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Abstract
We present an algorithm for efficiently computing ray

intersections with multi-resolution global terrain which
is partitioned by spheroidal height-augmented
quadtrees.  While previous methods support terrain
defined on a Cartesian coordinate system, our methods
support terrain defined on a two-parameter ellipsoidal
coordinate system. This curvilinear system is necessary
for an accurate model of global terrain.  Supporting
multi-resolution terrain and quadtrees on this curvilinear
coordinate system raises a surprising number of
complications.  We describe the complexities and
present solutions.   The final algorithm is suited for
interactive terrain selection, simple collision detection
and simple LOS (line-of-site) queries on global terrain.

1   Introduction
The increasing computation power, memory and

rendering rates coupled with efficient data organization
make it feasible to interactively visualize global 3D
terrain with resolution down to a centimeter.
Interactively rendering these large-scale terrain
databases places increasing demands on the software
system.    Real-time level-of-detail management,
efficient spatial subdivision and the use of a two-
parameter ellipsoidal coordinate system (also called a
geodetic coordinates) are a must.

This paper describes the impact of this geodetic
coordinate system on quadtree spatial subdivision with
respect to computing ray-terrain intersections.  We
extend a well-known ray-casting method for height-
augmented quadtrees1 defined on Cartesian coordinates.
The extension handles multi-resolution terrain covered
by height-augmented quadtrees which are based on
geodetic coordinates.

2   Background
Our terrain visualization software is VGIS

[Lind96].  VGIS uses automatic, continuous level-of-
detail management for geometry and imagery and
quadtree subdivision.   To accurately model global
terrain, VGIS uses a two-parameter ellipsoidal
coordinate system commonly used in geodesy [Vani82].

This two-parameter ellipsoidal coordinate system is
based on an oblate spheroid2. The two parameters are

                                                          
1 A height-augmented quadtree simply adds a height attribute to each
quad which is set to the maximum height value of the contained
terrain.
2
 A spheroid is subclass of ellipsoid created by rotating an ellipse

about its major or minor axis.  It is synonymous with “rotation

the spheroid’s major semi-axis and minor semi-axis, a
and b.   a defines the X-Y dimension while b defines the
Z dimension.  In this system longitude, λ, is equivalent
to the longitude in polar coordinates; however, latitude,
Ψ,  is the angle between the surface normal and the
equatorial plane. Height, h, is measured parallel to the
normal between the point in question and the underlying
surface point (Figure 1).

Figure 1:   Spheroidal Coordinate System

VGIS builds its triangle mesh terrain database and its
quadtree subdivision on this curvilinear coordinate
system.  The spheroid is first partitioned into 32
spheroidal quadrilaterals called zones.  The zones are
bounded by meridians and parallels.  Each zone then
contains its own quadtree.  Each quadtree is further
subdivided into quads which are also bounded by
meridians and parallels.  Overall, this divides the
spheroid into triangles at the poles and quadrilaterals
elsewhere.  (Note that since parallels are not geodesics,
these quadrilaterals and triangles are not true spheroidal
quadrilaterals and spheroidal triangles; however, for
brevity we will ignore this distinction).  Finally each
quad is augmented with a height attribute equal to the
maximum spheroidal height of the contained data.

Using this terrain structure, we must provide an
efficient method for finding arbitrary ray to terrain
intersections.   Such an algorithm serves as a basis for
interactive terrain selection, collision detection and
simple line-of-site queries.

While an efficient method for ray-casting through
Cartesian coordinate height-augmented quadtrees is
well-known  [Coh93], this method assumes that the
bounding volumes are bounded by their Cartesian

                                                                                          
ellipsoid” [Drag82] ,“biaxial ellipsoid” [Vani82],”ellipsoid of
revolution”[Smith97]
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coordinate planes.   Extending the algorithm to handle
spheroidal height-quadtrees for multi-resolution terrain
poses a number of problems.  We present our solutions
in order of their generality with respect how terrain is
modeled.  First we address tracing through the
spheroidal bounding volumes.  The presented algorithm
applies to terrain modeled either as voxels, triangles, or
bilinear patches.  Next we address tracing through
individual terrain elements.   Here our solution is
specific to terrain modeled as a regular triangle mesh.
Third we address complications added by triangle mesh
models which use multi-resolution data sets.    Finally,
we discuss surface continuity issues and discuss
solutions that are specific to VGIS’s continuity
preservation methods.

3.  Traversing Spheroidal Height-Quads
Cohen et al.'s [Coh93] method for efficient ray-terrain

intersection, is similar in spirit to Bresenham line
drawing.  It traces the XY projection of a ray through
the XY footprints of a height-augmented quadtree based
on Cartesian coordinates.  Upon entering a height-quad
the entering and exiting z-coordinate of the ray is
compared to the height of the quad.  If the ray intersects
the quad, the algorithm steps into the child quad at the
next resolution level.  Otherwise, the algorithm steps
into the next quad at the same resolution level.  The
algorithm is so efficient that it is targeted towards real-
time rendering of terrain.  Figure 2 illustrates the high-
level functionality of the algorithm.  The figure is a side
view with the ray in red and 3 levels of recursive height-
quads. Blue volumes are intersected by the ray.  Solid
black volumes are not intersected, but the ray does enter
their X-Y footprint.  Dash black volumes are not
examined by the algorithm at all.  The red volume is the
lowest level intersected volume.  This figure illustrates
the recursive nature of the bounding volumes and of the
algorithm.

Figure 2:   2D illustration of Cartesian case.

Ideally, a spheroidal extension would use incremental
integer calculations similar to Cohen's midpoint
method.  Unfortunately, while the basic high-level
algorithm still applies, the midpoint technique that
works so beautifully in the Cartesian setting appears to
have no similarly efficient analog in the spheroidal case.

An exact analog would require a spheroid to plane
mapping in which the spheroidal projection of a ray in
3-space maps to a line and in which the spheroid's quads
are mapped to a regular square grid.  The only common
sphere to plane mapping that maps parallels, meridians
and projected rays onto lines is the gnomonic projection
[Mal73,p236]. The gnomonic mapping centrally
projects the sphere through the sphere center onto a
plane.  The plane is placed tangent to the sphere at an
arbitrary intersection point.  Unfortunately, this
mapping projects spherical quads onto planar rectangles
with varying sizes.   As we examine rectangles farther
and farther away from the plane-to-sphere intersection
point, the rectangles' areas grow towards infinity.  The
gnomonic map will not allow us to translate the
Cartesian algorithm to the spheroidal case.

A partial analog to the Cartesian algorithm would
require a spheroid to plane mapping in which quads
map to a regular square grid and a projected ray maps to
a curve.  A cylindrical mapping can map quads onto a
regular square grid.  Unfortunately, a 3D ray projected
onto the spheroid and then mapped to the plane by the
cylindrical projection gives the following curve in
latitude and longitude:

While efficient methods for discretizing lines, ellipsis
[Fol90], and cubics [Wat92] are known, a similarly
efficient method of discretizing a curve of this
complexity is not available.
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For parallel-meridian height-quads, we must then
resort to floating-point computation of ray-quad
boundaries.  Unfortunately, there appears to be no
closed form solution for solving t in terms of ψ.   This
would be necessary for computing the projected ray’s
quad intersections with closed form arithmetic.

We therefore perform the ray-quad intersection tests
in 3D dimensions where closed form solutions exist. We
begin by describing the surfaces bounding a spheroidal
height-quad. Generally these boundaries consist of 4
side boundaries formed by 2 plane wedges and 2 cone
wedges and consist of upper and lower boundaries
formed by quadrilaterals on the normal expansion of the
spheroid (Figure 3).

Figure 3:  A spheroidal height-quad

3.1 Upper Bounding Surface
We show below that the upper bounding surface is

not a spheroid nor an ellipsoid.  Since a simple and
efficient solution to computing ray intersections with
this true upper boundary seems remote, we then derive
an approximate spheroidal boundary covering this true
boundary.  This new boundary allows for simple
computation.

3.1.1   TBh:  The True Bounding Surface
As previously mentioned, the spheroidal height-

quadtree is based on an oblate spheroid S centered at a
Cartesian coordinate system with spheroid’s axes along
the coordinate axes.  The major axis of size a lies on X
and Y axes while the minor axis of size b lies on Z axis.
Each height-quad stores the maximum height h of the
terrain it contains.    This height is measured normal to
the surface S.    This maximum height defines a surface
TBh  (‘TrueBound’) which bounds the height-quad.   To
describe TBh begin by observing the X,Z plane.  Let P
be the points on the cross section, Sxz, of spheroid S, let
T be the tangent and let N be the normal vector.

We can parameterize these points and vectors using a
common ellipse parameterization on a parameter Θ.

Intuitively, this parameterization is built by mapping
our ellipse in our “real” space to a unit sphere in a
scaled space where Θ is the polar coordinate in this
scaled space.  The scaled space to real space mapping is
a scale by (a,b).  Figure 4 illustrates this.  (Note that Θ
and θ are distinct).

Figure 4:   Parameterization of Ellipse

The parameterization yields:

Since a point TBh
xz (Θ) on TBh xz is simply P(Θ)+

hN(Θ), TBh
xz is described as follows:

Unfortunately, TBh
xz is not an ellipse.  The unique

ellipse passing through TBh
xz‘s extreme points (a+h,0)

and (0,b+h) is ((a+h)cosΘ,(b+h)sinΘ).  Since TBh
xz does

not equal this ellipse, TBh
xz cannot be any ellipse.  This

further implies TBh is not a spheroid nor even an
ellipsoid.

Even worse, TBh
xz contains degenerate cases for h<0

in which TBh
xz can no longer function as a useful bounds

for spheroidal height-quads.  However, if we stipulate
that h>-b2/a then these degenerate cases are removed
(Appendix A2).    In practice, for modeling surface
terrain this stipulation is valid because |h|<<a,b and b is
close to a.   For example using WGS_84 data for Earth,
a = 6378137.0000, b = 6356752.3141 so -b2/a =
-6335439.327003.  The minimum geodetic terrain
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height is several orders of magnitude smaller than this,
around     -15,000.

Ray-casting through height-quadtrees requires finding
the intersection of a ray with the bounding surfaces of
the height-quads.    Unfortunately, an algebraic solution
to the intersection of a ray and TBh

xz seems remote even
in two dimensions.   Such a solution requires solving for
a variable embedded in a complex expression involving
the root of trig functions and square roots of trig
functions.   While an iterative approach might be used,
that is complex and perhaps undesirably slow for our
purposes.

3.1.2   Bh:  An Approximate Bounding Surface
Since the height-quad is merely a bounds on the

underlying terrain it is sufficient to use another surface
Bh which bounds TBh. Bh should allow an easy analytic
solution to the intersection of a ray and Bh should
‘closely’ bound TBh.   An obvious choice for Bh is
another spheroid.

Given the definition of TBh and the fact that S is a
sweep of the ellipse Sxz around the Z axis, it follows that
TBh equals TBh

xz swept around the Z axis.   Therefore Bh

should be constructed with the same symmetry.   With
this in mind, we focus on Bh

xz and must find appropriate
major and minor axes.  Our solution is:

That this choice of Bh
xz bounds TBh

xz can be proved
rigorously (Appendix A3).  Since Bh and TBh are just
rotational sweeps of Bh

xz and TBh
xz , B

h must bound TBh.
Given the formula for Bh

xz computing Bh is straight
forward.

3.2 Lower Bounding Surface
Since we can reasonably assume that traced rays

begin outside the planet, it is sufficient to choose a
single global lower bounding surface.  The geodetic
spheroid is inappropriate because it is chosen to best fit
the planet’s shape.  Therefore terrain can exist both
above and below the spheroid. We might use the global
minimum geodetic height, but like the upper bounding
surface, TBh, the lower bounding surface defined by this
height is not an ellipsoid.  Moreover, we cannot use the
aforementioned approximate bounding, Bh, surface
because the approximate surface lies outside the true
surface while an approximate lower boundary would
require an approximation lying inside the true boundary.
Therefore, we simply model the lower boundary as a
sphere whose radius equals the distance from the
spheroid center to the closest terrain vertex.   Since

typical traced rays start outside the terrain surface,
choosing a global lower bound is acceptable even
though it cannot bound individual height-quads as
closely as separate, local lower bounds could.

3.3  Longitude Bounding Surface
On a spheroid the meridians are great elliptic arcs

[Hooi97] and therefore by definition are embedded in a
plane which intersects the spheroid’s center.    From the
z-axis symmetry it is also intuitively obvious and easy
to prove that the normals of the spheroid along a
meridian are contained in the same plane.   So terrain at
a quad’s longitude boundary is confined to this
longitude’s meridian plane.   Specifically for a given
longitude λ the associated plane is simply:

The longitude boundary is a wedge from this plane.

3.4  Latitude Bounding Surface
Recall the definition of geodetic latitude ψ of a point

P with surface normal N.  Since ψ is defined by the
angle between the line L defined by (P,N) and the line
from the origin to L’s intersection with the Z=0 plane
(see Figure 1) and since the spheroid S is symmetric
around the Z axis, it is easy to see that sweeping L about
the Z axis yields a section of cone. The latitudinal
bounding surface is a wedge of this cone, C.

Figure 5: Derivation of latitude cone wedge.

Letting r be the cone radius for a given z and Zψ and
Xψ be the intersection of C with the y=0 cross section of
the spheroid, yields a derivation of C (Figure 5):
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Xψ and Zψ are calculated easily from [Drag82]
(page 177) yielding:

3.5  The Algorithm
While the high-level principles of the Cohen

algorithm (Section 3), apply to the spheroidal case, the
details differ.  The spheroidal algorithm is divided into
two procedures.  The user called procedure performs
setup and zone traversal and calls a recursive procedure
which recursively traverses through each zone’s
quadtree.  The user called procedure first clips the ray to
the volume bounded by a global upper boundary and the
global lower boundary.  The global upper boundary is
the upper bounding surface, Bh, with height equal to the
maximum global height.  As part of this clipping, we
compute, t_global_exit, the ray parameter value of the
ray’s global exit point.  Next, we determine which zone
contains the ray origin. Starting with this zone, we step
through successive zones until either an intersection
occurs or the ray exits the global boundaries.   Zone
traversal is quite similar to quad child traversal which is
discussed in detail below.  For each zone we then call
the recursive quadtree procedure to traverse the zone’s
quadtree.

Figure 6:  Illustration of upper boundary test.

The recursive procedure must first determine whether
the ray, which is assumed to enter the current quad’s
side bounds, truly intersects the quad volume. Since the
upper boundary is curved, it is insufficient to check the
height of the ray’s entering and exiting intersections
with the side boundaries.   Instead we compute the ray’s
parameter values, t_in and t_out, at these side

intersections and we compute the ray’s intersection
parameters, t_0 and t_1, with the quad’s upper boundary
surface (Figure 6).    If and only if these two parameter
intervals overlap, then the ray has entered the height-
quad volume and we step through the quad’s children.

If the quad volume is intersected, the algorithm must
traverse the quad’s children and recurse at each child.
The first encountered child is determined from two
factors.  The first factor is which side boundary of the
parent the ray entered.   This factor is an argument,
side_in, of the recursive quadtree procedure.  The
second factor is in which half-space of one of the
parent’s internal partition surfaces the entrance point
lies.  In Figure 7 these internal partitions are shown in
blue.  They partition the quad into four sections.  The
latitude partition surface is a cone wedge stretching
east-west.  The longitude partition is a plane wedge
stretching north-south.  Knowing which side boundary
is entered and which internal partition half-space
contains the entrance point, we know which child quad
to visit.  For example, in Figure 7 the ray (red) enters
the west side boundary (i.e. side_in = WEST).    So we
test the entrance point (marked by the first red X)
against the internal latitude partition.   Since the
entrance point is in the north half-space of this partition,
the ray enters the north-west child.   Four side
boundaries and two partition half-spaces yield eight
combinations.  Each combination maps to one child.  By
determining which combination occurs, the algorithm
determines which child to visit.   Note an exception
arises when the current quad contains the ray origin.   In
this case, side_in will have the value UNKNOWN.  We
must visit the child containing the ray origin.  This child
is determined by examining which half-spaces of both
internal partitions contain the ray origin.

Figure 7: Illustration of child traversal

Having visited the first child, we must determine the
other child quads intersected by the ray.  Note that in
the spheroidal case, a ray may intersect all four of a
quad’s children or may enter a quad twice.   This can
occur since a ray can have two intersections with a
quad’s latitude cone boundary.   Given these
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complications we determine the next child quad by
computing the ray’s intersection with the current child’s
boundaries.   Note these boundaries are subsets of the
parent's boundaries and the parent’s internal partitions.
The child exit boundary is the child boundary whose ray
intersection's ray parameter value is the smallest while
still being greater than the child's entrance point's value.
This exit point is illustrated by the second red X in
Figure 7.  So given the current child, we compute
t_child_out, the ray parameter where the ray exits the
child, along with side_out, the boundary of the child at
this exit.  With knowledge of side_out, we know what
child is entered next.    For example, if the current child
is the north-west child and side_out is found to be
EAST, then the next child is the north-east child.  Child
traversal terminates when either a child reports a terrain
intersection, all children are visited, or t_child_in of the
current child is greater than t_global_exit, the ray
intersection with the global upper boundary.   Note as
we step from one child to another we need not explicitly
compute the next child’s entrance ray parameter,
t_child_in, nor its entrance side, side_in.  T_child_in
equals t_child_out of the previously encountered child
while the entrance side, side_in, equals the complement
of the previously encountered child’s exit side, side_out.

Further efficiency can be gained during child
traversal when determining t_child_out and side_out.
We can limit the number of child boundaries whose
intersections must be checked.  For a quad in the
northern hemisphere if a ray enters the west, east or
north border, the side the ray next exits must differ from
the entered side. We only need to test for exit
intersections with 3 other sides.  If a ray enters the south
border, however, we must test all four sides for the exit
point.  For quads in the southern hemisphere the rule is
reversed with respect to latitude borders; a south
entrance requires only 3 intersection tests while a north
entrance requires all 4.

4.0   Traversing Individual Terrain Elements
While the methods of the previous section apply to

terrain regardless of the modeling method (voxel,
bilinear patch, or triangles), the issues raised when
traversing individual terrain elements are model

dependent.

Figure 8:   Matrix of Triangles

In voxel ray-casting methods [Coh93] the height-
quad tree recurses down to the level of the smallest
modeled terrain element.   In regular triangle mesh
methods, however, the height-quad tree typically does
not recurse down to the level of the smallest modeled
terrain element.    Instead, a quad contains a fixed size
matrix of triangles such as in Figure 8.    Within this
block there is no further quadtree subdivision.    This
means that for triangle modeled terrain, once we trace a
ray to the bottom level quad, we must then separately
trace the ray through that quad’s block of triangles.

Additionally, the modeling method affects the
mathematical surface in between the sampled elevation
points. If we render with ray-casting we might model
the surface as set columnar voxels which project
radially out from the zero-elevation surface and are
capped by either planar quads or spheroidal quads.
(Note on the spheroidal coordinate system, these voxels
are not cubes as in traditional Cartesian based terrain.)
Alternatively, we can define the surface to be a set of
bi-linearly interpolated patches. This is the typical
method of interpolating height fields in geodesy
[Hooi97,p198].  (Note, again, here we would bi-linearly
interpolate spheroidal coordinates not Cartesian ones.)
Unfortunately, while these are the most mathematically
robust surface definitions, a practical polygon graphics
system must interpolate between sampled elevation
points by treating these points as triangle vertices.

Here we will focus on this triangle model.  In order to
minimize the number of triangles tested, we treat each
triangle-pair as if it was contained in its own small
height-quad and we then visit only those height-quads
whose sides are intersected by the ray.
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Figure 9:   a) 4 triangle pairs (red) in a section of a quad (black) and
the volumes which contain the 3 of the pairs (blue).   The blue arrows
are extensions of the spheroid normals.  b)  Using these volumes we
can reduce the number of examined triangle pairs to those contained
in intersected volumes.   So instead of inspecting all triangle pairs in a
quads mesh (black) we only inspect a subset (red).

In Figure 9a, four triangle pairs are drawn in red on a
part of a spheroidal quad in black.   The blue arrows are
extensions of the spheroid normals at the quad’s terrain
grid points.   Triangle vertices are confined to these
lines.   Furthermore, the blue lines delineate plane
wedges defining four-sided volumes (blue).   Note,
triangle edges are confined to these plane wedges.
These four-sided volumes can serve a similar purpose to
the higher level height-quads.   If the ray intersects the
first triangle pair’s volume, A, (in bold blue), we
determine which of the 4 neighboring triangle-pairs to
visit next by intersecting the ray with the volume’s
planar wedge sides.   If the ray intersects the side shared
by volume A and B, this tells us to visit the triangle-pair
volume B.   Similarly if the ray next intersects the side
shared by B and C, we step into volume C.   At each
volume we test for ray-triangle intersections with the
triangles in that volume.  We continue this traversal
until either a triangle is intersected, the quad boundary
is reached or t_volume_exit, the ray parameter at its exit
from the current triangle-pair’s volume, is greater than
t_global_exit.  Figure 9b  illustrates a typical pattern of
examined triangle pairs in red.

Unfortunately the triangle model poses a theoretical
problem that the other surface models do not have.
Since the spheroidal height-quads are concave volumes,
they will not contain all parts of the triangles whose
vertices are contained in the quad volume and assigned
to the quad.   Specifically, the latitude conical
boundaries do not contain all parts of the planar terrain
triangles along the latitude border.  This problem is
illustrated in Figure 10.

Figure 10 shows 3 terrain triangles in red at the
corner of a quad whose east, north, south and lower
boundaries are drawn in black.  The upper triangle is
assigned to the illustrated quad while the lower 2
triangles are assigned to the adjacent quad across the
south border.  The green highlighted portion of the
lower 2 triangles is the portion of these lower triangles
not contained in the adjacent quad.

The containment problem can potentially cause the
ray intersection algorithm to fail to discover an
intersection.  Referring to Figure 10, the ray could first
pass over the adjacent southern quad without
intersecting it and then enter the illustrated quad.   If the
ray is at a steep angle, it could then piece the green area.
Since the illustrated quad does not contain the triangles
associated with this green area, the ray will exit the
global lower boundary and the algorithm would falsely
indicate no intersection occurred.

Since this problem does not occur on the east-west
planar meridian boundaries, one might suggest avoiding
the parallel-meridian quadtree and using an alternative
quadtree [Borg92][Feke90][Hwa93][Otoo93].  Such an
alternative would avoid this boundary problem for an
arbitrarily dense partitioning if and only if the bounding
curves are planar and the plane embeds all the spheroid
normals along these curves.   Unfortunately, the only
curves satisfying this requirement are meridians and the
equator.   This follows easily from Bowring’s theorem
concerning normal sections [Hooi97].  This theorem
states that except for meridians and the equator there
exist exactly two normal sections3 between any points
on the spheroid.   This means there is no single, planar
curve containing both end points and both normals.
Clearly this is a prerequisite for a planar curve that
contains both end points and every normal on the curve.
Since meridians and the equator alone cannot generate a
useful recursive partitioning, no existing spheroidal
partitioning strategy can solve the containment problem.

Figure 10:   Shown here are 3 Sides and Lower Boundary of
Spheroidal Quad (black) and 3 terrain triangles (red).    The green
portion of the lower two triangles is contained in the illustrated quad,
but these triangles are assign to the adjacent quad to the south not to
the illustrated one.

Another thought is to use rectangular bounding boxes
instead of spheroidal height-quads.  However, we must
then deal with another set of complications.   These
boxes are laid on a spheroid surface and they bound
terrain assigned to spheroidal quads.   The bounding
boxes of two quads which share a latitude border will
overlap due to border curvature.   Additionally,
triangular quads at the spheroid poles that share a
longitude border will also have overlapping bounding
boxes. These boxes cannot cleanly partition space as do

                                                          
3 Recall, a normal section is a curve segment between two points on a
surface that lies in a plane which contains the normal at one of the end
points.

South Cone
     Wedge

North Cone
     Wedge

East Plane Wedge



Cartesian bounding boxes on flat terrain [Coh93] or as
do spheroidal height-quads on global terrain.   This
leads to ambiguities concerning the order in which child
bounding boxes should be traced.  Moreover, as
discussed in 3.5 the proper order of spheroidal quad
traversal is inherently more complex than the Cartesian
case due to the curved boundaries, i.e. child quads can
be visited twice or all four child quads can be visited.
The overlapping bounding boxes on spheroidal terrain
do not provide this ordering information.

Since these alternative partitioning methods do not
help, we keep the parallel-meridian partitioning.
Importantly, when using this partitioning and the
outlined algorithm for interactively pointing at and
grabbing terrain, it has been our experience that the
pathological cases represented by the containment
problem never occur [War99].  The reason is that each
quad contains a relatively dense 128x128 triangle-pair
block making the green area in Figure 10 extremely
small.  While the increasing curvature of the cone
wedges at extreme latitude quads could exacerbate the
containment problem, the increasing surface density of
the triangles at these extreme latitudes counteracts this
effect.  This increase in surface density occurs because
the quad surface area grows smaller at extreme
latitudes.

5.0 Managing Multiresolution Aspects of Terrain
While covering the general traversal of the high-level

spheroidal quads and the specific traversal of triangle-
modeled terrain elements, we glossed over how a multi-
resolution terrain model interacts with the ray casting
algorithm.  A typical multi-resolution model such as
VGIS stores terrain data in 2nx2n blocks at resolutions at
varying powers of 2.   For rendering purposes, the
system then goes to great lengths to ensure that the
rendered terrain is a continuous surface.   The algorithm
uses a visual error metric to render the minimum detail
level necessary to maintain visual quality while
preserving mesh continuity [Lind96].

As previously mentioned, contrary to ray-casting
models where the recursive subdivision of height-quads
continues down to the level of individual voxels, in a
triangle mesh model a leaf quad contains a N by N array
of triangle pairs called a block.  Equally important,
however, the quadtree is not a full tree.  Instead a
branch is only as deep as necessary to reach the highest
resolution block available in secondary memory.
Moreover, while the complete quadtree is always in
main memory, the actual triangle data at different quads
are dynamically paged into main memory as dictated by
the rendering algorithm. In Figure 11a, a flattened and
zoomed in view of a single zone is shown.  The outlines
of the sub-quads existing in the zone are also shown.
Higher resolution data is only available for the north-
eastern most quads.  This is indicated by the presence of

the small quads in these regions.  Figure 11b shows the
corresponding quadtree data structure.   The renderer
pages-in triangle data associated with the smaller,
higher resolution quads as it is needed in order to satisfy
the visual quality constraints.

How the ray-intersection algorithm should deal with
this dynamic paging is application dependent.  For
example if the user is viewing a battle scene with
vehicles roaming over the terrain and he zooms out his
view, VGIS may page out the high-resolution data for
the battle space.  If the ray-terrain intersection algorithm
continues to be used for collision detection and line-of-
site computation in the simulation, the algorithm could
be forced to use the lower-resolution terrain now in
primary memory.  This could be very inappropriate as it
could lead to arbitrarily large errors in vehicle collision
detection and LOS computation.  Clearly in this case,
relying only on paged-in data is unsatisfactory.

Figure 11:  Illustration of an example quadtree from a single
zone.

On the other hand, the ray-terrain intersection
algorithm might be used to compute the intersection of a
user held virtual laser pointer in a VR application.  This
would be a necessary step in interactive terrain
positioning. In this instance, the ray-intersection
algorithm must complete as quickly as possible.
Therefore paging in new terrain data in response to ray
traversal is a bad idea.  The traversal should only access
terrain data already in primary memory. (Of course, if
even the lowest resolution data is unavailable for some
traced region, we must perform paging.)

These complications lead to the following
modification to the quad traversal algorithm. First we
add a parameter controlling how ray traversal handles
paged-out data.  We add a parameter, min_level
(“minimum level”) that indicates what is the minimum
quad node tree depth that may be used during triangle-
pair traversal.  Now we traverse the quadtree as detailed
in 3.5 until either the ray exits the tree or the ray enters
a leaf quad.  If the ray enters a leaf quad, we need to
find the highest resolution in-memory block that covers
the quad and satisfies the min_level constraint.  We find
this block using a simple loop that steps through the leaf
quad’s ancestors.  At each iteration we attempt to trace
the ray through triangles of the ancestor quad.  There
are three possible results.  Either the ray intersects a
triangle, intersects no triangle, or the ancestor quad has

a b



no in-memory data available.  The loop continues until
reaching an ancestor with data available or reaching an
ancestor whose depth equals min_level.  If we reach the
min_level ancestor without finding paged-in terrain
data, we must wait and page in this ancestor’s terrain.
Note that with this modification, the leaf quad depth
could be than min_level.  This means that the desired
terrain data resolution simply does not exist in
secondary storage.  We must make do with the terrain
data associated with this leaf by paging it in as needed.

Figure 12 illustrates an example.   The diagonal red
line is the ray.   The quad nodes are color-coded.   Gray
nodes are not intersected at all.   The black node’s sides
are intersected but the quad volume is not.   A blue
node’s volume is intersected.   A red node is a leaf node
whose volume is intersected.   A green node is a node
whose triangle data is used for intersection testing.
Figure 12 a and c show the tree structure.    Solid circles
indicate the node’s triangle data is paged-in.   Open
circles indicate the data paged-out.  For b let min_level
be 0.    The algorithm traces the ray down into the red
node, but this node has no loaded data.   The algorithm
then traverses up to the solid green node which does
contain data.    This data is used for triangle traversal.
For c let min_level be 1.  The algorithm traces the ray
down into the red node, but this node has no loaded
data.   The algorithm then traverses up the to open green
node.   Since min_level is 1 the algorithm must stop
here.   It cannot move up to level 0 and grab the solid
blue node’s data.    Now triangle data must be loaded
for the open green node.

Figure 12:  2D illustration of quadtree traversal with triangle
data loaded at different resolutions.

In general setting min_level to zero will use only the
data in primary memory and will never wait for new
data to be paged-in (unless even the lowest resolution
data is absent).  Setting min_level to the maximum
possible quad tree depth will page-in whatever data is
necessary to ensure that ray traversal uses the greatest

resolution terrain in secondary storage. Setting
min_level to some other value allows the programmer to
trade off the resolution of the accessed terrain and the
algorithm’s performance.

A final detail is that when the appropriate ancestor is
found we should only trace through the rectangular
subset of its block which covers the original leaf quad.
We compute the boundaries of this subset using an
incremental integer approach.  At the start of the
ancestor loop the minimum indices of rectangular
subset, x_min and y_min, are assigned zero.   At each
iteration of the loop, these indexes get either half their
value or half their value plus half the block size.
(Recall, block size is the number of vertices per
row/column in a block and it is a constant value.)  The
choice depends on which child the current ancestor is
relative its parent.  If the current ancestor is a west child
then x_min ← x_min / 2, otherwise x_min ← x_min / 2
+ HALF_BLOCK_SIZE. If the current ancestor is a
south child then y_min ← y_min / 2, otherwise y_min ←
y_min / 2 + HALF_BLOCK_SIZE.  The maximum
corner of the rectangle is as follows:  (x/y)_max =
(x/y)_min + BLOCK_SIZE >> levels, where levels
indicates the number of loop iterations.    If
‘BLOCK_SIZE >> levels’ is zero, x_max and y_max are
assigned one plus their respective minimum corner
coordinates.   We use this integer method since the
floating point method allowed rounding errors that
occasionally yielded invalid array indices.   These
boundaries are passed to the triangle tracing procedure
which limits its traversal to the delimited subset of
triangle-pairs.

6.0 VGIS Surface Continuity
Now we discuss complications due to surface

continuity in the context of VGIS. When two adjacent
terrain blocks have different resolutions the edges of
triangles along the shared border will not match.   When
rendering, VGIS uses a set of rules to discard certain
vertices and generate a triangle mesh using this vertex
subset.  This mesh has no cracks along block borders.
How and/or when should we apply such rules to the
terrain traversed by the ray intersection algorithm?
Again the answer depends on the application of the
intersection algorithm.

One option is to avoid such continuity rules and add
artificial polygons between blocks to fill in the gaps.
Whenever, the ray crosses block boundaries during
triangle-pair traversal we compute temporary geometry
for these polygons and test them for intersection with
the ray.   This method is the simplest but it violates the
spirit of the VGIS rendering algorithm.    However, it is
fast and has worked well for terrain selection for VR
navigation [War99].

If we apply continuity rules, we must used a modified
version of VGIS’s rendering rules.  Instead of using the
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renderer’s visual metric to determine vertex activation
(i.e. its inclusion in the rendered mesh), we force all
vertices to be active.  We then apply the continuity rules
to this fully activated mesh.  This will generate the
maximum resolution mesh that preserves continuity.
This still leaves a big unanswered question.   To what
set of terrain blocks do we apply this algorithm?  We
can apply it dynamically to whatever blocks are paged
in at ray-traversal time; or we can apply it off-line to the
highest-resolution terrain and then force a continuity-
requiring ray traversal to load in the highest resolution
data. Next if we choose to apply the continuity
algorithm dynamically we can apply the continuity
algorithm to either the entire in-memory terrain dataset
or only to the local regions accessed by ray traversal.
Applying it to local regions, however, may produce a
mesh differing from the mesh created by global
continuity preservation. However, since VGIS is
constantly paging data in and out, the mesh defined by
applying dynamic global continuity is in continuous
temporal flux.   Therefore if we apply the continuity
preservation dynamically, it may make little difference
if we apply it locally or globally.   Research to
determine which of these options are appropriate to
different continuity requiring applications is ongoing.

7.0  Results and Conclusions
Figure 13 illustrates the complete algorithm in

operation.   Here min_level is zero and we use the
simplest continuity algorithm appropriate for fast
interactive terrain selection. The application is running
on a virtual workbench [War99] and the red ray is a
virtual laser pointer interactively manipulated by the
user.   The two yellow lines indicate the projection of
the ray origin onto the spheroid and the point on the ray
where it exits the global boundaries.   The visited
height-quads’ side boundaries are outlined in green,
black, red and blue.  Blue indicates the quad volume
was intersected.    Red indicates the quad was
intersected and is a leaf.   Green indicates the quad’s
polygon data was used for polygon traversal.   Black
indicates that while the quad side bounds were
intersected the quad volume was not, i.e. the upper
boundary was not pieced.   The small streak of green
inside the red quads are the outlines of the triangles that
are tested for intersection.     In Figure 13a, the planet is
at a resolution such that the polygon data associated
with the leaf quad (red) is not paged in.   The algorithm
visits ancestor quads until reaching the first quad
(green) with polygon data covering the leaf quad. Figure
13b, shows a zoomed in view.    Note here we can
distinguish 2 sets of green polygons.   The lower ones
outline the actual tested triangles while the upper ones,
are raised to the height of the source quad (green) and
indicate the individual triangle-pair quads.

We are successfully using this algorithm for
navigating global terrain on the virtual workbench
[War99].    The algorithm is fundamental to the
navigation method since the user navigates with a
virtual laser pointer used to grab the terrain for panning,
rotating and zooming.   Empirically the intersection
algorithm has had no affect on framerate as is necessary
for VR interaction.   Asymptotically, the algorithm is
equivalent to standard quadtree and octree traveral
methods.

a

b

Figure 13:    Illustration of ray intersection algorithm.

To conclude we have described the impact of the
geodetic coordinate system on quadtree spatial
subdivision with respect to computing ray-terrain
intersections.    We presented a new set of efficient
methods for tracing a ray over the terrain.  These
methods go beyond the work of [Coh93], promoting a
complete approach for global terrain in a multi-
resolution spheroidal quadtree structure.

8.0 Future Work
There are several avenues of future work. First, while

the containment problem has not been an issue for our
current applications, it needs to be resolved for other
applications.   We are currently pursuing a hybrid



extension that mixes elements of spheroidal bounding
volumes and Cartesian bounding volumes.   The
extension will remove the containment problem while
keeping the number of visited quads to a minimum.
Second, the continuity issues have yet to be fully
resolved for all uses of ray-terrain intersection.  Next it
may be possible to switch from the spheroidal approach
to the much simpler Cartesian approach [Coh93] when
the algorithm reaches high detail quads.   This is
plausible because at some point the results of these two
approaches will yield similar results.  This is due to the
finite precision of computer arithmetic.    We are
actively investigating these issues.
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Appendix:
In this appendix we tackle two issues.  First we

discuss degenerate cases of TBh
xz and argue that in

practice they do not occur.   Second we prove that the
upper boundary approximation, Bh

xz, truly bounds TBh
xz.

Both these proofs use several simple theorems that we
first present in A1.

A1 Common Theorems
Theorem 1
      For Θ∈[0,π/2] and a≥b and a,b>0, DΘ
monotonically increases over [b,a] and in general
DΘ∈[b,a].

Proof:

To prove this, examine the derivative of this
expression to get local maximums and minimums:

Since the local maximum/minimum for interval [0,π/2]
occur precisely at the interval endpoints it is sufficient
to examine values at 0 and π/2.    This yields simply b2

and a2 for the minimum and maximum proving (1) and
hence DΘ ∈[b,a].   Finally, since no minimum or
maximum occurs inside this interval we conclude DΘ
varies monotonically over [b,a] as Θ varies over [0,π/2].

Theorem 2
If a≥b and a,b>0, then –a2/b ≤ -a ≤ -b ≤ –b2/a.

Theorem 3
    If h≥-b2/a and a≥b and a,b>0, then a+hb/ DΘ ≥  0.

Proof:

Theorem 4
    If h≥-b2/a and a≥b and a,b>0, then b+ha/ DΘ  ≥  0.

Proof:

A2  Degeneracies in TBh
xz

We defined the true bounding surface as:

However, certain values of h<0 yield degenerate cases.
To simplify discussion we restrict further discussion to
a single quadrant, quadrant I, due to the symmetry of
TBh

xz.  Degenerate examples for a base ellipse of
a=10,b=11 are shown in Figure 14. In Figure 14a, the
quadrant I of TBh

xz is shown..  The largest curve is
TB0

xz,, the base ellipse.  Ordered diagonally from top-
right to bottom-left are TBh

xz for h=-100/11,-9.25,-9.75,-
10,-10.5,-11,-11.5 and –12.   Figure 14b, shows the
complete surface for h=0 and then h=-100/11,-10.5,-12.
Curve h=-100/11 appears reasonable, while curves h=-
9.25,-9.75,-10,-11 exhibit a sharp corner in quadrant IV.
Curves h=-11.5 and –12 exist in quadrants III and IV.
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Figure 14:   Degenerate Cases

We can better understand these degenerate cases by
referring to the geometric construction of TBh

xz in Figure
15.   In Figure 15 quadrant I of the base ellipse is drawn
(black) along with a corresponding section of TBh

xz

(red).   At the labeled points, a,b,c and d, a vector  is
drawn.  The vector is normal to the ellipse and of fixed
magnitude corresponding to a negative height.    We can
imagine creating TBh

xz, (red)  by sweeping this vector
along the base ellipse (black) and keeping the vector
normal to the curve.  14a illustrates a non-degenerate
cases while 14b and 14c illustrate degenerate cases.

a

          b

          c

Figure 15:   Construction of TBh for non-degenerate cases (a)
and degenerate cases (b) and (c).

The degenerate curves, in opposite quadrants and
containing inflection points, make troublesome
bounding surfaces.   We like to avoid them by finding a
lower bound for h above which they do not occur and
by then showing that typical terrain data satisfies this
bound.

The illustrated cases occur when the constructed point
of TBh

xz does not lie in quadrant I.  It is easy to show
that h≥-b2/a implies the x and y coordinates of TBh

xz are
always positive or zero for Θ∈[0,π/2].  The x coordinate
is (a+hb/ DΘ)cosΘ.   Both factors are positive or zero on
Θ∈[0,π/2] from Theorem 3. The y coordinate is (b+ha/
DΘ)sinΘ.   Both factors are positive or zero on
Θ∈[0,π/2] from Theorem 4.

Having shown h≥-b2/a avoids the degenerate cases,
we now argue that for typical terrain surface models h≥-
b2/a is indeed true.    This occurs since typically h<<a,b
and a and b are close.   For example, in the WGS_84
model of Earth, a= 6378137.0000, b= 6356752.3141 so
-b2/a = -6,335,439.327003.    The minimum geodetic
terrain height is several orders of magnitude smaller
than this, around     -15,000.

Finally, due to a technicality when choosing an
elliptical approximation to TBh

xz, we make a minor
modification and stipulate h>-b2/a.
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A3  Bh
xz Bounds TBh

xz

Here we prove that our choice of Bh
xz:

bounds TBh
xz:

given our standard assumptions that a≥b and a,b>0.

Theorem 5
If h≥0, then curve TBh

xz lies inside or on Bh≥0.

Proof:
We can use the implicit equation of an ellipse

Bh≥0 and prove that all points on TBh
xz are inside or on

Bh≥0.   This is true if and only if:

Now since 1
2

sin
2

cos =Θ+Θ  and both of these terms
are positive, and since both P(Θ) and Q(Θ) are positive,
it is sufficient to show that P(Θ) and Q(Θ) are both less
than or equal to 1 for Θ∈[0, 2π].

That P(Θ) ≤ 1 is as follows:

Next prove that Q (Θ)≤ 1:

Theorem 6
If h∈(-b2/a,0), then curve TBh

xz lies inside or on Bh<0.

Proof:
Again, we use the implicit equation of an ellipse

Bh<0 and prove that all points on TBh
xz are inside or on

Bh<0.   Similar to Theorem 5, this is true if and only if:

Now since 1
2

sin
2

cos =Θ+Θ  and both of these terms
are positive, it is sufficient to show that P(Θ) and Q(Θ)
are both less than or equal to 1, assuming both P(Θ) and
Q(Θ) are positive or zero.  Now P(Θ)≥0 for h>-b2/a
since the numerator is ≥ 0 (Theorem 3) and the
denominator is > 0 (Theorems 2 which show h>-b2/a
implies h>–a2/b).  Q(Θ)≥0 for h>-b2/a since the
numerator is ≥ 0 (Theorem 4) and the denominator is >
0 (Theorems 2 which show h>-b2/a implies h>-b).

So continuing to show P(Θ) and Q(Θ) are both less
than or equal to 1, we begin with P(Θ) ≤ 1:
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Next prove that Q (Θ)≤ 1:

We conclude, that if h∈(-b2/a,0), then curve TBh
xz lies

inside or on the Bh<0.
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