PROJECT ADVISORY COMMITTEE - SYSTEMS ANALYSIS

and

MAPPS USER'S GROUP

. Den solar i de gress Researce serve particularen e

ţ

1.

SLIDE MATERIAL

ŧ

1.

-1-

MAINFRAME VERSION

9 users

Full implementation on:

IBM Series 3xxx & 4xxx machines Burroughs B6910 VAX 11/780 MASSCOMP MCS510

μΜΑΡΡS

IBM PC, XT, AT

COMPAQ

DIFFERENCE BETWEEN MICRO AND MAINFRAME VERSIONS

Help menus

Problem size - floppy disk versions

FORTRAN 77 vs. FORTRAN 66

Execution speed

Accuracy

SPEED COMPARISONS

Generic Pulp Mill

B6910	45 sec
VAX 11/780	
MASSCOMP	45 sec
PC/XT	260 sec
PC/AT	130

•

1.

à.

FUTURE:

Same code on μ & mainframe

FORTRAN 77

Revised file handling

Revised help menus

NEW MODELS

STAFF DEVELOPED:

Supported

Documentation & code distributed

STATE.

4.

STUDENT DEVELOPED:

Not supported

Available by request

Copy charge for M.S. thesis

Thesis contains model descriptions, code, and worksheets

SUPPORTED MODULES

RATIO

- Computes ratio of module or stream parameters
- Documentation distributed
- Included with original source

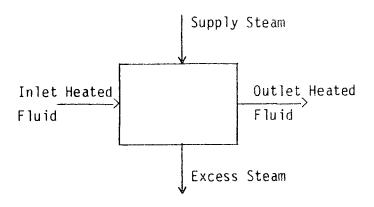
STMHTR

- Direct steam heater
- Code and documentation to be distributed

RPRTØ1

- Simple report generator
- Code and documentation to be distributed

۰,


1

1.

STMHTR

-5-

• Models a direct steam heater.

• Description:

A calculated amount of steam is added to a heated fluid stream to raise the temperature of the stream.

Given:

(a) Desired exit fluid temperature

or

2

4.

(b) Desired temperature rise

Calculated:

(a) Amount of required steam

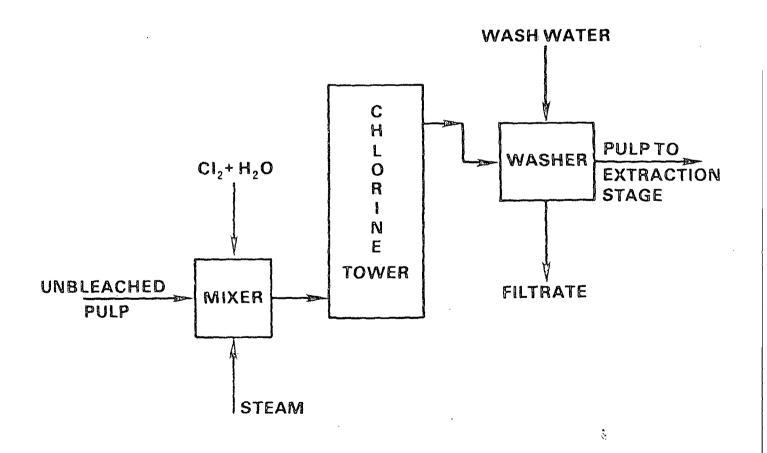
RPRTØ1

- A) Prints out summary information on a group of streams being used in the simulation.
- B) Either ALL streams or a user specified group of streams may be requested.

Statistics reported:

- 1) mass flow rate (lb/hr or kg/hr)
- 2) total flow rate (gal/min or L/s)
- 3) consistency, %
- 4) dissolved solids, %

and a second second


1.-

MAPPS

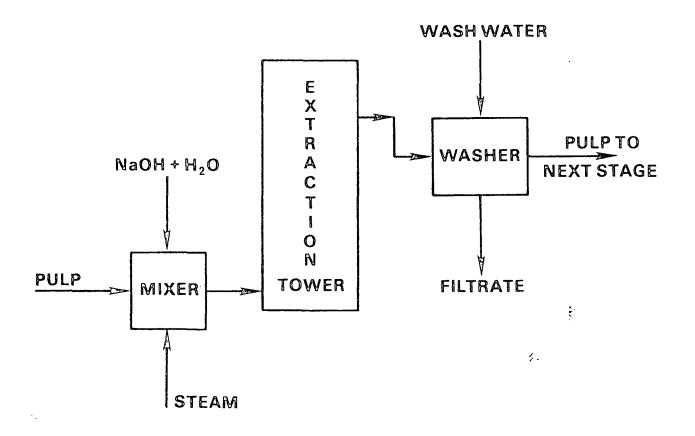
Bleaching Models

- Chlorination
- Extraction
- Chlorine dioxide bleaching

CHLORINATION

1.

CHLORINATION KINETICS


 $- \frac{d(XLF)}{dt} = k_1(XLF)(CL2) FAST$

$$-\frac{d(XLS)}{dt} = k_2(XLS)(CL2) SLOW$$

XL + a Cl₂ === b XLC + c HCl Lignin Chlorolignin

Ackert, et al., Tappi 58:141 (Oct., 1975).

EXTRACTION

C10₂ BLEACHING: D1 and D2 STAGES $-\frac{dC_{k}}{dt} = K[C10_{2}]^{0.5} [H^{+}]^{-0.3} [C_{k} - C_{k^{\infty}}]^{3}$ $\frac{d[C10_{2}]}{dC_{k}} = \frac{K_{3}}{C_{k}^{n}}, \quad n = 1, \text{ D1 stage}$ = 2.3, D2 stage

Teder and Tormund (1) CPPA Trans. Tech. Section 3:41(1977), (2) AIChE Symp. Series, Vol. 76, No. 200, p. 133(1980).

CHLOR INATION

User supplied data:

- Input stream No. 1 (washed pulp)
- Input stream No. 2 ($C1_2 + H_20$)
- Input stream No. 3 (steam/H₂0)

1

• Chlorine tower volume

Optional information:

- Rate constants
- Stoichiometric data
- Mass balance factors

CHLOR INATION

Output

1

- Stream No. 4 (chlorinated pulp)
- Retention time (hours)
- Total conversion of lignin
- Residual chlorine
- Temperature of reactor

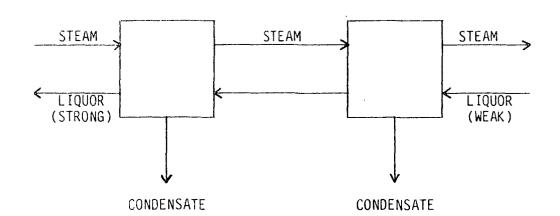
STUDENT MODULES:

Sam Busch - April, 1984 A Computer Model of a Multiple Effect Evaporator

Greg Kulas - March 5, 1985 The Development of an Oxygen Stage Bleaching Model for MAPPS

STUDENT MODULES (Contd.):

Arlene Heaster - Dec. 11, 1984 A MAPPS Model of the Chemical Conversion Cycle in an Alkaline Sulfite-Anthraquinone Pulp Mill


Scott Dibbs - Feb. 22, 1985 Modeling and Simulation of the Alkaline Sulfite-Anthraquinone Pulping System

.

1.

-11-

.

EVAPORATOR MODEL

CONVENTIONAL

SPECIFY:

WEAK LIQUOR FEED STEAM EXCHANGER DESIGN

ITERATE:

EACH MODULE UNTIL CONVERGED

BUSCH

and the second second

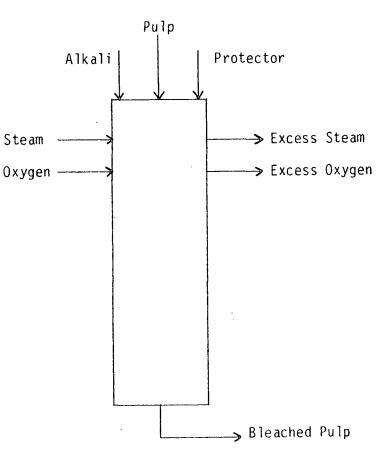
SPECIFY:

STRONG LIQUOR FEED STEAM EXCHANGER DESIGN

ITERATE:

FEED STEAM FLOW TO DESIRED WEAK LIQUOR CONCENTRATION

1.


-12-

ADVANTAGES:

No iterative calculations except for control on steam flow.

DISADVANTAGES:

Must specify desired weak liquor concentration.

OXYGEN BLEACHING

1.

el en

OXYGEN BLEACHING

Down flow tower

Assumptions:

Plug flow

Isothermal

Protected carbohydrate

Convective transport only

Reactions as outlined by Olm & Teder, <u>Tappi</u> 62(12): 48-46(Dec. 1979)

Constant oxygen pressure

OXYGEN BLEACHING

Basic Kinetics:

Lignin = Slow + Fast = $L_s + L_f$ Slow rate = $k_1 (OH^-)^{0.3} P_{02}^{0.2} \cdot L_s$ Fast rate = $k_2 (OH^-)^{0.1} P_{02}^{0.1} \cdot Lf$

and the second second

:

1/1-

OXYGEN BLEACHING

Carbohydrate Degradation (as viscosity loss):

Slow rate = $k_3 (0H^-)^{0.6} P_{02}^{0.1}$ Fast rate = $k_4 (0H^-)^{0.2} P_{02}^{0.8}$

Fast ——> Slow when 85% of fast lignin removed

ALKALINE SULFITE-ANTHRAQUINONE SYSTEM

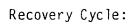
Pulping:

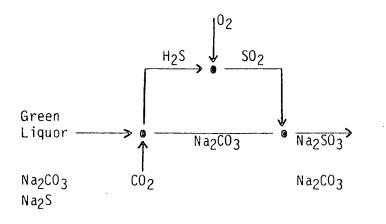
Modified kraft digester

Modified white liquor controller

Modified makeup controller

Modified recovery furnace


Recovery:


Tampella-Rauma System

. '

ASAQ	MODULE
Pulp	ing:
D	IGRØ4
W	LIQØ2
М	KUPØ2

-16-

-----. • !

•

',-

ASAQ MODULES

Recovery:

ABSORB

- SO₂ Absorption
- CO₂ Stripping

Reactions:

 $SO_3^{=} + SO_2 + H_2O \longrightarrow 2HSO3^{-}$ $2HCO_3^{-} \longrightarrow CO_3^{=} + CO_2 \uparrow + H_2O$ $2HSO_3^{-} + CO_3^{=} \longrightarrow 2SO_3^{=} + CO_2 \uparrow$ $HSO_3^{-} + HCO_3^{-} \longrightarrow SO_3^{=} + CO_2 \uparrow H_2O$

ASAQ MODULES

Recovery:

CARB

Carbonates green liquor

Reactions:

 $CO_3^{=} + CO_2 + H_2O \longrightarrow 2HCO_3^{-}$

•

',·

-17-

ASAQ MODULES

Recovery:

H2STRP

Forms and strips H₂S

Reactions:

 $HCO_3^{-} + HS^{-} \longrightarrow CO_3^{-} + H_2S^{+}$

ASAQ MODULES

Recovery:

PRCARB

Green liquor precarbonation

Reactions:

 $2 S^{=} + CO_2 + H_2O \longrightarrow 2 HS^{-} + CO_3^{=}$

÷

1.

 $CO_3^{=} + CO_2 + H_{20} \longrightarrow 2HCO_3^{-}$

-18-

5.

ASAQ MODULES

Recovery:

S03TON

Sulfitation of green liquor

Reactions:

 $2HSO_3^- + CO_3^= \longrightarrow 2 SO_3^= + CO_2^{\uparrow}$

 $HSO_3^{-} + HCO_3^{-} \longrightarrow SO_3^{-} + CO_2^{+}$

MAPPS FORTRAN 77

CONVERSION OBJECTIVES

- 1. Convert code to FORTRAN 77 for portability and long-term compiler support.
- 2. Produce a mainframe version of MAPPS that can be easily transported to a micro.
- 3. Take advantage of the file handling capabilities of FORTRAN 77.
- 4. Add customer recommendations.

IBM has discontinued support of level G and H compilers.

1

1.

المرجع والمرجان

After conversion to FORTRAN 77, MAPPS would still not run on the PC using the MS-FORTRAN compiler.

Reasons:

- The stack, format statements, and arrays declared "NOTLARGE" are stored in one 64K segment.
- Arrays that are declared "LARGE" and are initialized via DATA statements in subroutines "disappear."

SOLUTIONS

1

',**.**

 ALL of the "prompt mode" routines were eliminated, except those needed for the MAKE command.

The user can obtain help by calling up disk-based menus.

Example: HELP HELP ADD

MAPPS MASTER MENU

HELP IS AVAILABLE FOR THE FOLLOWING COMMANDS:

SUPERVISORY CANCEL	COMMANDS ECHO	END	STATUS			
FILE COMMAND COMPARE	IS COUNT	GET	SAVE	NEW	ERASE	
EDIT COMMAND ADD	S CHANGE	DELETE	МАКЕ	REMOVE		
WRITE COMMAN DISPLAY	IDS PRINT					
EXECUTE COMMANDS RUN						

+ TO GET MORE INFORMATION, ENTER HELP FOLLOWED BY THE SECTION NAME OR COMMAND NAME

and the second state of th

3

1.

STRUCTURE OF THE ADD COMMAND IS:

COMMAND

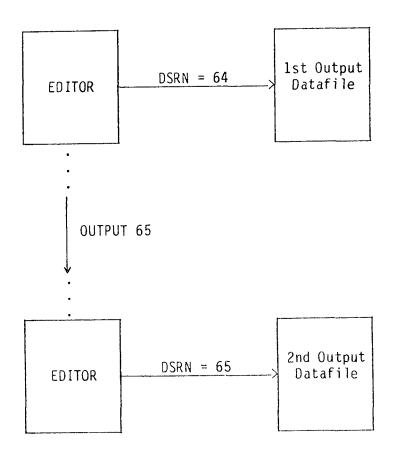
ACTION

in the trans

ADD	MODULE N	ADDS MODULE "N" TO THE DATA FILE. MODULE DATA ARE REQUESTED.
ADD	STREAM N	ADDS STREAM "N" TO THE DATA FILE. STREAM DATA ARE REQUESTED.
ADD	DEFINITION N	DEVELOPS A NEW COMPONENT DEFINITION FOR STREAM TYPE "N". A NEW DEFINITION IS REQUESTED.
ADD	TITLE N	ADDS THE NTH TITLE LINE TO THE DATA FILE. N MUST BE 1, 2, OR 3. A NEW TITLE STRING IS REQUESTED.
ADD	ORDER	INSERTS MODULES IN THE CALCULATION ORDER. STARTING POINT AND MODULES ARE REQUESTED.

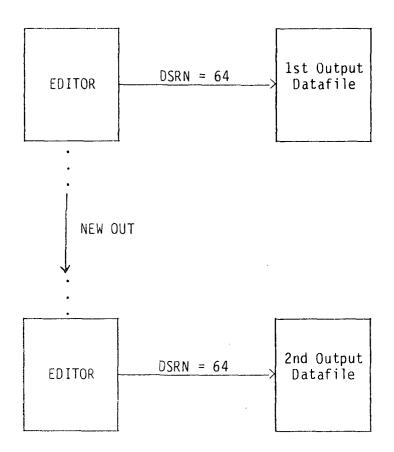
- 2. The prompts for the MAKE command are retained, but they are also disk based.
- Most initializations of arrays via DATA statements were replaced by assignment statements. The arrays in the remaining DATA statements must be declared "NOTLARGE" in the micro version.

÷.


1.

-23-

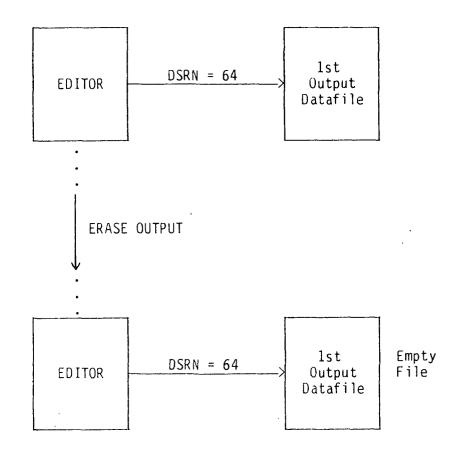
• • • •


The FORTRAN 77 version of MAPPS offers improved run time file handling.

Run time file handling in MAPPS Release 1.0

.

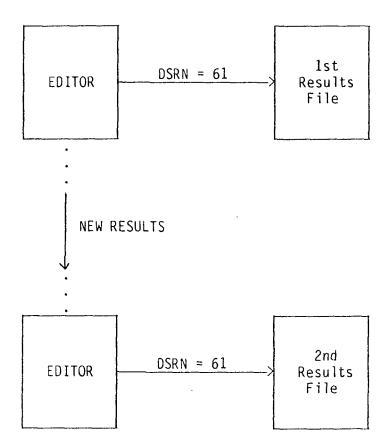
1,.


و به می

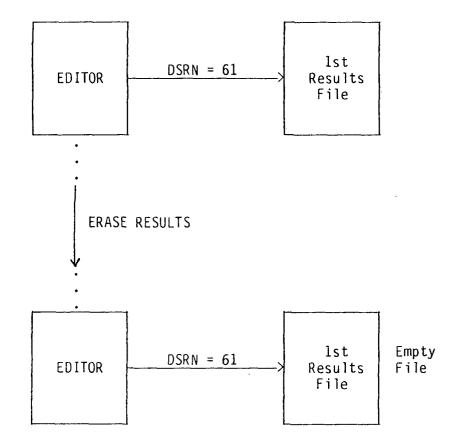
and the second second

. .

.

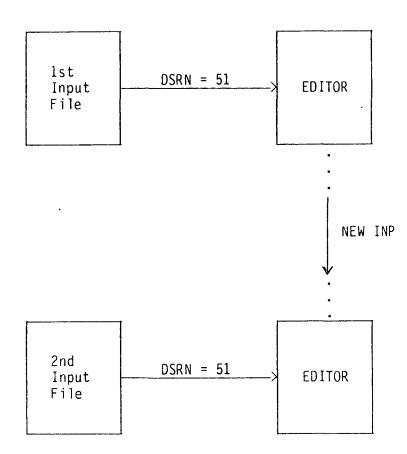

1,.

-26-


۲

'r.

and the second second


1.

1

-29-

Run time file handling in MAPPS Release 1.1 (FORTRAN 77)

'.·

•

۰,

:

',

Allow multiple parameter or parameter ranges on a command line.

Example: DIS MOD 14 1, 3, 11-17

Displays parameters 1, 3, and 11 through 17 for module 14.

RUN ORD 1-5

Runs the modules in the calculation order positions 1 through 5.

Improve the information content of error warning messages.

01d message:

* WARNING ** MODULE 11 : STREAM 44 HAS A NEGATIVE FLOW RATE

New message:

* WARNING ** DESUP 11 : STREAM 44 FLOW = -61.654

MAPPS PERFORMANCE COMPARISONS

CPU TIME REQUIRED TO EXECUTE THE GENERIC PULP MILL

MAINFRAME	
FORTRAN 66	39 SEC
FORTRAN 77	76 SEC
MICRO .	
IBM AT	120 SEC
IBM XT	250 SEC

-31-

· ... ·

1.

. . . .