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The model proposed in this paper relates permeability to porosity measure-
ments that can easily be performed in the laboratory. The Pore Size Dis-
tribution (PSD) curve is updated with strains and damage. The updated
volumetric fractions of natural pores and cracks are introduced in the ex-
pression of permeability. Contrary to classical permeability models based
on PSD integrations, the model proposed in this paper accounts for possi-
ble changes in the porosity modes: one mode for undamaged samples, and
two modes for cracked samples. The proposed approach also accounts for
varying states of damage, as opposed to classical fracture network models,
in which the cracks pattern is fixed. The only material parameters that are
required to describe the microstructure are the lower and upper bounds of
the pores size for both natural pores and cracks. All the other PSD param-
eters involved in the model are related to macroscopic parameters that can
easily be determined in the laboratory, such as the initial void ratio. The
framework proposed in this paper can be used in any damage constitutive
model to determine the permeability of a brittle porous medium. Drained
triaxial compression tests have been simulated. Before cracks initiation, per-
meability decreases while the larger natural pores are getting squeezed. After
the occurrence of damage, permeability grows due to the increase of cracks
density. The model performs well to represent the influence of the confining
pressure on damage evolution and permeability variations.

Keywords. Poromechanics, Continuum Damage Mechanics, Pore Size
Distribution curve, Permeability, Rock microstructure
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1. INTRODUCTION

Most of the research on rock mechanics is motivated by societal needs
such as energy production, energy storage and waste confinement, in which
the permeability of the host rock plays a critical role. Performance, relia-
bility and safety are the key issues in such geotechnical projects, related to
oil and gas extraction [11, 31, 65], geothermal systems [12, 37], pressurized
gas storage [17, 19, 26, 53], carbon dioxide sequestration [6, 59] or nuclear
waste disposals [9, 10, 24, 41, 55]. Permeability depends on the geometry of
the connected porous network. The latter depends on the alteration of rock
microstructure: deformation and micro-cracking change the geometry of the
porous network with no mass transfer, whereas diffusion creep, dissolution
and precipitation are associated to species phase changes [63]. Chemical re-
actions are caused by solute advection and diffusion, which are facilitated
by heat transfer and pore-fluid mixing [60]. With the increasing demand of
natural minerals, ore forming mechanisms have become a priority research
topic. Understanding how thermo-hydro-chemical processes influence poros-
ity and bulk permeability can help in finding new mineral deposits in the
deep Earth [61, 62, 64]. The present paper focuses on reversible and irre-
versible changes operated on the porous network without mass transfer. The
considered porous network is made of cracks (due to damage) and natural
pores (located in the undamaged matrix). Relating the rock microstructure
to the rock macroscopic behavior (e.g. stiffness tensor, permeability, thermal
conductivity) is a long standing problem of constitutive modeling. However,
it has gained a large interest in recent years because of important technical
advances, such as Scanning Electron Microscopy (SEM) [8, 40] and X-ray
tomography [35, 42]. The aim of this research work is to relate the evolution
of deformation and damage to permeability changes. The approach consists
in determining the effects of deformation and damage on the Pore Size Dis-
tribution (PSD) curve of the material. Simple and common assumptions are
made to link the PSD equation to the expression of permeability. The PSD
curve can easily be determined in the laboratory for any state of irreversible
deformation and damage, by resorting to Mercury Intrusion Porosimetry
(MIP) for instance. One advantage of the method adopted in this paper is
that the model can easily be calibrated and validated from simple laboratory
measurements.

Hagen-Poiseuille equation and Darcy’s law relate the intrinsic permeabil-
ity of a porous material to its porosity. The latter can be determined by
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integrating the equation of the Pore Size Distribution curve. Therefore, the
Pore Size Distribution curve provides essential macroscopic parameters. The
first models based on the knowledge of the PSD curve focused on unimodal
porous media. Garcia-Bengochea et al. [23] explained several approaches
to determine the relationship between the porosity and the intrinsic perme-
ability of a granular material. Van Genuchten [56] used a Bell-shaped Pore
Size Distribution curve to relate the degree of saturation to capillary pres-
sure on the one hand, and to the material relative permeability on the other
hand. More recent studies resort to the PSD curve to determine the reten-
tion and permeability properties of bimodal porous media [47, 48, 49, 50, 58].
However, these studies deal with undamaged materials. Several permeability
models have been proposed to account for damage and healing in salt rock
[13, 51]. Cosenza and Ghoreychi [16] have modeled the influence of water
on the chemical potential of salt rock to predict the permeability reduction
induced by brine precipitation. They have also studied the “dissolution -
transport - crystallization” process, by which crushed crystal joints form a
gouge that is transported to the cracks network. The particles crystallize in
the cracks, which reduces permeability. In salt rock, damage is associated
to an increase of volumetric strains, as opposed to isochoric creep strains.
Olivella and Gens [43] proposed a dilatancy model to predict permeability
changes in cracked porous media. The fact that damage-induced strains are
volumetric does not imply that damage itself is isotropic. The main limita-
tion of the permeability models based on dilatancy is that they are unable to
predict flow paths that may form in the Excavation Damaged Zone. A few
phenomenological models based on Continuum Damage Mechanics account
for the effect of cracking on permeability changes. In anisotropic damage
models, it is usually assumed that cracks permeability adds to the perme-
ability of the undamaged rock matrix. The flow induced by damage is often
considered to occur in the cracks planes, which makes it possible to compute
cracks permeability from the cubic law [4, 5, 52]. Maleki and Pouya [38, 39]
proposed an original approach, in which the cracks permeability tensor is
projected in the principal base of a fabric tensor. Fracture network flow
models account for the cracks locations, lengths, apertures and orientations
[36]. In multimodal models [20], natural pores and cracks are assumed to con-
nect and to form a unique porous network. The pore pressure of the fluid is
thus assumed to be homogeneous in the Representative Elementary Volume
(REV). In multi-continua models [57], the natural porous network and the
cracks network are assumed to drive fluid flows separately, but not always in-
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dependently. Each continuum (natural pores on the one hand, cracks on the
other hand) is thus characterized by its own pressure head. Richards equa-
tions are coupled by coefficients that quantify the fluid exchanges between
the natural pores and the cracks. In all fractures network models, one of the
challenges consists in determining the equivalent flow properties of a material
element from the parameters of each network [44, 46]. The REV size is an
important assumption of the model, because permeability is scale-dependent
[25, 67]. One of the main limitations of the fracture network models lies in
the difficulty to assess internal length parameters and percolation thresholds.
Moreover, such models generally do not account for the deformation of the
solid skeleton (rigid matrix), nor for the evolution of damage (fixed cracks
configuration).

The proposed permeability model can be coupled to any damage model
used to predict damage evolution and the effect of cracking on the stiffness
tensor. In this paper, simulations are performed assuming that cracking
depends on tensile strains. The outline of the mechanical damage model is
presented in Section 2, along with the main constitutive equations of the
permeability model. Parameters are introduced to define the equations of
the Pore Size Distribution curves. Permeability is expressed with functions
depending on PSD integrals. The details of the algorithm used to update
the PSD curve with damage and strains are provided in Section 3. The
model predictions are studied through triaxial compression tests simulated
in drained conditions. The material chosen for these tests is granite, for
which it was possible to resort to published experimental results to calibrate
and validate the mechanical damage model used in this study. The evolution
of the model parameters and variables is thoroughly studied in section 4. In
Section 5, parameters are calibrated, and the sensitivity of the model to the
confining pressure is analyzed.

2. MODEL OUTLINE

2.1. Mechanical Damage Model

The Representative Elementary Volume (REV) considered in this study
is made of a solid skeleton and of a porous network. The latter includes
natural pores, which are present in the reference state, and cracks. Damage
is relative, and any state of damage can virtually be considered as the ref-
erence state. In this study, the reference state is the state of the material
before cracking is generated by the loading applied in the experiment (or
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simulated in the numerical computation). In reality, before loading, rock
contains micro-cracks that add to the porosity of the intact assembly of min-
erals. The latter is called “porosity of the intact matrix” throughout the
paper. It is assumed that micro-cracks existing in pristine rock are small
and scarce enough to be considered part of the matrix porous network. As a
result, the elastic parameters measured in the initial state of the laboratory
tests simulated in the sequel are said to be “undamaged”. The reference
state is actually defined as the undamaged state, when the REV contains no
open crack. In phenomenological models, damage is represented indirectly,
by quantifying the effects of cracking on stiffness, strains and permeability.
In microscopic models, damage is assessed by measuring the number and
volume of cracks in the REV. The definition of damage thus depends on the
modeling approach adopted [45]. In the following, damage is defined as the
spectral decomposition of the second-order crack density tensor [32]:

Ω =
3∑

k=1

dk nk ⊗ nk (1)

where the principal directions of damage are given by the vectors nk, which
are normal to the three principal crack planes. dk is the volumetric fraction
of the k-th family of cracks in the REV. The aim of this research work is to
model the evolution of the porous network with deformation and damage, and
to assess the corresponding impact on permeability. The idea is to propose a
theoretical framework that will be easy to plug into any damage constitutive
model based on Continuum Damage Mechanics. To illustrate the capabilities
of the model proposed for damaged permeability, simulations have been done
by using a simple mode I failure model inspired from the works of Dragon
and Halm [21]. Total strains are decomposed into [1]:

ε = εel + εed + εid (2)

where εel is the purely elastic deformation, that would be obtained if the
stiffness tensor were undamaged. εed is the additional elastic deformation
induced by the degradation of stiffness with cracking. εid is the damage
residual strain, which accounts for the presence of remaining open cracks
after unloading. The definition of the three components of deformation is
illustrated in Fig.1.

The stress-strain relationship simply writes:

σ = D (Ω) : εe (3)
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Figure 1: Definition of the components of strains. In this illustrative case, Ω1 is the
amount of damage in the (reference) initial state.

in which εe = εel + εed. D (Ω) is the stiffness tensor in the current state of
damage (Ω2 in Fig. 1). The damaged elasticity tensor D (Ω) is computed
by applying the principle of equivalence between the deformation energy of
a damaged REV subjected to the real stress field σ and the deformation
energy of an undamaged REV subjected to the effective stress field σ̃ [28].
The effective stress is defined by resorting to the operator of Cordebois and
Sidoroff [15]. When a tensile loading generates cracks, it is expected that
a bare unloading will not suffice to close the cracks. The remaining cracks
openings originate residual damage strains (equation 1). The compressive
stress (σR) that would be necessary to close the remaining open cracks is
assumed to be parallel to damage:

σR = −gΩ (4)

The damage criterion indicates that damage grows with tensile strains [14,
21, 30]:

fd
(
Ω, ε+

)
=

√
1

2
(gε+) : (gε+) − C0 − C1 δ : Ω (5)

in which δ is the second-order identity tensor. g is the resistance to crack
closure (Equation 4). C0 is the initial damage threshold, and C1 controls
cracks growth with cumulated damage. The damage flow rule is assumed to
be associate.
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2.2. Pore Size Distribution Curve

Natural pores are expected to change according to the deformation ex-
perienced by the REV. In addition to the natural pores, damaged materials
contain cracks that form another part of the porous network. Observations
done on clay rock [38] show that it is reasonable to assume that the typical
size of the cracks is at least one order of magnitude larger than the typical
size of natural pores. In a damaged porous medium, the Pore Size Distribu-
tion curve thus shows two distinct modes (Fig. 2.b,c). In intact (undamaged)
states, the PSD curve is characterized by the natural mode only (Fig. 2.a).
If the rock is considered as a cracked solid, the PSD curve also shows a
unique mode (Fig. 2.d). The PSD curve is obtained by an experimental
technique (Mercury Intrusion Porosimetry for instance) which makes it pos-
sible to measure connected porosity only. The permeability model presented
in the sequel is based on the knowledge of the PSD curve for any state of
deformation and damage. Therefore, two assumptions are made:

1. the natural porosity refers to the connected natural porosity (classical
assumption),

2. cracks may be not connected to each other, but cracks are connected
to the natural porous network (assumption supported by Maleki and
Maleki and Pouya [38, 39]), so that damage contributes to an increase
of fluid flow from the initiation of cracking.

The experimental determination of the PSD curve is based on an isotropic
flow test. Each pore is seen as a tube conveying the flow. That is the reason
why the porous network is modeled as a bundle of parallel cylinders of equal
length, characterized by different radii [23]. By construction, the model pro-
posed in the sequel is thus based on a simple geometric representation of the
porous network: both natural pores and cracks are assumed to be cylinders.
This is actually the same assumption as the one used to interpret raw data
from Mercury Intrusion Porosimetry tests. Considering a flow model in one
dimension, the length of the cylinders is equal to the length of the REV in
the direction parallel to the flow. The pore “size” distribution is thus only
characterized by a radius distribution. This approach makes it possible to
get a simple and straightforward expression for the “isotropic” permeability
(as explained in the following paragraph). The Pore Size Distribution curve
of the REV is obtained by the juxtaposition of the PSD curve corresponding
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a. b. c. d.

Figure 2: Pore Size Distribution curve evolving with deformation and damage. a. Intact
(undamaged) material. b,c. Damaged material. d. Cracked solid.

to radius distribution of the natural pores with the PSD curve correspond-
ing to the radius distribution of the cracks. Natural pore sizes are assumed
to follow a Bell-shaped distribution (Fig. 3.a), like in the classical model
proposed by Van Genuchten [56]. The corresponding log-normal probability
density function (pdf) writes:

pp(r) =


1

s
√
2π
exp

(
− (r−m)2

2 s2

)
if rpmin ≤ r ≤ rpmax

0 otherwise

(6)

m and s are the mean and the standard deviation of the probability den-
sity function, respectively. rpmin and rpmax are respectively the minimum and
maximum values that can be taken by the radius of the natural pores. Using
the definition of the probability density function pp [22], we have:

∫ ∞
−∞

pp(r)dr = 1 ⇒
∫ rpmax

rpmin

pp(r)dr ≈ 1 (7)

In other words, m and s are adjusted in such a way that the integral of the
pdf pp over the interval [rpmin, r

p
max] be still equal to unity. In the same way,
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by definition of the expectancy (or mean value) m:

∫ ∞
−∞

pp(r)rdr = m ⇒
∫ rpmax

rpmin

pp(r)rdr ≈ m (8)

Assuming that the total number of natural pores in the REV is equal to Np,
the number of natural pores of size r is equal to αp(r) = Np pp(r). Each pore
is considered as a cylinder. Therefore, the “area frequency” of the natural
pores of radius r is: αp(r)πr

2 [23]. The length of the REV in the direction
parallel to the flow is considered equal to unity (unit REV). As a result,
the “volumetric frequency” of the natural pores of radius r is also equal to
αp(r)πr

2, and the volume occupied by the natural pores in the REV (Vp) can
be computed as follows:

Vp =
∫ rpmax

rpmin

αp(r)πr
2dr = π Np

∫ rpmax

rpmin

pp(r)r
2dr (9)

Following the choice of Maleki [38], it is assumed that the sizes of the radii
of the cracks follow an exponential law (Fig. 3.b). These radii correspond
to the cracks apertures in penny-shaped cracks models. The corresponding
probability density function (pc) writes:

pc(r) =


1
λc
exp

(
− r
λc

)
if rcmin ≤ r ≤ rcmax

0 otherwise

(10)

rcmin and rcmax are the minimum and maximum values that can be taken by
the cracks radius. λc is the characteristic cracks length. λc is equal to both
the mathematical expectancy and the standard deviation of the probability
density function pc [22]. Following the same approach as for natural pores,
the value of λc is adjusted to the bounds rcmin and rcmax to satisfy:∫ ∞

0
pc(r)rdr = λc ⇒

∫ rcmax

rcmin

pc(r)rdr ≈ λc (11)

Noting Nc the total number of cracks in the REV, the number of cracks of
radius r is equal to αc(r) = Nc pc(r). The length of the REV in the direction
of the flow being equal to unity, the “volumetric frequency” of the cracks of
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Figure 3: Probability Density Functions of the radius distribution of a. the natural pores
(Bell-shaped), b. the cracks (exponential).

radius r is equal to αc(r)πr
2. As a result, the volume occupied by the cracks

in the REV (Vc) is defined as:

Vc =
∫ rcmax

rcmin

αc(r)πr
2dr = π Nc

∫ rcmax

rcmin

pc(r)r
2dr (12)

Four assumptions are made to get the equation of the Pore Size Distribution
curve of the damaged porous rock sample.

1. The volume of a crack is entirely associated to damage growth, i.e. it
is assumed that the creation and the growth of cracks create additional
void space that does not stem from the coalescence of natural pores.
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This assumption is fundamental in most of the constitutive models
based on Continuum Damage Mechanics [33, 34], and makes it possible
to discriminate natural and damage-induced porosities. As a result,
crack-induced porosity can be determined by using Equation 12.

2. Cracks do not interact, i.e. cracks are not connected to each other. This
assumption makes it possible to resort to a damage tensor of order two
only to predict the anisotropy induced by cracking [32]. Moreover,
assuming that cracks are not connected avoids all considerations about
percolation thresholds in the permeability model [2, 7].

3. Cracks are connected to the natural pores. This assumption is com-
monly adopted in modeling frameworks dedicated to cracks perme-
ability, even when the cracks are assumed not to be connected [66].
Moreover, the connectivity of cracks to the porous network is a neces-
sary assumption, since the model is based on PSD curves, which are
obtained from connected porosity measurements. As a result, damage
growth always influences the intensity and the direction of fluid flow.
The proposed model is unimodal in the sense of permeability (all pores
are connected and form a unique porous network, characterized by a
unique pressure head), but it is bimodal in the sense of porosity.

4. Natural pores and cracks are connected but do not intersect, so that
there is no overlap between the volume occupied by the natural pores
and the volume occupied by the cracks. The total volume of voids in
the REV (Vv) can thus be obtained by adding the volume fraction of
the natural pores to the volume fraction of the cracks:

Vv = Vp + Vc (13)

According to the assumptions listed above, the number of pores (natural or
damage-induced) of radius r in the REV is equal to:

α(r) = αp(r) + αc(r) (14)

For a unit REV, with a length equal to unity in the direction of the flow, the
“volume frequency” of the pores is equal to α(r)πr2, and the total porous
space is expressed as:

Vv =
∫ ∞
0

α(r)πr2dr =
∫ rpmax

rpmin

αp(r)πr
2dr +

∫ rcmax

rcmin

αc(r)πr
2dr (15)
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Nine model parameters are required to characterize the PSD curve: the
bounds limiting the range of values of the pore sizes (rpmin and rpmax, r

c
min

and rcmax), the number of natural pores (Np) and cracks (Nc) in the REV,
the expectancy (m) and standard deviation (s) of the pdf used for the natural
pores size distribution, and the characteristic length of the cracks (λc). We
will see in the sequel that only four of these parameters are input data. The
remaining are determined by means of equations relating the microstructure
parameters to macroscopic characteristics of the REV.

2.3. Permeability

The permeability model is based on two fundamental assumptions.

1. As explained in the preceding paragraph, the geometry of the porous
network is represented by the Pore Size Distribution curve, which is up-
dated with the state variables. The link with the PSD curve is based on
a simple network geometry model [23]. The constitutive relationships
result from isotropic flow equations.

2. The flow in the connected porous network constituted of natural pores
and cracks is laminar, i.e. Hagen-Poiseuille flow model is adopted. This
flow representation is a rough simplification of the physical processes
at stake. In reality, a more refined flow model including turbulence is
required to model the effects of fluid density and viscosity combined to
the tortuosity of the porous network [18]. Although very simple, this
assumption of laminar flow is adopted in many permeability models
[23, 50, 52]. Moreover, refining the flow model without refining the
geometric representation of the porous network (beyond the PSD curve)
seems worthless. In usual problems of soil and rock mechanics, flow
regimes are slow, so that fluid flow in tubes is indeed laminar. In
other words, choosing a Hagen-Poiseuille flow model is consistent with
assuming that the porous network is made of parallel cylinders.

The flow being assumed to be laminar, permeability can be defined by re-
sorting to Darcy’s law. Considering all the possible values that a tubular
pore radius (r) can take, and combining Hagen-Poiseuille flow equation to
Darcy’s law [23], hydraulic conductivity (kw) can be expressed as:

kw =
γ

8µ
Φ

1∫∞
0 f(r)dr

∫ ∞
0

f(r)r2dr (16)
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in which Φ is the total porosity of the medium (accounting for natural pores
and cracks). f(r) is the “volumetric frequency” of the pores of radius r. It
is recalled that the length of the REV in the direction of the flow is assumed
to be equal to unity, so that the “volumetric frequency” f(r) is equal to the
“area frequency”:

f(r) = α(r)πr2 = (Np pp(r) +Nc pc(r))πr
2 (17)

The intrinsic permeability is defined by:

kint =
Φ

8
∫∞
0 f(r)dr

∫ ∞
0

f(r)r2dr (18)

In isothermal conditions (at 20◦C), the permeability (in m/s) can be obtained
by multiplying the rock intrinsic permeability (in m2) by 107.

3. COMPUTATIONAL ALGORITHM

3.1. Updating the PSD Curve

In the expression of hydraulic conductivity (Equation 16), two integrals
need to be computed:

∫∞
0 f(r)dr and

∫∞
0 f(r)r2dr. In addition, porosity (Φ)

needs to be updated. For a REV of unit length in the direction of the flow,
the combination of Equations 15 and 17 gives:∫ ∞

0
f(r)dr = Vv = Φ× VREV (19)

Using Equations 16 and 19:

kw =
γ

8µ

1

VREV

∫ ∞
0

f(r)r2dr (20)

Using Equation 20, it appears that hydraulic conductivity needs to be up-
dated with VREV and

∫∞
0 f(r)r2dr. Using the soil mechanics sign convention

(compression positive), and assuming that the solid grains constituting the
skeleton of the medium are incompressible:

VREV − V 0
REV

V 0
REV

= δ : ε = −∆Φ = −Vv − V
0
v

V 0
REV

(21)
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in which V 0
REV is the initial volume of the REV (it may be assumed to be

equal to unity without loosing the generality of the model). Equation 21
shows that VREV can be updated with total deformation.
The main steps to update

∫∞
0 f(r)r2dr with deformation and damage are

explained in the sequel. According to Fig. 1, the increment of purely elastic
strains at iteration k is related to the stiffness tensor obtained at iteration
k − 1 by:

dεel
(k)

= D
(
Ω(k−1)

)−1
: dσ(k) (22)

The increment of damage-induced deformation at iteration k is obtained from
the increment of total deformation (Equation 2 and Fig. 1):

dεd
(k)

= dεed
(k)

+ dεid
(k)

= dε(k) − dεel(k) (23)

where dε(k) has been updated with damage in the current loading increment
(this procedure is detailed in the next subsection). Using Equation 20, and
recalling that the REV is equal to unity in the initial state (i.e. V 0

REV = 1),
the volume occupied by all pores at iteration k (natural pores and cracks)
writes:

Vv
(k) = −δ : ε(k) + V 0

v (24)

The volume occupied by the cracks at iteration k corresponds to the porous
volume created by damage-induced deformation. Assuming that there is no
crack in the initial state (i.e. V 0

c = 0) and that the REV is unity in the initial
state (i.e. V 0

REV = 1), we have:

Vc
(k) = −δ : εd

(k)
(25)

According to the model assumption stated in Equation 13, the volume oc-
cupied by the natural pores at iteration k is obtained by substracting the
cracks volume from the total volume of pores:

Vp
(k) = Vv

(k) − Vc(k) (26)

Equations 22 to 26 provide a methodology to update the volume fractions
Vp and Vc with deformation and damage. Equations 9 and 12 make it pos-
sible to update the model parameters used to define the PSD of the natural
pores (respectively of the cracks) with Vp (respectively Vc). Assuming that
the lower and upper bounds of the pore sizes (rpmin, rpmax, r

c
min and rcmax)

are input parameters, the number of natural pores of radius r (αp(r)) can
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be updated at iteration k with V (k)
p , and the number of cracks of radius r

(αc(r)) can be updated at iteration k with V (k)
c . According to Equations 14

and 17, updating αp(r) and αc(r) automatically updates the total “volumet-
ric frequency” f(r), which makes it possible to update

∫∞
0 f(r)r2dr. This

concludes the algorithm used to update permeability with damage and de-
formation.

As mentioned in Section 2, the PSD model depends on nine arguments, four
of which have already been assumed to be input parameters (rpmin, rpmax, r

c
min

and rcmax). Equation 9 relates Vp to three model parameters: Np, m and s.
Following the assumptions of the model explained in section 2, any creation
of new pores during a loading test is considered as induced by damage. In the
same way, the disappearance of pores is associated to crack closure. As a re-
sult, the number of cracks (Nc) varies, but the number of natural pores (Np)
can be considered as fixed in the computational algorithm. Additionally, it is
assumed that the variations of the volume fraction Vp mainly affects the mean
radius of the natural pores (m), and that the standard deviation (s) can be
considered as constant. With these assumptions, s is a fixed parameter, and
m is a variable. If there is no crack in the initial state (V 0

c = 0, Equation 25),
the initial volume fraction of the natural pores can be determined from the
initial void ratio (e0), which is easy to measure in the laboratory. Knowing
that the REV is unity in the initial state, we have:

V 0
p = V 0

v =
e0

1 + e0
= Φ0 (27)

Using Equation 9, we have:

Φ0 =
∫ rpmax

rpmin

α0
p(r)πr

2dr = π Np

∫ rpmax

rpmin

p0p(r)r
2dr (28)

in which p0p(r) is the probability density function assigned to the natural
pores size distribution in the initial state:

p0p(r) =


1

s
√
2π
exp

(
− (r−m0)2

2 s2

)
if rpmin ≤ r ≤ rpmax

0 otherwise

(29)

where m0 is the mean radius of the natural pores in the initial state. The
number of natural pores in the REV (Np), the standard deviation (s) and the
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initial mean radius of the natural pores (m0) are determined by combining
Equations 7, 8 and 28. Then the mean radius of the natural pores is updated
with Vp according to Equation 9, by using the values of Np and s obtained
in the initialization computations. As explained in Section 2, the cracks
characteristic length (λc) is “adjusted to the bounds” (rcmin and rcmax) so that
it is possible to define the mathematical expectancy of the pdf associated to
the cracks size distribution over the interval [rcmin, r

c
max] (Equation 11). As

a result, λc is not a variable. Damage growth is represented by an increase
of the number of cracks in the REV. This means that Nc is a variable. Nc is
updated with Vc according to Equation 12. To summarize:

• The model requires four input parameters: rpmin, rpmax, r
c
min and rcmax.

• Three model parameters are computed in the initialization of the res-
olution algorithm: Np, s and λc. These initializations are based on
mathematical conditions and on the knowledge of the initial void ratio.

• Two model arguments are variables that need to be updated with de-
formation and damage: m and Nc.

3.2. Resolution Algorithm

The algorithm explained below is designed for strain-controlled tests un-
der drained conditions (null pore pressure).

Initializations.
The number of natural pores in the REV (Np), the standard deviation of the
pdf associated to the natural pores size distribution (s) and the mean radius
of the natural pores in the initial state (m0) are computed by solving the
following system of equations:

V 0
p = Φ0 = π Np

∫ rpmax

rpmin
p0p(r)r

2dr

m0 ≈
∫ rpmax

rpmin
p0p(r)rdr

1 ≈
∫ rpmax

rpmin
p0p(r)dr

(30)

in which the initial probability density function p0p(r) is defined in Equation
29.
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The cracks characteristic length is “adjusted to the bounds” rcmin and rcmax:

λc ≈
∫ rcmax

rcmin

pc(r)rdr (31)

in which the probability density function pc(r) is defined in Equation 10.

Iterative Resolution Process.

1. From dε to (dΩ, dσ):
For a strain-controlled test, the increment of strain applied at iteration
k is known. A trial increment of stress is computed, assuming that the
material remains elastic during the loading iteration:

dσ(k,∗) = D
(
Ω(k−1)

)
: dε(k) (32)

Total strains are updated with the known incremental strains:

ε(k) = ε(k−1) + dε(k) (33)

The sign of the damage evolution function is checked:

if fd
(
Ω(k−1), ε+

(k)
)
< 0 :

dΩ(k) = 0, dσ(k) = dσ(k,∗)

if fd
(
Ω(k−1), ε+

(k)
)
≥ 0 :

dΩ(k) > 0, dσ(k) 6= dσ(k,∗)

(34)

If damage occurs during the iteration, dΩ(k) is computed by using the
damage criterion (Equation 5) and an associated flow rule. Using Equa-
tion 3:

σ = D (Ω) : ε −D (Ω) : εid (35)

dσ = D (Ω) : dε +

(
∂D (Ω)

∂Ω
: ε

)
: dΩ − d

(
D (Ω) : εid

)
(36)

By definition of the damage-induced residual stress and residual strains
(Equation 4):

dσ = D (Ω) : dε +

(
∂D (Ω)

∂Ω
: ε

)
: dΩ − dσR (37)
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dσ = D (Ω) : dε +

(
∂D (Ω)

∂Ω
: ε

)
: dΩ + gdΩ (38)

If damage occurs at iteration k, the stress increment is updated with
the imposed strain increment as follows:

dσ(k) = D
(
Ω(k−1)

)
: dε(k) +

∂D
(
Ω(k−1)

)
∂Ω

: ε(k−1)

 : dΩ(k)−gdΩ(k)

(39)

2. From (dΩ, dσ) to (Vc, Vp):
After updating total strains, it is possible to get the volume of pores
in the REV at iteration k (Equations 24 and 27):

ε(k) = ε(k−1) + dε(k), Vv
(k) = −Tr

(
ε(k)

)
+ Φ0 (40)

For any iteration, in loading or unloading conditions:

dεel
(k)

= D
(
Ω(k−1)

)−1
: dσ(k) (41)

The combination of Equations 40 and 41 gives:

dεd
(k)

= dε(k) − dεel(k), εd
(k)

= εd
(k−1)

+ dεd
(k)

(42)

from which it is possible to update the volume fractions of the cracks
and of the natural pores (Equations 25 and 26):

Vc
(k) = −Tr

(
εd

(k)
)
, Vp

(k) = Vv
(k) − Vc(k) (43)

3. From (Vc, Vp) to kw:
The mean value of the radius of the natural pores at iteration k (m(k))
is updated with the volumetric fraction of the natural pores (Vp

(k)):

Vp
(k) = π Np

∫ rpmax

rpmin

(
1

s
√

2π
exp

(
−(r −m(k))2

2 s2

))
r2dr (44)

in which Np and s are fixed parameters that have been determined in
the initialization of the computational algorithm (Equation 30).
The number of cracks in the REV at iteration k (N (k)

c ) is updated with
the volumetric fraction of the cracks (Vc

(k)):

Vc
(k) = π N (k)

c

∫ rcmax

rcmin

1

λc
exp

(
− r

λc

)
r2dr (45)
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in which λc is a fixed parameter that has been determined in the ini-
tialization of the computational algorithm (Equation 31).
Once m and Nc have been updated, it is possible to update the num-
ber of natural pores of size r at iteration k (α(k)

p (r)) and the number of

cracks of size r at iteration k (α(k)
c (r)). Then the update of the “volu-

metric frequency” at iteration k is straightforward (Equations 14 and
17):

f (k)(r) =
(
α(k)
p (r) + α(k)

c (r)
)
πr2 (46)

At iteration k, hydraulic conductivity is updated by using Equation 16:

kw
(k) =

γ

8µ

(
Φ0 + Tr

(
−ε(k)

)) 1∫∞
0 f (k)(r)dr

∫ ∞
0

f (k)(r)r2dr (47)

in which Φ0 is the initial porosity of the REV (Equation 27).

4. DRAINED TRIAXIAL COMPRESSION TEST

4.1. Numerical Model

The algorithm presented in Section 3 is used to evaluate permeability
in an unconfined granite sample subjected to uniaxial compressive loading
(applied in direction 1). It is assumed that the damage tensor remains parallel
to the principal stress directions. A drained triaxial compression test is
simulated, by increasing ε1 by increments while maintaining σ2 and σ3 equal
to zero. Tensile strains develop in lateral directions only, so that the axial
component of damage remains equal to zero (i.e. Ω1 = 0). When cracking
occurs, damage grows equally in directions 2 and 3 because of the symmetry
of the considered problem. σ1, ε2 and ε3 are updated iteratively, along with
Ω2 and Ω3, as explained in Section 3. The material under study is a granite
for which experimental results on triaxial compression tests have already
been published [29]. The mechanical damage model presented in Section 2
has proved to reproduce well the semi-brittle behavior of this granite [4, 27].
The main material parameters are summarized in Table 1. The mechanical
parameters (E0, ν0, g, C0, C1) are taken equal to the ones that are calibrated
in [4, 27]. The initial void ratio (e0) is taken equal to the void ratio measured
on Vienne granite [29], which is the rock studied in the calibration presented
in [4, 27]. The minimum and maximum radii of the granite natural pores
(rpmin and rpmax) are chosen so that the mean of rp can be expected to be of the
order of 0.1µm, as stated in [3]. The orders of magnitude for the minimum
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Table 1: Main Material Parameters Used to Simulate a Drained Triaxial Compression Test
on Granite.

E0(Pa) ν0 (-) g (Pa) C0 (Pa) C1 (Pa) e0 (-)
8.01e10 0.28 −3.3e8 1.1e5 2.2e6 0.008

rpmin (µm) rpmax (µm) rcmin (µm) rcmax (µm)
0.01 1 0.1 10

and maximum radii of the cracks (rcmin and rcmax) are chosen according to
Maleki [38], who also worked on damage in rock materials.

4.2. Mechanical Response

The plot showing the variations of the deviatoric stress q = σ1 − σ3 = σ1
is typical of a brittle material (Fig. 4.a). Even after damage initiation (at
around ε1 = 0.001), the stress/strain curve is almost a straight line. The
stiffness decrease is more evident for axial deformation above 1.3%, when
lateral damage (Ω2 = Ω3) gets over 30%. The peak of stress is reached
when ε1 = 1.8%, with a lateral damage of about 53% (Fig. 4.b). The quasi-
absence of strain softening is typical of an almost perfectly brittle material,
like granite. The mechanical response illustrated in Fig. 4 is in conformity
with the reference results published in [4, 27].

4.3. Impact of Deformation and Damage on Porosity and Permeability

It appears from Fig. 5.a that the mean natural pore radius (m) decreases
when compression (controlled by the driving strain ε1) increases. This ob-
servation is consistent with the measurements reported by Romero [47], who
noticed that under a given compressive load, larger pores reduce prior to
the smaller pores. As a result, for a fixed total number of pores in the REV
(Np), the proportion of larger pores decreases while the proportion of smaller
pores increases. Consequently, the mean natural pore size is “shifted to the
left” on the PSD curve, i.e. the average pore radius size decreases. Over-
all, the size reduction of the larger pores results in a decrease of the volume
fraction of the natural pores (Vp) in the REV. Since Vp variations represent
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Figure 4: Mechanical Response of the Granite Sample during an Unconfined Triaxial
Compression Test. a. Deviatoric Stress versus Axial Strain. b. Lateral Damage versus
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elastic volumetric strains (see Equations 42, 43), the expected decrease of
the natural pores volume is expected to be of the order of 0.001 times the
Representative Elementary Volume. The results obtained meet these theo-
retical expectations (Fig. 6.a). After the peak of stress, softening starts to
occur (Fig. 4.a), so that the REV mean stress decreases, which results in an
increase of the natural pore size (compression is released). As a result, the
average radius size of the natural pores starts to increase after the peak of
stress, reached at ε1 = 1.8% (Fig. 5.a).

As the compressive deviatoric load increases, not only natural pores are com-
pressed, but also tensile cracks open in the direction parallel to higher princi-
pal stress direction (direction 1 in this example, with the soil mechanics sign
convention). The characteristic cracks length (λc) is a fixed parameter of the
model, computed in the initialization of the algorithm (Equation 31). The
increase of the cracks volume fraction induced by damage growth is modeled
by an increase of the number of open cracks (Nc), as illustrated by Fig. 5.b.
In the proposed modeling framework, the number of open cracks increases
while the size (or volume) of each individual crack remains constant. As
a result, the volume fraction of the cracks in the REV (Vc) is expected to
increase with axial deformation (ε1). Fig. 6.a. shows that the theoretical
expectations are satisfied. The order of magnitude of the variations of Vc are
about ten times higher than the order of magnitude of the variations of Vp,
so that the evolution of the sample volume (VREV ) is mainly controlled by
the evolution of the cracks volume (Vc), as shown in Fig. 6. a & b.

With a lateral damage peaking at 58%, hydraulic conductivity increases by
more than two orders of magnitude, as can be seen in Fig. 7.b. Before dam-
age initiates, for an axial deformation less than 0.001, hydraulic conductivity
decreases slightly, which is the consequence of the elastic compression of the
larger natural pores, as explained in the previous paragraph (Fig. 7.a).

5. PERFORMANCE OF THE MODEL
TO REPRESENT THE INFLUENCE OF THE CONFINING
PRESSURE

5.1. Calibration of the Model

The model is now calibrated to reproduce the permeability change mea-
sured during a triaxial compression test performed on Lac du Bonnet Gran-
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ite. The test is described in [54]. The experimental results have been used
to calibrate Shao et al.’s damaged permeability model [52]. The confining
pressure (pc) applied in the reference test amounts to 10MPa. The confin-
ing phase is simulated by applying an isotropic strain, calibrated to reach a
mean stress equal to the confining pressure. The compression phase is sim-
ulated by increasing ε1 by increments, while maintaining σ2 = σ3 = pc. The
undamaged Young’s modulus and Poisson’s coefficient are chosen according
to Shao et al.’s calibration. Shao et al. consider that cracks are penny-
shaped. In the present model, cracks are assumed to be cylinders. The radii
of these cylinders are equal to cracks apertures (a0) in Shao et al.’s model:
a0 = χ× r0 in which χ is a dilatance parameter (with χ = 0.005 for granite
rock), and r0 is the initial radius of the penny-shaped cracks (r0 = 3mm
according to Shao et al.). Cracks coalesce when their radius is equal to a
critical value: rc = 3 × r0 = 9mm, which corresponds to an aperture of
ac = 4.5 · 10−5m. As a result, the simulations presented in this paper are run
with rmaxc = ac = 4.5 · 10−5m. Moreover rminc is chosen of the same order of
magnitude as a0 = χ× r0: rminc = χ r0/3 = 5 · 10−6m.

To reproduce the initial permeability state of Lac du Bonnet granite, Shao
et al. propose a single porosity model, in which the rock is considered as a
fractured solid. The initial total porosity estimated by Shao et al. is of the
order of 10−4 and the initial permeability measured in the triaxial compres-
sion test is of the order of 10−20m2. According to the model proposed in
this paper, this would set the initial connected porosity to a very low value
(of the order of 10−9). Setting a very low initial porosity allows very little
pores compression. This does not matter in Shao et al.’ model, which does
not account for the influence of the strain tensor and natural pores deforma-
tion on permeability. However, the model proposed in this study is based
on a double porosity framework, which requires the definition of a realistic
undamaged connected porosity. As a result, like in the preceding numerical
study (Section 4), the initial void ratio is taken equal to the one measured
in [29] for Vienne granite, and the bounds for the natural pores size (rminp

and rmaxp ) are chosen according to the recommendations of Alves et al. [3].
This modeling choice does not allow the reproduction of the initial perme-
ability state measured before the triaxial compression test. The objective of
the model calibration presented in this section is to assess the performance
of the model to predict the increase of permeability under a given confining
pressure. The main material parameters used for the corresponding simula-
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Table 2: Main Material Parameters Used to Study the Influence of the Confining Pressure.

E0(Pa) ν0 (-) g (Pa) C0 (Pa) C1 (Pa) e0 (-)
6.8e10 0.21 −3.3e8 1.8e5 8e5 0.008

rpmin (µm) rpmax (µm) rcmin (µm) rcmax (µm)
0.01 1 5 45

tions are summarized in Table 2.

In the absence of reference data on the resistance to crack closure in Shao
et al.’s article, g is taken equal to −3.3 · 108Pa, which is typical of granite,
as explained in Section 4. The initial damage threshold (C0) is calibrated
with the experimental data reported in [52], in order to trigger damage when
permeability starts to increase with deviatoric stress (which corresponds to
cracks opening). The hardening parameter (C1) is calibrated in order to gen-
erate an increase of initial permeability of the same order of magnitude as in
the reference triaxial test described in [54]. In the reference test, hydraulic
conductivity increases by three orders of magnitude: kw/k0 ' 1000, where
k0 is the rock hydraulic conductivity in the initial damage state (damaged
in Shao et al.’s model, undamaged in the proposed model). Predictions on
damaged hydraulic conductivity are compared to Shao et al.’s model in Fig.
8.a. Both models have been calibrated with the same experimental data, and
both models perform well to represent the permeability increase due to crack-
ing. It has to be noted that the reference data found in [54] and [52] deals
with axial permeability measured during triaxial compression test. Shao et
al. consider that the damaged permeability is a tensor, whereas the model
proposed in this paper is based on a concept of 1D flow in a bundle of parallel
cylinders. However, during a triaxial compression test, cracks open in planes
that are normal to the lateral directions, so that it makes sense to represent
the cracks volume fraction by cylinders that are parallel to the loading axis.
In the sequel, the “isotropic” permeability predicted by the model proposed
in this paper is thus compared to Shao et al.’s damaged axial permeability.
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5.2. Parametric Study: Effect of the Confining Pressure on Permeability
Evolution

After calibration, the model is used to simulate triaxial compression tests
with other confining pressures. As illustrated in Fig. 8.b, the permeability
jump occurs at higher deformation as the confining pressure increases. In-
deed, for a given axial compression strain, the higher the confining pressure,
the lower lateral tensile strains, and the lower lateral damage (Fig. 9.b). As a
result, the same increase of hydraulic conductivity is reached at a lower axial
strain for lower confining pressures. As expected, the axial strain correspond-
ing to the peak of deviatoric stress is higher when the confining pressure is
higher (Fig. 9.a).

Because the compression applied at low confining pressure is smaller than
at high confining pressure, the larger natural pores get more squeezed during
the triaxial tests with higher confining pressure. As a result, the decrease of
the average natural pore radius size (m) is more significant for pc = 20MPa
and pc = 40MPa than for pc = 2MPa and pc = 10MPa, as illustrated in Fig.
10.a. Moreover, a clear softening is observed at higher confining pressures,
which results in a release of the sample mean stress, and thus, in a relaxation
of the compression applied to the natural pores. Consequently, m increases
after reaching a minimum at the peak of deviatoric stress (see pc = 20MPa
and pc = 40MPa in 10.a). The number of open cracks increases with axial
strains in the four tests (Fig. 10.b). Damage initiation is delayed as the
confining pressure is increased. The observed delay is the same on lateral
damage (Fig. 9.b) and on the number of cracks (Fig. 10.b), which shows the
consistency of the model.

Before the occurrence of damage, the porous volume decreases due to the
elastic compression of the natural pores, and after damage initiation, the
porous volume is mainly controlled by the increase of the cracks density
(Fig. 9.c). The sample volume decreases faster in the elastic confining phase
than in the elastic compression phase, which explains the bilinear form of
the plot representing the evolution of the Representative Elementary Vol-
ume with axial deformation in Fig. 11.a. Once damage is initiated, the
cracks volume increase quickly dominates the natural pores volume decrease,
and the volume of the REV grows according to the cracks volume increase
(Fig. 11.a and 9.c).
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Figure 9: Influence of the Confining Pressure on the Peak of Deviatoric Stress (a.) and
on Damage Evolution (b.). c. Porous Volumes Evolution for pc = 20MPa.

The four triaxial compression tests presented in this section are simulated till
the peak of deviatoric stress, which corresponds to the cracks coalescence in
each of the four tests. That is why the increase of hydraulic conductivity is
similar in the four cases, as illustrated in Fig. 11.b. As could be expected, the
decrease of permeability associated to the elastic compression of the natural
pores spreads over a larger interval of axial strains as the confining pressure
is increased.

6. CONCLUSION

A new permeability model is proposed for damaged porous rocks. Natural
pores and cracks are represented as parallel cylinders with various radii. In
a damaged rock, the Pore Size Distribution (PSD) curve shows two modes.
The size distribution of the natural pores is chosen to be a log-normal dis-
tribution, and the cracks size distribution is modeled by an exponential law.
Both probability density functions (pdf) are defined on an acceptable range
of values of pore sizes. Permeability is related to the pore size distributions
using Darcy’s law and Hagen-Poiseuille equation. The challenge consists in
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updating the size distribution of pores with both deformation and damage.
The work is two-fold: 1. relate the volume fraction of natural pores (Vp)
and the volume fraction of cracks (Vc) to the strain and damage tensors, 2.
update the parameters of the probability density function characterizing the
size distribution of natural pores (respectively cracks) with Vp (respectively
Vc). The minimum and maximum values allowed for the pores and cracks
radii (rpmin, rpmax and rcmin, rcmax) are input parameters. Fixing the bounds of
the definition domain of the pdf associated to the natural pores size distri-
bution (with rpmin and rpmax) provides two mathematical conditions that have
to be satisfied by the standard deviation (s) and the mean natural pore size
(m). The initial volume fraction of the natural pores is determined by the
initial void ratio measured in the rock in the reference state (before loading,
and supposedly in the absence of damage). A system of three independent
equations is obtained, which allows the determination of the initial number
of natural pores (N0

p ) in the Representative Elementary Volume (REV), the
initial standard deviation of the pdf associated to the natural pores size dis-
tribution (s0), and the initial average radius of the natural pores (m0). The
number of natural pores (Np) and the standard deviation (s) are assumed to
be fixed model parameters (Np = N0

p , s = s0), and only the average radius
of the natural pores (m) is updated with the natural pores volume fraction
(Vp) when deformation and damage occur. The characteristic crack length
(λc) is “adjusted to the bounds” rcmin and rcmax, and is considered as a fixed
model parameter. In the initial state, it is assumed that the REV contains no
open crack. When damage occurs, the number of cracks in the REV (Nc) is
updated with the cracks volume fraction (Vc). The pore volume frequencies
depend on the pdfs associated with the pores size distributions, which are
updated at each iteration with Vp and Vc, and thus, with deformation and
damage.

The permeability model presented in this article is easy to plug into any
damage model for which Helmholtz free energy and the damage criterion are
known. The approach can also be applied to model ore forming mechanisms,
in which thermal expansion and chemical dissolution play a critical role in
the evolution of porosity and permeability. A damage variable is not manda-
tory, as long as the physical processes at stake are accounted for with the
appropriate thermodynamic state variables. The key assumptions are the
decomposition of the total deformation tensor and the relationship between
strain components and Pore Size Distribution parameters. In this paper, the
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permeability model is coupled to a mechanical damage model representing
the evolution of mode I cracks with tensile strains. This mechanical model
has already been calibrated and validated for granite. The proposed frame-
work, coupling PSD curves evolution and permeability variations with state
variables updates, has been implemented in a numerical code. The algo-
rithm is based on an explicit scheme, and is primarily designed to simulate
strain-controlled tests. Drained triaxial compression tests are simulated on
granite samples, using the mechanical damage parameters calibrated in pre-
vious works. The numerical model is able to predict the decrease of the
average size of the natural pores as the sample is compressed, which is as-
sociated to the size reduction of the larger pores of the undamaged matrix.
As long as the sample remains elastic, the decrease of the natural pores vol-
ume fraction Vp results in a slight decrease of permeability. When damage
occurs, it is verified that the number of cracks increases up to the stress
peak, and that correspondingly, the cracks volume fraction Vc increases. As
soon as damage occurs, the permeability decrease induced by the shrinkage
of the larger natural pores becomes negligible compared to the permeabil-
ity increase induced by cracking. The proposed model proved to perform
well to represent the effect of the confining pressure on damage evolution
and permeability variations. The parametric study presented in the paper
shows that softening is more likely to occur at high confining pressure. It
has been possible to simulate the mean stress release after the peak of de-
viatoric stress, resulting in an increase of the average size of the natural pores.

The main advantages of the proposed framework are simplicity and versatil-
ity. The input parameters are easy to determine in the laboratory, and the
permeability model can supplement any damage model based on Continuum
Damage Mechanics.
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[34] Lemâıtre A, Desmorat R. Engineering Damage Mechanics. Ductile,
creep, fatigue and brittle failure. Springer - Verlag, Berlin Heidelberg
2005

37



[35] Levitz P. Toolbox for 3D imaging and modeling of porous media: Re-
lationship with transport properties. Cement and Concrete Research
2007; 37:(3):351–359

[36] Long JCS, Remer JS, Wilson CR, Witherspoon PA. Porous Media
Equivalents for Networks of Discontinuous Fractures. Water Resources
Research 1982; 18:(3):645–658.

[37] Lund JW. Characteristics, Development and Utilization of Geothermal
Resources. Geo-Heat Center Bulletin 2007; 28:(2):1–9

[38] Maleki K. Modélisation numérique du couplage entre
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