach velocity conditions..
| The velocity profiles for Run I, Ii, and IIT are shown in Figure B.1l. Uniform
. velocities of 92.5 feet pei‘ second and 58. 5 feet per second were generated for--
Run I and II, respectiw}ely. A non-uniform velocity profile was generated for

Run II. The experiments co{fefed a ra.ﬁge of the particle Reynolds number,

uTD/ v, from 3 x 104' to 75 X 104'whe.re v'iS ﬂle air vi.scosit'y. By defining the pro-
trusion condition as the ratio of the height of sphere ébofre the flat plate, h, to the-
diameter of sphere, D, a range of h/D from 25 per cent to 100'pef cent was cov-
ered in the experimen’ts.

Experimentally determined values of. Wsin® or C R CLKasa function of thé.
cumulative per cent time of contact are presented in Figures B. 2 through B.11.
Normal probability paper is used to facilitate the plotting. Values of W sin ¢ at
the value of 95 per cent cumulatix}e time of contact on theée graphs are the values
of MI/ r or CIC K. Values of W sin ¢ at the roll-over condition are designated as-
the values of MF/ ror CoCK. Values of W sin @ at the. initial stage or MI/ r and
values of CI are listed in Table B. 1. Valﬁes of W sin o at the final stage or MF‘J ol

and values of CF are listed in Table B. 2. Values of CI and C_, as a function of ¢

F

are also shown in Figures 6 and 7,
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CHAPTER IV
ANALYSIS OF RESULTS AND DISCUSSION

In all experimental runs, the measureq points of the cumulative per cent
time of éontact at vﬁrioﬁs levels of W sin o follow approximately a straight line on
the no.rmal probability plottings shown in Figures B. 2 through B.11. In the experi-
mentally determined probability functions shown in Figures B.2 through B. 11,

MD/ r can be substituted for W sin © when the cumulative per cent time of contact

is large. On the other hand, MD/f will be less than W sin cp whénever the cumu-
lative per cent time of contact is small because in this range the time for the sphere
to fall back to the base is appreciable. As a conséquence, the experimentally
determined probability functions can be used in the further analysis of the initial -

stage of transition but not for the analysis of the final stage.

A. Initial-Stage Analysis

The experimentally determined values of W sin ¢at the initial stage are
nearly equivalent to the ﬂuid—driving moment (actually MI/r) which is equalled or
 exceeded 5 per cent of the time. The characteristics of an equivalent steady-state

force system which would produce M, can be calculated by means of Equations (9),

1
(10), and (11). A convenient -representation'of:this--equivaileﬁt force system is by~

*

* * .
D’ C., and C_,, respectively.

means of the é'oefficients of drag, lift, and couple or C L C

Typical computations for determining the equivalent force system at various
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protrusion cond'it;ic'u_nsl us‘.ing' fﬁ_‘:iﬁ'ation (8) aré shown 1n Tables B. 3 through B.7. In
the following sections, the effects of the angle of Tepose, the protrusion condition

and the velocity profile upon the pattern of the coefficients of moments and forces

i,

will be examined.

1. Effect of Angle of Repose

Although the fluid-driving force pattern is independent of the angle of repose,

the driving moment associated with a fixed force pattern is indeed a function of the

*

angle of repose. The values of CD, C

* o
1 and C c determined for the initial stage
can then be substituted into eqiation {8) to give a functional relationship between

CI and 9 as follows.

* * *
CI = CC + CL sin @+ CD cos (25)

Computed values of C_ are also listed in Tables B.3 through B.7. These computed

I

values of CI as a function of pare shown as solid-line curves in Figures 6 and 7.

The function, Equation {25), shown in Figures 6 and 7 is symmetrical about

the maximum, CIM' For a given force pattern, CIM occurs when the moment arm

with respect to the rolling axis is maximum or when the angle of repose is equal to
the angle of the resultant force measured from the horizon. The angle of repose

associated with CIM is designated as cpM. An alternative expression for Equation (25)

" in terms of cm-and 9y 18

: : . _
: CI = C]M cos(yp - cpM) + CC (26)

* * *

: : *x
AJ summary of the values of CD, CL’ C o C]]V.l’- Ppp? amd.C'L/CD as computed in
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Tables B. 3 through B.7 are listed in Table 2.

" Table 2. Coefficients of Moment and Force, and cpM.at

Various Proti'usiox; Conditions

* * * *  x
h/D Crm P Ch | Cp Co CL/ Ch
@) (degree)

100 . 854 21.4 .592 . 232 .219 .392
85 .680 23.6 . 502 .219 .133 .437
75 ' . 638 ' 41.1 . 523 | . 457 -0, 056 . 873
50 . 466 54.9 .258 . 367 . 018 1.421
25 270 57.2 .143 . 222 . 007 1.553

If the resultant fluid-driving force passes through the centroid of the sphere,

£ * '
the couple coefficient, C c’ would be zero. As shown in Table 2, C c is small in

relation to C M for h/D equal to or less than 75 per cent.

I

2. Effect of Protrusion

To determine the effect of protrusion empirically, all values of CIM’
* * &
CD, CL, C

* -k .
o’ CL/_ Cpy? and Py 3 hsted in Tabl-e 2 are plotted in Figure 8 as a

function of h/D. The relationship between the moi:nent coefficient, C M’ the

1
angle, P and the p_rotfusion- condition, h/D, -can be expressed in the simplified

forms as

= 0,09+ 0.75 h/D 2
Ciu h/ - @n
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and

@ 0.3 - 0.4 arcsin (2h/D - 1) (28).

) *
in which P is expressed in radians. The variation of the force coefficients CD
*
and CL as a function of h/D do not follow a simple trend. As h/D increases, the-
drag coefficient increases proportionately whereas the lift coefficient increases to

a maximum value at approximately 75 per cent protrusion. The general pattern of

the fluid-driving forces at various protrusion conditions are illustrated in Figure 9.

(> (& Q_iig

Figure 9. Force Pattern at Various Protrusion Conditions.

The reduction of 1lift coefficient, C L’ at protrusion conditions beyond 75 per cent
is mainly due to the flow passage through the gap between the sphere and the plate.
which reduces the pressure at the bottom region of the .sphere-. In fact, at protru-
sions beyond 106 per cent, negative lift force was predicted theoretically by
Jeffreys (18) and observed experimentally by Apperley (3).

Tieleman and Sandborn (30) have made a study of the effect of a single

roughness element in 2 turbulent boundary layer of a smooth flat plate. The roughness
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element, a 3/16-inch diameter Sphex;e; was sﬁbject to air flow lwith non-uniform
veloéity distribution. The Re&nolds number of the sphere, UDA, was apprdxi—
mately 3x 103 if the free stream velocity, U, of 30 feet per second waé used. In
their study, pressure distribution around the surface of the sphere was measured.
The average drag and lift forces on the sphere, compﬁted by integrating the pres-
sure distribution, were found to be 4. O'? X 10"5 Ibs and 0.86 x 10-5 1bs, respec-
tively. Using the velocity profile measured by Tieleman and Sandborn_at a distanée
32 inches from the leading edge, an average drag coefficient of 0.39 and an average
lift coefficient of 0. 08 are obtained from Tieleman and Sanciborn's study. ” —
Early in 1939, Klemin, Schaefer, and Beerer (20) performed model study
of a perisphere (a hollow spherical building) in a wind funnel. 'fhe model sphere
was 2 feet in diameter énd was placed 0. 08 feet above the ground board. 'fhe aero-
dynémic forces were measured by the conventional method of mechanical balances.
At an air velocity, U, of 15' miles per hour, the corfesponding Reynolds number,
UD/v, was approximately 3 x 105. For the case with the sphere supported by a
collar on the ground board, the drag and lift coefficients were ¢.57 énd 0.42,
respgctively'. For the case with the sphere supported by columns on the ground

board, the drag coefficient was 0.49 and the lift coefficient was 0. 25,

*

L_of 0.59 and 0. 23, respectively,

. : *
In the present study, coefficients CD and C

were obtained for the sphere with full protrusion. The Reynolds number, uTD/V,

| 4

is approximately 5 x 10 . The results obtained by Tieleman and Sandborn (30)

and by Klemin, Schaefer, and Beerer (20) are generally in agreement with those

obtained in the present study.




from which value of C
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In a study of air flow behind a hemisphere with 2.5 ¢m radius, Jacob (16)
determined the drag force by integrating pressure distribution around the surface

D of 0 22 was c‘alcﬁla’ted. Thié value of the drag coefficient

for the hemisphere again compares favorably to the Va1ué determined in the present

. ' . ) *®
study, that is, for a sphere with 50 per cent protrusion, C

p = 9-26.

3. Effect of Velociiy Distribution
Assuming the magnitude of the fluid-dynamic force exerted upon an obstruc-
ting sphere is proportional to the rate of transfer of the approach fluid momentum,

the force is then proportional to
A

m J' ouldA | | (29)

in which, u is the non-uniformly distributed _apprdélch velocity, and dA is the ele-
mentary projected area .of the sphere normal to the flow direction, and 7 is the
factor to accounf for other effects due to the non—uniforx;lity of the velocity profile.

For convenience, the fluid-dynamic force can also be expressed as being
proportional to the reference force parameter K, or'%ui,A. The expression,
Equation (29), can be replaced by the prod'uct of the parameter K and the momentum
correction coefficient, [, defined as

ﬂprusz N[ ofaa

§= = = (30)
_ _ 1
K 2 u

Therefore, the coefficient of fluid-dynamic force defined as the ratio of the force

to the product of { and K is expected to be ihdependent of the profile of velocity
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distribution.

In experimental Run Nb. ni-1, a non-uniform #ﬁ'proach velocity profile was
generated. The protrusion condition of the sphere was 75 per cent. By cﬁoosmg
a value of 0.787 for [, the moment coefficient CI as detérmined from test data of

Run III-1 resulting in al.most identical values of CI as determined from the test data
associated with uniform veloéity profiles under the same protrusion condition of
75 per cent (Run I-9 and Run II- 1). Thé computed values of CI as a function of g
for both the uniform and non-uniform velocity profiles, are shown in Figure 7.

The value of /1, obtained thrbugh numerical integration. of Equation (28)
for the case of Run OI-1, is approximately 1.04. This implies a value of 7| equal
to 0. 76 for the protrusion condition of 75 per cent. Since only one experiment
under non-uniform velocity condition was conducted in the present study, values
of T for other protrusion conditions can not be established.

Alternatively, by choosing a represenfative velocity, “5’ measured at a
distance & below the top of the protruding sphere such that,

1 2 A 2
2 puﬁA = ﬂj pu d A (31)

then the coefficient of ﬂuid-dynamic force defined as the ratio of the force to the

p
arameter, —u
P 26

and 8/D for the data of Run II-1 are 70. 6 feet per second and 0. 32,

A, will be independent of the effect of velocity distribution. The

6

respectively.

values of u

Previously, Carsteﬁs, Neilsbn, and Altinbilek (5) also proposed a repre-

sentative height being 0.6 diameter above the bed, or approximately a distance, §,
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of 0.4 diameter below the top of a protruding particle. This finding was based 611

| experimental study of'--the_.ihdj.ﬁient motion condition of sand pérticles submerged

within the laminar boundary layer of oscillzitory flow over a flat bed.

4. Initial Stage

In the theoretical analysis of the process of particle removal, the condition
for the initial stage of the transition is given by Equation (14). The fluid-driving

moment coefficient, C

T can be determined by means of Equation' {25) together

* * *
with the experimentally determined coefficients CD, CL’ and C C listed in Table 2.

Alternatively, Equations (26), (27) and (28) can be used to evaluate CI'
The conditions for the initial stage, at various protirusion conditions, are

shown in Figure 10 as the solid-line curves. The abscissa of Figure 10 is the angle,

¢ - &. The ordinate is expressed in terms of a sediment number, Ns’ defined as

stx/?""T/\/[(Ys/v)— ljlllgDﬁ_ | @32

As shown in Figure 10, NS increases as (¢ - &) increases. Conversely,

NS decreases as h/D increases.

B. Final Stage Analysis

In\order to determine the condifion for the final stage of the transition,
information concerning the characteristics of the impulsive-moment coeffiéient,
C 5 is required in addition to the values of‘coefficient of moment or forces_ deter-
mined in the in.itial—stage‘analysis.

Based on Equation (23) which defines the condition of moment balance at the
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final'stage, the impulsive-moment coefﬁcient, C

5 can be obtained as follows

o
b

PRI N
Ca =(C; - CY) Iz; K/W sin 5

The computed values of C, are tabulated in Table B. 2.

)

1. Impulsive-Moment Coefficient

Computed values of the impulsive-moment coefficient, C6 s are shown in
Figure 11 for a range of © from 20 degrees to 70 degrees. At 50 per cent protrusion,.

the comptted values of C6 vary from 0.2 to 0.3. At 25 per cent protrusion,. C6

varies from 0.2 to 0.4. By comparing the order of magnitude of the inipu-lsive :

moment term, C, Wr (sin %), with the weight restoring moment term, Wr sin ¢,

6

in Equation (23), the scatter of Cé has an insignificant effect in determining-
the condition of particle roll over. Since the final stage is defined as the-
condition at which the particle rolls over, the lower limiting value of

C& = 0.2 will be used for protrusion conditions equal to or less than 50

per cent. The lower-limiting value of C6 can be considered as the minimum-

impulsive-moment coefficient required to establish the final stage. For particle -

protrusion beyond 50 per cent, there is a trend of increasing C, as the angle of

§

_is larger at higher protrusions. This

repose is increased. The increase in C 5

effect of high protrusion upon the variation of C. can be explained by the following

8
~argument. In the analysis of impulsive moment for particle removal (see II. C. 2),
the sphere is consideredto be in contact with the base before being subjected to the:

angular impulse. However, this assumption is generally valid for low protrusion

conditions but fails for high protrusion conditions. At high protrusions, the flow -
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field around the sl;)here chénées as the .sphere rélls above thé base. The resulting
fluid-driving moment is reduced as a result of lift-forc.e. reduction when the flow
passage through the gap between the sphere and the base is increased. This reduc-
tion in fluid-driving moment thus requires less weight-restoring moment to maintain
equilibrium. The reduction of weight resforing moment is then achieved naturally
.by establiéhiﬁg a smallér value of ¢ or a new equilibrium level at a distance above
the base. The sphere will then be in 'equilibrium about this higher level until there

is a strong angular impulse causing roll over. The computed values of C_ at high

6
protrusions has thus implicitly taken intc account the effect of flow-pattern altera-

tion before the occurrence of the final stage.

2. Final Stage

’

The condition for the final stage are defined by Equation (24) iﬁ which the
fluid-driving moment coefficient, CI’ has been determined in the initial-stage
analysis. The value of C 5 .can be obtained from the lowér-limiting values shown
in Figure 11.

The conditions for t.hé final stage_, at various protrusion conditions, are also
shown in Figui'e 10 as dashed-line curves.

It is interesting to note that the transitional range of NS values between the
initial and the final stage is rather narrow as compared to the values of Ns' This
indicates the difference in NS value due to the discrepancy in defining the stage of

particle removal is not appreciable as compared to the other factors, such as ¢

and h/D.
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C. Comparison

The'vql_idi.ty ‘of fhéf}zﬁfé-Serit‘ flndmg in deterfnﬁ;ﬁﬁg'Ehe_&ansiﬁﬁnal'conditions
of particle removal will be examineci by comparing. the éi‘ii.‘ical.veiocities for parti-
cle removal obtained by the author's method and by :others' methods.

A steady, two-dimensional, uniform, open channel ﬂo:w is considered. All

other pertinent data are given below:

~Water depth _ | Yo = 2ft
Channel slope =0
‘Specific gravity of -

the particle ys/ v =2.65
Density of water | p = 1.94 slug‘/ft3
‘Particle diameter ‘D =3 mm

In order to determine the velocity distribution, the Karman-Prandtl equation (27)

for turbulent flow over hydraulically rough boundaries is used..

= = 2.5 log A

@9
N TP e k/30 -

in \l;rhich, u is the velocity at a distance y above the boundary, 7 is the boundary-
shear stress, and k is the Nikuradse sand-grain diameter. The sand grain
diameter, k, is tzken equal to D by assuming uniform sizes of the bed-lﬁateria;ls.
The meap velocity, V, across the depth, Yo can be obtained through integration |

of Equation (33) from y = D/30, where u is zero, toy =-y0.
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Y _2.5[log 30 =2 - 1+ 3—]3—-] ' (34)
[1/p € D Yo : _

In the subsequent sections, the mean velocity, V, of the stream at which
the bed material begins to move as determined by various methods will be pre- .
sented for comparison.

- 1. Shields' Parameter (28,31)

The commonly used value of Shields' critical shear stress parameter,
m-— , for coarse sand is 0.06. The corresponding value of ¥ /0 is 0. 177
S
ft/sec. The mean velocity, V, as obtained from Equation (34) is.equal to 3.40
ft/sec.

2. Mavis and Laushey's Formula (21, 31)

The empirical formula for defermining thé critical bottom velocity, ub,

as given by Mavis and Lauchey is

Yy 1/2  4/9
(Y——'l) D (35)

u =

A S

in which D is the pai‘ticle diameter in millimeters and ub is in feet per second.
The botiom velocity i-s-thps equal to 1. 03 ft/sec. By assuming , occurs at y = D,
then the corresponding mean vélocity as obtained from Equations (é3') and (34) is
2.38 'ft/sec. |

3. Neill's Criterion (23)

The mean-velocity criterion proposed by Neill is
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2 - -1/3

PV D _
— = 2.0 =
,-wDb (yo) | ' (36)

From Equation (36), the critical mean velocity, V, is equal to 1.78 ft/sec.

4. Carstens, Neilson, and Altinbilek's Parameter (5)

The incipient motion criterion proposed by Carstens, et. al. is

2 . _
5 _tanomcosg+sing 8.2

[(v,/y) - 11D 1+ tan e c;

u

- @37)

in which uﬁ is tﬁe velocity at a position 0.6D ab&ve the bed and C]") .is the drag-
coeﬁiéient for free falling sahd grains. At high Reynolds number, the Value: of
CJIJ for sand grains'is approximatel& equal to 1.12 (1). For well rounded sand
grains with a diameter of 3 mm-the angle of repose, v, is generally taken as
equal to 30 degrees. The velocity, u6, for the case of flat bed, or ¢ = 0, is
evaluated to be 1.18 ft/sec. The corresponding mean velocity, V, as determined

from Equations (33) and (34) with u = 1. 18 ft/sec at y = 0.6 D, is 3. 16 fi/sec.

5. Author's Method

Considering an idealized arrangement of the protruding sphere lying on
top of a layer of uniform spherés,_ as shown in Figure 12 below,the angle of repose

of the protruding sphere is by.geometry,

Q= arctan (1 + z/R%z [ 3-(1 + z/R) ] -, .(38)

in which z is half of the clearande' between the neighboring spheres.
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Figure 12. Idealized Bed Particle Arrangement with Uniform Spheres.

The distance from the top of the protruding sphere to the top of the underlying

spheres is

B

»

J3 -1+ z,"‘R)2

%
Assuming the effective wall being 0.2 D below the top of the underlying spheres,

the protrusion condition of the sphere can thus be expressed as

*The effective wall is defined as the origin of the logarithmic velocity
distribution. Einstein and El-Samni (10) determined the effective wail as being
0.2 diameter below a plain tangent to the top of the spheres by fitting the logarith-
mic velocity distribution. Iwagaki and Tsuchiya (15) determined the effective wall
~as being located 0.25 diameter below the plane tangent to the top layer of the sand
particles. ' '
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=

—..—[-0'-2~.+ ﬁ fs-(1+#R] ‘(39)

v}

For a value of zpequ:il t030 d_elg_r,ée‘s; the 'éo'x:"responding value of z/R is
approximately 0.3. The associated protrusion condition, h/D, is then approiii—

mately 85 per cent. The fluid-driving moment coefficient, C., and the impulsive

P
moment coefficient, C 5 as obtained from Figures b and 11 are 0 68 and 0. 32,
respectively. Using a momentum correction.coe.fficient, £ , equal to 0.787 as
obtained from Run ITI-1 of the present study, the critical bottom Veloéity corres-
ponding t§ the. final sfage of the fransition can be evaluated. The bottom velocity,
uT, as c_o_mputed frqm Equation (24), is 0.87 ft/sec. The corresponding mean
velocity, V, obtained from Equations (33) and (34) with u = (.87 ft/secaty = 0.85D,
is 2. 08 ft/sec.

6. Saummary

The critical velocities as determined by different approaches are summa-

rized in Table 3.

. Table 3. Summary of Critical Velocities Based on Various Methods

Method Used By
Shields Mavis Neill Carstens Author

Mean Velocity
V(ft/sec) 3.40 2.38 1.78 3.16 2.08

—s

The mean velocity is computed based upon the assumption that the bdttom

_velocity is taken at y = D. '
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CHAPTER V
CONCLUSIONS

1. A simple experimental method has been developed, based .upon the
proposition of Equation (6), using the weight-restoring moment of the sphere as
a gauge to determine the probability dietribuﬁon of the fluid-driving moment.

The metilod is presently limited to the determination of the high ievels of the
fluctuating moment. If the response-excitation relationship of the sphere-pin
system can be better established, the method could be extended to cover the
determination of the lower level moment components. The fluid-driving force-
pattern aesociated with the driving moment cen be evaluated by the use of
Equations (10) and (11). With 'ﬁlinor modifications, the method developed for
det-e.rmining the fluid-dynamic moment and forces on a protruding sphere can
alse be used to deterniine the ﬂuid-dyeamic moment and forces upon other body
configurations., The author believes that the development of this simple experi-
m_ental method is the most important contribution of the study.

2. Variations of the experimentally determined coeificients of moments
and forces with the protrusion conditions are shown in Figures 8 and 11. The
ratio of the coefficient of lift to drag, C;/ C;;, decreases from -approxirﬁately 1.6
to 0.4 as protruSion_condition, h/D, increases from 25 per cent to 100 per cent.
For h/D edual to or less than 75 per ce.nt, the resultant fluid-driving force can be

considered as passing through the centroid of the sphere.
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.3, There is a transition through which the sphere is removed from a
stationary state to an 'eni:raipment: state.' The 't"ran.s;-_‘t“ion is characterized by the
random rocking motion of the sphere. 'G'e'herali;zed formulas defining the condi-

tions of the initial stage and the final stage of the transition are given by Equations

(14) and (24), respectively. As shown in Figure 10, the range of the differences

in the parameter, Ns’ betwee_n the initial stage and the final stage is rather narrow

in comparison with the values of NS. The effect of non-uniform approach velocity

‘distribution is incorporated in the formulation of Equations (14) and (24) by intro-

ducing.a momentum corfection coefficient,  , as defined by Equation (30). How-
ever, the readef is cautioned that the value of | was determined by only one.
experiment with 75 per cent sphere protrusion and with one non-uniform approach
velocity distribution. -

4. A _comparisoh of the critical velocities for the removal of a sediment
particle as determined by various methods are summarized in Table 3. Despite
the idealization of the present model, the resulting critical velocity is in close
agreement with the critical velocities determined by other methods derived from
experiments of natural sediment in water flow. The compafison of the results
reassures the validity of the present finding to practical applications. Also, the
clqse agreemeﬁt of the resulis indicates that such factors as the added moment
of inertia and particle shape play a secondary role in the process of particle '

removak:--
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APPENDIX A

RESPONSE-EXCITATION RE LATIONSHIP

‘ - OF THE SPHERE-PIN SYSTEM

The small angular displacement of the sphere subject to impulsive loads
can be obtained by solving the linearized differential equation of angular motion,
Equation (5), with the right hand side replaced by an idealized impulsive moment.

In order to simplify the analysis, the net impulsive moment is idealized as a posi-

i tive rectangular impulsive moment followed by a constant negative momert., The

duration of the positive moment is considered to be t.. The ratio of the magnitude

0
of the negative moment to that of the positive moment is m. Neglecting the damp-

ing moment in Equation (5), the equation of motion of the system is

I8- (Wr sin 8)6=M[U(t) - (m+ 1) Ut -t )] (A.1)

in which, M is a constant relating to the maghitude of the net impulsive n.m'ment,

and U{t - to) is the unit step function defined by
Ut - to) (A.2)

Dividing Equation {(A. 1) by the virtual moment of inertia, I, and designating a2 =

Wr sin es_/i, |

g - aze = (M/T)[U(t) ~ (m +1)UE-t))] : " (A.3)
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Introducing the dimensionless quantities

t = t/to; (A.4)
2 _ i
and 8 = (2 1I/M)8 : (A.5)
Equation (A. 3) becomes
gu - aztig = azti [Ut) - (m+1)U(1:_ -1)] (A.6)
- 2
in which g=deg /dgz.
Assuming rest conditions,
8(0)=0, §(0)=0, (A.7)

The solution of Equation (A.6) can be obtained by the method of Laplace transform.
The Laplace transform of the left side of Equation (A.6) subject to the initial values

of 6 and § as given by Equation (A.7) is

LG - azti 0}= (s2 - aztﬁ) ®(s) . (A.8)

The Laplace transform of the right side of Equation (A. 6) is

221 m+l -s
e

22 ‘
L{a"t UM - (m+]) Ut - D1} =a"t - = ) . (A.9)
Equafing Equations (A.8) and (A.9),
| : aztz ' |
o) = —ztyg— [1- m+l)e "] _ - (A.10)

s(s - a"to)
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By partial fraction, the abové equation becomes .

0(s)= 555 -<) (1-m+ne®) @
- 232 .

-at0

Hence 8 (i), the inverse transform of ® (s}, equals .

01;__.— 1) -~ (m + 1) [cosh ato(t_- 1})-1 1 Ut-1) (A.12)

()= (coshat
Equation (A. 12) is the response of the sphere in dimensionless form. The response,
8 (g, is characterized by the parameter, atO, and the moment ratio, m..

Typical response-excifation relationships of the sphere-pin system, with
at0 =1, are shown in Figure A.1. The excursion times (the time interval between |

the time of take-oif and the time of roll—bé.ck) of the sphere, te' are tabulated in

Table A. 1 in terms of the ratio, te/to.

Table A.1. Excursion Time of the Sphere
(te/to) :

at
NN 05 1o

2.5 3.0
2 2.50 3.60 X *
5 1.72 1.83 * *
10 1.44 1.49 * *
15 1.34 1.36 1.80 | *
20  1.28 1.30 1.54 2.25

~ *Response, f (t), increases monotonically with time, t.
In Table A.1, 'limiting values of the excursion time are shown. The blank spaces-
in the upper right of Table A.1 indicate that the sphere would roll over the pins

without falling back to the base for these values of at o and m.
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Figure A.1. Response-Excitation Relationship.
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APPENDIX B

EXPERIMENTAL RESULTS
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Figure B.2.a. Data of Contact Duration at 100% Protrusion (Run I-8),
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Figure B.2.bh. Data of Contact Duration at 100% Protrusion (Run I-8),
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Figure B.3. Data of Contact Duration at 85% Protrusion (Run I-7).
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Figure B.4, Data of Contact Duration at 75% Protrusion (Run I1-9).
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Figure B.5.b. Data of Contact Duration at 50% Protrusion (Run I-4).
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Figure B.6.a. Data of Contact Duration at 25% Protrusion (Run I-5).
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Figure B.6.b. Data of Contact Duration at 25% Protrusion (Run I-5).
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Figure B.9.a. Data of Contact Duration at 76% Protrusion (Run HI-1).
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Figure B.10. Data of Contact Duration at 50% Protrusion (Run II-4),
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.Table B. 1. Datzi"- of lFluid-j;DI:'iVing’_ Moment Coefficient CI
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T

Run - Protrusion R B r CI#
No. h/D %) {inch) (degree) (gram)
I-8 100 0,152 43,0 19.79 0. 812
0.180 49,3 19.04 0.781
~ 0,238 56,5 18.01 0.740
0. 281 62,55 17.17 0.705
0. 331 69.2 15.81 0.649
0. 380 75.8 14.55 0.597
- 0.424 80.8 13.60 0.558
I-7 - 85 0,107 34,27 16.35 0.671
0,140 40,85 16,00 0.657
0.172 46, 40 15.53 0.638
0.228 556.12 14,26 0.585
0.272 61,30 13.43 0. 552
0. 329 68. 94 12.61 0.518
0.389 76. 50 11.88 0,488
I-9 75 - 0,095 31.6 15.32 0.629
0.125 38.0 15.55 0.639
0.174 46. 75 15.42 0.633
0. 230 55,4 14. 82 0.608
0. 2567 59.5 14.72 0.605
0.273 61.5 14.45 0.593
0.314 67.0 13.88 0.570
I-4 50 0. 050 19.0 9.51 ¢. 390
: 0. 066 24,1 9, 84 0.404
0,089 ‘30, 35 10.14 0.417
0.1156 35.92 10. 80 0,443
0.160 44.4 11.08 0.455
0.198 50.6 11.33 0.465
0. 347 71.46 11.03 0.453:
0.384 75.9 10.76 0.442
0. 246 57.73 11.35 0.466




Table B.1 (Continued). Data of Fluid-Driving Moment Coefficient C
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47.25

I
' . _ ¥ 3
Run- Protrusion’ a B B r CI
No. h/D (%) “(inch) . (degree} (gram) '
I-5 25 0.034 - 11.48 4.65 0.191
“0.036 12.84 4. 85 ¢.199
0.041 15.2 4,73 0.194
0.065 23.8 5,32 0.218
0. 095 31.6 5.93 0.244
0.140 40.75 6.31 0,259
0. 200 50,9 6,42 0. 264
0. 249 58,2 6,44 0.264
-3 100 0.039 14.08 6. 83 0.698
0. 056 20.93 7. 56 0,773
0.075 25.6 T.70 0. 787
0.114 35. 8 7.70 0.787
0.187 50.4 7.47 0.763
II-2 85 0.047 17.62 6.12 0.626
0.0687 24.35 6.45 0.659
0.087 29.65 6.62 0.677
0.120 37.0 6.55 0.670
0.157 43. 85 6.33 0.647
o-1 75 0.029 8.1 4,05 0.414
0.037 12.9 4, 88 0.499
0. 045 16. 86 5.40 0.552
0.056 20.9 5.856 0.598
0. 061 22,55 5.94 0.607
0.075 26.6 5. 96 0.610
- 0,087 29.55 6.02 0.615
0.108 34.5 6.04 0.617
-4 50 0.069 25.0 3.88 0.396
-1 75 0.057 21.1 8.12 0. 566
0. 087 29.65 8.68 0.605
0.1286 38.2 9.18 0.640
0.177 9.18 0.640
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Table B.1 (Continued). Data of Fluid-Driving Moment Coefficient CI

Run Protrusion WP e coa B e MI/r CI
No. h/D %) (inch) .~ . .. (degree) - {gram)
0.231 : 55.55 8.92 0.622
0.297 . 64.73 8. 50 . 0.593
2%

T§= arccos (R-p)/(R2 -w) 3 R=0.5inch, w= 0.155 inch,

¥ = (MI/r)/C, K; K= 24.35 grams; { = 1.0 for all tests of Run I
' K= 9,78 grams; C = 1.0 for all tests of Run II
K=18,22 grams; { = 0. 787 for Run IIl-1.
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Table B.2. Data of Impulsive Moment Coefficient Cg

"Run Protrusion p 3 1 : MF/r ct W Cy
‘No. = h/D &%) (inch) ' (degree) (gram) (gram)
1-8 100 0.113 35.52 14.81 0.608 25,50
: 0.127 38.35 14.20 0.583 . 22,92
0.154 43.3 13.24 0.543  19.32
- 0.184  48.4 0.785  12.86 0.527 17.20 0,883
0.210. 52.4  0.763 11.77 0.483 14.8 1,04
0.231 55.5 0. 745 10.92 0.448 13.24 1.175. -
0.091 30.6 14.90 0.611 29.21
" 0.251 58,4 0.727 10.13 0.416 11.90 1.306
0.135 = 39.85 - 13.66 0.560 21.30-
0.163 44.85 0.801 13.0 0.533 18.45 0.925
0.244 57.43° 0.733 10.17 0.417 12.065 1.330
0.265 60,4 0.714 9.17 0.376 10.55 1.55
. 0.275 61.8 0,703 9.05 0.372 10.27 1,53
0.278 62.2 0. 700 8.71 0.358 9.855 1.638
0.283  62.88 0.696 8.76  0.360 9.85 1.592
0.356 172.4 0.620 6.71 0.276 7.04 2,13
1~7 85 0.090 30.4 0.677 13.78  0.565 = 27.19 0.383
0.124 37.8 0.664 13.40 0.550 21.86 0.392
0.145 41.7 0.653 12.90 0.529 19.39  0.437
0.187 48.8 0.628 12.05 0.495 16,00 0,489
0.221 54.1 0.604 11.28 0.463 13.91 0.542
0.257 59.25 0.577 10.46 0.429 12,17 0.598
0.282 . 62.7 0.557 9.80 0,402 11.02 0.658
0.125  38.0 0.663 13.10  0.537  21.30 0.442
0.155 .43.5 0.648 12.70  0.521 18.45 0.453
0.256 59.13  0.577 10.35 0,425 12,065 0.622
0.28% 62.87 0.557 9.39 0.38 10.55 0.757
0.299 65.0 0. 543 8.93 0.366 9.855 0.813
-~ 0.299 65.0  0.543 9.31 0.382 10.27 0.711
1 0.427 81.2 6.95  0.287 7.04"
I-9 75 0.090 30.5 0.626-  13.30° 0.546 26.23 0.282- -
0.152 43.0 0. 640 12,97 0.532 19.01  0.378
49. 8 0.630 12. ' 0.513 16.36

0.193

50

0.413




Table B. 2 (Coptinued). Data of Imp_ulsivé Moment Coefficient C
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6
; T ' ¥
Run Protrusion p -8 C MF/I; - C w Cs
No. h/D (%) (inch) (degree) ~ (gtam) (gram)
1-9 75 0.252 58.6 0.605 11.66 - 0.478 13.67 0.452
0,074 26.48 0.615 13.16 0,540 29.47 0.271
0.116 36,10 0.636 13.46 0.552 22.80 0,290
0.124 37.76 0.639 13.04 0.535 21.30 0.368
0.158 44.0 0.638 12.82 0.527 18.45 0.392
0.300 65.12  0.580 10.94 0.449 12,065 0.493
0.355 72.25 0,540  10.05 0.412 10.55 0.501
0.406 78.6 0.494 10.07 0.413 10.27 0.302
0.399 77.7 0.502 9.675 0.397 9.855 0,413
I-4 50 0.042 15.8 _ 7.85  0.322
0.055 20.6  0.388 8.51 0.350 24.17 0.214
0.071 25.5 0,409 8.8 0.364 20.61 0.240
0.117 36.3 0,444 9,36 0.384 15,81 0.297
0.135 39.9 0.452 9.79 0.402 15.24 0,234
0.167 45.55 0.461 9,89 0,406 = 13.85 0.208
0.198 50.75 0.465 9,98 0,410 = 12.89 0.242
0.262 60.0 0. 465 10.06  0.413 11.61 0,218
0.306 65.9 0.460 10.04 -0.412 10,99 0.195
0.362 73.3  0.445 9.55 0.392 9.99 0.216
0.067 24.2 0.403 8.75 0.359 21.30 0.239
0.089 30.3 0.426 9.35 0.384 18.45 0,212
0.230 55.4 0. 467 9,93 0.408 12,065 0.256
0.294 - 64.33  0.461 9.525 0.391 10.57 0.303
0.344 70.85 0.450 - 9.175 0.377 .16.27 0.298
0.352 71.88  0.448 9,37 0.385 9.855 0,265
0.368 73.8 0.444 9,46 0.388 9.85 0.231
I-5 25 0.034 11.48 0.191 3.70 0.152 18,61 0.509
0.039 14.10 0.200 3.82 0.157 15.69 0.530
0.063 23.20 0.225 4,70 0.193 11.91 0.325
0.102 33.20 0.249 5.36  0.220 9.80 0.243
0.131 39.15 0.259 5.47  0.225 8.67 0.285
0.194 50.0 0.269 5.725 0,235 7.48 0,263
0.221 54.1 0.270 5.825 0.239 7.19  0.231
0.062 22.8 = 0.224 4,57 0.188 11.79 0.376
0.027 . 5.74 S 2.13 0.087 21.30"
0.035 12.06 0.191 3.8 0.158 18.45 0,440




Table B, 2 (Continued). Data of Impulsive Moment Coefficient CG
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25,5

0.612

Run Protrusion p 3 CT M/t C:, w Cg
No. h/D (%) (inch) (degree) (gram) (gram)
1I-5 25 . 0,060 22,3 0,228 4,58 0,188 12.065 0,418
0.080 28,0 0.237 4,825 0.198° 10.27 0.382
0.081 28.2 0.238 4.66 0,191 9,855 0,476
0.085 29,2 0. 240 4,81 0.197 9.85 0,422
0,232 55.7 0,270 5.385 0.221 6.52 0.392
om-3 100 0.037 12.83 6.235 0.638 28.05
0.054 20,36 6.825 0.697 19.61
0.062 22,8 6,67 0.682 17.22
0.085 29,2 6.49 0.664 - 13.28
- 0.125  37.9 0, 823 5. 97 0.610 9,72 0,662
0.178 47.35 0,790 5.22° 0.533 7.09 0,882
0.047 17.63 6,46 0.660 - 21.30
0,055 20.6 6.49 0.664 18.45
0.093 31.15 6.24 0.638 12.065
0.116 36.2 6.065 0.620 10,27
0.190 49.3 0.782 4,94 0. 505 6.52 0.988
II-2 85 0.044 16.49 5.50  .0.562 19.40
0.065 23.80 5. 87 0.600 14.53
0.074  26.30 5. 85 0.598 13.20
0.081 28,20 5.82  0.595 - 12.31
0.107 34.2 0.672 5.62 0.578 10.04 0.311
0.142 42,25 0.652 5.565 0,569 8.28 0,272
0.173 46.5 0.638 5.15 0.527 7.08 0.388
0.179 47.6 0.633 4,815 0.493 6.52 0.520
0.111 35,15 0.870 5,673 0,580 9,85 0,296
0.104 33.65 0.673 5,69 0.582 10,27 0,299
0.080 28.0 5.66 0.579 12,065
0.045 186,86 5. 35 0.547 18.45
0.037  13.08 4,825 0.493° 21.30
If-1 75 0.028 7.0 3.19 0.326 26.11
0.035 12.04 4,29 0.439 20.58
0.048 18.1 0.582 5. 07 0.518 16.31 0.244
0.059 21,95 0.599 5.415 0.554 14.50 0.160
0.063 23,2 0. 604 5,43 0.555 13.79 . 0.173
0.071 5,40 0.552 12.54 0.208




Table B. 2 (Continued, Data of Impulsive Moment Coefficient C6
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C

Run Protrusion p 3 C MF/ r r W Cy
No. h/D %) (inch) (degree) (gTam) . (gram)
-1 75 0.084 29.0  0.617 5.46  0.558 11.27 0.205
0.106 34.0  0.633 5.49  0.561  9.82 0.246
0.035 12.03 4.44 0,454 21,30
0.040 14.65 4.67 0,477  18.45
0.075 26.6  0.616 5.41 0,553 12,065 0,222
0.087 29.65 0.624 5.22  0.533 10.55 0.249
0.190 49,3  0.631 4.95 0.506  6.52 0.379
0.179 47.6  0.635. 5,13  0.530 7,03 0,431
0.102 33.2  0.632 5.38  0.550  9.85 0,284
-4 50 0.053 20.0  0.384 3.45 = 0.353 10.08 0.179
' 0.095 31.55 0.430 3.70  0.378  7.07  0.265
0.105 33.8  0.436 3.63  0.371  6.52 0.336
m-1 75 0.048 18.2 7.19  0.501 23.02
0.054 20.45 7.20° 0.502 20,62
0.083 28.9 7.78  0.542  16.10
. 0.116 36.2  0.638 7.97  0.555 13.50 0.284
0.169 45.9  0.640 7.94 .0.553 11.06 0.290
0.216 53.3  0.627 7.52  0.524  9.38 0.351
0.271 61.2  0.600 7.10 0.494  8.11 0.368
0.043  16.46 6.03  0.420 21.30
0.064 23.8 7.40  0.516 18.45
0.137 40.2  0.641 7.78  0.542 12.065 0.342
0.164 45.0  0.640 7.45  0.519 10.55 0.431
0.182 48.0  0.637 7.62  0.531 10.27 0.364
0.182 48.0  0.637 7.33  0.510° 9,855 0.454
0.187 48.8  0.636 7.41  0.516  9.85 0.423
0.307 66.05 0.576 6.46  0.450  7.07 0.583
0.321 67.9  0.566 6.03  0.420  6.52 0.575

'r_Values of CI are obtained from solid-line curves shown in Figures 6 and 7. -
qtcF= (M /1)/CK; K=24.35 grams; { = 1.0 for all tests of Run I
K= 9.78 grams; [ =1.0 for all tests of Run IT

K =18.22 grams; { = 0. 787 for Run III-1.




89

Téble B.3. Patte‘rn. of Fluid-Dynamic Forces and Moments

at Protrusion Condition h/D = 100% (Run I-8)

a, b,
1 1
il p, 2 lsing| cos?d | = °° gi = °n :1 C=Cp. | ¢ = Ch
(inc]h) (degi‘ee i 1 coS 0 sin 0 i i i - 10
0(0.190 49,3 | 0.754 0.652 - - 0.781 -
1]0.238 56,5 | 0,833 0.551 -0,101 0.077 0,740 -0, 041
210.331 69.2 | 0.939 0.3555 -0,.2965 0.177 0.649 -0.132
* o (e b ¢ b)) (ab b 0.59 |
Cp = (e1Py = opb))/(a;b, — a b)) = 0.592
. ] ,
CL = (alc2 - azcl)/(albz - azb1) = 0.232
* ok
@M = arectan (CL/_CD) = 21. 4 degree
* C * s § * )
: CC- IO—CLsm O—CDcos 0 —0..2_197.
C C* C* in & C* 3 0
= + =
IM c L sin M + D cos M= 0 854
3 | sine | C cosdC sind| o
. s
(degree) CcO0Ss sin CD co L sin I-
5 0.995 | 0,087 0.590 0.020 | 0.829
10 0.985|0.174 0.583 0.040 | 0,842
20 0.940 | 0. 342 0.556 0.079 0. 854
30 0.866( 0,500 0.513 0.116 | 0,848
40 0,766 0,643 0.453 0.149 | 0.821
50 0.6431 0. 766 0.380 0.178 | 0.77T
60 0.500] 0, 366 0.296 0. 201 0.716
70 0. 342 ( 0. 940 0.202 0.218 | 0.639
80 0.174 | 0, 985 0.103 0.228 | 0.550
'f' %k % . @ * Py
CI—CC+CL sin +CD cos

3




Table B. 4. Pattern of Fluid-Dynamic Forces and Moments

@
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at Protrusich Condition h/D = 85% (Run I-7)

a, b, -
i i c
] . cos ¥, sin &, , Ii
P : @i sin &; | cos &; = | T _gin 3l C_=C_. ¢, =
(inch} | (degree) €05 24 sin 0 o R ! cIO
0 0.107 34.27 10.563| 0. 826 - - 0.671 -
1 0.172 46.40 (0,724 0.690 -0,136 0.161 0.638 -0.033
2 0.329 68,94 (0,933 0. 360 -0. 466 0.370 0,518 -0,153
* —(e.b_ - e.b)/(ab. -ab) = 0.502
Cp = (84Pg = P/ (3 by ~ayh)) = 0.5
*
CL = (a1 c, - 2, cl)/(alb2 - azbl) =0,219
) t. */ * 23.6d
M arctan (CL CD) = 23. egree
* C C* in * ] 0.133
CC— 10~ 1,_‘sm O-CDcos 0= . L
C* C* in &_ C* & 0.680
CIM—-C+ Lsm M+ Dcos -0
’ % *
B cos & sin & CDcos@ CL sin & CI'
(degree)
5 0. 996 0.087 0. 500 0,019 0.652
10 0.985 0.174 0,49 0.038 0.665
20 0. 940 0.342 |  0.472 0.075 0.680
30 0. 866 0. 500 0.435 0.110 0.678
40 0. 766 0.643 0,384 0.141 0.658
50 0.643 0.766 0.323 0.168 0.624
60 0.500 0. 866 0.251 0.190 0.574
70 0.342 | 0.940 | 0,172 0. 206 0,511
80 0.174 | 0.985 | 0.087 0.216 0.436
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‘Table B.5. Pattern of Fluid-Dynamic Forces and Moments

at Protrusion Condition h/D = 75% (Run I-9)

3 by
i p % sin &, | cos &, | = °°° 21 - Sin 21 C.=0C: c, = CH
) i i + . -‘__ —“_ . « . B —'_
(inch)| (degree) ! ! cos 0| sia 0 L “Ri t CIO
0 0.095| 31.6 0.523 | 0.852 - - 0.629 -
1 0.174| 46.75 |0.728| 0.686 -0,166 | 0.205 0.633 0.007
2 0.314| 67.0 0.921| 0.391 -0.461 0. 398 0.570 -0.059
Y e te.b - &b b b 23
Cp = (€,Py - €,b,)/(ab, - a b)) = 0.5
CL = (alc2 = ach,-‘l)/(alb2 _azbl) = 0,457
) ' f o 4 d
g = Are an(CL/CD) = 41.1 degree
* . * i & E 5 ]
CC--CIO-CL sm O_CD cos 0-~—0.056
c" * s 3 C* & 0.638
CIM" ‘o + CL sin M_'_ D cos -9
5 cosd | sing | ¢ cose|c sins
cos sin CD cos .CL sin CI
5 0.996 | 0.087 0.521 0.040 | 0.505
10 0.985 | .0.174 0.516 | 0.080 0. 540
20 | 0.940 | 0.342 0.492 0.156 0.592
30 0.886 | 0.500 0.453 0.228 0.625
40 0.766 | 0.643 0.401 0.294 0.638
50 0.643 | 0.766 0. 337 0. 350 0.631 -
60 0.500 | 0.8686 0.262 0. 396 ‘0. 602
70 0.342 | 0,940 0.179 0, 429 0.552
80 0.174 | 0.985 0.091 0.450 0.485--
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Table B, 6. Pattern of Fluid-Dynamic Forces and Moments

at Protrusioﬂ Condition /D = 50% (Run I-4)

a b,
i i
cos & sin & CIi
p. @i sin &, | cos @i = cos . = _sin 5 CI' = CR. c. *_c
(inc]h) (degree) ! 0 % ! g ! 10
0.066 | 24.1 |0,408(0.913 - - 0.404 -
1 0.115| 35.92|0.587|0,810 | -0.103 0.179 0.443 0.039
0.246 | 57.73|0.845)0.534 | -0.379 0. 437 0.466 0.062
* b - ¢ b.)/(ab
= ) -C - = 0.
CD (c1 9 9 1) (al 9 a2b1) 0. 258
* . .
CL = (a1 ¢2 - azcl)/(albz - azbl) =0, 367
] arct */ * 4.9d
M arctan (CL CD) = 54. 9 degree
c*. C C’ sin 8 i & =0,018
c” Cpo Gty Cpoost,=0.01

* ) .
CIMZ CC + CL sin éM + CD cos @M = (. 466

* *
] cos ¥ gin 2 CD cos & CL gin & CI
(degree)

5 0.996 | 0.087 0. 257 0.032 0.307
10 - | 0,985 | 0,174 ~0.254 0. 064 3.336
20 0.940 | 0.342 0.242 0.125 0.385
30 0.866 | 0.500 0.224 0.183 0.425
40 0.766 | 0.643 0.198 0,228 0,452
50 0.643 | 0.766 0.166 0,281 0. 465
60 0.500 | 0.866 0.129 0. 318 0.465
70 | 0.342 | 0.940 0.088 0. 345 0.4561
80 0.174 0. 985 0.045 0. 362 0.425




Table B. T.

Pattern of Fluid-Dynamic Forces and Moments

Cw

at Protrision Condition h/D = 25% (Run I-5)

a, b,
i i C
¥ in & i
1 P §i sin ¢, cos éi =-§g: @i =-:;§ éi Ii = CRi i =-CIl
(inc]h) (degree) ! 0 0 10
0 0.034 11.48 | 0.1929} 0.980 - - 0.191 -
1 0.095| 31.6 |0.524]| 0,852 -0.128| 0.325 0,244 0,053
2 0.140 | 40.75 (0.653] 0,758 -0.222] 0,454 0.259 0.068
¥ (@b, - . b)/(ab. - ab.
CD— (cl 9 " cz 1) (a1 5~ a2 1) = (.143
b
CL = (3.1 c, - atznczl)/(alb2 - azbl) = 0,222
& t. c*/c* 57.2 d
I\JI—arcan(L D)- . egree
* * * in & * @
.CC—CIO-CLsm 0 Dcos 0-—0.007
* * s * s ‘
CIM—CC+CLsm M+ CD cos M-0.2'1'0
3 %| sin & c* $ c* in 3 C
cos &| sin cos sin
(degree) D L I
5 - 0.996| 0.087) 0.143 0.019 0.169
10 - 0.885) 0.174 | 0.141 0. 040 0.187
20 0.940| 0.342 | 0.134 0.076 0.217
30 0.8668] 0.500 0.124 | 0.111 0.242
40 0.766] 0.643 | 0.110 0.143 0.260
50 0.643| 0,766 0.092 0.170 0. 269
60 0.500) 0, 866 0.072 0.191 0,270
70 0.342] 0.940 | 0.049 0. 209 0. 265
80 0.174]1 0.985 | 0,025 0.219 0.251
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