

Plasticity Induced Damage on Grinding of polycrystalline γ-TiAl

Gregorio Murtagian Steven Danyluk Manufacturing Research Consortium Georgia Institute of Technology

Technological Problem

•Use of Intermetallic compounds
•Light weight
•Good mech. props. @ H.Temp.
•Brittle at low temperature

•Damage on manufacturing

•Catastrophic failure on service

Damage assessment during manufacturing is fundamental

Deformation and Cracking

(Nelson 1997)

Overview

Grinding

- •Workpiece material
- •Feed rate
- •Depth of cut
- •Wheel type
- •Wheel speed
- •Wheel direction
- •Cooling conditions
- Machine stiffness

Evaluation of grinding variables on subsurface damage

Lateral Material Displacement

Subsurface Plastic Deformation

Relevance of the Measurement

Plastic constraint factor = 3

Upper boundary for PDD

P D: Image Analysis Techniques

- •Plane fitting: average measurement
- •Average out-of-planarity measurement
- •1 data point/scanned image

Fitting of best plane on undeformed area
Measure of surface average vertical deviation from fitted plane as a function of distance from ground surface
Choosing of a threshold value to define PD
Robust to missing points and surface finishing

•Contour plot: point to point measurement
•Point to point measurement
•# data points ≥ image width / X-Y resolution (not a function)

Allows computation of PD dispersion at grain scale
Choosing of a threshold value to define PD

(3 - 1- 0.25 μm in the figure)

Very sensitive to surface finishing

Grinding Experimental Matrix

Grit size	Grit shape	Wear	Depth of cut	Table speed	Replic.	Total
2	2	2	2	2	2	64

•Full factorial: 32 different runs

•Variables values

•Grit size:	Mesh 60-80 (232 µm)	Mesh 270-325 (54 µm)
•Grit shape:	Blocky	Angular
•Wear:	$0.05 \text{ mm}^3/\text{mm}^2$	$2.5 \text{ mm}^3/\text{mm}^2$
•Depth of Cut:	20 µm	50 µm
•Table speed:	20 mm/sec	80 mm/sec

•PDD Measurements

•3 each side

•Total PDD measurements: 384

Grinding Wheel Diamond Abrasives

Wheel 63: SA MBG 300 Grit: 270-325 (54 µm avg.)

Wheel 65: LA MBG 300 Grit: 60-80 (232 µm avg.)

100.0 um

100.0 um

Wheel 61: LB MBG 660 Grit: 60-80 (232 µm avg.)

Superabrasive Wheel Conditioning

- •Truing:
 - •Gives true shape to wheel
 - •Exposes new abrasives
 - •Variables
 - •Traverse feed rate
 - •Depth of cut
 - •Wheel type
 - •Truing device
 - •Material removed
 - •Coolant
- •Dressing:
 - •Exposes new abrasives
 - •Sharpens abrasive attack face
 - •Variables
 - •Plunge feed rate
 - •Dressing type
 - •Material removed
 - •Coolant

Plastic Deformation Depth: Grit Size Effect

Georgialnstitute of Technology

Plastic Deformation Depth: Summary

Conclusions

•<u>PD determination technique</u>

- Useful and practical technique to assess depth of PD
- •Plane fitting method of PD determination is robust w.r.t. surface finishing and gives an average value of PD depth
- •Contour plot method allows the determination of PD depth variability with respect to grain morphology and lamellae orientation

Plastic deformation depth

- •Strongly dependent on grit size for dressed wheel
- •For worn wheels it is not always true that the smaller the grit the lower the damage

Ongoing research

- Residual stress measurements
- Crystal plasticity + FEA modeling

Wheel Conditioning

	Free wheel / non-collinear axis (7°) truing with coolant					
	Wheel	Rough truing conditions		Finish truing conditions		
		Downfeed	Crossfeed	Downfeed	Crossfeed	
LB	75mm D 25mm W 37C60-MVK Silicon carbide	20 µm pass	110 cm/min 0.9 mm/rev.	5 μm pass	75 cm/min 0.6 mm/rev.	
LA						
SB	75mm D 25mm W	0.3 mm total		0.03 mm total		
SA	38A60-MVBE Aluminum oxide		55 cm/min 0.45 mm/rev.		37 cm/min 0.3 mm/rev.	

Wheel Conditioning

	Dry Plunge Dressing				
	Stick	Conditions			
LB	38A120 – IVBE				
LA	25 mm x 25 mm	40 mm/min total removed: 6.5 cm ³			
SB	38A 220 –HVBE				
SA	25 mm x 25 mm				