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SUMMARY 

The purpose of this study was to determine, by theoretical 

calculation and experimental measurement, the absorbed dose distributions 

in two heterogeneous phantoms representing one-year- and five-year-old 

children from typical radiographic examinations for those ages. 

Theoretical work included the modification of an existing internal 

dose code which uses Monte Carlo methods to determine doses within the 

Snyder-Fisher mathematical phantom. A Ge(Li) detector and a pinhole 

collimator were used to measure x-ray spectra which served as input 

(i.e., the source routine) to the modified Monte Carlo codes which 

were used to calculate organ doses in children. 

Experimental work included the fabrication of child phantoms 

to match the existing mathematical modeis. These phantoms were 

constructed of molded lucite Shells filled with differing materials to 

simulate lung, skeletal, and soft-tissue regions. The skeleton 

regions of phantoms offered the opportunity to perform meaningful 

measurements of absorbed dose to bone marrow and bone. A Victoreen 

Model 550 Radocon III Integrating Rate Electrometer system and ion 

Chamber were used as the primary dosimetry reference instrument for 

radiation measurement and thermoluminescent dosimeter (TLD) calibration. 

Thermoluminescent dosimetry techniques were used extensively in this 

study. The TLD calibration studies were focused on use in the diagnostic 

x-ray region. These studies included: grading, fading tests, angular 
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dependence tests, sensitivity and linearity tests, energy response tests, 

and a TLD LiF:Mn and Ca?F :Mn "in tandem technique" which was used to 

determine the effective energy at selected sites inside the phantoms. 

Thirteen to fourteen sites in various bones of the skeleton were chosen 

for placement of TLDs. These sites represented important regions in 

which active bone marrow is located. 

Sixteen typical radiographic examinations were performed 

representing common pediatric diagnostic procedures. A multiple 

exposure method was used to provide good TLD readings both for in-beam 

and out-beam locations during the exposure processes. The maximum 

exposure used per field was 6000 milliamp-sec regardless of tube 

voltage. Uncertainty associated with the measured doses was estimated 

to be ± 7%. 

The calculated and measured tissue-air values were compared for 

a number of organs. For most organs, the results of the calculated 

absorbed doses agreed with the measured absorbed doses within twice the 

coefficient of Variation of the calculated value. The absorbed dose 

to specific organs for several selected radiological examinations are 

given for one-year-old, five-year-old, and adult phantoms. For 

selected radiological exposures, the risk factors of leukemia, thyroid 

Cancer, and genetic death are estimated for one-year- and five-year-old 

children. 
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CHAPTER I 

INTRODUCTION 

Ever since Wilhelm Conrad Roentgen detected and identified the 

x ray, physicians have learned to use x rays as a powerful tool in 

diagnosis. X rays have been used as a means of photographing the bones 

and setting fractures. X rays are used also for detecting and locating 

foreign objects inside the body. This use of x rays became an 

important part of radiography. 

During the early period, many experimenters suffered severe 

x-ray burns (Morgan and Turner , 1967) t h a t were found to be incu rab le 

in many cases . Often f i n g e r s , hands, and arms were l o s t . Eventual ly 

physicians learned to use x rays to kill tumors and other diseased 

regions. It was found also that x rays in some cases had a more 

pronounced effect (killing) on those diseased tissues than on normal 

healthy ones. Thus, gradually the technique of x-ray therapy was 

developed. 

Laue et al. (1913) discovered that x rays could be diffracted 

by crystals and, soon, this discovery provided a new method for 

investigating the nature of solids. The method has been used broadly 

in science and industry. Human beings have been exposed throughout the 

ages to radiation from natural sources. During the last eighty years, 

however, many apparatuses have been designed for generating ionizing 

radiation artifically, and in some cases radioactive materials are 
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produced and extracted from them contributing potentially to personnel 

exposure. Some historic milestones in early radiation protection and 

dosimetry can be found in the summaries of Taylor (1971) and 

Glasser et al. (1961). 

In the late 1940's and early 1950?s, as a result of the tests of 

nuclear weapons, public concern arose about the potential effects of 

ionizing radiation on the human population. This concern led to a 

series of reports by the National Academy of Sciences (NAS), issued from 

1956 to 1961. These reports are usually referred to as the "BEAR" 

(Biological Effects of Atomic Radiation) reports. The BEAR reports led 

to a basis for improved understanding of expected effects due to 

radiation resulting from the testing of nuclear devices that had 

occurred to that date. In addition, the reports introduced the important 

concept of regulation of the average population dose on the basis of 

genetic risk to future generations. The reports also emphasized 

medical and dental x rays as the greatest source of man-made radiation 

exposure of the population. 

Beginning in the 1950's and extending to the present time, the 

International Commission on Radiological Protection (ICRP) and National 

Council on Radiation Protection and Measurement (NCRP) have published 

many reports dealing with the effects of ionizing radiation on man and 

have made many recommendations for radiation control. Now, ionizing 

radiations are used in many types of peaceful activity in everyday life. 

Hence, the hazard of excessive exposure has become a matter of interest 

not only for a relatively small number of occupationally exposed persons, 
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but for the population as a whole. In the late 1960's, concern arose 

that developing peacetime applications of nuclear energy, particularly 

the growth of a nuclear power industry for production of electricity, 

could cause growing exposure of the human population to radiation. 

In 1970, the Federal Radiation Council (now part of the Environmental 

Protection Agency) requested that the NAS-National Research Council 

Advisory Committee review and reevaluate the existing scientific 

knowledge concerning radiation exposure of human populations. The 

NAS-NRC Advisory Committee Report (Biological Effects of Ionizing 

Radiations, BEIR) was published in 1972. In that report, again, it 

was emphasized that the major contributors to radiation exposure for 

human beings were natural background and medical applications. The main 

contributor to the total dose from medical exposure was diagnostic 

x rays. Medical diagnostic radiology accounts for at least 90% of the 

total man-made radiation dose to which the U.S. population is exposed. 

This exposure is at least 35% of the total radiation dose from all 

sources including natural radioactivity. 

Generally, the radiation effects on man can be considered as 

either genetic or somatic effects. The BEAR Genetics Committee 

recommended that man-made radiation be kept at such a level that the 

average individual exposure be less than 10 roentgens (R) before the 

mean age of reproduction, a period of time taken to be 30 years. This 

upper dose limit included medical radiation which was estimated to 

amount to 5 R at that time. In contrast, the Federal Radiation Council 

(FRC) (FRC, 1960; ICRP, 1958) did not include medical radiation in 
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their deliberations, and therefore, took 5 R as the 30-year limit for 

the average population exposure in their Radiation Protection Guides. 

This limit results in an average dose rate of 170 mR/year; the value 

now in effect. The 1956 Genetics report relied mainly on data from 

Drosophila and mice as there were almost no relevant human data. The 

genetic effects of radiation are gene mutations (recessive and dominant) 

and chromosome aberrations. These effects may lead to different genetic 

and teratogenic diseases such as sickle cell anemia, physical abnormali-

ties, mental deficiency, as well as more numerous nonvisible mutations 

(Miller, 1953, 1956). 

A recent report by the United National Scientific Committee on 

the Effects of Atomic Radiation (UNSCEAR, 1972) suggests that genetic 

effects should not be considered the only primary hazard of radiation 

exposure. An increased emphasis is being placed on the somatic effects 

of radiation (cancer and leukemia) and modeis for estimating the 

effects on other organs, such as active bone marrow, are being developed. 

The somatic effects are usually concerned with two types of 

exposure: 

1. A single high-level exposure to radiation during a short 

period of time, which is commonly called "acute" exposure. Common 

acute radiation Syndrome will include: 

a. nausea and vomiting; 

b. malaise and fatigue; 

c. increas'ed body temperature; 

d. blood changes (e.g., lymphocyte drop); 

e. epilation. 
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2. A long-term, low-level over-exposure is commonly called 

"chronic" exposure. Latent or delayed effects may result from either 

a Single large over-exposure or continuing low-level over-exposure. 

These latent effects include: 

a. retardation of growth and development; 

b. induction of many types of neoplasms and leukemia; 

c. shortening of life span. 

In addition there are many long-term genetic effects such as dominant 

diseases, chromosomal and recessive diseases, congenital anomalies and 

anomalies expressed later and constitutional and degenerative diseases. 

There is no doubt that ionizing radiation can induce Cancer in 

man (Miller, 1972). The first definite demonstration of the role of 

ionizing radiation in the aetiology of brain tumors in man was reported 

by Baruch et al. (1974). About 11,000 children irradiated for tinea 

capitis, a fungal scalp infection, and two matched control groups were 

retrospectively followed for twelve to twenty-three years (Modal et al., 

1974; Silverman and Hoffman, 1974). The irradiated group had a 

significantly higher risk of both malignant and benign head and neck 

tumors, especially in the brain, the parotid gl and, and thyroid. 

Detailed studies of the neoplasms in children treated with x rays 

for thymic enlargement have been reported by Pifer and his colleagues 

(Pifer et al., 1963; Toyooka et al., 1963a, 1963b; Hempelmann et al., 

1974, 1975). These reports revealed a high incidence of tumors, 

particularly leukemia, thyroid adenomas, and osteochondromas (tumor 

of the bone and cartilage). Several cases of salivary gland tumor and 
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neurilemmomas (tumor of the nerve sheath), which are very rare neoplasms 

in children and young adults, were observed. The most recent followup 

study was reported by Hempelmann et al. (1974). Frequencies of asthma 

and altered immunologic features in the irradiated children were 

reported to be two and three times those in the nonirradiated sibling 

(Hempelmann et al., 1975). 

Wilms' tumor, neuroblastoma and medulloblastoma are three common 

childhood neoplasms. In the treatment of these neoplasms the vertebral 

column is exposed to irradiation in radiotherapy. The postirradiation 

effects of scoliosis (abnormal curvature of the spine) were studied by 

Neuhauser et al. (1952) and Rubin et al. (1962). It appears that 

disturbances of the growing spine (disturbances produced by irradiation 

of the human vertebrae) are directly related to dose and inversely 

related to age. Usually, for a radiation dose less than 1000 R, no 

detectable deformity of the vertebrae was found in a growing child. 

As the dose level increased, a different vertebral aberration was noted. 

Although irradiation of normal tissue in infants and children carries 

the hazard of producing growing disorders, this risk is considered 

clinically acceptable in curative treatment of malignant disease. 

A 25-year followup study of a 26-year-old woman who had received 

postbiopsy irradiation of the entire pelvis for a botryoid sarcoma of 

the vagina at age 13 months was reported by Anas et al. (1974). Changes 

were apparent in the skin, muscles, primary sex organ, bone, and bone 

marrow. Although the sequelae of irradiation in this patient cannot be 

disregarded, the treatment has provided the patient with a useful and 

almost normal existence. 
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Reliable estimates of chronic radiation effects can be expected 

only when we have exact medical and physical observations on a large 

population or when we have a füll understanding of biological mechanisms 

by which the effects are produced. Since we have neither, our present 

estimates are based on the results of the following studies, for example: 

a. Japanese A-bomb survivors in Hiroshima and Nagasaki (Ishimaru 

et al., 1971; Beebe et al., 1971; Jabon and Belsky, 1970); 

b. British patients treated with intensive spinal irradiation 

for ankylosing Spondylitis (Court-Brown and Doli, 1957, 1965); 

c. Studies on practicing radiologists (Seltser and Sartwell, 1965; 

Warren, 1966; Reissland et al., 1976); 

d. Human populations exposed to alpha emitters, such as Under

ground miners (Goldman, 1965), thorotrast or radium-treated 

patients (Norris et al., 1955) and radium dial painters 

(Clark, 1958); 

e. Children irradiated for tinea capitis (Beach and Dolphin, 

1962; Albert and Omran, 1968; Baruch et al., 1974; Harley 

et al., 1976); 

f. Children irradiated for thymic enlargement (Pifer et al., 

1963; Toyooka et al., 1963a, 1963b; Modal, 1974; Hempelmann 

et al., 1967, 1968, 1974, 1975; Silverman and Hoffman, 1974); 

g. Retrospective interview surveys for pregnant women who 

received obstetric x-ray examinations (Debakan, 1968; 

Dawson, 1962; Stewart and Kneal, 1970; Bross, 1972). 
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From the above studies, both the BEIR or UNSCEAR (1972) reports have 

concluded that "Cancer is the major long-term somatic effect of radiation 

on human beings and cancer induction is considered to be the only source 

of somatic risk that needs to be taken into account in setting radiation 

protection Standards for the general population." The BEIR reports also 

mention that "the risk estimates of radiation damage effects lack 

precision but do indicate that the mean dose both to the population and 

to each individual must be kept as low as practicable." 

Since 1950 many authors and/or national bodies have been concerned 

with the genetically significant dose* to populations, e.g., Martin 

(Australia, 1955, 1958), Adrian Committee (United Kingdom, 1956, 1960, 

1966), Larsson (Sweden, 1958), Hammer-Jacobsen (Denmark, 1963), 

Hashizume et al. (Japan, 1972a), United Nations Scientific Committee 

(1962, 1972). Their estimates of genetically significant dose are 

summarized in Table 1. One of the early assessments of effects resulted 

in the 1956 report of the Medical Research Council by the Adrian Committee 

(Adrian, 1956), which contained a detailed summary of population exposures 

in England and Wales from various radiation sources. In that report 

doses to the skin and gonads of patients due to the diagnostic x rays 

were taken from an investigation conducted by Stanford and Vance (1955). 

Ionization Chambers were used to measure the gonad and ovary dose in the 

*The genetically significant dose is the dose which, if received 
by every member of the population, would be expected to produce the same 
total genetic injury to the population as do the actual doses received 
by the various individuals (UNSCEAR, 1972). 



9 

Table 1. Annual Genetically Significant Dose (GSD) per Capita 
from Diagnostic X-Ray Examinations 

Region Period of Study GSD Reference 

Australia 

Sweden 

United Kingdom 

Denmark 

Japan 

USA, City of 
Richland 

USA 

USA 

USA, New York 

USA 

USA 

1955-1957 

1955 

1957-1958 

1956-1960 

1969 

1953-1956 

1955-1956 

1956-1957 

1962 

1964 

1970 

160 mrem 

38 mrem 

14 mrem 

22 mrem 

26.5 mrad 

46 mrem 

140 ± 100 mrem 

40-50 mrem 

50 mrad 

54.6 mrad 

35.5 mrad 

Martin, 1958 

Larsson, 1958 

Adrian, 1960 

Hammer-Jacobsen, 
1963 

Hashizume et 
al., 1972a 

Norwood et al-, 
1959 

Laughlin and 
Pullman, 1957 

Brown et al,, 
1960 

Pasternack and 
Heller, 1968 

USPHS, 1969 

USPHS, 1973 

FDA, Bureau of Radiological Health, Bulletin 9 (No. 3), pp. 1-3 
(February 18, 1975) recently announced errors in their estimates of GSD 
for 1964 (54.6 mrad) and 1970 (35.5 mrad). The current estimate for 
1964 is 16 mrad and for 1970 20 mrad. 
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different types of examinations. For phantom dose measurements, Mix D 

or water phantoms and cadavers were used in the experiment to estimate 

the absorbed doses in patients. In 1960 and 1966, the Adrian Committee 

published the second and final report entitled "Radiation Hazard to 

Patients" in London (Adrian, 1960, 1966). In these reports, the 

absorbed doses received by the patients were classified according to 

sex, age, and type of x-ray diagnosis. The effective genetic dose and 

bone marrow dose to the population from diagnostic x-ray procedures 

were estimated. 

In the United States of America there were also many systematic 

studies of population exposure to medical x rays, e.g., Norwood et al. 

(City of Richland, 1959), Laughlin and Pullman (USA, 1957), Brown et al. 

(USA, 1960), Pasternack and Heller (New York, 1968). Recently, two 

studies of general population exposure to x rays were conducted by 

agencies of the U.S. Government in 1964 and 1970, respectively (USPHS, 

1969, 1973). One of the main objectives of these studies was to guide 

the development of programs that would assist professional groups, 

health agencies, and equipment manufacturers in more efficient and 

safe use of x rays in medical applications. The following summary 

Covers the principal aspects of these two studies. 

1. Medical diagnostic x rays have continued to lead as the major 

man-made source of population exposure to ionizing radiation. 

2. It is estimated that 130 million persons (or 65% of the U.S. 

population) had one or more x-ray examinations in 1970. 
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3. There were 212 million diagnostic x-ray examinations (about 

661 million films exposed). Of these examinations, 76 

million were medical, including more than 10 million persons 

having fluoroscopic examinations, and 59 million dental 

x-ray examinations in 1970. 

4. The annual number of medical x-ray exposures increased from 

48 Visits per 100 people in the population to 55.9 Visits 

per 100 population between 1964 and 1970. The annual dental 

x-ray exposure rate increased from 26.8 Visits per 100 

people in the population in 1964 to 33.8 per 100 population 

in 1970. 

5. In 1970, it is estimated that approximately 70% of the medical 

x-ray procedures were performed under the supervision of a 

radiologist compared to 61% estimated in 1964. 

6. The mean ratio of beam area to film area for radiographic 

films declined approximately 30% between 1964 and 1970. 

7. The percentage of dental films that were within the 3-inch 

maximum beam size recommended by the National Committee on 

Radiation Protection and Measurements was 80% in 1964 

compared with 87% in 1970. 

8. The estimated mean exposure per film for posterior-anterior 

and anterior-posterior views of the abdomen increased from 

an estimated 480 mR in 1964 to 620 mR in 1970. 

9. The estimated mean exposure per film for ehest examination 

remained about the same, approximately 28 mR/film in 1964 

and 27 mR/film in 1970. 
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Recently, Nader reviewed the current problems in medical x-ray 

diagnostic exposure in the United States (Nader, 1975). Since 

unnecessary and avoidable exposure persists as the rate of use of 

medical x rays increases, Solutions to this problem are necessary. 

These Solutions may be available through policies to ensure improved 

equipment, qualified Operators, medical and dental Professionals who 

are knowledgeable about radiation protection principles, and mandatory 

Performance Standards and enforcement mechanisms. Based on information 

presently available (Gitlin, 1972; USPHS, 1969), it appears that the 

mean per capita radiation dose from diagnostic medical radiology may 

remain stable in future years if technical improvements keep pace with 

increased usage rates. In order to accomplish this, better means of 

predicting local and whole body doses during diagnostic or therapeutic 

exposure are needed. 

There are many excellent papers on the assessment of risk or 

hazard from medical x rays (Stanford and Vance, 1955; Martin, 1955; 

Billings et al. , 1957; Epp et al., 1961, 1963; Laughlin, 1963; and 

Koblinger and Zarand, 1972). Most of them were related to the adult 

or "Reference Man." The information may be applied generally to the 

average adult patient. However, it does not apply to the field of 

pediatric x-ray diagnosis (Robinow and Silverman, 1957; Kereiakes et al., 

1965; Dolphin, 1968; Conrad et al., 1971; Hwang, 1976). 

Fisher and Snyder (1966) have attempted to solve this lack of 

data by introducing their "similitude" phantoms. These phantoms represent 

children of ages newborn, 1-year, 5-years, 10-years, and 15-years. The 
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phantoms were obtained by "shrinking," through a set of mathematical 

transformations, the outer dimensions of the three regions (head, trunk, 

and legs) of the adult phantom. The pediatric phantoms described in 

this study were designed from anatomical data to be representative of 

children 1-year and 5-years of age. 

Tables 2 and 3 are comparisons of the absorbed fractions of some 

organs between the similitude phantom and pediatric phantom. The 

absorbed fraction is defined as the fraction of photon energy emitted 

from the x-ray machine that is deposited in the target organ. The 

target organs selected were the brain, thyroid, thymus, ovaries, testes, 

and active red marrow. The differences in absorbed fraction calculated 

for the similitude phantom and the pediatric phantom are generally high. 

In the similitude phantoms all organs and structures in the body 

are reduced in size according to factor selected to force the outer 

dimensions of the adult phantom to correspond to those of another age. 

No consideration is given to exact organ location, organ shape or organ 

size. 

As an example, consider the distribution of the red bone marrow. 

In the adult the red bone marrow comprises only one-half of the total 

marrow in the skeleton and there are regions in which no red marrow 

exists. In the pediatric phantom for the one-year old all the bone 

marrow is red and is distributed uniformly in the skeleton. Therefore, 

when the adult phantom is "shrunk" by use of the similitudes, the 

distribution of red (and yellow) bone marrow is carried to the younger 

age phantom. This results in an error in the estimate of the dose 
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Table 2. Comparison of Absorbed Fractions for the Pediatric and 
Similitude Phantom—One-Year-Old 

Chest Examination (Posterior/Anterior View) 

Absorbed Fraction Coefficient 0 f Variation Difference 
(' 0 

Organ Pediatric Similitude Pediatric Similitude (%) 

Brain 1.27 x io"3 0.31 x io"3 8.00 14.20 75.14 

Thyroid 8.28 x io-5 
12.82 x io~5 1.40 17.83 -54.83 

Thymus 1.08 x io-3 0.14 x io"3 7.21 18.57 87.06 

Ovaries 

Testes 

Red Marrow 3.20 x io"2 4.71 x io"2 0.7O 0.67 -47.09 

Abdomen Examination (Posterior/Anterior View) 

Absorbed Fraction Coefficient o f Variation Difference 
(' 0 

Organ Pediatric Similitude Pediatric Similitude (%) 

Brain 4.15 x io"5 2.80 x io-5 44.49 92.47 32.61 

Thyroid 

Thymus 6.30 x 10~5 0.40 x 10~5 22.75 56.78 93.70 

Ovaries 6.64 x io"° 8.18 x IO"5 24.02 26.21 -23.16 

Testes 5.12 x io"5 8.45 x io"5 28.95 24.79 -64.98 

Red Marrow 3.61 x io"2 5.09 x lo~2 1.03 1.06 -40.79 

(Absorbed Fraction) , - (Absorbed Fraction) 
Difference = sim. 

(Absorbed Fraction) ped 
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Table 3. Comparison of Absorbed Fractions for the Pediatric and 
Similitude Phantom—Five-Year-Old 

Chest Examination (Posterior/Anterior View) 

Absorbed Fraction Coefficient 0 f Variation Difference 

0 o) 

Organ Pediatric Similitude Pediatric Similitude (%) 

Brain 2.40 x 10" 0.78 x io"3 5.92 10.98 67.36 

Thyroid 0.97 x io"4 1.60 x io4 19.75 18.90 -64.99 

Thymus 8.07 x io"4 1.91 x icf4 7.96 14.98 76.28 

Ovaries 

Testes 

Red Marrow 3.83 x IQ-2 4.18 x io"2 0.72 0.72 -9.14 

Abdomen Examination (Posterior/Anterior View) 

Absorbed Fraction Coefficient of 

0 
Variation Difference 

Organ Pediatric Similitude Pediatric Similitude (%) 

Brain 

Thyroid 

Thymus 

Ovaries 

3.19 x 10~5 

1.15 x IO"4 

1.47 x 10"S 

0.93 x 10~4 

30.55 

19.05 

78.24 

20.39 

53.99 

18.94 

Testes 8.01 x 10~5 12.61 x 10"5 33.19 20.90 -57.39 

Red Marrow 5.12 x 10" 5.53 x 10" 1.00 1.00 -8.02 

%i 
(Absorbed Fraction) , 

rj~ pea. 
fference = • -£—••—-

(Ab SOI bed Fraction) . 
slm- x 10 

(Absorbed Fraction) , 
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to the red bone marrow. These errors are reflected in the comparisons 

shown in Tables 2 and 3. 

Similar arguments can be made for other organs such as the 

thyroid and thymus. The size and depth below the surface of the neck 

is an important parameter in estimating the absorbed fraction in the 

thyroid from a diagnostic x-ray exposure. This factor was not considered 

in the similitude phantom. In the adult, the thymus has a very small 

size and this gland is significantly smaller than the gland found in 

children. In early life, the gland is very active and is large. It 

actually shrinks in size in adulthood. Obviously, reducing the size of 

the thymus in the adult by a set of factors chosen to be representative 

in the child will produce a much smaller organ which is not representa

tive. Further, the absorbed fraction in this "reduced" gland will be 

significantly less than that obtained from calculations using a more 

realistic shape and mass for the organ. Children also have 

proportionately smaller genitalia than adults. Therefore, the absorbed 

fraction of the ovaries and testes of the pediatric phantoms are less 

than those of the similitude phantoms. 

In 1960, the Federal Radiation Council in its first report (FRC, 

1960) emphasized the need for defining a series of "Standard children" 

because: 

1. It is a generally accepted view that children, both prenatally 

and postnatally, are more radiosensitive than adults. Children are also 

more susceptible than adults to the deleterious late effects of ionizing 

radiation (Miller, 1953, 1956; Blair, 1954; Hursh and Casarette, 1955; 
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Graham and Hamilton, 1957; Morgan, 1961; MacMahon, 1963; Saengerte, 

1964; Jablon and Belsky, 1970; Jablon et al., 1971; Rugh, 1973; 

Silverman, 1974). 

2. The obvious physical and physiological differences between 

children and adults (Tanner et al., 1966). 

3. The body proportions and relative organ sizes of infants and 

children are obviously different from the adult (FRC, 1961). 

4. Half the population is less than 25 years old and children 

form an important part of this genetically significant population. 

5. People in clinics need better Information on the dosimetry 

for exposure of children. 

6. A relatively small amount of Information is available on mean 

bone marrow dose to children (James, 1974; Hashizume et al., 1972b; 

Shleien, 1973). 

For diagnostic x-ray examinations the gonadal dose and average 

bone marrow dose are usually considered the principal indicators 

(critical organs) of relative hazard (UNSCEAR, 1962; ICRP, 1970a). The 

critical organ is defined as that part of the body that is most 

susceptible to radiation damage under the specific conditions considered. 

I.t is well known that in a diagnostic x-ray examination the organ of 

maximum dose is inevitably the skin which is not usually considered as 

a critical organ. However, the skin dose is an indicator of the dose 

to critical organs such as the thyroid, kidney, brain, and liver, which 

are fairly close to the surface of the body; substantial fractions of 

these organs may receive 30% to 80% of the skin dose (James, 1974). A 
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relatively large amount of Information has been published on skin and 

gonad doses in diagnostic x-ray examinations in children (Billings 

et al., 1957; Webster and Merril, 1957; Larsson, 1958; Adrian, 1960; 

Hammer-Jacobsen, 1963; ISBHIUMC, 1969; Hashizume et al. , 1969a; James, 

1974). However, little Information is available on mean bone marrow 

dose to children (James, 1974), although much data are available for 

adults (Epp et al., 1961, 1963; Adrian, 1966; Hashizume et al., 1969b; 

Antoku et al., 1972; Takeshita et al., 1972). Using unit-density 

Masonite blocks of different sizes, Billings et al. measured the gonad 

dose to child phantoms in examinations of the skull, ehest, abdomen, 

lumbar spine, and pelvis with Victoreen thimble Chambers. Differences 

in height of children resulted in a Variation in the gonad dose. The 

results, for three different age groups, are shown in Table 4. To 

calculate the average gonad dose per examination for children in 

clinical practice the distribution of x-ray examinations in a children's 

clinic and the gonad dose given in Table 2, page 14, (Billings et al., 

1957) were used. An average gonad dose per examination of 0.49 R in 

boys and 0.29 R in girls was computed (Billings et al., 1957). 

Direct measurements in children during examinations were made by 

Larsson (1958) and Hammer-Jacobsen (1963). Larsson used ionization 

Chambers to measure the mean gonad doses in different types of pediatric 

x-ray examinations. The results were presented for different sexes and 

ages of children. Similarly, Hammer-Jacobsen used a "kondiometer" 

with condenser Chambers to measure the gonad doses for different types 

of x-ray examinations. A "Mix D" phantom was construeted with pelvis, 



Table 4. Amount of Radiation per Exposure Received during Routine Roentgenographic 
Procedures in Childrena 

Skull 
iasal View 

Chest 
AP 

Abdomen 
AP-KUB 

Lumbar Spine 
AP Lateral 

Pelvis 
AP 

infants 0-2 yrs. 65 kV., 
25 mA-s 

0.18 r 
0.001 r 
0.001 r 

45 kV. ) 
10 mA-• s . 

0. 023 r 
0 
0. 002 r 

60 kV., 
20 mA-s 

0.16 r 

0.15 r 

60 kV., 
2 0 mA-s 

0.8 r 
0.3 r 
0.8 r 

60 kV., 
20 mA-s 

0.16 r 
0.09 r 
0.16 r 

children 2-7 yrs 50 kV., 
50 mA-s 

0.31 r 
0.13 r 
0.31 r 

60 kV,, 70 kV., 
50 mA-s. 120 mA-s 

0.42 r 
0.49 r 
0.42 r 

1.3 r 
0.5 r 
1.2 r 

46 kV., 
50 mA-s 

0.28 r 
0.14 r 
0.28 r 

children 7-11 yrs. 

S 
F 
M 

58 kV., 
75 mA-s. 

0.6 r 
0.24 r 
0.25 r 

74 kV., 
160 mA-s 

1.8 r 
0.73 r 
0.3 r 

Average gonad dose per examination: males, 0.49 R; females 0.29 R 

76 kV., 
50 mA-s 

0.73 r 
0.3 r 
0.7 r 

The letters S, F, and M refer respectively to measurements on the skin, female gonad region, 
and male gonad region. Measurements in roentgens were taken with a Victoreen thimble Chamber 
(Billings et al., 1957). 

<r> 
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lumbar vertebrae, and femora from an adult female. The ovary dose 

and skin dose on the abdomen of the phantom was measured. By means of 

phantom measurements, conversion factors were then found that could 

be used to estimate ovary dose from the measurement of the patient's 

skin dose on her abdomen. However, the method is useful only in the 

estimation of dose to the ovaries of an adult female. In boys, the 

gonad dose was measured on the anterior surface of the scrotum. 

Webster et al. (James, 1974) assumed a trunk thickness and weight 

for different aged children and constructed a Mix D phantom of variable 

thicknesses and weight, 10 cm trunk thickness and 12 kg for one-year-old 

phantom and 12 cm trunk thickness and 20 kg for five-year-old phantom. 

Using these phantoms they studied different x-ray examination procedures. 

Skin doses were measured and mean whole-body doses were calculated 

from the estimated skin exposures, typical field size, and the operating 

peak kilovoltage. The results are shown in Tables 5 and 6. 

Table 7 is a summary of some pediatric phantom dosimetry studies. 

Different phantom material and detector Systems were used in these 

studies. In early times, ionization Chambers were the favorite detector 

System. Recently thermoluminescent detectors have been widely used 

because of their small size and ease of use. The results of these 

studies are difficult to compare, because of Variation among the 

studies of several factors (such as target-skin distance, peak kilo

voltage, milliampere second, inherent and added filtration, and field 

size, etc.). Generally, these results reveal that for any given 

examination there may be a wide Variation of gonad dose, depending on 
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Table 5. Measured Maximum Skin Doses in X-Ray Examinations (rads) 

X-Ray Examination 

Age in Years 

1 5 10 15 

1. Cerebral Studies 
Radiography, skull series, 5 films 
Biplane cerebral angiography, 48 films 
Fluoroscopy, 6 minutes 

2. Angiocardiography 
Biplane serial radiography, 40 films 
Cineradiography 35 mm 60 fps., 60 sec 
Fluoroscopy, 30 minutes 

3. Kidney, Ureters, Bladder 
Intravenous pyelography, 4 films 
Renal angiography, 20 films AP 
Fluoroscopy, 4 minutes 
Cinecystourethrography, 16 mm., 
7 1/2 fps, 1.6 mins 
Fluoroscopy, 2 minutes 

4. Chest 
Radiography, PA and lateral 
Pulmonary arteriography, 30 films AP 
Fluoroscopy, 1.5 minutes 

5. Liver 
Radiography, abdomen AP film , 
Abdominal angiography> 30 films 
Fluoroscopy, 5 minutes 

6. Bone 
Cervical spine, AP and lateral 
Dorsal or lumbar spine, AP and lateral 
Pelvis, AP and lateral 

7. Obstetrics 
Obstetric abdomen 
Pelvimetry 

0.3 0.7 0.9 1.1 
8.4 11.4 12.0 13.2 
3 4.8 7.2 9.6 

1.8 3.3 5.7 7.2 
2.8 4.2 6.6 10.6 
24 36 51 66 

0.2 0.3 

2.2 

0.5 

3.0 4.3 

0.75 
7.5 1.4 3.0 4.8 

3.2 4.8 6.8 8.8 
0.8 1.3 2.1 2.7 

5.2 

0.05 0.03 0.05 0.07 
3.0 6.4 10.2 15.9 
1.2 1.8 2.6 3.3 

0.05 
2.1 
4 

0.08 
4.5 
6 

0 
15 
8 

18 

5 

0 
23 
11 

25 

0.05 
0.2 
0.1 

0.4 
0.4 
0.15 

0. 
0. 
0. 

1 
9 
3 

0. 
1. 
0. 

15 
6 
45 

Fetal 
Fetal 

dose 
dose 

1 
4 
.0 
.0 

'James, 1974 

b 
Magnification technique for 1 and 5 years 
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a Table 6. Calculated Mean Whole-Body Doses in X-Ray Examinations (rads) 

X-ray Examination 
Age in Years 
5 10 15 

1. Cerebral Studies 
Radiography, skull series, 5 films 
Biplane cerebral angiography, 48 films 
Fluoroscopy, 6 minutes 

2. Angiocardiography 
Biplane serial radiography, 40 films 
Cineradiography, 35 mm, 60 fps., 60 sec. 
Fluoroscopy, 30 minutes 

3. Kidney, Ureters, Bladder 
Intravenous pyelography, 4 films 
Renal angiography, 20 films AP 
Fluoroscopy, 4 minutes 
Cinecystourethrography, 16 mm., 
7 1/2 fps., 1.6 minutes 

Fluoroscopy, 2 minutes 

4. Chest 
Radiography, PA and lateral 
Pulmonary arteriography, 30 films, AP 
Fluoroscopy, 1.5 minutes 

5. Liver 
Radiography, abdomen, AP film , 
Abdominal angiography, 30 films 
Fluoroscopy, 5 minutes 

6. Bone 
Cervical spine, AP and lateral 
Dorsal or lumbar spine, AP and lateral 
Pelvis, AP and lateral 

7. Obstetrics 
Obstetric abdomen 
Pelvimetry 

0.02 0 .04 0 .04 0 .04 
0 . 6 0 .65 0 .5 0 .4 
0 .025 0 . 0 5 0 .07 0 .08 

0 .13 0 .22 0 .27 0 .25 
0 .08 0 .08 0 .08 0 .08 
0 .25 0 .5 0 . 6 0 . 6 

0 .03 
0 .03 
0 .15 
0.04 

0.04 
0 .06 
0.2 
0 .06 

0 .005 0 .005 
0 .3 0 .6 
0 .05 0 .07 

0 .005 0 .015 
0 .2 0 .4 
0 .2 0 .25 

0 .005 0 .015 
0 .02 0 .07 
0 .01 0 .03 

0 .06 
0 .06 
0.2 
0 .06 

0 .11 0 .15 0 .15 

Fetal dose 1.0 
Fetal dose 2.0 

0.07 
0.06 
0.2 
0.06 

0.15 

0.008 0.007 
0.8 0.9 
0.08 0.08 

0.03 0.03 
1.2 1.3 
0.3 0.3 

0.015 0,015 
0.15 0.15 
0.05 0.05 

James, 1974. 

b Magnification technique for 1 and 5 years. 
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Table 7. Summary of Literature on Pediatric Dosimetry 

Time, Author Dosimetry Result 

Billings et al 
(1957) 

Webster et al 
(1957) 

Unit density Masonite 
blocks. 10.6 x 2.5 x 2.5 
cm. 

Victoreen thimble Chambers 
O.ly, l.Oy, 2.5y. 

Unit-density Pressdwood 
phantom, 30 x 30 cm Square 
and variable thickness 
Victoreen 25R thimble 
Chamber. Baldwin-Farmer 
ionization Chambers, type 
BD-2, Victoreen minometer. 

Adrian Committee Phantom-polyethylene skin 
(1960) filled with soft tissue— 

equivalent materials and 
human skeleton. 
Baldwin-Farmer ionization 
Chamber and small ioniza
tion Chambers. 

Hammer-Jacobson 
(1963) 

2 "Mix D" phantoms with 
built in pelvis, lumbar 
vertebrae and femora 
from an ädult female. 
(One phantom for foetal 
dose.) Kondiometer with 
condenser Chamber. 

0-2, 2-7, 7-11 year-old 
child phantom and clinical 
measurement. 
Average gonad dose per 
examination for males, 
0.49R, females 0.29 R. 

3-year and 10-year child 
phantom. Skin and gonadal 
dose for different radio-
graphic techniques was 
reported. 

For the male, the gonad dose 
was obtained by direct 
measurement. 

For the female, the ovary 
dose was estimated by 
measuring skin dose and 
multiplying by a conversion 
factor. The depth of the 
oyaries for a 0-2 years-old 
child was assumed to be half 
the depth of an adult. 

By means of phantom 
measurements, conversion 
ratios were then found 
which could be used in 
calculations of ovary 
dose. 

Hashizume 
et al. (1972) 

Three M3 phantoms 
consisting of paraffin 
76.9%, MgO 22.4%, CaCo3 

0.7% by weight with cork 
(0.3 g/cm3) for lung 
tissue. These phantoms 
represented children 0-2, 
2-7, 8-14 years old 

Phantom irradiation was made 
according to the technical 
data obtained by different 
type diagnostic medical 
x-ray examinations. 
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Table 7 (continued) 

Detector: Thermoluminescent 
dosimeters made of mag
nesium Silicate powder 
[Mg2SiO. (Tb3] encapsulated 
in a glass rod 2 mm in 
diameter and 10 mm in 
length. Calibration by 
Baldwin-Farmer secondary 
Standard Chamber at 
energies of 23, 29, and 
34 keV. 

The dose measured in the 
phantoms was used to 
estimate the genetically 
significant dose and 
leukemia significant dose 
from diagnostic medical 
x-ray examinations in 
Japan. 

James 
(1974) 

Mix D phantom of variable 
thicknesses and weight 
(Table 3). Thermolumines
cent dosimeters and 
Victoreen ionization 
Chamber. 

The maximum skin dose and 
whole-body dose in different 
type x-ray examinations 
were given (Tables 4,5). 
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the particular technique used. Second, there is very little Information 

available on mean bone marrow dose from these examinations in children. 

However, many data are available for adults (James, 1974). 

The present project was intended to Supplement existing data 

by performing dosimetric measurements on improved phantoms more closely 

simulating dimensions and organ sizes of children aged one and five 

years, 

To estimate and predict accurately the effect of radiation 

equivalent dosages and to indicate methods which would minimize 

unnecessary radiation exposure, phantoms were designed and fabricated 

to represent one-year-, and five-year-old children. These phantoms 

were used to assess the medical x-ray absorbed dose to different 

critical organs and tissue during exposure situations typical of 

pediatric radiology. 

The purpose of this study, therefore, has been to perform an 

indepth dosimetric analysis of the field of diagnostic pediatric 

radiology. In this study the following tasks were undertaken: 

1. Perform a careful literature review of pediatric diagnostic 

radiology to identify typical diagnostic procedures to be studied, 

expected absorbed doses to critical organs, and any followup studies 

that may link subsequent ill-health to the effects of the radiation 

exposure. 

2. Installation and calibration of an x-ray machine for use 

in this study. The machine was designed previously (Stansbury, 1977) . 

The author has taken part in the installation of the machine and shared 

the responsibility of calibrating it before use. 
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3. Construction of phantoms representing children of one- and 

five-years. 

4. Design of experiments for in-bone dosimetry measurements. 

5. Measurement of x-ray spectra from the x-ray machine for 

typical diagnostic procedures. 

6. Calibration of dosimetric devices for use in the experimental 

phases of the research. 

7. Measurement of the absorbed doses to selected tissues and 

organs in the one- and five-year-old phantom during simulated diagnostic 

procedures. 

8. Calculation of the absorbed doses to selected tissues and 

organs in the phantoms for situations representing, as closely as 

possible, the experimental arrangement. 

9. Comparison of theoretical and experimental results. 

10. Reevaluation of dose estimates currently available in the 

literature for certain critical organs of the body and the relation 

of these estimates to the published Cancer risk factors for exposure 

to ionizing radiation. 
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CHAPTER II 

THEORY 

X-Ray Generation 

When a target substance is bombarded by high speed electrons, 

x rays are produced. The spectrum of these x rays can be resolved by 

means of a crystal spectrometer. Usually the heterogeneous beam of 

x rays from the target is found to consist of two distinct spectra: 

a continuous spectrum and a sharp line spectrum superimposed on the 

continuous spectrum. The two distinctively different spectra from the 

same target have different origins. The sharp line spectrum is produced 

by the energy changes which take place as a result of rearrangement of 

the electrons in various electronic energy levels of the atoms of the 

x-ray target following the transfer of energy to the atom by the 

bombarding electrons. The continuous spectrum, on the other hand, 

results from the radiation emitted by the electrons as they are 

accelerated and decelerated in the Coulomb force field of the nuclei 

of the target atoms. The continuous x-ray spectrum also is called 

bremsstrahlung radiation, 

According to electrical theories of classical physics, an electron 

will generate an electromagnetic wave when subjected to such an 

acceleration or deceleration. In Figure 1, an electron is assumed to 

-> 
travel along the line OX with velocity v until it strikes the atoms of 
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Figure 1. Illustration of the Theory of Continuous X-Ray Generation. 
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->-
the target. The electron experiences a deceleration a in the opposite 

direction. Based on classical theory, the electromagnetic wave (both 

E and H vectors) will be emitted in all directions with the velocity of 

light, c (in vacuum). The intensity of the emitted electromagnetic wave 

is function of angle 9. It has a maximum value at right angles to 

vector a (6 = ± 90°) and a minimum value in the parallel direction with 

vector a (9 = 0 or 180 ). After r/c sec, the position of wave front 

will be represented by the sphere S of radius r with center at 0. If an 

arbitrary direction OP is selected which makes an angle 0 with the 

direction of vector a, the electric field intensity at P, where OPZ 

- > • - > 

pierces the sphere S, is represented by the vector E. E is perpendicular 

to OZ and lies in the plane XOZ. The associated magnetic field is 

->- -> 
represented by the vector H. H is perpendicular to the plane XOZ. 

Calculations based on classical electrodynamics lead to the result 

E = H • ^ j sin G (2-1) 
rc 

where 

-> 
E = electric field intensity, in e.s.u. 
-V 

H = magnetic field, in gauss. 

->• 2 

a = the acceleration of electron, in cm/sec . 

e = the charge of electron, in e.s.u. 

r = the distance OP, in cm. 

c = the velocity of light, in cm/sec. 

-> 
0 = the angle between OP and the velocity of electron v, 
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-> -*-
These vectors E and H move along the line of travel OZ with 

velocity c, their magnitude decreasing inversely in proportion to 

their distance r from 0. 

It is well known that the energy per unit volume Space, w, 

through which the electromagnetic wave passes is 

->2 ->2 
, 3 E H 

w (energy/cm ) = ^— + —- (2-21 

+2 
E 
-.— (in free spacel 

This quantity multiplied by c gives the energy passing per 

2 
second through 1 cm of an imaginary plane perpendicular to the direction 

of motion of radiation, which, of course, is the intensity I of the 

x rays. 

2 2 o o 
I = Y~% s i n ^ (erg/cm - sec) . (2-3) 

47Tr~c 

It has been found that the x-ray intensity from a thin target 

varies with voltage and direction in a manner which is represented 

approximately by (2-3). Application of the special theory of relativity 

and quantum theory gives a more accurate expression for the intensity 

of the continuous x-ray spectrum (Scherzer, 1932). 
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Using an ionization Chamber, Ulrey measured the intensity for 

the spectral distribution of x rays in 1918. A set of curves for 

x rays from a Coolidge tube with a tungsten target was obtained at 

different generating voltages. From those curves Ulrey found that 

the area under those curves, i.e., intensity of x rays, increased 

proportionally to the Square of the x-ray tube voltage. This means 

that, over the ordinary voltage ränge used in x-ray work, the total 

intensity of the continuous x-ray radiation generated in the tube, 

considering all wavelengths, increases with the square of the voltage 

when other things, such as the tube current, remain constant. That is 

I = KV2 , (2-4] 

where 

I is the intensity of the x-ray beam, 

K is kZ, k being a proportionality constant and Z being the 

atomic number of the target, and 

V is the generating potential. 

Since, in diagnostic medical radiology, characteristic x rays are 

not of interest, the detailed theory of characteristic x rays will not 

be given here. 

Photon Interactions with Matter 

Generally, electromagnetic radiation, including x rays, interacts 

with matter through several different processes. In these processes, 
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the energy of electromagnetic radiation (or photons) can be removed 

from the incident beam by a Single or a series of events. The events 

may involve absorption, in which the photon completely disappears, or 

scattering, in which the direction of the photon and perhaps its energy 

is changed. The absorption and scattering of a narrow or collimated beam 

of electromagnetic radiation leads to an exponential decrease in 

intensity with path length. 

There are three major interaction processes, the photoelectric 

effect, the Compton effect, and pair production, that contribute 

significantly to the absorption of photon energy. A fourth process, 

coherent scattering, also occurs in which the scattered photon has the 

same wavelength as the incident photon but different direction. The 

relative probabilities for the various processes depend on the properties 

of the material with which the photon interacts and the energy of the 

photon regardless of its source. 

For the four most abundant elements in human tissue, hydrogen, 

oxygen, carbon, and nitrogen, the coherent scattering process is 

negligible in comparison to the other photon interaction processes 

unless the photon energy is lower than 30 keV (Neufeld et al., 1967). 

Except for low energy photons or interaction with high Z material, the 

scattering angles are small. 

In the low energy photon region (below 20 keV) the photoelectric 

effect is dominant in soft tissue. In this case, an incident photon 

interacts with the atomic System and loses its entire energy to one of 

the more tightly bound electrons. The electron (usually from the K or 
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L shell) is ejected from the atom with a kinetic energy T given by the 

Einstein relation: 

T = hv - E b , (2-5) 

where 

T is the kinetic energy of ejected electron, in erg, 

--27 
h is Planck's constant equal to 6.63 x 10 erg-sec, 

v is the frequency of incident photon, in sec , and 

E is the binding energy of ejected electron, in erg. 

The angular distribution of the ejected electrons is given by 

• 2 fl 
dn = ~ — j d^ , (2-6) 

(1 - 3 cos Qy 

where 

dn is the number of photoelectrons ejected into a small solid 

angle d^, 

6 is the angle between the incident photon and ejected electron, 

3 is v/c, the velocity ratio of the ejected electron to light. 

In the intermediate photon energy region (20 keV to 1 MeV) the 

dominant photon interaction in soft tissue is the Compton effect which 

is incoherent scattering by unbound electrons. If the energy of the 

incident photon is expressed as hv, the scattered photon is emitted at 

some angle G with an energy of hv" and the electron recoils with kinetic 
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energy T. This reaction may be expressed by the relations 

1 1 1 
hv hvn 2 

0 m c 
(1 - cos 9) (2-7) 

and 

T = hv - hv (2-8) 

where m is the rest mass of the electron and c is the velocity of 

the light. 

The angular distribution of the scattered photons is given by the 

Klein-Nishina formula: 

dö = 
V, 

'v0 v 
— 7 + 
V V, 

- sin du , (2-9) 

where da is the collision differential cross section, which refers to 

the number of photons that are scattered in a small solid angle du 

having an angle 0 with incident photon, and 

Y0 = 2 
V 

(2-10) 

where e is the Charge of the electron. 
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When the energy of the incident photon is much greater than 1.02 

MeV, the important process by which electromagnotic radiation is absorbed 

by matter becomes pair production. A photon, interacting with the 

electric field surrounding a charged particle, is completely absorbed 

and in its place appears an electron-positr.on pair whose total energy 

is just equal to the incident photon energy hv. This incident energy 

is beyond the ränge of interest here. 

In this study, the energy ränge of photons considered is 10 keV 

to 130 keV. This ränge was chosen because it includes most of the 

photons generated in diagnostic x-ray practice (USPHS, 1973). For 

those elements which are most abundant in tissue, hydrogen, oxygen, 

carbon and nitrogen, the photoelectric effect is dominant below 20 keV. 

In the energy region between 20 keV to 130 keV, the dominant interaction 

is the Compton effect. 

When an x-ray beam passes into an absorbing medium such as body 

tissues the energy of the beam is converted into chemical potential 

energy that can result in biological changes. The sequence of events 

is illustrated in Figure 2 (Johns and Cunningham, 1974). The initial 

step in the process is the collision between one photon and an electron 

in the body. This interaction may be a photoelectric or a Compton 

interaction,each of which sets in motion a high speed electron. In 

traveling through the tissue, the high speed electron produces a track 

along which ionizations occur, excitation of atoms and molecules takes 

place, and molecular bonds are broken. All of these processes can result 

in biological damage. Most of the energy, however, is converted into 
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X-Rays Enter Biological System 
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Figure 2. X-Ray Beam Absorption in a Biologica l System. 

Source: Johns and Cunningham, 1974. 
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heat, producing little biological damage. Typically, some 30 interactions 

are required before all the energy of the photon is converted into 

electronic motion (Johns and Cunningham, 1974). 

Radiation damage depends on the absorption of energy from radiation 

and is considered to be proportional to the absorbed energy in tissue. 

The concentration of absorbed energy in tissue depends on the mass energy 

absorption coefficient. Bone, which consists of higher-atomic-number-

elements, such as calcium and phosphorous (which hav-e higher mass energy 

absorption coefficients than soft tissue), absorbs more energy from an 

x-ray beam, per unit mass of absorber than does tissue. Usually, the 

intensity of x-ray field is expressed by the quantity "exposure" and its 

special unit, the Roentgen (R), which specifies the amount of energy 

transferred from the x-ray field to a unit mass of air. However, in 

most cases, the primary interest is the energy absorbed in tissue. 

When electronic equilibrium exists the measurement of exposure can be 

converted to absorbed dose in tissue by: 

(y(E)/p) 
D = 0-869THEY^T- x C2-ii; 

air 

where 

D is the absorbed dose, in rad, 

(u(E)/p) is the mass energy absorption coefficient of tissue 

which depends on the energy of the interacting x ray, 

2 -1 
in cm - gm , 
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(|j(E)/p) . is the mass energy absorption coefficient of air 
air 

which depends on the energy of the interacting x ray, 

2 -1 , 
m cm - gm , and 

X is the exposure, in R. 

If the x̂ -ray energy spectrum at the position of interest is known, 

the absorbed dose can be obtained by multiplying the exposure by the 

suitable conversion factor t 
(M(E)/P)air 

Theory of the Monte Carlo Method 

Introduction 

The Monte Carlo method is a Statistical approach to the prediction 

of interaction rates and energy distributions in a large system such as 

the human body or a phantom. One may estimate the dose to various organs 

of the body from a source of photons incident on the body by following 

a large number of them, in a statistically valid fashion, until they are 

absorbed in the System or scattered out of the system. Using known 

physical laws and probabilities, it is possible to obtain an estimate 

of a physical function, such as absorbed dose, or of the fraction of 

absorbed energy. Thus, basically the Monte Carlo method involves an 

interesting combination of random sampling theory, physical law (simulated 

photon histories), and numerical analysis. The real problems are: 

Given a function, is there a stochastic process which yields a 

distribution such that it, or some set of its parameters, includes the 

physical quantities which we desire to know? If so, what is an 
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efficient method of obtaining these Statistical results and a 

meaningful way of interpreting them? 

Random Number 

When a Monte Carlo calculation is performed many "random numbers" 

are always involved. A random number is a particular value of a 

sequence of numbers which appear to be drawn at random from particular 

probability distributions. The random number generator is an 

indispensable part in all Monte Carlo calculations. Many different 

methods have been introduced and used to produce random numbers 

(Hall, 1962; Jansson, 1966). Generally, these methods can be placed 

into one of three categories: (1) monitoring the Output of some 

dice-like or other physical devices; (2) drawing samples from specially 

constructed tables (Kendall, 1939; Rand, 1965); or (3) calculation 

using a specified mathematical algorithm. The first category is 

rarely used, because the sequence of generated numbers cannot be 

reproduced, thus making the retracing of the exact Steps of the 

calculation impossible. The second category is seldom used in present 

day Monte Carlo calculations because the storage of tables in a 

Computer memory System and the calling of entries one at a time is 

a very inefficient way to utilize a Computer. The third category 

actually does not produce random numbers at all. This category does, 

however, produce numbers which, in many respects, behave like random 

numbers. Since these numbers have a completely predictable sequence of 

numbers or digits, the term "pseudo-random numbers" is often used to 

describe numbers produced by such deterministic methods. In fact, the 
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third category is the most important method used to obtain random 

numbers at the present. For example, Lehmer (1951) introduced the 

"multiplicative congruential" method to generate pseudo-random number 

sequences by the formula: 

where 

T. E kT. . (mod m) (2-12) 
l l-l J 

i = 1, 2, 3 ..., 

T. = the i random number, 
I 

= an arbitrary constant, and 

T. . = the (i - 1) random number. 
l-l 

The relation a 5 b(mod c) simply means that the ratio a/c and b/c 

have the same remainder. For a given seed number T and some constant 

k, the first random number T is obtained by multiplying the seed number 

T by the constant k. To obtain the second random number T multiply 

the constant k by the seed nurnber T , repeat the process using the number 

just generated in place of the seed number, and so on. 

One characteristic of the pseudo-random number generated by 

mathematical algorithm methods is that after a certain number of 

distinct elements have been produced, the sequence begins to repeat 

itself, the number of distinct digits produced being called the period. 

The period of a given pseudo-random number generator must have an 

acceptable length for its intended purpose. Also the pseudo-numbers 

have to pass reasonable randomness tests such as moments test, the 
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frequency test, serial test, poker test, and gap test (Kendall, 

1939). 

Probability Distribution Function and 
Cumulative Distribution Function 

The probability is defined as the likelihood of occurrence of 

any particular form of an event, estimated as the ratio of the number 

of ways in which that form might occur to the total number of ways 

in which the event might occur in any form. The distribution of the 

ratio is called a probability distribution function. Generally, the 

probability distribution functions are of two types, continuous and 

discrete. Since both types can be dealt with in a similar way, only 

the continuous type will be described here. 

Let x be a stochastic variable and f(x) be a continuous 

probability distribution function for a <_ x _< b, then f (x)dx is the 

probability of x lying between x and x + dx. We may also define the 

cumulative distribution function F(x) as: 

F(xQ) = j f(x)dx x c x . (2-13) 
a 

F(x) is always a nondecreasing function and it is assumed that F(a) = 0 

and F(b) = 1. 

Translation between the Different Probability Distribution 
Functions and Different Cumulative Distribution Functions 

Let x be a stochastic variable and y = <J>(x)> a function of x 

which determines y uniquely. The variable y is then a stochastic 
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variable and the distribution of y can be derived from the distribution 

of x. Let the cumulative distribution function of y be G(y). If 

y = <f>(x) is an increasing function the inequalities x <_ xn and 

y = (j)(x) < <Kxn) = yn will always be satisfied simultaneously so 

that (Hald, 1952) : 

G(yQ) = F(xQ) . (2-14) 

If y = <J)(x) is a decreasing function, we get 

G(yQ) = 1 - F(xQ) (2-15) 

i.e., the two cumulative distribution functions take on the same values 

for corresponding values of the variable. 

Usually we have a method of generating the uniform probability 

distribution function of a random number and its cumulative distribution 

function. Also we can equate the cumulative distribution of a random 

number with other cumulative distribution functions associated with the 

physical phenomenon in which we are interested. From this equality we 

find the stochastic variable x as a function of the random number. 

For example, suppose that the probability distribution function which 

determines the first collision distance for photon interactions with 

matter is (Cashwell and Everett, 1959) 

f(x) = Ze"Ex 0 < x < - (2-16) 
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Here £ is the total cross section of collision and x is the 

first collision distance. The probability for the first collision 

to occur between 0 and x is 

F(x ) = J ° f(x)dx (2-17) 
0 

r 0 , -ix , 
= j Ee dx 
0 

= 1 - e"Zx0 

Suppose the random number has the uniform probability distribution 

g(r) = 1 for 0 £ r < 1, then the cumulative distribution function of 

the random number r is 

r (2-18) 
G(r) = J 1 dr 

0 

= r0 • 

Equalizing the two cumulative distribution functions, equations 

(2-17) and (2-18), we get: 

1 _ e"
Zx0 == rQ (2-19) 

and 

xQ = ̂  Än(l - rQ) . (2-20) 
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Because rn is uniform on 0 £ r < 1, then 1 - r is equidistributed 

and we simply use 

x 0 - ^ - t a rQ . (2-21) 

The Monte Carlo calculation uses the distance x from point of 

departure to the collision Site as one bit of data determining a photon 

history. A random walk process can be defined for individual photons. 

Hence a large number of photon histories must be generated by a random 

walk and this is essentially the Monte Carlo process. In the present 

study a sample size of 50,000 photons histories was used as a compromise 

between adequate precision and a reasonable limitation on Computer time. 

The Monte Carlo Technique Applied to 
Dose Calculations 

The average photon energy delivered to a given target region or 

to a point region can be determined using Monte Carlo techniques. Random 

sampling techniques are used to simulate the entire sequence of 

scattering and absorption events that follow the emission of each source 

photon. Such a sequence is known as a history of the photon and each 

history consists of a number of successive photon interactions. Thus, 

Monte Carlo calculations provide a direct means of determining the 

typical x-ray energy deposition in phantoms from photon emitters, either 

internal or external to the body. 

Usually photon histories are determined using the mass-

attenuation coefficients, u (E), u (E) and u (E), for the 
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photoelectrica Compton and pair-production interaction, respectively. 

These coefficients are calculated from atomic attenuation coefficients 

and composition. For the first step of the procedure, an initial 

attenuation coefficient, y (E) , is selected which is greater than or 

equal to those of any of the regions, i.e., skeletal, lung, and the 

remainder of the phantom (Warner, 1968). A potential site for an 

interaction is chosen by the procedure of first taking a distance 

traversed, x , defined as 

xo - ^min r o • ^-^ 

where r is a random number uniformly distributed between 0 and 1. 

The coordinates of a point at this distance (from the departure point) 

are tested to determine its location in the phantom; this region is 

designated as i. One then plays a game of chance with probability 

y.(E)/y (E) of acceptance of this as an interaction site where y. is the 

total mass attenuation coefficient for the region i. If the outcome 

of the game is favorable, this site is accepted, then the second random 

number r is generated to determine the scattering angle and energy; if 

it is unfavorable, the photon is allowed to continue with the same 

direction and energy, but beginning at point i. In addition to 

scattering, the photon has a finite probability of absorption which 

predominates at low energies. Thus, very few photons will penetrate 

to large distances, and therefore, the statistics of the estimates will 
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be poor (Warner, 1968). To compensate partially for this, each photon 

is given a Statistical weight that initially is set at unity. With 

each Compton scattering interaction, this weight is reduced to allow 

for the probability of survival, and the photon is allowed to continue. 

The reduction of weight is expressed by 

U (E ) 
W = W n -^r-^4- (2-23) 
n n-l y(En__1)

 J 

in which W is the weight carried by the photon after the n collision 
n 

and u (E ) and u(E ) are the coefficients for Compton scattering 

and the total coefficient before the n collision, respectively. 

This reduction of the weight carried by the photon is equal to the 

expectation of Compton scattering which the photon would have in the 

actual physical processes. The total flight history of a photon is 

terminated: (1) if it escapes from the phantom; (2) if its energy 

falls below 4 keV; or (3) if its weight falls below 10 ; in the 

latter two cases, the energy is considered to be absorbed locally. 

The energy deposition for the n interaction is 

E* = W . 
n n-l 

(E J u (E _) y (E J 
e "-1 E + _

c "-1 fE _ E ) + PP "-1 £ - 2m c2] 
(En_1)

 bn-l y(En_x)
 Cbn-1 LnJ p ^ ^ ) K-l ZnQc J 

(2-24) 
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in which y (E . ) , y (E ,) and y (E .) are the mass-attenuation 
pev n-]/ c^ n-1 pp n-lJ 

coefficients for the photoelectric, Compton, and pair production 

processes before the collision at the site considered, respectively, 

2 
and m c is the rest mass energy of an electron. It should be noted 

that the total energy of the photon is absorbed locally when a 

photoelectric interaction occurs, and this is also the case for the 

kinetic energy of the electron and positron produced by pair production. 

2 
The positron will be annihilated, and two photons of energy m c 

(- 0.511 MeV) will be emitted. The Computer code is designed to take 

account of these photons since a new photon of energy 0.511 MeV with 

weight 

2 V i UCE„_XD 

and random orientation is started at the site of the pair production 

and followed independently afterward. Since the energy of the 

diagnostic medical x ray is much lower than the threshold energy 

(1,022 MeV) of pair production, this process will not be considered 

here. Also no procedure has been used to account for the finite ränge 

of the electrons produced. Generally, these ranges are small compared 

with the diameter of most organs and the absorbed dose will not 

change abruptly with distance except at an interface where the 

composition and density change, or at the boundary of the source organ. 

At such an interface, the number of photon interactions per unit volume 
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may change abruptly, but changes in absorbed dose will be somewhat 

less abrupt due to the finite ränge of the secondary particles. Ho 

attempt has been made here to estimate boundary effects. 

Bremsstrahlung may be considered as a further example of a 

secondary form of radiation which may have an extended ränge, and may 

be followed using Monte Carlo methods. But this has not been done, 

because the probability of producing a photon with an energy approaching 

the kinetic energy of the electron is rather small—although greater 

than zero—and, the total energy accounted for by bremsstrahlung 

is very small in tissue of the human body (Snyder et al., 1969; 

Ellett et al., 1968). 
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CHAPTER III 

EXPERIMENTAL APPARATUS AND PROCEDURES 

Phantom Design and Fabrication 

Mathematical descriptions (phantoms) representing one-year-old 

and five-year-old children have been designed (Hwang et al. , 1976) in 

a manner similar to the adult phantom of Fisher and Snyder (1967). 

These representations were assumed to be in a Cartesian coordinate 

System. Physical representations of these mathematical child phantoms 

were constructed for use in this research. The body of each was 

represented as erect with the positive z axis directed upward toward 

the head, the positive x axis is directed to the phantom's left, and 

the positive y axis is directed toward the posterior side of the 

phantom. The origin of the coordinate System is taken at the center 

of the base of the "trunk" section of the phantom. Outer dimensions 

of the one-year-old and five-year-old phantoms are shown in Figures 3 

and 4, respectively. 

Volumes for the whole bodies of children represented by these 

phantoms were calculated from the available data of specific gravity 

and weight (Snyder et al., 1975) as a function of age. The specific 

gravity for the one-year-old child was found to be 1.017 and that for 

the five-year-old child was 1.019. Specific gravities for children 

tended to be lower than those for adults. The mathematical representa-

tion of a one-year-old child had a weight of 10.4 kg and was 76 cm in 
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Figure 3 . Dimensions and Coordinate System of the One-Year-Old Phantom. 
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50.7 cm 

Figure 4. Dimensions and Coordinate System of the Five-Year-Old Phantom, 
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height, while the five-year-old child had a weight of 20 kg and was 

112 cm in height. Once the total size of the body was established, 

the volume of each part—head, trunk, arms, and legs—was partitioned. 

The voluine percentages of the different parts of the total volume were 

different for each of the different ages. The head section was 25.5% 

and 16.2% of the total volume for a one-year-old and a five-year-old 

child, respectively. The trunk section was 50% and 52.3% of the total 

volume for a one-year-old and five-year-old, respectively. The leg 

section was 15.5% and 23% of the total volume for a one-year-old and 

five-year-old child, respectively. The remaining volume was assigned 

to the arms, 9% for a one-year-old and 8.5% for a five-year-old. In 

designing the phantoms, the volumes for the trunk and arms were 

composited and referred to as the volume of the trunk section. For 

all these sections the circumference of each section was found in 

the anatomical references (Snyder et al., 1975); all of the remaining 

dimensions were then determined to fit within the assigned volumes. 

Figure 5 shows an anterior view of some of the larger organs 

and their position in the phantoms. The representations of the organs 

by mathematical equations are only approximate, since the goal in 

constructing these organs mathematically was to obtain the approximate 

size and shape of an average organ through the use of a few simple 

mathematical equations. If the size and shape approximated those 

of the real organ, the dose estimate should be correspondingly accurate. 

However, to minimize Computer running time and thus the cost, the 

formulas used were as simple as possible. The detailed description of 
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Figure 5. Anterior View of the Principal Organs in the Head and 
Trunk of the Child Phantoms Used for the One-Year-, and Five-Year-Old. 
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the mathematical equations describing the child phantoms are given by 

Hwang et al. (1976). 

In order to check the proper position o£ the organs and organ 

shape and that no two organs overlap, the mathematical descriptions 

for these phantoms were coded and checked with a Computer plotting 

program. The plot routine simply scans diagonally back and forth in 

a specified plane of the phantom using the mathematically encoded 

geometries of the organ. Some of the plots are shown in Appendix A, 

Figures A-l through A-12. ßoth X-Z and X-Y cross section plots are 

shown and give a pictorial image of the mathematical construct. 

Cross-section plots such as these also were extremely valuable in 

that they provided drawings which facilitated the construction of 

the physical phantoms. 

Physical representations of the mathematical phantom described 

above are shown in Figures 6-14. Exterior shells of the phantoms 

were fabricated from Lucite in three principal, separable regions: 

(1) an elliptical cylinder topped by half an ellipsoid containing 

the head and neck (see Figure 7}; (2) an elliptical cylinder containing 

the arms, torso, and hips (see Figure 8); and (3) two truncated circular 

cones containing both legs and the feet and attached to this is a small 

region with a plane front surface to contain an approximation to the 

testicles (see Figure 9). The physical representations of the skeleton 

of the mathematical phantom were fabricated from Lucite and polystyrene 

(see Figures 10 and 11). To make in-bone dosimetry possible, each major 

skeletal region was designed to have detector probes which were used to 
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Figure 6. The One-Year-, and Five-Year-Old Phantoms. 



Figure 7. The Head Regions of the One-Year-, and Five-Year-Old Phantoms 

Ol 
CT. 
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Figure 8. The Trunk of the One-Year-Old Phantom, 
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Figure 9. The Legs and Genitalia Region of the One-Year-Old Phantom. 
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Figure 10. The Skeleton of the One-Year-Old Phantom, 
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Figure 11. The Skeleton of the Five-Year-Old Phantom, 



Figure 12. The Pelvis of the One-Year-, and Five-Year-Old Phantoms CTN 



Figure 13. The Spines of the One-Year-, and Five-Year-Old Phantoms, Detector Probes, and 
TLD Holder. 

CTs 
KJ 



Figure 14. The Lungs of the One-Year-, and Five-Year-Old Phant oms 
ON 
O-l 
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hold thermoluminescent detectors inside the bone (see Figures 8, 12, 

and 13). Exterior shells of the lungs were fabricated from polystyrene 

(see Figure 14). The lung regions were attached rigidly beneath the 

top cover of the trunk region. 

After the phantoms were fabricated, the subregion volumes of the 

physical phantoms were compared to the subregion volumes of the 

mathematical phantoms. The results are shown in Tables 8 and 9. For 

most subregion volumes the percentage differences were within ± 5% for 

the five-year-old phantom. However, for the one-year-old phantom, 

the subregion volume differences generally were large (± 10%). This is 

probably due to the difficulty in fabricating the small volumes 

representing these regions in the one-year-old child. 

Phantom Material Evaluation 

The chemical composition for most phantom materials is not 

actually the same as that for human tissue. In f act, most human tissues 

differ significantly in chemical composition from each other. However, 

assuming the interaction of photons are nearly independent of small 

changes in the chemical composition of tissue materials, one may 

represent human tissue by reproducing the elemental composition (% weight 

by element) (Snyder et al., 1975). The mean atomic composition of 

various biological molecules is readily available in the scientific 

literature (Spector, 1956; Long, 1961) and the mean atomic composition 

of human tissues can be calculated from these data. Frequently, for 

dosimetric experiments related to biological Systems, the biological 

materials are replaced by a Substitute because of ease of handling, 
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Table 8. Comparison of Subregion Volumes of the Physical and 
Mathematical Phantom—One-Year-Old 

Region 

Mathematical 
Phantom Volume 

(cm3) 

Physical 
Phantom Volume 

(efflS) 

Percent 
Difference 

m 
He ad 2609.00 2535.00 -2.84 

Brain 977.00 863.00 -11.67 

Trunk 6052.00 7112.30 17.52 

Legs 1586.00 1710.49 7.85 

Genitalia 12.00 13.50 12.50 

Skull 489.00 520.00 6.34 

Spine 130.00 135.60 4.31 

Ribs 97.70 99.00 1.33 

Pelvis 89.76 85.10 -5.19 

Arm bones 104.00 109.20 5.00 

Leg bones 219.00 213.40 -2.56 

Lungs 429.40 421.50 -1.84 

Total Soft Tissue 8700.14 9777.49 12.38 

Total Skeleton 1129.46 1162.30 3.79 

Total Volume 10259.00 11361.29 10.75 

Pei Tpnf Di f 1 

v u phys. --erenc.e = —£—-— V m a t h' x in*». 
V math 
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Table 9. Comparison of Siibregion Volumes of the Physical and 
Mathematical Phantom—Five-Year-Old 

Region 

Mathematical 
Phantom Volume 

(cm3) 

Physical 
Phantom Volume 

(cm3) 

Percent 
Difference 

(%) 

Head 3170.80 3020.00 -4.76 

Brain 1146.00 990.63 -3.56 

Trunk 11901.60 12545.00 5.41 

Legs 4511.80 4651.47 3.10 

Genitalia 37.86 36.00 -4.91 

Skull 542.00 554.00 2.21 

Spine 258.00 273.60 6.05 

Ribs 212.80 198.20 -6.86 

Pelvis 174.43 180.30 3.37 

Arm bones 181.20 180.00 -0.66 

Leg bones 588.00 506.30 3.11 

Lungs 850.00 844.50 -0.65 

Total Soft Tissue 16815.63 17415.60 3.57 

Total Skeleton 1956.43 1992.40 1.84 

Total Volume 19622.06 20252.50 3.21 

Pei T.ent Dif-f 
V , phys. -erence = —*•—̂ ~ -Z^^-x lOf̂  

V 
math. 



67 

availability, mechanical properties, or physical State (such as solid, 

liquid, or gaseous). Ideally, the substituted material should have 

the same number of photon absorption events and scattering events as 

the natural material it replaces. The energy absorption in a given 

material can be calculated by means of well-established formulas, if 

certain constants are known. These necessary constants are the 

effective atomic number and the electron density of the material. 

Theoretical considerations of energy absorption, based on calculated 

values of the effective atomic numbers of typical carbohydrates, fats, 

and proteins, have been published by Mayneord (1937). The effective 

atomic number is defined as: 

Z = y a.Z 
h 1 1 

2.94 2.94 
(3-1) 

where 

Z is the effective atomic number of the Compound, 

i is the number of the individual elements in the Compound, 

w.z. /w.z. 
—; / £—r— is the fractional electron content of the i 

I 
1/ 1 1 

element in the Compound, 

W. is the fraction, by weight, of the individual elements in 

the Compound, 

Z. is the atomic number of the i element in the Compound, and 

A. is the atomic weight of the i element in the Compound. 
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When the effective atomic number of a Compound is known, the mass 

absorption coefficient of the Compound can be calculated as 

'a(E) + K Z
2 - 9 4 - X 31 , ^ 

e J ' 

where 

— is the mass absorption coefficient of the Compound, in 

2 -1 
cm - gm , 

n is the number of electrons per gm in the Compound, 

o"(E) is the Compton scatter-absorption coefficient per electron, 

- 96 
k = 2.64 x 10 is a constant (Walter, 1929) for the 

photoelectric absorption, 

Z is the effective atomic number of the Compound, and 

° -8 X is the wavelength of interacting photons, in A(10 cm). 

If the mass attenuation and mass absorption coefficient of 

the individual elements in a mixture are knoum, then the total mass 

attenuation and mass absorption coefficient of the mixture can be 

calculated by using the "mixture rule." This states, that for a 

mixture or Compound, 

y(E) 
= n, 
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where 

— is the total mass attenuation or absorption for the Compound, 

i is the number of elements in the Compound, 

W. is the fraction by weight of the i element, and 

f^l 
[pji is the individual mass attenuation or absorption coefficient 

of the i element. 

The absorbed dose, in rad, is given by the equation 

D(rad) = ijj x E x ü x o.Ol r a d ~ g m , (3-4) 
p erg ^ J 

where 

D is the absorbed dose, 

-2 
\p is the fluence of interacting photons, in cm , 

E is the energy of interacting photons, in ergs, and 

— is the mass energy absorption coefficient, in cm - gm 

One method of evaluating the photon equivalence of one material 

with another is to compare the densities of the two materials, the total 

mass attenuation coefficient, and total mass absorption coefficient over 

the ränge of energies of photons which are present in the material. To 

aid in the selection and evaluation of tissue equivalent materials a 

program, TECALC (Stansbury, 1974), was used. The elemental composition 

of the pediatric phantoms was compared with those of the Snyder-Fisher 

Phantom (Reference Man) in Table 10. 



Table 10. Description of Snyder-Fisher Phantom Subregions and the Pediatric Phantom Equivalents 

Soft tissue i Ske leton 
e 

Lung 

Snyder-Fisher Equivalent 
Q 

Snyder-Fis her Equivalent Snyder-Fis her n • 1 , b 

Equivalent 

Elemental 
composition, % 

H 10.474 11.26 7.036 6.47 10.208 9.78 
C 23.020 18.36 22.793 19.15 10.008 11.11 
N 2.339 3.865 3.94 2.802 
0 63.206 69.38 48.559 52.98 75.958 77.61 
Na 0.128 0.393 0.315 0.17 0.190 0.59 

Mg 0.016 0.111 0.18 0.008 
P 0.236 6.937 6.80 0.081 
S 0.221 0.169 0.01 0.230 
Cl 0.141 0.607 0.139 0.270 0.91 
K 0.208 0. 145 0.200 
Ca 9.914 10.30 0.007 
Fe 0.006 0.008 0.037 
Zn 0.005 0.010 0.002 

Density, g/cm3 1.0 0. 99 ± 0. 01 1.5 1.50 ± 0. 01 0.3 0.30 ± 0.01 

Stansbury, 1977. 

Composition given here is the same as given in MIRD Pamphlet No. 5 except that all elements 
with atomic number greater than zinc are considered zinc. 

d. 

'Made from 66% H20, 25% isopropyl alcohol, 8% sucrose, and 1% NaCl. 
! 

Made from bone flour, water sucrose, and salts. (Ga74). 

'Made from 73.5% H20, 25.0% cellulose (sponge), and 1.5% NaCl. 
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Tables 11-13 give the partial mass-attenuation coefficients of 

the phantom Substitute materials and their comparisons with the 

coefficients calculated for Snyder-Fisher Phantom specifications. In 

most cases the coefficients agree within ± 1%. The coefficients 

calculated for the Snyder-Fisher Phantom were used in the Monte Carlo 

Computer program to simulate the photon transport process inside 

the phantom. 

Some of the more useful phantom or dosimetry materials and 

their important dosimetrical parameters, such as chemical composition, 

density, effective atomic number, and electron density, are presented 

in Appendix B, Tables B-l through B-3, which can be used as a reference 

to select the phantom material in the phantom dosimetry study. 

X-Ray Machine Calibration 

Generally, the principal components that permit the control and 

Operation of an x-ray machine are an x-ray tube, an autotransformer, 

a high-voltage transformer, a rectifier, a low-voltage transformer for 

filament current to the x-ray tube, and a choke coil to adjust the 

current supply to the filament. The relation of these parts is shown 

diagrammatically in Figure 15. 

A great majority of x-ray tubes used today are the Coolidge x-ray 

tube, as shown in Figure 16. This tube is evacuated to the best vacuum 

attainable. The cathode of this tube consists of a spiral tungsten wire 

filament, which is inside a small metal cup, which can be heated to 

incandescence by passing an electric current through it. The surrounding 



Table 11. Calculated Partial Mass Attenuation Coefficients for Snyder-Fisher Composition 
and Comparison^ of Equiyalent Material Used in the Pediatric Phantom—Soft Tissue^ 

Photoelectric Coherent Compton 

Energy Coefficient Comparison Coefficient Comparison Coefficient Comparison 
(keV) (cm2/g) (%) (cm2/g) (%) (cm2/g) (%) 

10 4.34 1.7 0.231 1.7 0.153 -0.7 
15 1.18 1.5 0.132 1.6 0.176 -0.8 
20 0.465 1.4 0.0862 1.6 0.186 -0.9 
30 0.124 1.1 0.0513 1.6 0.192 -0.9 
40 0.0485 1.0 0.0277 1.5 0.190 -0.9 
50 0.0235 0.9 0.0187 1.5 0.185 -0.8 
60 0.0130 0.8 0.0135 1.5 0.180 -0.8 
80 5.12E-3 0.7 7.93E-3 1.5 0.169 -0.7 
100 2.50E-3 0.6 5-20E-3 1.4 0.160 -0.7 
150 6.96E-4 0.4 2.37E-3 1.4 0.141 -0.6 
200 2.85E-4 0.3 1.34E-3 1.5 0.128 -0.6 
300 8.40E-5 0.1 5.91E-4 1.5 0.111 -0.5 
400 3.62E-5 0.1 3.30E-4 1.5 0.100 -0.6 
500 1.92E-5 0.3 2.09E-4 1.6 0.0926 -0.6 
600 1.15E-5 0.4 1.44E-4 1.6 0.0871 -0.6 
800 5.36E-6 0.7 8.05E-5 1.7 0.0798 -0.8 
1000 3.01E-6 0.9 5.13E-5 1.8 0.0751 -0.9 

Percent comparison of coefficients for equivalent material calculated as 

100 x ^/P^equivalent " ^/p)Snyder-Fisher 

(U/p)Snyder-Fisher 

Stansbury, 1977. 



Table 12. Calculated Partial Mass Attenuation Coefficients for Snyder-Fisher Composition 
and Comparison^ of Equivalent Material Used in the Pediatric Phantom—Skeleton^ 

Photoel ectric Coherent C ompton 

Energy Coefficient Comparison Coefficient Comparison Coefficient Comparison 
(keV) (cm2/g) (%) (cm2/g] (%) (cm2/g) (%) 

10 15.4 -1.2 0.327 1.5 0.143 -1.2 
15 4.62 -0.9 0.192 1.4 0.164 -0.9 
20 1.93 -0.8 0.126 1.4 0.174 -0.8 
30 0.554 -0.6 0.0671 1.4 0.181 -0.6 
40 0.267 -0.5 0.0416 1.4 0.179 -0.5 
50 0.113 -0.5 0.0282 1.4 0.176 -0.5 
60 0.0641 -0.5 0.0204 1.3 0.172 -0.5 
80 0.0261 -0.5 0.0120 1.3 0.162 -0.5 
100 0.0131 -0.5 7.90E-3 1.3 0.154 -0.5 
150 3.76E-3 -0.6 3.61E-3 1.3 0.138 -0.6 
200 1.57E-3 -0.6 2.04E-3 1.3 0.126 -0.6 
300 4.73E-4 -0.6 9.02E-4 1.3 0.109 -0.6 
400 2.06E-4 -0.6 5.02E-4 1.4 0.0981 -0.6 
500 1.10E-4 -0.6 3.18E-4 1.4 0.0905 -0.6 
600 6.66E-5 -0.5 2.19E-4 1.4 0.0848 -0.5 
800 3.08E-5 -0.5 1.22E-4 1.4 0.0768 -0.5 
1000 1.73E-5 -0.4 7.80E-5 1.5 0.0715 -0.4 

'Percent comparison of coefficients for equivalent material calculated as 

1 0 0 x ^ ^ equivalent ~ ^y/p)Snyder-Fisher 
0VP) Snyder-Fisher 

b 
Stansbury, 1977 



Table 13. Calculated Partial Mass Attenuation Coefficients for Snyder-Fisher Composition 
and Comparisona of Equivalent Material Used in the Pediatric Phantom—Lung^1 

Photoelectric Coherent Compton 

Energy Coefficient Comparison Coefficient Comparison Coefficient Comparison 
(keV) (cm2/g) (%) (cm2/g) (%) (cm2/g) (%) 

10 4.85 1.4 0.246 1.0 0.152 -0.8 
15 1.33 1.3 0.141 1.0 0.176 -0.7 
20 0.524 1.2 0.0918 1.0 0.186 -0.6 
30 0.140 1.0 0.0480 1.0 0.192 -0.5 
40 0.0549 0.8 0.0295 1.0 0.190 -0.5 
50 0.0266 0.7 0.0199 1.0 0.185 -0.5 
60 0.0147 0.6 0.0143 1.0 0.180 -0.5 
80 5.81E-3 0.5 8.43E-3 1.0 0.169 -0.4 
100 2.85E-3 0.4 5.52E-3 1.0 0.160 -0.4 
150 7.91E-4 0.2 2.SIE-3 1.1 0.140 -0.4 
200 3.25E-4 0.1 1.42E-3 1.1 0.128 -0.4 
300 9.57E-5 0.1 6.29E-4 1.1 0.111 -0.4 
400 4.13E-5 0.2 3.51E-4 1.1 0.100 -0.4 
500 2.19E-5 0.3 2.23E-4 1.1 0.0926 -0.4 
600 1.32E-5 0.4 1.54E-4 1.1 0.0872 -0.4 
800 6.10E-6 0.5 8.60E-5 1.1 0.0798 -0.4 
1000 3.43E-6 0.6 5.49E-5 1.2 0.0751 -0.4 

Percent comparison of coefficients for equivalent material calculated as 

1 0 0 x equivalent ^Snyder-Fisher 

^Snyder-Fisher 

Stansbury, 1977. 
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metal cup causes the electrostatic field between the anode and cathode, 

set up by the high voltage applied to the tube, to distribute itself 

in such a way that electrons emitted from the hot filament inside the 

cup will be focused into a narrow beam of cathode rays, which will 

strike the anode with a small definite spot on its surface that is 

called the focal spot. 

The quality and usefulness of the radiograph depends largely 

upon the size of the source of x rays, that is, upon the size of the 

focal spot on the target of the x-ray tube. It is a great advantage 

to have a source of x rays that approaches the ideal of a "point 

source." It is quite possible to achieve a small focal spot by "electron 

2 
optics" techniques. However, if the spot has an area as small as 1 cm , 

the concentration of one or two kilowatts of power on such a small 

spot might melt the metal there, even though the anode were adequately 

cooled by a generous flow of cold oil or water inside it. This local 

melting occurs because the thermal conductivity of the target is not 

great enough to carry the heat away from such small spots rapidly 

enough to prevent the spot from rising to the melting point under such 

concentrated generation of heat. One common method of reducing the 

focal-spot size makes use of a trick in which the apparent size of the 

spot is reduced without reducing the actual size as shown in Figure 16. 

The anode face is a flat surface which has an angle 0 of perhaps 20° 

with the direction of cathode rays. This design produces the so-called 

"heel-effect" which is a Variation in the intensity of x-ray output 

with the angle of x-ray emission from the focal spot as shown in 

Figure 16. 
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In order to do x-ray spectrometry inside the phantom, an x-ray 

machine of a special design was constructed by Stansbury (1977). This 

x-ray machine was able to operate over the ränge of 10 uA to 20 mA. 

Further, the high voltage of the x-ray machine was well regulated. A 

conventional orthovoltage therapy machine (a Siemens Stabillipan 250 

kVcp) was modified for this purpose. A therapy-type tube, with tube 

shield, oil cooler, and tube stand were modified to conform to a 

cathode-ground configuration. The anode was powered by a 5 to 125 kV, 

0 to 10 mA high voltage supply with 0.1% ripple and no load-full load 

regulation of 0.1%. Filament power was supplied by a conventional 10 V, 

10 A power supply. Maintaining the filament at near ground potential 

facilitated current sensing and interfacing of the filament and its 

power supply. The usual milliammeter and timer were replaced with 

a current integrator (Stansbury, 1977). 

The x-ray machine calibration included the following measurements. 

1. Spectral output of the x-ray machine.—A lithium-drifted 

germanium, Ge(Li), spectrometer and a pinhole collimator were used to 

measure the spectral output of the x-ray machine. The Ge(Li) detector 

had an active depth of 7.1 mm and a 0.25-mm beryllium window. Resolution 

for the Ge(Li) spectrometer was determined to be 0.9 keV full-width at 

241 
half maximum (FWHM) at 60 keV photon energy ( Am). Some spectra 

(shown in Figures 17-19) were measured for 60, 80, and 100 kVcp generating 

potential with the tube currents of 25, 10, and 6 uA, respectively. 

Here the cp in kVcp denotes the constant potential nature of the 

generating potential. The raw data in Figures 17-19 are the pulse 
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height spectra measured with a Ge(Li) detector. "Binned" data were 

grouped into intervals 2 keV wide as follows. The raw data were 

corrected Channel by Channel to account for intrinsic efficiency losses 

due to the finite thickness (7.1 mm) of the Ge(Li) detector. Fluence 

in any "bin" was taken to be the average value of the corrected counts 

in the raw data Channels whose energy lay within the boundaries of 

the "bin." 

The absorption edge prominent in Figures 17-19 is centered at 

energy 37.4 keV. This edge was caused by barium contained in the glass 

envelope of the therapy-type tube, and a similar barium edge has been 

observed by other researchers studying the spectrum of a similar tube 

of the same brand (Gibson et al., 1975). Barium oxide is one of the 

materials added to glass to adjust its thermal expansion coefficient. 

Glass used to make x-ray tubes must have a thermal expansion coefficient 

similar to the metal components which penetrate the glass envelope in 

order that adequate glass-to-metal high vacuum seal can be made. The 

amount of barium added to the x-ray tube glass varies from manufacturer 

to manufacturer and from one batch of glass to another produced by 

the same manufacturer. 

The measured x-ray spectra could be used to check the generating 

potential of the x-ray machine. Those x-ray spectra also served as 

input (i.e., the source routine) in an existing Monte Carlo code which 

was used to calculate organ doses in children. 

2. Exposure rate as a function of tube current.—Exposures 

were measured with a Victoreen Radocon III ionization Chamber and 
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electrometer dosimetry System. For three different generating potentials, 

60 kVcp, 80 kVcp, and 100 kVcp, the exposure rate per unit tube current 

was measured with various tube currents, respectively. The target-to-

chamber distance was 100 cm. After temperature and atmospheric pressure 

corrections of the Radocon III ionization Chamber exposure rate reading, 

results were obtained as shown in Figure 20. The exposure rates per unit 

tube current was generally slightly higher with increasing tube current. 

However, the variations were less than ± 2% which was the error 

uncertainty claimed for the Radocon III. The dotted lines in Figure 20 

are not "best fit" but are presented for reference only. 

3. Exposure rate as a function of x-ray generating potential.—The 

exposure rate of the x-ray machine was measured with a Victoreen Radocon 

III ionization and electrometer dosimetry system. Exposure rate as a 

function of generating potential is shown in Figure 21. The slope of 

the curve is equal to 2 which follows the well-known empirical law 

that the x-ray Output is proportional to the Square of the generating 

potential (Equation 2-4). 

4. Focal spot size and penumbra size determination.—Focal spot 

size was determined by using a 0.5 mm pinhole collimator and Photographie 

film. The focal spot size was found to be 8 mm x 8 mm Square. A 

Photographie film was also used to check the aecuraey of the light 

localizer of the collimator of the x-ray machine. A penumbra was 

observed around the edge of the x-ray beam defined by the collimator 

of the x-ray machine. At a focal-spot-to-film distance of 100 cm 

the penumbra was 0.75 cm wide, which was larger than for the usual 
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Diagnostic x-ray machine. This is because usual diagnostic x-ray machines 

have a much smaller focal spot size (1 to 2 mm Square). 

Dosimetry 

Victoreen 550 System 

A Victoreen Model 550 Radocon III Integrating Rate Electrometer 

System was used as the primary dosimetry reference instrument for 

radiation measurements performed in this study. Victoreen Claims that 

the basic electrometer inaccuracy measured at 22°C, less than 6 months 

after calibration, is ± 0.5% of reading (± 1 digit on the digital 

readout). Temperature drift is ± 0.03% per degree centigrade difference 

from 22°C and input offset current is less than 2 digits on the most 

sensitive ränge, i.e., ± 0.02 mR/sec. The zero drift is less than 

5 digits per hour on the most sensitive ränge, i.e., ± 0.05 mR/sec or 

0.05 mR after 1 hour Operation and long-term drift is ± 0.5% per 

6 months. 

The Chamber used in this study was a 550-0.1 ionization probe. 

Victoreen Claims that the Chamber calibration uncertainty for the 

550-0.1 probe is ± 2% over the energy ränge of 21 to 1250 keV. 

Calibration data are given in Table 14 and the correction factors 

are plotted as a function of the effective energy in Figure 22. 

Thermoluminescent Dosimetry Theory 

Thermoluminescent dosimetry (TLD) techniques were used 

extensively in this study. TLD offers a number of advantages for 

the assessment of the absorbed dose associated with diagnostic x-ray 



Table 14. Victoreen Model 550-0.1 lonization Probe Calibration Data' 

Generating Total Filtration (mm] Effective Half value layer 
Potential Energy 

(keV) 
Correction 

(kVcp) Be + AI + Cu 
Energy 
(keV) mmAl or mmCu Factor 

30 1.0 0.5 0.00 15.0 0.33^ 1.11 

50 1.0 1.0 0.00 21.0 0.90 1.02 

60 0.0 4.0 0.00 32.0 2.80 0.09 1.05 

76 0.0 4.0 0.00 34.5 3.40 0.11 1.04 

100 0.0 5.0 0.00 42.0 5.1 0.20 1.04 

150 0.0 5.0 0.25 64.0 10.0 0.16 1.03 

200 0.0 0.50 84 13.0 1.30 0.95 

250 0.0 5.0 3.2 140 18.0 3.20 0.95 

137„ 
Cs 660 0.96 

60r Co 1250 0.94 

'Data supplied by manufacturer 

b„. 
Filter to target distance is 25 cm, 
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procedures, when compared to alternate techniques such as film or 

ionization methods. The size of each TLD is small, 3.2 x 3.2 x 0.9 mm 

for the hot-pressed chip and 1 x 1 x 6 mm for the rod, compared to 

ionization Chambers or film that usually are much larger. Also the 

angular dependence of the TLD is relatively small, In addition, two 

phosphors of differing atomic numbers can be utilized to estimate the 

effective energy of an x- or gamma-ray field. All these advantages 

make it possible to use TLD for in-bone dosimetry. 

Utilization of TLD as a radiation dosimetry technique is based 

on the quantification of light emitted from a heated crystalline 

material that was previously exposed to ionizing radiation. The 

basic physical principle is associated with the excitation of electrons 

from the valence band to the conduction band when a crystal is exposed 

to radiation, as shown in Figure 23, step 1. The free electron and 

associated hole migrate independently through the crystal lattice. 

In reality the crystal has imperfections and impurities, also called 

activators, locked in the lattice structure. Some of these defects 

can capture a free electron or hole. These are called electron trapping 

centers or hole trapping centers. Usually these trapping centers are 

like an ionized hydrogen atom and have various energy states, E E , 

E , ..., which are shown also in Figure 23. Once a migrating electron 

gets trapped, it remains there, as shown in step 2, Figure 23. A trap 

that has caught an electron is called a filled trap. The greater the 

radiation dose, the more electrons are excited, and the greater the 

number of filled traps. Each trap can only supply so much holding 
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energy to an electron or hole. These electrons or holes are called 

metastable. When an irradiated crystal is subsequently heated, see 

step 3 in Figure 23, the electrons or holes can receive enough 

additional thermal energy so that the trap releases them from the 

metastable trap level and they return to their ground State (valence 

band). During this readjustment in energy states, certain types of 

traps will cause the electrons or holes to release their excess energy 

in the form of light. This light energy is emitted when a "release 

temperature" is reached, as step 4, shown in Figure 23. This process 

is called thermoluminescence. 

The traps generally fall into several groups based on the 

energy which must be supplied to release the electrons; traps which 

hold onto electrons very tenaciously represent deep energy traps while 

other traps which retain electrons weakly represent energy traps very 

near the conduction band. Each group of traps releases its electrons 

at a different and characteristic temperature. There are usually many 

more low energy traps than there are high energy traps. A slight 

temperature increase can empty a low energy trap, while a large 

temperature increase is needed to empty a high energy trap. 

When an irradiated crystal is heated at a constant rate, the 

stored energy in the crystal is emitted in the form of light. The 

luminescence Output during heat treatment will vary with time depending 

on the schedule of heating, the impurities in the dosimeter and the 

properties of the crystal. The curve of luminescence output versus 

temperature obtained when the crystal temperature is steadily increased 
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is called the "glow curve." The theory of glow curves (Randall et al. , 

1945; Townsend et al. , 1967; Cameron et al., 1968) has been studied very 

extensively with the aim of deducing the depths, shapes, and other 

properties of electron or hole traps from these curves. The shape of 

the glow curve depends upon the material selected. Total area under 

the glow curve, or total light produced, is proportional to the 

radiation dose received by the crystal. While the heating rate will 

affect the height of the glow peaks, it does not affect the total amount 

of light produced. Generally the thermoluminescent Output can be 

measured either as the integrated light Output (the light sum) or as 

the glow-peak height. The former measurement has the advantage of 

being independent of the heating rate; therefore, heating rate need not 

be accurately reproducible between one reading and the next. A 

disadvantage is that a certain degree of arbitrariness is introduced 

in deciding when the Integration should be cut off. This is particularly 

true in dealing with a small signal of light (resulting from a low 

dose sample) which may be masked by the incandescence signal from the 

heater. The peak-height method of measurement requires that the 

heating schedule be accurately reproducible from reading to reading 

because the peak height is a very sensitive function of the heating 

rate. For samples exposed to the same dose, the faster the heating 

rate, the higher the peak height. In spite of such required control 

measures, reproducibility of the heating schedule is not hard to 

achieve in practice (Cameron, 1964). 
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To reuse the TLD crystal and to erase all its previous radiation 

history, an annealing process is generally used. This annealing is 

accomplished by heating the TLD at a suitable temperature and for a 

specified time. The annealing effectiveness varies with different TLD 

materials. Sensitivity and stability of some TLD materials, such as 

LiF:Mn, are highly influenced by their prior irradiation and thermal 

history (Ginther and Kirk, 1956, 1957). Also, many variations in 

annealing procedures have been developed by different investigators 

(Shiragai, 1967; Harris and Jackson, 1970; Dahr et al., 1973). 

Cameron et al. (1964) and Zimmerman et al. (1966) have suggested a 

"Standard annealing" procedure for LiF. This procedure includes a 

400°C anneal for one hour followed by an anneal at 80°C for 24 hours 

before irradiation or 100°C for 10 minutes after irradiation. 

In this study, a Victoreen Model 2800 TLD reader which had a 

"built-in" anneal cycle was used to read all the LiF:Mn dosimeters. 

In this built-in anneal cycle, the LiF:Mn dosimeter is first quickly 

preheated to 120°C for 17-18 seconds. Then the heating temperature is 

increased, at a heating rate of 10°/sec, to 255°C for 23-24 seconds. 

After this period the digital display on the reader shows the exposure 

received by the LiF:Mn dosimeter. Following a brief cooling period, the 

heating temperature is raised again quickly to approximately 340°C 

for 37 seconds, then the annealing process is completed. This technique 

is based on carefully Controlling the heating and cooling rate during 

the reading process. The lower temperature (120°C) preheating portion 

of the cycle eliminates low temperature peaks from the glow curve. 
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The higher temperature (340°C) annealing portion of the cycle and 

suitable cooling time resets the sensitivity and stability of the 

LiF:Mn dosimeter. All new LiF:Mn dosimeters, or those that have not 

been read out within one week, were run through the built-in anneal 

cycle before exposure. Following each reading, the built-in cycle 

will automatically reset the dosimeter's sensitivity for a period of 

about one week, thus eliminating the time-consuming external annealing 

procedures normally required. However, an external low-temperature 

oven anneal (80°C ± 3°C for 16 hours within ± 1/2 hour), in addition 

to the built-in anneal cycle, was helpful in minimizing signal fading 

for exposure/readout periods greater than one week or for dosimeters 

exposed to higher dose levels. 

Because of the trap structure of CaF :Mn dosimeters, annealing 

is not very critical (Ginther and Kirk, 1956, 1957). It is only 

necessary to heat these dosimeters long enough to remove any residual 

signal before reuse. Usually heating the dosimeter to 400°C for five 

minutes will "dedose" a CaF :Mn dosimeter which has been exposed to 

less than 500 mR. 

TLD X-Ray Exposure Calibration 

LiF:Mn and CaF :Mn have a relatively large difference in 

energy response and have similar TL light Output spectra. In addition, 

similar physical size crystals were commercially available and can be 

read by the same reader. These advantages made them very attractive 

for use in a tandem technique. Four types of TLDs were used in this 

study. They were the LiF:Mn chip, LiF:Mn rod, CaF :Mn chip, and 
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CaF :Mn rod. In all, 75 dosimeters of each type were available. The 

sensitivity, stability, and other dosimetric properties of TLDs may be 

slightly different even for TLDs in the same batch (Carlsson et al., 

1968). Therefore, for a precise experiment, the careful calibration of 

each individual TLD is necessary (Burch, 1968; Gooden and Brickner, 1972; 

Jacobson et al., 1973; Law, 1973). The TLD is not an absolute radiation 

detector. Thus, grading and calibration are the keys to satisfactory 

use of TLDs as reliable dosimeters. The grading process consisted 

of the following Steps: 

1. Four types of TLDs, 75 dosimeters each, were annealed and 

arranged in a specific order such that each individual 

dosimeter could be identified throughout the whole process. 

2. The dosimeters were given a dose of approximately 200 mR by 

irradiating the dosimeters with a calibrated Ra gamma-ray 

source. 

3. After 24 hours delay, to minimize any fading Variation, the 

individual dosimeters were read and the readings were 

recorded. It was important that the identity of the 

dosimeters be maintained. 

4. The mean of the group readings was divided by the reading 

of each individual dosimeter to obtain an individual 

correction factor for each dosimeter. 

5. The entire group of dosimeters was then annealed and 

the procedures described in 3 and 4 were repeated nine 

additional times. 
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6. The average value of individual correction factors for 

the ten exposures was taken as the relative sensitivity 

factor for each dosimeter. 

7. After ten exposures, 50 dosimeters were selected from each 

group of 75 which had the best reproducibility. These 

dosimeters were used in the rest of the experiment. 

8. According to the value of their relative sensitivity factor, 

the 50 dosimeters were arranged, in decreasing or increasing 

order such that each individual dosimeter could be identified 

permanently. Each dosimeter had a sensitivity and reproduci

bility similar to that of its neighboring dosimeters. 

After the dosimeters had been graded and their reproducibility and 

other characteristics had been determined, they were calibrated for use 

in the remaining experiments. The calibration of the dosimeters focused 

on the following characteristics: 

1. Stability—After irradiation, a part of the radiation energy 

which is stored in TLDs will be lost even at low temperature. If a TLD 

shows insignificant loss of TL at room temperature it is said to have 

good stability or a low fading rate. The TLDs used in this study were 

9 9 A 

irradiated to 200 mR using a. calibrated Ra gamma-ray source. The 

irradiation time was 30 minutes. After irradiation, the dosimeters 

were divided into ten groups and read at different time periods. For 

LiF:Mn, the fading was negligible in the first three days after 

exposure (Figure 24). This result was consistent with those reported 

by other authors (Schulman et al., 1960; Cameron et al., 1964; 
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Suntharalingam et al.,' 1968; Schayes et al., 1968). For CaF :Mn, the 

fading was very rapid during the first day after exposure (Figure 25). 

However, the fading rate became slow after this period. This was 

confirmed also by comparing these -results with the work of others in 

the field (Schmid and Mooney, 1963; Bjarngard and Jones, 1966; Gorbics 

et al. , 1967). All TL readings of CaF :Mn, obtained at different times 

after exposure, were normalized to the TL readings taken at 24 hours 

and a fading curve was obtained (see Figure 25). The solid line shows 

the fading data supplied by the manufacturer of the TLD System. 

The experimental data were slightly lower than the expected fading 

rate (solid line) for periods of less than one hour. This is probably 

due to loss of signal (rapid fading) which occurred in the dosimeters 

during the exposure time (30 minutes). 

2. Orientation Dependence Test—To measure the absorbed dose 

inside a bone cavity, the in-bone detector should have a response that 

is relatively independent on the angle of incidence of the radiation, 

whether it is primary or scattered radiation. Thus, the four types 

1 37 
of dosimeters were irradiated by a calibrated Cs gamma-ray source 

at various angles of incidence on the dosimeter. The results are 

shown in Figure 26. The response of LiF chips, LiF rods, and CaF chips 

has an uncertainty within ± 5% when the incident radiation varies from 

0° to 90°. The response of CaF rods decreases with the increasing 

angle of the incident radiation. Whenever the angle between the 

incident beam and a surface normal to the crystal is less than 50°, the 

angular response varies no more than ± 5%. Thus, to simplify analysis 
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of the experimental data, the error induced by the angular dependence 

was neglected. 

3. Sensitivity and Linearity—Thermoluminescent sensitivity may 

be defined as the amount of light released by the phosphor per unit of 

radiation exposure. The lower limit of useful sensitivity depends 

on the characteristics of the TLD and the TLD reader. A calibrated 

137 
Cs gamma-ray source was used to irradiate TLD dosimeters placed at 

different distances from the source. The results are shown in 

Figures 27 and 28. The lower detection limit for LiF and CaF was 10 mR 

and 1 mR, respectively. Response of both TLD materials was linear 

above 10 mR. The "built-in-anneal" process of the LiF-TLD reader works 

most effectively when reading dosimeters exposed to less than 400 mR. 

All the TLD exposures for the remaining experiments were controlled 

carefully to give an exposure between 50 mR and 250 mR. The exposure 

of the TLD can be controlled by Variation of the exposure time and 

x-ray tube current. 

4. Energy Response and the Tandem Technique—Energy response 

of a detector at a particular photon energy may be defined as the 

response of the detector at that photon energy relative to its response 

1̂ 7 & n 
at some reference energy, such as Cs (662 keV) or Co (1.17 and 

1.33 MeV) gamma rays. The dosimeter has a good energy response if 

the response per roentgen shows little change with photon energy; 

the energy response is poor if this change is large. 

Based on the assumption that the integrated light Output of a 

TLD is directly proportional to the energy absorbed in the crystal, 



102 

10' 

er 

im* 
ÜJ 
Z) 
_J 
< 
> 
Q 
UJ 
Ü: 
Z) 
CO 

< 
Lü 

Q 
10' 

10v 

\0[ 

ORNL-DWG 7 7 - 3 8 3 3 R 

^z 
^z 1 / 1 

/ 

SOURCE: 1 5 /Cs 

{ THE AVERAGE UNCERTAINTY AT 957« 

CONFIDENCE LIMIT IS 7.41 7o 
1 \P • M „ T O A T P U 7 ^ 7 7 U 1 

I SOURCE: 1 5 /Cs 

{ THE AVERAGE UNCERTAINTY AT 957« 

CONFIDENCE LIMIT IS 7.41 7o 
1 \P • M „ T O A T P U 7 ^ 7 7 U 1 

> 

SOURCE: 1 5 /Cs 

{ THE AVERAGE UNCERTAINTY AT 957« 

CONFIDENCE LIMIT IS 7.41 7o 
1 \P • M „ T O A T P U 7 ^ 7 7 U 1 

/ ' 

• " 
/ 

,1 
I 

f A 

T / 

/ 

1 1 

, f * —1 / 
/ 

\0 10' 10' 

CALCULATED VALUE (mR) 

Figure 27. LiF:Mn Response as a Function of Exposure 



103 

ORNL-DWG 7 7 - 3 8 3 1 R 

Q 
_J 
H 

10' 

er 
1 10: 

ÜJ 
Z> 
_ l 
< 
> 
Q 
Lü 
CC 
D 
CO 

< 
UJ 

10' 

10 l 

1 

SOURCE:137Cs 

J THE AVERAGE UNCERTAINTY AT 95° 

CONFIDENCE LIMIT IS 5 .6% 

CaF? :Mn [BATCH 95-S . (4 )1 

SOURCE:137Cs 

J THE AVERAGE UNCERTAINTY AT 95° 

CONFIDENCE LIMIT IS 5 .6% 

CaF? :Mn [BATCH 95-S . (4 )1 

SOURCE:137Cs 

J THE AVERAGE UNCERTAINTY AT 95° 

CONFIDENCE LIMIT IS 5 .6% 

CaF? :Mn [BATCH 95-S . (4 )1 

7o A 

SOURCE:137Cs 

J THE AVERAGE UNCERTAINTY AT 95° 

CONFIDENCE LIMIT IS 5 .6% 

CaF? :Mn [BATCH 95-S . (4 )1 T/ 
n 

'.. 
/ 

/ 
/ 

i 

t 

] y j 

i / 

IOl 101 2 5 102 

CALCULATED VALUE ( mR) 

10' 

Figure 28. CaF2:Mn Response as a Function of Exposure. 



104 

then general cavity theory can be used to determine that the radiation 

energy absorbed by the TLD follows the relation (Gorbics and Attix, 

1968; Almond and McCray, 1970): 

ên 

D T T n = )
 P (TLD D , , (3-5) 

TLD /u \ med 
' en v 

p /med 

where 

D is the energy absorbed in the TLD, 

Men\ 
1 is the mass energy absorption coefficient of the TLD, 

P / 1 LiL) 

M 
en , is the mass energy absorption coefficient of the medium, 
p /me 

and 

D , is the energy absorbed in the medium. 
med öy 

The mass energy absorption coefficient of a high-Z material 

increases more rapidly with decreasing photon energy than that of low-Z 

material. Thus LiF, with a low effective atomic number, has a smaller 

energy dependence than CaF, with a high effective atomic number. 

The Victoreen Model 550 Radocon III ionization Chamber System and 

a set of high-purity Al-filters were used to obtain x-ray transmission 

curves for a number of accelerating potentials used in this research 

(see Figure 29). Results of these measurements are also presented in 

Table 15. Here the first half-value layer (HVL) is the thickness of 

the absorber required to attenuate the exposure rate of the x-ray beam 
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Table 15. Parameters Used in the Energy Response Determinations' 

Mass 
Generating Tube Additional First Second Homogeneity Attenuation Effective 
Potential Current Filtration HVL HVL Factor Coefficient Energy 

kilovolts mA cm-Al cm-Al cm-Al % keV 

148 100 0 0.61 1.04 59 0.421 46 
140 100 G 0.56 0.94 63 0.458 44 
130 100 G 0.52 0.83 61 0.494 43 
120 10 0.08 0.47 0.76 62 0.55 41 
110 10 0.08 0.43 0.68 63 0.60 38 
100 10 0.08 0.39 0.60 65 0.68 37 
90 10 0.08 0.35 0.53 66 0.73 36 
80 10 0.08 0.30 0.45 67 0.82 34 
75 10 0.08 0.29 0.41 71 0.89 33 
70 10 0.08 0.24 0.32 75 1.03 51 
60 10 0.08 0.21 0.25 84 1.22 30 
50 10 0.08 0.17 0.20 85 1.51 27 
40 10 0.08 0.16 0.20 80 1.51 27 
30 10 0.08 0.11 0.13 85 2.14 23 

Transmission data shown in Figure 29. 

Inherent filtration approximately 0.5 cm AI equivalent plus 76.2 cm air for generating 
potential 148 to 130 Kilovolts and 0.2 cm AI equivalent plus 150 cm air for generating potential 
120 to 30 Kilovolts. 

No additional filtration. 
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by 50%. The second half-value layer is the thickness of the absorber 

required to attenuate the exposure rate of the x-ray beam by another 

50%. The homogeneity factor is defined as the ratio of the second 

HVL to the first HVL. The larger the homogeneity factor, the closer 

the x-ray beam is to approaching a monoenergetic x-ray beam. During 

the calibration two x-ray machines were used to obtain a reasonable 

rate half-value measurement. Effective energy means that monoenergetic 

x or gamma photons with that energy were required to have a half-value 

layer identical to that of the inhomogeneous x-ray beam in question. 

137 
A calibrated Cs gamma-ray source was used to obtain a reference 

point while the x-ray machine provided 14 different effective energies 

from 23 to 45 keV. Energy response of LiF used in this study is 

shown in Figure 30. The energy dependence of the response per exposure 

normalized to 1.00 at 662 keV is shown. The TL emission of LiF:Mn 

increases slowly as the effective energies decrease. However, below an 

effective energy of 28 keV, the response declines. The maximum 

response occurred at an effective energy of about 28 keV which gave 

a value for the ratio of response to Cs of about 1.35. These 

results were in very close agreement with data of other authors 

(1.2 % 1.5) (Cameron et al., 1964; Greenhouse et al., 1967; Thomas 

et al., 1967; Gorbics and Attix, 1967; Jayachandran, 1970; Spurny 

et al., 1973; Bushong et al., 1974). Energy dependence of CaF :Mn 

used in this study is shown in Figure 31. The energy response per 

roentgen of CaF :Mn was normalized to 1.00 at 662 keV. This TLD 

material was highly energy-dependent as the radiation energy decreased 



ORNL-DWG 77-3673 R 

o 
k_ 
i 

LO 
CJ> 

r-
ro 

O 

Lü 

er 

Lü 

o 
I -
Lü 

o 
er 
er 
LÜ 
Q_ 
Lü 
LT) 

o 
GL 
LT) 

1.5 

1.4 

> 1.3 
< 

1.2 

1.0 

Ü: 0.9 
101 

_i'F 

THE 

: Mn [BATCH T - 7 9 1 - S ( E ) ] 

: AVERAGE UNCERTAINTY AT 9 5 % CONFIDENCE 

< 

_L 
-ab 

L M T IS ; ±5.2% [BATCH T - 7 9 1 - S (E) J 

ffe 
tl > 

i-1^ \ 
s 

N 
s 

^ - ^ 

— T — 
i 

) tcr ; 
EFFECTIVE ENERGY (keV 

10' 

Figure 30. Relative Response of LiF:Mn as Function of Effective Photon Energy. o 
00 



RESPONSE PER ROENTGEN RELATIVE TO 137Cs y- ray 

O l\) -k <T> CO O Fo 

T l 
H-

ffq 

c 
i-i 
CD 

pa 
CD 

t — i 

r t 
H-
< 
CD 
PO 
0) 
in 

13 
O 

w 
CD 

o 
i-h 

n 
*T1 

M 

fO 
w 

T1 

c 
o 
rh 
H-
O 

O 
r-b 

m 
i-h 

CD 

n 
r t 
H-
< 
CD 

TJ 

r t 
O 

m 

o 

ro 

m 
~n 
-n 
m 
o 
H 
< 
m 

3 5 
m ^ 
:o 
o 
-< 
? r 
CD 
< rv> 

Ol 

PH 
> . i p % ' i 

1 « 
r • 

HH»— i • hr^i—1 
&=M>— H 

£K H 

c 

y 

< 

/ 

/ 
i ' 

/ O H O 

/ 
/ 

/ 
/ 

/ 

i_ _l 

O '± o -
2 m -n 
• n *> 

5 m f 
m £ s 
n m > 

i ' i c ° 
§ 2 X / 2 «> 

/ _ m ^ 
00 ^ , / 1+ 3> CO 

/ 

( IN
 

8 

/ * * > 
. i 



110 

below 100 keV. The maximum response occurred at an effective energy 

137 
of about 31 keV and had a value for the ratio of response to Cs of 

about 9. The response declined rapidly for an effective energy lower 

than 31 keV because of the attenuation of x rays in the phosphor blocks. 

The maximum value of the response ratio was in close agreement with 

the data of other authors (7 ^ 12) (Greenhouse et al. , 1967; Thomas, 

1967; Gorbics and Attix, 1967; Almond and McCray, 1970; Dixon, 1972; 

Spurny et al. , 1973; Puite and Grebolder, 1974; Puite, 1976). 

TLD Tandem Technique 

If two kinds of TL material have two different response rates 

for a wide ränge of effective energies, then the ratio of their 

responses can be used to determine the effective energy of the 

incident radiation. This method which is used to estimate radiation 

quality is called the "tandem technique." Cameron and Kenny (1963) 

described the simultaneous use of LiF and AI 0 in tandem to estimate 

the photon energy. Facey (1968) has reported the use of CaSO. Sm and 

LiF in tandem to estimate beam quality in a Mix-D phantom. Gorbics 

and Attix (1968) investigated the use of LiF and CaF :Mn in tandem 

as a personnel dosimeter. Rossiter (1975) discussed the possibility 

of the determination of beam quality of medium-energy x rays by 

employing TLD-700 and CaSO :Dy in tandem. Puite (1976) using CaF :Mn and 

TLD-700 in tandem measured the absorbed dose at various depths in water. 

In this study, groups of five LiF:Mn and CaF :Mn dosimeters were exposed 

simultaneously to 15 different photon beams with effective energies 

ranging from 23 to 662 keV. The ratio of the thermoluminescence 
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response of CaF :Mn to LiF:Mn was found to vary from approximately 

137 
7.2 to 1 at Cs energy to a maximum of 45 to 1 at about 31 keV and 

then decline sharply at lower energies because of the attenuation 

of the phosphor (see Figure 32). These results were slightly different 

from those reported by other authors. However, Binder and Cameron 

(1969) have pointed out that the relative sensitivity of these dosimeters 

is dependent on the type of Instrumentation employed and the manner in 

which the dosimeters are analyzed. Generally the amount of ambiguity 

in effective energy determinations by these tandem techniques is 

inversely proportional to the absolute value of the slope of the 

response ratio of the tandem curve. 

Measurements of Absorbed Dose in Pediatric Phantoms 

Experimental Procedure 

Field size and beam location simulating typical pediatric x-ray 

examinations in the better medical facilities of the U.S. are given 

in Table 16. Such examinations were simulated in this research. Several 

factors were considered in choosing the particular radiological 

examinations to be simulated. It was desired to choose a set of 

exposure configurations that would be representative of the most frequent 

medical x-ray examinations and yet not redundant. Most of the technical 

factors considered in these examinations are those used routinely in 

the Department of Radiology of the Henrietta Egleston Hospital for 

Children (McClure, 1976). Examinations of the extremities were not 

included because of the oversimplified geometry of the phantoms in these 

regions. 
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Table 16. Technical Factors for Pediatric Phantom Exposures to Some 
Typical Diagnostic X-Ray Procedures^ 

Generating 
Potential FSD^ Fiele l Size Center of the beam 

Tub 
Exp 

e Current x 
osure Time 

One-Year Old (kV) (cm) (width > : high cm^) ( x, Y, Z) (mA-sec) 

Skul] 
PA 75 101.6 13.6 X 17.6 (0, o, 40.8) 12.0 
Lat 60 101.6 16.0 X 17.6 (0, o, 40.8) 12.0 

Chest 
PA 60 121.9 15.0 X 16.0 (0, os 26.0) •> 3.3 
AP 60 121.9 15.0 X 16.0 (ü, o, 26.0) 3.3 
Lat 75 121.9 14.0 X 16.0 (0, o, 26.0) 3.3 

Abdomen 
PA 75 101.6 15.0 X 19.2 (0, o, 9.6) 6.5 
AP 90 101.6 14.0 X 19.2 (0, o, 9.6) 10.0 
Lat 75 101.6 15.0 X 19.2 (0, o, 9.6) 6.5 

Five-Year •-Old 

Skull 
PA 80 101.6 13.6 X 19.3 Co, o, 51.6) 22.0 
Lat 70 101.6 18.0 X 19.3 Co, o, 51.6) 22.0 

Chest 
PA 80 182.9 18.0 X 22.0 Co, o. 36.0) 3.3 
AP 80 182.9 18.0 X 22.0 CO, o, 36.0) 3.3 
Lat 100 182.9 16.4 X 22.0 Co, o, 36.0) 3.3 

Abdomen 
PA 80 101.6 18.0 X 26.0 Co, o, 13.0) 10.0 
AP 80 101.6 18.0 X 26.0 Co, o, 13.0) 10.0 
Lat 100 101.6 16.4 X 26.0 (0, o, 13.0) 15.0 

The total filtration of all exposures was 0.28 cm-Al. 

^Focus to surface distance. 

Relative to the coordinate System of the mathematical phantom. 



114 

All examinations were simulated with the phantom Standing erect. 

All simulated focal-spot-to-surface distances (FSD) used are described 

in Table 16. For each simulated examination the collimator and tube 

height were adjusted and the field size was positioned at the mid-

plane of the phantoms. For the abdominal examinations, measurements 

were performed with the male genitalia region both unshielded and 

shielded to determine the protection provided by gonadal shielding. 

The shielding material was a sheet of lead of thickness 0.16 cm. 

Twenty or twenty-one measuring sites were chosen at the center 

or at suitable positions in nine regions of interest for the one-year-

old and the five-year-old children phantoms, respectively (see Figures 33 

and 34). The nine regions selected were the brain, thyroid, thymus, 

spine, arm bones, pelvis, ovaries, testes, and the leg bones. The brain 

(central nervous System), thyroid, and thymus were chosen because it is 

commonly believed that, in children, these organs are the most sensitive 

to ionizing radiation (Miller, 1953; Rugh, 1973; Silverman, 1974; 

Hempelmann, 1974, 1975). Ovaries and testes were chosen because the 

dose to these organs can be directly related to the genetic dose. 

Thirteen and fourteen sites were used for bone marrow dose measurements; 

see the shaded areas in Figures 33 and 34 for the one-year-old and 

five-year-old child phantoms, respectively. Each measuring site had 

six TLDs, three LiF„:Mn and three CaF :Mn as shown in Figure 13, page 62. 

The TLDs located outside the direct beam received only scattered 

radiation and many repeated or long-time exposures were necessary to 

obtain reliable TLD readings. In such cases, a multiexposure procedure 
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was used. The TLDs, at that site, were removed when a calculation of 

the expected exposure indicated that the total exposure approached 

200 mR. Irradiation of the phantom was continued until all TLDs had 

been exposed and removed. The maximum exposure used per field was 

6000 mA-sec regardless of tube voltage. Experimental procedures were 

as follows: 

1. Geometrical Arrangement (see Figure 35] 

a. Determine and set the focus to surface distance. 

b. Locate the center of beam on the phantom surface and 

adjust the field size accordingly (Table 16, page 113). 

2. TLD Handling 

a. According to the field size scheduled, select the TLDs for 

use at the different sites in the phantom. 

b. Pack the TLDs into the dosimeter holders. 

c. Using the heat-sealing device, seal the dosimeter holders 

into suitable size Polyethylene bags. The sealed 

packages provide a waterproof covering so that the 

dosimeters can be immersed in the liquid materials of 

the phantom. 

3. Exposure Procedures 

a. Determine the exposure voltage setting from Table 16, 

page 113. 

b. Adjust the x-ray machine to the voltage which is desired 

in step a. Operate the machine five minutes at 5 mA 

for warmup. 



Figure 35. Simulation of the Experimental Arrangement Showing the X-Ray Machine, Ion Chamber, 
and Five-Year-Old Phantom. 
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c. Using the Victoreen Radocon III Model 555 ion Chamber 

dosimetry System measure the air exposure rate at the 

position which is the center of the incident x-ray beam 

and also on the surface of the phantom (air dose rate 

measurement). 

d. From the air exposure rate, estimate the exposure time and 

tube current which will give a suitable exposure 

(approximately 200 mR) to the TLDs on the surface of the 

phantom. This set of TLDs, three LiF:Mn and three 

CaF :Mn, served as reference dosimeters which would 

indicate any systematic change in the TLD during later 

procedures. 

e. Measure the surface exposure rate with ion Chamber only 

on the surface of the phantom (surface dose measurement). 

f. From the surface exposure rate, estimate exposure time 

and tube current for the "in-beam" organs and the "out-

of-beam" organs. 

g. Put the packed TLDs into the phantom, using the multiple 

exposure method. According to the schedule in step f, 

irradiate the phantom and remove TLDs at suitable times 

after the irradiation of the phantom has begun. 

h. At the end of the exposure, all the TLDs removed from 

the phantom are stored in a lead box. After a 24-hour 

delay, read the TLDs. 
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Collection and Reduction of Data 

All TLD readings from the exposure were processed in the 

following manner: 

1. Correct all TLD readings by multiplying each TLD by its 

r 
own relative sensitivity factor C which was determined 

from the grading process. 

2. Use the TLDs exposed on the surface of the phantom as 

reference dosimeters to normalize the systematic Variation 

of the TLDs and the reader. This method is discussed 

below. 

3. Average the three CaF :Mn readings of the reference dosimeters 

and call this R„ . 
Ca 

4. Average the three LiF:Mn readings of the reference dosimeters 

and designate Rr .. & Li 

5. Take the ratio of R„ to R, . and define this ratio as 
Ca Li 

Rr 
R = — . (3-6) 
r *Li 

6. Since we know the operating tube voltage and other 

Parameters such as the filtration, the corresponding 

effective energy may be found from Table 15 (page 106). 

7. From Figure 32, page 112, and the effective energy value 

the so-called "Standard CaF :Mn to LiF:Mn ratio" can be 

obtained. This ratio is designated as R . 
& s 
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8. Divide the R by R to get a systematic correction factor C . 

9. Multiply all CaF 'Mn to LiF:Mn ratios inside phantom by C 

to get the corrected CaF "Mn to LiF:Mn ratio, R . 

10. Using R and Figure 32, page 112, determine the effective 

energy inside the phantom for the different organs. 

11. Whenever the effective energies are determined, the exposure 

of LiF:Mn and CaF :Mn dosimeters can be calculated from 

their energy response curves, Figures 30 and 31, pages 

108 and 109, and their thermoluminescent measurement 

(dosimeter reading). 

Tissue Dose Estimation 

The absorbed dose inside the phantom in which the TLD dosimeters 

were positioned can be determined by the expression: 

A.D. = T. x Cr x CS x RQE) x £(E) , (3-7) 

where 

A.D. = the absorbed dose inside phantom (rad), 

T. = the TLD reading for i detector, 

.th 
C?1 = the individual relative sensitivity factor for the i 
l 

detector, 

CS = the correction factor for systematic variations of 

the TLD and the reading system, 

R(E) = the TLD reading to exposure conversion factor which is 

a function of the effective energy, and 
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f(E) = 0.869 f-^M A/[~^-) • is t h e exposure (R) to absorbed 

dose (rad) conversion factor which is a function of the 

effective energy. 

The effective energies determined in the soft tissue regions of 

the phantoms varied from 32 keV for a ehest (AP or PA) examination to 

40 keV for an abdomen (lateral) examination. In this ränge the value 

of R(E) varied from 1.35 to 1.30 for LiF:Mn and 9 to 8 for CaF :Mn. 

The value of f(E) varied from 0.7975 to 0.8033. The energy correction 

factor is equal to the product of R(E) and f(E). Values of this factor 

were calculated and found to vary from 1.0764 to 1.0443 for the LiF:Mn 

dosimeters and from 7.1757 to 6.4264 for the CaF :Mn dosimeters. 

The absorbed dose in organs of interest was measured for different 

examinations. The results are listed in Tables C-l through C-8 for 

the one-year-old phantom, and Tables C-9 through C-16 for the five-year-

old phantom in Appendix C. 

Monte Carlo Calculation 

A photon transport code has been written to simulate random 

histories of photons which originate in one source organ and to estimate 

the fraction of the initial photon energy absorbed in each of the 

target organs (absorbed fraction) (Warner et al., 1968). The Computer 

code employs the Monte Carlo technique and is named ALGAM (a Computer 

Program for Estimating Internal Dose from Gamma-Ray Source in a Man 

Phantom). The Computer program can be used to calculate the average 

absorbed energies in target organs for a variety of gamma-rays in a 
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source organ. A particular radioactive source can be specified 

through a Computer subroutine. 

A magnetic tape was prepared from tables of the photoelectric 

and pair-production cross sections. (Note: There was no pair 

production at energies used in these studies.) These data were 

combined with Computer values of Compton cross-sections to produce, 

on the disk, the following tables: 

1. total mass attenuation coefficient for all media under 

study, 

2. ratio of scattering to total mass attenuation coefficient 

for all media, 

3. ratio of pair-production to total mass attenuation 

coefficient for all media. 

An indexing procedure was required for use in locating data 

in the above tables for a particular energy during the calculation. 

A subroutine describing the source can be written to describe the 

specific exposure Situation, i.e., internal exposure or external 

exposure. This routine also describes the energy spectrum of the 

photons and the geometrical Situation for a given source. The 

measured x-ray spectra from the calibrated x-ray machine for some 

typical diagnostic procedures served as the source routines in this 

study. 

Each photon from the source routine was given eight of the 

nine parameters which characterize it, and they were changed as a 

result of subsequent events in its history. The eight initial 



124 

Parameters with which the source photon Starts included: 

1. three starting coordinates relative to the phantom coordinate 

System; 

2. three starting direction cosines relative to the axes of 

the phantom coordinate system; 

3. the initial energy of the photon; 

4. the initial Statistical weight. 

The Statistical weight is related to the probability of existence of 

the photon. An initial weight of 1.0 was given to each photon and 

was reduced following each interaction by multiplying the initial 

weight by the ratio of the cross section for Compton scattering to 

total mass attenuation coefficient (see Equation 2-23). In this way, 

photons were never absorbed, thus improving the statistics of the 

dose estimates. A ninth characteristic parameter of the photon was 

defined by the mean path length which was a function of the reciprocal 

of the total macroscopic cross section. The mean path length for a 

particular energy was made constant regardless of the medium. 

Energy deposition at an interaction site n by a photon Coming 

from a previous interaction site n-1 is calculated by Equation 2-24. 

After an interaction, the photon had a new energy and new direction 

both of which were governed by the well-known Klein-Nishina scattering 

formula (see Equation 2-9). This equation gives the cross section 

per electron, da, for the scattering of a photon of energy hv into the 

element of solid angle dÜ at the angle 0 (with the energy hv'). 
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When the histories of all source photons had been compiled and 

the accumulated energies were recorded, Standard deviations, coefficients 

of Variation, absorbed fractions and tissue-air ratios for each 

subregion (organ) were computed (Warner et al., 1968). Here the 

tissue-air ratio is defined as the average absorbed dose to the 

subregion of interest .(rad) per unit exposure (R) at the surface of the 

phantom. The dose to the organ includes contributions from both the 

primary and scattered photons. Calculated tissue-air values and 

measured tissue-air values for selected critical organs are compared 

in Tables C-l through C-16, Appendix C. 

Bone Marrow Dose Estimation 

UNSCEAR (1972) indicates that genetic effects should not be 

considered the primary hazard of radiation exposure. Increasing 

emphasis is being placed on the somatic effects of radiation (cancer, 

including leukemia). Generally the genetic effects are mainly 

associated with low-level chronic exposure. For acute high-level 

exposure somatic damage is more significant. The correlation between 

radiation dose to the active bone marrow and the induetion of leukemia 

as indicated in studies of persons treated with radiation for ankylosing 

Spondylitis (Court-Brown and Doli, 1957, 1965), in Japanese A-bomb 

survivors in Hiroshima and Nagasaki (Ishimaru et al., 1971), in fetal 

exposures to x rays (Stewart et al., 1958, 1970; MacMahon, 1963; 

Graham et al., 1966; Bross, 1972), and individuals reeeiving diagnostic 

medical x-ray examinations (Gibson et al., 1972), places a high 

priority on the determination of radiation dose to those organs 
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potentially involved in leukemogenesis. If it is assumed that: 

(1) the endpoint of concern is leukemia; (2) radiation induced leukemia 

is produced by Irradiation of active bone marrow; (3) the active 

bone marrow is uniformly sensitive; and (4) a linear nonthreshold 

dose-response effect is operative; then an evaluation of radiation 

dose to bone marrow sites averaged over the whole of a man's active 

bone marrow is proportional to the probability of that person becoming 

a case of radiation induced leukemia. 

The mean dose to active bone marrow is given by the expression 

total energy of radiation imparted ,„ „. 
total mass of active marrow ' ' 

where 

D. is the mean local active bone marrow dose for j subregion, 

and 

M. is the mass of active bone marrow in j subregion. 

In this study, the mean active bone marrow dose was estimated 

by two methods: (a) calculated by the Monte Carlo method, and (b) by 

experimental measurement within a phantom. 

Calculated Active Bone Marrow Dose. There are two classifications 

of bone marrow in an adult which commonly are referred to as red and 

yellow marrow; however, in one-year-old children there is essentially 

no yellow marrow and in five-year-old children only about 5 to 10% of 

_ J 
D. 

J 
M 

l M 
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the bone marrow is yellow marrow (see Table 17). Red bone marrow 

is hematopoietically active, while yellow marrow has no hematopoietic 

activity, being composed mostly of fat. The active bone marrow is 

assumed to be the organ associated with leukemia. Active bone marrow 

is located mostly in cavities of trabecular bone. The principal sites 

of active marrow are the pelvis, spine, ribs, sternum, skull, scapulae, 

and the heads and necks of the femora and humeri, For the one-year-old 

phantom the total mass of active marrow in the skeleton is 150 g. For 

the five-year-old phantom 401 g were assigned as the total mass of 

active bone marrow in the skeleton. The active bone marrow distributions 

are given in Tables 18 and 19. Each of the bone regions in Table 17 is 

programmed into the Monte Carlo calculation separately and therefore the 

energy deposition is recorded in each. The tissue-air ratios in 

Tables C-l to C-16, Appendix C, are based on the summation of energy 

depositions for all skeleton regions after appropriate weighting for 

the active marrow fraction in each. This procedure is consistent 

with the recommendations of the International Commission of Radiological 

Protection for partial organ irradiation when the doses are less than 

100 rad (ICRP, 1970b). After the photon histories are followed and 

energy depositions are recorded for each of the skeletal regions 

described in Table 17, the deposited energy is partitioned to marrow 

and bone by the following weighting method: 



Table 17. The Distribution of Active Bone Marrow in Children 

One-Year Five-Year 

Site 

Distribution of 
Red Bone Marrow 
in Skeleton (%) 

Red Marrow Fraction 
of Total Marrow (Red $ 
Yellow) in the Bone 

Distribution of 
Red Bone Marrow 
in Skeleton (%) 

Red Marrow Fraction 
of Total Marrow (Red § 
Yellow) in the Bone 

Arms 4.08 
Upper 1.38 
Lower 2.70 

Clavicles 1.12 

Legs 8.81 
Upper 4.54 
Lower 4.27 

Pelvis 34.44 

Ribs 13.00 

Scapulae 3.48 

Skull 7.00 
Cranium 6.37 
Mandible 0.63 

Spine 28.04 
Upper 3.14 
Middle 14.00 
Lower 10.90 

4 .08 
1.38 
2 .70 

1.12 

8 .81 
4 .54 
4 .27 

34 .44 

13.00 

3.48 

7.00 
6.37 
0.63 

28.04 
3 .14 

14 .00 
10 .90 

0 .8 
0 .8 
0 .S 

0 .9 

0.8 
0.8 
0.8 

0.9 

0.85 

0 .9 

0 . 9 
0 .9 
0 .9 

0 .95 
0 .95 
0 .95 
0 .95 

Shleien, 1973 

M 
OO 
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Table 18. Masses of Red and Yellow Marrow and Bone in the 
One-Year-Old Child Phantom^ 

Bone Region Red Marrow (g) Bone (g) Yellow Marrow (g) 

Arms 
Upper 
Lower 

b 

Clavicles 

Legs 
Upper 
Lower 

Pelvis 

Ribs 

Scapulae 

Skull d 

Cranium 
Mandible 

Spine 
Upper 
Middle 
Lower/ 

TOTAL 

2.07 
4.06 

1.68 

50.42 
89.13 

9.35 

6.81 148.81 
6.41 144.57 

51.57 73.99 

19.50 117.25 

5.23 34.30 

9.56 423.20 
0.95 251.10 

4.71 22.64 
21.00 91.60 
16.35 25.90 

150.000 1482.26 

Hwang et al., 1976. 

^Defined as the region 31.2 > Z > 23.5. 

'Defined as the region 0 > Z > -8. 

d Defined as the region Z > -3Y + 35.6. 

/ • 

Defined as the region 32 <_ Z <̂  36.5. 

Defined as the region 0 < Z < 16.1. 
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Table 19. Masses of Red and Yellow Marrow and Bone in the 
Five-Year-Old Child Phantom*2 

Bone Region Red Marrow (g) Bone Yellow Marrow (g) 

Arms , 
Upper 5.52 84.5 1.38 
Lower 10.84 148.72 2.71 

Clavicles 4.48 17.22 0.50 

Legs 
Upper^ 18.16 395.13 4.54 
Lower 17.08 384.00 4.27 

Pelvis 137.80 91.10 15.31 

Ribs 52.00 236.74 9.17 

Scapulae 13.9-6 61.45 1.55 

Skull , 
Cranium 26.80 449.75 2.98 
Mandible 2.52 276.47 0.28 

Spine 
Upper6 12.56 44.35 0.66 
Middle 56.00 159.83 2.95 
Lower/" 43.60 38.89 2.30 

TOTAL 401.32 2388.15 48.60 

Hwang et al., 1976. 

Defined as the region 41.2 >_ Z > 31. 

Q 

Defined as the region 0 _> Z > -14.5. 

Defined as the region Z >_ -3Y + 46.7 

Defined as the region 42 _< Z <̂  47.5. 

f 
^Defined as the region 0 < Z < 21.1. 



131 

bsOl) 
F. . = E . W . ) „ P / g 

nu s i mi /]ienCE) 

(3-9) 

where 

E . = the energy deposited in the active bone marrow in a 
mi 

specific skeletal region i, 

E . = the energy deposited in the skeletal region i, 

i mass of the active marrow in region I 
mi "" S. " mass of the skeleton (bone + marrow) in region i - , and 

y (E) en 

m 
V- (E) 
en^ J 

= the ratio of the mass energy absorption coefficients 

p / s for active bone marrow and homogeneous skeletal 

composition. 

The absorbed dose, D ., to the active bone marrow can be 
* mi 

calculated by: 

E . 

mi M. 
l 

(3-10) 

Substituting E . from Equation (3-9) into Equation (3-10) 

D . 
mi 

M. 
l 

y (£) 

E . W , 
si mi /u (El 

en J 
m (3-11) 
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M. / " e n ^ ) 1 
1 E . ^ 

s i S. 
\ P /m 

I. 
E . ^ 

s i S. /M (E) \ 
1 l f en 

l p / s 

P (E) en 

S. /u (E) 
l / en 

= D 
si 

M (E) en 

M (E) en 
(3-12) 

where 

D . is the absorbed dose to the skeleton in region i. 

The values of I and were calculated using 
\ p / m y p j s B 

a small Computer program, TECALC, (Stansbury, 1974) and the ratio 

u (E) 
en U (E) en 

y p j m/ y p y s 

versus energy is shown in Figure 36. 

The bone and marrow in the phantoms are mixed homogeneously in 

the skeleton, i.e., there is no geometrical representation of the marrow 

cavities. Therefore, a correction for the enhancement of the absorbed 

dose in the marrow cavities is necessary. The average value of 1.05 

for the correction factor (Spiers, 1968) was chosen and the active 

bone marrow dose was expressed as 



ORNL-DWG 77-6731 

0.8 

0.6 — 

0.4 — 

0.2 

10 20 50 100 200 500 1000 2000 

ENERGY (keV) 

ass Energy Absorption Coefficient Ratios, Active Marrow to Skeleton, as a Function 



134 

y (E) 
en 

D . = 1.05 D . -) ^TET-r^1 • (3-13) 
mi si / u (E) x 

en 

The active bone marrow doses were calculated by the Monte Carlo method 

for some typical x-ray diagnostic examinations. These results were 

compared with the absorbed dose measurements obtained with TLD. Most 

of the experimental and calculational results agreed within twice the 

coefficient of Variation of the calculation (see Tables C-l to C-16, 

Appendix C). 

Measured Active Bone Marrow Dose. First, the exposure at the 

bone marrow sites that were selected was determined by TLD measurements. 

Secondly, the absorbed dose at bone marrow sites were calculated. This 

calculation took into account the attenuation of bone Substitute material 

and the size of the cavity in which the specific increnent of active 

marrow m. was located. The small size of the TLDs allows them to be 
I 

placed into selected sites without significant perturbation of the 

radiation field. Thirteen to fourteen sites in various bones of the 

skeleton were chosen for placement of TLDs to represent the important 

regions in which active bone marrow is located, as shown in Figures 33 

and 34, pages 115 and 116. The value of 1.05 was selected to correct 

the small size of bone marrow cavity (Spiers, 1968). Active bone 

marrow doses which were measured by TLD can be expressed as 

D. = A.D. x C° x Cf x Ca(E) , (3-14) 
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where 
i 

D. is the active bone marrow dose in the i region, m j J & > 

A.D. is the absorbed dose for soft tissue defined in Equation 

(3-7), 

C = 1.05 is the cavity size correction factor, 

f 
C is the yellow marrow fraction correction factor, and 

C (E) is the attenuation correction factor for the bone 

Substitute material. 

The generating potential used in most diagnostic procedures is 

usually less than 120 kVp. Use of generating potentials in this ränge 

produces x-ray spectra with effective energies in the ränge 30 to 40 

keV. Since the effective energy is in the ränge 30 to 40 keV, photons 

with these energies have a mean free path of less than 1.5 cm. The radius 

of the spine is 1.27 cm and 1.8 cm for the one-year-old and five-year-

old phantoms, respectively. These dimensions are comparable with the 

mean free path of x rays inside the spine. Thus an attenuation 

correction is necessary in this case. Wien the subregion active marrow 

dose had been estimated for various types of diagnostic examinations, 

the total-body active marrow dose was calculated from Equation (3-8). 

All measurement results are listed in Tables C-l to C-16, Appendix C. 

Generally, these results agreed with the calculated values to within 

twice the coefficient of Variation of the calculated values. 

The main contribution to the average active marrow dose in 

the total body was from irradiation of the pelvis and the spine. 

Usually the posterior-anterior (PA) view examination gave a higher 
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active bone marrow dose than either the lateral view of the anterior

posterior (AP) examination. The active bone marrow dose distributions 

in the spine were plotted for ehest and abdomen examinations. 

Figures 37 and 38 are the active bone marrow dose distributions of 

the one-year-old phantom for ehest and abdominal examinations. 

Figures 39 and 40 are the active bone marrow dose distributions for 

the five-year-old phantom for ehest and abdominal examinations. 

The dose distributions were reasonably uniform inside the primary 

field and decreased sharply when out of the primary field, as 

shown in these figures. 
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CHAPTER IV 

RESULTS 

Comparison of Calculated and 
Measured Absorbed Doses 

For eight different examinations the tissue-air ratio (T.A.R.), 

the coefficient of Variation (C.V.), the upper Limit of acceptability 

of the T.A.R. (T.A.R. + 2 C.V.), and the lower limit of acceptability 

of the T.A.R. (T.A.R. - 2 C.V.) are given in Tables C-l through C-16 

in Appendix C. The data are for different organs or tissue subregions 

of interest. Both the Monte Carlo calculated values of the T.A.R. and 

measured values of the T.A.R. are compared in these tables. If the C.V. 

of the Monte Carlo estimates was greater than 50% or the measured value 

-4 
of T.A.R. was less than 10 (rad/R) no comparison is given in the 

tables. For most small organs, such as the thyroid, ovaries, testes, 

etc., the value of the C.V. was generally high (20-30%) even for 

in-beam situations. The high values of the C.V. are due to the small 

number of photon interactions in these small organs. The values of 

the C.V. for the measurements were generally less than 10% for in-beam 

situations and higher for out-of-beam situations. This is a direct 

result of high exposure rates in the beam and significantly reduced 

exposure rates outside the direct beam. For larger organs, such 

as brain, spine, and pelvis, the values of the C.V. were generally 

lower for the Monte Carlo calculations because a large number of 
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interactions occurred in these larger organs. However, for the larger 

organs more measuring sites were needed to obtain an average absorbed 

dose to these organs. In the case of the brain the TLDs were located 

at the geometrical center of the brain. As expected the measured 

absorbed dose was generally lower than the calculated value which 

was the average absorbed dose to the organ. An attenuation correction 

factor was used to correct for the attenuation effect. 

For most organs in this study, the Monte Carlo calculated 

absorbed doses agreed with the measured absorbed doses within twice 

the coefficient of Variation of the calculated value. The absorbed 

dose was not measured in all the organs of the phantom, and absorbed 

dose estimates for some other organs may be required. In this case, 

if the absorbed dose determined by the Monte Carlo calculation has 

a low Statistical error (i.e., a C.V. <_ 20%), the calculated absorbed 

doses may be used with confidence as an estimate for organs for which 

no experimental data are available. 

Trends of Absorbed Dose in Organs 
as Function of Age 

For selected radiological exposures, the absorbed dose in various 

organs as a function of age are shown in Figures 41 to 44. Absorbed 

dose for these selected exposure situations of children have been 

compared with those for the adult. The adult data were obtained 

from the work of Rosenstein (1976). In Figures 43 and 44 the data for 

lateral exposures follow closely that of the AP exposures. Therefore, 

the lateral data were not plotted to simplify the figures. No data 

for the thymus were available in the adult. 
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Figure 43. The Absorbed Dose of the Ovaries as Function of Age 
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Figure 44. The Absorbed Dose of the Testes as Function of Age 
for Selected Radiological Exposures. 
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As might be expected the absorbed doses in the adult are higher 

than the absorbed dose in children when appropriate adjustments of tube 

current, exposure time and voltage are made in terms of the physical 

dimensions of the patient. This reduction in the absorbed dose in 

children can be linked to the technical factors used in the examinations 

as well as to the differences in physical size between the children 

and adult. 

The body of children is not as thick as an adult and therefore 

lower generating potentials can be used while still obtaining the same 

detail on the film. In addition, beam size can be reduced due to the 

smaller area to be irradiated in children than in adults. For example, 

more than one third of the total red bone marrow is contained in the 

lower spine and pelvis. For an exposure in which these two regions were 

in the direct x-ray beam the dose to the red bone marrow will be 

significantly higher than the dose due to other exposures. An 

examination of Figure 41 makes this clear. For an abdominal 

examination (lower spine and pelvis in the beam) the absorbed dose 

is more than a factor of ten higher than for a typical ehest 

examination. 

A similar argument can be made for small organs and their 

location relative to the ineident beam. That is, the closer the organ 

is to the direct radiation beam the higher the absorbed dose in the 

organ. For example, compare the data in Figures 43 and 44 for the dose 

to the ovaries and testes for AP and PA ineidence. These figures 

indicate that the absorbed dose in the same type examination may be 
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different by a factor of 1.5 to more than 5 if the proper technical 

factors are employed in the examinations. Thus, these figures present 

a strong argument for close attention to proper procedures in pediatric 

(as well as adult) radiological examinations. 

Risk Factor Estimation 

From the earlier concept of keeping radiation doses as low as 

practical to recent use of the linear nonthreshold hypothesis for 

estimation of radiation risks, the need for justifying the benefits 

of radiation has become increasingly important. Morgan (1974) indicated 

"Medical diagnostic exposure in the U.S. is two to ten times that in 

most advanced countries of the world and in many respects our medical 

benefits per dollar spent on medical care are not better or worse than 

these other countries." Effective Standards or legislation are 

urgently required to provide adequate radiation protection of the 

medical patient (ELASH, 1974). In this study, both the theoretical 

and experimental estimation of the absorbed dose in selected organs 

of interest has been investigated for some diagnostic types of pediatric 

radiology. The results provide some useful data in pediatric diagnostic 

processes and a quantitative basis for benefit-risk estimation. 

The BEIR (1972) report suggests two ways of expressing risk: 

absolute risk or relative (comparative) risk. The absolute risk is the 

excess of risk due to irradiation. In practice, this is the 

difference between the risk in the irradiated population and the risk 

in the nonirradiated population. The absolute risk may be expressed 
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as the number of excess (radiation-related) cases of Cancer per unit 

of time in an exposed population of given size per unit dose (e.g., 

1 case/10 exposed persons-year-rad). 

The relative risk is the ratio between the risk in the irradiated 

population and the risk in the nonirradiated population. It is stated 

usually as a multiple of natural risk (e.g., the doubling dose). 

Absolute risk estimates are generally more useful for purposes 

of radiation protection than are relative risk estimates because they 

specify directly the number of persons affected (ÜNSCEAR, 1964). 

The absolute risk value of 3.0 cases/yr/10 person-rem for 

radiation-induced leukemia in children to age 10 (BEIR, 1972) was used 

in calculating the risk factor for various radiographic examinations 

presented in this study. 

The risk of radiation-induced thyroid cancer appearing in 

adolescence after irradiation in childhood has been investigated by 

many authors. It is estimated to be of the order of 1.6 to 9.3 cases 

per year per million children exposed per rem (Beach, 1962; Hempelmann, 

1967, 1968; Jablon et al., 1971). The absolute risk value of 2.5 (BEIR, 

1972) was used in calculating the risk factor for various radiographic 

examinations presented in this study. For the genetic risk factor it 

was assumed that if 1 rad was received by a parental population of 

3 
one million persons 1.9 x 10 genetic deaths would occur over the 

first ten generations, and 8.5 x 10 to infinity (ICRP, 1966). The 

3 
value of 1.9 x 10 was used as the absolute risk factor in calculating 

the risk for various roentgenographic examinations presented in this 

study. 
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The results of risk factor for representative radiological 

exposures were estimated and are listed in Tables 20 and 21 for the one-

year- and five-year-old children, respectively. These risk values 

may supply the physician a valuable reference in evaluating the 

cost-benefit analysis between medical benefits and radiation risk. 

Error Evaluation 

Experimental errors are introduced from many sources. These 

sources include the precision of the Radocon III ionization measurement 

System, the Statistical uncertainty in the TLD readings, the uncertainty 

in the effective energy determinations and errors associated with 

positioning of the TLDs inside the phantom and aligning the x-ray field 

on the surface of the phantom. 

The uncertainty of Radocon III is claimed to be ± 2% in the 

energy ränge of 15 keV to 1025 keV. The Standard deviation of the 

TLD reading was estimated to be less than ± 5% in most of the TL 

measurements. 

In the TLD energy response calibration, all TLDs were exposed 

in air. The energy response curves have been shown in Figures 30 and 

31, pages 108-109. The x-ray spectra inside the phantom should be 

different than those measured in air. Two effects are responsible for 

a change in the x-ray spectra inside the phantom from that in air: 

(1) a contribution of scattered radiation from the surrounding phantom 

material which will tend to soften the x-ray spectra, i.e., decrease 

the effective energy; (2) a filtration of the incident beam with depth 
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Table 20. The Absorbed Dose and Risk Factors for Representative 
Radiological Exposures—One-Year-Old Phantom 

\. Risk Type Leuk smia Thyroid Cancer Genetic Death 
Exanwv 
inationX, Tissue Bone M arrow Thyroid Testes Ovaries 

Head A.D.* 1.01 X 10"3 3.95 X 10 3 

(PA)a R.F.C 7.58 X 10 L 2.96 X 10"1 — 

Head A.D.* 2.70 X 10-4 4.30 X 10~3 

a 
(Lat) R.F.C 2.03 X 10~2 3.23 X IO"1 — 

Chest 
b 

A.D. 8.47 X 10-5 1.64 X IO"3 

(AP)a R.F.° 6.35 X 10~3 1.23 X IO"1 

Chest A.D.* 2.98 X 10-4 3.13 X 10-4 ---

(PA)" R.F.C 2.24 X io-2 2.35 X 10~2 

Chest A.D.* 4.00 X 10-4 2.48 X IO-3 

(Lat)a R.F.C 3.00 X 10~2 1.86 X IO"1 

Abdomen A.D.* 3.71 X 10"3 -- 6 60 x io-3 7.73 x io-3 

(AP)a R.F.C 2.78 X lO"1 -- 12 54 14.69 

Abdomen k.D.b 7.52 X 10"3 -- 3 32 x lo~3 5.95 x io~3 

(PA)" R.F.C 5.64 X ICf1 --- 6 31 11.31 

Abdomen A.D. 1.33 X 10"2 9 16 x io-3 9.71 x io"3 

(Lat) R.F.C 9.98 X IO"1 -- 18 26 18.45 

For the technical factors see Table T. 

Absorbed dose in rad or rem. 

Risk factor (R.F.) is the total risk, assuming a total risk period 
of 25 years for leukemia and 30 years for thyroid Cancer. Units are 
cases/10° person-rem. 
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Table 21. The Absorbed Dose and Risk Factors for Representative 
Radiological Exposures—Five-Year-Old Phantom 

^XRisk 

Examinatior 

Type 

\Jissue 

Leukemia 

Bone Marrow 

Thyroid Cancer 

Thyroid 

Genetic 

Testes 

Death 

Ovaries 

Head 

(PA)a 
A.D.& 

R.F.C 
2.12 

1.59 

X 

X 

10-3 

io-i 

8.31 

6.23 

X 

X 

10~3 

IO-1 

Head 

(Latf 

A.D.& 

R.F.C 
6.16 

4.62 

X 

X 

ICH 
10-2 

1.42 

1.07 

X 

X 

10-2 

10-2 

— 

Chest 

(APf 

A.D.fc 

R.F.C 
1.07 

8.03 

X 

X 

10-4 

10'3 
2.36 

1.77 

X 

X 

IO"3 

10-1 — 

Chest 

(PA)* 

A.D.** 

R.F.C 
3.55 

2.66 

X 

X 

10"6 

10-2 

5.89 

4.42 

X 

X 

IO'4 

10-2 

Chest 

(Lat)a 
A.D.& 

R.F.C 
3.59 

2.69 

X 

X 

10-4 

10~2 

2.52 

1.89 

X 

X 

IO"3 

10-1 

Abdomen 

(AP)a 

A.D.& 

R.F.C 
5.88 

4.41 

X 

X 

IO"3 

io-i — 

] 

23 

.22 x IO"2 

.18 

1.88 x 10-

35.72 

•2 

Abdomen 

(PA)a 
A.D.* 

R.F.C 
1.13 

8.48 

X 

X 

10-2 

lO'1 
-- 9 

18 

75 x 10"3 

53 

1.12 x 10" 

21.28 

-2 

Abdomen 

(Lat)a 
A.D.* 

R.F.G 
1.87 

1.40 

X 

X 

10~2 

IQ"2 
-- 2 

38 

04 x io"2 

76 

3.85 x 10" 

73.15 

2 

For the technical factors see Table T. 

Absorbed dose in rad or rem. 

Q 

Risk factor (R.F.) is the total risk, assuming a total risk 
period of 25 years for leukemia and 30 years for thyroid cancer. Units 
are cases/lO^ person-rem. 

file:///Jissue
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in the phantom which will remove the low energy photons and will tend to 

harden the x-ray spectra, i.e., increase of the effective energy. In 

the effective energy ränge 30 to 40 keV, soft tissue changes the 

effective energy of the spectrum only slightly from that measured in 

air (Maillie et al., 1968; Koren, 1974). Therefore, calibration 

curves obtained in air can still be used satisfactorily for exposures 

in the phantom. In bone, the hardening effect dominates. However, 

the rad/R conversion factor decreases from 4.4 to 4.0 for a change 

in the effective energy from 30 keV to 40 keV (Koren, 1974; Stansbury, 

1977). If an average rad/R conversion factor of 4.2 is chosen in the 

effective energy ränge 30 keV to 40 keV, the error introduced will 

be less than - 5%. For practical applications, the effective energy 

is not usually determined in medical diagnostic radiology. 

In this study, the LiF:Mn and CaF:Mn tandem method was used to 

determine the effective x-ray energy in the phantom. The error 

associated with the use of this method was assumed to be less than 

± 3% in the effective energy ränge 30 keV to 40 keV. This is the 

average energy ränge which is found in most diagnostic x-ray spectra. 

The angular response of the TLDs , measured during calibration, 

was found to be ± 2% except for the CaF:Mn rods which were ± 5%. This 

difference was for a change in angle of from 0° (normal incidence) 

to 90° (incidence on end of rod). This is shown clearly in Figure 26, 

page 100. Therefore, by considering the expected angle of incidence 

and paying close attention to the proper orientation, it was assumed 

that the error introduced by angular dependence for all the TLDs was 

less than ± 2%. 
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A meter stick, a plumb-bob, and a laser beam generator were 

used to determine the position of TLD holders inside the phantom and 

the x-ray beam center and field size on the phantom. It was estimated 

that overall positioning accuracy was 3mm. It was assumed that the 

positioning uncertainty was less than ± 1%. 

By using a square-root of the sum of Squares method to calculate 

the error propagation, the total experimental uncertainty from all 

these sources was estimated to be ± 7% (16.5%) in this study. 

To provide an indication of the Statistical uncertainty 

associated with the Monte Carlo calculations a Standard Statistical 

technique is employed. The procedure used to calculate the Standard 

deviation is described in the following discussion. 

Let E . be the energy deposited in the region under consideration 

on the n interaction of the i source photon, This energy may be 

zero, as it will be in the frequently occurring case when the n 

interaction does not occur within the region. The total energy 

deposited by the i photon, or by the i history, in the region will be 

M. 
* -1 * 

E. = l E . 
I

 u . ni n=l 

in which M. is the number of interactions occurring in the i history 
l 

before termination. An estimate of the average energy deposited per 

photon in the region is then 



- 1 B * 
1=1 

in which M source photons were followed. 

For the Standard deviation, ot of the estimate E, one has 

M 
2 1 £ * — 2 

= M(M-l) .A (Ei ~ E:) 
I=1 

The Computer printout usually gives both the Standard deviation and 

the coefficient o£ Variation (C.V.) for each estimate of absorbed dose. 

Here C.V. = 100 = in percent. \ 

When the distribution of E is known to be approximately normal, 

one can determine a confidence interval by using the Standard deviation. 

However, there are several indications that E~ is not normally distributed 

in cases where the coefficient of Variation is greater than 50%. This 

generally occurs when there are fewer than 100 interactions contributing 

to the calculated absorbed dose. Under these circumstances O cannot be 

used to estimate confidence intervals as is customary when the sample 

is normally distributed. A small nurnber of interactions may occur in 

a region that has a small volume or that is many mean free paths from 

the source. Sometimes both conditions may apply. The Computer records 

the nurnber of photons that have an interaction in each region, and 

this has been examined also to estimate subjectively the accuracy of 

the estimate. 
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Examination of results in cases where the coefficient of 

Variation exceeds 50%, compared with results of independent recalculation 

of such estimates, indicate that the dose estimates may be in error by 

a factor of 2 to 5. Thus, dose estimates with coefficients of Variation 

greater than 50% are not used when comparing experimental and 

calculational results. In some cases, a coefficient of Variation of 

less than 25% is chosen as the upper limit of acceptability of these 

calculated dose estimates (Poston, 1975). 
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CHAPTER V 

CONCLÜSION 

Discussion 

The data obtained in this study are not applied easily to the 

estimate of absorbed dose in pediatric radiology published previously. 

Hashizume et al. (1972b) have published estimates of the mean bone 

marrow dose per examination in Japanese child phantoms 0-2, 3-7, 8-14, 

and 15 years and older. Their values for ehest examinations for 0-2 

and 3-7 years are 4 mrad and 5 mrad, respectively. In this study, 

the estimates of the mean bone marrow dose are in the ränge 0.1 to 

0.5 mrad for both the one-year- and five-year-old phantoms (see 

Figure 41, page 143), and these results agree reasonably well with 

the estimates obtained from the Monte Carlo calculations. 

There are many factors which influence the comparison of these 

results; for example, difference in body size and unknown technical 

factors involving the x-ray examination. The most important seems to 

be the small number of dosimeters used to obtain their estimates. 

Hashizume and his colleagues made their estimates by exposing only 

five dosimeters in any particular examination. In this research, 

approximately 13-14 dosimeters were used (see Figures 33 and 34, 

pages 115 and 116). In the opinion of this author, the data obtained 

in this study give a more realistic value for the mean bone marrow dose 
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when radiographic procedures are repräsentative of those used in the 

better pediatric radiological facilities in the U.S. 

For an abdominal examination, Hashizume and his colleagues 

report values of the mean bone marrow dose per examination of 9 mrad 

for 0-2 year and 15 mrad for 3-7 year old children. The experimental 

measurements in this study ränge from 4-13 mrad for one-year-old and 

6-20 mrad for five-year-old. 

The absorbed dose estimates obtained in this study, for the 

testes and ovaries were compared to other work reported by Hashizume 

et al. (1972a). For children in the 0-2 year ränge, they estimated 

the gonad dose for an abdominal examination to be 20 mrad/examination 

for a male and 28 mrad/examination for a female. The results of this 

research gave 3-10 mrad/examination for males and 5-15 mrad/examination 

for females. For children in the ränge 3-7 years, Hashizume and his 

colleagues report 31 mrad/examination for the female. Again the 

data obtained in this research gave 7-14 mrad/examination in the 

male (see Figure 44, page 146) and 12-30 mrad examination in the 

female (see Figure 43, page 145). 

In summary, the data of Hashizume et al. are generally higher 

than those obtained in the study presented here. Because of the number 

of parameters which influence the results, the temptation to draw 

concrete conclusions from this comparison must be resisted. However, 

if the results presented here are valid, then the absorbed dose (and 

thus the risk) from the better pediatric diagnostic procedures used 

in the U.S. is not as high as that estimated by using the data of 

Hashizume et al. 
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The purpose of this study was to obtain estimates of absorbed 

dose in selected organs and regions of phantoms representing children 

one year and five years of age when the better radiographic procedures 

(e.g., Table 16, page 113) are used. The estimates were to be compared 

to Monte Carlo results which simulated the experimental exposure 

Situation as closely as possible. In addition, these absorbed dose 

estimates were to be inserted into existing risk estimates in order 

to quantify the risk estimates for some of these procedures. 

These tasks were completed during this study. The estimates 

obtained in the physical phantom agreed with the calculated results. 

The risk estimates indicated that in general when the proper exposure 

Parameters are used the risk per examination is quite low. Thus, 

with proper technique, the benefit of obtaining the diagnostic 

Information should far outweigh the risk due to exposure to ionizing 

radiation. This of course assumes the x-ray diagnosis is needed 

and many publications have shown that this assumption is not justified 

in many cases (Morgan, 1974). 

However, several points should be discussed. These items are 

enumerated below: 

1. It appears that thermoluminescent dosimetry Systems can 

be used to measure absorbed doses in the diagnostic energy ränge. 

However, for large organs or for distributed organs (red bone marrow) 

a large number of measuring sites is necessary to obtain reliable 

results. It is very difficult to use "point" detectors to obtain the 

volume averaged dose over a large organ. 
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2. For small organs position becomes a problem. Because the 

organ is small, it is easy to assume that a point measurement represents 

the dose to that organ. However, if the point detector is not located 

properly, an erroneous measurement will occur. 

3. In children the measurement of the absorbed dose to the 

bone marrow present in the ribs is very difficult. Such measurements 

would increase the reliability of the results. However, in this study 

no measurements were made in the ribs or in the skull because of 

the small size of the bone cavities. 

4. The tandem technique of dosimetry, using LiF:Mn and 

CaF :Mn, does not seem applicable in the diagnostic energy ränge 

(see Figure 31, page 109). There are two factors in action here. 

First, there is little Variation of the effective energy of the x-ray 

spectrum over the usual generating potentials employed in pediatric 

radiology. Secondly, a TLD material with significantly different 

characteristics must be found so that the ratio of responses for 

the various detectors will be single-valued at all energies. A 

dosimeter containing high-Z material such as barium (e.g., BaF• ) may 

be quite useful in the tandem application in the diagnostic energy 

ränge. 

5. The Monte Carlo results presented in this study represent 

a compromise between accuracy and cost. The accuracy of the calculated 

results could be improved by increasing significantly the number of 

photon histories traced in each calculation. 
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Recommendations 

Medical diagnostic radiology accounts for at least 90% of the 

total man-made radiation dose to which the U.S. population is exposed. 

In order to limit patient exposure as low as practicable without 

losing its benefits, the following recommendations are made for 

applications during pediatric diagnostic radiography: 

1. Due to the small body size and volume of young children, 

a large portion of their total body is exposed to radiation beams that 

would cover only a small area in the adult. Therefore, confining 

the x-ray beams to the smallest area commensurate with adequate 

illumination of the field of interest not only improves detailed 

discrimination of radiographic images, but can reduce patient dosage 

and decreases the scattered radiation dose to attending personnel 

and technicians. 

2. Whenever possible gonadal shielding is always recommended 

for most diagnostic procedures. It can reduce the gonadal dose in 

some procedures by a factor of 30. Usually lead of 0.16 cm thickness 

or equivalent lead rubber will satisfy the requirement. Using a lead 

glass to shield out-of-beam parts of the patient's body can reduce the 

radiation which is scattered from the collimator. 

Radiography depends on the fact that a small portion of the 

radiation energy impinging on the patient emerges on the other side 

of the body and then selectively blackens the x-ray film. The 

difference in energy between the entry and exit radiation, constituting 

the greater part of the total radiation, is either absorbed by the 
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skin and deep tissue structures or scattered to surrounding areas. 

The input radiation may be dramatically reduced without loss of the 

necessary exit radiation required to produce the film image in the 

following ways: 

3. Increased filtration at the x-ray tube head amounting to 

0.3 to 0.6 cm of aluminum should be used. Since low energy photons 

generally cannot pass through the patient's body, they contribute 

little to producing an image on the x-ray film. The filter will 

absorb selectively these lower energy photons. Thus, the added 

filtration reduces the entry dose to the patient without sacrificiig 

detail of the film image. 

4. Increasing the energy (kilovoltage) of primary beam in 

conjunction with a grid (or Bucky diaphragm) technique can greatly 

reduce the scattered radiation and reduce the patient dose without 

loss of much detail of the film image. 

5. The use of high-speed intensifying screens and high speed 

film can also reduce the patient dose without loss of the quality of 

image on the x-ray film. 

6. The judicious use of clinical x-ray examination of 

pediatric patients, avoiding as far as possible, unnecessary repetitive 

diagnostic radiography, and technically nondiagnostic radiography is 

most desirable. Technically unsatisfactory roentgenograms are a waste 

of time, effort, and money. Moreover, every nondiagnostic film 

requires a retake and thus a doubling of patient exposure and associated 

radiation risks. 
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The Sectional Plots of the One-Year-
and Five-Year-Old Phantoms 

CRNl-DWG 75-582 

2.5 

X-Z Sectional Plots of the One-Year-Old Phantom, 
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ORNL-DWG 75-6298 

z = 

z = 0.50 

0.0 

z - -0 .50 

Figure A-2. X-Y Sectional Plots of the One-Year-Old Phantom 
Showing the Upper Leg and Ilip Regions. 
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Figure A-3. X-Y Sectional Plots of the Qne-Year-Old Phantom 
Showing the Lower Abdomen. 
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ORNL-DWG 75-6304 

Z = . 1 8 . O C 

Z -

z = 

6.00 

Z = 14.00 

2.00 

Figure A-4. X-Y Sectional Plots of the One-Year-Old Phantom 
Showing the Upper Abdomen. 
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ORNL-DWG 75-5826 
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Figure A-5. X-Y Sectional Plots of the One-Year-Old Phantom 
Showing the Chest Region. 
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Z = 41.00 

Z = 37.00 

Z = 33.00 

Z = 31.00 

Figure A-6. X-Y Sectional Plots of the One-Year-Old Phantom 
Showing the Shoulder and Head Regions. 
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Y= -2.5 

D 

Figure A-7. X-Z Sectional Plots of the Five-Year-Old Phantom 
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ORNL-DWG 75-6301 

z = 2,00 

0.50 

z = 0.0 

z = -1 .00 

Figure A-8. X-Y Sectional Plots of the Five-Year-Old Phantom 
Showing the Upper Leg and Hip Regions. 
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ORNL-DWG 75-6302 

z = 

z = 

2.50 

50 

8.50 

4.00 

Figure A-9. X-Y Sectional Plots of the Five-Year-Old Phantom 

Showing the Lower Abdomen. 
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ORNL-OWG 7 5 - 5 8 2 5 

Z = . 24.00 

?2.00 

z = ?o.oa 

z = .00 

Figure A-10. X-Y Sectional Plots of the Five-Year-Old Phantom 
Showing the Upper Abdomen. 
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ORNL-DWG 75-6303 

Z = 3 3 . 5 0 

Z = 3 0 . 5 0 

Z = 2 8 . 5 0 

Z - 2 6 . 5 0 

Figure A-ll. X-Y Sectional Plots of the Five-Year-Old Phantom 
Showing the Chest Region. 



ORNL-DWG 75-6306 

174 

Z = • 51.00 

Z = 48.0C 

43.50 

41.30 

Figure A-12. X-Y Sectional Plots of the Five-Year-Old Phantom 
Showing the Shoulder and Head Regions. 
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Appendix B 

Summary of Some Phantom Material 

Table B-l. Composition of Soft Tissue Equivalent Material 
(Weight Percentage) 

This Study Tipton et al. Lea ICRU 10° Young 
(1977) (1966) (1946) (1964) (1974) Reference 

^Matenal S o f t T i s s u e
ö
 S o f t T i s s u e W e t Tissue Muscle MuscL 

ElementN^ 
(Striated) 

H 11.3 10.5 10.00 10.20 10.3 

C 7.5 23.0 12.00 12.30 9.9 

N 2.3 4.00 3.50 3.2 

0 81.0 63.2 73.00 72.90 75.7 

Na 0.1 0.1 0.10 0.08 0.1 

Mg 0.1 0.04 0.02 

P 0.2 0.20 0.20 0.2 

S 0.2 0.20 0.50 0.3 

Cl 0.1 0.1 0.10 0.1 

K 0.2 0.35 0.30 0.3 

Ca 0.01 0.01 

Fe 0.1 

Density 
g-cm~3 

1 1 1 1 1 

Eff. Atomic 
Number "Z 

7.31 7.30 7.48 7.46 7.48 

Ele. Density 
Ne x l0-23g-] 

3.35 3.32 3.42 3.31 3.32 

The liquid soft tissue Substitute, comnosed of 80% water, 18.0-
methanol, 1.8% sucrose, and 0.2% sodium chloride by weight percentage 
(Stansbury, 1977). 

This is the composition of soft tissue in "Reference Man" which 
was used in the Monte Carlo dose calculations. 
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Table B-1 (continued) 

Reference Weast 
(1962) 

Weast 
(1962) 

Weast 
(1962) 

Material Air Water Bakelite 
H6C8° 

Polystyrene 

H8C8 

Perspex. 
H6C4°2 

Chemical 
composition 
in parts by 
weight 

N 75.5 

0 23.2 

A 1.3 

H 11.19 

0 88.81 

H 5.7 

C 77.5 

O 16.8 

H 7.74 

C 92.26 

H 7.03 

C 55.81 

0 37.17 

Density p 
gm-cm-3 

0.001293 1.0 1.31 ^ 1.32 1.04 ^ 1.08 1.18 - 1.20 

Eff. Atomic 
Number Z 

7.64 7.42 6.10 5.69 8.61 

Ne x 10"23 

gm"1 
3.01 3.34 3.18 3.24 3.22 

Reference Mayneord 
(1937) 

Jones and 
Raine (1949) 

Lindsay and 
Stern (1953) 

Spiers 
(1946) 

Hashizume 
et al. (1972) 

Material Tissue Mix-D Bolus Excised 
muscle 
tissue 
specimen 

M3 Phantom 

Chemical 
composition 
in parts by 
weight 

H20 80.0 

Protein 18.9 

NaCl 1.0 

KCl 0.05 

CaCl2 0.03 

NaHCO 0.02 

Paraffin 60.8 

Poly- 30.4 
ethylene 

MgO 6.4 

Ti02 2.4 

Sugar ^ 

MgCo3 

Mg(OH)3 

H20 

> 87.0 

11.0 

Skin, 
bicep 

Paraffin 76.9 

MgO 22.4 

CaC03 0.7 

Density p 
g-cnr3 

1.0 0.99 1.0 1.0 1.0 

Eff. Atomic 
Number Z 

7.33 7.47 7.33 7.31 

-23 Ne x io ^ 

r1 
3.34 3.395 3.32 3.36 
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Table B~l (continued) 

Reference NBS Handbook 
47 (1950) 

Solomen 
(19S2) 

Marinelli 
(1953) 

Lea 
(1955) 

NBS Handbook 63 
(1957) 

\ Material „. 
>1 Tissue 

ElemenK. C21H140°57N3 

Tissue 
C22H170°68N3 

Tissue 
C5H40°18N 

Tissue 
C7H20°32N2 

Tis sue 
C42H277°109N6CaP 

C 18.72 

H- 10.45 

0 67.70 

N 3.13 

Ca 

P 

16.90 

10.97 

69.50 

2.63 

14.95 

10.02 

71.50 

3.53 

12.1 

10.1 

73.8 

4.0 

18.82 

10.40 

65.10 

3.14 

1.40 

1.14 

Eff. Atomic 7.1 
Number Z 

7.12 7.208 7.36 7.85 

Ele. Density 3.279 
Ne g"1 x 10~23 

3.2812 3.307 3.8925 3.3169 

Reference Rossi 
(1953) 

Rossi 
(1953) 

Rossi and 
Failla (1956) 

Weast 
(1962) 

i . 

Weast 
(1962) 

\Material T< E> g e l 

m 2v Ho0oCNo 

Element^v 2 2 2 

T. E. elastic 
H202CN 

T. E. elastic 

Markite HCN 

Teflon 

CF 

PolyethyJ ene 

CH 

C 15.8 

H 9.7 

N 3.5 

0 71.0 

F 

82.7 

10.1 

3.7 

3.5 

86.4 

10.1 

3.5 

24 

76 

85.5 

14.5 

Density p — 
g-cm~3 

--- --- 2.36 0.93 

Eff. atomic 7.3 
Number Z 

5.77 5.65 8.45 5.047 

Ne x icr23 3.2607 

g"1 
3.26 3.304 3.0 3.763 

file:///Material


Table B-1 (continued) 

Reference Shonka et al. 
(1958) 

Stacy et al. 
(1961) 

Weast 
(1962) 

Weast 
(1962) 

Weast 
(1962) 

^v. Material T. E. muscle Temex fluid 
rubber 

Lucite 

| H8C5°2 

Lexan 
H14C!6°3 

Nylon 

1 H22N2°2C12 Elemente a b 

Temex fluid 
rubber 

Lucite 

| H8C5°2 

Lexan 
H14C!6°3 

Nylon 

1 H22N2°2C12 

H 

C 

N 

0 

F 

Si 

Ca 

10.90 

75.60 

3.50 

5.10 

1.08 

1.04 

2.00 

57.4 

42.6 

H 9.60 

C 87.00 

N 0.06 

0 0.47 

S 1.53 

Ti 0.33 

Zn 0.45 

8.06 

59.98 

31.96 

5.55 

75.57 

18.88. 

9.80 

63.68 

12.38 

14.14 

Density p 
g-cnT3 

1.07 1.4 1.01 1.2 1.2 1.13 - 1.15 

Eff. Atomic 
Number Z 

7.3 7.5 7.05 6.47 6.26 6.12 

Ne x lo- 2 3 

g"1 
3.285 2.932 3.273 3.25 3.17 3.30 

Photon and neutron sensitive. Insensitive to neutron. 
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Table B-2. Composition of Some Dosimetry Materials and Their 
Important Dosimetrie Constants 

Reference Miller 
(1975) 

Weast 
(1962) 

Weast 
(1962) 

Weast 
(1962) 

Weast 
(1962) 

Material Fricke 
dosimeter 
Solution 

LiF:Mn CaF2:Mn CaS04:Dy Li2ß401:Mn 

Chemical H 10.84 Li 27 F 48.67 0 47.03 Li 8.4 
composition 
in parts by 
weight 

0 

S 

87.91 

1.25 

F 73 Ca 51.33 S 

Ca 

23.52 

29.45 

B 

0 

24.1 

67.5 

Density p 
gm-cm~3 

1.0 2.63 3.18 2.96 2.36 

Eff. Atomic 
Number Z 

7.66 8.19 16.53 15.22 7.23 

Ne x 10 

gm"1 
-23 3.33 2.79 2.93 3.01 2.92 
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Table B-3. Composition of Bone äquivalent Material 

Reference This Study 
(1977) 

Tipton et al. 
(1966) 

ICRU 10b 
(1964) 

Shonka et al. 
(1958) 

Spiers 
(1946) 

^Material 

Elemenrx 

Skeleton Skeleton Bone 
femur 

T.E. Bone Bone 
femur 

H 6.5 7.0 

C 19.1 22.7 

N 3.9 3.9 

0 53.0 48.6 

Na 0.2 0.3 

Mg 0.2 0.1 

P 6.8 7.0 

S 0.2 

Ca 10.3 9.9 

Cl 0.1 

K 0.2 

F 

Density 
p g-cm-3 

1.49 1.50 1.87 1.37 

Eff. Atomic 
Number Z 

9.75 10.76 11.6 11.6 13.8 

Electron 
density 
Ne x 10"23 

3.24 3.21 3.19 3.15 3.23 

The homogeneous bone Substitute composed of 27.0% water, 19.5% 
bone flour, 39.5% sucrose, 8.0% ammonium phosphate, 6.0% ammonium nitrate 
by weight percentage (Stansbury, 1977). 

This is the composition of the skeleton in "Reference Man" v/hich 
is used in the Monte Carlo dose calculations. 

6.4 6.36 3.4 

27.8 53.60 15.5 

2.7 2.69 4.0 

41.0 3.05 44.1 

0.2 

0.2 

7.0 10.2 

0.2 0.3 

14.7 17.60 22.2 

16.70 
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Appendix C 

Tissue-Air Ratio Comparison 

T a b l e C - 1 . T i s s u e - A i r R a t i o C o m p a r i s o n , 
O n e - Y c i r - O l d Phantom llcad i ixa in ina t ion 

( P o s t e r i o r / A n t e r i o r View, 75 kV'cp, 287 niAs, l-'SD = 1 0 1 . 6 cm) 

ORGAN 

Thyro id 

Thymus 

T.A.R. C.V. T .A.R. + 2 C.V. T .A.R . - 2 C.V. 
( r a d / R ) (%) up l i m i t ( r a d / R ) low l i m i t ( m d / R ) 

C a l c u l a t i o n 0 .3493 0.08 0.3562 

Measurement 0.3097 

Calculation 0.0845 26.05 

Measurement 0.0945 

Calculation 0.0116 21.80 

Measurement 0.0101 

0.1285 

0.1065 

0.0116 

0.3425 

0.2837 

0.0405 

0.0824 

0.006S 

0.0086 

Ovaries 
Calculation 

Measurement 

Calculation 

Measurement 

Red Marrow Calculation 0.0144 15.57 
of L. Arm 

Measurement 0.0143 6.93 0 .0163 

Red Marrow C a l c u l a t i o n 0 .0123 15 .42 
of R. Ann 

Measurement 0 .0145 6.81 0.0165 

Red Marrow Calculation 0.4937 7.53 
of Spine 
(up) Measurement 0.4460 8.31 0.S201 

0.4193 

6.27 Red Marrow Calculation 0.0211 
of Spine 
(med) Measurement 0.0167 25.87 

0.0238 0.0185 

0.0081 

Red Marrow Calculation 
of Spine 
(low) Measurement 

Red Marrow Calculation 
of Pelvis — 

Measurement 

Red Marrow Calculation 
of L. Leg 

Measurement 

Red Marrow Calculation 
of R. Leg 

Measurement 

Red Marrow Calculation 0.0259 1 
Total Body 

0.0265 

Measurement 0.0242 12.40 0.0302 

0.0253 

Tissuc-Air Ratio (T.A.R.) is the averagc absorbcd dose to the organ of 
intercst (rad) per unit cxposurc (R, free-in-air) in the center of beam at the 
surface of body. For a C.V. greater than 50° or a T.A.R. less than 10 "* (rad/R) 
no comparison is given. 

b- .,. . , ln ., . Standard error ,„„ 
Cocfficicnt of Variation (C.V.) » : r x 100. 

average energy deposited 



Table C-2. Tissue-Air Ratio Comparison, 
One-Year-Old Phantom Head Examination 

(Left Lateral View, 60 kVcp 685 niAs, FSD = 101.6 cm) 
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F 
ORGAN 

T.A.R. C.V. 
(rad/R) (%) 

T.A.R. + 2 C.V. T.A.R. - 2 C.V. 
up limit (rad/R) low limit (rad/R) 

Brain 
Calculation 0.2809 1.13 

Measurement 0.2396 5.11 

0.0273 

0.2640 

0.2746 

0.2151 

Thyroid 
Calculation 0.2045 18.57 

Measurement 0.2453 7.31 

0.3360 

0.2811 

0.1540 

0.2094 

Thymus 
Calculation 0.0159 20.99 

Measurement 0.0128 14.78 

0.0226 

0.0166 

0.0092 

0.0090 

Ovaries 
Calculation 

Measurement 

Testes 
Calculation 

Measurement 

Red Marrow Calculation 0.0155 15.12 
of L. Arm 

Measurement 0.0228 7. 

0.0202 

0.0268 

0.0108 

0.0193 

Red Marrow Calculation 0.0060 24. 
of R. Arm 

Measurement 0.0036 6.11 

0.0090 

0.0041 

0.0030 

0.0002 

Red Marrow Calculation 0.2124 4.29 
of Spine 
(upper) Measurement 0.2795 28.27 

0.2306 

0.4775 

0.1942 

0.1215 

7.25 Red Marrow Calculation 0.0153 
of Spine 
(middle) Measurement 0.0101 19.24 

0.0175 

0.0140 

0.0130 

0.0062 

Red Marrow Calculation 
of Spine 
(lower) Measurement 

Red Marrow Calculation 
of Pelvis 

Measurement 

Red Marrow Calculation 
of L. Leg 

Measurement 

Red Marrow Calculation 
of R. Leg 

Measurement 

Red Marrow Calculation 0.0197 
Total Body 

1.03 

Measurement 0.0152 13.27 

0.2011 

0.1923 

0.1929 

0.1117 

Tissue-Air Ratio (T.A.R.) is the average absorbed dose to the organ of 
interest (rad) per unit exposure (R, free-in-air) in the center of beam at the 
surface of body. For a C.V. greater than 50% or a T.A.R. less than 10~4 (rad/R) 
no comparison is given. 

Coefficient of Variation (C.V.) = Standard error 
average energy deposited x 100. 
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Table C-3. Tissue-Air Ratio Comparison, 
One-Year-Old Phantom Chest Examination 

(Anterior/Posterior View, 60 kVcp, 990 mAs, FSD = 121.9 cm) 

— V • — 

T.A.R.a C.V. T.A.R. + 2 C.V. T.A.R. - 2 C.V. 
ORGAN (rad/R) (%) up limit (rad/R) low limit (rad/R) 

Calculation 0.0047 8.02 0.0055 0.0040 
Brain — 

Measurement 0.0033 10.24 0.0040 0.0027 

Thyroid 

Thymus 

Ovaries 

Testes 

Calculation 0.4693 11.51 0.5773 0.3613 

Measurement 0.4910 7.31 0.5628 0.4193 

Calculation 0.6834 3.21 0.7273 0.6395 

Measurement 0.6940 6.49 0.7841 0.6039 

Calculation —•-

Measurement — — 

Calculation 

Measurement 

Red Marrow Calculation 0.2075 3.90 0.2222 0.1913 
of L. Arm — 

Measurement 0.1618 6.24 0.1820 0.1416 

Red Marrow Calculation 0.2106 3.89 0.2270 0.1942 
of R. Arm — • 

Measurement 0.1811 5.49 0.2010 0.1612 

Red Marrow Calculation 0.0570 7.70 0.0658 0.0482 
of Spine 
(up) Measurement 0.0564 9.86 0.0675 0.0453 

Red Marrow Calculation 0.0761 3.25 0.0810 0.0711 
of Spine ——•— :  

(med) Measurement 0.0818 11.55 0.1010 0.0629 

Red Marrow Calculation 0.0090 12.34 0.0112 0.0068 
of Spine • 
(low) Measurement 0.0118 10.52 0.0143 0.0095 

Red Marrow Calculation 0.0013 19.44 0.0018 0.0008 
of Pelvis — 

Measurement 0.0015 10.43 0.0018 0.0012 

Red Marrow Calculation 
of L. Leg 

Measurement 

Red Marrow Calculation 
of R. Leg 

Measurement 

Red Marrow Calculation 0.0286 0.85 0.0291 0.0281 
Total Body 

Measurement 0.0254 8.94 0.0299 0.0209 

Tissue-Air Ratio (T.A.R.) is the average absorbed dose to the organ of 
interest (rad) per unit cxposure (R, free-in-air) in the center of beam at the 
surface of body. For a C.V. greater than 50% or a T.A.R. less than 1 0 4 (rad/R) 
no comparison is given. 

&,-. rf • c • ^ • rr- ir -v Standard error 
Coefficient of Variation (C.V.) = ~ : r x IOO. 

average energy deposited 
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Table C-4. Tissue-Air Ratio Comparison, 
One-Year-Old Phantom Chest Examination 

(Posterior/Anterior View, 60 kVcp 990 mAs, FSD = 121.9 cm) 

ORGAN 
T.A.R,a c " ^ 
(rad/R) (%) 

T.A.R. + 2 C.V. T.A.R. - 2 C.V. 
up limit (rad/R) low limit (rad/R) 

Brain 
Calculation 0.0041 8.01 0.0047 

Measurement 0.0034 9.40 0.0040 

0.0034 

0.0028 

Thyroid 
Calculation 0.1044 21.40 0.1491 

Measurement 0.0939 10.12 0.1130 

0.0597 

0.0748 

Thymus 
Calculation 0.1377 7.21 0.1576 

Measurement 0.1402 6.50 0.1585 

0.1178 

0.1221 

Ovaries 
Calculation 

Measurement 0.0021 10.15 0.0025 0.0017 

Testes 
Calculation 

Measurement 0.0013 24.95 0.0020 0.0007 

Red Marrow Calculation 0.1845 
of L. Arm 

4.25 0.2009 

Measurement 0.1927 3.37 0.2057 

0.1688 

0.1797 

Red Marrow Calculation 0.1914 
of R. Arm 

4.17 0.2074 

Measurement 0.1983 3.97 0.2141 

0.1755 

0.1826 

Red Marrow Calculation 0.2144 3.84 0.2308 
of Spine — — — — 
(up) Measurement 0.1705 24.12 0.2528 

0.1979 

0.0883 

1.50 Red Marrow Calculation 0.3350 
of Spine • 
(med) Measurement 0.3610 12.67 

0.3451 

0.4524 

0.3249 

0.2695 

Red Marrow Calculation 0.0145 10.97 0.0176 
of Spine 
(low) Measurement 0.0178 13.20 0.2243 

0.0113 

0.1306 

Red Marrow Calculation 0.0012 
of Pelvis 

19.32 0.0017 

Measurement 0.0014 10.34 0.0017 

0.0007 

0.0011 

Red Marrow Calculation 
of L. Leg — 

Measurement 

Red Marrow Calculation 
of R. Leg 

Measurement 

Red Marrow Calculation 0.0860 
Total Body 

0.7 0.0872 

Measurement 0.0893 9.58 0.1064 

0.0848 

0.0722 

Tissue-Air Ratio (T.A.R.) is the average absorbed dose to the organ of 
interest (rad) per unit exposure (R, free-in-air) in the center of beam^at the 
surface of body. For a C.V. greater than 50°ä or a T.A.R. less than 10 
(rad/R) no comparison is given. 

,-4 

Coefficient of Variation (C.V.) = 
Standard error 

average energy deposited 
x 100. 
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Table C-5. Tissue-Air Ratio Comparison, 
One-Year-Old Phantom Chest Examination 

(Left Lateral View, 75 kVcp, 417 mAs, PSD - 121.9 cm) 

ORGAN 

Brain 

T.A.R. C.V. • T.A.R. + 2 C.V. T.A.R. - 2 C.V. 
(rad/R) (%) up limit (rad/R) low limit (rad/R) 

Calculation 0.0076 6.48 0.0086 

Measurement 0.0071 8.97 0.0084 

0.0066 

0.0058 

Thyroid 
Calculation 0.3032 13.97 0.3879 

Measurement 0.3130 11.32 0.3838 

0.2185 

0.2421 

Thymus 
Calculation 0.3146 5.09 0.3466 

Measurement 0.3616 2.19 0.4188 

0.2826 

0.3044 

Ovaries 
Calculation 

Measurement 0.0056 5.67 0.0062 0.0050 

Testes 
Calculation 

Measurement 

Red Marrow Calculation 
of L. Arm 

Measurement 

Red Marrow Calculation 0.0845 
of R. Arm 

6.65 0.0957 

Measurement 0.1102 6.97 0.1256 

0.0732 

0.0949 

Red Marrow Calculation 0.1719 4.63 0.1903 
of Spine —-—• 
(up) Measurement 0.1431 7.28 0.1639 

0.1581 

0.1222 

Red Marrow Calculation 0.2075 2.08 0.2162 
of Spine — • 
(med) Measurement 0.1859 5.90 0.2078 

0.1989 

0.1640 

Red Marrow Calculation 0.0177 10.78 0.0215 
of Spine — 
(low) Measurement 0.0193 12.49 0.0241 

0.0139 

0.O145 

Red Marrow Calculation 0.0027 
of Pelvis 

15.85 0.0036 

Measurement 0.0035 3.35 0.0037 

0.0019 

0.0033 

Red Marrow Calculation 
of L. Leg 

Measurement 

Red Marrow Calculation 
of R. Leg 

Measurement 

Red Marrow Calculation 0.0541 0.81 
Total Body 

Measurement 0.0506 10.46 

0.0549 

0.0612 

0.0532 

0.0400 

Tissue-Air Ratio (T.A.R.) is the average absorbcd dose to the organ of 
interest (rad) per unit exposure (R, free-in-air) in the center of beam at the 
surface of body. For a C.V. greater than 50% or a T.A.R. less than 10 (rad/R) 
no comparison is given. 

b, 
Coefficient of Variation (C.V.) = Standard error  

average energy deposited 
x 100. 
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Table C-6. Tissue-Air Ratio Comparison, 
One-Year-Old Phantom Abdomen cxamination 

(Anterior/Posterior View, 75 kVcp, 287 mAs, FSD - 101.6 cm) 

ORGAN 
T.A.R. C.V. 
(rad/R) (%) 

b T.A.R. + 2 C.V. T.A.R. - 2.C.V. 
up limit (rad/R) low limit (rad/R) 

Brain 
Calculation 

Measurement 

Thyroid 
Calculation 

Measurement 

Thymus 
Calculation 0.0261 20.90 0.0370 

Measurement 0.0211 9.38 0.0251 

0.0152 

0.0171 

Ovaries 
Calculation 0.4740 37.20 0.8267 

Measurement 0.3414 9.24 0.4045 

0.1213 

0.2783 

Testes 
Calculation 0.2102 21.53 0.3007 

Measurement 0.2912 6.40 0.3285 

0.1197 

0.2539 

Red Marrow Calculation 0.0051 
of L. Arm 

26.14 0.0078 

Measurement 0.0071 10.12 0.0085 

0.0025 

0.0057 

Red Marrow Calculation 0.0065 
of R. Arm 

26.08 0.0099 

Measurement 0.0081 14.30 0.0105 

0.0031 

0.0058 

Red Marrow Calculation 0.0014 44.58 0.0026 
of Spine 
(up) Measurement 0.0022 12.34 0.0027 

0.0002 

0.0017 

Red Marrow Calculation 0.0342 5.97 0.0383 
of Spine 
(med) Measurement 0.0369 6.14 0.0414 

0.0301 

0.0324 

Red Marrow Calculation 0.1430 4.64 0.1562 
of Spine — — - — • — 
(low) Measurement 0.1576 5.65 0.1754 

0.1297 

0.1398 

Red Marrow Calculation 0.2325 2.00 
of Pelvis 

Measurement 0.2532 9.00 

0.2418 

0.2988 

0.2232 

0.2076 

Red Marrow Calculation 0.0512 
of L. Leg 

5.4< 0.0572 

Measurement 0.0477 7.34 0.0547 

0.0459 

0.0407 

Red Marrow Calculation 0.0650 
of R. Leg 

5.44 0.0636 

Measurement 0.0540 9.22 0.0640 

0.0511 

0.0440 

Red Marrow Calculation 0.1651 1.42 
Total Body 

0.1698 

Measurement 0.1637 7.37 0.0878 

0.1604 

0.1396 

Tissue-Air Ratio (T.A.R.) is the average absorbed dose to the organ of 
interest (rad) per unit exposure (R, free-in-air) in the center of beam at the 
surface of body. For a C.V. greater than 50% or a T.A.R. less than 10 4 (rad/R) 
comparison is given. 

b. 
Coefficient of Variation (C.V.) = 

Standard error  
average energy deposited 

x 100, 
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ORGAN 

Brain 

Table C-7. Tissue-Air Ratio Comparison, 
One-Year-Old i'hantom Abdomen Examination 

(Posterior/Anterior View, 75 kVcp, 287 mAs, FSD = 101.6 cm] 

T.A.R. C.V. T.A.R. + 2 C.V. T.A.R. - 2 C.V. 
(rad/R) (%) up limit (rad/R) low limit (rad/R) 

Calculation 

Measurement 

Thyroid 
Calculation 

Measurement 

Thymus 
Calculation 0.0136 22.75 

Measurement 0.0140 9.41 

0.0198 

0.0666 

0.0074 

0.0114 

Ovaries 
Calculation 0.4181 24.02 0.6190 

Measurement 0.2626 11.17 0.3213 

0.2172 

0.2039 

Testes 
Calculation 0.1356 78.95 0.2141 

Measurement 0.1465 9.26 0.1736 

0.0571 

0.1194 

Red Marrow Calculation 0.0079 21.28 
of L. Arm 

Measurement 0.0081 7.95 

0.0113 

0.0093 

0.0046 

0.0068 

Red Marrow Calculation 0.0075 
of R. Arm — 

20.83 0.0106 

Measurement 0.0060 10.28 0.0073 

0.0044 

0.0048 

Red Marrow Calculation 0.0017 49.20 0.0033 
of Spine • — 
[up) Measurement 0.0016 8.53 0.0019 

0.0003 

0.0013 

Red Marrow Calculation 0.0991 3.37 0.1057 
of Spine — 
(med) Measurement 0.1062 6.33 0.1196 

0.0924 

0.0928 

Red Marrow Calculation 0.5181 2.38 0.5426 
of Spine • • • 

(low) Measurement 0.5208 3.46 0.5568 

0.4912 

0.4848 

Red Marrow Calculation 0.4174 
of Pelvis 

1.45 0.4295 

Measurement 0.4466 4.39 0.4858 

0.4053 

0.4074 

Red Marrow Calculation 0.0480 
of L. Leg 

5.75 0.0535 

Measurement 0.0372 7.93 0.0431 

0.0425 

0.0313 

Red Marrow Calculation 0.0467 
of R. Leg 

5.81 0.0521 

Measurement 0.0352 10.77 0.0428 

0.0415 

0.0277 

Red Marrow Calculation 0.3167 
Total Body 

1.03 0.3232 

Measurement 0.3321 6.75 0.3769 

0.3102 

0.2873 

Tissue-Air Ratio (T.A.R.) is the average absorbcd dose to the organ of 
intercst (rad) per unit exposure (R, free-in-air) in the center of beam at the 
surface of body. For a C.V. greater than 50% or a T.A.R. less than 10~4 (rad/R) 
no comparison is given. 

5 
Coefficient of Variation (C.V.) 

Standard error  
average energy deposited 

x 100, 



Table C-8. Tissue-Air Ratio Comparison, 
One-Year-Old Phantom Abdomen Examination 

(Left Lateral View, 90 kVcp, 191 mAs, FSD = 101.6 cm) 

T.A.R. C.V. T.A.R. + 2 C.V. T.A.R. - 2 C.V. 
ORGAN (rad/R) (%) up limit (rad/R) low limit (rad/R) 

Brain 
Calculation 

Measurement 

Thyroid 
Calculation 

Measurement 

Thymus 
Calculation 0.0200 19.07 0.0276 

Measurement 0.0208 8.23 0.0243 

0.0124 

0.0174 

Ovaries 
Calculation 0.2036 47.78 0.4021 

Measurement 0.1854 7.69 0.2139 

0.0091 

0.1569 

Testes 
Calculation 0.2202 27.39 0.3408 

Measurement 0.1750 8.42 0.2045 

0.0996 

0.1455 

Red Marrow Calculation 
of L. Arm 

Measurement 

Red Marrow Calculation 0.0100 
of R. Arm 

20.90 0.0141 

Measurement 0.0092 9.02 0.0109 

0.0056 

0.0075 

Red Marrow Calculation 0.0029 36.40 0.0050 
of Spine 
(up) Measurement 0.0035 5.49 0.0039 

0.0008 

0.0031 

Red Marrow Calculation 0.0757 4.12 0.0820 
of Spine • _ _ 
(med) Measurement 0.0746 9.55 0.0889 

0.0695 

0.0604 

Red Marrow Calculation 0.3093 3.24 0.3310 
of Spine 
(low) Measurement 0.2721 6.50 0.3075 

0.2875 

0.2367 

Red Marrow Calculation 0.3734 
of Pelvis 

1.53 0.3977 

Measurement 0.3733 5.90 0.4174 

0.^741 

0.3293 

Red Marrow Calculation 0.0667 
of L. Leg 

5.06 0.0734 

Measurement 0.0631 11.08 0.0771 

0.0599 

0.0491 

Red Marrow Calculation 0.0352 
of R. Leg 

7.43 0.0405 

Measurement 0.0336 9.48 0.0400 

0.0300 

0.0273 

Red Marrow Calculation 0.2590 1.17 
Total Body — 

0.2651 

Measurement 0.2540 7.32 0.2912 

0.2529 

0.2K 

Tissue-Air Ratio (T.A.R.) is the average absorbed dose to the organ of 
intercst (rad) per unit exposure (R, free-in-air) in the center of beam at the 
surface of body. For a C.V. greater than 50% or a T.A.R. less than 10~4 (rad/R) 
no comparison is given. 

bn cc. . _ , , » Standard error ^ .._ 
Coefficient of Variation (C.V.) = -. : r x 100. 

average energy deposited 
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Table C-9. Tissue-Air Ratio Comparison, 
Five-Year-Old Phantom Head Fxamination 

(Posterior/Anterior View, 80 kVcp, 240 mAs, FSD - 101.6 cm) 

ORGAN 
T.A.R. C.V. 
(rad/R) (%) 

F T.A.R. + 2 C.V. T.A.R. - 2 C.V. 
up limit (rad/R) low limit (rad/R) 

Brain 
Calculation 0.3169 1.05 0.3235 

Measurement 0.3484 10.08 0.4187 

0.3103 

0.2782 

Thyroid 
Calculation 0.0836 19.34 0.0998 

Measurement 0.0907 9.21 0.1074 

0.0674 

0.0740 

Thymus 
Calculation 0.0179 16.64 0.0239 

Measurement 0.0177 7.96 0.0205 

0.0119 

0.0149 

Ovaries 
Calculation 

Measurement 

Testes 
Calculation 

Measurement 

Red Marrow Calculation 0.0075 
of L. Arm 

17.57 0.0101 

Measurement 0,0064 9.42 0.0076 

0.0048 

0.0052 

Red Marrow Calculation 0.0088 
of R. Arm 

14.84 0.0115 

Measurement 0.0083 8.35 0.0097 

0.0062 

0.0069 

Red Marrow Calculation 0.4028 2.30 0.4214 
of Spine 
(up) Measurement 0.4577 6.07 0.5133 

0.3843 

0.4021 

Red Marrow Calculation 0.0191 5.28 0.0211 
of Spine • 
(med) Measurement 0.0192 15.94 0.0253 

0.0171 

0.0131 

Red Marrow Calculation 
of Spine 
(low) Measurement 

Red Marrow Calculation 
of Pelvis 

Measurement 

Red Marrow Calculation 
of L. Leg 

Measurement 

Red Marrow Calculation 
of R. Leg 

Measurement 

Red Marrow Calculation 0.0224 0.87 
Total Body 

0.0228 

Measurement 0.0238 11.36 0.0292 

0.0220 

0.0184 

Tissue-Air Ratio (T.A.R.) is the average absorbcd dose to the organ of 
interest (rad) per unit cxposure (R, free-in-air) in the center of beam at the 
surface of body. For a C.V. greater than 50% or a T.A.R. less than 10~4 (rad/R) 
no comparison is given. 

Coefficient of Variation (C.V.) 
Standard error 

average energy ceposited 
x 100. 
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Table C-10. Tissue-Air Ratio Comparison, 
Five-Year-Old Phantom Head Examination 

(Left Lateral View, 70 kVcp, 439 mAs, FSD = 101.6 cm) 

T.A.R.a C.V. T.A.R. + 2 C.V. T.A.R. - 2 C.V. 
ORGAN (rad/R) (%) up limit (rad/R) low limit (rad/R) 

Brain 

Thyroid 

Thymus 

Ovaries 

Testes 

Calculation 0.3741 1.07 0.3821 0.3661 

Measurement 0.3674 5.86 0.4104 0.3243 

Calculation 0.3623 11.11 0.4428 0.2818 

Measurement 0.2832 6.65 0.3209 0.2455 

Calculation 0.0207 17.65 0.0280 0.0134 

Measurement 0.0212 14.69 0.0275 0.0150 

Calculation ___-

Measurement ____ 

Calculation 

Measurement 

Red Marrow Calculation 0.0119 15.11 0.0145 0.0078 
of L. Arm 

Measurement 0.0183 8.45 0.0214 0.0152 

Red Marrow Calculation 0.0045 26.97 0.0069 0.0021 
of R. Arm 

Measurement 0.0042 9.62 0.0051 0.0034 

Red Marrow Calculation 0.2359 3.36 0.2518 0.2201 
of Spine 
(up) Measurement 0.2182 6.70 0.2474 0.1890 

Red Marrow Calculation 0.0163 6.48 0.0184 0.0142 
of Spine 
(med) Measurement 0.0138 11.23 0.0169 0.0107 

Red Marrow Calculation 
of Spine 
(low) Measurement 

Red Marrow Calculation 
of Pelvis 

Measurement 

Red Marrow Calculation 
of L. Lee 

Measurement 

Red Marrow Calculation 
of R. Leg 

Measurement 

Red Marrow Calculation 0.0191 0.87 0.0194 0.0188 
Total Body — 

Measurement 0.0123 12.83 0.0154 0.0091 

Tissue-Air Ratio (T.A.R.) is the average absorbed dose to the organ of 
interest (rad) per unit exposure (R, free-in-air) in the center of beam at the 
surface of body. For a C.V. greater than 50% or a T.A.R. less than 10 ^ (rad/R) 
no comparison is given. 

£> „. . - . . . ,„ ,. , Standard error v , nr. 
Coefficient of Variation (C.V.) = — ; r—-r x 100. 

v average energy deposited 
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Table C-ll. Tissue-Air Ratio Comparison, 
Five-Year-OlJ Phantom Chcst Examination 

(Anterior/Posterior View, 80 kVcp, 827 mAs, FSD = 182.9 cm) 

T.A.R. C.V. T.A.R. + 2 C.V. T.A.R. - 2 C.V. 
ORGAN (rad/R) (%) up limit (rad/R) low limit (rad/R) 

Brain 
Calculation 0.0143 5.89 0.0159 

Measurement 0.0150 16.71 0.2001 

0.0129 

0.0100 

Thyroid 
Calculation 0.5405 10.03 0.648S 

Measurement 0.5905 7.19 0.6754 

0.4321 

0.5056 

Thymus 
Calculation 0.8851 3.46 0.9463 

Measurement 0.8649 5.55 0.9609 

0.8239 

0.7690 

Ovaries 
Calculation 

Measurement 

Testes 
Calculation 

Measurement 

Red Marrow Calculation 0.0878 
of L. Arm -

6.16 0.0986 

Measurement 0.0785 7.32 0.0900 

0.0770 

0.0670 

Red Marrow Calculation 0.0899 
of R. Arm 

6.22 0.1011 

Measurement 0.0449 7.13 0.0973 

0.0788 

0.0725 

Red Marrow Calculation 0.0812 6.59 0.0919 
of Spine • 
(up) Measurement 0.1141 5.40 0.1153 

0.0705 

0.0929 

Red Marrow Calculation 0.0991 3.12 0.1053 
of Spine — 
(med) Measurement 0.1027 6.09 0.1152 

0.0929 

0.0902 

Red Marrow Calculation 0.0083 14.92 0,0107 
of Spine 
(low) Measurement 0.0068 8.54 0.0079 

0.0058 

0.0056 

Red Marrow Calculation 0.0012 22.44 
of Pelvis — 

Measurement 0.0015 10.63 

0.0017 

0.0019 

0.0007 

0.0012 

Red Marrow Calculation 
of L. Leg 

Measurement 

Red Marrow Calculation 
of R. Leg 

Measurement 

Red Marrow Calculation 0.0390 
Total Body 

0.87 0.0406 

Measurement 0.0269 8.49 0.0315 

0.0393 

0.0223 

Tissue-Air Ratio (T.A.R.) is the average absorbed dose to the organ of 
interest (rad) per unit exposure (R, free-in-air) in the center of beam at the 
surface of body. For a C.V. greater than 50% or a T.A.R. less than 10~4 (rad/R) 
no comparison is given. 

b„ ,.,.. . ,. . . ,„ ., . Standard error 
Coefficient of Variation (C.V.) = -, r-—r x 100. 

*• J average energy deposited 
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Table C-12. Tissue-Air Ratio Comparison, 
Five-Year-Old Phantom Chest Examination 

(Posterior/Anterior View, 80 kVcp, 827 mAs, FSD = 182.9 cm) 

T.A.R.a C.V. T.A.R. + 2 C.V. T.A.R. - 2 C.V. 
ORGAN (rad/R) {%) up Limit (rad/R) low limit (rad/R) 

Calculation 0.0142 5.S2 0.0159 0.0125 

Measurement 0.0144 11.64 0.0175 0.0105 

Calculation 0.1356 19.75 0.1892 0.0820 

Measurement 0.1475 5.44 0.1636 0.1315 

Calculation 0.1822 7.99 0.2113 0.1531 

Measurement 0.1989 8.03 0.2309 0.1670 

Calculation ____ ____ 

Measurement • 

Calculation 

Measurement • 

Red Marrow Calculation 0.0794 6.78 0.0901 0.0686 
of L. Arm 

Measurement 0.0831 7.29 0.0952 0.0710 

Brain 

ThyToid 

Thymus 

Ovaries 

Testes 

Red Marrow Calculation 0.0896 6.51 0.1013 0.0779 
of R. Arm '• 

Measurement 0.0852 7.61 0.0983 0.0721 

Red Marrow Calculation 0.4295 2.83 0.4538 0.4052 
of Spine 
(up) Measurement 0.4615 12.31 0.5751 0.3479 

Red Marrow Calculation 0.3889 1.53 0.4008 0.2770 
of Spine 
(med) Measurement 0.3995 8.12 0.4644 0.3346 

Red Marrow Calculation 0.0109 13.78 0.0131 0.0079 
of Spine :  

(low) Measurement 0.0151 8.07 0.0175 0.0126 

Red Marrow Calculation 0.0009 21.49 0.0013 0.0005 
of Pelvis 

Measurement 0.0010 13.59 0.0013 0.0007 

Red Marrow Calculation ____ 
of L. Leg • 

Measurement 

Red Marrow Calculation 
of R. Leg 

Measurement 

Red Marrow Calculation 0.0994 0.72 0.1008 0.0980 
Total Body 

Measurement 0.0889 7.12 0.1016 0.0762 

Tissue-Air Ratio (T.A.R.) is the average absorbed dose to the organ of 
interest (rad) per unit exposure (R, free-in-air) in the center of beam at the 
surfacc of body. For a C.V, greater than 50% or a T.A.R. less than 10 (rad/R) 
no comparison is given. 

b „ cc- • n • . • rn ,, -, Standard error „ \ n n 

Coefficient of Variation (C.V.) = 3 r——j- x 100. 
average energy deposited 
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Table C-13. Tissue-Air Ratio Comparison, 
Five-Year Old Phantom Chest lixamination 

(Left Lateral View, 100 kVcp, 521 mAs, FSD - 182.9 cm) 

T.A.R. C.V. T.A.R. + 2 C.V. T.A.R. - 2 C.V. 
ORGAN (rad/R) (%) up limit (rad/R) low limit (rad/R) 

Brain 
Calculation 0.0221 4.89 0.0243 

Measurement 0.0193 7.36 0.0222 

0.0200 

0.0165 

Thyroid 
Calculation 0.4472 11.63 0.5512 

Measurement 0.3979 4.75 0.4358 

0.3432 

0.3601 

Thymus 
Calculation 0.3414 5.76 0.3807 

Measurement 0.3868 3.86 0.4167 

0.3021 

0.3569 

Ovaries 
Calculation 

Measurement 

Testes 
Calculation 

Measurement 

Red Marrow Calculation 
of L. Arm 

Measurement 

Red Marrow Calculation 0.0810 
of R. Arm 

7.61 

Measurement 0.0450 7.49 

0.0933 

0.0517 

0.0686 

0.0383 

Red Marrow Calculation 0.3098 3.41 0.3309 
of Spine 
(up) Measurement 0.3468 4.06 0.3750 

0.2886 

0.3186 

Red Marrow Calculation 0.2033 2.21 0.2123 
of Spine — 
(med) Measurement 0.2151 4.76 0.2356 

0.1943 

0.1946 

Red Marrow Calculation 0.0010 13.67 0.0013 
of Spine 
(low) Measurement 0.0010 10.28 0.0012 

0.0007 

0.0008 

Red Marrow Calculation 0.0015 
of Pelvis 

20.00 0.0021 

Measurement 0.0013 4.59 0.0065 

0.0009 

0.0011 

Red Marrow Calculation 
of L. Leg 

Measurement 

Red Marrow Calculation 
of R. Leg 

Measurement 

Red Marrow Calculation 0.0691 
Total Body — 

0.84 0.0703 

Measurement 0.0567 8.31 0.0661 

0.0679 

0.0473 

Tissue-Air Ratio (T.A.R.) is the average absorbed dose to the organ of 
interest (rad) per unit exposure (R, free-in-air) in the center cf beam at the 
surface of body. For a C.V. greater than 50% or a T.A.R. less than 10"4 (rad/R) 
no comparison is given. 

hn rr. . . ... rr IT \ Standard error ^ ... 
Coefficient of Variation (C.V.) = — — • • , . ̂ _ , x 100. average energy deposited 



Table C-14. Tissue-Air Ratio Comparison, 
Five-Year-Old Phantom Abdomen Examination 

(Anterior/Posterior View, 80 kVcp, 240 mAs, FSD •-= 101.6 cm) 
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ORGAN 
T.A.R. C.V. T.A.R. + 2 C.V. T.A.R. - 2 C.V. 
(rad/R) (%) up limit (rad/R) low limit (rad/R) 

Brain 
Calculation 0.0001 44.91 0.0003 

Measurement 

0.0000 

Thyroid 
Calculation 

Measurement 

Thymus 
Calculation 0.0212 25.51 0.0320 

Measurement 0.0242 6.32 0.0272 

0.0103 

0.0211 

Ovaries 
Calculation 0.6570 17.12 0.8820 

Measurement 0.4520 7.89 0.5233 

0.0432 

0.3807 

Testes 
Calculation 0.2883 26.51 0.4412 

Measurement 0.2938 5.50 0.3261 

0.1354 

0.2615 

Red Marrow Calculation 0.0062 
of L. Arm 

29.78 0.0098 

Measurement 0.0073 7.33 0.0084 

0.0025 

0.0062 

Red Marrow Calculation 0.0047 
of R. Arm 

24.76 0.0070 

Measurement 0.0070 6.59 0.0079 

0.0024 

0.0061 

Red Marrow Calculation 0.0018 49.60 0.0036 
of Spine — 
(up) Measurement 0.0026 7.09 0.0030 

0.0000 

0.0023 

Red Marrow Calculation 0.0339 5.74 0.0378 
of Spine 
(med) Measurement 0.0405 7.92 0.0464 

0.0300 

0.0346 

Red Marrow Calculation 0.1143 5.00 0.1257 
of Spine — 
(low) Measurement 0.1358 4.07 0.1468 

0.1028 

0.1247 

Red Marrow Calculation 0.21( 
of Pelvis 

2.00 0.2255 

Measurement 0.2451 3.81 0.2638 

0.2082 

0.2264 

Red Marrow Calculation 0.0319 
of L. Leg 

5.95 0.0357 

Measurement 0.0287 8.96 0.0338 

0.0281 

0.0236 

Red Marrow Calculation 0.0306 
of R. Leg 

6.01 0.0342 

Measurement 0.0291 11.28 0.0356 

0.0269 

0.0225 

Red Marrow Calculation 0.1460 1.44 
Total Body 

0.1502 

Measurement 0.1410 6.47 0.1593 

0.1418 

0.1228 

o.„. Tissue-Air Ratio (T.A.R.) is the average absorbed dose to the organ of 
interest (rad) per unit exposure (R, free-in-air) in the center of" beam at the 
surface of body. For a C.V. greater than 50% or a T.A.R. less than 10"4 (rad/R) 
no comparison is given. 

b„ ... . _ . J ,_, ,, . Standard error 
Coefficient of Variation (C.V.) = 

average energy deposited 
x 100. 
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Table C-15. Tissue-Air Ratio Comparison, 
Five-Year-Old Phantom Abdomen Examination 

(Posterior/Anterior View, 80 kVcp, 240 inAs, FSD = 101.6 cm) 

T.A.R. C.V. T.A.R. + 2 C.V. T.A.R. - 2 C.V. 
ORGAN (rad/R) (%) up limit (rad/R) low limit (rad/R) 

Brain 
Calculation 

Measurement 

Thyroid 
Calculation 

Measurement 

Thymus 
Calculation 0.0089 30.55 0.0144 

Measurement 0.0084 9.67 0.0100 

0.0038 

0.0068 

Ovaries 
Calculation 0.4366 19.05 0.6029 

Measurement 0.2681 7.95 0.3107 

0.2703 

0.2255 

Testes 
Calculation 0.1939 33.19 0.3226 

Measurement 0.2341 14.63 0.3026 

0.0652 

0.1656 

Red Marrow Calculation 0.0034 
of L. Arm 

36.24 0.005S 

Measurement 0.0029 13.26 0.0036 

0.0009 

0.0021 

Red Marrow Calculation 0.0039 
of R. Arm 

25.17 

Measurement 0.0043 14.18 

0.0060 

0.0056 

0.0020 

0.0030 

Red Marrow Calculation 
of Spine — 
(up) Measurement 0.0012 49.03 0.0024 0.0000 

Red Marrow Calculation 0.1210 2.98 0.1283 
of Spine 
(med) Measurement 0.1239 7.61 0.1428 

0.1138 

0.1050 

Red Marrow Calculation 0.4739 2.34 0.4961 
of Spine 
(low) Measurement 0.4244 3.75 0.4562 

0.4518 

0.3926 

Red Marrow Calculation 0.3975 
of Pelvis 

1.42 0.4088 

Measurement 0.4025 4.41 0.4380 

0.3862 

0.3670 

Red Marrow Calculation 0.0325 
of L. Leg 

5.75 0.0362 

Measurement 0.0353 12.26 0.0440 

0.0288 

0.0266 

Red Marrow Calculation 0.0323 
of R. Leg 

5.93 0.0381 

Measurement 0.0367 6.42 0.0414 

0.0302 

0.0319 

Red Marrow Calculation 0.2205 
Total Body 

1.0C 0.2249 

Measurement 0.2720 5.87 0.3039 

0.2161 

0.2401 

Tissue-Air Ratio (T.A.R.) is the average absorbed dose to the organ of 
interest (rad) per unit exposure (R, free-in-air) in the center of beam at the 
surface of body. For a C.V. greater than 50% or a T.A.R. less than 10 ̂  (rad/R) 
no comparison is given. 

5 
Coefficient of Variation (C.V.) 

Standard error 
average energy deposited 

x 100. 
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Table C-16. Tissue-Air Ratio Comparison, 
Five-Year-Old Phantom Abdomen Examination 

(Left Lateral View, 100 kVcp, 152 mAs, FSD = 101.6 cm) 

ORGAN 
C.V.* T.A.R. 

(rad/R) (%) 
T.A.R. + 2 C.V. T.A.R. - 2 C.V. 
up limit (rad/R) low limit (rad/R) 

Brain 
Calculation 

Measurement 

Thyroid 
Calculation 

Measurement 0.0023 7.82 0.0027 0.0020 

Thymus 
Calculation 0.0143 27.93 0.0227 

Measurement 0.0121 7.00 0.0139 

0.0063 

0.0105 

Ovaries 
Calculation 0.5473 19.18 0.7572 

Measurement 0.3897 7.67 0.4495 

0.3374 

0.3299 

Testes 
Calculation 0.1757 31.09 0.2850 

Measurement 0.2065 4.73 0.2245 

0.0665 

0.1! 

Red Marrow Calculation 0.0064 
of L. Arm 

23.02 0.0093 

Measurement 0.0056 5.30 0.0062 

0.0035 

0.0050 

Red Marrow Calculation 0,0084 
of R. Arm 

26.57 0.0128 

Measurement 0.0013 6.60 0.0147 

0.0039 

0.0013 

Red Marrow Calculation 0.0014 47.86 0.0027 
of Spine 
(up) Measurement 0.0010 15.61 0.0014 

0.0000 

0.0007 

Red Marrow Calculation 0.0711 4.10 0.0769 
of Spine 
(med) Measurement 0.0809 9.54 0.9634 

0.0652 

0.0655 

Red Marrow Calculation 0.2304 3.61 0.2471 
of Spine 
(low) Measurement 0.2389 4.37 0.2598 

0.2138 

0.2180 

Red Marrow Calculation 0.3415 
of Pelvis 

15.50 0.4474 

Measurement 0.3011 3.53 0.3224 

0.2356 

0.2798 

Red Marrow Calculation 0.0481 
of L. Leg 

4.84 0.0528 

Measurement 0.0471 11.55 0.0580 

0.0435 

0.0362 

Red Marrow Calculation 0.0156 
of R. Leg — 

8.83 0.0183 

Measurement 0.0225 15.13 0.0293 

0.0128 

0.0157 

Red Marrow Calculation 0.1654 1.19 
Total Body 

0.1693 

Measurement 0.1898 8.32 0.2214 

0.1615 

0.1582 

Tissue-Air Ratio (T.A.R.) is the average absorbed dose to the organ of 
interest (rad) per unit exposure (R, free-in-air) in the center o£ beam at the 
surface of body. For a C.V. greater than 50% or a T.A.R. less than 10 ̂  (rad/R) 
no comparison is given. 

Coefficient of Variation (C.V.) = 
Standard error 

average energy deposited 
x 100. 
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