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NOMENCLATURE 

2 
Constant of proportionality in £/3U ~ 1/y* 

—r 

c Turbulence velocity vector. 

c Constant used in the equation for dissipation rate (1.45) , 

c~ Constant used in the equation for dissipation rate (1.92). 

2 2 
c^ Skin-friction coefficient (2 u./u ). 
t * w 

c c Reynolds shear stress per unit mass; defined in Equation (9c). 

Mean square of the x-component of turbulence velocity; defined 
2 

Q 

x in Equation (9e). 

Mean square of the y-component of turbulence velocity; defined 
2 
y in Equation (9d), 

Mean square of the z-component of turbulence velocity; defined 
2 

Q 

z in Equation (9e). 

2d Distance between the parallel plates. 

D-,D ,D Coefficients of Lagrange interpolation polynomial used to 

approximate the derivatives with respect to velocities; defined 

in Apprendix B. 

E Turbulence kinetic energy; defined in Equation (9b). 



IX 

f Distribution function of velocities of fluid elements. 

F Gaussian (equilibrium) distribution function; defined in 

Equation (2) . 

g First reduced distribution function; defined in Equation (7a). 

G Equilibrium form of the first reduced distribution function. 

h Third reduced distribution function; defined in Equation (7c). 

H Equilibrium form of the third reduced distribution function. 

j Second reduced distribution function; defined in Equation (7b). 

j Fourth reduced distribution function; defined in Equation (7d). 

J Equilibrium form of the fourth reduced distribution function. 
v 

K Constant of proportionality in the expression for relaxation 

time; defined in Equation (4). 

K Kurtosis or flatness factor of the g distribution function; 
u 

defined in Equation (9h). 

p Mean pressure. 

P Non-dimensionalized p r e s s u r e g r a d i e n t in the x - d i r e c t i o n 
x 

d _9f 
puj 3x 

P Non-dimensionalized pressure gradient in the y-direction 
( d 3| 



P Turbulent shear stress, defined in Equation (9c). 
xy 

(P ) Wall shear stress. 
xy w 

Q Flux of turbulence kinetic energy in the y direction; defined 

in Equation (9f). 

Position vector. 

Re Reynolds number based on plate velocity in Couette flow, 

(u d/v), and on the centerline velocity in channel flow 
w 

(uQd/v). 

Re. Reynolds number based on friction velocity (u.d/v). 

S Skewness factor of the g distribution function; defined in 

Equation (9g), 

-> 
u Time averaged flow velocity vector. 

\, 
u^ Friction velocity [(P ) /p] 2. 

u Plate velocity in the Couette flow. 
w 

un Centerline velocity in channel flow. 

u Mean velocity in the x direction; defined in Equation (9a). 
X 

u Non-dimensionalized mean velocity in the x direction. 

<v2> 

Non-dimensionalized turbulence intensity; defined in Eq. (9b). 

Non-dimensionalized mean square of y component velocity fluatu-

ations; defined in Equation (9d). 



XI 

2 2 
<u' +w' > Non-dimensionalized sum of the mean square of x and z 

component velocity fluctuations; defined in Equation (9e). 

w.. Defined in Equation (A-12) in Appendix A. 

w9 Defined in Equation (A-13) in Appendix A. 

x Cartesian coordinate parallel to the primary flow direction. 

y Cartesian coordinate perpendicular to the primary flow 

direction. 

y Non-dimensionalized y coordinate (y/d). 

y Local Reynolds number (u^y/v). 

z Cartesian coordinate perpendicular to the plane containing 

x and y coordinates. 

a Approximate profile for the dissipation rate, defined in 

Appendix C. 

£ Viscous dissipation rate per unit mass. 

G Correction about approximate profile for the dissipation rate. 

K Von Karman constant (0.41). 

V Kinematic viscosity. 

v> Turbulent or eddy viscosity [-Re.P / (du/dy) 1 . 
T * xy 

V Non-dimensionalized turbulent viscosity (v /v). 
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p Fluid density. 

a Constant used in the equation for dissipation rate (about 1.3). 

T Relaxation time; defined in Equation (4). 

x Non-dimensionalized relaxation time (u.T/d). 

Superscripts 

( ) Time averaged, and dimensional quantities. 

+ Indicates outgoing stream or in the positive c direction. 

Indicates incoming stream or in the negative c direction. 

Subscripts 

b Quantities denoting boundary condition. 

t-Vi 

i Evaluated at the i physical node. 

x Component in the x direction. 

y Component in the y direction. 

z Component in the z direction. 

a Evaluated at the discrete velocity point c . 
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SUMMARY 

Turbulent flow between parallel plates is studied utilizing a 

model equation, similar to the Boltzmann equation of kinetic theory, 

which was developed by Lundgren for the velocity distribution of fluid 

elements. This equation is applied to the plane Couette flow problem 

with zero pressure gradient and the two-dimensional Channel flow problem. 

Solutions to the governing equation are obtained numerically, employing 

the discrete ordinate method and finite differences. Two types of boun

dary conditions on the distribution function are considered for each of 

the flow problems. They are the Chapman-Enskog boundary condition and 

the gradient boundary condition. For the Couette flow problem, the 

latter reduces to zero-gradient boundary condition. The results of the 

calculations using these conditions are compared with available experi

mental data. 

The computed results for mean velocity in plane Couette flow 

agree well with experimental data. The skin-friction coefficients ob

tained in this study compare very well with the empirical curve fit. 

The Channel flow results are obtained with the assumption that the 

cross-stream pressure gradients are zero. Due to this assumption, the 

computed mean flow properties are slightly different from the experi

mental data even though they are in good qualitative agreement. 

This study establishes that Lundgren1s model equation provides a 

very good description of turbulence for the flow problems considered. 

For problems involving pressure gradients, if an independent equation is 
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available for computing cross-stream pressure gradients, this model 

equation can be used as a good analytical tool for further studies. In 

addition, the discrete ordinate method is shown to be an effective method 

for direct solution for the probability distribution, thus avoiding re

course to assuming, ci priori, approximate forms for this function. 



CHAPTER I 

INTRODUCTION 

Background and Review of Related Works 

Turbulence is one of the most complex phenomena in fluid 

mechanics. It represents a mechanical system with a large number of 

degrees of freedom, and is consequently very difficult to treat, either 

experimentally or theoretically. From the point of view of engineering 

predictions, most successes have been achieved with phenomenological 

theories based on Reynolds equations. Since the Reynolds equations 

have more unknowns than the number of equations, there is a problem of 

closure of the system. To circumvent this difficulty, phenomenological 

theories resort to semi-empirical relations among the unknowns. Differ

ent relations have led to varying degrees of success. The phenomeno

logical theories, however, are not sufficiently general to allow 

treatment of various correlation terms. The lack of generality arises 

because the closure of the system of equations is achieved by represent

ing the higher order correlations terms as a function of lower order 

correlations. 

Similarities between the statistical behavior of molecules in 

a gas and the velocity fluctuations of fluid elements in a turbulent 

flow suggest the possibility of describing both phenomena in terms of 

a velocity distribution function from which mean properties may be 

computed by forming appropriate moments. Since the length scales of 
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turbulence are many times larger than the molecular mean free path, 

continum equations are adequate for the description of turbulent flows. 

In addition to the uniqueness in treating various correlation terms, 

the use of velocity distribution functions can potentially provide 

more details of turbulence structure than the phenomenological 

approaches. It has been shown by Batchelor [1] that the velocity dis

tribution function in grid-generated turbulence is nearly Gaussian. 

However, for inhomogeneous turbulent flows, the velocity distribution 

function is no longer Gaussian. The departures from this state are 

important features of most turbulence processes. 

One of the earliest formulations utilizing probability density 

or characteristic functional is due to Hopf [2], Other related works 

are based on moment formulations and their clorues. A hierachy of 

equations for probability distribution functions was derived by 

Monin [3l, using a similar but more generalized approach than that of 

Hopf. In this respect, Hopf's equation parallels the Liouville equa

tions of statistical mechanics from which the Bogoliubov-Born-Green-

Kirkwood-Yvon (BBGKY) equations [4] are derived. All these works have 

been confined to closure hypotheses. 

A hierarchy of equations for multi-point probability distribu

tion functions, similar to that of Monin, has been developed by 

Lundgren [5 ] starting from the Navier-Stokes equations. This hierarchy 

resembles the BBGKY equations and has the familiar closure problem. 

To close the set of equations, various models have been explored. 

Fox [6, 7] has used cluster expansions, analogous to that used with 

BBGKY equations in kinetic theory, for the case of homogeneous 
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turbulence. In another work, Lundgren [8] was able to find the 

kolraogorov spectrum in the inertial range by using Gaussian closure 

at the third level. Lundgren [9] has also attempted to close the 

system at the one-point level by employing a relaxation model identical 

in form to the Bhatnagar-Gross-Krook (BGK) model [10] of kinetic theory. 

However, this model is not, within itself, sufficient to define a 

turbulent flow. An additional equation is required to relate the 

turbulence dissipation rate to other flow properties. This implies 

that an jid_ hoc assumption must be made regarding the relaxation rate 

in this model. None of the above closure models have been applied to 

wall-bounded flows. 

A different approach using probability distribution functions 

has been developed by Chung [11, 12] in which similarities between 

turbulence and Brownian motion have been employed. Chung has obtained 

a closed Fokker-Planck equation for the probability distribution func

tions based on the Langevin equation for generalized Brownian motion. 

He has used this Fokker-Planck equation to obtain solutions for the 

plane Couette flow problem employing moment me thods [131 f amiliar in 

kinetic theory. In these methods, specific functional forms are 

assumed for the distribution function and unknown coefficients are 

determined from a set of moment equations. Chung [14] has also ex

tended his approach to chemically reacting flows. 

In the present work, Lundgrenfs model equation with a BGK type 

relaxation term is employed to study fully developed turbulent flow 

between parallel plates. The solutions are obtained by applying an 

extension of the discrete ordinate method [15, 16] as developed for 
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problems in rarefied gas dynamics. This method differs from moment 

methods in that no a_ priori assumption about the form of the distribu

tion function is required. Instead, the numerical solution is obtained 

directly from the governing differential equation rather than from 

moment equations. This difference is analogous to that obtained in 

solutions to boundary layer equations using integral versus finite 

difference methods. In the former, assumptions are made a priori on 

the shapes of velocity profiles and undetermined coefficients are 

evaluated. Finite difference methods, on the other hand, are used to 

solve the partial differential equations themselves and thus afford a 

finer detail of the flow structure than can be achieved with integral 

methods. 

Purpose of the Research 

Due to the general nature in treating various correlation terms 

and the potential in revealing finer details of turbulence, there has 

been increasing interest in obtaining probability distribution functions. 

Lundgren's model equation will be employed in this work to study fully 

developed turbulent flows between parallel plates. One of the major 

difficulties in solving this equation lies in the prescription of 

appropriate boundary conditions. Unlike cases in the kinetic theory 

of gases and moment methods, there are no obvious forms for the distri

bution function that can be specified on the boundaries of the flow 

field. Besides, the validity of the model equation very near the wall 

is questionable and so boundary conditions are applied at a location 

slightly away from the wall. 
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Thus, the purpose of this research is two-fold: first, to 

postulate appropriate boundary conditions for the distribution func

tion near the solid boundaries; and second, to obtain accurate numeri

cal solutions of the governing differential equation using discrete 

ordinate method. The results of this study will be compared with 

available experimental data. 
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CHAPTER II 

GOVERNING EQUATIONS 

The differential equation governing the lowest order probability 

distribution function is [9] 

3f + 9f 

9r 

1 9p L 3 9 •*•} 9f 
_^ + v • — • ~ u • — (1) 

p 9r 9r 9r j 9v 

= ±<F-f) + H V ( M ) f 
T 3 U2 9v 

— -> ->-
Where f(r, v, t) dv is the probability that the instantaneous velocity 

-> ->-->-->-
at r in physical space is within the range v to v + dv in velocity space. 

The mean pressure, density and kinematic viscosity are represented by p, 

p and V, respectively. The relaxation time is represented by T which is 

related to the characteristic turbulence diffusion time. F is a Gaussian 

(equilibrium) distribution given by 

-2 -3/2 -* + 2 -2 
F = (2TTU ) J / Z exp[-(v-u) /2U ] (2) 

•+ - 2 

The mean flow velocity vector is u and 3U is the mean square of the 

velocity fluctuations. These are obtained from the distribution function 

by the relations 

u = Jv f dv (3a) 

-2 r + + 2 - •+ 
3U = J(v-u) f dv (3b) 
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where the integrations are taken over the entire velocity space (-°° to 

+ cofor each component). The first term on the right-hand side of 

Equation (1) represents the rate of change of the probability distribution 

function due to turbulence diffusion and the last term depicts the effect 

of turbulence dissipation rate. 

Lundgren [9] modeled the relaxation time, the characteristic time 

for decay of anisotropy, by the equation 

1 = K(£+j DU
2/Dt) 

*" u2 
(4) 

Here, e is the turbulence dissipation rate and K is a constant of 

proportionality. 

To make the analysis simpler, it is desirable to introduce the tur-

- > - > - > • 

bulence velocity c = v - u as an independent variable. Making this change 

of variable and simplifying the physical coordinates to the case of one 

dimension, the governing equation, Eq. (1), becomes 

- ii 
y 9y 

du -. ^~ 
_JL + 1*R _ 

y dy p 3x 
V 9 f .. 1.3R jtf 

dy2J 
dc p 9y dc 
x y 

(5) 

k <*"*> + -=2 
3U 

3f + c ^ ^ + c ^r^ + c — r x dc y 3c z 9c 
x y z 

Here, y is the direction normal to the mean flow and c , c and c are the 
x y z 

turbulence velocity components. The distribution function should satisfy 

the constraints 

fff f dc dc dc = 1 
x y z 

(6a) 



/// c. f dc dc dc = c. = 0 (6b) 
:L X y Z I 

where the subscript i represents a component of c. Equation (6a) states 

-> -> 
that the probability of finding a fluid element somewhere in r, v space 

is unity, while equation (6b) requires that the mean of the fluctuating 

velocity components be zero. 

Reduced Distribution Functions 

A reduction in computer storage requirements is secured by defining 

the reduced distribution functions as follows: 

g(y»c ) = j 7 f ( y , c , c , c )dc dc (7a) 
x y z x z 

j ( y , c ) = / / c f ( y , c , c , c ) dc dc (7b) 
y J J x x y z x z 

— — — _ 9 — 9 — — — 

h ( y , c ) = / / (c + c ) f ( y , c , c , c ) dc dc (7c) 
v JJ x z x y z x z 
J — oo J 

A l s o , l e t 

j ( y , v )= f f ( c + u ) f ( y , c , c , c ) dc dc , (7d) 
v y y / x x x y z x z 

J — oo y 

and G, H and J be the reduced Gaussian (equilibrium) distributions. 
v 

Equation (5) is transformed into a set of equations in terms of the reduced 

distribution functions which are easier to treat numerically. These are 

S H - i (5-i) +4T fi + ̂ H l +^|| § (8a) 'y 3y T v b/ ^ 2 
3U ^ y 

y 3C J p 3y 3c 
y 



9 

- 3j -J 
c —~r = —=• + 

y 3y T 

d u , r,- d u 
x 1 dp x 

1 d y 2 

L_ c + i 12." 
p 3x " " y dy J 6 ^ - 2 Cy p 3yJ 

g + 92! 
y 

(8b) 

, 2 -

c | S = 4 (H-h) + 2 V — ~ 
y 9y T I dy p 3 x y d ? 

1 Cl~ &U 

. A £E ~ x (8c) 

+ -§2 
3U 

- h + c T=-
y 3c 

yJ 

1. _3£ _3h 
p 3y 3c 

(8c) 

and 

9j . 
, 2 -

r a u 
v y 3 f = i(VJv) + [V 

* _ I |P + _i„{] 
dy 3U' 

+ L ; + i IE "1 3j 
v + 

Un2 y P
 3yJ 3^ 

V (8d) 

where 

T U 2 

G = (2TTU2) '* e x p ( - c 2 / 2 U 2 ) 

- 2 -
H = 2U G 

and J = u G. 
v x 

Moments of I n t e r e s t 

Once e q u a t i o n s (8) a r e s o l v e d , t h e moments of t h e d i s t r i b u t i o n 

f u n c t i o n s c a n b e computed . Some of t h e moments of i n t e r e s t a r e 

u = , i dv 
x ' v y 

no J 

(9a) 
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Ek = ! s 2 - \ / E <S + i / s id =y
 (9b) 

= c c = / c j dc (9c) 
xy x y _'«, y y 

c = / c g dc (9d) 
y _ i y y 

c 2 + c 2 = / h dc (9e) 
V 

^j oo 

Q = ~ / c h dc + 4 / c 3 g dc (9 f ) 
y 2 _.oo y y 2 _ i y y 

00 

S = 3 " / % 8 d % ( 9 g ) 

u - c o y y 

CO 

K = - ~ / c 4 i dc (9h) 
u u 4 - » y y 

These are the mean velocity, turbulence kinetic energy, Reynolds stress, 

mean square of the y-component velocity fluctuations, mean square of x 

and z-component velocity fluctuations, kinetic energy flux, skewness and 

flatness factor, respectively. 

Final Reduced Equations 

It is convenient to define the following non-dimensional variables, 

c v - u u^T 
c = —^ ; v = —^ ; U = — ; u = — ; T = — — ; ufvf = P 

y u * y u * "* u * d x y u
2 

* 
,2 % ,2 J ,2 vcx z ; 3 _ h . T 

< v f > = 2 ; <u w > = 2~ ; u* ; 8 = u* g; = IT ; J = J' 
uA u^ * 
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j„ = j„ ; Q, •v Jv ' xy 3 
y Cd x y T 

; e ; v d * ' d ' T v ' * v ' ; ̂ * = 
"*d 

P = _JL 1P . P = _i iz . 
x ' 2 3x ' y " 2 3y ' 

Pu* Pu* 

where 2d is the distance between the parallel plates, u. = [(P ) /p] , 
* xy w 

is the usual friction velocity, (P ) is the wall shear stress and vm is 
xy w T 

t h e t u r b u l e n c e v i s c o s i t y . 

Us ing t h e s e q u a n t i t i e s , t h e g o v e r n i n g e q u a t i o n s become, 

c |S. = l ( G . g ) + JL^ 
y 9 y T

 3 U
2 

g + c .28-1 + P ^fi. 
y 9c + y 3c 

(10a) 

y 3y T 
1 d u du 

R e * d y 2 ' X " C y d y 
(10b) 

+ 
3U 

7 c + P 
2 y y 

ii 
3c 

3h 1 

'y 9y Y (H-h) + 2 Re 
L . ^ . p 

2 x - c 
dy 

du_ 

y dyj 
(10c) 

+ 
3lT 

- h + c 
3h 

y 3c. 
+ p 

3h 
y 3c 

and 

v _ * = i ( j - j ) + 
y dy T V v 

e 1 d 2
u _ 

U + 7T ~ P 
3U2 R e * d y 2 X 

(10d) 

+ 
3U 

7T V + P 
2 y y 

9j __x 
3v ' 

y 
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This set of equations is to be solved by the discrete ordinate 

method, subject to boundary conditions to be discussed in Chapter III. 

Examination of this system of equations reveals that it is not yet 

completely self-contained. The dissipation rate £ is not given as a 

moment of the distribution function. Therefore, a separate equation for 

£ is required to close the set. Among the possibilities for such an equa

tion is the differential equation for £ developed by Jones and Launder [17] 

based upon a semi-empirical approach. For one-dimensional flow, the non-

dimensionalized equation is 

°e dy2 °e 

faV T 
[ d y J 

'de' 
,dyj 

+
 2 c ^ 
3 ! U2 

du, 
(Ha) 

" f C2 Re* ~2 = ° 
U 

Here, a , c and c„ are constants and v = -Re^ u v'/(du/dy). 

For the case of Couette flow, there is another possible expression 

for c resulting from equating the rate of production of turbulence kinetic 

energy to the rate of dissipation. Using the assumption E, ~ constant, 

this equation becomes 

£ = a (lib) 

where a ~ 0.8. 
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CHAPTER III 

BOUNDARY CONDITIONS 

One of the difficult aspects of this study is specification of the 

appropriate boundary conditions. This difficulty arises as a result of 

two factors. First, there is no obvious form to assume for the distri

bution function at a solid boundary. This is in contrast to the situation 

which arises in establishing boundary conditions for moments of the dis

tribution function. Since the mean flow velocity is a moment of the 

distribution function, information from continuum flow only gives the 

no-slip condition that 

u = J v f d v = 0 . 

Because many functions for f could be specified which satisfy this inte

gral constraint, there is lack of uniqueness in prescribing f. 

Second, the validity of the turbulence model equation is question

able very near the wall, particularly in the region corresponding to the 

viscous sublayer. Thus, there is hesitation in applying the analysis in 

this zone. 

With these considerations in mind, the two fundamental factors to 

be addressed are the functional form for the boundary conditions on the 

distribution function and the location where it should be applied. 

The present study therefore contains, in addition to the develop

ment of a capability of obtaining convergent, stable numerical solutions 
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to the model equation, a detailed examination of two different boundary 

conditions in light of comparison with experimental data [18, 19, 20, 21], 

This division of the problem virtually parallels the situation arising in 

calculations of rarefied flows from the Boltzmann equation. In this field 

the study of gas-surface interactions, which are used for boundary con

ditions in solution of the governing equation, has become almost a sepa

rate field of endeavor within itself. Such could well be the case with 

the statistical approach to turbulent flows. 

Matching to the Law of the Wall 

The course taken in the present work is to confine the application 

of the turbulent model equation to regions outside the viscous sublayer. 

The boundary conditions for the governing equation are applied at points 

where y,. = yu./v lie between 50 to 150. The usual functional forms for 

law of the wall were assumed to relate the boundary point to wall 

conditions. This necessitates that certain matching of the numerical 

solutions to law of wall variation at this interface be performed. The 

specific conditions applied are dependent upon the form selected for the 

distribution at the boundary and will be discussed in more detail in 

Chapter IV. 

Gradient Boundary Condition 

In the region where the law of the wall is valid, it is known that 

the mean velocity profile is logarithmic and the turbulence kinetic en-

-2 2 

ergy, or U /u^, is approximately constant [22], Also in this logarith

mic region, the turbulence dissipation rate is approximately equal to 

the rate of production of turbulence kinetic energy, -P du/dy. Using 
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the logarithmic mean velocity profile, the dissipation rate is inversely 

proportional to the distance from the wall. Assuming the pressure gradi

ent, P , to be zero, under these requirements, the governing equation it

self may be used to develop an appropriate form for the distribution 

function. The detailed derivation of such a distribution function is 

shown in Appendix A. 

For the simpler case of Couette flow with zero pressure gradient, 

the momentum equation requires that the total shear stress is constant be

tween the plates. If attention is confined to the region well outside 

the viscous sublayer, then the viscous stresses are negligible and there

fore the Reynolds stress is constant. Assuming that the apparent vis

cosity coefficient is linear in y, then gives the familiar logarithmic 

mean velocity profile. Further, in this region, the turbulence kinetic 

energy is approximately constant. In terms of moments described earlier, 

these conditions give 

9 9 9 o 
II l(c + c + c )f dc dc dc = 3U = const J J J x y z x y z 

[[[ c c f dc dc dc = P = const. 
J J J x y x y z xy 

Therefore, under the assumption of linear variation of v for the 

Couette flow problem, it should be possible to construct a boundary con

dition for the distribution function such that the governing statistical 

equation yields a logarithmic mean velocity profile between the plates. 

A sufficient condition for this is to require 9f/9y = 0 at the boundary 

point, and to require it to match with the law of the wall. In terms 
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of the reduced distribution functions, this condition implies 9g/9y = 

3j/9y = 9h/9y = 0 at the boundary point. 

The governing equations themselves may be used to develop appropri

ate forms for the distribution functions by setting 9g/3y = 9j/9y = 

9h 
TT— = 0 in Equations (10). If one assumes du/dy = 1/Ky, U = U , £ = 1/Ky 
dy b 

1 2 
and — = Ke/U , then, for the case of Couette flow with zero pressure 

gradient, Equations (10) reduce to 

3K(Gb - gb) + gb + c — - 0 (12a) 

y 

-3Kj, + c - — = 3g, c U (12b) 
Jb y dc °b y b 

y 

d \ 2 

3K(H, - h, ) - h + c -T-2- = 6j, c U, . (12c) 
b b D y dc b y b 

y 

The subscript b is used to indicate that the quantities are to be used 

only as boundary conditions in solving Equations (10). It should be 

noted that 9j /9y ^ 0 since the mean velocity is not a constant, but 

logarithmic. However, j can be related to g and j by 

i = j7(c + u) f dc dc = j + u g (13) 
v 'J x x y 

Hence, at the boundary 

V = h + ub gb 
b 

where u, is the mean velocity at the boundary point. The boundary point 

is selected such that ŷ  = u^y /v is approximately 100 to ensure that 
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viscous stresses are negligible there. 

The solution to the set of Equations (12) must be obtained 

numerically. Since the distributions function and all their derivatives 

with respect to velocity must approach zero as jc | -> °°, this is used as 

a boundary condition in velocity space. The integration proceeds from a 

large absolute value of c toward zero. A second-order finite difference 
y 

scheme is utilized for the integration. The result of the integration is 

a set of numerical values for the distribution functions which are then 

employed as boundary conditions in the solution of the model equation. A 

similar procedure is employed for a more complicated case like the chan

nel flow, for which the conditions shown in Appendix A are appropriate. 

Chapman-Enskog Distribution Function 

Flow fields involving pressure gradients do not have constant shear 

stress profiles. For such problems, the assumption 9f/9y = 0 is not valid 

and the conditions given in Appendix A are more appropriate. However, 

these conditions are only sufficient conditions and in reality they may 

not be true. Therefore, it is desirable to seek a boundary condition for 

the distribution functions which would circumvent this difficulty. Upon 

first inspection it would seem possible to impose a Gaussian distribution 

as boundary condition in a manner analogous to the use of Maxwellian re-

emission of molecules from a surface in the kinetic theory of gases. How

ever, since a Gaussian distribution function gives zero Reynolds' stress, 

this is inappropriate for application within a turbulent zone. 

An organized manner of obtaining proper boundary conditions is the 

Chapman-Enskog procedure [23], By this method one can obtain approximate 

solutions to Equation (1) using a Series expansion. The Zeroth order 
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solution gives an equilibrium Gaussian distribution, which, as mentioned 

earlier, results in zero Reynolds' stress. The first-order solution is 

commonly termed the Chapman-Enskog distribution, and accommodates a non

zero Reynolds1 stress. 

The first-order Chapman-Enskog expansion for a one-dimensional flow 

gives 

/-IN v 2 c c
 JTT

2 c c , 

f<D = F fi -
 T

 u -£- - IN -i *L_ + _JLJL du 
! 2^( 2 2> 2 dv 2 dv Jj U ; 

Re^U 2U U y U y 

where 

F = 
27T.U2 

3 / ? 2 2 2 2 2 
exp[-(c + c + c )/2U ] 

x y z 

is the Guassian distribution. The corresponding non-dimensionalized forms 

for the reduced distribution functions are 

g ( « . G _ ^ M C r i ^ (H + ĉ G) - 5G] (15a) 
Re^U y y U y 

^ ( 1 )=-fe^G «*> 
2 

h ( 1 ) = H - — ^ f- c [ ^ H + 8U2G - 5H ] (15c) 
Re,U3 d y y U2 

. (1) . (1) , (1) n , , , 
J v = J + u g (15d) 

These forms may then be applied as boundary conditions for the governing 

equation. Details of the application will be discussed in Chapter IV. 
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Two-Stream Nature of Boundary Conditions 

Even though boundary conditions for the distribution functions are 

established, their implementation is not straightforward. If one examines 

the physics of the flow problem between parallel plates, it is clear that 

both plates contribute to the establishment of the flow; and, therefore, 

boundary conditions should be applied at a y^ value near each plate, giving 

two boundary conditions, (The symmetric condition at the centerline may 

be used to reduce the problem to a half-space in y, but still this requires 

two boundary conditions on f). Yet, if one examines the one-dimensional 

governing equation, Eq. (5), it is observed that only first-order deriva

tive of f with respect to y is present. It would thus appear that impo

sition of two boundary conditions would result in overspecifying the 

problem. 

Experience in solving the Boltzmann equation in rarefied gas dyna

mics gives insight to resolving this paradox. In the molecular approach 

to rarefied flows, one can specify the velocity distribution function of 

molecules leaving a surface. The distribution function for those striking 

the surface is determined as a consequence of the solution. Thus, the 

boundary conditions possess a "two stream" nature. The interaction of 

the incoming and outgoing streams is controlled through the collision or 

relaxation term in the model equation and through integral constraints 

such as the requirement that the incoming mass flux equal that for the 

outgoing stream. 

If this concept is applied to the problem of turbulent flow between 

parallel plates, one requires that at the boundary point near the lower 

plate the distribution function be specified only for positive values of 
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Figure 1. Two-stream Boundary Conditions. 
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c while for the corresponding point near the upper plate it is specified 

only for negative value of c . This is illustrated in Figure 1. Insofar 

as the function f is concerned, this is equivalent to imposing a single 

constraint for all c domain values while it allows the effects of each 
y 

plate to be introduced into the problem. This is mathematically consis

tent with the first order nature of the y derivative in the governing 

equation. Further, it seems plausible that such a two-stream approach is 

justified on a physical basis, since the turbulence motions leaving and 

approaching the wall region will be affected differently by the presence 

of the wall. 
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CHAPTER IV 

NUMERICAL APPROACH 

Discrete Ordinate Method 

The discrete ordinate method is a numerical technique of replacing 

a continuous independent variable in a system of equations by a set of 

discrete values and then treating these as parameters in the remaining 

solutions. Although not restricted to integro-differential equations, the 

method has proven quite useful in attacking this type of problem. Two 

examples of this application in physics are radiative transfer [24] and 

rarefied gas dynamics [15, 16]. The latter field is closely related to 

the present study since the fundamental equation in rarefied gas dynamics 

is the Boltzmann equation for the velocity distribution function of mole

cules. If the BGK model [10] is substituted for the collision integral 

of the equation, the one-dimensional form of the Boltzmann equation be

comes 

c f - - i(F - f) 
y dy T 

in the absence of external forces. This possesses the form similar to 

Equation (5). However, the latter equation is more difficult to treat 

since it includes terms containing 8f/8c. Thus, one of the important ex

tensions of the discrete ordinate method as applied to the present problem 

has been the treatment of derivatives in velocity space. The presence of 

external force terms in the Boltzmann equation would introduce derivatives 

with respect to velocity, and thus the technique devised in the present 
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numerical solutions for turbulence can be transferred back to rarefied 

gas dynamics. 

Since the flow properties of interest are obtained as integrals 

over velocity space (as seen from Equations (9)), it is preferable to 

discretize the velocity variable. The set of discrete velocity points 

is denoted by {c }, and a continuous function, say, g(y,c ) is replaced 

by a set of functions g (y), a = l,2,...,s. The same procedure is applied 

to each of the dependent variables. The integration over c to form 

moments may then be accomplished by numerical quadrature employing appro

priate weighting functions, 

OO g 

/ «,<c ) g(y,c ) dc = Z 0(c) g0(y)W 
_oo -' J J 0=1 

where (j) is a function of c , and W are the weighting coefficients in 

the quadrature. The choice of discrete velocity points, c , depends upon 

the quadrature formula employed. For functions that are not too far from 

a Gaussian distribution, open-type quadrature formulae such as the modi

fied Gauss-Hermite quadrature [25] are likely to be quite accurate. How

ever, in anticipation of the discontinuities in velocity space when the 

Chapman-Enskog distribution functions are used, it is preferable to 

employ a closed-type quadrature. In the present study, an eleven-point 

Newton-Cotes formula [26] is used to approximate the integrals over velo

city space. 

Finite Difference Methods 

Since the governing equations, Eqs. (10), contain only first order 

derivatives with respect to y and c , the initial approach taken in 



24 

forming finite difference equations from the differential equation was to 

use simple forward and backward differences, depending upon the direction 

of integration. However, when this first-order scheme was employed in 

the Couette flow problem, it resulted in some numerical error in the re

gion near the wall. This is illustrated in Figure 2 for the solutions 

obtained for Reynolds' stress with the zero-gradient and the Chapman-

Enskog boundary conditions. It is expected that the Reynolds stress for 

Couette flow should remain constant in the turbulent zone. As seen in 

Figure 2, the deviation from a constant value, when the zero-gradient 

boundary condition is used, is approximately one per cent. Although this 

is quite accurate in most cases, the non-constancy of the Reynolds stress, 

as opposed to the absolute error, is of some concern. The results for 

the Chapman-Enskog boundary condition, as seen from Figure 2 shows about 

fifteen per cent variation across the turbulent zone. Some of this vari

ation is due to the model assumed for the boundary condition. However, 

it is desirable to reduce possible numerical errors so that the effects 

due to physical modelling can be delineated. 

To reduce numerical errors, a more accurate finite difference form 

for the derivatives is employed. If a function f(y,c ) is expanded in 

a Taylor Series about a point (y.,c ), then 

f i - l " f i , o 
[111 
Wi, 

Ay + 3 2f 
2 

l d y J 

(Ay) 

i , a 

3 
8 f 

,8y , 
(Ay)" + 

i , a 

(17a) 

and 
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f, , = f. - 2 
i - 2 , o I , G 

fill Ay + 2 '9V 
I3y2j 

(Ay) 

i ,o 

4 f93f) , . . 3 

3 T3J (Ay) + • • • ' 
(17b) 

for a cons tan t spacing Ay. E l imina t ing the second d e r i v a t i v e terms from 

Equations (17a) and (17b) , r e s u l t s in the r e l a t i o n 

4 f . , - f, o = 3 f . - 2 I - I , a i - 2 , a i , a 

Solving for the first derivative gives 

9f 

m. (Ay) + 
L JJ1,0 

3f 
3 f4 ^ f . , +f. o 0 
- ^ i-l?a i-2,o + 0 [ ( A y ) 2 j 

2 (Ay) 
(18a) 

Thus, this backward difference scheme has a truncation error of order 

2 
(Ay) as compared to order Ay for the simple backward difference. A 

similar form for a second order forward difference scheme can be devel

oped yielding 

df 

3yJ • 

4f.1 1 - f . l 0 -3f. 
I + I , o i+2, o i,o 

2 (Ay) 
*--+ 0[(Ay) ] (18b) 

In the finite difference scheme employed, the distribution function 

and its derivatives with respect to y are evaluated at the same grid 

point. Consequently, in the light of the two-stream nature of boundary 

conditions, the finite difference formulae, Equations (18) are more 

appropriate than the usual central difference scheme. 



A similar approach can be employed for deriving expressions for 

(3f/3c ) . . However, since the range of integration for calculating 

macroscopic properties is infinite in the velocity domain, the spacing 

of discrete velocity points is necessarily variable so that efficient 

use of the quadrature can be achieved. Therefore, it is preferable to 

obtain a second order finite difference expression from Lagrange Inter

polation formula [26]. This results in the following forms for the 

derivatives: 

Backward difference: 

3f 
3c 

I yj 

(c -c .) 
a a-1 f. 

i,o 
^CT_2-

Ca-1)(ca-2-ca} i>a~2 

(cc-ca-2> 
(ca-rca-2)(ca-rca) i'a"1 

(^a-c -cg.2) 2 

(ca-ca-l)(ca-ca-2) x'a 
(19a) 

Forward difference: 

9f 
dc 

yj 1 , 0 

( 2 c g - c a + r c a + 2 )
 £ 

( c a - c a + l ) ( c a - c a + 2 ) * ' a 

+ 
( c a- c a+2 ) 

( c a + r c a ) ( c a + r c a + 2 ) ^0+1 

+ 7 M r T f - n + , +0[(Ac ) 2 ] 
(<=a+2-c0) ( c a + 2 - c a + 1 ) i,a+2 a 

(19b) 
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As a consequence of the two-stream nature of the distribution 

functions, the choice of the direction for the difference scheme (either 

forward or backward) is readily prescribed. For the "positive" stream 

(c > 0), the computations should proceed from + °° (where boundary condi

tions with respect to velocity space are known) to zero in velocity space, 

and from the lower boundary point, point A in Figure 1 (where conditions 

with respect to physical space are known) to the upper boundary point B. 

Thus, the forward difference in velocity space and the backward difference 

in physical space are employed. For the "negative" stream (c < 0) the 

reverse is true. There, the integration proceeds from-00 to 0 in c and 

from upper boundary to lower boundary in y. Thus, the backward difference 

in velocity space and the forward difference in physical space are utilized. 

When these forms are substituted for the derivative terms in Equation (10), 

a set of difference equations for the reduced distribution functions is 

obtained. These equations are given in detail in Appendix B. The results 

obtained using second order difference schemes show a substantial improve

ment over the first order results and these solutions are discussed in 

Chapter V. 

Iterative Scheme 

The resulting equations are solved by an iteration process since the 

equations contain terms which depend upon the macroscopic properties. 

Therefore, initial guesses are made for u, U and e. The equations for 

positive stream are then solved from the near wall boundary point up to 

the centerline, symmetry or antisymmetry conditions are applied, depending 

upon the geometry, and the negative stream is then computed from centerline 

to the boundary point. This completes one iteration and yields an 
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approximate solution for the reduced distribution functions. From these, 

new profiles for the macroscopic quantities are evaluated and stored for 

use in the second iteration. If integral constraints are required at the 

boundary point, these are imposed before the second iteration is started. 

The required integral constraints for each problem are discussed in 

Chapter V and Chapter VI. The iterative process continues until satis

factory convergence is obtained for the mean flow quantities. 

Constraints at Boundaries 

As pointed out in Chapter III, since boundary conditions are applied 

at a point away from the wall where the law of the wall is applicable, 

certain matching of the numerical solution to the law of the wall is 

necessary. The form of the distribution function at the boundary point 

dictates the constraints which must be applied. Besides, depending upon 

the geometry of the problem, the conditions to be imposed at the center-

line are different. The constraints for Couette flow are described in 

Chapter V and those required for Channel flow are discussed in Chapter VI. 
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CHAPTER V 

COUETTE FLOW WITH ZERO PRESSURE GRADIENT 

Geometry and Boundary Conditions 

The configuration of Couette flow problem with zero pressure 

gradient is shown in Figure 3. The boundary conditions employed for 

this problem are the zero-gradient and the Chapman-Enskog boundary 

conditions. The constraints imposed at the centerline are the same 

regardless of the near wall boundary condition. For Couette flow with 

zero-pressure gradient, the turbulence quantities U, P and<v >should 

have no gradients in y at the centerline. In other words, these quan

tities are approximately constant near the centerline. In terms of the 

distribution function, the condition that 9f/9y = 0 seems very appro

priate there. Since boundary conditions at centerline are required only 

for the negative stream, the properties of this condition can be exploi

ted to relate the distribution functions for the negative stream to those 

of the positive stream. It can be seen from Eqs. (12) that the reduced 

distribution functions g and h are symmetric in c and the function j 

is anti-symmetric in c . If these properties are applied at the center-

line, then 

g~(y=l, - cQ) = g
+(y=l, cQ) (20a) 

j~(y=l, - cQ) = -j
+(y=l, cQ) (20b) 

h"(y=l, - cQ) = h
+ (y=l, ca) (20c) 
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Equation (20a) implies that the probability that the turbulence velocity 

at the centerline is in the neighborhood of -c is the same as it is near 

+ c . Equation (20b) states that the contribution of the negative stream 

to the momentum is opposite of that due to the positive stream, while 

Equation (20c) states that the contribution of the two streams to turbu

lence kinetic energy are the same. From the geometry of the Couette flow 

problem, it is seen that the mean velocity at the centerline is zero. 

This condition enables j to be determined. From Equation (13), it is 

seen that at the centerline, 

j v ( y = 1 > - v
Q ) = j ~ < y = 1 > - c

0 ) -

Using Equation (20b), this yields, 

j~ (y=l, - va) = j^(y=l, V Q) (20d) 

Thus, Equations (20) are used as boundary conditions for the nega

tive stream. The constraints imposed at the near wall boundary, however, 

depend upon the form of the distribution functions. 

Zero Gradient Boundary Condition 

In employing the zero-gradient boundary condition, it is necessary 

to specify U and u^ (hence, the value of the wall shear stress). From 

the geometry of the problem, then, Rê . = u^d/v can be computed. Thus, 

if this boundary condition is employed, Re^ must be specified a. priori. 

However, for the zero-gradient condition, the mean velocity should be 

logarithmic between the plates and be zero at the centerline. This can 

be satisfied if u^/u has a particular value, given by the relation, 
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fu 
w 

luJ 

U -

— = - In (Re ) + 5 (21) 
u* K 

Since Re^ is given, Re can immediately be computed from Re = Re^ 

The condition for mean velocity at the boundary is given by 

ub " 7 ^ ^ V + 5 - uw/uA (22a) 

The values of U at y = y, is obtained from the empirical formula [22] 
b 

U^ = __2_ w i t h c = o.l (22b) 
b 0 /— D 3v^ 

Equations (12) are then solved subject to these constraints to give 

boundary conditions on g, j. h, and j . These conditions are fixed for 

all iterations. 

Chapman-Enskog Boundary Conditions 

When the Chapman-Enskog form is used as a boundary condition for 

the positive stream, it is possible to deduce the u. value from the solu

tion, if the value of Re is specified. This is achieved by applying 

appropriate integral constraints upon the outgoing and incoming streams 

at the boundary point. Using Equations (15) as conditions on the outgoing 

or positive stream, the first iteration is started once the initial guesses 

are made. Then, upon marching back from the centerline of symmetry, cer

tain quantities must be re-evaluated before the second iteration can 

A VT dU , VT du , L _ nn 
proceed. These are U, -—ZTT -;—, u and - — -t—. In this study, the follow-

Re^U dy* Re^ dy J' 
ing constraints have been used. 

VT du 
U'V' "- l i - d ^ " " 1 - 0 (23a) 
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oo r\ oo 

c j c g dcy = / c g d c + ( c g+dc = 0 (23b) 
y J y J y y y 
^ _ o o - / _ o o - ' p. J J 

{ g d c = I g dc + f g ( 1 ) dc = 1.0 (23c) 
y o y 

i u * u 

u = uu = - in (Re — y j + 5.0 - — (23d) 
b K u J b u . 

w * 

Equation (23a) states that the Reynolds stress at the boundary point is 

equal to the wall shear stress. (The viscous stresses could be included 

in this equation and, in fact, several calculations have been performed 

over the course of this study in which this has been done.) Equation (23b) 

requires that the time average of the fluctuating vertical velocity com

ponent be zero. Equation (23c) states that the probability of finding 

a fluid element with velocity between - °° and + °° is unity, and 

Equation (23d) is the law of the wall for mean velocity. If the Chapman-

Enskog forms of Eqs. (15) are substituted into Eqs. (23), there results, 

U = - /2TT C 

^ = /2TT (0.5 - c0) (24b) 
2 

0 
where, c. = J c g dc (24c) 

1 y y 
_ oo J J 

0 
and c? = / g dc (24d) 

2 y 

The constants c. and c are computed numerically at the conclusion of 

each iteration, based upon the current value of the g (or incoming 

stream) distribution. Thus, the parameters in the outgoing stream may 
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be readjusted at each iteration to conform with the imposed constraints. 

The value of u., and hence the wall shear stress is obtained from 

Equation (23d) with the computed value for u, at the end of each iteration. 

During the course of this study it was found that a slight modifi

cation to this scheme was appropriate. When these constraints are used 

on the Couette flow problem with zero pressure gradient, the solutions 

for mean velocity are found to depend upon Reynolds number, if the pro

files are plotted in a velocity defect graph. These results are shown 

in Figure 4. The velocity defect plot should, in reality, be independent 

of Reynolds number. It is recalled that the boundary conditions are 

applied in a two-stream manner. One of the consequences of this is that 

it can introduce a "slip velocity" at the boundary point; that is, the 

calculated velocity differs slightly from that of the logarithmic law. 

This slip velocity depends on the plate velocity and consequently the 

velocity defect profiles in Figure 4 depend on the Reynolds number. 

One way to eliminate such a slip velocity is to require, through 

an integral constraint, that the mean velocity obtained from both outgoing 

and incoming streams conform with the laT7 of the wall. Since the law of 

the wall requires the mean velocity to be logarithmic, it is more appro

priate to apply this constraint on the total moment instead of requiring 

only one of the two streams to follow the law. This can be achieved by 

treating the quantity u in Equation (15d) as a parameter that is adjusted 

to match the mean velocity with the law of the wall. In terms of the 

distribution function, this becomes 

oo n oo 

f j d v = f j d v + / j ( 1 ) d v = u^ (25) 
J J v y J v y -L J v y b 

— oo - / _ o o J I) J 
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1 UJU U 

1 * w 
where u, = — £n (Re — y, ) + 5.0 . 

b K u 'b u. 
w * 

When this constraint is used in the calculations, the resulting 

mean velocity profiles are independent of Reynolds number. These results 

are illustrated in the next section. In addition to Equation (25) , it 

is also found desirable to use the empirical relation for U given in 

Equation (22b). Substitution of Equations (15) into Equation (25) 

yields 

u = 
uTv! 

U b " C 3 • 
'2TT U 

/ (1.0 - c2) (26a) 

0 
where c~ = J i dv (26b) 

3 J Jv y _ OO 

and c„ is defined in Equation (24d). It is emphasized that this is the 

only point, under this Chapman-Enskog scheme for boundary conditions, at 

which the law of the wall is assumed to hold. This is employed only to 

avoid using the statistical model for turbulence within the region where 

viscous stresses are comparable to or larger than the Reynolds stresses. 

Once the mean flow quantities are obtained as moments of the dis

tribution functions at: the end of each iteration, the dissipation rate, 

e, can be obtained from Eqs. (11). The differential equation for e, 

Eq. (11a), is a difficult equation to treat since it is non-linear. This 

equation requires two boundary conditions as it is a second order equation, 

The boundary condition at the centerline is 

~ = 0 at y = l (27a) 
d y 

The near wall boundary condition for e is obtained by assuming that 
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production and dissipation of turbulence kinetic energy are equal in that 

region. Since the law of wall is applicable there, for Couette flow, this 

becomes, 

£., = — at y = yK (27b) 
b KV,

 J ^b 
D 

Using these boundary conditions, Equation (11a) is solved by employing 

the methods described in Appendix C. For Couette flow, Equation (11a) 

is linearized by adopting the method of differential variations [28], 

The resulting linearized equations are solved by the Runge-Kutta 

technique [29]. These procedures are described in detail in Appendix C. 

Results 

The results obtained for this problem are subject to the assump

tion that 3p/3y = 0 everywhere. From the y-momentum equation, it is seen 

that 

P = -#-<v'2> 
y dy 

2 
For Couette flow with zero pressure gradient, it is known that <vf > 

is constant throughout the turbulent zone. Thus, the assumption P ~ 0 

is valid for this case. The computed results for both the zero-gradient 

and the Chapman-Enskog boundary conditions are discussed in the follow

ing sections. 

Zero-gradient Boundary Condition 

The motivation for deriving this boundary condition and applying 

it to the Couette flow problem is two-fold. First, it is important to 

determine whether, under appropriate assumptions, the statistical model 
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equation can reproduce a turbulent flow within which the mean velocity 

profile is logarithmic and the Reynolds stress remains constant. Since 

it is known from experiments that such a region exists near the wall for 

many turbulent flows, the capability of the model equation to recover 

this result is a logical test of its validity. Second, it is possible 

that such a boundary condition is potentially useful in more general 

situations with non-zero pressure gradient (8p/8x ^ 0) due to the exist

ence of a logarithmic region near the wall for many boundary layer flows. 

To obtain a logarithmic region from the model, the expression for 

the dissipation rate, £, in the statistical equation must be consistent 

with the law of the wall. Consequently, Equation (lib) is used to solve 

for e. 

The zero-gradient conditions obtained from the numerical solution 

to Equations (12) and (lib) were applied to the equations for Couette 

flow, Equations (10) with P = 0. A second-order finite difference was 
y 

employed in the computational procedure. Using an initial guess for u, 

U and e, the iterative procedure was carried out. The value for the 

constant, K, used in the logarithmic velocity profile was taken to be 
0.41 [27]. The iteration procedure was terminated when changes in U be-

—f\ 
tween successive iterations were less than 10 . When the zero-gradient 

conditions were used, the solution converged after 45 iterations. As 

pointed out in Chapter IV, if the mean velocity profile is to be loga

rithmic in the entire flow field, then, there is only one value for 

u^/u for a given Reynolds number, Re = u d/v. For Re = 17,000, this 

value is 0.046952. 

The result for mean velocity using the zero-gradient boundary 
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condition is shown in Figure 5. The mean velocity profile remains within 

0.05 per cent of the logarithmic profile, and the two curves are hardly 

discernible in the figure. Reichardtfs data [19] for mean velocity is 

also shown in Figure 5 for comparison. It should be pointed out that by 

selecting appropriate values for the constants in the law of the wall, it 

is possible to improve the agreement between Reichardt's data and the 

logarithmic profile. However, the main purpose of this study is to com

pare the results for different boundary conditions under the same set of 

constants; and thus, other values for the constants were not attempted. 

Figure 6 shows the results for the Reynolds stress and turbulence 

intensity. The computed turbulence intensity remains constant within 

0.2 per cent of the correct value (U = 1.452). Similarly, the non-

dimensional Reynolds stress profile remains constant within 0.8 per cent 

of the correct value (u'v' = -1.0). As a check on the uniqueness of the 

solution, several different initial profiles were assumed and the itera

tion procedure was repeated until convergence was obtained. The resulting 

solutions always agreed with the corresponding profiles shown in 

Figures 5 and 6. 

Solutions found by using the zero-gradient boundary conditions 

clearly illustrate that Lundgren's model equation is a reasonable one, 

and that realistic results may be obtained from such a statistical 

approach. Further, these results have demonstrated the numerical accu

racy of the discrete ordinate and finite difference schemes presently 

employed. 
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Chapman-Enskog Boundary Conditions 

Although it is established that a logarithmic region exists near 

the wall for many boundary layer flows, this does not imply that such a 

region will extend across the entire field for the Couette flow case. 

Even if the mean velocity profile may apparently be logarithmic, the 

assumption that the length scale is proportional to the distance from 

the wall is not valid for the entire flow field. Hence, it is desirable 

to consider other forms of boundary conditions that may be useful in more 

general situations. In an effort to achieve this, the Chapman-Enskog 

form of the distribution function for the outgoing stream was employed 

in a series of calculations. Numerical solutions have been obtained 

using both the algebraic (Equation (lib)) and differential (Equation 

(11a)) equations for £ at a Reynolds number of 17,000. These results 

for mean velocity are shown in Figure 7. ReichardtTs data for Re = 17,000 

are also shown for comparison. Both of the solutions using the statis

tical model equation agree very well with the experimental data. Although 

differences can be observed between the two solutions, they are relatively 

minor. In these calculations, the integral constraints given in Equations 

(24) are used. A similar agreement between the two solutions has been 

found in the Reynolds stress profiles. These calculations show that 

Equation (lib) is quite reasonable for Couette flow. 

Because of the two-stream manner in which the boundary conditions 

are employed, the solutions shown in Figure 7 have a slight slip velocity 

at the boundary point. This slip velocity can be eliminated by using 

the constraints given in Equations (26). Numerical solutions have been 

obtained in this study employing Equations (26) and (11a) for three 
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different values of Reynolds number, Re = u d/v. Figure 8 shows the 

calculated mean velocity profiles for these cases, which span a fairly 

wide range (9,810 <_ Re <_ 100,000). These results illustrate the trend 

toward fuller profiles as Re increases. Reichardt's data [19] at 

Re = 17,000 and Johnson's measurements [20] at Re = 9,400 and 

Re = 16,500 are shown in this figure for comparison. Even though there 

are differences between the experimental measurements, the general agree

ment between these data and the present calculations are quite good. 

This is particularly so with Reichardt's data. Chung's solutions [12] 

for Re = 9,810 and Re = 86,600 are also plotted in this figure. Those 

computations give smaller velocity gradients near the wall than in the 

present case, and his velocity profiles are not as full. 

Figure 9 illustrates the computed velocity defect profiles for 

Reynolds numbers 9,810, 17,000, and 100,000. The experimental data of 

Reichardt and Johnson are shown for comparison. There are two curves 

plotted in Figure 9. For one of these, the boundary conditions are ap

plied at y/d = 0.09 and the Reynolds numbers correspond to 9,810, 17,000, 

and 100,000. The results for these cases are the same to the limits of 

graphical comparison, indicating an independence of the flow from 

Reynolds number when plotted in velocity defect coordinates. The charac

teristic length scales of the flow are the same for all values of 

Reynolds number. Since u /u is the only parameter that is different 

for different Reynolds numbers, the mean velocity profile should be in

dependent of Re when plotted as a velocity defect. 

The second curve in Figure 9 demonstrates an important point. This 

curve represents the results for Re = 100,000 but with the boundary 
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conditions applied at y/d = 0.0375, or y = u^y/v = 137.5. It is seen 

that the velocity defect profile is slightly different when the boundary 

condition is applied at a different station. Although these deviations 

are somewhat exaggerated by the logarithmic coordinates used, this figure 

indicates that there is an inadequacy in the representation of the boun

dary condition. It should be recalled that the Chapman-Enskog distribu

tion function is obtained by perturbing the governing equation, Equation 

(1), about the Gaussian distribution and neglecting terms higher than 

first order. It can be seen, by direct substitution, that the Gaussian 

distribution does not satisfy the governing differential equation. 

Therefore, when this function is used as a boundary condition, the terms 

that were previously neglected are now present in the full equation, 

giving rise to slight gradients which do not follow the law of the wall. 

Thus, when the velocity profile is matched with the logarithmic law, the 

velocity gradient does not automatically match and the resulting velocity 

profile has a sensitivity to the location at which the boundary condition 

is applied. 

Results for Reynolds stress are shown in Figure 10. The calculated 

values show a variable Reynolds stress near the wall boundary. This vari

ation is not a consequence of increasing viscous stress as the wall is 

approached, but rather due to the gradients in the distribution functions 

introduced by the Chapman-Enskog boundary conditions. Chung's results 

[12] for Reynolds stress are also plotted in Figure 10. These results 

give somewhat smaller values for the Reynolds stress than the present data. 

The computed values of u./u are 0.04692, 0.04441 and 0.03669 for Reynolds 

numbers 9,810, 17,000 and 100,000, respectively. Chung's calculated 
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values for u./u are reported to be 0.0404 for Re = 9,810 and 0.03284 

for Re = 36,000. The value of u^/u obtained by Reichardt for Re = 17,000 
* w 

is 0.0425, and those found by Johnson are 0.0466 for Re = 16,500 and 

0.048 for Re = 9,400. 

Figure 11 illustrates the computed variations of eddy viscosity. 

The solid line represents the results for Reynolds numbers 9,810, 17,000 

and 100,000 when boundary conditions are applied at y/d = 0.09. The 

broken line is the result obtained for Re = 100,000 when the boundary 

conditions are applied at y/d = 0.0375. It is recalled that the eddy 

viscosity is computed as a ratio of Reynolds stress and mean velocity 

gradient. The differences in the computed non-dimensional Reynolds stress 

is less than 3 per cent. Hence, the differences in the eddy viscosity 

shown in Figure 11 is essentially due to the disagreement in the mean 

velocity gradients depending upon the location at which boundary condi

tions are apolied. Near the centerline, there is nearly 30 per cent 

deviation between the two curves for eddy viscosity and the profiles are 

not linear. 
The results for turbulence intensity, U/u , are shown in 

w 

Figure 12. These results exhibit a behavior quite similar to the 

Reynolds stress profiles. The variation in the profiles near the wall 

is again due to the Chapman-Enskog boundary conditions. Chung's results 

[12J give about 60 per cent of the present solution. 

Figure 13 illustrates the results for non-dimensionalized dissi

pation rate. There are two curves in this plot. Both of these curves 

are the solutions of the differential equation for c, Equation (11a). 

For the curve shown in solid line, the boundary condition is applied at 
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y/d = 0.09 and the Reynolds numbers are 9,810, 17,000 and 100,000. 

Results for these different Reynolds numbers have converged to the same 

solution within the limits of graphical comparison. The curve shown by 

a broken line represents the solution for Re = 100,000 when the boundary 

conditions are applied at y/d = 0.0375. This sensitivity to the location 

of boundary point is essentially due to the variation of mean velocity 

gradient, which appears in Equation (11a). The non-dimensionalized kine

tic energy profiles for all these cases are the same within a bandwidth 

of 2 per cent, and hence it cannot be the reason for the deviations in 

£. The quantity that is mainly responsible for this difference in the 

profiles is du/dy. The agreement among these solutions in regions away 

from the near wall boundary is quite satisfactory. 

One of the features of the statistical model is that it is pos

sible to compute the turbulence intensity components that contribute to 

the kinetic energy of turbulence. The results for the components of 

2 2 2 
turbulence intensity, <vT > and <u' + wf > are illustrated in 

Figure 14. The solid lines represent the solutions for the three 

Reynolds numbers 9,810, 17,000 and 100,000, when the boundary conditions 

are applied at y/d = 0.09. The broken lines give the solutions for 

Re - 100,000 when the boundary condition is applied at y/d = 0.0375. 

It is seen that near the boundary point, all these curves give very 

nearly the same values for each component. This is a consequence of 

the constraints given in Equations (22b) and (23c), as these are obtained 

as moments of g and h. However, the differences in the values elsewhere 

are due to the inadequacy of the Chapman-Enskog distribution function. 

Figure 15 shows the results for the skin-friction coefficient, c . 
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The skin friction coefficient is obtained from the expression 

2 2 
c._ = 2 u./u 
f * w 

The results obtained from the statistical model are compared in this 

figure with experimental data of Reichardt and Johnson. In addition, 

Chung's results and Robertson's empirical expression [18] for predicting 

skin friction coefficient are shown in the figure. The agreement between 

the present results and the empirical curve fit is quite good. Chung's 

reported solutions predict smaller values for the skin friction coeffi

cient than the present solutions. 

An interesting aspect of this statistical approach to turbulence 

is that the distribution functions are calculated without making any 

a. priori assumption about the functional dependence on turbulence 

velocities. These distribution functions offer insight into the turbu

lence mechanisms and may aid in modelling turbulence. 

Figure 16 illustrates the g distribution employed as a boundary 

condition for both zero-gradient and Chapman-Enskog cases. Figure 17 

shows a similar graph for the j distribution function. It is emphasized 

that only the outgoing stream is modelled with these functions and the 

incoming stream is computed from the governing equations. If the incoming 

stream also yields the same result for the g distribution, the distribu

tion functions for the two streams would by symmetric. For such a case, 

the zero-gradient distribution would have a flatness factor, K , of about 

2.085 while the Chapman-Enskog function would give a flatness factor of 

3 which is also the result for Gaussian distribution. The Chapman-

Enskog distributions are somewhat broader than the zero-gradient 
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distribution functions, even though both the distributions yield the 

same values for the first two moments. This is particularly noticeable 

in the j-function. It should be recalled that a Gaussian assumption 

would lead to i = 0 for all c and thus to a zero value for Reynolds 
y 

stress. 

Figures 18a, 18b, and 18c represent computed results for g at 

several y locations in the flow field corresponding to Reynolds numbers 

9,810, 17,000 and 100,000 respectively, when the Chapman-Enskog boundary 

conditions are used. At the wall boundary (y = 0.0375 for Re = 100,000 

and y = 0.09 for the lower Reynolds numbers), there is a discontinuity 

in g at c = 0 . This is due to the integral constraints and the inade

quacy of the Chapman-Enskog boundary conditions. These figures also show 

gradual variations in the distribution functions as y increases. This 

Is a consequence of the relaxation term in the governing equation. 

Physically, the fluid elements are interacting to smooth out the distri

bution function. There are also small variations in the g distribution 

function for different Reynolds numbers. These variations are due to the 

inadequacy of the Chapman-Enskog boundary conditions and are likewise 

reflected in their moments. 

Figures 19a, 19b and 19c illustrate the computed results for j 

distribution function for Reynolds numbers 9,810, 17,000 and 100,000 

respectively. Similarly, Figures 20a, 20b and 20c show the results for 

h-function at these Reynolds numbers. These results are obtained by 

using Chapman-Enskog boundary conditions. The distribution functions, 

h, are very similar in shape to those of g and have noticeable disconti

nuities at the boundary point when c = 0 . Similarly, discontinuities 
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in the slope of j exist at c = 0 in Figures 19a, 19b and 19c. The 

variations in the distribution functions with Reynolds number is more 

clearly seen in the j functions than the g and h functions. This varia

tion is due to the inadequacy of the Chapman-Enskog boundary conditions. 

It is interesting to note that the g, j and h functions have very little 

variations in the central core of the channel, indicating that the turbu

lent interactions have acted to adjust the boundary effects to the mean 

flow. 

Even though the distribution functions g, j and h are nearly con

stant in the Couette flow (but for the small gradients near the boundary), 

the function i is not constant since it reflects the variation of mean Jv 

velocity through the flow field. The computed results for j are repre

sented in Figures 21a, 21b and 21c for Reynolds numbers 9,810, 17,000 

and 100,000 respectively. These functions also exhibit discontinuities 

at the boundary point where c = 0 . In addition, some differences in j 

values exist for different Reynolds numbers which are also exhibited in 

the velocity defect plot shown in Figure 9. Due to the configuration of 

the Couette flow problem, the mean velocity at the centerline is zero 

and at this location, j distribution is the same as the j distribution 

function. 

Figure 22 shows the skewness factor, S, of the g distribution 

function for Reynolds numbers 9,810, 17,000 and 100,000. It is known 

from wall turbulence studies including visual methods [31, 32, 33, 34], 

that in the wall layer, the deviation from Gaussian distribution is mainly 

due to intermittent phases in which high momentum fluid is rushed into 

the sublayer and those in which low momentum fluid is ejected outward. 
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It is expected that the inrush phases would contribute to large negative 

c values and the ejection motions would be responsible for large positive 

c values. Thus, the inrush phases are likely to cause the skewness to 

be negative while the ejections phases would yield positive skewness 

factors. The skewness factors should become quite small in magnitude be

yond y ~ 100, and closer to the wall the ejection phases are observed 

to be dominant causing large positive skewness factors. In the present 

results, the large positive skewness near the wall is a consequence of 

the Chapman-Enskog boundary conditions. When zero-gradient boundary 

conditions are used, the skewness factors are nearly zero everywhere. 

The variation in the skewness factor with y indicates that the fluid 

elements are interacting to smooth out the boundary effects. 

The Kurtosis or flatness factor, K , of the g distribution is 

shown in Figure 23. It is recalled that the Chapman-Enskog distribution 

gives a flatness factor of 3, which is also the value for the Gaussian 

distribution, and the zero-gradient has a smaller flatness factor of 

about 2.1. Thus, when the Chapman-Enskog distribution is used for the 

outgoing stream at the boundary point, the flatness factor tends to be 

closer to 3. In the central core of the flow field, the flatness factor 

is about 2.3 which is higher than that for zero-gradient distribution 

and yet quite different from Gaussian value. This is due to the inter

actions of the fluid elements adjusting the wall effects to the mean 

flow. This figure clearly shows that the distribution function near the 

centerline of the Couette flow is quite far from the Gaussian even though 

the turbulence is nearly isotropic and homologous. 

In conclusion, the numerical scheme employing a combination of 
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discrete ordinate method and finite differences seems to be quite good 

for solving Lundgren's model equation. The statistical model equation 

yields results which compare very well with experimental data for mean 

velocity and skin friction. The present results show better agreement 

with experimental data than those of Chung. However, the inadequacy of 

the Chapman-Enskog boundary condition indicates the need for further 

studies in that area. 
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CHAPTER VI 

TWO DIMENSIONAL CHANNEL FLOW 

The results obtained for the Couette flow problem compare favorably 

with the available experimental data and thus indicate that Lundgren's 

model equation accurately describes that problem. The Couette flow prob

lem with zero pressure gradient is perhaps the simplest case on which the 

model equation can be tested. In an effort to cover a more general class 

of problems, it is desirable to apply the model equation to fully developed 

turbulent flow problem in a two dimensional channel. The presence of pres

sure gradients in this problem gives rise to additional complications. 

Unlike the Couette flow problem, 3p/3y is no longer zero. It can be seen 

from the y-momentum equation, that 

-A <v
|2> = -P . (28) 

dy y 

However, this equation is automatically satisfied by the governing statis

tical equation, Equation (1), and so it can not be used to compute P . In 

the absence of any other independent scheme for computing P , in this 

study, this quantity is assumed to be zero everywhere. The streamwise 

pressure gradient, 3p/3x, on the other hand, is more easily determined. 

If the forces occurring on a control volume in the channel flow, as shown 

in Figure 24, are balanced, there results 

fP 
d_ 3p_ = _ I

 X y^ w = 2 
p 3x p a* 
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or, P = -1--|H = -1. (29) 
x 2 dx 

Pu + 

Geometry and Boundary Conditions 

The geometry of the channel flow problem is shown in Figure 24. 

The boundary conditions employed for this problem are the gradient and 

the Chapman-Enskog boundary conditions. The conditions at the centerline 

of this problem are different from those of the Couette flow, since the 

Reynolds stress in the Channel flow is not constant, but linear. However, 

due to the symmetry of the flow field, the changes in the distribution 

functions as the centerline is approached from either of the directions 

are the same. Since the directions of the positive and the negative 

streams are opposite to each other, the symmetry of the flow field 

requires 

3f~ 3f+ „ n , 

37 = "37 ( 3 0 a ) 

In terms of the reduced distribution functions, this equation becomes 

1&~ = _ 1&+ 

3y 3y (30b) 

If- "f+ (30c) 

if= -ff <30d> 
Equation (13) gives 

3j" X = 11 . „ IS. , ~ 4iL 
+ u ~ + 3y 3y 3y dy 
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At the centerline of the channel, — = 0. Using Equations (30), this 
dy 

becomes, 

9j v a.+ a + dj* 

By 3y 3y 9y 

Thus, Equations (30) can be used as boundary conditions for the negative 

stream. The constraints to be imposed at the near wall boundary are simi

lar to those used in the Couette flow problem and are dependent on the 

form of the distribution function, 

Gradient Boundary Condition 

As pointed out in Chapter III, the zero-gradient condition is not 

appropriate for the channel flow problem. However, from the known trends 

of u, U and e near the wall boundary, it should be possible to develop con

ditions on the derivatives of the distribution functions based on the 

governing differential equations, Equations (10). These conditions are 

shown in Appendix A, subject to the assumption 9p/By = 0 at the boundary 

point. To employ this condition, it is necessary to specify U and Re^ as 

inputs, analogous to the zero-gradient conditions in the Couette flow, and 

Re = urfi/v c a n ^ e obtained as a solution. But, there is not a specific 

value for u^ that should be used in this case, contrary to the situation 

in the Couette flow, since the mean velocity is not logarithmic in the 

entire flow field. Thus, the value of Re^ has to be specified arbitrarily 

or else should correspond to some experimental measurements. In this study, 

Re^ is obtained from Laufer's data [21] corresponding to Re = = 30,800. 

Once Re^ is known, the boundary condition for mean velocity is obtained 

from the law of the wall, 
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u, = ~ In (Re. y, ) + 5 (31a) 
b K K b 

The value of U at y = y, is specified from the formula [22] 

U2 = — — , with c = 0.1. (31b) 
b n ;— D 

3"S 

Equations (A-ll), (A-14) and (A-15) are then solved subject to these con

straints to give boundary conditions on g, j, h, and j . These conditions 

are fixed for all iterations. 

Chapman-Enskog Boundary Condition 

As mentioned earlier for the Couette flow problem, when Chapman-

Enskog form is used as a boundary condition for the positive stream, cer

tain integral constraints are needed to adjust the parameters in the out

going stream such that the moments of the distribution functions follow 

the known trends. In this study, the following constraints are used in 

the channel flow problem. 

f V ^ - _J° y-dcy + f v ">„cy - -i + yb + s ^ b <32a) 
_ oo 

U2 = — — with c = 0.1. (32b) 
b 0 ; D 

3/cD 

o °° m 
f g d c = / g~dc + / g U ; dc = 1.0 (32c) 
_ o o y _oo y 0 y 

f j dv = J j dv + J j(1)dv = u^ (32d) 
J v v • ' v v « v v b v y 0 

1 u* 
= - £n(Re — y,) + 5.0 

uQ *b 
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Equation (32a) implies that the total shear stress near the boundary point 

is linear. Equation (32b) is an empirical formula for kinetic energy of 

turbulence and Equation (32c) states that the probability of finding a 

fluid element somewhere in the velocity space is unity. Equation (32d) 

requires that the mean velocity at the boundary point conforms with the 

law of the wall. As pointed out earlier, it is more appropriate to require 

these constraints on the total moment and not restrict each stream to 

satisfy them. One way to achieve this is to treat the quantities u and 
VT du 
7T~~ T~ in Equations (15) as parameters to be evaluated from Equations (32). 
* y 

If Chapman-Enskog forms of Equat ions (15) a r e s u b s t i t u t e d i n t o Equations 

(32) , t he re r e s u l t s 

~ - p- - P + = - 2(1 - y - —^ + a-) (33a) 
Re^ dy xy ' b Re^Kyb V 

v 
^ - ^ = /2TT (0 .5 - a j (33b) 

and 

R e / ^ 2 

u = (u. - a . SL ) / ( i . o - a ) (33c) 
b 3 /2Tu 2 

where 0 
a1 = \ c i dc 

1 J y y 

0 
a 2 = / g d c y 

— 00 

0 
a = / j dv 

3 J J v y 

I t i s emphasized t h a t u and P in Equat ions (33) do not r e p r e s e n t the 
xy 
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mean velocity and the Reynolds stress but rather the parameters employed 

in the outgoing stream. It is reiterated that this is the only point under 

the Chapman-Enskog scheme for boundary conditions, at which the law of the 

wall is assumed to hold. 

With these constraints, the governing differential equations, 

Equations (10), are solved and the moments are evaluated at each iteration. 

Once the mean flow quantities are obtained, the dissipation rate, c, can 

be computed from Equation (11a). This equation is a second order non

linear ordinary differential equation and consequently requires two bound

ary conditions. The requirement at the centerline of the channel is 

~ = 0 at y = 1 (34) 

At the near wall boundary, the production and dissipation of turbulence 

kinetic energy are known to be equal. Using the law of the wall, this 

reduces to 

eb = " (Pxy)b/Kyb at y = V (35a) 

For the channel flow, the shear stress is linear. If viscous stresses 

are included, the turbulence shear stress at the boundary point is given 

by 

Using this expression in Equation (35a), the near wall boundary condition 

for e becomes 
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eb= ( 1 - * b - s V ) / ( K V a t y = yh
 (35b) 

* b 

With Equations (34) and (35b) as boundary conditions, Equation (11a) for 

b can be solved. For the channel flow probLem, the non-linear differential 

equation for c is linearized by the Newton-^aphson-Kantorovich quasi-

linearization technique [30]. The resulting linearized equation is solved 

by a finite difference scheme. The details of this procedure are given in 

Appendix D. 

Results 

As pointed out earlier, the pressure gradient, dp/dy, is required 

as an input for the problem. This gradient in pressure is due to the tur

bulence structure and hence should, in principle, be computed from the 

solutions. Since there are no independent equations available, in this 

study, 3p/3y is assumed to be equal to zero everywhere. This assumption 

imposes certain restrictions on the flow field which will be discussed along 

with the results. Two different boundary conditions are used to solve the 

channel flow problem. They are the Chapman-Enskog and the gradient boundary 

conditions given in Appendix A. 

It is seen from the x-momentum equation for channel flow (which can 

be obtained as a moment of the governing differential equation, Equation 

(1)), that 

1 d2u 
~ (uTv') = ~ - — 7 " P <36> 
dy R e * d y

2 

where, d 3p 

x =: " T ax "~1* 
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By integrating this equation, it is seen that the shear stress is linear. 

Or, 

1 du 
u'v» = _i + y + ~ -p (37) 

Re^ dy 

It is recalled that even though the Chapraan-Enskog distribution does not 

satisfy the governing differential equation exactly, it satisfies the moment 

equations, namely, continuity, momentum and turbulence kinetic energy 

equations. Consequently, if Chapman-Enskog distribution function for j, 

J = ^T~ cy G (38) 

u 

is used, with u'v' from Equation (37), to replace the differential equation 

for j(Equation (10b)), it would yield the appropriate Reynolds stress 

profile. Besides, the Chapman-Enskog distribution automatically satisfies 

the condition c = 0 at each iteration. In order to find out its implica-
x 

tions, the Chapman-Enskog form for j, Equation (38), is used in a series 

of computations instead of the differential equation, Equation (10b). Thus, 

the results for channel flow are obtained for gradient boundary conditions 

and Chapman-Enskog boundary conditions and in the latter case, both Equa

tions (10b) and (38) have been used separately. These results are compared 

with Laufer's experimental data [21], All the computations are made at a 
u o d 

Reynolds number, Re = = 30,000. 
v 

Figure 25 illustrates the results for mean velocity at Re = 30,000. 

Laufer's experimental data [21] is shown for comparison. The agreement be

tween the experimental data and the result obtained using Chapman-Enskog 

boundary conditions is quite good. The gradient boundary condition yields 
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Figure 25. Mean Velocity Profiles in the Channel Flow 
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somewhat larger slopes near the wall boundary and hence is in poorer 

agreement with Laufer's data in that region- When Equation (38) is used 

for j, the resulting mean velocity profile is somewhat fuller than the 

experimental data. In spite of all these small differences, the overall 

agreement of all these results with the experimental data is reasonably 

satisfactory. 

The differences between these results in mean velocity are seen 

more clearly in the velocity defect coordinates shown in Figure 2.6. In 

the central core of the flow field, the agreement between the present 

results and the experimental data is quite satisfactory. The gradient 

boundary condition is not in good agreement with the measurements near 

the boundary point (y/d = 0.055). These disagreements are partially due 

to the differences in u^/u- values. It is interesting to note that the 

result obtained using Equation (38) for j has a very similar shape to that 

of the experimental data except for a lateral shift due to differences in 

u„/u value, or the centerline velocity. The differences in the center-

line velocities among these results is within 14 per cent of the experi

mental data and are likely due to the assumption 3p/9y = 0. The value of 

u^/u for the case using gradient boundary condition is computed to be 

about 0.04 and the value obtained for Chapman-Enskog boundary condition 

is about 0.04276. When Equation (38) is used to replace Equation (10b), 

the resulting value for u./u_ is 0.04395. The value obtained by Laufer 
* 0 

for u^/u is reported to be 0.03873. It is emphasized again that all 

these results correspond to a Reynolds number of 30,000. 

The Reynolds stress profiles are shown in Figure 27. As pointed 

out earlier, Equation (38) yields a linear profile for Reynolds stress. 
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The disagreement with the experimental data in the slope of the line is 

due to the difference in the uy</u values. The Reynolds stress profile 

for gradient boundary conditions agrees well with that for Chapman-Enskog 

boundary condition, and is especially so in the central core of the flow 

field. The deviations near the boundary point is partially due to the 

gradients produced by the inadequacy of Chapman-Enskog boundary conditions. 

These Reynolds stress profiles are different from linear, and are not in 

very good agreement with the experimental data. This is also attributed 

to the assumption P = 0. 
y 

The variations of eddy viscosity for the three computations are 

shown in Figure 28. The differences in the profiles for eddy viscosity 

between results for the gradient boundary conditions and the Chapman-Enskog 

boundary conditions are essentially due to the differences in the Reynolds 

stress profiles. The equation used to compute eddy viscosity, 

VT " - Re* w f e (393) 

is not applicable at the centerline, since both P and du/dy are zero 
xy 

there. Thus, if L'Hospital's rule is applied at the centerline, it yields 

VT - -Re* i ' V ' T ? * (39b) 

J J dv 

In all these calculations, Equation (39b) gives a low value for eddy 

viscosity, and thus causes large gradients near the centerline. The 

gradient boundary condition gives the correct qualitative trend for the 

eddy viscosity. 
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The results for turbulence intensity, U, are shown in Figure 29. 

The present results yield somewhat higher intensities than those derived 

from Laufer's experimental data. In addition, these results also give 

nearly constant values for U. When Equation (38) is used to replace the 

differential equation for j (Equation (10b)), the resulting turbulence 

intensity is in better agreement with the experimental data, and has the 

same qualitative trend with the latter. Approximately constant values 

for U in these results are due to the absence of cross-stream pressure 

gradients, P , in the final equations. 

This effect is also seen in the results for the components that 

contribute to turbulence kinetic energy, which are shown in Figure 30. 

If P is assumed to be zero everywhere,, it follows from the y-momentum 

2 
equation, Equation (28), that <v' > should be constant. But, the experi-

2 
mental data shows that <vT > is not a constant, and hence P also is, in 

y 

reality, non-zero. In moment approaches, where moment equations are 

solved instead of the equation for the distribution functions, each moment 

equation is independent of the other equations. Besides, in such a system, 

the pressure gradient, P , appears only in the y-momentum equation and 

thus the y-momentum equation is de-coupled from the rest. This decoupling 

enables one to model the equation for kinetic energy of turbulence without 

having to consider the effects of P . In the present approach, the P 

term appears in all of the differential equations for reduced distribution 

functions and thus affects the profiles of all the moments of the distri

bution functions. Thus, when P is set to be zero everywhere, the solutions 

for turbulence intensities tend towards a flat profile, similar to those 

obtained in the Couette flow. 



Chapman-Enskog B.C. -—Gradient B.C.; Re = 29,800 

Laufer's Data Using Equation (38) 

Y/d 

Figure 29« Turbulence Intensity in the Channel Flow. ^D 



— i 1 r 
Chapman-Enskog B . C . 

G r a d i e n t B .C . 

Using Equation (38) 

L a u f e r ' s Data 

(v2) 

- / 
Re = 30,800 

0 . 1 
_L 

0 .2 0 .3 0 . 4 0 . 5 

Y/d 

0.6 0.7 0 .8 0 . 9 

Figure 30. Components of Turbulence Kine t ic Energy. 

1 . 0 

D̂ 
Ln 



96 

The computed results for the distribution function, g, are illus

trated in Figures 31a, 31b and 31c. It is recalled that when the gradient 
uj.d u _d 

boundary conditions are employed, Re. = is specified and Re = is 

computed from the solutions. This accounts for the difference in the 

Reynolds number values quoted in these figures. When the Chapman-Enskog 

boundary conditions are used, it gives rise to a discontinuity in g at 

the boundary point at c = 0 . The solutions obtained using Chapman-Enskog 

boundary conditions give slightly more peaky distribution for g compared 

to those obtained using the gradient boundary conditions. The results for 

g using Equation (38) yields still higher values near c = 0 . This is 

due to the relatively smaller values of turbulence intensities among the 

three cases. Gradual variations in the distribution functions are seen 

in the figures and in the central core of the flow, these variations are 

quite small. This indicates that fluid elements are gradually adjusting 

between the conditions at the two boundaries. 

The results for the distribution function, j, are shown in Figures 

32a, 32b and 32c. Figure 32c represents the Chapman-Enskog form for j 

and which is anti-symmetric with respect to c . Figures 32a and 32b 

illustrate the solutions of the differential equation for j using the 

gradient boundary conditions and the Chapman-Enskog boundary conditions 

respectively. These two solutions yield very similar profiles for j. 

These two figures show a gradual variation in the j distribution function 

with respect to y such that the c value at which j = 0 moves farther 

from zero as y increases. It is believed that this is due to neglecting 

the P term. From Equation (10b), it is seen that the term P appears 

in the form, (—-x- c + P ) —- . From the experimental data, the largest 
3U2 y y 8cv 
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value of P is estimated to be about 1.5 near y/d = 0.3. The smallest 
y 

value of — j is about 1. Thus, it is seen that for large c values, it is 
3U y 

reasonable to neglect P compared to the other term, while it becomes 

larger than or comparable to —?r c for smal.l values of c (for c <1). 

3U2 y y y1 

Consequently, when P is set to be zero, it gives rise to some error in 

the distribution function near c = 0 and this effect gradually propagates 

all the way to the centerline. It is recalled that the zeroth moment of 

j gives c , which should be zero, and the first moment yields the Reynolds 

stress. Figures 32a and 32b show that the area under each curve is not 

zero exactly and this is more clearly observed at the centerline. However, 

due to the anti-symmetric nature, the Chapman-Enskog distribution functions 

for j give c = 0 at all y locations, and the distribution function at the 

centerline is zero for all c . 
y 

The variations of the skewness factor, S, of the g distribution 

function for the three cases are shown in Figure 33. The effect of the 

Chapman-Enskog boundary condition, quite similar to that in the Couette 

flow, is to give a rather higher positive value for the skewness factor. 

The skewness factors for Chapman-Enskog boundary condition and those for 

gradient boundary condition agree fairly well with each other in regions 

away from the boundary. When Equation (38) is used to replace Equation 

(10b), it results in a higher skewness factor for the g distribution. At 

the centerline, because of the symmetry of the flow field, the skewness 

is zero. 

The flatness factor, or kurtosis, K , of the g-function is illus

trated in Figure 34. It is recalled that the Chapman-Enskog distribution, 

if employed for both the streams, would give a flatness factor of 3. 
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Hence, when it is employed only for the outgoing stream, it tends to 

give a higher value for K compared to the gradient distribution function. 

However, in regions away from the boundary, these two results give nearly 

the same value for K , indicating that the boundary effects are smoothed 
u 

out by the fluid elements. When Equation (38) is used, the resulting 

flatness factors are somewhat higher. At the centerline, where the turbu

lence intensities are nearly the same in all directions (or the turbulence 

is nearly isotropic), the flatness factor is about 2.8 which indicates that 

the distribution is nearly Guassian. 

The distribution functions h and j in the channel flow are similar 

in shape to the results obtained for the Couette flow, but have larger 

variations in physical space, which are primarily due to the variation of 

the turbulence intensity, U. 

Thus, it is seen that the results obtained using the gradient boun

dary conditions and those obtained using the Chapman-Enskog boundary con

ditions agree fairly well in regions away from the boundary. When Equa

tion (38) is used to replace the differential equation for j, Equation 10b)), 

the resulting solutions are in better qualitative agreement with Laufer's 

experimental data, even though such an approach lacks in rigor. Some of 

the disagreement between the present results and the experimental data are 

attributed to the absence of pressure gradient, P , in the computations. 

In the numerical study employed, the nodal points in the physical 

spacing were equally spaced at intervals of Ay/d = 0.0175 while the dis

crete velocity points were located at unequal intervals. The number of 

discrete velocity points used in the computations is 440. The computing 

time required on CDC-6600 machine is about 6 seconds for each iteration. 
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

The results of the present study and comparisons with available 

experimental data have established the following: 

1. A numerical scheme employing a combination of the discrete 

ordinate method and finite differences has been developed for solving 

the one-dimensional form of Lundgren's model for turbulence. The method 

has proven to give convergent and stable results. 

2. Physically realistic boundary conditions for the distribution 

function and model equation for the turbulence dissipation rate have been 

examined. 

3. Lundgren's equation yields results for plane Couette flow 

which compare well with experimental data for mean velocity and skin 

friction coefficient. The results for Reynolds stress and turbulence 

kinetic energy are quite reasonable. 

4. The zero-gradient boundary condition leads to the proper loga

rithmic mean velocity profile for Couette ::low corresponding to a specific 

value of wall shear stress and a given set of constants used in the law 

of the wall. 

5. The Chapman-Enskog boundary conditions, when applied within 

the near-wall region, provide very good agreement with the experimental 

data for the Couette flow problem. 

6. The gradient boundary conditions have been developed so that 
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they may be applicable for more general situations involving pressure 

gradients. 

7. Solutions obtained using the gradient boundary conditions and 

those corresponding to the Chapman-Enskog boundary conditions for two-

dimensional channel flow are in good agreement with each other. The 

results for mean velocity compare well with Laufer's [21] experimental 

data. 

8. The differences between the present results and the experimental 

data for channel flow in the profiles for Reynolds stress and turbulence 

kinetic energy are attributed to the fact that the cross-stream pressure 

gradient, P , has been neglected in the computations. 

The results for the Couette flow problem show a slight sensitivity 

to the point of application of the Chapman-Enskog boundary conditions. 

This sensitivity indicates a n°ed for further study of the boundary 

conditions. The present recommendation is that the boundary conditions 

be applied within the near-wall region, where the logarithmic law for the 

mean velocity is valid. One way to avoid this difficulty is to use experi

mentally determined distribution functions as boundary conditions. Another 

possibility is to apply the boundary conditions at the wall, where the 

distribution functions should be Gaussian. However, Lundgren's statistical 

model equation may not be applicable in that region unless further refine

ments of the relaxation model are incorporated. Such an effort would be 

an interesting area for future investigation since solutions for the 

distribution functions within the viscous sublayer could reveal details 

of turbulence production. 

The results for channel flow problen in this study are limited by 
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the lack of an independent method of evaluating 9p/3y. In the moment 

formulations, if all the components of Reynolds stresses are required, 

independent equations for each component must be available to close the 

system. In employing the statistical model equation, there is a similar 

closure problem. Hence, the development of an independent equation for 

computing 9p/8y can be computed from the moments of the distribution 

functions without using any of the moment equations, then the resulting 

solutions would be in more favorable agreement with the experimental data 

than the present results. 
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APPENDIX A 

GRADIENT BOUNDARY CONDITIONS 

For flow fields with non-zero pressure gradient, 3p/3x, it is 

desirable to obtain boundary conditions, similar to the zero-gradient 

boundary conditions used in the Couette flow problem, which are appli

cable in the near-wall region. In this region, it is known that the 

mean velocity profile is logarithmic and che turbulence kinetic energy 

is approximately constant. Besides the turbulence dissipation rate is 

nearly equal to the rate of production of turbulence kinetic energy. 

Thus, in this region, — = — ; c ~ — and U ~ const. Let ct(y) = 
to ' dy Ky y J 

£ 1 —7z ~ — and P = 0. Under these conditions, the governing differential 
3U y y 

e q u a t i o n s , Equations (10) , reduce to 

Cy £ = 3Ka(C " 8> + aK ^~+^ (A- l ) 

c ^ = -3Kctj -
y 3y 

1 C
y 1 

+ P + -*-
Re.Ky 

2 x Ky 

-I- a c ii 
y 3c 

y 

(A-2) 

c ^ = 3Ka(H - h) - 2 
y 3y 

+ P + _Z 
2 X K 

iRe^Ky y j 

+ a - h + c 
dh 

y 3c 
y j 

(A-3) 

From a theorem i n Sneddon [35] , t h e g e n e r a l s o l u t i o n of t h e p a r t i a l 
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differential equation 

P(x,y,z) -^ + Q(x,y,z) j - = R(x,y,z) (A-4) 

is F(u,v) = 0, where F is an arbitrary function and u(x,y,z) = c. and 

v(x,y,z) = c„ form a solution of the equations 

dx __ dy _ dz 
P " ~Q~ = R 

(A-5) 

If this theorem is applied to Equation (A-l), the general solution is 

obtained from solutions of the equations 

d_y_ = y_ = _ 
cy acy " a[3KG-(3K~l)g] 

dg (A-6) 

Integration of the equation 

dc 
2. = is. 

etc c t [3KG-(3K-l )g] 

Y i e l d s , fo r c ± 0 , 
y 

£ n ( C l c ) 
i y 

l 
3K-1 

£n[3KG - ( 3 K - l ) g ] 

or 3KG - (3K - l ) g - c c ( 3 K 1 } = 0 
^ y 

Likewise, the equation 

dy = dg 
c ai.3KG-(3K-l)g] 

(A-7) 

yields, upon integration and assuming a(y) = —, with a being a constant 

of proportionality, 

y 
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n , a /c N £n(c 3y y) = 
[3K-1J 

£n[3KG - (3K - l ) g ] 

This equation is further simplified to the form 

3KG - (3K - l)g - c^y ( 3 K 1 ) a / c
y = 0. (A-8) 

The general solution of (A-l) is given by f,(u,v) = 0 where f- is an 

arbitrary function, 

u(y,c ,g) = 3KG - (3K - l)g - c c ( 3 K 1 } = 0 
y ^ y 

and 

v(y,c ,g) = 3KG - (3K - l)g - c4y
 ( 3 K 1 ) a / cy = 0. 

Since f is an arbitrary function, let f (u,v) = b u + b,.v where b, and 

b? are arbitrary constants. Regrouping terms, the general solution of 

Equation (A-l) becomes 

3KG - <3K - l)g = ^ c ^ K c6y-
(3K-1)a/cy. (A-9) 

In the near wall region, it is known that the zeroth and the second 

velocity moments of g are approximately constants. To satisfy these 

requirements, the constant of integration, c,, must be zero. Equation 
b 

(A-9) further yields 

3S. = 
9y 

3K 
3K-1 9y 

(A-10) 

Since Equation (A-10) is obtained from a general solution of the govern

ing equation, it gives a necessary condition that the distribution func

tion, g, must satisfy to be consistent with Equation (A-l). If U is a 
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8C 
constant in the region where Equation (A-l) is applicable, then TT— = 0 

3y 
and hence -~5- = 0. This condition is not valid for c = 0 . However, at 

3K 
3K-1 

G(0). For c - 0, the governing equation requires that g(y,0) = 

non-zero c values, if TT*2- is set equal to zero in Equation (A-l), one 

gets the required boundary condition for g from the equation 

: ^ " <3K-l)gb - -3KG 
y 

(A-ll) 

The subscript b is used to indicate that the distribution function ob

tained by solving this equation is to be used as a boundary condition. 

Using a similar approach, it can be shown that near the wall 

boundary, 

JLL = _ _ £ _ 
3y 3Ka 

P -
x 

Re^Ky J 
= w1(y,cy) (A-12) 

and 
2(P i~2) 

sh =
 x Re*Ky 

3y (3K+l)a 3Ka liê Ky xy K J JJ = w2(y,c ). (A-13) 

After substituting these forms for ~ and -r— into Equations (A-2) and 
dy dy 

(A-3), the boundary conditions for j and h are obtained from the equations 

Cy wi(y'cy} = ~3Kujb " ( 
1 

Re.Ky 
+ P + -£)g 

z x Ky b 

+ a c y dc 
(A-14) 

and 
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c w (y,c ) = 3Ka(H-h.) - 2( =• + P + -^)j 
y 2 y b R e ^ y 2 x Ky b 

d \ 
+ a(-h, + c -r-2- ). (A-15) 

D y ac 
y 

Equations (A-ll), (A-14) and (A-15) are solved numerically using finite 

differences. Since distribution functions and their velocity gradients 

must approach zero as c ->• °°, this is used as a boundary condition in 

velocity space. The result of the numerical integration is a set of 

numerical values for the reduced distribution functions which are then 

employed as boundary conditions in the solution of the model equation. 

The boundary condition for i is obtained from the relation 
J Jv 

j - j b + ubgb (A-16) 
b 

where u, = - ^nCRe.y, ) + 5. 
b K * b 

It is seen from Equations (A-10), (A-12) and (A-13) that for the 

case of Couette flow with zero pressure gradient (P = 0 ) , if the vis

cous terms are neglected, the zero-gradient boundary conditions discussed 

in Chapter III are appropriate. 
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APPENDIX B 

FINITE DIFFERENCE EQUATIONS 

The n o n - d i m e n s i o n a l i z e d g o v e r n i n g e q u a t i o n s f o r t h e reduced 

d i s t r i b u t i o n f u n c t i o n s w i t h P = 0 a r e 
y 

> S - T < ° - « > * ; ? <>-,!«-> (B-l) 

3j _ 
y 3y 

- 1 + 
T 

1 d 2 u 

{ * dy 

dul 
p -" c ~T~ 

X y dy 

3U2 y 3 C y 
(B-2) 

3h 1 , f 1 d u 
c — = - ( H - h ) + 2 

y 9y T Re * dy 
, ~ P I x - c 

du_] 
y dy 

+ 
3IT 

- h + c 
9h 

y 3c 
yj 

(B-3) 

and 
3j 

V = i ( J -y 3y T V 
) + 

2 1 d u , e _ _ + u - P 
* c.y 3U 

3j 
_e_ _ l v 
3U2 V y 9vy 

(B-4) 

Using the second-order finite difference schemes outlined in 

Chapter IV, the Equations (B-l) - (B-4) can be approximated for each 
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node (i, O) as shown in the following. The subscript "i" denotes the 

i t h point in the physical space, y±, and the subscript "a" represents the 

discrete velocity point, c . 

Finite-difference equations for c^ > 0 can be obtained by using 

backward difference in physical space and forward difference in velocity 

space. The reduced distribution functions for the positive stream are 

denoted by a superscript "+." Thus, Equation (B-l) can be written, for 

c > 0, as 
o 

V<o " <i,° + gUo> " £ (G*.°" 8t° > 2(Ay) 

i i 

where, 
2c — c —c 

+ = a o+l a+2 
1 (c -c ,,) (c -c , „) 

" o a+1 a a+2 

c ~c 
D + = a a+2 2 (c , -c )(c ,. -c , _) 

a+1 a o+l o+2 
and 

c -c 1 

D+ = a a-1 3 (c ,„-c )(c ,0-c ,T) 
' a+2 a a+2 a+1 

solving for g. from Equation (B-5), there results 
l, u 

(B-5) 
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+ 

i 

^ 2 ^ ' T 2 2 C a V (B"6) 
y i 3UT 3UT 

I I 

Similar expressions for positive stream can be derived for the other 

reduced distribution functions. 

Finite difference equations for c < 0 can be derived by using 

forward differences in physical space and backward difference in velocity 

space. Equation (B-l) can be written for negative stream, indicated by 

a superscript "-", as 

( 4 g , M - g _ 0 n - 3g, J - ~ (G, - g, J 
2(Ay) 6 i + l , o &i+2,o & i , o / x. v i , a foi,a 

+ ^ T «I,a + ^ 2 c a ( D I « I , a -2 + D2 S±,o-l+ D3 *!,<,> (B"7> 

where 

c - c n - . 0 0 -1 

1 < c o-2 - c o- l ) ( c o-2 - c a ) 

c -c 0 - _ a o-2 

and 

2 (c n -c J (c -c ) 
o-l a-2 o-l o 

2c -c -c „ 
- _ a a-1 a-2  
3 (c -c 0 ) (c -c n ) 

q a-2 a a-1 
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Solving for g. , t he r e r e s u l t s 

* i , a = [TT + S ( I S i + 2 , o - 2 «i + l ,a> + ^ 2 c a ( D A , a - 2 + D2 ^ , o - i ) ] 

i 

/ ( ~ " | T2— " S " - - ^ c_Dj (B-8) 
T . 2 Ay 3 U 2 3 u 2 a 3 

Similar expressions for negative stream can be derived for the other 

reduced distribution functions. 
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APPENDIX C 

COMPUTATION OF DISSIPATION RATE FOR THE COUETTE 

FLOW PROBLEM 

The non-dimensionalized governing differential equation for the 

dissipation ra te , e, for the plane Couette flow is 

^T d_̂ £ 1_ d^T d£ 2_ ^T .du_. 2 
o 2 o dy My J 3 ° 1 TT2 My'' C 

c dy £ J J U 

? 2 

T C „ R e ^ = 0 (C-1) 
U 

where, o , c and c are constants and v t U and u are known functions 

of y. Equation (C-1) is a second-order non-linear ordinary differential 

equation and requires two boundary conditions. This equation is appli

cable in the region y < y < J. The boundary conditions for e in the 

Couette flow are 

% - «»'*y\ '•£:• a t y=\ ( c - 2 ) 

and and (~) = 0 at y=l. (C-3) 
dy 

It is known that, for the Couette flow problem, c ~ — in an approximate 

sense. It can be seen that ii this form is used in Equation (C-1), even 
A2 

a small error in the computation of the term containing — - x gets magni-
dy 

fied as y -• 0. One way to rec'uce this effect is to use the method of 
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differential variations [28]. 

In this method, solutions for e are sought as a correction about 

approximate or guess values. In other words, one sets 

e(y) = a(y) + 8(y) (C-4) 

where a(y) is the guessed profile and G(y) is the correction required to 

produce the correct solution for e. Substitution of Equation (C-4) in 

(C-l) gives 

VT d29 + 1 / V T , de . 2 VT ,du,2. 
0 ,2 a ^ dy ̂  dy + 3 °1 TT2 ^dy^ 
£ dy e J J U J 

2 R e* 2 
+ =r c -=- (2a0 + 9^) + h(y) = 0 (C-5) 

J U 

where 

, , , VT d2a 1 d VT do 2 VT ,du,2 2 _ a2 

M y ) = T + ~A— T + T ci T T̂~) a ~ T c o R e * ~T • 
0 , 2 a dy dy 3 1 TT2 dy 3 2 * TT2 
e d y c - 7 7 U U 

Equation (C-5) is a second-order, non-linear ordinary differential 

equation for 6 and requires two boundary conditions. The appropriate 

boundary conditions for 9 are obtained from (C-2) and (C-3) as 

(C-6) 
D K.y, D ' D 

b 

and 

(C-7) 

This is a two-point boundary value problem and since the differential 

equation is non-linear, a shocting technique [29] is appropriate. The 

e b = 
1 

K y b " 
a b 

at y=yb 

de 
dy " 

da 
" dy 

a t y= l 
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potential convergence problems associated with the shooting techniques 

render them less desirable. However, if Equation (C-5) can be linearized 

by a suitable numerical approximation, the principle of superposition 

can be used to eliminate the iterative procedure involved in shootinj 

2 
techniques. One way of linearizing the equation is to set 6 = 0 • 0 

where 0 are the known values of 0 from the previous iteration. This 

procedure is partly justified for the Couette flow problem because, an 

estimate of the relative magnitudes of the four terms in the equation 

show that the linear term is always larger than the non-linear term. 

Equation (C-5) can be written as a system of two first-order differential 

equations. Further, the linearized equations can be written in the form 

dz (y) 
= ai(y) z. + a_(y) z„ + aAy) (C-8) 

dy l w / 1 2 w y 2 3 

and 

dz (y) 

—j = b_(y) z + b9(y) z + b (y) (C-9) 
dy 1 1 z / J 

Since these equations are linear, one can seek solutions of the form 

z (y) = w (y) + Aw2(y) and z (y) = w (y) •+• Aw, (y) , where A is an arbi

trary constant. Using these with Equations (C-8) and (C-9) one gets 

-^- (w, + Aw0) = a Aw. + Aw0) + a_(w„ + Aw. ) + a (C-10) 
dy 1 2 1 ] 2 2 3 4 3 

T~ (WQ + ^w,) = b n (w n + Aw0) + b 0 ( w . + Aw.) + b „ . ( C - l l ) 
d y 3 4 1 J 2 1 5 4 3 

S i n c e A i s a r b i t r a r y , i t i s n e c e s s a r y t h a t 

dw-. 
= an w. + a_ w„ + a„ (C-12) 

dv 1 1 2 3 3 
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dw? 

— - = a . w + a w (C-13) 
dy 1 2 2 4 

dw 
= bn wn + b 0 Wo + b„ (C-14) 

dy "1 w l ' "2 w 3 ' "3 

and 

dw, 
= b , w + b_ w. (C-15) 

dy 1 z 2 4 

Th i s sys tem of coup led f i r s t o r d e r e q u a t i o n s need f o u r c o n d i t i o n s . They 

are. o b t a i n e d from E q u a t i o n s (C-6) and (C-7) , which a r e of t h e form 

z
1(y=yb) = °b

 = w
L ( y = V + A w

2
( y = V (c-i6) 

and, z2(y=l) = (~) = w ( y = 1) + Aw^y = 1) (C-17) 
y y = l 

To satisfy these conditions, it is convenient to set 

wAy = y,) = 9, and w_(y = y,) = 0. (C-18) 
1 b b Z b 

Also let w3(y - y ) = d yand w4(y = yb) = d2 (C-19) 

where d and d are arbitrary constants. 

With Equations (C-18) and (C-19) as boundary conditions, the 

system of Equations (C-12) to (C-15) are integrated using the Runge-Kutta 

method [36], At y = 1, Equation (C-17) can be used to evaluate A, with 

the computed values of w„ and w,. Once A is evaluated, the solutions z,, 

and zn are obtained from the expressions, z, = w, + Aw„ and z„ = w^+ Aw,. 
z 1 1 2 2 3 4 

In the present study, the values of the constants in Equation (C-l) 

are taken to be a = 1.3, c. - 1.45 and c^ = 1.92. 
e l 2 
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APPENDIX D 

COMPUTATION OF DISSIPATION RATE FOR THE CHANNEL FLOW 

PROBLEM 

The differential equation governing the dissipation rate, e, for 

the channel flow is 

VT d2E 1 dVT d£ 2 C1VT ,diu2 2 e2 

^̂ 7 + ^ i r d7 + 3 7 - ^ - 3 c 2 R v = 0 (D-1} 

With C ( y = y ) = p = - A _ ( D _ 2 ) 
b b icy-, 

and 

O = ° <D-3> 
" y= l 

as boundary conditions. 

For the channel flow, the method described in Appendix C fails. 

One of the reasons for this is due to the fact that the non-linear team 

(fourth team) in Equation (D-l) is larger in magnitude than the linear 

term (third term) for the channel flow problem. The integration of the 

non-linear differential equation using shooting techniques have not been 

successful. If finite difference schemes are to be employed, the equation 

should be linearized. In this study, the quasilinearization technique 

of Newton-Raphson-Kantorovich [30] is usee for this purpose. An outline 

of this method is described in the following paragraphs. 

The governing equation for e, Equation (D-l) can be rewritten in 

the form 
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c"(y) = f(» (y), eT(y),y) (D-2) 

where ( )' indicates derivative with respect to y. Let an initial approxi

mation of the function e(y) be given and be represented by £~(y), and 

from this, let e'(y) also be known. The function f can be expanded around 

the functions e (y) and e'(y) by the use cf the Taylor series 

£(e(y), e'(y),y) = f(eQ(y), ^(y),y) 

+(e(y) - e0(y))f£(e0(y), ej(y),y) 

+(e'(y) - Ej(y))fe?(E0(y), ej(y),y) (D-3) 

with second and higher order terms omitted. The expressions f and f , 

are the partial derivatives of f with respect to £ and e' respectively. 

Combining Equations (D-2) and (D-3), results 

f"(y) = f(e0(y), ^(y),y) + (e(y) - eQ(y)) f£(G0(y),£Q(y),y) 

+ (e'(y) - ^(y))f£,(e0(y), e^(y),y) (D-4) 

where £,-)(y) are known functions of y. Equation (D-4) is a linear dif

ferential equation. Substituting for f from Equation (D-l), Equation 

(D-4) becomes 

, c o Re c.a , 0 „ , / N r4 2 e * 2 1 e /duN21 e" = h(y) + [- — en - 7 — o ~ fc) (e - O 
3 v U2 ° 3 U2 dy ° 

1 d VT 

~-T J T < e ' "eo> (D"5) 
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h h ^ 2 W f * .2 2 Y £ i» 2 1 ,dVTw
dE0, 

where h(y) = 3 — 2 — <-Q - j - y - (^) e Q - — <^-) ( ^ ) . 

The boundary conditions for Equation (D-5) are 

E = e. at y = y, (D-6) 
b b 

and ~ = 0 a t y = l (D-7) 
dy 

Equation (D-5) is solved using finite difference approximation. Let this 

be denoted by e (y). With c (y) known, Equation (D-2) can be expanded 

about E (y) and £f(y). This procedure can be continued until the desired 

accuracy is obtained. In this study, central differences are used to 

approximate the derivatives. The resulting tri-diagonal system of 

equations is solved using standard recursion relations [37], The number 

of iterations of the Newton-Raphson-Kantorovich technique required to 

converge to within 0.0001 per cent is between 2 and A depending on the 

convergence of the moments of the distribution functions. 
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