
June 28, 1993

THE SIMPLE VIRTUAL
ENVIRONMENT LIBRARY

User’s Guide

Version 1.2

Jouke C. Verlinden, Drew Kessler, Larry Hodges

{jouke, drew, hodges}@cc.gatech.edu

Graphics, Visualization and Usability Center,

Georgia Institute of Technology, USA.

ABSTRACT
TheSimple Virtual Environments C library (SVE) provides basic functions to create
virtual reality applications on Silicon Graphics workstations, including load/save/
render routines of (hierarchical grouped) objects and an event-callback mechanism.
It also provides several default callback routines to minimize the programming
effort needed for an average VR application (like walkthroughs). The functionality
of the current version is rather moderate, but is easy to use and extendable to
personal needs.

2

June 28, 1993

Table of Contents
ABSTRACT ..1
1. INTRODUCTION: ...4
1.1.Example Application ..4
1.2.On-line Help ...7
2. SVE BASICS ..7
2.1.Initialization of the Application. ...7
2.1.1.Loading an Environment. ...8
2.2.The Interaction Loop. ...9
2.2.1.Input Handlers ...10
2.2.2.Frame Drawing Routines ..11
2.3.Shutting Down. ...11
2.4.Summary and Another Example ...11
3. NUTS AND BOLTS. ..12
3.1.State Structure/info. ..12
3.2.More About Events & Callback Routines ..13
3.2.1.Events ..13
3.2.2.Event callback routines ...14
3.2.3.Frame-callback routines ..15
3.3.Objects ..17
3.3.1.Loading and saving objects ...17
3.3.2.Primitives classes ..18
3.3.3.Data structure ..19
3.3.4.Rendering ..21
3.4.Using Input Devices ..23
3.4.1.Cursor and HMD objects ..23
3.4.2.Audio support ...27
3.4.3.Spatial audio support ..27
3.5.Glove handling ..27
3.6.Using the Reality Engine -- Networking ..30
3.7.SVE Modules ..31
3.7.1.Overview ...31
3.7.2.Control Flow ...31
4. FUTURE DIRECTIONS ..32

APPENDICES ..33

APPENDIX A: Starter Kit ..33
...........Introduction ...33
...........General Overview ...33
...........An Example ..33
...........Second Example ...34
...........Hardware Set Up ...36
...........Where to Find Additional Help ..36

3

June 28, 1993

APPENDIX B: File Formats ...37
...........File conversion from Wavefront ...39
...........Formal Definition of File Format -- World Description File39
...........Formal Definition of File Format -- Object Description File41

APPENDIX C: Reference Manual ...45
1. SVE Data Structures ...45
1.1.State information ...45
1.2.SVE_objectList ...47
1.3.SVE_object ...48
1.4.SVE_primitiveList ..51
1.5.SVE_primitive ..51
1.6.SVE_boundaries ...52
1.7.SVE_gloveData ..53
1.8.SVE_gestureList ...54
1.9.SVE_gesture ...54
2. SVE Function Reference ..54
2.1.Main SVE loop ...54
2.2.World/object utilities ..55
2.2.1.Load/Save ...55
2.2.2.Information ...56
2.2.3.Manipulation ...57
2.3.Callback utilities ...59
2.3.1.Event callbacks ...59
2.3.2.Frame callback ..60
2.4.General utilities ...60
2.4.1.State functions ...60
2.4.2.Matrix functions ..60
2.5.Cursor utilities ...61
2.5.1.Cursor Information ...61
2.5.2.HMD Information ...62
2.5.3.Glove utilities ..62
2.6.Spatial sound utilities ..63

SVE Function Index ..65

SVE Data Types & Fields Index ...66

4

June 28, 1993

1. INTRODUCTION:
We, at the Graphics, Visualization and Usability center, have recently purchased special hardware to build
a general-purpose virtual reality platform. Current equipment includes a Silicon Graphics Indigo Elan, a
Silicon Graphics Reality Engine, a Virtual Research Helmet Mounted Display, a dual-receiver Ascension
Bird 3D tracking system and a Virtual Research Cyberglove. Although it is possible to write virtual reality
applications solely using the existing Silicon Graphics libraries and the examples of the cyberglove
software, we felt the need for a comprehensive and small VR-library; our experience with similar Virtual
Reality systems (Jouke at Delft, Drew at the University of Virginia) was that most applications use the
same routines to render objects, to load and save worlds etc. Instead of cut-copying all the time, we wanted
to have a kernel on top of the existing libraries.

We started this project in November 4th, 1992. Our objective was to create a library that provides easy
mechanisms to create virtual environments and has sufficient flexibility to implement non-trivial
applications. Everyone is encouraged to use the library, to give us feedback, and even to make
modifications. We tried to make the system as device-independent as possible, it should be easy to add
other tracker systems etc. And if no special devices are available, the keyboard and mouse are used to
interact with the environment. The world/object ASCII file-formats allow easy conversion from/to
wavefront, rend386, CADKEY and other polygon-based Virtual Reality libraries. We encourage you all to
write such convertors and to make these publicly available. A major drawback on compatibility is the
dependence on the Silicon Graphics graphics language (gl) to render the virtual scenes. However, Silicon
Graphics has announced OpenGL to be available this year, enabling Silicon Graphics applications to run
on SUN/HP/DEC workstations and PC’s with Windows/NT.

This document is intended to be a comprehensive description of the SVE system. If you wish to quickly get
your hands “dirty”, we suggest that you begin with the SVE Starter Kit, which can be found as an
independent file, Starter.fm, or in Appendix A (page 33) of this document.

1.1. Example Application

Before discussing the SVE-basics, we present you a simple application:

Source i: “hello world” example
/* example1 (sve module)

reads an object file and its primitives and displays it in a window
on the bottom left corner of the screen. The standard SVE key commands
are recognized: ’q’ to quit’; ’t’ to switch to NTSC; ’x’, ’X’, ’y’, ’Y’, ’z’,
and ’Z’ to move around in the world.

*/

#include “sve.h”

main(int argc, char *argv[])
{

SVE_config config = SVE_NORMAL; /* No trackers, gloves, or other extras */

printf(“Starting application\n”);
SVE_init(“Example1 (sve)”, config);

if(!SVE_loadWorld(“hello_world.world”))
{

printf(“error occurred during SVE_loadWorld, exiting \n”);
SVE_done(); /* stop process */

} /* if */

printf(“Beginning event loop\n”);

5

June 28, 1993

SVE_beginEventLoop();

printf(“Done -- Have a nice day.\n”);
SVE_done();

}

The program uses only four SVE-functions:SVE_init, SVE_loadWorld, SVE_beginEventLoop and
SVE_done. It allows you to “walk around” a cube, with “hello world” written on it. Neither the trackers nor
the glove are used. The standard SVE key commands are recognized by this application. Just move the
cursor over the SVE window to execute any of the commands given in the table below.

When you run this application (by typing “example1”), you should see this on the bottom left corner of
your screen.

Figure 1. snapshot of the first example.

The filehello_world.world defines the world by summing up all the objects that are used in the example:

Source ii: the world description filehello_world.world
Simple Virtual Object File Format version 1.0
number of objects: 2

Table 1: Standard SVE Key/Mouse Commands

Key/Mouse Input Command

q Quit application.

t Toggle between NTSC (Head mounted display) and display on the monitor.

x and X, or left/right arrow keys Move viewpoint right and left.

y and Y, or up/down arrow keys Move viewpoint up and down.

z and Z Move viewpoint backword and forward.

Left mouse button and drag. Rotate the viewpoint

6

June 28, 1993

object name: meadow
primitives file: plane.object
transformation matrix:
1 0 0 0
0 1 0 0
0 0 1 0
0 -1 -1 1
other attributes: 0
number of children: 0

object name: cube_text
primitives file: hello_world.object
transformation matrix:
1 0 0 0
0 1.1 0 0
0 0 1 0
-0.5 0.5 -5 1
other attributes: 0
number of children: 0

The geometry of the objects is defined in separate files, so objects can be used more than once:

Source iii: the object geometry filehello_world.object
Simple Virtual Primitive File Format version 1.0
number of components: 2

component 1 type: polyhedron
Data of component 1:
of vertices:
8
vertices: x y z
0 0 0
0 1.0 0
1.6 1.0 0
1.6 0 0
0 0 0.35
0 1.0 0.35
1.6 1.0 0.35
1.6 0 0.35
of faces:
6
faces: R G B #_of_vertices v1 v2 v3 ...
30 0 0 4 0 1 2 3
30 0 0 4 0 1 5 4
30 0 0 4 1 2 6 5
30 0 0 4 2 3 7 6
30 0 0 4 3 0 4 7
30 0 0 4 4 5 6 7

component 2 type: text
Data of component 2:
transformation matrix:
0.4 0 0 0
0 0.4 0 0
0 0 0.3 0
0.1 0.6 0.36 1
of lines:
1
Hello World!

7

June 28, 1993

1.2. On-line Help

On-line help is available through man pages that can be found in~vrgroup/sve/v1.2/man. If this directory is
included in your MANPATH environment variable, you will be able to obtain a man page on the SVE
functions with theman utility.

2. SVE BASICS
The control flow of a virtual environment, actually any interactive application can be characterized by the
following diagram:

Figure 2. Global control flow.

This flow is used as a skeleton in our library: the library provides functions for initializing the VR
application, processing the input, giving feedback, and to shut down the application. We’ll now discuss
each of these parts.

2.1. Initialization of the Application.

void SVE_init(char * programname, SVE_config configuration)

This function should be the first SVE-call, it allocates and initializes several data structures and opens a
graphics window in the lower left corner of the screen1. The program name will appear in the title bar of
that window, the configuration parameter specifies which graphics modes and hardware devices are used.
Each additional input/output device is represented by an integer (defined insve.h), the combination of
multiple devices and preferences is defined by combining the integers with the binary “or” operation.
SVE_init will call the initialization routines of the hardware devices, and will set callback-routines that
define the interaction to a default use of the configuration. At the moment, we have the following
configurations:

• SVE_NORMAL: The standard SGI configuration (represented byNULL). It will not use special hardware (as the
glove or the tracker system), just the regular input devices (keyboard/mouse etc.).

• SVE_HMD: Use one bird tracker to change the viewpoint, the data of the two trackers will be saved in the global
state-structureSVE_worldState (The Nuts and Bolts chapter, page 12, for a description of this data structure).

• SVE_GLOVE: the CyberGlove will be used, a graphical object will show the movements of the glove in the virtual
screen and simple gesture recognizing can be enabled.

• SVE_GOURAUD: the world will be rendered with gouraud shading (flat shading is used by default, see gl manual
chapter 9-4).

1. for NTSC-conversion with help of the VIDI/O box

init

interaction
loop

shutdown

8

June 28, 1993

• SVE_TEXTURES: textured polygons will be rendered with their textures (to insure a reasonable performance this
flag should only be set when running on the Reality Engine, these textured polygons are rendered as ordinary ones
by default).

• SVE_NETWORKSLAVE: expects input events to come from a remote machine. When the flagSVE_HMD is also set,
both tracker matrices will be retrieved from the remote site as well (typically used to link the Bird tracking system
at buckhead.gvu.gatech.edu with the Reality Engine). This requires a tracker/event server to run on another ma-
chine (see the Nuts and Bolts Chapter for more about this configuration).

• SVE_SPATIALSOUND: will initialize a network link with the spatialization host (nagel.cc.gatech.edu), and enables
the functionSVE_attachSoundToObject(object). This facility is only in its preliminary stage1

New configurations should be added when other devices and graphics modes become available. It is
possible to have different sets of interaction with one identical hardware configuration, e.g. there are
several ways to navigate with the 3D tracker devices (flying in the direction you look at, flying in the
direction you point at with the cursor, the “magic carpet” metaphor etc.). In such cases, new configurations
should be included to select the appropriate callback sets.

2.1.1 Loading an Environment.

boolean SVE_loadWorld(filename)

This function loads objects from a file into an internal data structure. This world will be rendered
automatically during the interaction loop. The function returns FALSE when an error during loading
occurs. The file formats are described in appendix B, page 37. There are two distinctive file types: a world
description file and object files. For a particular world (which defines everything that the SVE system will
render), there is one world description file and many object files. The world description file defines a list of
objects (and their hierarchy, which objects are children of other objects, etc.), their position in the world,
and which object file to use for each object. The object file defines an object, which consists of many
different types of primitives (polygons, lines, text, textured polygons, etc.).

Figure 3. SVE data files

1. See “A First Experience with Spatial Audio in a Virtual Environment” (1993), David A. Burgess and Jouke C. Verlin-
den, Soon to be a GVU technical report.

Simple Virtual Object File Format version 1.0
number of objects: 2
object name: meadow
primitives file: plane.object
transformation matrix:
1 0 0 0
0 1 0 0
0 0 1 0
0 -1 -1 1
other attributes: 0
number of children: 0

object name: cube_text
primitives file: hello_world.object
transformation matrix:
1 0 0 0
0 1.1 0 0
0 0 1 0
-0.5 0.5 -5 1
other attributes: 0
number of children: 0

Simple Virtual Primitive File Format version 1.0
number of components: 2

component 1 type: polyhedron
Data of component 1:
of vertices:
8
vertices: x y z
0 0 0
0 1.0 0
1.6 1.0 0
1.6 0 0
0 0 0.35
0 1.0 0.35
1.6 1.0 0.35
1.6 0 0.35
of faces:
6
faces: R G B #_of_vertices v1 v2 v3 ...
30 0 0 4 0 1 2 3
30 0 0 4 0 1 5 4
30 0 0 4 1 2 6 5
30 0 0 4 2 3 7 6
30 0 0 4 3 0 4 7
30 0 0 4 4 5 6 7

component 2 type: text
Data of component 2:
transformation matrix:
0.4 0 0 0
0 0.4 0 0
0 0 0.3 0
0.1 0.6 0.36 1
of lines:
1
Hello World!

Simple Virtual Primitive File Format version 1.0
number of components: 1

component 1 type: polyhedron
Data of component 1:
of vertices:
4
vertices: x y z
-100 0 -300
-100 0 100
300 0 100
300 0 -300
of faces:
1
faces: R G B #_of_vertices v1 v2 v3 ...
10 70 0 4 0 1 2 3

World file (hello_world.world) Object files

plane.object hello_world.object

9

June 28, 1993

2.2. The Interaction Loop.

If we look a bit more closely on the interaction loop, we get:

Figure 4.The interaction loop.

The polling of the input devices and the rendering of the world is done by the system. Functionality can be
added both to the input handling and the rendering procedures. This loop is started by calling
SVE_beginEventLoop(), SVE_stopEventLoop() stops it.

Poll input and process events

Render the world

Stop interaction loop

10

June 28, 1993

2.2.1 Input Handlers

The data of the input devices is automatically put in a globalSVE_stateStruct data structure. After this, the
processing of the events is done by a notifier-callback mechanism (used on most of the 2D direct
manipulation systems like SUNVIEW, etc.): the system notifies the application when an event occurs by
calling an appropriate callback routine.

Figure 5.Concepts of a notifier mechanism and the event lookup table.

Standard gl-events and additional ones (e.g. gestures) each have their own callback routines, selected by
their event-identifiers (an integer constant). Callback procedures must have the prototypevoid
function(SVE_state state), they are set with the function SVE_registerCallback(event, function), and
disabled by callingSVE_removeCallback(event). In the SVE-library, each event has only one callback
routine, thus registering a new callback routine replaces an older one. As already mentioned, every event
has its “default” callback routine depending on the configuration. No callback routines have to be
registered if default behavior is sufficient. Default callback routines are disabled and enabled by
SVE_disableDefaultCallback(event) andSVE_enableDefaultCallback(event) respectively. It is possible to
use both user-defined and default callback routines for one event (e.g. to add keyboard controls). In that
case the user-defined routine will be called prior to the default one.

EVENT FUNCTION POINTER

Keyboard print_key

Left mousebutton Shoot_bullet

Escape Key exit_app

print_key shoot_bullet exit_app

...

...

event lookup table

wait for an event

lookup event function

call event function

repeat

11

June 28, 1993

2.2.2 Frame Drawing Routines

During the rendering process, the screen is cleared, the camera viewpoint is set, and the world is drawn
(more will be said about this in the Nuts and Bolts section on Objects, page 17). Additional visual effects
and other user-defined rendering functions can be added to the drawing process by registering a frame-
callback routine. This routine will be called each frame, just before the world is rendered. and is set with
SVE_setFrameCa l lback (func t ion). On ly one ca l lback func t ion can be se t and
SVE_setFrameCallback(NULL) will remove the entry.

2.3. Shutting Down.

void SVE_done(void)

This function deallocates the data structures and shuts down the I/O devices. It will automatically exit the
application itself callingexit(0), and thus should be the very last function call in the main routine.

2.4. Summary and Another Example

In short, SVE provides functions to initialize devices and rendering modes, functions to regulate the events
and one function to stop the application. The interaction mechanism is based on event-callback functions,
and objects are kept in an internal database.

The total control flow of a typical SVE-based application can be described as:

Figure 6.The control flow of the vr-application.

Here is another simple application, that includes a user-defined callback procedure:

Source iv: example application 2
/* example2 (sve module)

starts up with the bird trackers if 1st parameter is “t”,
reads a world and registers an event-callback routine.
The standard SVE key commands are recognized: ’q’ for quit; ’t’ to switch
to NTSC; ’x’, ’X’, ’y’, ’Y’, ’z’, and ’Z’ to move around the world.

*/

#include “sve.h”

void printKey(SVE_state state) /* callback routine for KEYBD-events */
{

User Level

System Level

prologue

SVE_init &
SVE_loadWorld SVE_beginEventLoop

callback routines epilogue

SVE_done

12

June 28, 1993

printf(“Key %c pressed\n”,state->eventVal);
} /* printKey */

main(int argc, char *argv[])
{

SVE_config config = SVE_NORMAL; /* Default configuration. No trackers. */

printf(“Starting application\n”);

/* Check command line for ’t’ */
if ((argc > 1) && (strcmp(argv[1],”t”) == 0))
config = config | SVE_HMD; /* Add trackers to SVE configuration. */

SVE_init(“Example2 (sve)”, config);

if(!SVE_loadWorld(“hello_world.world”))
{

printf(“error occurred during SVE_loadWorld, exiting \n”);
SVE_done();

} /* if */

printf(“Registering an input callback\n”);
SVE_registerCallback(KEYBD, printKey);

printf(“Beginning event loop\n”);
SVE_beginEventLoop();

printf(“Done -- Have a nice day.\n”);
SVE_done();

}

This application presents the same virtual environment as the first one and also has the same controls to
navigate. If the application is started with a ‘t’ as parameter, the bird tracker system will be used and the
viewpoint position will be updated with the position and orientation of bird receiver 1. This is how the
command line would look to do this:

example2 t

Furthermore, one callback function is registered for KEYBD-events, which echoes the keys pressed to
stdout.

Apart from the basic functions already presented in this section, the library contains a lot of useful routines
to manage the virtual environment, The next chapter will present a more detailed description of the SVE
functions and data structures.

3. NUTS AND BOLTS.
This chapter presents the SVE library in detail including the state model, event handling and object
definition. The sections should provide sufficient information for being able to read, write and understand
SVE-based applications.

3.1. State Structure/info.

During the execution of an application, the library keeps its variables in one large C-structure
SVE_worldState. Every piece of information about the current state is contained in it, including the current
configuration and samples of the hardware, rendering modes, the object database etc.

13

June 28, 1993

typedef struct SVE_stateStruct {
char *programName;/* a string for window title */
SVE_objectList * objectTree ;/* World database */
Matrix viewingMatrix;/* the viewpoint orientation */
Matrix hmd; /* the original non-inverted hmd sample */
SVE_gloveData *glove; /* glove related samples */
SVE_point origin ; /* tracker to world coordinates vector */
SVE_eventType event; /* a gl event */
short eventVal;/* a gl event value */
boolean ntscOn;/* internal value for video mode */
int config;/* the config field */
float flightSpeed ;/* sometimes used */
boolean checkForGesture;/* gesture recognition is called if TRUE */
SVE_gestureList *gestures;/* list with gestures for recognition */

} SVE_stateStruct;

typedef SVE_stateStruct *SVE_state;

Most fields in the state structure are intended to be a source of information (as the tracker information).
The fields that are printed in italics also allow altering (Appendix C, page 45, presents a detailed
description of this structure.) A pointer to this data structure is passed to the callback routines so that each
can use and change the current state of the application.

3.2. More About Events & Callback Routines

Callback functions for event handling and drawing look similar, their prototypes are identical and each
callback function has default and user defined classes. Yet their function is different, as can be predicted
from this flow chart of the event loop:

Figure 7. The event loop.

This section will focus on the use of events and the separation between input handling and drawing. A list
of the default routines will be given, and yet another example application will illustrate the concepts.

3.2.1 Events

During each frame, the SVE event loop checks the gl event-queue. These events are read from the queue
and put into theSVE_worldState fieldsevent andeventVal (the first corresponds with the device type, the

event queuing

user-defined event

default event handling

clear screen

user-defined rendering

default rendering

handling

14

June 28, 1993

second with the value), and the appropriate callback routines are called. More information about events
and gl devices (including the SpaceBall and the Buttons & Dials boxes) can be found in chapter five of the
gl-manual. Furthermore, the include file/usr/include/gl/device.h has a full list of device constants. Only a
few gl events are queued by default: KEYBD, LEFTMOUSE, MIDDLEMOUSE, RIGHTMOUSE,
ESCKEY, BUT72 (left arrow), BUT73 (down arrow), BUT79 (right arrow) and BUT80 (up arrow). More
events will be queued if the functionqdevice(deviceType) is called before entering the event loop. For
example, separate keys can be queued by opening devices for each of these:

qdevice(F1KEY);
SVE_registerCallback(F1KEY, help);

qdevice(HOMEKEY);
SVE_registerCallback(HOMEKEY, reset_position);

Just as mouse events, two events will be generated when these keys are entered: one for pressing (eventVal
= 1) and one for releasing (eventVal = 0):

void help(SVE_state state)
{

if(state->eventVal == 1)
showHelp(); /* show helpmessage as long as the F1 key is pressed */

else
hideHelp(); /* the key is released, hide the message */

}

We have added some other events along with the standard gl ones. The most substantial additions are the
“Mouse-drag” events, that are generated while a mousebutton is held down: LEFTMOUSEDRAG,
MIDDLEMOUSEDRAG and RIGHTMOUSEDRAG.

Besides the elegancy of defining the user interface with events and callback procedures, the mechanism
also proves to be a very effective message passer. Instead of directly calling other functions, subroutines
can generate their own events with the standard gl functionqenter(DeviceType, value).

EXPERT INFORMATION:

Events are internally represented as numbers (gl manual chapter 5), the callback function-pointers are
stored in arrays that use these events as indices. If you want to add other events to the system be aware that
you may have to change the constant N_EVENTS (in events.c), which determines the size of these arrays
(now set to 700). The numbers between 600 and 699 are free for use.

3.2.2 Event callback routines

As already mentioned in the first chapter, all callback procedures have the formatvoid function(SVE_state
state). That means that these procedures cannot return values, but are able to change the current state
directly.

The initial callSVE_init() will reset the event-callback routines depending on the configuration field in the
state. The user-defined callback procedures are all linked to NULL, whereas the default callback
procedures are set as displayed in the following table:

Table 2: Default event-callback procedures.

EVENT SVE_NORMAL SVE_HMD

KEYBD handle_key handle_key

REDRAW redraw redraw

ESCKEY stop_app stop_app

15

June 28, 1993

Remark: Other configurations, such asSVE_GLOVE, SVE_GOURAUD andSVE_TEXTURES, have no
effect on the interaction.

The default callback routines perform the following tasks:

handle_key -- Pressing ‘x’, ‘X’, ‘y’, ‘Y’, ‘z’ and ‘Z’ will change the world origin, ‘t’ toggles the video
mode (normal <-> NTSC), ‘f’ fixes the camera position and ‘q’ quits the application.

start_orientation_change -- when the left mousebutton is pressed, this routine will link an event-callback
routine to the LEFTMOUSEDRAG-event, that will change the camera orientation.

redraw -- This function calls reshapeviewport() which sets the viewport to the dimensions of the current
graphics window (see the gl windowing and font library programming guide, section 1.3).

stop_app -- quits the event loop.

move_left, move_down, move_right andmove_up -- will change the world origin relative to the current
view.

reset_speed -- Sets the flying speed to a predefined value.

fly -- moves the origin, its direction is determined by the orientation of the current view, the speed by its
initial value and an acceleration.

decelerate -- decreases the flying speed.

accelerate -- increases the flying speed.

EXPERT INFORMATION

The default callback routines are defined indefaultcallbacks.c (and their prototypes insve_local.h), you
can make your own ones and add these to the source. To link these new default routines during
initialization, the functionSVE_resetCallbacks() in event.c must be modified.

3.2.3 Frame-callback routines

Keep in mind that the event-callback procedures cannot draw directly, as the screen will be cleared just
after processing the events; if user-defined drawing functions are needed, you must use the frame-callback
function. This function must have exactly the same prototype format as the event-callback functions,void

LEFTMOUSE start_orientation_change reset_speed

LEFTMOUSEDRAG none fly

MIDDLEMOUSE none decelerate

MIDDLEMOUSEDRAG none none

RIGHTMOUSE none accelerate

RIGHMOUSEDRAG none none

BUT72 move_left move_left

BUT73 move_down move_down

BUT79 move_right move_right

BUT80 move_up move_up

Table 2: Default event-callback procedures.

EVENT SVE_NORMAL SVE_HMD

16

June 28, 1993

function(SVE_state state), and is called every frame update just after the screen is cleared. Non-event
based processes such as animations can only be updated with this frame-callback mechanism. For both
event and frame callback routines, dynamic linking can be used to define complex interaction:

Source v: example application 3
/* example3 (sve module)

Starts up with the bird trackers if 1st parameter is “t”,
reads a world and registers an event-callback and a
frame-callback routine.
All of the standard SVE keys commands are recognized.
In addition, the ’r’ key rotates the cube to the right, the ’l’ key
rotates the cube to the left.

*/

#include “sve.h”

/* global variable object */
SVE_object globalObject;

/* two frame-callback routines, are invoked by pressing keys */
void rotate_right(SVE_state state)
{

pushmatrix();
loadmatrix(globalObject->position); /* put object matrix on the stack */
rot(3, ’y’); /* apply rotation */
getmatrix(globalObject->position); /* update the object matrix */
popmatrix();

}

void rotate_left(SVE_state state)
{

pushmatrix();
loadmatrix(globalObject->position); /* put object matrix on the stack */
rot(-3, ’y’); /* apply rotation */
getmatrix(globalObject->position); /* update the object matrix */
popmatrix();

}

/* callback routine for KEYBD-events */
void handleKey(SVE_state state)
{

switch(state->eventVal) {
case ’r’: SVE_setFrameCallback(rotate_right);

break;
case ’l’: SVE_setFrameCallback(rotate_left);

break;
case ’ ’: SVE_setFrameCallback(NULL);

} /* switch */
} /* printKey */

main(int argc, char *argv[])
{

SVE config config = SVE_NORMAL;

printf(“Starting application\n”);

17

June 28, 1993

if ((argc > 1) && (strcmp(argv[1],”t”) == 0))
config = config | SVE_HMD;

SVE_init(“Example3 (sve)”, config);

if(!SVE_loadWorld(“hello_world.world”))
{

printf(“error occurred during SVE_loadWorld, exiting \n”);
SVE_done();

} /* if */

globalObject = SVE_findWorldObject(“cube_text”);
printf(“Registering an input callback\n”);
SVE_registerCallback(KEYBD, handleKey);

printf(“Beginning event loop\n”);
SVE_beginEventLoop();

printf(“Done -- Have a nice day.\n”);
SVE_done();

}

This application is almost identical to the second example, the difference is that the cube will start to rotate
when the ‘l’ or the ‘r’ key are pressed (‘l’ - left turns, ‘r’ - right). This rotation is stopped by entering a
space.

3.3. Objects

One of the most important aspects of the library is the graphical representation of the virtual environment.
An object database is managed by the library, and has functions to load, save and render itself. In this
section, we will begin with discussing the high-level programming interface to this database (loading and
saving the objects). After mentioning the current graphical primitives, we will focus on the object data
structure and on manipulation of the virtual environment. Finally, object drawing routines and rendering
modes are discussed.

3.3.1 Loading and saving objects

The object database is loaded by calling the functionSVE_loadWorld(<filename>). This function first tries
to open the file in the current directory, if this file doesn’t exist it will search in the standard object-
directory1 as defined insve.h. It will return the boolean FALSE if an error occurs. The ASCII files (see
appendix B) are parsed and the world database is built on the fly. Although the parsing routines give clear
warnings when syntax errors occur, some errors totally confuse the algorithm and generate segmentation
faults. It is good practice to copy example files and to modify them rather than to create these from scratch.

The functionSVE_saveWorld(<filename>) does the opposite. It saves the database in a worldfile, and the
objects that are changed during execution of the program.2 in their object files. Caution has to be taken, as
existing files are replaced. In order to prevent losing well designed worlds and objects, copies should be
preserved in a “save” directory.

The functionSVE_loadWorld() replaces the existing world, to merge the worldfile with the existing one,
you can you the callSVE_addObjects() (look in the appendix C for a complete description).

Furthermore, we have simple conversion routines to convert Wavefront objects to SVE-readable files
(appendix B shows how).

1. Currently~vrgroup/sve/v1.2/objects
2. The library does not detect these changes by itself, it scans the object fieldprimitivesChanged. Thus, the programmer
is responsible for setting this boolean.

18

June 28, 1993

3.3.2 Primitives classes

Currently, three classes of primitives are supported: flat shaded polyhedrons, polylines and texts. Some of
these were already used in the example files. Here is another example object file that incorporates all three:

Source vi: all_primitives.object
Simple Virtual Primitive File Format version 1.0
number of components: 4

component 1 type: polyhedron
Data of component 1:
of vertices:
8
vertices: x y z
0 0 0
0 1.0 0
1.6 1.0 0
1.6 0 0
0 0 0.35
0 1.0 0.35
1.6 1.0 0.35
1.6 0 0.35
of faces:
6
faces: R G B #_of_vertices v1 v2 v3 ...
30 0 0 4 0 1 2 3
10 0 0 4 0 1 5 4
20 0 0 4 1 2 6 5
22 0 0 4 2 3 7 6
35 0 0 4 3 0 4 7
10 0 0 4 4 5 6 7

component 2 type: polyline
Data of component 2:
of vertices:
8
vertices: x y z
0 -0.1 0
0 -1 0
1.6 -1.0 0
1.6 -0.1 0
0 -0.1 0.35
0 -1.0 0.35
1.6 -1.0 0.35
1.6 -0.1 0.35
of polylines:
6
polylines: R G B #_of_vertices v1 v2 v3 ...
100 100 100 4 0 1 2 3
100 100 100 4 0 1 5 4
100 100 100 4 1 2 6 5
100 100 100 4 2 3 7 6
100 100 100 4 3 0 4 7
100 100 100 4 4 5 6 7

component 3 type: text
Data of component 3:
transformation matrix:
0.4 0 0 0

19

June 28, 1993

0 0.40 0
0 0 0.3 0
0.1 1.50.361
of lines:
1
this is text

component 4 type: textured_polyhedron
Data of component 4:
image file: testimage.rgb
repeat texture: FALSE
blending: TRUE
of vertices:
4
vertices: x y z
-0.3 -1.2 -0.0 0 0
-0.3 -0.2 -0.0 0 1
 0.3 -0.2 -0.0 1 1
 0.3 -1.2 -0.0 1 0
of faces:
1
faces: R G B #_of_vertices v1 v2 v3 ...
100 100 100 4 0 1 2 3

Figure 8. Snapshot of this object.

The appendix gives detailed information on file formats and data structures of these primitive types.

3.3.3 Data structure

In short, the environment is stored in a tree, each node representing an object. That means that the objects
can be grouped hierarchically, for example, a table can be represented as a tabletop (parent) that has legs at
each corner as children.

Figure 9. Hierarchical grouping.

Leg1 Leg2

Leg3 Leg4

Tabletop
Tabletop

Leg1 Leg2 Leg3 Leg4

20

June 28, 1993

This is the C-structure that defines an object:

typedef struct SVE_objectStruct {
 SVE_object parent;
 char *name;
 SVE_primitiveList *primitives;
 Matrix position;
 float color[4];/* red, green, blue and alpha (latter not used currently) */
 boolean visible, hascolor, selectable;
 boolean hasBoundaries, hasSphere; /* old vars (will be removed) */
 float radius; /* for boundary spheres */
 SVE_boundaries *boundaries;
 boolean hasVisibleSphere ; /* new vars for handling */
 float visibleSphere; /* level of detail */
 boolean primitivesChanged;
 char *primitivesFilename;
 Object glID;
 boolean needsUpdating;
/* the following attributes are specially added for hypertexts etc. */
 SVE_primitive *label; /* text-label for an object */
 int labelDrawMethod;/* attr. for pumping up performance in j-render */
 char *text;
 char *textfile;
 boolean textChanged;
 long class; /* classification of objects */
 boolean renderParentLink; /* currently not used */
 SVE_objectList *children;
} SVE_objectStruct;

(the complete list of data structures is presented in Appendix C, page 45)

The fieldprimitives points to a linked list of primitive graphical representations (polyhedrons, lines, texts
etc.) The object scale, position and orientation are determined by its transformation matrixposition.
Transformation matrices allow scaling, rotation, translation and other linear transformations (for
information on matrices, we refer to a standard computer graphics book and section 7.4 of the gl-manual).
Matrices are accumulated for hierarchal groups, so when the matrix of an object is modified, the same
modification will be applied to all of its progeny, without updating their matrices. For example, if the
tabletop object is rotated, its legs will rotate as well.

Figure 10. The Propagation of transformations.

The library contains several routines to interact with the world and object structures, including:
SVE_findWorldObject(), SVE_getWorldMatrix(), SVE_printObjectList(),SVE_createEmptyObject() and
SVE_addChildToObject(). They are listed in appendix C, section 2.2, page 55 (world/object utilities).

30̊ rotation

of object Tabletop

21

June 28, 1993

3.3.4 Rendering

Each primitive has its own rendering method, defined in the module obj-render.c. This is optimized using
the gl object drawing mechanism, see chapter 16 of the gl manual. This means that the database is defined
once within gl and from then on only ‘called’. If the geometry of an object is changed the object needs to
be updated in the gl-database. The internal rendering routine will automatically take care of this, provided
that the programmer changes the object fieldneedsUpdating to TRUE whenever the geometry is changed.
Object matrices are automatically updated each frame. If the object has a color assigned, that color will
override primitives’ colors, and its children’s colors.

We now discuss some of the peculiarities of these rendering routines. The face normals for flat-shaded
polygons are calculated using the right-handed coordinate system, so the direction of the normal depends
on the order of the vertices within the polygon:

Figure 11. The order of the vertices and normals of the polygon.

As standard gl doesn’t provide true three-dimensional texts, text rendering is done by the module3Dtext.c.
This module draws the characters as white polylines, and incorporates a simple level of detail
management; because text rendering eats up performance, full text is only rendered when the viewpoint is
close. From farther away only dashes are presented and eventually even these disappear.

Figure 12. Texts with several levels of detail

Only an ambient light is used by default. Lights can be easily added to the environment using the standard
gl commandslmdef() andlmbind() (see chapter 9 of the gl manual). This will decrease rendering speed,
especially for big models (more that 10,000 polygons).

1

2

3

4

1

4

3

2

The normal points towards the reader The normal points into the screen/paper.

22

June 28, 1993

Source vii: example4
/* example4 (sve module)

Reads an object file and its primitives,
Adds a rotating light source to the scene.
The standard SVE key commands are recognized.

*/

#include <gl.h>
#include <gl/device.h>
#include “sve.h”

#define MY_LIGHT 1
#define MY_MATERIAL 2
#define MY_MODEL 3

/* defines a spotlight (page 9-16 of gl manual) */
float spotLight[] = {

LCOLOR,1.0 ,0.6 ,0.3,
POSITION,20.0,50.0,-60.0,0.0,
SPOTDIRECTION, -1.0, -0.4, 0.0,
LMNULL

};

float lmodel[] = {
ATTENUATION, 1, 0.4,
ATTENUATION2, 1.0,
AMBIENT, 0.4, 0.4, 0.4,
LOCALVIEWER, 0.0,
TWOSIDE, 0.0,
LMNULL

};

/* initializes the light and the lighting model */
void setLights(void)
{

/* define and bind the light, lighting model and material */
lmdef(DEFLIGHT, MY_LIGHT, 0, spotLight);
lmdef(DEFMATERIAL,MY_MATERIAL,0,NULL); /* default */
lmdef(DEFLMODEL,MY_MODEL,0,lmodel);

lmbind(LIGHT0, MY_LIGHT);
lmbind(MATERIAL,MY_MATERIAL);
lmbind(LMODEL,MY_MODEL);

}

/* rotates the light source each frame update */
void rotateLight(SVE_state state)
{
 static Matrix light={1,0,0,0,

0,1,0,0,
0,0,1,0,
0,0,0,1 };

pushmatrix();
loadmatrix(light);
rot(6, ‘y’);
rot(4, ‘x’);

23

June 28, 1993

lmbind(LIGHT0, MY_LIGHT);
getmatrix(light);
popmatrix();

}

main()
{

SVE_config config = SVE_NORMAL;

printf(“Starting application\n”);
SVE_init(“Example4 (sve)-- Light!!”, config);

setLights();
if(!SVE_loadWorld(“hello_world.world”))
{

printf(“error occurred during SVE_loadWorld, exiting \n”);
SVE_done(); /* stop process */

} /* if */

SVE_setFrameCallback(rotateLight);

SVE_setBackgroundColor(10, 10, 30);

printf(“Beginning event loop\n”);
SVE_beginEventLoop();

printf(“Done -- Have a nice day.\n”);
SVE_done();

}

As the Elan can render gouraud shaded polygons, our next step will be to incorporate these into the system.
Other possible extensions include: Phong-shaded polyhedrons, meshes, texture mapped polygons, multiple
textfonts, nurbs, spheres etc. All these types should have their own rendering algorithms inobj-render.c
and their own read/write functions inobj-files.c

3.4. Using Input Devices

3.4.1 Cursor and HMD objects

Both bird receivers have their shadow representation in the world tree:“SVE cursor” (receiver 2) and
“SVE HMD” (receiver 1). These objects are empty, their position matrix however is constantly updated
when the tracker system is active. They can be retrieved with the functionsSVE_getCursorObject() and
SVE_getHMDObject(), the matrices can be copied by callingSVE_getCursorPosition(matrix) and
SVE_getHMDPosition(matrix).

Objects can be moved along with the trackers by adding them as a child. For example, a cube is attached to
the first tracker (the HMD view) by:

SVE_object cube;
cube = SVE_findWorldObject(“cube”);

/* delete the old cube entry from the world tree */
SVE_removeObject(“cube”);

/* now add the object to the HMDObject */
SVE_addChildToObject(SVE_getHMDObject(), cube);

24

June 28, 1993

A permanent offset will occur, as the cube object is a child with a (predefined) transformation matrix.
When the glove is active, a complex group of objects that constitute the graphical appearance of a hand is
added to the“SVE cursor”; the next section describes how to work with the glove.

A more dynamic illustration of the use of the empty objects is showed in example 5:

Source viii: example of grabbing and releasing objects.
/* example5 (sve module)

This example demonstrates the use of object boundaries. The second cursor
(which is attached to the second tracker), is used as a three dimensional
cursor. When the left mouse button is pressed, the position of the cursor
is used to see if an object has been selected (the cursor is in the object).
While the mouse button is pressed, the selected object is linked to the
cursor as a child, and therefore the object follows the cursor. When the
mouse button is released, the object is linked back to the world in its
new position.

*/

#include <device.h>
#include <math.h>
#include “sve.h”

/* function prototype */
void release(SVE_state state);

/* global vars: */
SVE_object current_object, current_parent;

SVE_object testObject(SVE_object obj, Matrix m)
{

Matrix pos;
float distance;

if(obj->boundaries) {
if (obj->boundaries->hasSphere) {

SVE_getWorldMatrix(obj, pos);
pos[3][0] += obj->boundaries->sphereOrigin[0];
pos[3][1] += obj->boundaries->sphereOrigin[1];
pos[3][2] += obj->boundaries->sphereOrigin[2];

distance = SVE_getMatrixDist(pos, m);

if (distance < obj->boundaries->sphereRadius)
return(obj);

}
}

return(NULL);
}

SVE_object testObjectList(SVE_objectList *list, Matrix m)
{

SVE_objectList *objNode;
SVE_object object;

25

June 28, 1993

SVE_object result;

for (objNode = list; (objNode); objNode = objNode->next)
{

if ((strcmp(objNode->o->name, “SVE HMD”) != 0)
&& (strcmp(objNode->o->name, “SVE cursor”) != 0))

{
if (objNode->o->children != NULL)

if ((result = testObjectList(objNode->o->children, m)))
return(result);

if ((object = testObject(objNode->o, m)))
return(object);

}
}

return(NULL);
}

void grab(SVE_state state)
{

Matrix pos, pos1;
SVE_object object;
SVE_object pointer;
SVE_object cursor;
Matrix pointerPos;

if(state->eventVal) {
cursor = SVE_getCursorObject();
pointer = SVE_findObject(“pointer”, cursor->children);
SVE_getWorldMatrix(pointer, pointerPos);
object = testObjectList(state->objectTree, pointerPos);

if(object) {
SVE_changeText(pointer, “Grabbed”);
current_object = object;
current_parent = object->parent;

SVE_getWorldMatrix(object, pos);
SVE_getRelativeMatrix(pointerPos, pos, object->position);

if(current_parent) {
SVE_removeObject(object->name, &(current_parent->children));

}
else {

SVE_removeObject(object->name, &(state->objectTree));
}
SVE_addChildToObject(object, pointer);
SVE_registerCallback(LEFTMOUSE, release);

} /* if */
} /* if */

}

void release(SVE_state state)
{

Matrix pos1, pos2;
SVE_objectList objNode;
SVE_object pointer;

26

June 28, 1993

SVE_object cursor;

if(state->eventVal == 0)
{

cursor = SVE_getCursorObject();
pointer = SVE_findObject(“pointer”, cursor->children);
SVE_changeText(pointer, “<=>”);

if(!current_parent) {
/* object must be linked in state->objectTree */
SVE_getWorldMatrix(current_object, current_object->position);
SVE_removeObject(current_object->name, &(pointer->children));
SVE_addToObjectList(current_object, &(state->objectTree));
current_object->parent = NULL;

} else {
/* the object had a parent, put it back on its place */
SVE_getWorldMatrix(current_parent, pos1);
SVE_getWorldMatrix(current_object, pos2);
SVE_getRelativeMatrix(pos1, pos2, current_object->position);
SVE_removeObject(current_object->name, &(pointer->children));
SVE_addToObjectList(current_object, &(current_parent->children));
current_object->parent = current_parent;

} /* if */
current_object = NULL; /* reset globals */
current_parent = NULL;
SVE_registerCallback(LEFTMOUSE, grab);

} /* if */
}

main(int argc, char *argv[])
{

SVE_config config = SVE_NORMAL;
SVE_object pointer;

printf(“Starting application\n”);
if ((argc > 1) && (strchr(argv[1],’t’) != NULL))

config = SVE_HMD;

SVE_init(“example 5 (sve)”, config);

if(!SVE_loadWorld(“hello_world.world”))
{

printf(“error occurred during SVE_loadWorld, exiting \n”);
SVE_done(); /* exit */

} /* if */

pointer = SVE_loadObject(“pointer.obj”, “pointer”);
SVE_addChildToObject(pointer, SVE_getCursorObject());

if(config & SVE_HMD)
{

SVE_registerCallback(LEFTMOUSE, grab);
SVE_disableDefaultCallback(LEFTMOUSE);
SVE_disableDefaultCallback(LEFTMOUSEDRAG);

}

printf(“Beginning graphics loop\n”);
SVE_beginEventLoop();

27

June 28, 1993

printf(“Done -- Have a nice day.\n”);
SVE_done();

}

3.4.2 Audio support

Auditory feedback is certainly an important and sometimes even necessary part of the user interface. Apart
from augmenting engagement (as in computer games), short sounds can be used as auditory cues for
events. This kind of feedback is especially useful while performing tasks with the Bird trackers, for
example grabbing objects from a pile. Though another important characteristic of perceiving sounds, we
currently do not have any support for spatialization.

Playing sounds is done by calling the applicationplayaiff from the command line, for example by calling
the following function in your application:

void play(char *filename)
{

char command[200];

sprintf(command, “playaiff %s &”, filename)
system(command);

}

Soundfiles are recorded with therecordaiff application. This application can sample sounds with several
sample rates, durations, numbers of channels etc. The following function was used in the speech annotator
to record 7-second samples with the lowest quality:

void record(char *filename)
{

char command[200];

sprintf(command, “recordaiff -nchannels 1 -rate 8000 -time 7 %s &”,
filename);

system(command);
}

3.4.3 Spatial audio support

Some limited functions allow the spatialization of one single sound source, using the SPARCstation
nagel.cc.gatech.edu as a server.The server is started on this station by:

sounddemo

(login as vrgroup)

On the back of the ARIEL amplifier, a (continuous) sound source (CD player, radio, SGI output) has to be
hooked onto the input.

The system is activated by addingSVE_SPATIALSOUND to config when callingSVE_init, The only
functions that are available to control the location of the sound areSVE_attachSoundToObject(object) and
SVE_changeSoundUpdateRate(number).

3.5. Glove handling

At this point, the SVE library supports a Cyberglove input device connected to serial port 1 or 2 (if port 1
is not available). The glove is initialized by OR-ing the SVE_GLOVE value with the configuration value
used inSVE_init. Once the glove is initialized, it is polled once each time through the SVE system loop.
The values of the sensors in the glove can be obtained by the functions provided by the Cyberglove
interface (see “include/cg_glove.h”), or through the glove structure in the state structure (state->glove-
>angle[finger] [jo int]) (see Appendix C: Glove sect ion) . Also, through the funct ions
SVE_saveCurrentGesture() andSVE_recognizeGestures(TRUE), gestures can be defined by example. Each
time SVE_saveCurrentGesture() is called, the hand position at the time of the last polling of glove sensor

28

June 28, 1993

values is saved. After aSVE_recognizedGestures(TRUE) call is made, whenever that hand position is
made (within an error given as range at the time the gesture is saved), a GESTURE event will be entered
onto the GL event queue, with the identifying value given with theSVE_saveCurrentGesture call
(priority). The priority value that identifies the gesture also indicates which gesture will be recognized first
if many gestures could be recognized (low priority value indicates higher priority in order). When the
system is recognizing gestures, it generates a GESTURE event with a NULL_GESTURE value each time
the system goes through the SVE loop and the current hand position does not match a saved gesture.

The glove button is treated as a mouse button. Whenever the button changes value (pressed to not pressed,
and vice versa), a GLOVEBUTTON event is placed on the GL event queue. The value of the event is the
status of the button.

The following example demonstrates the use of the glove. Different gestures can be saved by pressing the
‘o’ key. A calibration routine is demonstrated with theopenHandCal andclosedHandCal function calls,
which make Cyberglove calls to set the calibration values implicitly used by the Cyberglove interface
routines (see Cyberglove documentation).

Source ix: glove_example
/* Glove example

 starts up with the bird trackers if 1st parameter is “t”,
 reads a world and registers an event-callback routine for recognizing
 glove gestures and the glove button. Gestures are saved every time the
 ‘o’ key is pressed.

 The glove can be calibrated to a hand by pressing ‘0’ when the hand is
 stretched out, and pressing ‘9’ when the hand is a closed fist.

 If the tracker isn’t used, the glove can be placed at the viewing origin
 by pressing the ‘g’ key. (You will want to back up by pressing ‘z’
 so that you can see the glove.)

*/

#include “sve.h”

int priority = 1;
#define GESTURE_RANGE 0.33

void gestureCallback(SVE_state state)
{

if (state->eventVal != NULL_GESTURE)
printf(“Gesture %d event recognized\n”, state->eventVal);

}

void gloveButtonCallback(SVE_state state)
{

printf(“Glove button is now %d\n”, state->eventVal);
}

void openHandCal(SVE_state state)
{

int i, j;

for (i=INDX; i<FNGRS; i++)
for (j=MPHL; j<ABDT; j++)

CG_set_offset(i, j, CG_get_value(i, j));
}

29

June 28, 1993

void closedHandCal(SVE_state state)
{

int i, j;

for (i=INDX; i<FNGRS; i++)
for (j=MPHL; j<ABDT; j++)

CG_set_gain(i, j, (3.14/2)/(CG_get_value(i,j) - CG_get_offset(i, j)));
}

void setGloveStuff(SVE_state state)
{

int allright;
Matrix hmdPos;

switch(state->eventVal)
{

case ‘g’:
SVE_getHMDPosition(hmdPos);
SVE_copyMatrix(hmdPos, state->cursorObject->position);
break;

case ‘o’:
SVE_recognizeGestures(TRUE);
if (priority<MAX_GESTURE) {

SVE_saveCurrentGesture(state, priority, GESTURE_RANGE);
priority++;

}
break;

case ‘0’:
openHandCal(state);
break;

case ‘9’:
closedHandCal(state);
break;

} /* switch */
}

main(int argc, char *argv[])
{

SVE_config config = SVE_NORMAL | SVE_GLOVE;

printf(“Starting application\n”);

if ((argc > 1) && (strcmp(argv[1],”t”) == 0))
config = SVE_HMD | SVE_GLOVE;

SVE_init(“Glove example”, config);

if(!SVE_loadWorld(“axis.des”))
{

printf(“error occurred during SVE_loadWorld, exiting \n”);
SVE_done();

} /* if */

printf(“Registering input callbacks\n”);
SVE_registerCallback(KEYBD, setGloveStuff);

SVE_registerCallback(GESTURE, gestureCallback);
SVE_registerCallback(GLOVEBUTTON, gloveButtonCallback);

30

June 28, 1993

printf(“Beginning event loop\n”);
SVE_beginEventLoop();

printf(“Done -- Have a nice day.\n”);
SVE_done();

}

3.6. Using the Reality Engine -- Networking

As the trackers are physically connected to buckhead, problems occur when the Reality Engine (or other
SGI workstations) are being used. The SVE library currently has a limited facility to tackle this problem,
using buckhead as a tracker server. By initializing the application withSVE_NETWORKSLAVE, it will wait
on events that are send to a certain internet-address. These events are put on the ordinary gl event-queue
and thus are processed as if they originated from the local machine. When the application is initialized with
SVE_HMD as well, it will retrieve bird samples from over the network.

Figure 13. Using the tracker-server.

As we use the multi-point broadcast functions, there is no limit to the number of clients that make use of
the information. This is the first step towards support for shared virtual environments.

EXPERT INFORMATION

A big disadvantage of the current implementation is that the information is passed using UDP sockets, a
low level communications facility that does not guarantee the arrival of data. Thus events can get “lost” on
the internet, which can be very harmful if the application completely changes its state when certain events
happen. Future versions should be based on reliable TCP connections instead.

buckhead.gvu

BIRD trackers

internet

SERVER CLIENT (S)

dunwoody.gvu

31

June 28, 1993

3.7. SVE Modules

3.7.1 Overview

Entirely meant for the curious, this chapter gives a global overview of the SVE library and its four
modules. More detailed information is found in the sources themselves.

Figure 14. The modules.

MANAGER: The central module, supervises the I/O devices, keeps track of the objects to be drawn, calls
the eventmanager etc. The source code to this module can be found inmanager.c

OBJECTS: An extendable data structure with several methods (load/save/render). This module is
subdivided into the files obj-files.c, obj-render.c andobject.c.

EVENTS: A set of functions to poll the input devices, create events and a callback mechanism to process
the events. The source code for these functions is in the files event.c anddefaultcallbacks.c.

TRACKER: Provides basic functions to initialize, read and close the Bird three-dimensional trackers. This
module is contained in the filetracker.c. (If another tracker system is used, this module should be
rewritten/modified).

3.7.2 Control Flow

Figure 15. The control flow.

1) Functions to transform object and to get their attributes.

2) Initialize SVE, load/save a world, goto the event loop, stop the event loop, call the frame callback
routine.

TRACKER

EVENTSMANAGEROBJECT
OBJECT MANAGER EVENTS

TRACKER

OBJECT MANAGER EVENTS

TRACKER

APPLICATION

1 2 3

4 5

6

32

June 28, 1993

3) Register/enable/disable user defined or default callback routines. Call the callback routines.

4) Load/save/render objects.

5) initialize the event-callback mechanism, poll the input devices and process the events.

6) initialize the trackers (when available) and retrieve tracker data.

4. FUTURE DIRECTIONS
In the near future, the following additions will be made by members of the VE-group.

• Conversion routines from/to other VR systems and CAD modelers.

• Stereoscopic displays.

• Spatial sound cues.

• Networking, shared environments.

• Voice and text annotation

• Scripts and dynamics/kinetics.

Scripts and dynamics/kinetics are very interesting solutions for managing the interaction between the user
and the objects and adding behavior to objects (here at the GVU center, we have lots of people working on
dynamics, simulation and animation; e.g. Augusto Op Den Bosch has already constructed a simulation
system which works with the helmet mounted display).

33

June 28, 1993

APPENDICES
APPENDIX A: Starter Kit

The Simple Virtual Environment-Library
Starter Kit, Version 1.2

Drew Kessler, Jouke Verlinden, Larry Hodges

drew@cc.gatech.edu, jouke@cc.gatech.edu, hodges@cc.gatech.edu

Introduction

The Simple Virtual Environment Library (SVE) is intended to provide a system of functions, event
handlers, and a 3D description of a Virtual World which allows for easily creating simple Virtual
Environment applications, and allows for extensive and straight-forward addition of functionality. What
this means is that, using this library, you can create a simple Virtual World which has minimal interaction
(a pure Architectural walkthrough, for example), and allows for adding features (such as allowing a user to
move the kitchen sink) in a straight-forward and consistent manner.

General Overview

The SVE system works using the “don’t call us...we’ll call you” method. Basically the application
initializes the SVE system, gives the world description filename, specifies any special cases it wants to
handle itself, and then turns control over to the SVE system. When the application relinquishes control,
this is what happens:

An Example

What follows is a very simple example application. An explanation follows it. The file is called
“example1.c ” and resides in the directory “~vrgroup/sve/v1.2/examples ”. If you wish to copy it
and compile it, be sure to copy theMakefile in theexamples directory as well. Note that SVE looks for
the description file and any object files it needs first in the current directory, and then in the directory
“~vrgroup/sve/v1.2/objects ”. Thus, you need not copy those files unless you wish to modify them.
A following section describes the file formats.

Handle Input
(Key, Mouse, Tracker, Glove)

Draw New Frame Application Drawing Routines

Application Input Handlers

SVE_beginEventLoop()

34

June 28, 1993

/* example1 (sve module)

 reads an object file and its primitives...

*/

#include “sve.h”

main()
{

SVE_config config = SVE_NORMAL;

printf(“Starting application\n”);
SVE_init(“Example1 (sve)”, config);

if(!SVE_loadWorld(“hello_world.world”)) {
printf(“error occurred during SVE_loadWorld, exiting \n”);
SVE_done(); /* stop process */

} /* if */

printf(“Beginning event loop\n”);
SVE_beginEventLoop();

printf(“Done -- Have a nice day.\n”);
SVE_done();

}

This application initializes the SVE system with the callSVE_init , giving the application name and its
configuration (SVE_NORMAL - this means no trackers or other special features are used). The application
then loads a Virtual World described in the file “hello_world.world ” with the callSVE_loadWorld .
The SVE system loop (described in the Overview above) is begun with the callSVE_beginEventLoop . If
the users presses ‘q’ in the application window, or the program aborts for any reason, control returns to the
application, and it makes the callSVE_done to shut down the SVE system.

You will notice that if the cursor is in the application window (the one displaying the graphics), that you
can alter your view by pressing the arrow keys (to change X and Y), pressing ‘z’ or ‘Z’ (shift-’z’) to
change Z, and by pressing and dragging the mouse to rotate the scene. If you press ‘q’, the application
shuts down.

Second Example

In this example, which is “example3.c ” in the examples directory, we introduce the user specified
input handler and frame renderer. These routines are called in addition to the SVE input handler and frame
renderer. In this example the application, we have decided to alter a specific object in the Virtual World
each time a frame is rendered, depending on keyboard input from the user. If the “r” key is pressed, the
cube in the scene will rotate to the right, if the “l” key is pressed, the cub will rotate to the left, and if the
space bar is pressed, the cube will rotate to the left. If you wish to compile this program, you need to copy
the file “example3.c ” from theexamples directory, and you need to modify theMakefile used in the
above section so that the line that reads
PROGRAM = example1

now reads
PROGRAM = example3

The code follows.
/* example3 (sve module)

 starts up with the bird trackers if 1st parameter is “t”,
 reads a world and registers an event-callback and a
 frame-callback routine.

 */
#include <gl/device.h>

35

June 28, 1993

#include “sve.h”

/* global variable object */
SVE_object globalObject;

/* two frame-callback routines, are invoked by pressing keys */
void rotate_right(SVE_state state)
{

pushmatrix();
loadmatrix(globalObject->position); /* put object matrix on the stack */
rot(3, ‘y’); /* apply rotation */
getmatrix(globalObject->position); /* update the object matrix */
popmatrix();

}

void rotate_left(SVE_state state)
{

pushmatrix();
loadmatrix(globalObject->position); /* put object matrix on the stack */
rot(-3, ‘y’); /* apply rotation */
getmatrix(globalObject->position); /* update the object matrix */
popmatrix();

}

/* callback routine for KEYBD-events */
void handleKey(SVE_state state)
{

switch(state->eventVal) {
case ‘r’: SVE_setFrameCallback(rotate_right);

break;
case ‘l’: SVE_setFrameCallback(rotate_left);

break;
case ‘ ‘: SVE_setFrameCallback(NULL);

} /* switch */
} /* printKey */

main(int argc, char *argv[])
{

SVE_config config = SVE_NORMAL;

printf(“Starting application\n”);

if ((argc > 1) && (strcmp(argv[1],”t”) == 0))
config = SVE_HMD;

SVE_init(“Example3 (sve)”, config);

if(!SVE_loadWorld(“hello_world.world”)) {
printf(“error occurred during SVE_loadWorld, exiting \n”);
SVE_done();

} /* if */

globalObject = SVE_findWorldObject(“cube_text”);
printf(“Registering an input callback\n”);
SVE_registerCallback(KEYBD, handleKey);

printf(“Beginning event loop\n”);
SVE_beginEventLoop();

printf(“Done -- Have a nice day.\n”);
SVE_done();

}

This example demonstrates many SVE concepts. We have shown that an object in the SVE object tree can
be retr ieved by the character str ing name i t is g iven in the descr ipt ion fi le (using the

36

June 28, 1993

SVE_findWorldObject function). The value returned can be used as a reference to that object, while it is
still present in the object tree, and will be rendered in each frame.

We have also added a few callback routines. We have an input handler,handleKey , which will be called
every time a key is pressed, and which checks for an ‘l’, ‘r’, or space bar input. This is done with a call to
SVE_registerCallback with KEYBD as the first parameter.

When a ‘r’ or ‘l’ key is pressed, we have set the frame callback to a function which will rotate the cube for
each frame. This is accomplished with a call toSVE_setFrameCallback. When the space bar is
pressed, the frame callback function is set toNULL to indicate that there is no user frame callback. It is in
the frame callback that the application can draw it own graphics which would be in the world coordinates.
The user’s viewpoint is taken care of by the SVE system. You will need to use SGI GL function calls if you
want to draw something in the scene this is not an object.

All callback functions with SVE need to be declared in the form:
void functionName(SVE_state state)

The SVE_state data structure contains the SVE state, including the definition of the world, the users
viewpoint and orientation, and the most recent events (such aseventVal , as used above). See the User’s
Guide for more details.

Hardware Set Up

Currently the hardware is set up so that the trackers and head mounted display (HMD) can be turned on
simply by flipping the red switch on the power strip in the VR cabinet. Since the HMD has a limited
lifetime, if it is not being used it should be turned off (the switch is in the back where the cord exits the
helmet). If the HMD is being used, the first tracker (with the black strip) should be attached to the front of
the HMD.

Where to Find Additional Help

Manual pages for theman utility can be found in the directory “~vrgroup/sve/v1.2/man ”. If that
directory is included in yourMANPATH environment variable, you will be able to obtain man pages on SVE
and its functions. If you are usingksh , you will want to add the following line to your.profile start-up
file:
export MANPATH=$MANPATH:~vrgroup/sve/v1.2/man

Additional documentation can be found in the directory “~vrgroup/sve/v1.2/doc ”. In particular, the
User’s Guide contains a complete description of the system with a function and date structure reference.

37

June 28, 1993

APPENDIX B: File Formats
There are two different file formats used to describe the Virtual World which SVE renders, theworld
description file (of which there is only one), andobject description files (of which there can be many). The
world description file refers to all the objects that are used in the virtual scene, these are listed in a tree (for
hierarchical grouping). Each of the object entries has a transformation matrix to convert the object
coordinates to the world coordinate system. The object description files describe the geometrical
information of the objects, which can be made up of many primitives (polyhedrons, text, lines etc.).

The advantage of defining the geometrical information of the objects in separate files is that they can be
used among several worlds, and more than once in the same world.

Here is the world description file used for the examples (“hello_world.world ”).
Simple Virtual Object File Format version 1.1
number of objects: 2

object name: meadow
primitives file: plane.obj
transformation matrix:
1 0 0 0
0 1 0 0
0 0 1 0
0 -1 -1 1
other attributes: 0
number of children: 0

object name: text
primitives file: hello_world.obj
transformation matrix:
1 0 0 0
0 1 0 0
0 0 1 0
-0.5 0.5 -5 1
other attributes: 0
number of children: 0

Here is the object file, “all_primitives.obj ”, which contains the primitives polyhedron, polyline, textand
textured_polyhedron.

Simple Virtual Primitive File Format version 1.0
number of components: 4

component 1 type: polyhedron
Data of component 1:
of vertices:
8
vertices: x y z
0 0 0
0 1.0 0
1.6 1.0 0
1.6 0 0
0 0 0.35
0 1.0 0.35
1.6 1.0 0.35
1.6 0 0.35
of faces:
6
faces: R G B #_of_vertices v1 v2 v3 ...
30 0 0 4 0 1 2 3

38

June 28, 1993

10 0 0 4 0 1 5 4
20 0 0 4 1 2 6 5
22 0 0 4 2 3 7 6
35 0 0 4 3 0 4 7
10 0 0 4 4 5 6 7

component 2 type: polyline
Data of component 2:
of vertices:
8
vertices: x y z
0 -0.1 0
0 -1 0
1.6 -1.0 0
1.6 -0.1 0
0 -0.1 0.35
0 -1.0 0.35
1.6 -1.0 0.35
1.6 -0.1 0.35
of polylines:
6
polylines: R G B #_of_vertices v1 v2 v3 ...
100 100 100 4 0 1 2 3
100 100 100 4 0 1 5 4
100 100 100 4 1 2 6 5
100 100 100 4 2 3 7 6
100 100 100 4 3 0 4 7
100 100 100 4 4 5 6 7

component 3 type: text
Data of component 3:
transformation matrix:
0.4 0 0 0
0 0.4 0 0
0 0 0.3 0
0.1 1.5 0.36 1
of lines:
1
this is text

component 4 type: textured_polyhedron
Data of component 4:
image file: testimage.rgb
repeat texture: FALSE
blending: TRUE
of vertices:
4
vertices: x y z
-0.3 -1.2 -0.0 0 0
-0.3 -0.2 -0.0 0 1
 0.3 -0.2 -0.0 1 1
 0.3 -1.2 -0.0 1 0
of faces:
1
faces: R G B #_of_vertices v1 v2 v3 ...
100 100 100 4 0 1 2 3

39

June 28, 1993

File conversion from Wavefront
a simple convertor exists to convert objects made with the Wavefront modeler (.obj files) to object files:

wave2sve <source> <dest>

The converter currently converts the.objects to (flat-shaded) polygons. Colors are only converted when the
material properties were explicitly included in the model before saving (by choosing “load materials” in
the properties menu of wavefront).

We will expand the capabilities of this convertor, as wavefront provides useful tools to define texture
coordinates to polygons (a very tedious task to do by hand).

Formal Definition of File Format -- World Description File
This section describes the world file format in grammar notation. The following notation is used:

{} specifies a list of alternatives (1 has to be chosen),

[] denotes an optional section,

[]* is a section that can occur zero or more times,

[]+ denotes a section that occurs one or more times.

Basic elements:

↵ = newline

<n> = integer

<f> = float

<string> = string, any character in the range [32..] (no control characters).

<stringID> = string, any character in the range {[‘0’..’9’], [‘a’..’z’], [‘A’..’Z’], ‘_’}

Boldfaced and capitalized entries refer to other grammatical expression.

Indentation is for clarity only, it is not necessary.

WORLDFILE :

Formal Description of file format version 1.1↵
number of objects: <n>↵
ø

[OBJECTENTRY]+

The worldfile specifies all the objects that are used in the virtual environment. The only important entry in
the header is thenumber of objects. The integer given should be equal to the number of root-objects in the
scene (see the object entry for more about rootobjects etc.)

OBJECTENTRY:

object name: <stringID>↵
primitives file: <stringID>↵
transformation matrix:↵
<f> <f> <f> <f>↵
<f> <f> <f> <f>↵
<f> <f> <f> <f>↵
<f> <f> <f> <f>↵

40

June 28, 1993

other attributes: <n>↵
[ATTRIBUTE-ENTRY]*

number of children: <n>↵
[child data:↵
 [OBJECTENTRY]+

]

The object is specified by a primitives file name (look at the object description for the file format of these)
and a transformation matrix, that transforms all the points of the object (and its children) to world
coordinates. The matrix defines how the object will be placed in the virtual scene: it enables translation,
rotation and scale transformations (see “Fundamentals of Interactive Computer Graphics”, Foley and van
Dam). Extra attributes can be specified for each object, Objects can be hierarchically grouped by
specifying children. This is specified in a depth-first notation:

ATTRIBUTE-ENTRY :

{color COLORENTRY ↵,

 visible {TRUE, FALSE}↵,

 visible_sphere <f>↵,

 selectable {TRUE, FALSE}↵,

 title <f> <f> <f> <f> <string>↵
}

Extra attributes can be assigned to each object, currently, the following:

• color: this color will override the original color of the object primitives. This function is useful during highlighting
etc.

• visible: the object and its children are invisible when the flag FALSE is used.

• visible_sphere: the object is only rendered when the viewpoint is less than <f> meters.

• selectable: this will set the boolean isSelectable in the object structure.

• title x y z s string: a text string will be rendered on the x,y,z (object) coordinates with size s.

COLORENTRY :

<f> <f> <f>

A

CB

E F

D

ObjectA
of children: 2
ObjectB
of children: 1
objectD
of children: 2
ObjectE
of children: 0
ObjectF
of children: 0
ObjectC
of children: 0

Figure B1: Depth first notation of a tree hierarchy.

41

June 28, 1993

Red, green and blue values in the range [0,1] (entries larger than 1.0 will be divided by 256!)

Formal Definition of File Format -- Object Description File
This section describes the object file format in grammar notation. The following notation is used:

{} specifies a list of alternatives (1 has to be chosen),

[] denotes an optional section,

[]* is a section that can occur zero or more times,

[]+ denotes a section that occurs one or more times.

Basic elements:

↵ = newline

<n> = integer

<f> = float

<string> = string, any character in the range [32..] (no control characters).

<stringID> = string, any character in the range {[‘0’..’9’], [‘a’..’z’], [‘A’..’Z’], ‘_’}

Boldfaced and capitalized entries refer to other grammatical expression.

Indentation is for clarity only, it is not necessary.

OBJECT FILE:

Simple Virtual Primitive File Format version 1.1↵
[BOUNDARY-ENTRY]

number of components: <n>↵

[PRIMITIVE-ENTRY]+

BOUNDARY-ENTRY :

{boundary box <f> <f> <f> <f> <f> <f>↵,

 boundary sphere <f> at <f> <f> <f>↵}

Each object can have a boundary description that can be used for collision detection1 etc. These entries are
done in object coordinates, currently two descriptions can be used:

• boundary box: 2 points that determine the box, the lower left and the upper right corner.

• boundary sphere: is determined by its radius. Because the origin of the object can be at a different coordinate than
(0,0,0), three additional parameters are needed to determine the x,y,z - origin of the sphere.

The object has no boundaries by default, in that case theboundaries-entry of the object is assigned to
NULL.

PRIMTIVEENTRY :

{POLYHEDRONENTRY ,

1. these algorithms are currently still under development, the descriptions are only loaded into the
boundaries-entry of the object.

42

June 28, 1993

POLYLINENENTRY ,

TEXTENTRY ,

TEXTURED_POLYHEDRONENTRY }

POLYHEDRONENTRY :

component <n> type: polyhedron↵
Data of component <n>:↵
of vertices:↵
<n>↵
vertices: x y z↵
[<f> <f> <f>↵]+

of faces:↵
<n>↵
faces: R G B #_of_vertices v1 v2 v3 ...↵
[COLORENTRY <n> <n> <n> [<n>]+↵]

The polygons are defined by referring to the vertices lists. These indices begin at 0 (zero).

POLYLINEENTRY :

component <n> type: polyline↵
Data of component <n>:↵
of vertices:↵
<n>↵
vertices: x y z↵
[<f> <f> <f>]+↵
of polylines:↵
<n>↵
polylines: R G B #_of_vertices v1 v2 v3 ...↵
[COLORENTRY <n> <n> <n> [<n>]+↵]

TEXTENTRY :

component <n> type: text↵
Data of component <n>:↵
transformation matrix:↵
<f> <f> <f> <f>↵
<f> <f> <f> <f>↵
<f> <f> <f> <f>↵
<f> <f> <f> <f>↵
of lines:↵
<n>↵

43

June 28, 1993

[<string>↵]+

The transformation matrix determines the position, orientation and scale of the text relative to the other
primitives of that same object. Texts are always rendered in white, unless its object overrides the color (by
having the extra attributecolor in the world file format).

TEXTURED_POLYHEDRONENTRY :

component <n> type: textured_polyhedron↵
Data of component <n>:↵
image file: <stringID>↵
repeat texture: {TRUE, FALSE}↵
blending: {TRUE, FALSE, GREYSCALE}↵
of vertices:↵
<n>↵
vertices: x y z↵
[<f> <f> <f> ↵]+

of texture vertices:↵
<n>↵
texture vertices: u v↵
[<f> <f> ↵]+

of faces:

<n>↵
faces: R G B #_of_vertices v1 v2 v3 ... [t1 t2 t3 ...]↵
[COLORENTRY <n> [<v>]+ [<t>]+↵]

The textured polygon entry is similar to the regular polyhedron, its major difference is the addition of three
more lines at the begin of the definition, a list of two dimensional points which map a texture on a face, and
an index to that list for each vertex index in the face definition.

For mapping the texture map on the polygons, each vertex has two extra coordinates that refer to the (x,y)
coordinates of a 2D plane with a grid of copies of the image which are side by side. These values are
typically calledu,v or s,t coordinates and the image is defined in the range [0...1]. A texture vertices list of
(0,0), (0,2), (2,2), (2,0) will result in four images on the face being defined. A texture vertices list of (0,0),
(0,0.5), (1,0.5), (1, 0) will result in the lower half of the image to be displayed on the face. A polyhedron

(0,0) (2,0)

(0,2)

s

t y

x

z

Figure A2: mapping s,t coordinates to polygons.

(0,1)

(0,1)

44

June 28, 1993

face is therefore defined as its color values, the number of vertices, a list of indexes to the vertex list to
define the vertices of the face, and then a list of indexes into the texture vertices list defining, for each
vertex in the vertex list.

As for the first additional entriesimage file, blending andrepeat:

• The image file must have the SGI rgb format (a variety of applications can be used to convert .gif and other file for-
mats to these1).

• The repeat flag determines wether the texture should be repeated when the s,t coordinates exceed the range [0,1]
(see gl-manual 18-7).

• The blending flag determines how the texture is handled: TRUE will blend the colors of the texture map with the
colors of the faces, FALSE will discard the face colors. The special flag value GREYSCALE will handle the texture
map as a black-and-white image that is blended with the colors of the original faces. Using greyscale texture maps
instead of color ones will increase the rendering performance and should be used as much as possible.

COLORENTRY :

<f> <f> <f>

Red, green and blue values in the range [0 to 1.0] (entries larger than 1.0 will be divided by 256!)

1. Golden oldies are the applicationsfromtiff <sourcefile> <destfile> andfromgif <sourcefile> <destfile>, these can be
found in the directory~ccoprrm/bin.

45

June 28, 1993

APPENDIX C: Reference Manual

1. SVE Data Structures
This is a brief description of all data structures in the SVE environment which can be used and
manipulated by an application using the SVE system.

1.1. State information
typedef struct SVE_stateStruct {

char *programName;
SVE_objectList * objectTree ;
Matrix viewingMatrix;
Matrix hmd;
SVE_object hmdObject;
SVE_object cursorObject;
SVE_gloveData *glove;
SVE_point origin ;
SVE_eventType event;
short eventVal;
boolean ntscOn;
int config;
float flightSpeed ;
boolean checkForGesture ;
SVE_gestureList *gestures;

} SVE_stateStruct;

typedef SVE_stateStruct *SVE_state;

This is the data structure given to each callback routine defined by the application. This structure is the life
blood of the SVE system. Every piece of information about the current state is contained in it, including
the current world definition, the current position and orientation of each tracker, and glove information (if
activated). Most fields in the state structure are intended to be a source of information (viewingMatrix,
glove, event, eventVal, config), although some fields are intended to be altered for desired effects (these are
shown in italics).

Here is a short description of each field:

char *
• programName;

Given name of the application. This is the name on the application’s window.

SVE_objectList *
• objectTree ;

This references another data structure that defines the objects in the SVE world (the objects SVE will
render for each frame). (See SVE_objectList)

46

June 28, 1993

Matrix
• viewingMatrix;

This is the matrix defining the position and orientation of the user (the first tracker). The position of the
user is relative to the “origin” defined below. This the viewing matrix used by the render routine of the
SVE system. It is updated once per frame if a tracker is being used. If a tracker is not being used, only the
position information is changed (it is set to be at the “origin”).

Matrix
• hmd;

This is the position/orientation matrix of the first tracker (which has not been altered to obtain a viewing
matrix).

SVE_object
• hmdObject;

This references an empty object whose position matrix mirrors theposition matrix of the first tracker.
Any objects attached as children to this object will follow the first tracker’s position and orientation.

SVE_object
• cursorObject;

This references the root object of the cursor. The root object itself is an invisible, empty object. If the glove
is active, a glove object is defined (“hand” is the glove’s name), and is one of the children of the cursor.
The cursor object’sposition matrix is given the position and orientation of the second tracker (in
relation to theorigin defined in theSVE_state structure), and is therefore drawn each frame at that
location.

SVE_gloveData *
• glove;

This is a reference to the position and orientation of the second tracker, and the definition of the object
attached to it. If the glove input device is active, the values given by the device are also stored here. (see
SVE_gloveData)

SVE_point
• origin ;

The origin of the SVE world in relation to the user. This structure is typically altered during flying etc.

SVE_eventType
• event;

This is the gl event type. Possible values are gl events plus SVE events:
LEFTMOUSEDRAG
MIDDLEMOUSEDRAG

47

June 28, 1993

RIGHTMOUSEDRAG
ALLBUTTONS
GESTURE

short
• eventVal;

This is the gl event value. (See Glove utilities section in the function reference appendix forGESTURE
event values.)

boolean
• ntscOn;

This flag determines if the application window is on the computer screen (FALSE), or being sent to the
video output (TRUE).

int
• config;

This defines the configuration of the SVE system. It is a bit-wiseOR combination of the following values:
SVE_NORMAL Normal SVE operation.
SVE_HMD Poll tracker device.
SVE_GOURAUD Render using gouraud shading.
SVE_TEXTURES Render texture maps (otherwise ignored).
SVE_GLOVE Poll glove device and load in the model of a hand.

float
• flightSpeed ;

Determines the speed at which a user moves through the SVE world when “flying”. Its is in meters per
frame.

boolean
• checkForGesture ;

Flag to determine wether the current glove position should be compared to the glove position in the
gestures list (below).

SVE_gestureList *
• gestures;

This references a list of glove gestures sorted by their given priority. If thecheckForGesture flag is set,
and the current glove position matches one of the gestures on this list, then a glGESTURE event is
generated. The event value will beMIN_GESTURE + (gesture index), where the gesture index is the priority
given inSVE_saveCurrentGesture.

1.2. SVE_objectList
typedef struct SVE_objectList {
 SVE_object o;

48

June 28, 1993

 struct SVE_objectList *next;
} SVE_objectList;

This is a linked list of SVE objects (see SVE_object).

1.3. SVE_object
typedef struct SVE_objectStruct *SVE_object;

typedef struct SVE_objectStruct {
 SVE_object parent;
 char *name;
 SVE_primitiveList *primitives;
 SVE_primitive *label; /* for hypertexts */
 char *text; /* for hypertexts */
 char *textfile; /* for hypertexts */
 Matrix position;
 float color[4];
 boolean visible, hascolor, selectable;
 boolean hasBoundaries, hasSphere;
 float radius; /* for boundary spheres */
 SVE_boundaries *boundaries;
 boolean hasVisibleSphere ;
 float visibleSphere;
 boolean primitivesChanged;
 char *primitivesFilename;
 Object glID;
 boolean needsUpdating;
 SVE_objectList *children;
} SVE_objectStruct;

SVE_object is a reference to a larger structure (SVE_objectStruct) which defines every detail about
an object in the SVE environment.

What follows is a short description of each field in the SVE object structure.

SVE_object
• parent;

A reference to the object’s parent. The root object in an object tree has aNULL parent.

char *
• name;

The string identifier of an object.

SVE_primitiveList *
• primitives;

This references a list of the parts that make up the object (seeSVE_primitiveList).

49

June 28, 1993

SVE_primitive *
• label;

Hypertext that will be displayed at the object’s position and orientation (given in theposition matrix).

char *
• text;

char *
• textfile;

Used to save the hypertext if it has been changed.

Matrix
• position;

This 4X4 matrix defines the position and orientation of the object in relation to its parent.

float
• color[4];

This is the (red, green, blue, alpha) color value of the object as a whole. This value is only used if the
hascolor flag (below) isTRUE.

boolean
• visible;

This flag determines if the object is rendered by SVE during the frame rendering. IfTRUE, the object and
its children are rendered, ifFALSE the object and its children are not rendered.

boolean
• hascolor;

Determines if an object has one global color value.

boolean
• selectable;

Determines if an object is considered for selection during the intersection algorithm the SVE system uses
to determine which object has been selected.

50

June 28, 1993

boolean
• hasBoundaries, hasSphere;

float
• radius;

These variables are for backword compatibility and should not be used.

SVE_boundaries *
• boundaries;

This references a structure that determines the bounding volume of the object, used for intersection
algorithms.

boolean
• hasVisibleSphere;

Determines if an object has a given range within which it is visible.

float
• visibleSphere;

This is the range at which an object is visible if within this distance from the user (first tracker) in the SVE
world, and not visible if the user is outside of this range.

boolean
• primitivesChanged;

This flag, initiallyFALSE, is set toTRUE if an attribute of the object changes by the SVE system. It is used
by the SVE save functions to decide if a file needs to be updated.

char *
• primitivesFilename;

This string gives the filename of the file from which the object’s attributes where drawn. Used to update the
file during the SVE save functions.

Object
• glID;

This is the handle for the gl object defined for this SVE object. It is used to increase the speed of rendering
the object.

51

June 28, 1993

boolean
• needsUpdating;

Flag used to decide if a new gl object needs to be redefined for the object, as its geometry has changed in
some manor.

SVE_objectList *
• children;

This is a linked list of children objects to this object. It is unordered and unbounded.

1.4. SVE_primitiveList

This is a linked list of primitives that make up an object. (seeSVE_primitive)
typedef struct SVE_primitiveList {
 SVE_primitive primitive;
 struct SVE_primitiveList *next;
} SVE_primitiveList;

1.5. SVE_primitive
typedef struct SVE_primitive {
 SVE_primitiveType type;
 int numVertices;
 SVE_pointList *vertices;
 SVE_faceList *faces;
 float color[4];
 char *text;
 int lineWidth;
 Matrix matrix; /* only used for text primitives.. */
} SVE_primitive;

A short description of each field of the SVE_primitive follows.

SVE_primitiveType
• type;

This defines the type if primitive. Possible values are:
POLYHEDRONPrimitive consists of a list of faces.
LINEPrimitive consists of one line with many points.
TEXTPrimitive consists of a string of characters.

int
• numVertices;

Number of vertices in the vertex list.

SVE_pointList *
• vertices;

Linked list of vertices (and normal for gouraud shading).
typedef struct SVE_pointList {

52

June 28, 1993

SVE_point vertex;
SVE_point normal; /* for gouraud shading */
struct SVE_pointList *next;

} SVE_pointList;

SVE_faceList *
• faces;

Linked list of faces (for aPOLYHEDRON). Each face has a list of vertices (actually an index into the
primitive’s vertex list), a color (red, green, blue, alpha), and a normal (used for flat shading).

typedef struct SVE_faceList {
 SVE_indexList *indices;
 float color[4];
 SVE_point normal;
 struct SVE_faceList *next;
} SVE_faceList;

typedef struct SVE_indexList {
 SVE_pointList *index;
 struct SVE_indexList *next;
} SVE_indexList;

float
• color[4];

Color value (red, green, blue, alpha) of the primitive.

char *
• text;

Text string used for aTEXT primitive.

int
• lineWidth;

line width used for aLINE primitive.

Matrix
• matrix;

Transformation matrix used for theTEXT primitive.

1.6. SVE_boundaries

This structure defines the bounding volume of an object. There are two possible bounding shapes, a sphere
or a box. Only relevant fields are used for each object according to the type of bounding volume it has.

typedef struct SVE_boundaries{
boolean hasSphere;
SVE_point sphereOrigin;
float sphereRadius;

53

June 28, 1993

boolean hasBox;
SVE_point boxVertex1;
SVE_point boxVertex2;

} SVE_boundaries;

1.7. SVE_gloveData

This data structure defines the cursor used for the second tracking device and (if active) the glove input
device.

typedef struct SVE_gloveData {
boolean gloveActive;
CyberGlove *gloveData;
float angle[FNGRS][JNTS];

} SVE_gloveData;

What follows is a short description of each field of this structure:

boolean
• gloveActive;

Determines if the glove input device is active.

CyberGlove *
• gloveData;

If the glove input device is active, this references the data structure used by the glove routines.

float
• angle[FNGRS][JNTS];

This 2D array stores the angle values of the joints of each finger which were polled at the last input poll
stage of the SVE system. TheFNGRS andJNTS values are defined in “cg_glove.h ”. A particular angle
can be indexed as follows: (See the Cyberglove documentation for more detail.)

FNGRS

THMB

INDX

MIDL

RING

PNKY

JNTSMPHL PXIP DSIPABDT

CRPLS

WRST_PTCWRST_YAW

Mapping of angle indexes to bends in hand

a

a

a

a

a m

m

m

m

m

m

p

p

p

p

p

p

d

d

d

d

d

54

June 28, 1993

1.8. SVE_gestureList

This is an ordered linked list of gestures.
typedef struct SVE_gestureList {
 SVE_gesture *gesture;
 struct SVE_gestureList *next;
} SVE_gestureList;

1.9. SVE_gesture

This defines a gesture used to match against the current configuration of the glove device. A gesture is
defined as the set of angle values for each joint, within a certain range. Each gesture has a unique priority.
The priority determines the index value given to each gesture event that occurs when that gesture is
matched. If a current configuration matches more than one gesture, the gesture with the highest priority (1)
will be given as the match.

typedef struct SVE_gesture {
 int priority;
 float range;
 float angle[FNGRS][JNTS];
} SVE_gesture;

2. SVE Function Reference

2.1. Main SVE loop

boolean
• SVE_init(char *programName, SVE_config config);

char *programName String used to label the graphics
window.

SVE_config config Conf igurat ion o f the SVE system.
Defines the devices to be used and
render ing s ty le . (see SVE_sta te ,
config field)

This function must be called before any other SVE function call. It sets up the SVE system state.

void
• SVE_beginEventLoop(void);

This function begins the SVE system loop. Execution will not return to this point until the application is
quit, orSVE_stopEventLoop is called. The application will only receive execution during this loop via
callback routines defined prior to executingSVE_beginEventLoop.

void
• SVE_stopEventLoop(void);

This function causes the SVE system to exit from its event loop after the current frame is rendered.

55

June 28, 1993

void
• SVE_done(void);

This function shuts down the SVE system, including any tracking and glove devices being used. If the
screen is being sent through the video output, the computer screen is returned to normal operation.

2.2. World/object utilities

2.2.1 Load/Save

boolean
• SVE_loadWorld(char *filename);

char *filename Path and filename of the SVE world
file.

This function loads in an SVE world from the file given by the filename, and sets that world to be the SVE
world rendered during the SVE render phase. If the given file does not exist at the path given, the Default
Object Directory is used. The world read becomes the SVE world which the SVE system will render at
each frame. If it is not successful, the function returns FALSE.

SVE_objectList *
• SVE_loadObjects(char *filename, SVE_object parent);

char *filename Path and f i lename of an SVE world
file.

SVE_object parent Parent object of all objects to be
read from the given file.

Reads in the list of objects contained in the given file. The parent of each object is set to the givenparent
value. Returns an unordered linked list ofSVE_object ’s.

SVE_object
• SVE_loadObject(char *filename, char *name);

char *filename SVE object file path and file name.

char *name Name to be associated with the object.

This function allocates memory for a SVE object, reads the object definition from the given file (using the
Default Object Directory if the file is not found in the given path), and returns theSVE_object .

SVE_object
• SVE_addObjects(char *file);

char *file Object file name.

Loads a group of objects from the world file namedfile (using the Default Directory if it is not found at
the given path) and stores it in the global object tree of the SVE environment.

56

June 28, 1993

boolean
• SVE_saveWorld(char *filename);

char *filename SVE world file path and file name.

The current SVE world object hierarchy is saved in a SVE world file format in the file given. Objects
which have changed (see theSVE_object data structure description) will be saved to their SVE object
file.

boolean
• SVE_saveObjects(SVE_objectList *o, char *filename);

SVE_objectList *o Linked list of SVE objects to save.

char *filename Path and name of the file to save to.

Saves the list of objects in an SVE world file format to the file given. Objects which have changed (see the
SVE_object data structure description) will be saved to their SVE object file.

2.2.2 Information

SVE_object
• SVE_findObject(char *name, SVE_objectList *objectTree);

char *name Name of desired object.

SVE_objectList *objectTree Tree objects to search.

Searches each object in the linked list of objects given inobjectTree and their children, in a depth-first
search. The object with the same name as the givenname is returned, if found.NULL is returned if no
object of that name exists in the object tree.

SVE_object
• SVE_findWorldObject(char *name);

char *name Name of desired object.

Searches the SVE world object tree using a depth-first search. If an object with a name that matches the
givenname, it is returned. If no object in the SVE world object tree has that name,NULL is returned.

void
• SVE_getWorldMatrix(SVE_object o, Matrix m);

SVE_object o The SVE object in question.

Matrix m The returned result.

Returns (inm) the transformation matrix of the given object,o, in absolute world coordinates (as opposed
to its position matrix, which is only in relation to its parent).

57

June 28, 1993

void
• SVE_printObjectList(SVE_objectList *list, boolean printChildren);

SVE_objectList *list SVE object tree.

boolean printChildren Flag used to shorten/lengthen output.

Prints tostderr the names of the objects in thelist SVE objectlist. Their children (and their children’s
children, etc.) are printed also if theprintChildren flag isTRUE.

2.2.3 Manipulation

SVE_object
• SVE_createEmptyObject(char *name);

char *name Name to be given to the object.

Allocates memory for an object with no primitives associated with it, basically an empty object. The
attributes of the object are set to the following values: (See the Data Structures section for a description of
theSVE_object structure.)

name = name
parent = NULL
primitives = NULL
visible = TRUE
selectable = FALSE
hasVisibleSphere = FALSE
visibleSphere = 0
hascolor = FALSE
color = 0, 0, 0, 0
hasBoundaries = FALSE
hasSphere = FALSE
radius = 0.0
children = NULL
label = NULL
primitivesFilename = NULL
primitivesChanged = FALSE
boundaries = NULL
needsUpdating = TRUE
glID = NULL
text = NULL
textfile = NULL
position = identity matrix

SVE_object
• SVE_removeObject(char *name, SVE_objectList **objectTree);

char *name Name of object to be removed.

SVE_objectList **objectTree Address of reference to an object
tree.

Searches the object tree given for an object with the namename (depth first search). When it is found, it is
removed (including its children) from the given object tree, and a reference to it is returned.

58

June 28, 1993

void
• SVE_removeObjectEnt ry(SVE_object ob jec t , SVE_objectL is t

**objectTree);

SVE_object object Object to be removed.

SVE_objectList **objectTree Address of reference to an object
tree.

Removes the object (including its children) from the given object tree.

void
• SVE_addToObjectList(SVE_object o, SVE_objectList **objectTree);

SVE_object o An object to add to an object tree.

SVE_objectList **objectTree Address of reference to an object
tree.

Adds the given objecto to the list of objects referenced byobjectTree . (Added to the front of the linked
list of objects referenced byobjectTree .)

void
• SVE_addChildToObject(SVE_object child, SVE_object parent);

SVE_object child The soon-to-be child object.

SVE_object parent The soon-to-be parent object.

Adds the objectchild to the front of the linked list of children objects of the objectparent .

boolean
• SVE_changeText(SVE_object o, char *newText);

SVE_object o The object containing the text.

char *newText The new text to assign to the object.

Searches the object for aTEXT primitive. If one is not found, this function returns FALSE. If aTEXT
primitive is found, itstext string is changed to a copy of the givennewText and the function returns
TRUE. The oldtext string is freed from memory. Only the firstTEXT primitive in the object’s primitives
list is affected.

59

June 28, 1993

2.3. Callback utilities

2.3.1 Event callbacks

void
• SVE_ResetCallbacks(SVE_config config);

SVE_config config The current configuration of the SVE
system.

Resets all user-defined event callbacks toNULL, and restores the default event callbacks to their original
value, and enables them. (See documentation on events and callbacks.)

void
• SVE_registerCallback(int event, SVE_functionPtr function);

int event gl or user defined event value.

SVE_functionPtr function user function to be called.

Registers a user defined function (function), which will be called every time an event (even t) reaches
the front of the gl event queue. If the default callback is enabled, it will be called after the user defined
callback has been executed (seeSVE_enableDefaultCallback below).

void
• SVE_removeCallback(int event);

int event gl or user defined event.

Removes the user defined callback function (set bySVE_registerCallback). When the eventevent reaches
the front of the event queue, the user defined callback function will not be called. The default callback
function will be called if it is enabled (seeSVE_enableDefaultCallback below).

void
• SVE_enableDefaultCallback(int event);

int event gl or user defined event.

Enables the default callback for the eventevent . The default callback will be called when the event
reaches the front of the event queue. It is called after the user defined callback for the given event, if it has
been set (seeSVE_registerCallback).

void
• SVE_disableDefaultCallback(int event);

int event gl or user defined event.

Disables the default callback for the eventevent . The default callback will not be called when the event
reaches the front of the event queue. If a user defined callback function has been defined for this event (see
SVE_registerCallback), it will be called.

60

June 28, 1993

SVE_functionPtr
• SVE_getEventCallback(int event);

int event gl or user defined event.

Returns a pointer to the current callback for the eventevent . This function is useful for storing old event-
callback functions before replacing them.

2.3.2 Frame callback

void
• SVE_setFrameCallback(SVE_functionPtr function);

SVE_functionPtr function User defined function.

Sets the function that will be called by the SVE system just after it clears the back buffer and loads the
current viewing matrix (see theSVE_state documentation), and just before the SVE system renders all of
the objects in its object tree (given in theSVE_state structure). See theSVE_functionPtr
documentation for its format.

SVE_functionPtr
• SVE_getFrameCallback(void);

Gets the frame callback function, see theSVE_functionPtr documentation for its format. This function
is useful when the application needs a couple of frames to do an animation and than has to restore to its old
behavior.

2.4. General utilities

2.4.1 State functions

void
• SVE_setBackgroundColor(float r, float g, float b);

float r, g, b Red, green, and blue values. Ranging
from 0 to 1.

Sets the color to be used as the background for each frame rendered by the SVE system.

2.4.2 Matrix functions

void
• SVE_invertMatrix(Matrix mat, Matrix inv);

Matrix mat Operand.

Matrix inv Result.

Inverts the given matrixmat and returns the result in the matrixinv .

61

June 28, 1993

void
• SVE_getRelativeMatrix(Matrix a, Matrix b, Matrix result);

Matrix a Source position matrix.

Matrix b Destination position matrix.

Matrix result Transformation from “a” to “b”.

Calculates the relative transformation from a position defined in the matrixa to a position defined in the
matrix b, and stores the result inresult . Thus [a][result] = [b].

double
• SVE_getMatrixDist(Matrix a, Matrix b);

Matrix a Operand.

Matrix b Operand.

Calculates the euclid distance of the translational components of the matrixa and the matrixb. Returns the
result.

void
• SVE_copyMatrix(Matrix s, Matrix d);

Matrix s Source matrix.

Matrix d Destination matrix.

Copies the 4X4 matrixs to the matrixd.

2.5. Cursor utilities

2.5.1 Cursor Information

void
• SVE_getCursorPosition(Matrix pos);

Matrix pos Result.

Stores the position and orientation matrix of the second tracker when it was last polled in the matrixpos .
This position will be equal the state->origin vector when the trackers are not active.

SVE_object
• SVE_getCursorObject(void);

Returns thecursor object, which has the position and orientation of the second tracker. The cursor object
begins as an empty object, but can be given primitives and/or children objects which will be rendered at the
location and with the orientation of the second tracker.

62

June 28, 1993

2.5.2 HMD Information

void
• SVE_getHMDPosition(Matrix pos);

Matrix pos Result.

Stores the position and orientation matrix of the first bird tracker when it was last polled in the matrixpos .
This position will be equal the state->origin vector when the trackers are not active.

SVE_object
• SVE_getHMDObject(void);

Returns theHMD object, which has the position and orientation of the first tracker. The HMD object begins
as an empty object, but can be given primitives and/or children objects which will be rendered at the
location and with the orientation of the first tracker.

2.5.3 Glove utilities

boolean
• SVE_initGlove();

Initializes the glove input device and sets up an object structure for the hand’s representation in the SVE
environment. The glove is defined to be attached to serial port 1 or port 2 (if port 1 is unavailable), and the
hand object structure is retrieved from the “glove” sub-directory of the SVE “objects” directory. The hand
object structure is attached to the “SVE cursor” object, which always has the position and orientation of the
second tracker.

SVE cursor

hand

palm

thumb

thumb_pip

thumb_dip

index

index_pip

index_dip

middle

middle_pip

middle_dip

ring

ring_pip

ring_dip

pinky

pinky_pip

pinky_dip

(root)

The glove structure

63

June 28, 1993

void
• SVE_saveCurrentGesture(SVE_state worldState, int priority, float

range);

SVE_state worldState SVE state structure.

int priority Unique priority value. Ranges from 1
to 49.

float range Range (in radians) of error for each
joint angle.

Saves the angles of each joint made by the hand in the glove at the last time it was polled (once per frame)
on a list of gestures keyed by the given priority. There can only be one gesture per priority. When
recognizing gestures (seeSVE_recognizeGestures), the gesture with the lowest priority number that
matches each angle of the current gesture will be considered aGESTURE event. TheGESTURE event, with
the priority of the matching gesture begin the event value, will be placed on the gl event queue.

void
• SVE_recognizeGestures(boolean flag);

boolean flag Enable flag.

If flag is TRUE, the current gesture made by the hand in the glove input device will be checked with the
list of gestures which have been saved for a match (with-in the error given when the gesture was saved). If
a match is found, aGESTURE event will be placed on the gl event queue (seeSVE_saveCurrentGesture)
with an event value corresponding to the gesture index. Otherwise aGESTURE event will occur with the
valueNULL_GESTURE.

SVE_object
• SVE_getPalmObject(SVE_state worldState);

SVE_state SVE_worldState SVE system state structure.

Returns the object that is the palm object of the hand structure (seeSVE_initGlove).

void
• SVE_setGloveLight(boolean flag);

boolean flag switch flag.

Switches the red LED on the cyberGlove on when the flag is TRUE, or off when FALSE.

2.6. Spatial sound utilities

void
• SVE_attachSoundToObject(SVE_object object);

SVE_object object The new sound source object.

This call will activate a mechanism that automatically updates the spatial sound system running on the
SUN station (nagel.cc.gatech.edu). The sound location will be coupled to the transformation of the object.
Can only be used when the system was initialized with the constant SVE_SPATIALSOUND.

64

June 28, 1993

void
• SVE_changeSoundUpdateRate(int rate);

int rate The update rate (in frames).

This call acts on the mechanism that automatically updates the spatial sound system running on the SUN
station (nagel.cc.gatech.edu). The update rate determines the number of frames between sending sound
updates, e.g. 1 = each frame, 10 = each tenth frame (default value is 1).Because too fast update rates will
cause digitial noise (“clicks”), this update rate should be lowered to about 10-20 frames per second. Can
only be used when the system was initialized with the constantSVE_SPATIALSOUND.

65

June 28, 1993

SVE Function Index
SVE_addChildToObject(SVE_object child, SVE_object parent);58
SVE_addObjects(char *file); ..55
SVE_addToObjectList(SVE_object o, SVE_objectList **objectTree);58
SVE_attachSoundToObject(SVE_object object); ..63
SVE_beginEventLoop(void); ...54
SVE_changeSoundUpdateRate(int rate); ...64
SVE_changeText(SVE_object o, char *newText); ..58
SVE_copyMatrix(Matrix s, Matrix d); ...61
SVE_createEmptyObject(char *name); ..57
SVE_disableDefaultCallback(int event); ..59
SVE_done(void); ..55
SVE_enableDefaultCallback(int event); ...59
SVE_findObject(char *name, SVE_objectList *objectTree); ..56
SVE_findWorldObject(char *name); ...56
SVE_getCursorObject(void); ..61
SVE_getCursorPosition(Matrix pos); ...61
SVE_getEventCallback(int event); ...60
SVE_getFrameCallback(void); ...60
SVE_getHMDObject(void); ...62
SVE_getHMDPosition(Matrix pos); ..62
SVE_getMatrixDist(Matrix a, Matrix b); ...61
SVE_getPalmObject(SVE_state worldState); ..63
SVE_getRelativeMatrix(Matrix a, Matrix b, Matrix result); ..61
SVE_getWorldMatrix(SVE_object o, Matrix m); ..56
SVE_init(char *programName, SVE_config config); ..54
SVE_initGlove(); ..62
SVE_invertMatrix(Matrix mat, Matrix inv); ..60
SVE_loadObject(char *filename, char *name); ...55
SVE_loadObjects(char *filename, SVE_object parent); ..55
SVE_loadWorld(char *filename); ..55
SVE_printObjectList(SVE_objectList *list, boolean printChildren);57
SVE_recognizeGestures(boolean flag); ..63
SVE_registerCallback(int event, SVE_functionPtr function); ...59
SVE_removeCallback(int event); ...59
SVE_removeObject(char *name, SVE_objectList **objectTree);57
SVE_removeObjectEntry(SVE_object object, SVE_objectList **objectTree);58
SVE_ResetCallbacks(SVE_config config); ...59
SVE_saveCurrentGesture(SVE_state worldState, int priority, float range);63
SVE_saveObjects(SVE_objectList *o, char *filename); ...56
SVE_saveWorld(char *filename); ..56
SVE_setBackgroundColor(float r, float g, float b); ..60
SVE_setFrameCallback(SVE_functionPtr function); ..60
SVE_setGloveLight(boolean flag); ..63
SVE_stopEventLoop(void); ..54

66

June 28, 1993

SVE Data Types & Fields Index
angle[FNGRS][JNTS]; ...53
boundaries; ..50
checkForGesture; ..47
children; ..51
color[4]; ..49
color[4]; ..52
config; ...47
cursorObject; ...46
event; ...46
eventVal; ...47
faces; ...52
flightSpeed; ...47
gestures; ..47
glID; ..50
glove; ..46
gloveActive; ..53
gloveData; ...53
hasBoundaries, hasSphere; ...50
hascolor; ..49
hasVisibleSphere; ...50
hmd; ..46
hmdObject; ..46
label; ..49
lineWidth; ...52
matrix; ...52
name; ...48
needsUpdating; ...51
ntscOn; ..47
numVertices; ...51
objectTree; ..45
origin; ..46
parent; ...48
position; ..49
primitives; ...48
primitivesChanged; ...50
primitivesFilename; ..50
programName; ..45
radius; ..50
selectable; ..49
State information ...45
SVE_boundaries ...52
SVE_gesture ...54
SVE_gestureList ...54
SVE_gloveData ..53

67

June 28, 1993

SVE_object ...48
SVE_objectList ...47
SVE_primitive ..51
SVE_primitiveList ..51
text; ...49
text; ...52
textfile; ..49
type; ..51
vertices; ...51
viewingMatrix; ..46
visible; ...49
visibleSphere; ..50

