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SUMMARY 

 

 

 

To date, closed form optimal solutions for stocking levels in arborescent multiechelon 

inventory systems have not been obtained.  These problems exhibit the joint difficulties 

of requiring an allocation policy as well as a stocking policy, and the multidimensional 

nature of their state space makes dynamic programming formulations impractical.  In this 

dissertation, we introduce procedures that approximate multiechelon networks with sets 

of single installation problems.  We first use this technique to solve for base-stock levels 

in a distribution network with asymmetric retailers.  Second, we use this technique to 

analyze delayed differentiation production processes and provide guidance as to when the 

strategy is most warranted.  Third, we modify the technique to account for inventory that 

exhibits perishability and solve for stocking policies for distribution systems when the 

inventory has a fixed shelf life. 
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INTRODUCTION 

 

 

 

Multiechelon distribution systems are pervasive in practice.  They occur whenever 

multiple internal or external customers exist for the producer of a good.  Examples are 

abundant, from Taco Bell’s centralized production of foodstuffs sold through a 

distributed network of franchises to the internal consumption of computer components at 

Dell Computers.  Poor supply chain management practices lead to significantly 

suboptimal tactical and strategic behavior, potentially costing firms millions of dollars 

(Singhal and Hendricks, 2003).  In this dissertation, we introduce heuristic techniques for 

the management of distribution systems.   

We begin by introducing a core technique, referred to as the Newsvendor Bounds 

Technique.  The method begins by bounding from above and below the costs and 

stocking levels of a multiechelon supply chain.  This reduces the distribution system to a 

set of serial chain problems.  We approximate base-stock levels in these serial chains by 

single installation policies.  The method thus transforms a very difficult problem into a 

number of readily solvable problems, providing a simple and surprisingly accurate 

solution.  

We first apply the Newsvendor Bounds Technique to two-echelon distribution 

networks.  This problem is the most frequently studied of those we consider in this 

dissertation.  Notable recent works such as Graves (1996) and Cachon (2001) have 

progressed understanding of distribution networks, but have significant limitations.  Our 

approach relaxes key assumptions of prior works, as well as providing both a simpler 

solution method and a reduction in the average error compared to other heuristic 

techniques.  Using the simple structure of our solution technique, we also offer an 

analytical parametric study of the optimal cost and stocking behavior of distribution 

networks.  We show that, holding all else equal, asymmetry in backordering costs or 

demand rate decreases the costs of operating a distribution system compared to a 

symmetric system.  We argue this occurs due to a virtual pooling effect, causing the 

distribution system to behave similarly to a two-echelon serial system.   
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Next we turn our attention to the difficulties faced by firms offering wide product 

varieties.  Various supply chain strategies have been explored to provide these products at 

minimum cost.  We focus on one of these strategies, delayed differentiation, which enables 

the firm to maintain large stocks of work-in-process to fulfill demand for multiple 

products.  Delayed differentiation allows firms to exploit risk pooling and aggregate 

forecasting to reduce the uncertainty inherent in offering product variety.  Lee and Tang 

(1997) provide a seminal work in this area, but utilize a decoupling assumption in which 

the installations in the supply chain are assumed to operate independently.  By removing 

this assumption and recognizing the interdependency of installations, we show that, under 

certain conditions, their analysis may result in supply chain costs that are significantly 

higher than optimal.   

We also reveal a previously hidden factor in determining the correct delayed 

differentiation strategy.  The pattern of holding costs assessed for the various stages of 

work in process, which we refer to as the holding cost profile, plays a role in the 

determination of the least-cost strategy.  Prior work has established the importance of the 

absolute holding cost in this decision; in this dissertation, we show that the correct strategy 

incorporates not only these absolute levels but also the structure of the holding cost profile.  

Capturing large jumps in inventory holding costs is considerably more valuable than 

would be predicted based on previous literature.  Thus we provide a qualitative test for 

identifying valuable differentiation opportunities in the production process. 

Finally, we consider the effects of inventory perishability in distribution networks.  

This adds an additional level of complexity to the nonperishable distribution network 

problem.  Although both economically and socially significant, it has gathered scant 

research attention.  We first find serial chains and distribution systems behave quite 

differently, with the terminal locations of a serial chain behaving as if the inventory was 

nonperishable.  Distribution systems, however, must account for an opportunity cost that 

arises in perishable contexts but is absent in nonperishable problems.  This opportunity 

cost occurs due to the possibility of a unit of inventory expiring at an installation rather 

than satisfying demand elsewhere in the system.  We develop well performing heuristic 

stocking policies for both serial and distribution systems.  This work further suggests that 

the opportunity cost inhibits the exploitation of risk pooling opportunities.  As lifetimes 
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increase, the likelihood of outdating decreases, causing these opportunity costs disappear.  

Hence strategies to extend lifetime are particularly warranted when risk pooling 

opportunities are available.   

The remainder of this dissertation is organized as follows.  A review of the literature 

is presented in Chapter 2.  The development of our core technique is presented in Chapter 

3.  Our models and preliminary results for our studies in distribution systems, delayed 

differentiation, and perishable inventory distribution systems are presented in Chapters 4, 

5, and 6, respectively.   



 

 4

CHAPTER 2 

LITERATURE REVIEW 

 

 

 

2.1 Distribution System Inventory Theory 

Two main challenges exist in determining optimal supply chain strategies for 

distribution systems:  determining the stocking policies for each installation and the 

allocation policy of inventory to downstream stages when demand exceeds supply at an 

upstream stage.  Prior work on these elements of the problem is discussed in §2.1.1 and 

§2.1.2 below.   

2.1.1. Allocation Policies 

Clark and Scarf (1960) inspired a long stream of literature on the domain of 

production and distribution networks with their analysis of serial systems, finding for 

systems with a single retailer, echelon inventory stocking policies are optimal.  They 

further suggest arborescent systems may be approximated by a serial system under a 

balance relaxation of the traditional dynamic program formulation.  This relaxation 

allows the warehouse to reallocate inventory by imposing negative inventory shipments 

on downstream installations.  The balance relaxation is utilized frequently in this 

literature (e.g. see Eppen and Schrage (1981), Federgruen and Zipkin (1984a, b), 

Federgruen (1993), Verrijdt and de Kok (1996), Garg and Tang (1997), and van der 

Heijden et al. (1997)) although in practice such a policy may not be always feasible.  

Eppen and Schrage (1981) and Erkip et al (1990) provide simulation results suggesting 

that for high service level systems, such an allocation policy is feasible most of the time.  

Unfortunately, the balance relaxation may be inappropriate when downstream 

installations are substantially asymmetric in inventory cost profiles and lead times (e.g. 

see Clark and Scarf (1960), Federgruen and Zipkin (1984a), McGavin et al. (1993), 

Kumar and Jacobson (1998), and Axsater et al. (2002)).  Additionally, such an 

assumption is unrealistic in practice, as it implies the existence of costless and 

instantaneous transshipment opportunities.  While the balance relaxation serves to make 
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the problem tractable, it is also severely limiting in addressing complex and realistic 

distribution systems; hence we avoid the use of such a relaxation in this work. 

A number of allocation policies that do not rely on the balance relaxation have 

already been introduced in the literature.  Graves (1996) utilizes a virtual assignment rule, 

where echelon inventory is devoted to a given retailer as demand occurs.  This is 

essentially the opposite of the rebalancing assumption, in that rather than assigning 

inventory at the end of the supply chain, the assignment occurs before the inventory 

enters the system.  These concepts suggest lower and upper bounds on system stock, 

respectively. 

Erkip (1984), Jackson and Muckstadt (1989), McGavin et al. (1993) and Axsater et 

al. (2002) consider policies where retailers order from the warehouse two times during 

the warehouse’s order cycle.  These models show that splitting an arriving order at the 

warehouse into two quantities, one of which is shipped immediately and the other at 

some period before the next arrival of inventory at the warehouse, captures most of the 

risk pooling benefits.  In periodic review systems such as are considered here, the 

warehouse may ship inventory in every period.    

By using a random allocation policy, Cachon (2001) develops exact results for the 

retailer and warehouse costs, although such a policy does not consider the relative need 

for inventory at the retailers and is thus sub-optimal.  Myopic allocation policies, used in 

our heuristic and by Federgruen and Zipkin (1984b) and Axsater et al. (2002), allocate 

inventory in an attempt to minimize the expected costs at the retailers in the period the 

inventory arrives (e.g. after the warehouse to retailer shipment lead-time).  Federgruen 

and Zipkin (1984b) show that, for identical retailers, a myopic policy is approximately 

optimal when orders may be placed every period.  Jackson and Muckstadt (1989) and 

Jackson (1988) use a similar allocation rule, denoted the “runout allocation rule”, where 

the allocation is determined by solving an optimization problem over the horizon until the 

next arrival of inventory at the warehouse stage.  The allocation rule used in this work is 

most similar to that of McGavin, Schwarz, and Ward (1993), who assume identical 

retailers and allocate stock so as to maximize the minimum retailer inventory position.  

We allow for non-identical downstream stages and instead minimize the maximum 
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deviation between each installation’s echelon inventory-transit position and its echelon 

base-stock level.   

2.1.2 Stocking Policies 

The traditional approach used in determining stocking levels for a distribution system 

is to formulate the problem as a stochastic dynamic program and apply relaxations or 

restrictions to the system to allow for tractability.  Federgruen (1993) notes for most 

deterministic demand systems, efficient algorithms for determining optimal strategies do 

not exist, a situation exacerbated in models with stochastic demand.  One particularly 

challenging issue, for example, is in the absence of the balancing relaxations, the optimal 

stock at an installation may be less than the actual stock on hand, given the state of other 

installations (e.g. consider two retailers, one with ample safety stock and the other 

carrying backorders).  The resulting large solution space for the optimal policy is 

accompanied by considerable computational burden.   Hence researchers tend to 

approximate the system to create a policy and then compare that policy via numerical 

solutions or simulation to either known bounds or the “best found system” (e.g. McGavin 

et al., 1993).   

Because the literature in this area typically utilizes two-echelon models with a single 

warehouse and multiple retailers, we begin with a survey of models of this type.  One 

approach is to treat the warehouse as a cross-dock which may not hold inventory.  Here, 

Eppen and Schrage (1981) determine the average inventory and backorder levels 

assuming identical retailers and independent demands.  Erkip et al. (1990) extend this 

model to allow for correlated demands and Garg and Tang (1997) extend it to an arbitrary 

number of echelons and retailers (assuming arborescence holds).  Unlike these works, we 

allow the inventory to be held at upstream locations.  This allows a centralized decision 

maker to better protect the retailers from uncertainty in demand over the lead-time from 

the exogenous supplier to the warehouse, in addition to exploiting potential holding cost 

savings at the warehouse.   

When inventory is allowed to be held at the warehouse, Federgruen and Zipkin 

(1984a) show that one may approximate a two-echelon distribution system with identical 

retailers by relaxing their DP formulation, initially allowing rebalancing to determine the 

shipment quantity to a collapsed retailer.  This provides a lower bound, and we adopt a 
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similar approach in an arbitrary arborescent multiechelon system below.  They also show 

their policy is essentially the same as a decentralized system where each installation 

follows its own critical number policy.  Chen and Zheng (1994) provide lower bounds for 

the total inventory related costs after noting optimal policies for such a system are 

unknown.  Earlier, Jackson (1988) provided an extension of the Eppen and Schrage 

(1981) model to allow the warehouse to hold inventory.  Like Eppen and Schrage, the 

warehouse orders every t periods, but by allowing inventory to be held at the warehouse, 

Jackson captures the “depot effect” of allocating inventory to retailers late in the 

warehouse’s order cycle, creating more balanced inventory positions (and hence service 

levels).  As we do in this work, Jackson follows a base stock policy in each period that 

the warehouse holds sufficient inventory, which provides for a finer degree of control 

than the single mid-cycle allocations of Erkip (1984), Jonsson and Silver (1987 a, b), and 

Jackson and Muckstadt (1989).    Jackson defines a cost function over a single warehouse 

order horizon of t periods, and sets retailer order up to levels based on an approximate 

problem.  Our approach is similar to Jackson in that our stocking policy is a function of a 

sum of newsvendor cost functions.  However, Jackson’s approximate cost function is a 

nested optimization problem, where the internal newsvendor problems depend only on 

the decision of quantity to hold at the warehouse in the beginning of the warehouse order 

cycle.  Thus while Jackson’s’ approximate cost function is minimized by a search over a 

single variable, we do not require recursive solutions. 

Axsater, et al. (2002) consider a two-echelon multiple retailer distribution system 

with no ordering costs but where the orders occur in batches, and the warehouse orders in 

multiples of a batch size (a system-batch).  They propose heuristics to avoid the 

computationally impractical solution of the stochastic dynamic programming problem. 

Their virtual assignment heuristic determines stocking levels and is related to Graves 

(1996) work.  Axsater et al. (2002) decompose the system into multiple independent 

distributor-retailer systems.  Future reallocation at the warehouse stage is permitted, but 

the warehouse orders as if it must fill each retailer’s order separately.  They argue this 

creates an upper bound on stocking levels and costs.  We apply the same argument, and 

additionally provide a lower bound reminiscent of the collapsed system of Federgruen 

and Zipkin (1984b). 
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Thus far we have discussed a number of works where the solution technique has been 

to relax or constrain the problem to establish tractability.  Cachon (2001) also considers a 

periodic review system with batch ordering, but provides exact results that may be 

obtained through a recursive process.  In contrast to the works cited above, Cachon 

utilizes a random allocation policy.  This allows an exact expression to be developed for 

each retailer’s lead-time distribution, which in turn allows exact results for average 

inventory and backorder levels given a stocking policy.  Cachon uses a bounded iterative 

search to determine stocking levels, and finds other simple and commonly used heuristics 

fail to reliably perform well.  We confirm these findings while introducing a simple 

closed form heuristic that does perform well.  We show as the allocation policy becomes 

more sophisticated, shifting from a random to a myopic allocation policy, the results of 

our approach outperform these other methods.  This suggests, like the use of the 

rebalancing assumption, the use of random allocation policies improves tractability at the 

cost of decreased performance.  Furthermore, no performance testing exists for such an 

allocation policy on more complex systems. 

Although many authors argue their approach may be extended beyond two-echelon 

distribution systems, (e.g. Graves (1996), Cachon (2001)), the literature is sparse with 

analytical, numeric, or simulation results for generic arborescent topologies.  Notable 

exceptions are provided by Federgruen and Zipkin (1984b), Garg and Tang (1997), and 

van der Heijden et al. (1997).  Of these, only van der Heijden et al. allow inventory to be 

held at the non-retail stages, and they minimize inventory under a fill rate constraint.  Our 

approach may be trivially extended to any number of arborescent echelons with non-

identical retailers, and inventory may be held at every installation in the network.   

 

2.2 Delayed Differentiation 

Delayed differentiation, first introduced by Alderson (1950), refers to the redesign of 

production processes to delay the stage where a universal set of product components is 

modified to their final configurations.  This differentiation delay typically allows for 

greater service levels at decreased inventory costs, as firms exploit risk-pooling effects, 

and these effects grow stronger the further down the supply chain that differentiation takes 

place (Lee, 1996).  However, the redesign of these processes or the over-design of the 
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universal components may increase manufacturing or component costs (Fisher et al., 

1999).  Lee and Tang (1997) provide an explicit analysis of these tradeoffs. 

Increasing product variety has lead to considerable literature proposing solutions to 

the corresponding complexities, such as part commonalities, process sequencing, delayed 

differentiation, and lead-time reduction  (see Chapters 15, 16, and 18 in Tayur et al. 

(1999) for a representative sample).  Delayed differentiation exploits the variance 

reduction through the risk pooling effect, reducing the required safety stock to meet a 

given service level, as in Lee et al. (1993), Lee (1996), and Lee and Tang (1997).  Garg 

and Tang (1997) add a second differentiation opportunity to the firm, resulting in greater 

benefits of late differentiation. 

Historically, the analysis of delayed differentiation of multiple product lines typically 

assumes installations along the supply chain may be treated independently, an assumption 

referred to as the decoupling assumption (e.g. Lee and Tang, 1997, Ma, Wang, and Liu, 

2002).  The decoupling assumption results in single stage inventory policies.  These 

assumptions are also made regularly in the related literature on component 

commonalities, such as Hsu and Wang (2003).  However, the decoupling assumption is 

clearly suboptimal.  By assuming the installations in a supply chain are independent, the 

assumption neglects significant interaction effects (e.g. Graves, 1996, and Zipkin, 2000).  

Hence in this work, we avoid the use of a decoupling assumption. 

Baker et al. (1986) consider service levels in a two-product, two-level system, but 

assume zero lead-times between installations.  They show a decrease in total inventory by 

using a common component.  Gerchak, Magazine, and Gamble (1988) and Eynan and 

Rosenblatt (1996) show that under general demand distributions and correlations, the 

optimal levels of common component inventories are non-intuitive.  Furthermore, Eynan 

and Rosenblatt (1996) and Su, Chang, and Ferguson (2005) show that it may be optimal to 

not utilize commonality when the costs of a common assembly are substantially more 

expensive than the specific assemblies it replaces.  Although these works suggest that the 

optimal inventory policy of stages of a product line poses an interesting, non-intuitive 

problem, they also limit their analysis to two-echelon systems.  In this work, our approach 

determines inventory base-stock levels for a generic m-echelon network, with any number 

of differentiation opportunities and asymmetric cost profiles.      
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2.3 Perishable Inventory Theory 

We begin our review of the existent literature in perishable inventory theory with 

single installation models under periodic, stochastic demand.  The seminal works are Van 

Zyl (1964), Nahmias (1975a) and Fries (1975).  Van Zyl (1964) derived the optimal 

stocking policy for inventory with lifetimes of two periods.  Nahmias (1975a) and Fries 

(1975) independently consider the expected one period cost of an installation controlling 

a single product with a lifetime of r. They both assume inventory arrives fresh from the 

supplier.  Holding and shortage costs apply as well as outdating costs for units of 

inventory held at the end of the r+1st period after they were ordered.  Important findings 

of Nahmias (1975a) are the existence of a bounded ordering region and once the system 

enters the region, it never subsequently leaves.  The generation of an optimal ordering 

policy however, is complicated by the need to retain a multi-dimensional state variable 

(the quantity of inventory held of ages 1, …, r).  Nahmias (1982) notes the computation 

of optimal policies for large r is prohibitively complex due to this complication. 

To avoid these complexities, several approximate methods to solve the single stage 

problem have been introduced.  Nahmias (1975b) considers three policies which only 

utilize information on the total quantity of system inventory rather than the quantities of 

inventory at each possible remaining lifetime.  Of these, a critical number policy was 

found to be both highly accurate and simplest to implement.  Nahmias (1976) 

approximates the problem with a myopic critical number policy through the use of an 

upper bound on the expected quantity of outdating.  His solution for stocking policies is a 

modified newsvendor policy that we utilize in this work.  Cohen (1976) developed an 

optimal critical number policy for two period lifetimes, through the construction of the 

stationary distribution of inventory.  Nandakumar and Morton (1993) create myopic 

upper and lower bounds and take a ratio of the tightest ones to select the order quantity.  

Tekin, Gurler, and Berk (2001) show in a continuous review system, incorporating the 

age of inventory into the ordering policy improves performance.  Cooper (2001) provides 

additional bounds on the outdate quantity, and provides numerical evidence that the 

critical number policies are nearly as good as the optimal policies.   In this work, we also 

utilize fixed critical number policies. 
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Our work differs from the above primarily by expanding the analysis to multiechelon 

systems.  The consideration of extended supply chains raises a number of complexities.  

The state vector now requires a second dimension to account for the position of each unit 

of inventory in the supply chain.  Additionally, the above literature assumes all incoming 

inventory is fresh.  In multiechelon problems where upstream stages follow their own 

ordering and allocation policies, downstream installations receive products with a 

distribution of inventory ages.   

Due in part to these difficulties, works considering multiechelon inventory theory for 

perishable products are fairly sparse.  Ferguson and Ketzenberg (2005) and Ketzenberg 

and Ferguson (2005) explicitly consider the effects of uncertain remaining lifetime of 

inventory upon receipt at the downstream stage of a two-echelon supply chain, and the 

value information sharing imparts to the system.  Goh, Greensberg, and Matsuo (1993) 

consider a two-stage system when supply as well as demand is stochastic, and inventory 

may fill two separate types of age segregated demand.  Fujiwara et al. (1997) also 

analyze a two-echelon serial system where the upstream stage holds a product that is 

decomposed into multiple subproducts.  Their model allows for emergency expedition of 

orders in the event of stockout and for the lifetime of the product to vary by the 

installation at which it is held, but is restricted to i.i.d. demands for each product and a 

constant ratio of subproducts produced from a unit of the master product.   

Contributions considering traditional distribution systems are less frequent still.  

Prastacos (1981) extends the work of Yen (1965) in considering the optimal myopic 

allocation policies of perishable inventory in distribution networks.  Prastacos shows both 

stockouts and outages are minimized when inventory is allocated to equalize the 

probability of demand exceeding inventory for each age at each location.  Leiberman 

(1958) and Pierskalla and Roach (1972) show with constant product utility, issuing the 

oldest inventory first (FIFO) is optimal.  Prastacos’s (1981) allocation, as well as ours, 

utilizes constant product utility and thus FIFO policies.  Unlike our work, Prastacos does 

not develop stocking policies, and assumes random supply.  To the best of our 

knowledge, this work is the first to develop stocking policies for traditional multiechelon 

distribution systems with perishable inventory.  
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CHAPTER 3 

NEWSVENDOR HEURISTICS FOR ARBORESCENT  

MULTIECHELON SUPPLY CHAINS 

 
 

 

3.1 Introduction 

In this chapter, we develop a well performing heuristic used for the stocking, ordering, 

and issuing of inventory in an arborescent supply chain with multiple nonidentical 

retailers.  The core procedure is capable of the analysis of any arbitrary supply chain 

assuming there are no ordering costs, unmet demand is fully backlogged, holding and 

stockout costs are linear, and the chain retains arborescence.  In this chapter, we present a 

method by which these supply chains may be reduced to a set of single installation 

newsvendor problems.  In later chapters we will show the application of this technique to a 

variety of supply chain problems.  

Consider the problem of determining optimal stocking levels in a multi-echelon 

distribution network consisting of m echelons and n non-identical terminal locations.  

Inventory stocking levels are chosen and controlled by a central decision maker and 

inventory is monitored on a periodic basis.  Optimal solutions of this problem are 

problematic because of the allocation policy at the branched locations.  Both Clark and 

Scarf (1960) and Federgruen and Zipkin (1984b) propose heuristic solutions for this 

problem based on a stochastic dynamic programming formulation.  The disadvantage of 

such a formulation lies in the very large state space needed for its solution, thus several 

simpler heuristics have since been proposed (e.g. Jackson (1988), McGavin et al (1993), 

Graves (1996), and Axsater et. al (2002)).  All of these heuristics face the trade-off of 

performance and complexity and no rigorous comparison of them exists.   

For serial supply chains, Shang and Song (2003) provide a series of single period 

newsvendor problems, the solution to which bound the optimal stocking levels as 

determined by Clark and Scarf.  Newsvendor bounds have a number of valuable qualities:  

they are considerably less computationally intensive, allow for ready parametric analysis, 
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and facilitate the development of intuition.  In this chapter, we extend the newsvendor 

bounds technique to distribution systems. 

Traditional depictions of two-echelon, single warehouse systems focus on minimizing 

the total supply chain costs by determining inventory stocking levels for each installation 

and applying an allocation policy for the warehouse to utilize when it cannot fill all 

retailer demands.  Because of the large dimensionality of the resulting dynamic program, 

a common approach is to approximate the system and conduct a recursive search over 

stocking levels.  Our newsvendor heuristic avoids such a search, requiring only the 

solution of a set of simple closed form functions to set base stock levels.  We bound the 

costs and base-stock levels of the arborescent system by a single serial system on the low 

side and a set of n decomposed serial chains on the high side.  We solve for the base-

stock levels of the resulting serial systems using the Shang and Song (2003) heuristic, 

and take the average of the resulting system wide base stock levels as our heuristic for the 

original arborescent system. 

 

3.2 Arborescent System Model 

Consider a multi-echelon supply chain with a single supplier of an abundantly 

available commodity.  Label the terminal stages of the system as 1α where α = 1, ..., n, 

(we omit the index α when only one installation exists within an echelon) and the furthest 

upstream stage as m, to denote an m-echelon, n-retailer system.  Label intermediate stages 

beginning with the installation just upstream of a retailer as 2α and so forth.  The simplest 

example of such a system has a single distribution point and n retailers, and is depicted in 

Figure 3.1. 

 

 

 

 

                                                       

Figure 3.1: Model of Supply Chain Network 
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Let tDα denote the stochastic demand over t unit length periods at retailer 1α, and 
tfα  

and tFα  its probability and cumulative distribution functions (we omit the superscripts 

when t = 1).  We assume demand to be stationary and independent across retailers and 

time, with known but not necessarily identical distributions across retailers.  In each 

period, the following sequence of events occurs: previously shipped replenishments arrive 

at each installation, demand occurs at each retailer, excess demand is fully backordered, 

replenishment orders are placed, costs are assessed, and replenishment orders are shipped.  

Inventory is reviewed every period and a centralized decision maker places replenishment 

orders based on knowledge of the entire supply chain’s inventory positions.   

We assume per unit local inventory holding costs ( ,iH α ) and backordering costs (bα ) 

are linear, and ordering costs throughout the system are zero, resulting in the optimality of 

base-stock policies at each installation.  Before costs are assessed in each period, the 

following variables are measured:  
,

,
x y
is α = the base stock level for installation iα  in topology x, as determined by method y, 

where ( , , )x d c a∈  and (*, )y v∈  

d, c = superscripts denoting decomposed and collapsed systems, respectively 

a = superscript denoting the distribution system 

* = superscript denoting an optimal solution 

v = superscript denoting the Newsvendor Heuristic 

,ih α = echelon holding cost at installation iα , , , 1,i i ih H Hα α α+= −  

Bα  = number of backorders at installation 1α. 

'
,iI α = on-hand inventory at installation iα . 

,iT α = inventory in transit to stage iα . 

,iI α = echelon inventory at installation iα , ( )
1

' '
, , , ,

1

i

i i j j
j

I I T Iα α α α

−

=

= + +∑ for i = 1, …, k-1, 

and ( ) ( )
1 1

' ' '
, ,

1 1

i n k

i i j j j j
j k j

I I T I T Iα α
α

− −

= = =

= + + + +∑ ∑∑  for i = k, …, m. 

,iIP α = echelon inventory-transit position at installation iα , , , ,=  -    i i iIP I B Tα α α α+   
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,iIO α = inventory orders outstanding for installation iα , , , ,=  i i iIO s Iα α α−  

The total system cost in a period is the sum 
1

, , , ,
1 1 1

m m k m

j j j j i i
j k j

h I h I b Bα α α α
α α

−

= = = =

+ +∑ ∑∑ ∑ .  

Replenishments for an installation arrive ,iL α  periods after being shipped.  In any period in 

which the warehouse has sufficient inventory on hand to fill all downstream demands, our 

allocation policy is to ship all on hand inventory while minimizing IOi.  Thus, the 

allocation policy allocates scarce inventory to installations on the basis of their relative 

need. 

 

3.3 Branched Multi-Echelon Newsvendor Heuristic 

In this section, we present a heuristic for determining echelon base-stock levels for a 

multiechelon distribution network.  We construct two serial supply chain systems whose 

costs bound the optimal costs and echelon base-stock levels of distribution system from 

above and below.  Our illustrative network, depicted in the center of Figure 3.1, faces 

demand processes D1, D2, ... , Dn   at the terminal ends of the chain segments.   

To determine the upper bound, we restrict all installations at and upstream of the 

distribution point to designate and maintain retailer specific inventories.  That is, the 

centralized decision maker specifies which retailer each unit of inventory will eventually 

be shipped to as that unit of inventory is ordered from the exogenous supplier.  In spirit, 

this is similar to the virtual assignment approach of Graves (1996), who notes that 

because it may be desirable to un-commit stock, this assignment rule will not perform as 

well as a dynamic allocation policy.  The restriction decomposes the distribution network 

into a set of n independent serial systems, one system for each retailer, as depicted on the 

right of Figure 3.2.  We refer to these serial chains as ‘decomposed’. 
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Figure 3.2: Constructed Serial Chains 

 

To describe our Newsvendor Heuristic, we need the following notation.   

μα = mean demand rate at installation iα , μα = E[Dα] 

(x)- = max{0, -x} 
xs  = a vector of optimal echelon base-stock levels for all installations in 

topology x, where ( , , )x d c a∈  

( )x xC s  = the expected per period cost of the topology x under echelon base-stock 

vector xs , where ( , , )x d c a∈  

The optimal base-stock policy of each decomposed serial chain may be determined as 

follows.  Let C0,α = bα + H1,α(x)- and s0,α
* = ∞.  For i = 1, 2, ..., m, solve the recursive 

optimization equations   

( ) { }( ),*
, , 1, 1,( ) min ,s i s d i

i i i iC y h y D C s y Dα α α α α α− −
⎡ ⎤= Ε − + −⎣ ⎦     (3.1) 

where  ( ){ },*
, arg mind s

i is C yα α= .       (3.2) 

The optimal expected cost for each of the decomposed systems is ( ),*
, ,

d d
m mC sα α , and the 

expected overall cost of the total system of decomposed chains is simply the sum 

( ) ( ),*
, ,

1

n
d d d d
m mC s Cα α

α =

=∑ s .        (3.3) 

Because this sum is obtained by applying a constraint to the warehouse, it is an upper 

bound for the optimal cost of the distribution network.  Additionally, removing the 

1

n

Dα
α =
∑  k 1 

D1 

D2 

Dn 

k1 11 

21 

n1 

k2 

kn 

D1 

Dn 

k

11 

n1 
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decomposition constraint allows for risk pooling, suggesting that if backordering costs 

are sufficiently high to induce installations to carry positive safety stock, the sum  

,* ,*
,

1

n
d d
i is sα

α =

=∑          (3.4) 

is an upper bound for the optimal echelon base stock level at the warehouse.  A similar 

argument is made by Gallego et al. (2003). 

Having constructed an upper bound for the cost of the distribution network, we next 

construct a single serial system that serves as a lower bound.  Here, our approach is 

similar to Federgruen and Zipkin (1984a), who assume that instantaneous and costless 

transshipments within an echelon are allowable.  The result of this assumption is an 

artificial distinction between installations in an echelon.  The stages downstream of a 

distribution point may thus be collectively treated as a single virtual installation, as 

shown on the left of Figure 3.2.  We refer to this system as ‘collapsed’. 

As with the decomposed system, this serial system is solved by the above 

optimization equations.  Let sc and Cc(sc) represent the optimal echelon base-stock policy 

and expected system wide cost of the collapsed system, respectively.  By introducing 

inventory commitment constraints on the downstream stages of the collapsed system, we 

achieve the original distribution network.  For identical retailers, Cc(sc) is a lower bound 

for Ca(sa) because the distribution network is the result of adding constraints on the 

collapsed network.    

Additionally, the retailer echelon base-stock level under the collapsed system 

suggests lower bounds for the echelon base-stock levels for the distribution network.  To 

see this, consider by combining the retail stages from the distribution network, we gain 

the opportunity to exploit risk pooling.  Assuming the chain carries nonnegative safety 

stocks, the pooling potentially reduces inventory in this installation and the optimal 

echelon base-stock level of the warehouse.  The decomposition and collapsed system 

results combine to give 

( ) ( ) ( ),*
, ,

1

n
c c a a d d

m m
j

C s C s C sα α
=

≤ ≤ ∑ .  (3.5) 
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and suggests that  

c a d
i i i≤ ≤s s s .  (3.6) 

We use these serial systems to approximate the optimal echelon base-stock levels for 

the distribution network.  For identical installations in an echelon, our approach is to 

utilize the Shang and Song (2003) heuristic for each of the n+1 constructed chains.  Using 

an illustrative two-echelon, two-retailer system, for the collapsed serial chain system, the 

stocking level at the warehouse is  

1 1
2 2

2 1 2,
2 2
c v

b bF F
b h h b h

s

− −⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠= .  (3.7) 

For the decomposed serial chain system, the stocking levels at echelon i are, for our 

illustrative system,  

1 11 1
2,1 2,1

1 1,1 2 1 2,
2,1 2
d v

b bF F
b h h b h

s

− −⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠⎝ ⎠=     .   (3.8) 

and 

1 12 2
2,2 2,2

2 1,2 2 2 2,
2,2 2
d v

b bF F
b h h b h

s

− −⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠⎝ ⎠= .    (3.9)  

The sum of these stock levels, , , ,
2 2,1 2,2
d v d v d vs s s= +  represents an approximation for an upper 

bound of the echelon base-stock policy of the distribution system.  

When backorder costs or holding costs differ between retailers, we must adjust the 

collapsed system equation (3.7).  To do so, we use the mean demand weighted average 

backorder and holding costs for the distribution stage.  Thus, for a two-retailer system, 

the terms in equation (3.7) are  

21

2211

μμ
μμ

+
+

=
bb

b  and 1 1,1 2 1,2
1

1 2

h h
h

μ μ
μ μ

+
=

+
  (3.10,3.11) 

In this case, our argument that the total inventory costs of the distribution system are 

bounded from below by that of the collapsed system may not hold.  However, in our 
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numerical experiments, we find no instances where the collapsed system costs exceed 

that of the distribution system.  Thus we present the results for asymmetric retailers under 

the numerical conjecture that the bound holds.  

The Newsvendor Heuristic for the stocking level at the warehouse is a simple average 

of the stocking levels from the constructed systems: 

 
, ,

, 2 2
2 2

c v d v
a v s ss +

= . (3.12) 
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CHAPTER 4 

EVALUATION OF TWO-ECHELON DISTRIBUTION SYSTEMS 
 

 

 

In this chapter, we use the Newsvendor Heuristic developed in Chapter 3 to analyze 

two-echelon distribution networks.  We begin by showing the accuracy of the heuristic 

approach, and then develop managerial insight into the behavior of distribution systems.  

Due to the unavailability of practical analytical solution methods, we test our heuristic 

through an extensive and rigorous simulation experiment and compare its performance 

against other common heuristics.   

 

4.1 Simulation Methodology 

A majority of previous papers on distribution system stocking policies use simulation 

to test the accuracy of dynamic programming relaxations because closed form cost 

equations do not exist for most common allocation policies.  Thus, we also use simulation 

to test the performance of our approach against prior work and commonly used 

practitioner heuristics.  We consider examples for both symmetric and asymmetric cost 

structures for two-echelon network topologies with either two or four terminal retail 

stages (we discuss in Chapter 5 a related study where we present the performance of the 

heuristic for three-echelon networks). 

 

 

 

 

 

 

Figure 4.1: Network Topologies 

 

Our simulation methodology is an unequal variance, two-stage screening-subset 

selection procedure presented in Nelson et al. (2001).  We first create a set of base-stock 

level candidates.  For distributions with finite support, these candidates are obtained by 
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enumerating over the entire range of potential lead-time demands at each installation.  

For distributions without finite support, candidates cover a range of the expected 

minimizing base-stock level, +/- at least 5 inventory units for each installation.  For the 

parameter settings in these examples, this range covers at least 50% of the cumulative 

distribution of the lead-time demand at each installation, centered on the cost minimizing 

stocking level as suggested by the Newsvendor Heuristic.   

For each stocking level, we initially conduct a steady state simulation of our model 

and allocation policy for 50,000 periods.  We batch periods into groups of 10 to reduce 

deviations from normality and correlations between single period costs.  Based on the 

lead-times used in our study, we omit the first 10 periods to eliminate initialization 

effects.  The remaining data points are used in the initial screening phase. 

Stocking level vectors that survive the initial screening are candidates for our final 

solution, and are subjected to a second round of simulation experiments where we retain 

our batch mean sizes and generate a sufficient number of data points to eliminate all but 

one of the systems.  After this experiment, the set of stocking levels that has the lowest 

per period cost is selected.  This procedure ensures a confidence level of at least 1-γ that 

the selected system performs within a quantity δ of the best found system cost.  Hence we 

refer to the selected system as a δ−best system.  For our purposes, we consider γ = 5% 

and δ = 0.2% of the average per period system cost of the best system found in the first 

stage.   

The simulation model was verified by using the same approach to simulate a serial 

chain, whereupon the results are identical to those found by Shang and Song (2003).   In 

the next section, we compare the performance of our NH to other simple and widely used 

heuristics. 

 

4.2 Problem Design and Results 

4.2.1 Symmetric Two-Echelon Networks  

Our first experimental design considers two network topologies, with either two or 

four symmetric retailers.  We test the heuristics using a full factorial design over a range 

of holding cost, backorder cost, and lead-time parameters.  We consider (h2, h1 = h1,1 = 

h1,2) = {(1,1), (1,2), (2,1)}, (L2, L1= L1,1 = L1,2) = {(1,1), (1,2), (2,1)}, and b1= b2 = 
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{5,10,20}. We hold the total periodic system demand constant at 20 units per period, 

distributed according to a Poisson distribution.  This demand is split among the retailers, 

resulting in μα = 10 for the 2-retailer network and μα = 5 for the 4-retailer network. These 

parameter values are similar to those used by Jackson (1988), Cachon (2001), Axsater et 

al. (2002) and Shang and Song (2003), and are summarized in Tables A4.1 and A4.2 in 

Appendix 1 for the two-retailer and four-retailer networks, respectively.   

4.2.1.1 Random Allocation Policies  

We compare the results of the Newsvendor Heuristic (NH) to those of Cachon (2001), 

whose results are optimal when a random allocation policy is used.  These results are 

presented in Table A4.3 in Appendix 1 and are summarized in Table 4.1.  Based on this 

test, we make the following three observations. 

 

Table 4.1: Random Allocation Summary 

 

 

 

 

 

 

Observation 4.1: A small but significant error exists from using the NH under a random 

allocation setting.  The error grows as the number of retailers increase but the heuristic 

reacts to parametric changes in a similar manner as the exact procedure. 

Observation 4.2: The exact strategy holds more inventory at the distribution point than 

does the NH.  

We argue below that this is a result of poor management of inventory at the 

distribution point. 

Observation 4.3: As backorder costs increase, the total system stock held by the NH falls 

relative to the exact analysis.   

For backorder rates of 5, the exact analysis tends to hold less inventory than the NH.  

For backorder rates of 10, there is no clear trend, but for backorder rates of 20, the NH 

% Error Under Random Allocation 

 Two-Retailer Four-Retailer

Exact 0.00% 0.00% 

Bounds 2.68% 3.38% 
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carries less total inventory than the exact analysis.  We discuss this further in the next 

section. 

4.2.1.2 Myopic Allocation Policies  

In this section we compare the systems generated by the NH to the δ-best system 

found via the simulation procedure described in §4.1.  We also investigate the 

performance of three other alternative heuristics.  First, we use the results of Cachon’s 

(2001) exact analysis under random allocation as a heuristic under our proposed 

allocation policy.  Since Graves (1996) finds that holding no safety stock at the upstream 

stage is frequently a good (and simple) heuristic, we also consider this approach (termed 

the zero safety stock policy in the results below).  Finally, we investigate the performance 

of setting a fixed service rate at the warehouse stage, as is frequently encountered in 

practice.  We choose a 99% fill rate because in practice, managers frequently require high 

fill rates from the warehouse (Lee and Tang, 1997).  The results of these experiments are 

presented in Tables A4.4 and A4.5 in Appendix 1 for the two-retailer and four-retailer 

networks, respectively.  From these results, we make the following observations. 

Observation 4.4: The NH performs best of all the tested heuristics.  It is followed by the 

Cachon exact analysis and zero safety stock heuristics, while the fixed high fill-rate 

heuristic performs poorly in all problems.   

A summary of these results is presented in the symmetric columns in Table 4.2. 

 

Table 4.2: Myopic Allocation Summary 

% Error Under Myopic Allocation 

  Two-Retailer Four-Retailer 

Heuristic Symmetric Asymmetric Symmetric Asymmetric 

Newsvendor 0.40% 0.85% 0.48% 0.89%

Cachon 1.75% NA 2.24% NA

99% Fill Rate 22.06% 24.59% 21.21% 24.66%

Zero Safety Stock 2.21% 1.96% 2.95% 3.96%

 

Observation 4.5: The additional upstream inventory held by Cachon’s exact analysis 

causes it to under perform the NH when non-random allocation is allowed.   
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By allocating inventory randomly, the exact analysis increases the variance of the 

demand placed upon the warehouse by the terminal stages, increasing the required 

inventory at the warehouse.  In contrast, allocating inventory myopically is more 

efficient.  A myopic allocation reduces the penalty induced by preventing the retailer 

from redistributing inventory (in a random allocation), allowing inventory to be placed 

further downstream, since the lower inventory at the distribution point results in less 

frequent stock outs.  This effect strengthens as the backorder costs increase. 

Observation 4.6: All else held constant, increasing the number of retailers increases the 

total system cost.  Additionally, increasing the holding costs, lead-times, or backorder 

costs also increases the total system cost.   

These effects are congruent with prior work and intuition.  Increasing the number of 

retailers reduces risk-pooling savings, while increasing other parameters increases costs 

directly.  We address these effects further in section 4.4. 

4.2.2 Asymmetric Two-Echelon Networks 

We now consider networks where the terminal stages are asymmetric or non-

identical.  We consider a full factorial design over h1,α = {1,2} and bα = {5,10,20} for 

both two and four-retailer chains, while holding L2 = L1= L1,1 = L1,2 = 1 and the system 

demand as described in section 4.2.1.  The parameters for each problem investigated are 

presented in Tables A1 and A2.  We compare the performance of the NH, Zero Safety 

Stock, and 99% Fill Rate heuristics to that of the δ-best system.  The results are presented 

in Tables A4.6 and A4.7 in Appendix 1 and are summarized in the asymmetric columns 

in Table 4.2. 

Observation 4.7:  Observations 4.4 and 4.6 hold in the asymmetric case.  Additionally, 

asymmetric networks introduce slightly more error in the NH performance.   

This increase is present in the other tested heuristics as well, and may be due in part 

to a larger number of candidate policies.  The NH returns an average error of 0.87%, 

while the holding costs between retail locations vary by 100% and the backorder costs 

between locations vary by 400%.  We believe this range covers most realistic distribution 

systems. 
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4.3 Heuristic Robustness Tests 

     Having established that the NH performs well over a broad range of cost parameters, 

we next examine its robustness.  Our primary goal in this section is to determine where 

the performance of the NH degrades, thus the range for the tested parameter values may 

exceed those ever found in practice.  We begin by examining the performance of the NH 

across other demand distributions than Poisson.  We investigate three other demand 

distributions: discrete uniform (5,15), negative binomial (with μ = 10 and 2σ = 16.54), 

and a constructed bimodal distribution whose pmf is depicted in Figure 4.2.  The variance 

of the negative binomial distribution was selected to match that of the constructed 

distribution, while the mean demand of each distribution matches those of the Poisson 

distribution from the previous tests. 
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Figure 4.2: pmf of the Constructed Bimodal Distribution 

 

We test the NH on these distributions over a broader range of parameters.  We consider a 

full factorial design of n = {2,10}, b1 = b2 = {1,10,50}, (h2, h1,1 = h1,2) = {(1,1), (10,1), 

(1,10)}, and (L2, L1,1 = L1,2) = {(1,1), (1,3), (3,1)}, and continue to use the simulation 

methodology presented in §4.1.  A summary of the results of these tests is presented in 

Table 4.3 (full results are available in Tables A4.8-A4.10), where we report the number 
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of test cases where the cost exceeded the δ-best policy by the range given in the left most 

column. 

 

Table 4.3: Robustness Tests Across Demand Distributions and Number of Retailers 

 Number of Retailers 

 2 10 

Range of Error 

Discrete 

Uniform 

Negative 

Binomial

Constructed 

Bimodal 

Discrete 

Uniform

Negative 

Binomial 

Constructed 

Bimodal 

0% 13 12 11 1 2 0 

<1% 7 10 12 11 11 11 

1% to 5% 5 5 4 4 4 6 

>5% 2 0 0 11 10 10 

 

Observation 4.8: The accuracy of the NH does not significantly depend on the type of 

demand distribution. 

The error the NH incurs is approximately the same across each demand distribution 

investigated.  Additionally, the errors generated by the two retailer tests are 

approximately equal to those under the Poisson tests in §4.2.1.2.  

Observation 4.9: Increasing the number of retailers significantly decreases the 

performance of the NH. 

As the number of retailers increase from two to ten, the performance of the NH 

drops precipitously.  This trend is common across demand distributions but is not 

common across cost parameters.  A further investigation into the trend cited in 

Observation 4.9 reveals that the NH’s performance is heavily dependent on the relative 

holding cost patterns, as depicted in Table 4.4.  This leads to our next observation. 
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Table 4.4: Performance of the NH with 10 Retailers 

 Holding Cost (h2, h1) 

Range of Error (1,1) (10,1) (1,10) 

0% 2 1 0 

<1% 12 21 0 

1% to 5% 7 5 2 

>5% 6 0 25 

 

Observation 4.10: The NH fails when there are many retailers and the holding cost 

increases dramatically between the warehouse and the retail stages. 

Interestingly, the warehouse echelon base-stock level under these conditions is 

approximately equal to that of the δ-best system.  The majority of the error arises instead 

from the allocation of inventory within the system. In these cases, the NH carries too 

little inventory at the retail stages, overcompensating for the exceptionally high holding 

costs.  Thus the NH is useful in setting the total inventory stock, but should not be used to 

determine the base-stock levels at the retailers.   

We believe these scenarios, where holding costs at the retailers exceed that at the 

warehouse by orders of magnitude are rare in practice.  For instance, in the electronics 

industry in the United States, warehouse and retail space rents are approximately $4/ft2 

and $7.1/ft2, respectively (http://www.bizstats.com).  On average, the firms generate 

$355/ft2 in sales on 13.8 inventory turns a year, generating $58/ft2 in gross profit. If the 

cost of capital is 10%, the capital cost component of local holding costs at the retail and 

warehouse locations are $9.25/ft2 and $6.15/ft2 for the average US electronics seller 

respectively.  Taking backordering costs as solely the forfeited margin of lost sales, and 

scaling such that h1 = 1, these correspond to cost parameter settings of h1 = 1, h2 = 0.5, 

and b = 9.52.  These values easily fall within the parameter value range where the NH 

performs well. 

     We next consider the effects of asymmetry in the retail parameter values.  There were 

no significant differences in the accuracy of our results between the four different 

demand distributions so we utilize the discrete uniform distribution in the following tests.  

Because the discrete uniform distribution has finite support, we are able to fully 
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enumerate over all possible lead-time demands.  We consider two sets of problems, each 

with two retailers, where the demand or lead-time to one retailer varies, respectively.  

The first set of examples is a full factorial design over the parameter values (b1, b2) = 

{(1,1), (1,50), (50,1)}, h2 = 1, L2 = L1,1 = L1,2 = 1, (h1,1, h1,2) = {(1,1), (1,10), (10,1)}, D1 ~ 

U(5,15), and D2 ~ {U(15,25), U(35,45), U(55,65), U(75,85), U(95,105)}.  This test 

captures asymmetries in retail demand; the results are summarized in Table 4.5 (full data 

are presented in Table A4.11). 

 

Table 4.5: NH Performance over Demand and Cost Asymmetry 

 Demand Ratio (μ2/μ1) 

Range of Error 2 4 6 8 10 

0% 1 0 1 0 1 

<1% 2 3 5 5 4 

1% to 5% 6 6 2 3 3 

>5% 0 0 1 1 1 

 

The second set of test problems is a full factorial design over the parameter values (b1, b2) 

= {(1,1), (1,50), (50,1)}, h2 = 1, L2 = L1,1 =1, L1,2 = {2,3,4,5}, (h1,1, h1,2) = {(1,1), (1,10), 

(10,1)}, D1 ~ U(5,15), and D2 ~ U(5,15).  This test captures asymmetries in the lead-times 

between the warehouse and the two retailers.  The results of this test are summarized in 

Table 4.6 (full data are presented in Table A4.12).  Our final observation summarizes our 

asymmetric results. 
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Table 4.6: NH Performance over Lead-time and Cost Asymmetry 

 Lead-time Ratio (L2,1/L1,1) 

Range of Error 2 3 4 5 

0% 0 0 0 3 

<1% 1 3 4 1 

1% to 5% 8 5 4 4 

>5% 0 0 1 1 

 

Observation 4.11: The NH is robust to asymmetry in both the lead-times and demand 

rates. 

Tables 4.5 and 4.6 show the NH is robust across widely varying cost, lead-time, and 

demand rates.  Although the NH typically fails to identify the δ-best policy, it performs 

within 5% of the δ-best policy costs in 76 of the 81 test cases.  That this performance 

occurs under a wide disparity in retailer parameter values gives further support to the 

robustness of the NH. 

 

4.4 Cost Functions and Analysis of Parameter Value Effects 

As noted by Shang and Song (2003), the simple newsvendor bounds presented above 

enable the analysis of the effects of the system parameters much more readily than 

previous solution methods.  Although these bounds and cost functions are general, 

assuming normally distributed demand allows us to obtain some analytical results.  

Hence, for Propositions 4.1 and 4.2 below, we assume demand at each retailer is 

normally distributed.   

Recall that our method of bounding the distribution system is through the 

construction of a set of serial systems.  The analysis of the resulting cost functions has a 

number of parallels to the serial supply chain system studied by Shang and Song (2003).  

Under symmetric profiles, increasing either the backordering cost or the lead-time 

increases both total system costs and echelon stocking levels.  Increasing the warehouse 

echelon holding cost rate increases system costs and stocking levels at the retailers, while 

increasing the echelon holding cost rate at the retailers while decreasing the echelon base 
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stock levels at the warehouse.  Thus the parametric results for symmetric distribution 

systems are identical to those of a serial chain.  The analysis becomes slightly more 

complex when considering asymmetric problems.  Here, a change in a given retailer’s 

parameter value does not affect the base-stock levels of the other retailers.  Proposition 

4.1 describes the impact on the retailer whose parameter value is modified along with the 

impact on the warehouse.     

Proposition 4.1.  For α = 1, 2, ... n, and α ≠ j 

(a) as bj  increases, Ca(sa) increases, s2 and s1,j increase, while sα remains unchanged.   

(b) as hj increases, Ca(sa) is non-decreasing, s2 and s1,j decrease, and sα remains 

unchanged. 

(c) as Lj  increases, Ca(sa) increases, s2 and s1,j increase, while sα remains 

unchanged.   

Thus, increasing the backorder cost or lead-time at one retailer increases the total system 

costs and increases the echelon stocking levels of both the warehouse and that retailer.  

However, the stocking levels of the other retailers are independent of the effects of the 

change in the parameter value.  An increase in the echelon holding cost at the retailer 

decreases the echelon stocking levels, while the total system costs are non-decreasing 

(and likely increasing).     

Standard risk pooling arguments yield the intuition that, keeping the system demand 

constant, increasing the number of retailers increases both system stocking levels and 

total system costs.  We formalize this intuition in Proposition 4.2. 

Proposition 4.2.  For α = 1, 2, ... n, and β = 1, 2, ... n, n+1, and assuming safety stocks 

are positive,  

Ca(sa) and s2 are non-decreasing, and sβ < sα.  

Proposition 4.2 states that while increasing the number of retailers in a distribution 

network while keeping the total system demand constant reduces the inventory held at 

each retailer, it also likely increases the total amount of system stock and total system 

costs.  These effects arise due to the limited ability of the centralized decision maker to 

exploit risk-pooling opportunities. 

Finally, we examine the effects of increasing asymmetry in the retailer parameter 

values.  We begin by addressing asymmetry in backorder costs.  Consider an initially 



 

 31

symmetric system, and increase b1 while decreasing b2 by Δ, such that b1 = b (1+Δ) and b2 

= b (1-Δ).  Because there is no closed form for the inverse of the normal cdf, we 

condition Propositions 4.3 and 4.4 assuming uniform lead-time demand distributions.  

Our numerical tests verify the results hold for normal distributions as well, although we 

note that certain pathological distributions exist for which the results will not hold.   

Proposition 4.3.  For α =  3, ..., n, b1 = b (1+Δ) and b2 = b (1-Δ),  s2  and Ca(sa*) are non-

increasing with Δ. 

Proposition 4.3 states that increasing asymmetry in backordering costs does not increase 

and likely decreases stocking levels and system costs, as the decomposed echelon stock 

levels and system costs are non-increasing while the collapsed values remain unchanged.  

This seemingly counter intuitive result arises due to the tendency of the system to behave 

as a serial chain as asymmetry increases.  Taken to an extreme, the retailer with the high 

backordering cost captures the majority of the inventory related costs.  Thus, this high-

backorder cost retailer dominates the system, which begins to resemble a serial chain 

consisting solely of the high-backorder cost retailer.  Recall we expect the collapsed 

serial chain to serve as an approximate lower bound for the distribution system.  In effect, 

we find symmetric sub-chains may be thought of as ‘worst case’ scenarios for total 

system costs.  Proposition 4.3 is illustrated by a small set of numerical test problems, as 

presented in Figure 4.3.  We compare the difference in Ca(sa) for two-retailer networks 

with b = 10, Δ = {0,0.5}, normally distributed demands with μ = 20 and σ2 = 20, and 

three holding cost cases where (h2, h1) = {(1,1), (1,2), (2,1)}.   
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Effect of Backorder Cost Asymmetry

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

C
ha

ng
e 

in
 C

os
ts

h1=1, h2=1
h1=2, h2=1
h1=1, h2=2

 
Figure 4.3: Effect of Backorder Cost Asymmetry 

 

In a similar manner, we examine the effect of asymmetry in the holding costs in 

Proposition 4.4.  To do so, we modify the retailer’s echelon holding cost such that h1,1 = 

h1(1+Δ) and h1,2 = h1(1-Δ).  

Proposition 4.4.  For α = 1, ..., n, h1,1 = h1(1+Δ) and h1,2 = h1(1-Δ), s1,2  increases while 

s1,1 decreases with increasing Δ.  Also, s2  is non-increasing and Ca(sa) is non-decreasing 

in Δ.    

Proposition 4.4 shows that the system echelon stocking level is non-increasing but 

total system inventory costs are non-decreasing in asymmetry of the retailer holding 

costs.   This is illustrated by a set of numerical test problems, as presented in Figure 4.4.  

We compare the difference in Ca(sa) for two-retailer networks with h1 = 1, Δ ={0,0.5} 

demand distributed normally with μ = 20 and σ2 = 20 and three backorder cases where b 

= {5,10,15}.   
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Figure 4.4: Effects of Holding Cost and Demand Rate Asymmetry 

 

Finally, in Proposition 4.5 we present the effect of demand asymmetry on the 

stocking levels and supply chain costs.  The critical fractile computations of our 

newsvendor approach are independent of the demand distribution, hence we return to 

considering normal distributions for this result. 

Proposition 4.5. For α = 3, ..., n, μ1 = (1+Δ)μα, and μ2 = (1-Δ)μα, both s2  and Ca(sa) are 

non-increasing with Δ.   

Proposition 4.5 states that increasing asymmetry in demand rates does not increase 

and often decreases both echelon stocking levels and system costs.  By a similar 

argument as for Proposition 4.3, the results of Proposition 4.5 arise due to the tendency of 

the resulting network to more closely resemble a serial chain.  Although the increase in 

asymmetry decreases the risk pooling savings at the warehouse, it also introduces a 

virtual pooling effect in the retail stages of the network.  A numerical depiction of 

Proposition 4.5 is illustrated in Figure 4.4 where we compare the difference in Ca(sa) for  

two-retailer networks with μi = 10 and Δ ={0,0.5}. 
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4.5 Concluding Remarks 

In this chapter, we presented a simple heuristic for two-echelon distribution system 

with n non-identical retailers.  The Newsvendor Heuristic requires only the computation 

of 4(n+1) newsvendor problems, but performs well over a wide range of parameters, 

resulting in an average cost that is 0.44% and 0.87% greater than the cost of the best 

found stocking policies for symmetric and asymmetric cost parameters, respectively, 

outperforming all other commonly used heuristics.  The heuristic is robust over multiple 

demand distributions and widely varying cost parameters.  For asymmetric (non 

identical) systems, the heuristic is shown to perform well with backordering costs ranging 

from 50% to 2,500% of the local holding costs, and mean demand and lead-times varying 

by up to 500%.  Although the heuristic does break down when holding costs increase by 

1,000% between the warehouse and retailers, even here the NH provides useful insights, 

accurately predicting the amount of total system stock.  The simplicity of our heuristic 

also facilitates insights on parametric analysis that are difficult or impossible to obtain 

based on the competing heuristics.  For example, we show that the supply chain’s 

inventory and costs increase in the number of retailers, but decrease as backordering costs 

and demands at the retailers become asymmetric.  These results simplify the teaching of 

supply chain distribution system concepts in the classroom, may be used as the 

foundation of a decision support tool, and provide practical insights for managers. 

  



 

 35

CHAPTER 5 

EVALUATION OF DELAYED DIFFERENTIATION PRODUCTION 

 

 

 

5.1 Introduction 

In many industries and product lines, the growing diversity of customer demands is 

causing firms to dramatically increase product variety.  For instance, in 2003 alone, 26,893 

new food and household products were introduced, including 115 deodorants, 187 

breakfast cereals, and 303 women's fragrances (Bianco, 2004).  Such an increase poses 

significant challenges to firms as product proliferation is typically accompanied by 

increasingly inaccurate forecasts, higher inventories, and more frequent stockouts (Lee, 

1996).  The delay of differentiation between multiple product lines, through use of 

common components or modularity, has been examined as one solution to this problem.  

Delayed differentiation, first introduced by Alderson (1950), refers to the redesign of 

production processes to delay the stage where a universal set of product components is 

modified to their final distinct configurations.  A delay in differentiation typically allows 

for greater service levels at decreased inventory costs, as firms exploit better information 

and risk-pooling effects.  Thus, benefits of delayed differentiation tend to increase the 

further down the supply chain that differentiation takes place (Lee, 1996).  

 Unfortunately, implementing delayed differentiation is not free.  There are often 

significant costs involved in redesigning (and in many cases, over-designing) the product 

(Fisher et. al., 1999).  In addition, configuring the product further down the supply chain 

(for instance, at the warehouse or retailer stage) is rarely as cost efficient as at the primary 

manufacturing facility.  Both of these costs (design and assembly) tend to increase the 

further down the supply chain that differentiation takes place.  Since both the benefits and 

the costs of delayed differentiation increase the further down the supply chain, the 

question of where in the supply chain to optimally differentiate arises.  In this chapter, we 

explicitly model this tradeoff to determine the optimal point of differentiation.  While this 

problem has been previously modeled in the literature (Lee and Tang, 1997), we relax one 
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of their major assumptions and find some instances where our solutions are significantly 

different. 

As in Lee and Tang (1997), we assume the production process may be modeled by a 

series of discrete processing stages or installations.  We refer to the last stage that the 

generic product exists as the Last Common Operation (LCO), and seek to determine which 

stage should be selected as the LCO to minimize total cost.   For example, a comparison of 

the total cost of the two networks shown in Figure 5.1 will assist a firm in deciding if it is 

better to differentiate its product either one or two stages from the last stage.  

 

 

 

 

 

Figure 5.1: Delayed Differentiation Product Networks 

 

When Lee and Tang (1997) choose the amount of product to stock at each stage, they 

assume the stages may be treated independently; i.e. there is no connection between the 

service level of one stage with the stocking level of the stage preceding it.  This 

assumption is referred to as the decoupling heuristic (DH) because it allows each stage to 

be analyzed in isolation.  While the DH is appropriate when every stage is required to 

maintain a high service level, the literature on multi-echelon inventory systems shows it is 

rarely optimal to maintain high service levels in the stages of the system that do not 

directly serve the final customer (see for example Chapter 8 in Zipkin, 2000).  We relax 

the DH and provide guidance on the conditions where its use can lead to far from optimal 

decisions.   

Because the analysis of arboreal multi-echelon supply chains without the DH becomes 

prohibitively complex, we approximate the echelon stocking levels for each installation 

with our Newsvendor Heuristic (NH).  The heuristic is tested using these stocking levels as 

parameters in a series of supply chain simulation experiments and we compare the 

resulting supply chain costs to the costs obtained using the best stocking levels found from 
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a full enumeration search.  After verifying the heuristic performs well under common 

conditions, we compare the results against the results generated using the DH.  

We show that the NH performs much better than the DH and the optimal point of 

differentiation shifts towards the end of the supply chain as backorder costs increase and 

towards the beginning of the supply chain as echelon holding costs increase.  These results 

are in agreement with the results of Lee and Tang (1997), however, we also find the DH 

may over or underestimate the value of delaying differentiation.  Specifically, the DH 

often overestimates the value of delaying differentiation, except for cases when the 

echelon holding costs are high in the initial stages of production and the backordering 

costs are also high.  In these cases, the DH results in the firm failing to carry sufficient 

inventory in the intermediate stages, and correspondingly underestimates the risk pooling 

benefits of delaying differentiation.  Both the over and underestimation are often 

significant and may lead a firm to select suboptimal supply chain structures.   

Finally, by not assuming the stages are decoupled, we discover a non-intuitive and 

previously hidden insight that the shape of the holding cost profile (how much the holding 

cost increases from one stage to the next) significantly affects the choice of where in the 

process product differentiation occurs.  We find the presence of sharp rises in local holding 

cost between stages is associated with increased cost savings due to the reduction in 

effective backordering costs at the downstream stages.  Thus, capturing holding cost 

‘spikes’ under a common component form is more valuable than previously believed, and 

may serve as justification for a more extensive use of delayed differentiation strategies. 

The remainder of this chapter is organized as follows.  Our model is defined in §5.2 

and a simulation study is presented and discussed in §5.3.  We state and explain our 

experimental results in §5.4 and discuss the value of delayed differentiation in §5.5.  

Section 5.6 presents holding cost profiles as a key qualitative driver of the value of 

delaying differentiation.  We present a numerical example showing how previous work 

may lead to incorrect strategies in §5.7, and conclude with managerial implications of the 

study in §5.8.  Appendix 1 contains additional numerical results and Appendix 2 provides 

proofs to our propositions.  
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5.2 Delayed Differentiation Model 

We begin the presentation of our model of delayed differentiation by introducing the 

following terminology: 

k  =  the stage of last common operations (LCO), our decision variable 

Sk  = the annuitized cost per period for an investment in the ability to perform a 

common operation at stage k 

,iP α  = the processing cost of product α at stage i 

,iU α  = the transport cost of product α at stage i 

,
k
iI α = the echelon inventory of product α at stage i, given that the last common 

operation is stage k 

For exposition, we will consider a process with two final products.  Our objective is to 

select the point of differentiation that minimizes the total expected cost per period.  Cost is 

comprised of annuitized investment costs that allow a product to remain generic until the 

LCO (stage k), processing costs, inventory holding and stockout costs, and transportation 

costs between the installations.  Let the sum of these costs be Z(k), so the firm’s problem is 

to find the stage k  where 
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 (5.1)  

The first term in (5.1) is the total investment costs, the terms in the first bracket are the 

total processing costs, the second bracket are the total holding costs, the third bracket are 

the transportation costs, and the fifth and sixth terms are the backorder costs.  As in Lee 

and Tang (1997), the optimal LCO is determined by comparing the objective function Z(k) 

for stages k = 1 through m-1.  Unlike their model however, which uses a decoupling 

argument to determine an inventory stocking level (or safety stock factor) at each stage in 

the chain, we determine echelon stocking levels.  An optimal policy for this type of system 
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has not yet been solved, although Federgruen and Zipkin (1984a) provide bounds and 

Zipkin (2000) provides approximations.  The existing approximations are complex and 

difficult to compute, thus we solve the problem through the use of the Newsvendor 

Heuristic.  We test the performance of the NH via simulation as described below in §5.3. 

 

5.3 Simulation Methodology and Problem Design 

The NH is extensively tested for a two-echelon distribution network in Chapter 4.  To 

demonstrate its usefulness in a delayed differentiation analysis, however, we need to test 

it on systems of at least three echelons.  Because closed form solutions are as of yet 

unavailable, we do so using simulation.  We consider two candidate supply chains of 

three echelons with LCOs of 2 and 3, respectively, as shown below in Figures 5.2 and 

5.3.  Comparing these topologies captures the critical elements of a delayed 

differentiation process. 

 

 

 

 

 

Figure 5.2:  Three Echelon System with k=2    

 

 

 

 

 

Figure 5.3: Three Echelon System with k=3 

 

The simulations are conducted as follows; for a single, steady state replication, 

random demands are generated for 100,000 periods.   In each period, demand is satisfied 

or backordered, orders are placed and filled, and linear holding and backordering costs 

are assessed.  These costs are aggregated into 1000 batch means of 100 periods each.  

The first batch mean is removed to eliminate initialization effects.  The removal of the 
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first 100 periods of data is overly conservative because, under base-stock policies, the 

state spaces of the investigated supply chains are independent after L3 + L2 + L1 + 1 

periods.  The average costs and standard deviations for the remaining 99 batch means 

(periods 1001 through 100,000) are reported.  We utilize common random numbers 

across systems during demand generation, for computational simplicity and to potentially 

exploit variance reduction.  Demand for both products is assumed Poisson with a mean 

rate of 10 units per period.    

We compare the NH results to those generated by the DH used in Lee and Tang’s 

(1997) procedure and to the set of echelon base-stock levels that results in the lowest 

average system cost found via the simulation.  The DH stocking levels are determined by 

calculating the optimal local fill rate at the retail stages and applying this rate to each 

upstream installation.  The lowest average system costs are found by conducting a full 

enumeration across the expected minimizing local base-stock level ± ½μ.  If lowest cost 

set of stock levels are potentially constrained by these limits, the study is widened so that 

the set contains no elements at the limits.  We conduct simple difference of means tests 

between the NH and DH to establish statistically significant results.  We achieve 

significant results in 46 of 48 experiments, while the remaining 2 experiments fail to 

achieve a significant difference at the 5% level using a two-tailed t-test.   

 

5.4  Experimental Results 

5.4.1 Symmetric Costs 

The first series of experiments assumes the echelon holding costs and backordering 

costs for each installation at each stage are identical.  We further assume that the 

processing and transportation costs are constant regardless of k (e.g. ,1 ,2j j jP P P= = ), and 

1

k

k
n

S
=

∑  = 0 for all k.  Under these assumptions, differences in the solution to Equation 

(5.1) arise solely from inventory related effects. 

 We begin establishing the accuracy of the two heuristics by varying the backorder 

costs across a 4,000% range while keeping the echelon holding costs constant.  For these 

examples, the echelon holding costs of each of three levels of installations is set to 1 (i.e. 

the local installation holding costs are 1, 2, and 3, respectively).  Simulations were 
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conducted as described in §5.2 and the results are depicted in Appendix 1 in Tables A5.1 

and A5.2. 

Observation 5.1: The NH policies result in lower costs than the DH policies. 

For the non-delayed case, the NH generates inventory policies that exceed the cost of 

the best found policy by an average of 0.2%, compared to 1.7% for the DH.  For the 

delayed case, the errors of the NH policies and DH policies are 0.7% and 2.0%, 

respectively.  

Observation 5.2:  The NH performs progressively better at higher backordering costs.   

The DH also performs better as the backordering costs increase, but reaches a point 

where it begins to perform worse. 

As the backordering costs increase, the consistently high service levels at each 

installation required by the DH are justified.  Thus it is unsurprising that here, the DH 

policies perform well.  However, these policies are still outperformed by the NH.  In the 

non-delayed case, the NH finds the best policy in over half of the experiments with the 

highest backordering costs. 

Observation 5.3: The largest discrepancies between the NH and the DH occur in the low 

backordering cost range. 

We focus on this area in the remainder of this chapter, believing the greatest 

contribution may be achieved in this range.  Intuitively, it is in this region that the optimal 

upstream fill rates are significantly smaller than at the retail stage.  Thus, in the low 

backordering cost range, the DH is particularly inappropriate.  We specifically consider 

backordering to holding cost ratios of approximately 7:1 at the retailer, noting that this 

ratio describes a wide variety of products.  For instance, by taking the backordering cost 

as the lost revenue of a sale of a product with a 50% profit margin, this ratio applies as 

long as the holding costs exceed 7% of the value of the product.   

5.4.2 Asymmetric Costs 

The second series of experiments addresses asymmetric costs where the backordering 

cost and/or the holding costs at the terminal stage are allowed to differ.  We continue to 

assume the processing and transportation costs are constant regardless of the topology 
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given by the selection of k, and that 
1

0
k

k
n

S
=

=∑ for all k, again resulting in an investigation 

into solely the role of inventory effects on Equation (5.1). 

We test two levels of holding cost at each echelon, h = {1,2} and three backordering 

costs, b={5,10,20}.  The NH and DH stocking levels are generated as before.  The 

findings of these experiments are summarized in Appendix 1 in Tables A5.3 and A5.4. 

Observation 5.4: The NH is robust to asymmetric costs in the production network 

beyond the last common operation. 

For the non-delayed and delayed production networks, the NH produces an average 

error of 0.6% and 1.2%, respectively.  In contrast, use of the DH leads to errors of 1.7% 

and 1.8%, respectively.  We note that when both holding and backordering costs differ 

between the chains, the NH performs worse than the DH in the delayed network.  The 

allocation policy utilized in the NH is suboptimal for asymmetric retailers but the errors 

induced by this allocation policy are small relative to the DH results.   These results 

should also be viewed in the context of the range of diversity in holding costs (100%) and 

backordering costs (400%) between installations.  Products originating from a set of 

common components are unlikely to experience this degree of cost parameter asymmetry.   

We leave an investigation for a slight correction to the heuristic for future work.  For both 

the DH and NH, the errors are greater in the asymmetric cost experiments than in the 

symmetric cost experiments.   

 

5.5 The Value of Delaying Differentiation 

Having established the NH performs well in three-echelon topologies, we expand the 

experiment to compare the NH results to the DH results as the echelon holding costs and 

backordering costs vary.  These results are summarized in Table 5.1. 
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Table 5.1: Comparative Costs 

Echelon Holding Costs Backorder CostNon-delayed Chain CostsDelayed Chain Costs
h3 h2 h1  b NH DH NH DH 

1 1 1 2.5 8110 8603 7970 8385 
1 1 1 5 8928 9226 8733 8940 
1 1 1 7.5 9426 9637 9183 9302 
1 1 1 10 9814 9980 9544 9603 
1 1 1 20 10676 10819 10331 10380 
1 1 2 5 9341 9460 9132 9175 
1 1 2 10 10411 10484 10136 10088 
1 1 2 20 11592 11644 11155* 11146* 
1 2 1 5 11473 12382 11180 11859 
1 2 1 10 12597 13232 12236 12578 
1 2 1 20 13773 14176 13286 13458 
1 2 2 5 11798 12208 11507 11741 
1 2 2 10 13159 13420 12667 12861 
1 2 2 20 14561 14706 14076* 14027* 
2 1 1 5 13428 14473 13201 14156 
2 1 1 10 14621 15324 14308 14947 
2 1 1 20 15852 16268 15399 15827 
2 1 1 50 17461 17509 16880 17090 
2 1 2 5 13840 14300 13613 13973 
2 1 2 10 15175 15550 14842 15158 
2 1 2 20 16643 16835 16210 16324 
2 2 1 5 15934 17326 15663 16595 
2 2 1 10 17317 18331 16919 17926 
2 2 1 20 18845 19439 18322 18904 
2 2 2 5 16221 17206 15940 16770 
2 2 2 10 17856 18452 17467 17880 
2 2 2 20 19574 19959 19087 19206 
* Denotes an insignificant difference of means on a two-tailed t-test at the 5% level 
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Observation 5.5: The experiments show that delaying differentiation is consistently 

valuable.   

This observation is expected since we assume the redesign cost to be zero.   

Observation 5.6: The NH outperforms the results of the DH. 

In 45 of the 48 cases the NH outperforms the DH at the 5% significance level.  In 2 of 

the remaining 3 cases, the difference of means is statistically insignificant at the 5% level 

after 200,000 periods.  In only one case did the DH significantly outperform the NH.  

Thus, when determining stocking levels for a multi-level production system, our results 

indicate NH stocking levels result in lower inventory costs for a given service level than 

DH stocking levels.  

In designing the manufacturing process, a firm seeks to answer the question of 

whether the savings in inventory costs from delaying differentiation are worth the 

additional costs from processing, transportation, or redesign.  To examine the effects of 

the DH on this decision, we revisit the data presented in Table A5.3 and compare the 

differences in the expected inventory costs between the non-delayed and delayed chains.  

This data is presented in Table 5.2 
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Table 5.2: Value of Delaying Differentiation 

Echelon Holding Costs Backorder Cost Delay Value   

h3 h2 h1  b NH DH  DH Overestimation 

1 1 1 2.5 140.65 218.3 35.6% 

1 1 1 5 194.56 286.28 32.0% 

1 1 1 7.5 242.65 334.8 27.5% 

1 1 1 10 270.13 376.8 28.3% 

1 1 1 20 344.6 438.1 21.3% 

1 1 2 5 209.02 284.44 26.5% 

1 1 2 10 274.8 395.6 30.5% 

1 1 2 20 437.8 498.1 12.1% 

1 2 1 5 293.7 523.1 43.9% 

1 2 1 10 360.7 654.7 44.9% 

1 2 1 20 487 718.6 32.2% 

1 2 2 5 291.4 467.9 37.7% 

1 2 2 10 491.1 559.1 12.2% 

1 2 2 20 485.2 678.5 28.5% 

2 1 1 5 226.6 317.5 28.6% 

2 1 1 10 312.6 376.9 17.1% 

2 1 1 20 453.2 440.9 -2.8% 

2 1 1 50 581 418.8 -38.7% 

2 1 2 5 227 326.9 30.6% 

2 1 2 10 333.8 391.6 14.8% 

2 1 2 20 433.5 510.9 15.1% 

2 2 1 5 271 730.3 62.9% 

2 2 1 10 398.5 405.2 1.7% 

2 2 1 20 523.3 534.7 2.1% 

2 2 2 5 281.3 436.6 35.6% 

2 2 2 10 389.1 572.6 32.0% 

2 2 2 20 486.5 753.6 35.4% 
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Observation 5.7: In the majority of cases studied, the DH overestimates the potential 

cost savings of delaying differentiation.   

In 93% of the cases investigated, the cost savings generated by delaying 

differentiation under the DH exceeds that generated by delaying differentiation under the 

NH, and this discrepancy ranged as high as 62.9%.  The overestimation of value is 

greatest when a significant increase in holding cost occurs at the potential LCO stage.  

Here, the DH overestimates the cost savings by decreasing the inventory held at the LCO 

by amounts greater than the NH.  Because the DH relies on the decoupling assumption, it 

carries excessive inventory at upstream stages.  This excessive inventory is reduced by 

greater amounts upon realization of the pooling effect than the more appropriately set 

inventory levels under the NH.  Thus, the DH often leads to an overestimation of the 

benefits of delayed differentiation. 

Observation 5.8: Use of the DH may also significantly underestimate the potential cost 

savings of delaying differentiation.   

The underestimation of value is greatest when the local holding costs are high at the 

beginning of the process and backordering costs are also high.  This may occur when 

there is considerable value in the raw materials compared to the value added during the 

production process, or when dealing with materials that require expensive or dangerous 

handling such as molten metal.  Here, the DH fails to capitalize fully on the benefits of 

holding product in intermediate stages.  Because a majority of the holding costs are 

applied regardless of the position of the inventory, the effective cost of shifting base-

stock levels downstream towards the intermediate installations decreases.  This increases 

inventory at the potential LCO stage under the NH, affording a greater savings upon 

merging the chains and exploiting the risk pooling effect.  By ignoring the effects of the 

delayed differentiation decision on installations upstream of the LCO echelon, the DH 

also fails to appreciate potential cost savings and may underestimate the value of 

delaying differentiation.   
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5.6  Holding Cost Profile Insights 

The use of the NH allows the development of a non-intuitive and previously obscured 

result in the behavior of the value of delayed differentiation as a function of the local 

holding costs.  To demonstrate, consider the data in Table 5.2 where H1 = 4 and b = 20.  

Three local holding cost profiles meet this criteria; P1: {H3 = 2, H2 = 3, H1 = 4}, P2: {H3 = 

1, H2 = 3, H1 = 4}, and P3: {H3 = 1, H2 = 2, H1 = 4}.  These data are plotted below in 

Figure 5.4, where the plotted areas represent the local holding cost of a unit of product as 

it progresses through the production process, and the values in parenthesis are the 

associated values of delaying differentiation.  Under the DH, the value of delaying 

differentiation under holding cost profiles P1 and P2 are equal, and larger than under P3, 

due to the inventory savings at the second echelon.  Using the NH, however, clearly 

shows the value under profile P2 > P1 > P3.    

 

Value of Delayed Differentiation

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Supplier 3 2 1

Echelon

Lo
ca

l H
ol

di
ng

 C
os

t

P1 (453.2) P2 (487) P3 (437.8)

Figure 5.4: Values of Delaying Differentiation for Three Holding Cost Profiles 

 

The example above indicates the value of delaying differentiation is related to the 

shape of the holding cost profile in addition to the absolute level of local holding cost.  

When comparing P1 and P2, we see that under P2, the holding costs increase at the 
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potential point of delayed differentiation.  We refer to this as a holding cost ‘spike’; that 

is, a region in the production process where the slope of the holding cost profile is large.  

We find that it is more valuable than previously expected to capture this spike, a finding 

that is consistent with all of our numerical examples.  This value may even exceed that 

obtained from the absolute holding cost savings.  Note that in the above example, the 

increase in savings due to reduction of inventory when holding costs are 2 rather than 3 

(e.g. P1 and P3) is 15.4 cost units.  However, the additional benefit obtained from 

including a holding cost spike in delayed differentiation (e.g. P1 and P2) is an additional 

33.8 cost units beyond that predicted from solely the absolute holding cost related 

savings.  We formalize this finding in Propositions 5.1 and 5.2, whose proofs are 

presented in Appendix 2.  The propositions require the following assumptions: 

Assumption 5.1: The investment, processing, and transportation costs are independent of 

the selection of k.  That is, 
1

0
k

k
n

S
=

=∑ , ,1 ,2j j jP P P= = , and ,1 ,2j j jT T T= = .  Assumption 1 

limits our consideration to the effects of inventory costs only.  Even if the conditions of 

the assumption never occur in practice, the analysis allows us to isolate the role of these 

costs from those of the investment, processing, and transportation costs, which are 

additive in the objective function and may be treated independently from the inventory 

considerations. 

Assumption 5.2: Consider two network topologies, each with the same number of 

echelons, where the first consists of serial chains and the second consists of a distribution 

center at the top echelon, as depicted in Figures 5.5 and 5.6, respectively.  We assume the 

addition of an upstream echelon that converts the networks into Figures 5.7 and 5.8, 

respectively, affects the costs of operating each system identically.  That is, the difference 

in expected periodic costs between the topologies represented by Figures 5.5 and 5.6 is 

equal to the difference in expected periodic costs between the topologies represented by 

Figures 5.7 and 5.8. 
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Figure 5.5: Decoupled Topology 

 

 

 

 

 

 

Figure 5.6: Distribution Topology 

 

 

 

 

 

    

Figure 5.7: Extended Decoupled Topology 

 

 

 

 

 

 

Figure 5.8: Extended Distribution Topology 

 

Assumption 5.2 is weaker than a decoupling assumption, as we need not assume the 

upstream echelon behaves as an infinite supplier for both topologies but rather it affects 

the downstream system in identical ways.  Under a base-stock policy, the demand process 
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observed at echelon k+1 is identical under both topologies and the additional echelon 

holding costs and implied backordering costs are constant across topologies.  We can 

now present our two propositions.  

Proposition 5.1: Let h’k-1 = hk-1 + Δ and h’k = hk - Δ.  Then, under Assumptions 5.1 and 

5.2, and holding all other parameters constant, the value of delaying differentiation is 

non-increasing in Δ.  This effect becomes more pronounced as the number of final 

product forms increase. 

Proposition 5.2: Let h’k = hk + Δ and h’k+1 = hk+1 - Δ.  Then, under Assumptions 5.1 and 

5.2, and holding all other parameters constant, the value of delaying differentiation is 

non-decreasing in Δ. This effect becomes more pronounced as the number of final 

product forms increase. 

Proposition 5.1 states when larger holding costs are applied early in the process, the 

value of delayed differentiation is greater than when the holding costs are applied later in 

the process.  This result is largely intuitive and arises from the decrease in inventory at 

the second stage associated with the pooling effect.  Proposition 5.2 considers changes in 

the local holding costs that apply before the stage of differentiation and states the value of 

delayed differentiation increases as holding costs shift downstream towards the point of 

differentiation. 

This non-intuitive result arises from the decrease in the effective backordering cost 

for carrying insufficient inventory in the LCO echelon.  The lower upstream holding cost 

allows for greater inventory to be held at the installation just upstream of the LCO, 

insulating the LCO from stockouts in a manner that has previously been unobserved.  By 

failing to capture the role of the entire supply chain when determining the value of 

delayed differentiation, the DH misses these important cost savings.  In this instance, the 

holding cost profile serves as a qualitative indicator for the presence of potential savings 

via delayed differentiation, and the presence of ‘spikes’ in the holding cost from one 

stage to the next gives rise to the most favorable conditions for the use of delayed 

differentiation strategies.  

An example of Proposition 5.2 may be found in the products of Experimental 

Craftworks (http://www.experimentalcraftworks.com), a handmade jewelry boutique.  

Experimental Craftworks designs and produces faceted gemstone and woven seed glass 

http://www.experimentalcraftworks.com/
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chandelier earrings.  The gemstone products are simple in design and require little labor 

(approximately one half-hour) in assembly, but have relatively expensive raw materials, 

costing on average $35 per pair.  The woven seed glass earrings, however, have 

inexpensive raw materials, costing only $5 per pair, but require substantial assembly time 

and expertise.  Thus, although the raw materials costs differ, at the earring drop 

(completed subassembly) state, their values are approximately equal.  Both products are 

also candidates for delayed differentiation strategies, as customers are sensitive to the 

type of earring backing, such as French hook, lever back, clip-on, or post.  These 

backings are finalized in a separate production stage.  Proposition 5.2 states the woven 

seed crystal earrings are more suitable for delayed differentiation.  In essence, the lower 

raw material value of the seed crystals allows larger quantities to be held in raw 

inventory, reducing the effective backordering rate of stockouts. 



 

 52

 

5.7 Numerical Example Demonstrating How the DH  

May Lead To More Costly Supply Chain Configurations 

To see the possible implications of the error induced by the DH, consider the case of 

a manufacturer who produces a product in three separate steps.  Initially the product 

utilizes a generic component that is differentiated upon completion of the first stage.  For 

ease of exposition, suppose the processing, shipping, and holding costs of the 

intermediate stage product are identical to that of a possible generic component at the 

second stage (i.e. the case of delayed differentiation).  In other words, let H2 = H2,1 = H2,2, 

T2=T2,1=T2,2 and P2 = P2,1 = P2,2. 

Suppose the manufacturer faces the following inventory and backorder costs: H3 = 1, 

H2 = 3, H1,1 = H1,2 = 4, and b1 = b2 = 5, corresponding to the parameters presented in the 

9th row of example problems in Table 5.1.  Suppose further that the firm faces an average 

demand of μ1 = μ2 = 10 units per period for each product, and the per-period annuitized 

cost of redesigning the process to allow for use of the generic component at the second 

stage is S2 = 5.  This is a set of parameters where we expect the DH to overestimate the 

value of delaying differentiation.  From Table 5.2, we see that under the NH, the firm is 

only willing to pay up to 2.94 cost units per period to enable delayed differentiation, and 

will thus opt to not implement the strategy.  However, under the DH, the firm will pay up 

to 5.23 cost units, and will delay the differentiation of the products.  In this case, solving 

the problem using the DH compares an expected cost of 

Z(3)Decoupling  = 123.82+20*[P3+T3]+10*[T2,1+T2,2+T1,1+T1,2]+10* [P2,1+P2,2+P1,1+P1,2] 

to 

Z(2)Decoupling = 118.59+5+20*[P3+T3+P2+T2]+10*[T1,1+T1,2] + 10* [P1,1+P1,2] . 

By assumption, the processing and transportation costs are equivalent in the two cases 

and thus are ignored, leaving Z(3)Decoupling = 123.82 and Z(2)Decoupling = 123.59. Because 

Z(2)Decoupling < Z(3)Decoupling, the firm delays differentiation, believing the savings in 

inventory costs exceed the cost of redesigning the product for delayed differentiation.  By 

a similar analysis, if the firm utilizes the NH, it opts to not delay differentiation because 

Z(3)Bounds < Z(2)Bounds.  
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To see the importance of this difference, consider the difference between the total 

supply chain costs of the two strategies; that is, Z(3)Bounds - Z(2)Decoupling.  Again, the 

processing and transportation costs are equal and thus cancel.  Therefore the difference in 

expected costs between the two options is 8.86 per period.  This represents 7.7% of the 

total expected inventory related costs.   

 

5.8 Concluding Remarks 

When firms face increasing operational costs driven by product proliferation, they 

often turn to delayed differentiation as a potential cure.  To properly assess the benefits of 

delayed differentiation, firms need to balance the savings from inventory risk-pooling 

with the costs of process and design modifications.   In this chapter, we make three major 

contributions: I) we provide guidance for when the decoupling assumption used by Lee 

and Tang (1997) may mislead a firm attempting to determine the optimal point to 

differentiate its products, II) we verify the Newsvendor Heuristic is robust in three 

echelon topologies, and most importantly, III) we show the shape of the holding cost 

profile impacts the optimal point in the production process to delay differentiation. 

We show in most cases, the benefits of delaying differentiation are smaller than those 

predicted by Lee and Tang (1997) due to their decoupling assumption, especially when 

the echelon holding costs at the last common operation are relatively large.  This situation 

occurs when the majority of the value added processing occurs at the potential point of 

differentiation, because the inventory becomes relatively expensive at this point.  

Because the high value add stages also, sometimes incorrectly, appear to benefit the most 

from delaying differentiation, the decoupling assumption may lead to significant errors in 

supply chain design.   

The decoupling assumption also underestimates the risk pooling savings when the 

echelon holding costs at stages upstream from the differentiating stage are high relative to 

the holding costs at other echelons and the backordering costs are high.  This is due to a 

failure to exploit the holding cost structure in the intermediate installations, resulting in 

lower inventory levels, and consequently, smaller cost savings from risk pooling.  This 

effect is exacerbated when inventories are large due to significant backordering costs.   



 

 54

Finally, we discover the non-intuitive and previously hidden insight that the shape of 

the holding cost profile significantly affects the optimal point in the process to delay 

differentiation.  We show that the presence of sharp rises in local holding cost is 

associated with increased cost savings due to the reduction in effective backordering 

costs at the downstream stages.  In other words, capturing holding cost spikes through the 

use of a common component is more valuable than previously believed, and may serve as 

an additional justification for using delayed differentiation strategies. 
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CHAPTER 6 

EVALUATION OF MULTIECHELON SUPPLY CHAINS  

WITH PERISHABLE PRODUCTS 

 

 

 

6.1 Introduction 

The control of perishable products is increasingly important in supply chain 

management.  In the past few decades, the need to properly manage such products has 

increased in many industries.  For instance, in the technology and fashion industries, 

continually decreasing product lifecycles have increased the need for agile manufacturing 

practices.  Shrinking margins place ever increasing stress on managing the $200 billion 

perishable product sales in the US grocery industry, which loses up to 15% of product due 

to spoilage.  Numerous instances of perishable products exist in practice, such as 

photographic films, pharmaceuticals, blood, biotechnology products, foodstuffs, 

radioactive materials, electronic wafer fabs, and many chemicals.  Fashion and technology 

goods may also be viewed as deteriorating or perishable products over sufficiently long 

time horizons.  Recognizing the economic and social importance of perishable products, 

researchers have conducted substantial work in perishable inventory theory.  However, 

with the exception of a handful of situationally specific papers, the multiechelon 

perishable inventory problem has yet to be addressed.   

For illustration, consider the following motivating example.  A firm consisting of a 

two-echelon serial supply chain (a distribution and retail stage) sells a perishable product 

from the retail stage.  The firm purchases a product from an upstream supplier for $20 per 

unit, and unsold product perishes 3 periods after arriving. The firm faces uncertain 

demand, distributed according to a negative binomial distribution with a mean of 10 units 

per period and a coefficient of variation of 0.632.   If demand exceeds the on hand 

inventory at the retail stage, then the firm incurs a backordering cost of $20 per unit.  

Holding costs at the two stages are $0.5 and $1 per period.  The firm seeks inventory 

stocking levels that minimize their expected long-term operating costs per period. 
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The current state of the literature fails to give guidance under this scenario.  One 

approach a firm may select is to treat the inventory as nonperishable.  Using the technique 

for determining optimal base-stock levels in a serial supply chain described in Federgruen 

and Zipkin (1984), the firm will stock 12 units at the warehouse and 23 units at the retailer.  

Alternately, the firm may choose to use Nahmias’ (1979) single location heuristic for each 

stage.  For the retail stage, this procedure is straightforward, while for the warehouse, we 

utilize effective backorder costs analogously to Shang and Song (2003).  Using this 

heuristic, the firm stocks 10 units at the warehouse but only 12 units at the retailer.  Either 

of these ad-hoc policies creates significant errors.  For this scenario, the base-stock levels 

that result in the minimal total costs are 4 units at the warehouse and 24 at the retailer.  

The increase in costs associated with these ad-hoc policies, for lifetimes of 2, 3, and 5 

periods, are presented in Figure 6.1. 
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Figure 6.1: Additional Costs From Using Existing Policies 

 

Motivated by the large cost penalties of the alternate policies, we provide managers with a 

simple and robust heuristic for solving problems such as the one described above.  
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Specifically, our heuristic solves for the base-stock levels for a two-level, serial or supply 

distribution system when the product is perishable with fixed lifetimes. 

To do so, we link the calculation of stocking policies for supply chains of 

nonperishable products with the perishable inventory theory.  We construct 

computationally simple and independent single-stage heuristic stocking policies for each 

supply chain installation, and test the performance of our heuristics via simulation.  Our 

approach yields costs that exceed the best found policy over a wide parameter set by 

2.18% for serial systems and 2.99% for distribution systems.  The simple structure of our 

heuristic allows us to develop insights into the proper management of perishable inventory 

in a two-level supply chain.  For instance, we show for serial supply chains, downstream 

installations behave as if they held nonperishable inventory, but in distribution systems, 

the allocation of inventory to retail installations must account for the additional 

opportunity costs of not allowing the expiring inventory to be re-allocated to the retailer 

who recently experienced the largest total demand.  Thus, the inventory management of 

perishable products for a serial system is quite different than for a distribution system.   

We argue the main driver of the differences in managing serial versus distribution 

systems is, in the latter case, a significant opportunity cost is assessed for inventory 

expiring at one retailer rather than being used to satisfy demand at a second retailer.  For 

expensive products with short lifetimes, this opportunity cost is sufficiently large to 

prevent exploitation of the common risk-pooling effect at the warehouse stage.  Thus, 

extending the product’s lifetime is most valuable when there are fewer downstream 

customers.    

The remainder of the chapter is organized as follows.  We begin by discussing our 

model in §6.2.  We develop our inventory control policies in §6.3.  Due to the intractable 

nature of the problem, we test these policies via simulation.  These procedures are 

presented in §6.4 and their results in §6.5.  We provide a summary of our findings in §6.6. 

 

6.2 Perishable Inventory Model 

As in Chapter 4, we consider a two-echelon supply chain with n retail sites, labeled 

with index 1,2,...,nα = ,and a single warehouse denoted by W.  Inventory is fresh when it 

arrives to the warehouse, but at the end of r periods after arrival, the inventory must be 
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disposed of at a cost of p per unit.  Before the age of the inventory exceeds r periods, it 

maintains a constant utility to the customer over its lifetime, i.e., the customer values a 

two-day old unit the same as a three-day old unit.  Let t
iD denote the stochastic demand 

over t periods at retailer i (we omit the superscript when t = 1), with respective probability 

and cumulative distribution functions t
if  and t

iF .  We assume the demand process for 

each retailer is stationary over time, with the demand processes being independent across 

retailers.  In each period, the following sequence of events occurs: previously shipped 

replenishments arrive at each level, demand occurs at each retailer, excess demand is 

fully backordered, inventory is aged (and disposed of if appropriate), replenishment 

orders are placed, costs are assessed, and replenishment orders are shipped.  The 

inventory positions are reviewed every period and a centralized decision maker places 

replenishment orders based on knowledge of the entire supply chain’s inventory 

positions.   

We assume linear per unit local inventory holding costs (Hi) and backordering costs 

(bi), and zero ordering costs throughout the system.  Therefore we utilize echelon base-

stock policies at each installation with reorder points si.  Before costs are assessed in each 

period, the following variables are measured:  

Bα  = number of backorders at installation α. 

O  = inventory disposed of in the current period over all installations. 

Jα  = on-hand inventory at installation α.  

Tα  = inventory in transit to installation α.  

Iα   = echelon inventory at installation α, I Jα α= for α = 1, …, n. 

WI  = ( )
1

n

W j
j

J T Iα
=

+ +∑  

IPα   = echelon inventory-transit position at installation α, = I B Tα α α− +  

IOα  = inventory orders outstanding for installation α, = sα - IPα 

The objective is to minimize the expected steady state single-period total costs, 

( )
1

min E
n

W W
j

h I b B h I pOα α α α
=

⎡ ⎤
+ + +⎢ ⎥

⎣ ⎦
∑        (6.1) 
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 Replenishments for each level in the supply chain arrive Lα periods after being 

shipped.  Product is shipped from the warehouse in a first in, first out (FIFO) order, 

minimizing the outstanding orders (IOα) in successive allotments of increasing remaining 

life.  By minimizing the outstanding orders, the allocation policy allocates scarce 

inventory to installations on the basis of their relative need.  In other words, the FIFO 

policy ships inventory that is more likely to expire to retailers who are more likely to use 

the inventory to satisfy demand before that unit’s lifetime is exceeded.  We do not claim 

that this allocation policy is optimal, although we note such an allocation minimizes 

expected backorders and stockouts (Prastacos, 1981).  The policy’s nonperishable analog 

has also been used previously by McGavin, Schwarz, and Ward (1993) for identical 

retailers and above in Chapter 4 for non-identical retailers. 

 

6.3 Echelon Base-Stock Heuristic for Perishable Distribution Networks 

In this section, we present a heuristic for determining echelon base-stock levels for a 

two-echelon distribution network. Based on the approach introduced in Chapter 3 for 

nonperishable inventory systems, we begin by constructing two serial supply chain 

systems whose mean costs bound the mean cost of the distribution system from above 

and below.  We then use a “power approximation” regression model to identify robust 

echelon base-stock levels for these serial chains.  Unfortunately, using serial chain 

stocking policies as approximations for the stocking levels in a distribution networks are 

not as accurate as we desire.  Thus, we introduce a second adjustment for determining the 

retailer base-stock levels.  From the power regressions and the retailer stocking level 

adjustment, our heuristic provides near-optimal echelon base-stock levels for the 

distribution system.  We present the details of these steps in §6.3.1 through §6.3.4. 

6.3.1 Constructed Serial Systems 

As in Chapter 3, we construct two serial systems that provide cost and stocking level 

bounds for our distribution system.  Here we present a brief review of our procedure, 

directing the reader to Chapter 3 for a more thorough discussion.  We use these bounds in 

a heuristic to find the stocking levels at each stage and location in our distribution system.     

To determine the upper bound, we remove risk pooling opportunities from the 

warehouse by requiring the decision maker to devote inventory to retailers as it is ordered 
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from the supplier.  This approach is due to Graves (1996), who notes because it may be 

desirable to un-commit stock, this assignment rule will not perform as well as a dynamic 

allocation policy.  The restriction decomposes the distribution network into a set of n 

independent serial systems, one system for each retailer, as depicted on the right of Figure 

3.2.  We introduce the labels Wα to denote a warehouse installation that exclusively serves 

retailer i.  We refer to these serial chains as “decomposed”. 

The construction of a lower bound on the mean system costs is based on an approach 

used by Federgruen and Zipkin (1984), who assume instantaneous and costless 

transshipment opportunities within an echelon.  Under this assumption, the distinctions 

between installations within an echelon are artificial and the retailers may be treated 

collectively as a single virtual installation that fills all system demands, as shown on the 

left of Figure 3.2.  We refer to this system as “collapsed”.  We use a combination of the 

stocking levels of these two serial systems as an approximation for the stocking levels of 

the distribution system.   

It still remains, however, to determine stocking levels for the serial supply chain 

relaxations when inventory is perishable.  In our pilot numerical studies, we found a 

systematic bias induced by traditional serial chain stocking policies developed for 

nonperishable products as an approximation for the stocking levels of a serial chain 

carrying perishable products.  To adjust for this bias, we use a modification of the power 

approximation method developed by Ehrhardt (1979).  Our method is described below.   

6.3.2 Power Approximation for Perishable Inventory in Serial Systems 

We formulate a regression model to approximate the echelon base-stock levels for the 

serial chains.  We initially create two regressors to utilize in our model.  First, we treat the 

supply chain as a single installation that receives fresh inventory from its upstream 

supplier.  Nahmias (1976) shows that a good heuristic for stocking levels in this problem is 

the solution to the nonlinear equation 

 

( ) ( )r r+1( ) 0s pF s pF s
s

α
α α

∂
+ − =

∂
G      (6.2) 

where ( ) ( ) ( ) ( ) ( )
0 1

s

x x s
G s h s x f x b x s f xα α α α

∞

= = +

= − + −∑ ∑ .  (6.3) 
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For nonperishable products, keeping no safety stock at the upstream stage of a two-

echelon system is frequently a good and simple heuristic (Graves, 1996).  This 

observation suggests that the inventory arriving to the downstream stage of a two-echelon 

network has a remaining lifetime of approximately r Lα− .  Hence we calculate Nahmias’ 

heuristic twice, first for the warehouse base-stock level ( )N
Ws α

 and then for the retailer 

base-stock level ( )Nsα  with the reduced remaining lifetime.    

Next we treat the inventory in the serial chains as nonperishable.  In this case, optimal 

solutions are given by Clark and Scarf (1960) for a finite horizon and Federgruen and 

Zipkin (1984) for an infinite horizon.  Approximately optimal solutions may be calculated 

via the simple newsvendor heuristics of Shang and Song (2003).  These heuristics have the 

attractive property that they can be expressed in closed-form.  Thus, we use the Shang and 

Song approximation for our second regressor by setting 

1 WS

W

b h
s F

b h h
α

α

α
α α

α α

−
⎛ ⎞+

= ⎜ ⎟⎜ ⎟+ +⎝ ⎠
      (6.4) 

1 11
2

S
W W W

W W

b bs F F
b h h b hα α α

α α

α α

α α α

− −
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠⎝ ⎠

   (6.5) 

for the retail and warehouse installations, respectively. 

An initial pilot study also suggested that the demand variance ( 2σ ), product lifetime 

(r), backordering cost (b), outdating cost (o), and coefficient of variation (σ μ ) may also 

be significant.  These regressors were entered into the two regression models below  

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 3 4 5 6 7 8

1 1 1 1 1 1 11 2
1

V V V V V V VR N Ss V s s r b pα α α α α ασ σ μ=   (6.6) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 3 4 5 6 7 82 2 2 2 2 2 21 2

2

V V V V V V VR N S
W W Ws V s s r b p

α α α α α α ασ σ μ=   (6.7) 

where x
iV are variables to be fitted.  We make the above expressions linear by taking the 

logarithms of (6.6) and (6.7), and use least-squares regression to fit the models over a grid 

of 144 values for Rsα  and 
R
Ws α

.  These values were determined by the simulation model 

described in Section 5, and were taken over the following parameter values: demand 

following the Poisson and negative binomial distributions with mean μα ∈{10, 20} and 
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variance { }2 , 2 , 4α α α ασ μ μ μ∈ , r ∈  {2,3}, bα ∈  {5, 10, 20}, and p ∈  {0.5, 5, 10, 20}.  The 

Poisson and negative binomial distributions were selected because of their versatility in 

representing a spectrum of low to high coefficients of variation.  Our cost parameters are 

similar to those used in Nahmias (1976), and Nandakumar and Morton (1993) for 

perishable systems, and Cachon (2001), Axsater et. al (2002), Shang and Song (2003) and 

Lystad and Ferguson (2006) for nonperishable systems.  The models (6.6) and (6.7) were 

refined by discarding insignificant factors ( p -values less than 0.01) and were refitted, 

yielding the approximations 

( ) ( ) ( )
.8306 .0551 .015321.402R Ss s bα α α ασ=       (6.8) 

( ) ( ) ( ) ( ) ( )
1.0399 .2702 .0964 .0399 .093521.707R N S

W W Ws s s b r
α α α α ασ

− −=    (6.9) 

The proportions of explained variation for these regressions are 0.988 and 0.997, 

respectively (although we note that because the regressors are not independent, these 

values solely represent the fit of the resulting equation).  These models were tested against 

a second grid of 162 values for Rsα  and R
Ws α

, over the parameter values: demand following 

the Poisson and negative binomial distributions with mean μα ∈{5, 15, 30} and 

variance { }2 , 2 ,3α α α ασ μ μ μ∈ , r ∈  {2,3}, bα ∈  {2, 8, 32}, and p ∈  {2, 8, 32}.  The average 

error in the resulting serial system costs is 3.43% (full data are presented in Tables A6.1 

and A6.2 in Appendix 1). 

Investigation of Equation (6.8) gives rise to an insight:  

Observation 6.1: The retailer base-stock levels of a serial chain may be calculated 

independently of any consideration of perishability.   

Our intuitive explanation is as follows.  When the central decision maker sets the 

stocking level at the warehouse, s/he in effect determines the total system stock and thus 

the likelihood that the demand over the lifetime of the product is less than the quantity 

introduced to the system.  Thus the full responsibility of outdating is realized at the 

warehouse.   With the total system stock decision made, the retailer, unable to affect the 

outdating process, operates as if it held nonperishable inventory. 
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6.3.3 Retailer Base-Stock Approximations for a Distribution System 

Observation 6.1 does not apply to distribution systems.  In the absence of a rebalancing 

relaxation (where inventory is collected from the retailers and redistributed each period), 

carrying an additional unit of inventory at one retailer may cause that unit to expire rather 

than being used to satisfy demand at an alternate retailer.  This opportunity cost is not 

present in serial systems.  Thus we consider an adjustment to our serial system policy for 

setting the retailer base-stock levels in a distribution system.  To develop this adjustment, 

we relax our problem by making the following simplifying assumptions: 

1) All inventory units at the retailer are as fresh as is possible (e.g. with 1r −  

periods of life remaining).   

2) The warehouse carries sufficient stock to ensure that all orders are filled in the 

following period. 

These assumptions allow an approximation for the cost of allocating a unit of 

inventory to a retail stage.  This cost is comprised of three elements: additional expected 

holding costs, a reduction in potential backordering costs, and an increase in expected 

outdating costs.  The first element is simply the probability that demand in one period is 

less than the amount of inventory held at the retailer times the echelon holding cost at that 

retailer, ( )h F sα α α .  By moving a unit of inventory from the warehouse to the retailer, 

savings in expected backorder costs are achieved.  To capture this, our second element is 

equal to the probability a stockout occurs times the backorder cost rate, ( )( )1b F sα α α− .  

The previous two terms are analogous to the costs in the traditional Newsvendor problem.  

To capture the impact of perishable products, we add the increase in the cost associated 

with perishability.  The probability that the unit expires at the retailer is ( )ir LF sα α
− .  

However, the unit perishes regardless of whether it was at the retailer or at the warehouse 

if the total cumulative demand at each other location is less than the inventory held at that 

location.  In this case, we do not penalize the allocation decision.  Thus the final cost 

element in our adjustment is the outdate cost times the joint probability that a unit expires 

at the retailer and at least one other retailer has sufficient demand so that the unit could 

have avoided perishing.  This element is ( ) ( )1 r Lr LpF s F sβα
α α β β

β α

−−

≠

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∏  
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The combined cost of allocating a unit of inventory to a retail stage is 

( ) ( )( ) ( ) ( )1 1i r Lr Lh F s b F s pF s F sβ
α α α α α α α α β β

β α

−−

≠

⎛ ⎞
− − + −⎜ ⎟

⎝ ⎠
∏    (6.10) 

We select as our stocking level adjustment, the inventory quantity that minimizes this cost.  

( ) ( )( ) ( ) ( )arg min 1 1i r Lr LAs h F s b F s pF s F sβ
α α α α α α α α α β β

β α

−−

≠

⎛ ⎞⎛ ⎞
= − − + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∏  (6.11) 

6.3.4 Heuristic Policy 

Our heuristic calculates the echelon base-stock levels as simple averages of the 

preceding calculations.  For the warehouse, we follow the technique in Chapter 3 and 

average the warehouse echelon base-stock level under the collapsed serial chain ( )R
Ws  with 

the sum of the warehouse echelon base-stock levels over the decomposed serial chains 

( )R
Ws α

.  That is, 

 
1

1
2

n
H R R
W W Ws s s

α
α =

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ .        (6.12) 

For the retail stages, we take a weighted sum of the retailer base stock level under the 

decomposed serial chains (
i

R
Ws ) and the stocking level found by our approximation ( A

is ).  

The weights were calculated by regression, fitting the model  
9 10H R As V s V sα α α= +         (6.13) 

with data from experiments taken over the following parameter values: demand following 

the Poisson and negative binomial distributions with mean μ ∈{10, 20} and 

variance { }2 , 2 , 4σ μ μ μ∈ , r ∈  {2,3}, b ∈  {5, 10, 20}, and p ∈  {0.5, 5, 10, 20}.  The 

resulting model,  

0.281 0.782H R As s sα α α= +        (6.14) 

was tested against a second grid of values for H
is  over the parameter values: demand 

following the Poisson and negative binomial distributions with mean μ ∈{5, 15} and 

variance { }2 , 2 ,3σ μ μ μ∈ , r ∈  {2,3}, b ∈  {2, 8, 32}, and p ∈  {2, 8, 32}.  The average 

error in the resulting distribution system costs is 3.51% (the full results from this 

experiment is presented in Table A6.3 in Appendix 1). 
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Since the optimal solution to our problem is unknown, we test our heuristic against the 

best stocking policies found using simulation.  Our methodology is similar to the 

methodology used in Chapters 4 and 5, and is described in the next section. 

 

6.4  Simulation Methodology 

Our simulation methodology is based on an unequal variance, two-stage screening-

subset selection procedure presented in Nelson et al. (2001).  We first create a set of base-

stock level candidates covering a range of the expected minimizing base-stock levels (as 

predicted by our heuristic), ± at least 5 inventory units for each installation.  For the 

parameter settings in these examples, this range covers at least 50% of the cumulative 

distribution of the lead-time demand at each installation.   

For each stocking level, we initially make a long simulation run of our model over 

20,020 periods.  We use the method of batch means (Law and Kelton, 2000) by batching 

periods into groups of 20 to reduce deviations from normality and correlations between 

single period costs.  We omit the first batch (20 periods) to mitigate initialization effects.  

The remaining data points are used in the initial screening phase. 

Potential sets of stocking levels that survive the initial screening are subjected to a 

second round of simulation experiments, where we retain our batch sizes and generate a 

sufficient number of data points to eliminate all but one of the systems.  After this 

experiment, the set of stocking levels that has the lowest per period cost is selected.  This 

procedure ensures a confidence level of at least 1 γ−  that the selected system performs 

within a quantity δ of the best system’s cost.  Hence we refer to the selected system as a 

δ−best system.  We set γ = 5% and δ = 0.2% of the average per period system cost of the 

best system found in the first stage.   

 

6.5 Problem Design and Experimental Results 

6.5.1 Symmetric Two-Echelon Networks  

Our first experimental design considers two network topologies, with either two or 

four symmetric retailers.  We test the heuristics using a full factorial design over a range 

of backorder costs, outdate costs, lifetimes, and demand variances. We assume the total 

system demand is distributed according to either a Poisson or negative binomial 
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distribution with a mean of 20 units per period across topologies, and that the demand 

process at each retailer is i.i.d.  Our remaining parameters are { }5,10, 20ib ∈ , 

{ }5,10, 20p ∈ , { }2,3r ∈ , and for negative binomial demand, { }2 2 , 4iσ μ μ∈ . The 

demand, backorder, and holding cost parameter values are similar to those used in 

nonperishable works by Jackson (1988), Cachon (2001), Axsater et al. (2002), Shang and 

Song (2003), and Lystad and Ferguson (2006).  The demand, holding cost, outdate cost, 

and backorder cost parameter values are similar to those used by Nahmias (1976) and 

Nandakumar and Morton (1993) for single-stage perishable systems.  In the latter works, 

the authors note that a perishable system quickly resembles a nonperishable system as 

lifetimes exceed two periods.  We also observe this convergence at noted in the following 

observation. 

Observation 6.2: In both the serial supply chain and distribution network cases, 

increasing lifetimes cause a system to quickly converge to its nonperishable analog. 

 This trend is apparent when comparing the inventory stocking levels in Tables A6.1 

and A6.2 in Appendix 1.  In Table A6.1, the best found stocking levels decrease quickly 

with outdate cost (while keeping other parameters constant).  In the analogous results in 

Table A6.2, the stocking levels decrease at a significantly slower rate, suggesting the 

costs imposed by expired inventory are somewhat small.  To illustrate the effects of 

increasing product lifetimes on total system costs, we plot the average total cost per 

period as lifetimes increase for systems with b = 20, p = 20, hW = hα = 0.5 and r ∈  {2, 3, 

5}.  Serial systems with μ = 10, { }2 10, 20, 40σ ∈ are presented in Figure 6.2.  Two-

retailer distribution systems with iμ  = 10, { }2 10, 20, 40iσ ∈  are presented in Figure 6.3. 
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Effects of Perishability on Periodic Cost 
in Serial Systems
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Figure 6.2: Effects of Perishability for Serial Systems 

 

Effects of Perishability on Periodic Cost 
in Two-Retailer Systems
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Figure 6.3: Effects of Perishability for Two-retailer Systems 

 

The decrease in costs associated with increasing lifetimes occurs due to a decreasing 

frequency of outdating.  The expected periodic cost converges to that of a nonperishable 

system as the lifetimes increase, but significant additional costs associated with 
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perishability exist when either lifetimes are short or demand variance is high.  Because 

the majority of perishable associated costs are eliminated by the third period of lifetime, 

we set our lifetimes to either 2 or 3 periods.  These assignments are equivalent to the ones 

in Nahmias (1976) and Nandakumar and Morton (1993), adjusted to account for the 

lifetime lost in transit to the retail stages.  The results of these tests are summarized in 

Table 6.1 and Table 6.2, for the two and four retailer systems, respectively, with the 

entire set of results displayed in Tables A6.4 and A6.5 in Appendix 1. 

 

Table 6.1: Two-retailer Summary 

% Error for Two-Retailer Systems 
 Lifetime 

p 2 3 
0.5 0.94 1.09 
5 0.54 0.92 
10 0.93 1.59 
20 1.94 1.07 

 

Table 6.2: Four-retailer Summary 

% Error for Four-Retailer Systems 
 Lifetime 

p 2 3 
0.5 5.34 9.02 
5 3.66 4.11 
10 4.42 3.44 
20 3.28 1.16 

 

The results above lead to the following observation: 

Observation 6.3: The heuristic performs well, with small error rates.  These errors are 

increasing as the number of retailers increases.  The most significant errors correspond 

to low outdating costs.   

While the heuristic’s error can exceed an average of 5%, it does so only for low 

outdating costs.  Since the local holding cost rate at the retailers in these tests is set to one 

unit while the outdating cost is only 0.5 units, the firm prefers to dispose of expiring 

inventory rather than carry it an additional period.  In practice, such scenarios are rare.  

Neglecting these cases, the heuristic’s error is approximately 2.26%.  The increase in the 

error when the number of retailers increases is partly due to discretization effects, where 
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rounding errors imposed to ensure integer valued base-stock levels become more 

problematic because of the smaller inventory quantities.  However, these errors are only 

slightly greater than those arising from leading heuristics for nonperishable distribution 

systems (see for comparison Chapters 4 and 5). 

Observation 6.4: All else held constant, increasing the outdate cost, backorder cost, or 

demand variance also increases the total system cost.  Further, decreasing the lifetime 

tends to increase costs, except when the outdating cost is less than the local holding cost. 

This observation is in line with intuition and previous work in both nonperishable 

multiechelon and perishable single location systems.  Increasing the variance of demand 

increases both the expected number of backorders and expected number of outdates.  

Increasing the costs of either of these increases mean system costs directly. 

Observation 6.5: As lifetimes increase, the mean system cost drops faster for two-

retailer systems than for four-retailer systems. 

Previous work in nonperishable multi-echelon systems suggests that increasing the 

number of retailers inhibits the exploitation of risk-pooling benefits, leading to increased 

costs.  This effect is apparent when lifetimes are long and our stocking levels approach 

those of a nonperishable system.  When lifetimes are short, however, less inventory is 

held at the retailers because of the opportunity cost effect.  The greater drop in system 

costs associated with the two-retailer systems results from the ability to exploit risk-

pooling opportunities at the retailers. 

Observation 6.6: As lifetimes decrease, the system-wide inventory savings associated 

with risk-pooling for systems with fewer, large-volume retailers decreases.  

The increase in opportunity cost effects begins to dominate the risk pooling 

advantages the two-retailer network enjoys compared to the four-retailer network.  The 

downstream risk-pooling savings can no longer be captured in light of the increased 

opportunity costs, thus the incentives for developing transshipment opportunities increase 

as lifetimes decrease.  However, it should be mentioned that in practice transshipment 

opportunities may consume valuable lead-time.  As noted above, unless lifetimes are very 

short, the system may be treated as if the inventory were nonperishable.  Thus, 

transshipments that route inventory back through a distribution point, such as the 

traditional rebalancing relaxation in nonperishable work (e.g., see Clark and Scarf, 1960; 
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Federgruen and Zipkin, 1984; and Axsater et al., 2002), are particularly inappropriate in a 

perishable context.  Rather, it is the ability to directly satisfy customer demand from 

multiple sources that becomes increasingly attractive rather than the ability to rebalance 

inventories. 

6.5.2 Asymmetric Backorder Rates 

In this section, we consider a warehouse that serves the perishable product to retailers 

with differing backorder rates.  We continue to utilize Poisson and negative binomial 

demands with αμ  = 10.  We set b1 = 5, { }2 10, 20b ∈ , { }0.5,5,10, 20p ∈ , { }2,3r ∈ , and 

for negative binomial demand distributions, { }2 2 , 4ασ μ μ∈ .  These assignments generate 

a total of 48 cases.  The results of the tests are summarized in Tables 6.3 and 6.4 for 

problems with lifetimes of 2 or 3, respectively.  The complete set of results is given in 

Tables A6.6 and A6.7 in Appendix 1. 

 

Table 6.3: Asymmetric Backorder Cost Summary for Two-period Lifetimes 

% Errors for Two Period Lifetimes 

  2b  
2σ  10 20 

10 0.77 1.15 
20 0.95 0.64 
40 1.31 2.35 

 

Table 6.4: Asymmetric Backorder Cost Summary for Three-period Lifetimes 

% Errors for Three Period Lifetimes

  2b  
2σ  10 20 

10 1.34 0.56 
20 0.35 0.73 
40 1.14 1.04 
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Observation 6.7: The heuristic is robust to asymmetry in backordering costs.     

total system costs.  

The errors of the heuristic under asymmetric backorder cost profiles are similar to 

those of under symmetric backorder cost profiles.  Thus the heuristic is robust to 

asymmetry in backordering costs of even up to 400%, atypical for a vast majority of 

practical examples.  

Observation 8: Although system-wide echelon inventories for asymmetric backorder 

cases are approximately the same as for symmetric backorder cases, greater inventory is 

held at the warehouse in the asymmetric cases.  Also, backorder asymmetry decreases 

total system costs.  

Chapter 4 shows that for the management of nonperishable products, backorder cost 

asymmetry decreases echelon stocking levels and inventory costs.  Here we find similar 

results for perishable products.  The system controller may exploit virtual pooling effects 

as inventories increase at the retailer with high backorder cost.  However, these virtual 

pooling savings are inhibited by the danger of inventory expiring at the high backorder 

retailer; hence the decision maker holds a portion of inventory at the warehouse rather 

than allocating it to the retail stages.  This limits the cost savings that may be achieved 

through the risk-pooling effects.  

6.5.3 Asymmetric Demand Rates 

We next consider a warehouse that serves the perishable product to retailers with 

varying mean demand rates.  As before, we assume Poisson or negative binomial 

demands, with means 1μ  = 5 and 2μ  = 15.  The remaining parameters are 

{ }5,10, 20bα ∈ , { }0.5,5,10, 20p ∈ , { }2,3r ∈ , and for negative binomial demands, 

2 2ασ μ= , for a total of 48 problems.  The results of these tests are summarized in Tables 

6.5 and 6.6 for problems with lifetimes of 2 or 3, respectively.  The complete set of 

results is contained in Tables A6.8 and A6.9 in Appendix 1. 
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Table 6.5: Asymmetric Demand Summary for Two-period Lifetimes 

% Error for Two-period Lifetimes 
  b 

2σ  5 10 20 
15 0.76 0.96 1.61 
30 1.00 0.56 0.18 

 

Table 6.6: Asymmetric Demand Summary for Three-period Lifetimes 

% Error for Three-period Lifetimes 
  b 

2σ  5 10 20 
15 2.31 2.61 4.53 
30 3.31 1.79 1.94 

 

Observation 9: The heuristic is robust to asymmetry in demand.   

The errors in the heuristic under asymmetry in demand are approximately the same as 

under symmetric demand, and continue to be on par with those found for heuristics for 

nonperishable inventory control.     

Observation 10: There are no significant differences in total system costs between the 

symmetric and asymmetric demand cases.  Slightly greater inventory is held in the 

asymmetric demand problems. 

Above we show that in nonperishable cases, demand rate asymmetry decreases 

echelon stocking levels and inventory costs.  In this case, we find a slight increase in the 

warehouse echelon base-stock level with demand asymmetry.  The presence of the 

opportunity cost effect prevents the exploitation of virtual risk-pooling as one retailer 

captures most of the system demand.   
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6.6 Importance of Perishable Inventory Policies 

 In the previous sections, we have presented heuristics to set inventory base-stock 

levels in supply chains when inventory is perishable.  We have also argued that beyond 

very short lifetimes, the systems behave essentially as if they held nonperishable 

products.  A natural question is to ask when a firm needs to consider the perishable aspect 

of its inventory and utilize the more complex inventory control policies.   

 To see the importance of inventory control policies that account for perishability, we 

compare our heuristic to the nonperishable newsvendor heuristics of Shang and Song 

(2003) and Lystad and Ferguson (2006).  We consider scenarios with b = 20, p = 20, hW = 

hα = 0.5, and r ∈  {2, 3, 5}.  The results for serial systems with μ = 10 and σ2 ∈  {10, 20, 

40} are presented in Figure 6.4.  The results for two-retailer distribution systems with 

μα = 10 and 2
ασ ∈  {10, 20, 40} are presented in Figure 6.5.  
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Figure 6.4: Nonperishable Heuristics in Perishable Serial Systems 
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Cost Increase for Nonperishable Policies
in Two-Retailer Distribution Systems 
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Figure 6.5: Nonperishable Heuristics in Perishable Two-Retailer Distribution Systems 

 

Figures 6.4 and 6.5 reinforce our claim that supply chains resemble nonperishable 

systems as the likelihood of outdating decreases.  They additionally show that when 

outdating is nonnegligible, the use of nonperishable inventory control policies yields 

significantly higher costs.  Failure to account for the perishable aspect of inventory thus 

may lead managers to make costly mistakes.  We found that the use of nonperishable 

policies increases costs by about 23% for the shortest lifetimes and lowest demand 

variances; this impact decreases with lifetime but increases with demand variance. 

 

6.7  Concluding Remarks 

Managers faced with perishable inventory may make costly mistakes when relying on 

nonperishable policies and intuition.  In this paper, we presented a simple heuristic for 

two-echelon supply chains with fixed-life perishable inventory.  We considered both 

serial chains and distribution networks with n non-identical retailers, and showed that the 

qualitative behaviors of the two types of topologies are distinct.  Our heuristic treats 

installations within the supply chain independently, allowing for simple solutions that 

may be applied using spreadsheet applications. 
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Relative to the best found (via simulation) base-stock levels, our heuristic yielded a 

2.18% and 2.99% average errors for the mean total cost per period in serial and 

distribution systems, respectively.  Under serial systems, the retail stage of a two-echelon 

network behaves as if it holds nonperishable inventory because the warehouse determines 

the expected number of outdates per period by setting the echelon base-stock levels.   For 

the parameter settings under consideration, the heuristic echelon base-stock levels were 

close to their nonperishable inventory analogs.  As the lifetime increases, the likelihood 

of outdating drops quickly, since the probability of stock exceeding demand over the 

lifetime of the inventory unit becomes quite small. 

For distribution systems, however, the allocation of inventory within the network may 

increase the probability of outdating; a unit of inventory held in stock at one retailer may 

expire while a “younger” unit is used to satisfy demand at another retailer.  We referred 

to this as an opportunity cost of carrying inventory at the retail stages, and found this 

opportunity cost has important implications for the control of distribution networks; in 

particular, it inhibited the exploitation of risk-pooling benefits.  As inventory lifetime 

increases, the opportunity cost effect diminishes, creating greater savings for systems 

with fewer retailers.  Compared to the nonperishable inventory case, increasing the 

number of retailers while keeping the total system demand constant has a smaller effect 

on the stocking levels and the total amount of inventory in the system.  This suggests 

investments made to extend lifetimes are more valuable when significant risk-pooling 

opportunities exist but cannot be exploited due to the perishable nature of the products.  

Alternately, strategies allowing customer demands to be filled from multiple retail sites 

remove the opportunity cost effect entirely, in addition to enabling the traditional cost 

savings. 
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APPENDIX 1 

NUMERIC EXPERIMENTAL DATA AND RESULTS 

 

 

Table A4.1: Two-Echelon Two-Retailer Problem Parameter Settings 
Problem hW h1 h2 b1 b2 LW L1 

1 1 1 1 5 5 1 1 
2 1 1 1 10 10 1 1 
3 1 1 1 20 20 1 1 
4 1 2 2 5 5 1 1 
5 1 2 2 10 10 1 1 
6 1 2 2 20 20 1 1 
7 2 1 1 5 5 1 1 
8 2 1 1 10 10 1 1 
9 2 1 1 20 20 1 1 

10 1 1 1 5 5 1 2 
11 1 1 1 10 10 1 2 
12 1 1 1 20 20 1 2 
13 1 2 2 5 5 1 2 
14 1 2 2 10 10 1 2 
15 1 2 2 20 20 1 2 
16 2 1 1 5 5 1 2 
17 2 1 1 10 10 1 2 
18 2 1 1 20 20 1 2 
19 1 1 1 5 5 2 1 
20 1 1 1 10 10 2 1 
21 1 1 1 20 20 2 1 
22 1 2 2 5 5 2 1 
23 1 2 2 10 10 2 1 
24 1 2 2 20 20 2 1 
25 2 1 1 5 5 2 1 
26 2 1 1 10 10 2 1 
27 2 1 1 20 20 2 1 
28 1 1 1 5 10 1 1 
29 1 1 1 5 20 1 1 
30 1 1 1 10 20 1 1 
31 1 1 2 5 5 1 1 
32 1 1 2 10 10 1 1 
33 1 1 2 20 20 1 1 
34 1 1 2 5 10 1 1 
35 1 1 2 5 20 1 1 
36 1 1 2 10 20 1 1 
37 1 2 1 5 10 1 1 
38 1 2 1 5 20 1 1 
39 1 2 1 10 20 1 1 
40 2 1 1 5 10 1 1 
41 2 1 1 5 20 1 1 
42 2 1 1 10 20 1 1 
43 2 1 2 5 5 1 1 
44 2 1 2 10 10 1 1 
45 2 1 2 20 20 1 1 
46 2 1 2 5 10 1 1 
47 2 1 2 5 20 1 1 
48 2 1 2 10 20 1 1 
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Table A4.2: Two-Echelon, Four-Retailer Network Problem Parameter Settings 
 

Problem h2 h1,1 h1,2 h1,3 h1,4 b1 b2 b3 b4 L2 L1 
49 1 1 1 1 1 5 5 5 5 1 1 
50 1 1 1 1 1 10 10 10 10 1 1 
51 1 1 1 1 1 20 20 20 20 1 1 
52 1 2 2 2 2 5 5 5 5 1 1 
53 1 2 2 2 2 10 10 10 10 1 1 
54 1 2 2 2 2 20 20 20 20 1 1 
55 2 1 1 1 1 5 5 5 5 1 1 
56 2 1 1 1 1 10 10 10 10 1 1 
57 2 1 1 1 1 20 20 20 20 1 1 
58 1 1 1 1 1 5 5 5 5 1 2 
59 1 1 1 1 1 10 10 10 10 1 2 
60 1 1 1 1 1 20 20 20 20 1 2 
61 1 2 2 2 2 5 5 5 5 1 2 
62 1 2 2 2 2 10 10 10 10 1 2 
63 1 2 2 2 2 20 20 20 20 1 2 
64 2 1 1 1 1 5 5 5 5 1 2 
65 2 1 1 1 1 10 10 10 10 1 2 
66 2 1 1 1 1 20 20 20 20 1 2 
67 1 1 1 1 1 5 5 5 5 2 1 
68 1 1 1 1 1 10 10 10 10 2 1 
69 1 1 1 1 1 20 20 20 20 2 1 
70 1 2 2 2 2 5 5 5 5 2 1 
71 1 2 2 2 2 10 10 10 10 2 1 
72 1 2 2 2 2 20 20 20 20 2 1 
73 2 1 1 1 1 5 5 5 5 2 1 
74 2 1 1 1 1 10 10 10 10 2 1 
75 2 1 1 1 1 20 20 20 20 2 1 
76 1 1 1 1 1 5 5 10 10 1 1 
77 1 1 1 1 1 5 5 20 20 1 1 
78 1 1 1 1 1 10 10 20 20 1 1 
79 1 1 2 1 2 5 5 5 5 1 1 
80 1 1 2 1 2 10 10 10 10 1 1 
81 1 1 2 1 2 20 20 20 20 1 1 
82 1 1 2 1 2 5 5 10 10 1 1 
83 1 1 2 1 2 5 5 20 20 1 1 
84 1 1 2 1 2 10 10 20 20 1 1 
85 2 1 1 1 1 5 5 10 10 1 1 
86 2 1 1 1 1 5 5 20 20 1 1 
87 2 1 1 1 1 10 10 20 20 1 1 
88 2 1 2 1 2 5 5 5 5 1 1 
89 2 1 2 1 2 10 10 10 10 1 1 
90 2 1 2 1 2 20 20 20 20 1 1 
91 2 1 2 1 2 5 5 10 10 1 1 
92 2 1 2 1 2 5 5 20 20 1 1 
93 2 1 2 1 2 10 10 20 20 1 1 
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Table A4.3: Random Allocation Policy Results 

 
Problem Exact Results Bounds Heuristic Results 

  s2 s1 Cost s2 s1 Cost % Error 
1 41 22 48.15 39 23 48.40 0.53 
2 43 24 55.29 39 25 56.44 2.08 
3 44 26 62.28 40 26 64.57 3.68 
4 42 21 54.22 41 22 54.76 0.99 
5 43 23 64.32 42 23 64.47 0.23 
6 44 25 74.58 43 24 75.52 1.26 
7 38 22 77.35 35 24 79.12 2.29 
8 41 23 88.56 36 25 90.67 2.38 
9 42 25 99.71 38 26 102.27 2.56 
10 40 33 72.42 37 35 73.34 1.27 
11 42 35 80.75 38 36 81.90 1.42 
12 43 37 88.89 38 38 91.70 3.16 
13 41 31 79.95 40 33 80.87 1.15 
14 42 34 91.80 40 35 92.72 1.01 
15 44 36 103.67 41 36 104.78 1.07 
16 38 32 122.56 34 35 124.40 1.50 
17 40 34 135.45 34 37 137.96 1.85 
18 42 36 148.42 35 38 152.71 2.89 
19 62 22 49.91 61 23 49.91 0.01 
20 64 24 57.38 60 25 58.33 1.65 
21 66 26 64.69 62 26 66.15 2.25 
22 62 21 56.03 62 22 56.48 0.80 
23 64 23 66.50 64 23 66.50 0.00 
24 66 25 77.04 65 24 77.84 1.04 
25 58 22 79.85 56 24 81.08 1.54 
26 60 24 91.86 58 25 92.62 0.82 
27 63 25 103.76 59 26 105.61 1.79 
49 41 11 57.35 39 12 58.08 1.27 
50 43 12 67.60 39 13 68.46 1.27 
51 44 14 77.35 39 14 80.19 3.67 
52 42 10 65.74 42 11 66.90 1.76 
53 43 12 80.28 42 12 80.31 0.04 
54 45 13 94.32 43 13 94.68 0.38 
55 38 11 89.05 32 13 93.33 4.81 
56 40 12 104.10 36 13 106.35 2.16 
57 42 13 119.62 36 14 124.19 3.82 
58 39 17 83.73 37 18 84.94 1.44 
59 42 18 95.32 33 20 99.02 3.89 
60 43 20 106.86 34 21 112.41 5.20 
61 40 16 94.19 39 17 96.40 2.35 
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Table A4.3, Continued 
62 43 17 110.60 40 18 111.80 1.09 
63 44 19 127.73 41 19 128.53 0.63 
64 37 16 136.55 29 19 140.77 3.09 
65 40 17 154.55 30 20 158.54 2.58 
66 41 19 172.19 30 21 179.29 4.12 
67 62 11 58.94 61 12 59.52 0.99 
68 63 13 69.47 61 13 69.64 0.24 
69 65 14 79.40 62 14 80.25 1.07 
70 63 10 67.45 63 11 68.44 1.48 
71 64 12 82.15 64 12 82.15 0.00 
72 66 13 96.55 65 13 96.69 0.14 
73 57 11 91.15 53 13 94.71 3.90 
74 61 12 106.99 58 13 108.17 1.10 
75 63 13 123.20 58 14 125.13 1.56 
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Table A4.4: Myopic Allocation Policy Results for Two-Echelon, 
 Two-Retailer Symmetric Networks 

 

Problem δ-Best Bounds Cachon Heurisitc 99% Fill Rate Zero Safety 
  s2 s1 Cost s2 s1 %Error S2 s1 %Error s2 s1 %Error s2 s1 %Error
1 17 14 38.53 19 13 0.00 21 12 1.21 31 13 23.44 20 13 0.50 
2 20 14 43.47 19 15 0.54 23 14 2.49 31 15 23.12 20 15 1.32 
3 18 16 47.82 20 16 1.63 24 16 6.33 31 16 20.14 20 16 1.63 
4 19 12 42.88 21 12 0.96 22 11 1.48 31 12 20.23 20 12 0.31 
5 21 13 49.99 22 13 0.62 23 13 1.42 31 13 14.93 20 13 0.45 
6 22 14 57.40 23 14 0.28 24 15 3.35 31 14 10.95 20 14 1.69 
7 14 14 63.66 15 14 0.18 18 12 0.65 31 14 39.90 20 14 7.61 
8 16 15 71.22 16 15 0.12 21 13 1.73 31 15 33.03 20 15 4.66 
9 19 15 78.75 18 16 0.64 22 15 2.90 31 16 27.71 20 16 2.73 
10 14 26 64.11 17 25 0.29 20 23 0.79 31 25 18.09 20 25 2.49 
11 18 26 70.70 18 26 0.00 22 25 1.19 31 26 13.63 20 26 0.60 
12 18 28 76.18 18 28 1.27 23 27 2.79 31 28 14.15 20 28 1.83 
13 17 24 70.60 20 23 0.46 21 21 1.06 31 23 13.77 20 23 0.46 
14 17 26 80.13 20 25 0.24 22 24 0.30 31 25 11.97 20 25 0.24 
15 19 27 88.09 21 26 1.63 24 26 3.22 31 26 10.35 20 26 1.59 
16 11 26 110.56 14 25 0.22 18 22 0.93 31 25 24.27 20 25 5.62 
17 9 29 120.20 14 27 0.28 20 24 1.23 31 27 22.93 20 27 5.50 
18 15 28 130.40 15 28 0.00 22 26 1.82 31 28 18.22 20 28 2.71 
19 40 13 40.64 41 13 0.27 42 12 1.32 55 13 26.97 40 13 0.23 
20 40 15 46.05 40 15 0.00 44 14 1.09 55 15 24.97 40 15 0.34 
21 41 16 51.35 42 16 -0.08 46 16 3.63 55 16 19.73 40 16 0.84 
22 40 12 45.20 42 12 0.35 42 11 1.13 55 12 22.99 40 12 0.23 
23 43 13 52.72 44 13 0.38 44 13 0.38 55 13 16.65 40 13 2.09 
24 45 14 60.46 45 14 0.00 46 15 2.24 55 14 12.03 40 14 6.02 
25 35 14 66.91 36 14 0.32 38 12 0.99 55 14 45.13 40 14 5.07 
26 37 15 75.32 38 15 0.22 40 14 0.34 55 15 36.48 40 15 2.19
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Table A4.5: Myopic Allocation Policy Results for Two-Echelon, 
Four-Retailer Symmetric Networks 

 

Problem δ-Best Bounds Heuristic
Cachon 

Heuristic 
99% Fill Rate 

Heuristic 
Zero Safety Stock 

Heuristic 
  s2 s1 Cost s2 s1 %Error s2 s1 % Error s2 s1 %Error s2 s1 %Error

49 17 7 44.4 19 7 0.53 21 6 2.6 31 7 22 20 7 1.336 
50 18 8 51.3 19 8 0.21 23 7 3.06 31 8 18.7 20 8 0.814 
51 18 9 58.3 19 9 0.1 24 9 5.02 31 9 16.4 20 9 0.622 
52 19 6 50.5 22 6 1.55 22 5 4.79 31 6 16.6 20 6 0.241 
53 20 7 60.4 22 7 0.87 23 7 1.71 31 7 13.2 20 7 0 
54 20 8 70.7 23 8 1 25 8 2.93 31 8 10.8 20 8 0 
55 15 7 70.8 12 8 0.4 18 6 1.14 31 8 44 20 8 13.87 
56 15 8 81 16 8 0.16 20 7 1.45 31 8 28.8 20 8 4.331 
57 16 9 91.6 16 9 0 22 8 2.49 31 9 25.5 20 9 3.707 
58 15 13 72.7 17 13 0.26 19 12 0.59 31 13 15.7 20 13 2.136 
59 17 14 81.7 13 15 0.01 22 13 1.71 31 15 17.5 20 15 4.398 
60 14 16 90.8 14 16 0 23 15 2.14 31 16 14.3 20 16 2.836 
61 16 12 81.1 19 12 0.85 20 11 0.7 31 12 13.5 20 12 1.505 
62 18 13 94.4 20 13 0.3 23 12 1.78 31 13 10.1 20 13 0.297 
63 19 14 108 21 14 0.1 24 14 1.57 31 14 7.73 20 14 0 
64 0 16 121 9 14 0.08 17 11 1.29 31 14 28.7 20 14 10.96 
65 10 15 135 10 15 0 20 12 2.2 31 15 24.3 20 15 8.429 
66 3 18 149 10 16 0.05 21 14 1.32 31 16 20.5 20 16 6.224 
67 38 7 46.2 41 7 1.17 42 6 3.08 55 7 26 40 7 0.64 
68 39 8 53.5 41 8 0.42 43 8 2.05 55 8 21.5 40 8 0.107 
69 40 9 60.7 42 9 0.54 45 9 3.35 55 9 18.3 40 9 0 
70 40 6 52.5 43 6 1.15 43 5 5.07 55 6 19.6 40 6 0 
71 41 7 62.8 44 7 1 44 7 1 55 7 15.4 40 7 0.546 
72 42 8 73.3 45 8 0.9 46 8 1.68 55 8 12.3 40 8 1.428 
73 31 8 73.5 33 8 0.64 37 6 1.97 55 8 49.5 40 8 11.03 
74 36 8 84.5 38 8 0.6 41 7 1.7 55 8 33.1 40 8 2.483 
75 37 9 95.6 38 9 0.14 43 8 2.16 55 9 28.6 40 9 1.783 
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Table A4.6: Myopic Allocation Policy Results for Two-Echelon, Two-Retailer Asymmetric Networks 
 

Problem δ-Best System Bound Heuristic 99% Fill Rate Heuristic 
Zero Safety Stock 

Heuristic 
  s2 s1,1 S1,2 Cost s2 s1,1 s1,2 % Error s2 s1,1 s1,2 % Error s2 s1,1 s1,2 % Error 

28 19 13 14 40.97 20 13 15 1.31 31 13 15 23.33 20 13 15 1.31 
29 19 13 16 43.42 21 13 16 1.26 31 13 16 20.85 20 13 16 0.45 
30 19 15 16 45.93 20 15 16 0.92 31 15 16 20.75 20 15 16 0.64 
31 19 13 12 40.66 20 13 12 0.39 31 13 12 21.84 20 13 12 0.37 
32 20 14 13 46.73 21 15 13 0.91 31 15 13 18.77 20 15 13 0.47 
33 22 15 14 52.88 22 16 14 0.72 31 16 14 14.33 20 16 14 0.79 
34 20 13 13 44.29 21 13 13 0.46 31 13 13 18.55 20 13 13 0.00 
35 19 13 15 47.97 22 13 14 1.02 31 13 14 16.19 20 13 14 0.50 
36 21 14 14 50.41 21 15 14 0.65 31 15 14 16.34 20 15 14 1.15 
37 20 12 14 43.18 20 12 15 1.19 31 12 15 21.61 20 12 15 0.80 
38 19 12 16 45.65 21 12 16 0.97 31 12 16 19.51 20 12 16 0.53 
39 21 13 15 49.21 21 13 16 0.61 31 13 16 16.60 20 13 16 0.69 
40 15 14 15 67.39 16 14 15 0.27 31 14 15 36.33 20 14 15 5.87 
41 17 13 16 71.27 18 14 16 1.51 31 14 16 32.96 20 14 16 4.92 
42 16 15 16 74.98 17 15 16 0.35 31 15 16 30.21 20 15 16 3.26 
43 17 13 12 65.47 17 14 12 0.59 31 14 12 34.76 20 14 12 4.62 
44 18 14 13 74.04 18 15 13 0.41 31 15 13 28.18 20 15 13 2.17 
45 18 16 15 82.93 19 16 15 0.79 31 16 15 25.21 20 16 15 1.79 
46 16 13 14 70.35 18 14 13 1.15 31 14 13 30.79 20 14 13 3.33 
47 17 13 15 75.33 18 14 15 1.33 31 14 15 30.06 20 14 15 3.47 
48 18 14 15 79.09 18 15 15 0.52 31 15 15 27.57 20 15 15 2.49 
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Table A4.7: Myopic Allocation Policy Results for Two-Echelon, Four-Retailer Asymmetric Networks 
 

Problem δ-Best System Bounds Heuristic 99% Fill Rate Heuristic Zero Safety Stock Heuristic 

  s2 s1,1 s1,2 s1,3 s1,4 Cost s2 s1,1 s1,2 s1,3 s1,4

% 
Error s2 s1,1 s1,2 s1,3 s1,4

% 
Error s2 s1,1 s1,2 s1,3 s1,4

% 
Error 

76 18 7 7 8 8 47.8 19 7 7 8 8 0.5 31 7 7 8 8 20.4 20 7 7 8 8 1.2 
77 18 7 7 9 9 51.2 20 7 7 9 9 1.0 31 7 7 9 9 19.1 20 7 7 9 9 1.0 
78 18 8 8 9 9 54.7 19 8 8 9 9 0.3 31 8 8 9 9 17.6 20 8 8 9 9 0.8 
79 19 7 6 7 6 47.4 21 7 6 7 6 1.3 31 7 6 7 6 19.1 20 7 6 7 6 0.5 
80 19 8 7 8 7 55.8 20 8 7 8 7 0.4 31 8 7 8 7 15.9 20 8 7 8 7 0.4 
81 19 9 8 9 8 64.5 21 9 8 9 8 0.7 31 9 8 9 8 13.3 20 9 8 9 8 0.3 
82 18 7 6 8 7 51.6 21 7 6 8 7 1.2 31 7 6 8 7 17.4 20 7 6 8 7 0.5 
83 19 7 6 9 8 55.8 21 7 6 9 8 1.2 31 7 6 9 8 16.1 20 7 6 9 8 0.2 
84 19 8 7 9 8 60.1 21 8 7 9 8 1.0 31 8 7 9 8 14.6 20 8 7 9 8 0.4 
85 15 7 7 8 8 75.9 14 8 8 8 8 0.4 31 8 8 8 8 36.0 20 8 8 8 8 8.5 
86 15 7 7 9 9 81.0 16 8 8 9 9 2.0 31 8 8 9 9 33.9 20 8 8 9 9 8.2 
87 15 8 8 9 9 86.2 16 8 8 9 9 0.3 31 8 8 9 9 27.4 20 8 8 9 9 4.2 
88 15 7 7 7 6 73.2 14 8 7 8 7 0.9 31 8 7 8 7 40.2 20 8 7 8 7 11.2 
89 15 8 8 8 7 84.9 16 8 8 8 8 1.0 31 8 8 8 8 30.3 20 8 8 8 8 6.2 
90 16 9 9 9 8 97.1 16 9 9 9 9 0.9 31 9 9 9 9 26.8 20 9 9 9 9 5.5 
91 16 7 6 8 7 79.0 15 8 7 8 8 1.2 31 8 7 8 8 35.0 20 8 7 8 8 8.5 
92 16 7 6 9 8 85.1 15 8 7 9 9 0.9 31 8 7 9 9 32.6 20 8 7 9 9 7.8 
93 17 8 7 9 8 91.0 16 8 8 9 9 0.9 31 8 8 9 9 28.4 20 8 8 9 9 5.8 
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Table A4.8: Constructed Bimodal Distribution Robustness Tests 
 

Problem hW hi b LW Li n s*W s*i sa
W sa

i Cost % Error 
bp1 1 1 1 1 1 2 10 13 11 14 30.1 0.26 
bp2 1 1 10 1 1 2 23 15 23 15 41.6 0.00 
bp3 1 1 50 1 1 2 28 15 28 15 44.3 0.00 
bp4 1 10 1 1 1 2 18 6 23 5 35.4 4.34 
bp5 1 10 10 1 1 2 21 12 23 12 81.2 0.20 
bp6 1 10 50 1 1 2 27 15 25 15 91.5 3.07 
bp7 10 1 1 1 1 2 10 8 0 13 216.7 0.02 
bp8 10 1 10 1 1 2 10 15 10 15 285.4 0.00 
bp9 10 1 50 1 1 2 20 15 21 15 351.2 0.16 
bp10 1 1 1 3 1 2 50 14 50 14 32.4 0.00 
bp11 1 1 10 3 1 2 66 15 66 15 47.4 0.00 
bp12 1 1 50 3 1 2 77 15 77 15 54.4 0.00 
bp13 1 10 1 3 1 2 58 6 61 5 38.0 1.68 
bp14 1 10 10 3 1 2 64 14 65 12 87.2 4.49 
bp15 1 10 50 3 1 2 77 15 72 15 99.5 0.61 
bp16 10 1 1 3 1 2 32 15 32 15 222.6 0.00 
bp17 10 1 10 3 1 2 50 15 50 15 306.8 0.00 
bp18 10 1 50 3 1 2 63 15 64 15 397.9 0.18 
bp19 1 1 1 1 3 2 10 34 10 34 74.9 0.00 
bp20 1 1 10 1 3 2 14 41 14 41 97.1 0.00 
bp21 1 1 50 1 3 2 20 44 19 44 108.4 0.45 
bp22 1 10 1 1 3 2 12 25 23 24 86.7 3.57 
bp23 1 10 10 1 3 2 26 31 27 31 158.0 0.27 
bp24 1 10 50 1 3 2 26 36 30 36 227.1 0.35 
bp25 10 1 1 1 3 2 10 25 0 31 627.0 0.09 
bp26 10 1 10 1 3 2 10 34 0 40 726.8 0.02 
bp27 10 1 50 1 3 2 6 44 6 44 836.0 0.00 
bp28 1 1 1 1 1 10 68 12 49 14 140.9 0.01 
bp29 1 1 10 1 1 10 102 15 96 15 171.8 2.18 
bp30 1 1 50 1 1 10 118 15 113 15 180.3 1.25 
bp31 1 10 1 1 1 10 55 11 118 5 169.0 14.58 
bp32 1 10 10 1 1 10 101 15 103 12 276.9 33.26 
bp33 1 10 50 1 1 10 114 15 100 15 260.6 17.23 
bp34 10 1 1 1 1 10 68 8 8 13 1065.6 0.14 
bp35 10 1 10 1 1 10 62 13 45 15 1396.8 0.04 
bp36 10 1 50 1 1 10 97 15 89 15 1605.2 1.51 
bp37 1 1 1 3 1 10 237 15 245 14 142.9 0.16 
bp38 1 1 10 3 1 10 309 15 305 15 182.0 0.78 
bp39 1 1 50 3 1 10 330 15 350 15 206.2 3.76 
bp40 1 10 1 3 1 10 239 13 311 5 170.2 12.35 
bp41 1 10 10 3 1 10 302 15 307 12 292.3 31.97 
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Table A4.8, Continued 
bp42 1 10 50 3 1 10 330 15 324 15 245.2 1.59 
bp43 10 1 1 3 1 10 205 13 176 15 1079.1 0.31 
bp44 10 1 10 3 1 10 251 15 245 15 1409.1 0.06 
bp45 10 1 50 3 1 10 299 15 298 15 1675.0 0.07 
bp46 1 1 1 1 3 10 68 33 45 34 362.4 0.04 
bp47 1 1 10 1 3 10 60 43 45 41 462.9 5.13 
bp48 1 1 50 1 3 10 91 45 60 44 547.6 17.51 
bp49 1 10 1 1 3 10 65 29 121 24 403.5 6.87 
bp50 1 10 10 1 3 10 58 40 117 31 633.9 23.50 
bp51 1 10 50 1 3 10 86 44 114 36 845.1 44.80 
bp52 10 1 1 1 3 10 50 24 6 32 3138.1 0.26 
bp53 10 1 10 1 3 10 68 33 5 39 3600.7 0.01 
bp54 10 1 50 1 3 10 66 40 8 44 4142.8 1.17 
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Table A4.9: Discrete Uniform Distribution Robustness Results 
 

Problem hW hi b LW Li n S*W s*i sa
W sa

i Cost % Error 
up1 1 1 1 1 1 2 11 13 15 12 29.1 1.48 
up2 1 1 10 1 1 2 20 15 20 15 37.6 0.00 
up3 1 1 50 1 1 2 25 15 25 15 41.6 0.00 
up4 1 10 1 1 1 2 15 8 23 6 33.4 5.54 
up5 1 10 10 1 1 2 25 10 26 10 70.2 0.71 
up6 1 10 50 1 1 2 24 14 24 14 85.3 0.00 
up7 10 1 1 1 1 2 11 9 0 15 213.3 0.01 
up8 10 1 10 1 1 2 10 15 10 15 265.1 0.00 
up9 10 1 50 1 1 2 18 15 18 15 318.9 0.00 
up10 1 1 1 3 1 2 47 15 54 12 29.6 0.11 
up11 1 1 10 3 1 2 63 15 63 15 42.0 0.00 
up12 1 1 50 3 1 2 69 15 71 15 48.3 -0.03 
up13 1 10 1 3 1 2 56 8 61 6 35.0 2.79 
up14 1 10 10 3 1 2 66 12 68 10 74.8 6.89 
up15 1 10 50 3 1 2 69 15 68 14 92.7 1.40 
up16 10 1 1 3 1 2 35 15 35 15 217.8 0.00 
up17 10 1 10 3 1 2 50 15 50 15 282.4 0.00 
up18 10 1 50 3 1 2 59 15 61 15 354.6 0.13 
up19 1 1 1 1 3 2 13 32 14 32 71.5 0.10 
up20 1 1 10 1 3 2 17 38 17 38 88.6 0.00 
up21 1 1 50 1 3 2 18 42 19 41 98.9 0.52 
up22 1 10 1 1 3 2 14 27 23 25 81.1 3.62 
up23 1 10 10 1 3 2 26 30 28 30 139.0 1.14 
up24 1 10 50 1 3 2 25 36 24 36 179.7 -0.02 
up25 10 1 1 1 3 2 13 25 9 36 621.4 0.05 
up26 10 1 10 1 3 2 13 33 2 39 697.3 -0.07 
up27 10 1 50 1 3 2 9 41 9 41 782.8 0.00 
up28 1 1 1 1 1 10 76 12 69 12 130.3 0.50 
up29 1 1 10 1 1 10 93 15 81 15 167.8 5.74 
up30 1 1 50 1 1 10 108 15 101 15 175.5 3.86 
up31 1 10 1 1 1 10 70 11 117 6 160.0 17.20 
up32 1 10 10 1 1 10 85 15 114 10 279.6 45.12 
up33 1 10 50 1 1 10 106 15 97 14 278.3 31.53 
up34 10 1 1 1 1 10 62 9 6 15 1054.7 0.00 
up35 10 1 10 1 1 10 57 14 45 15 1288.5 0.10 
up36 10 1 50 1 1 10 85 15 75 15 1526.3 2.47 
up37 1 1 1 3 1 10 269 13 266 12 132.9 0.97 
up38 1 1 10 3 1 10 296 15 294 15 166.9 0.28 
up39 1 1 50 3 1 10 318 15 324 15 183.1 0.66 
up40 1 10 1 3 1 10 247 13 308 6 157.4 12.85 
up41 1 10 10 3 1 10 287 15 323 10 292.3 44.88 
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Table A4.9, Continued 
up42 1 10 50 3 1 10 312 15 316 14 260.8 15.36 
up43 10 1 1 3 1 10 220 13 187 15 1066.6 0.47 
up44 10 1 10 3 1 10 269 13 245 15 1306.8 0.10 
up45 10 1 50 3 1 10 288 15 285 15 1542.8 0.10 
up46 1 1 1 1 3 10 68 33 66 32 348.1 0.23 
up47 1 1 10 1 3 10 50 42 64 38 426.3 4.64 
up48 1 1 50 1 3 10 66 44 64 41 501.8 14.14 
up49 1 10 1 1 3 10 50 32 118 25 383.6 6.67 
up50 1 10 10 1 3 10 60 39 123 30 589.4 27.03 
up51 1 10 50 1 3 10 53 44 96 36 665.2 25.47 
up52 10 1 1 1 3 10 58 26 7 33 3102.5 0.12 
up53 10 1 10 1 3 10 68 33 5 39 3458.4 0.03 
up54 10 1 50 1 3 10 56 40 25 41 3914.1 1.67 
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Table A4.10: Negative Binomial Distribution Robustness Results 
 

Problem hW hi b LW Li n s*W s*i sa
W sa

i Cost % Error 
nb1 1 1 1 1 1 2 11 12 15 11 29.0 0.28 
nb2 1 1 10 1 1 2 19 16 19 16 45.2 0.00 
nb3 1 1 50 1 1 2 20 20 22 19 57.5 0.93 
nb4 1 10 1 1 1 2 13 8 21 6 34.5 3.01 
nb5 1 10 10 1 1 2 24 10 25 10 78.1 0.16 
nb6 1 10 50 1 1 2 27 14 27 14 123.9 0.00 
nb7 10 1 1 1 1 2 9 9 1 13 212.2 -0.06 
nb8 10 1 10 1 1 2 8 15 5 17 276.1 0.06 
nb9 10 1 50 1 1 2 9 20 9 20 357.7 0.00 
nb10 1 1 1 3 1 2 34 21 53 11 31.7 0.08 
nb11 1 1 10 3 1 2 63 16 63 16 51.2 0.00 
nb12 1 1 50 3 1 2 59 22 68 19 65.1 0.48 
nb13 1 10 1 3 1 2 53 8 57 6 37.1 1.13 
nb14 1 10 10 3 1 2 65 12 67 10 85.1 2.90 
nb15 1 10 50 3 1 2 72 16 72 14 132.9 2.70 
nb16 10 1 1 3 1 2 19 22 29 16 217.7 -0.06 
nb17 10 1 10 3 1 2 44 17 44 17 299.8 0.00 
nb18 10 1 50 3 1 2 46 23 52 20 402.0 0.01 
nb19 1 1 1 1 3 2 8 32 11 32 73.1 -0.11 
nb20 1 1 10 1 3 2 8 43 17 39 97.6 0.23 
nb21 1 1 50 1 3 2 15 46 16 45 115.4 0.59 
nb22 1 10 1 1 3 2 11 25 23 23 84.2 3.69 
nb23 1 10 10 1 3 2 28 29 29 29 159.3 0.44 
nb24 1 10 50 1 3 2 28 36 28 36 229.7 0.00 
nb25 10 1 1 1 3 2 0 13 3 37 613.7 -0.07 
nb26 10 1 10 1 3 2 10 33 4 41 710.7 -0.08 
nb27 10 1 50 1 3 2 11 41 0 46 831.2 -0.01 
nb28 1 1 1 1 1 10 34 15 79 11 133.1 -0.15 
nb29 1 1 10 1 1 10 67 18 86 16 189.3 0.48 
nb30 1 1 50 1 1 10 68 21 73 19 256.0 9.92 
nb31 1 10 1 1 1 10 39 13 108 6 147.2 4.18 
nb32 1 10 10 1 1 10 74 16 123 10 272.6 18.40 
nb33 1 10 50 1 1 10 86 18 110 14 367.1 18.50 
nb34 10 1 1 1 1 10 33 11 8 13 1048.7 0.05 
nb35 10 1 10 1 1 10 42 15 25 17 1319.0 0.05 
nb36 10 1 50 1 1 10 35 20 39 20 1668.6 0.05 
nb37 1 1 1 3 1 10 198 18 275 11 137.2 0.29 
nb38 1 1 10 3 1 10 223 22 295 16 198.6 0.98 
nb39 1 1 50 3 1 10 263 22 310 19 245.3 2.22 
nb40 1 10 1 3 1 10 160 21 301 6 153.4 5.89 
nb41 1 10 10 3 1 10 248 18 327 10 319.3 31.44 



 

 89

Table A4.10, Continued 
nb42 1 10 50 3 1 10 259 21 334 14 427.9 32.53 
nb43 10 1 1 3 1 10 141 19 166 16 1057.3 0.09 
nb44 10 1 10 3 1 10 205 18 225 17 1351.8 0.14 
nb45 10 1 50 3 1 10 214 22 248 20 1739.1 1.03 
nb46 1 1 1 1 3 10 73 30 65 32 353.1 -0.20 
nb47 1 1 10 1 3 10 50 42 65 39 455.1 2.35 
nb48 1 1 50 1 3 10 69 46 50 45 554.3 9.24 
nb49 1 10 1 1 3 10 46 30 131 23 407.8 10.58 
nb50 1 10 10 1 3 10 67 38 137 29 682.1 31.99 
nb51 1 10 50 1 3 10 75 44 114 36 832.5 32.33 
nb52 10 1 1 1 3 10 76 21 6 32 3072.6 0.24 
nb53 10 1 10 1 3 10 33 35 5 39 3514.6 0.04 
nb54 10 1 50 1 3 10 67 39 8 44 4089.0 0.36 
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Table A4.11: Asymmetric Demand Robustness Results 
Problem h1 h2 b1 b2 μ2 s*W s*1 s*2 sa

W sa
1 sa

2 Cost % Error
ad1 1 1 1 1 20 22 13 22 22 12 22 38.7 0.08 
ad2 1 1 50 1 20 35 15 18 32 15 22 51.8 3.82 
ad3 1 1 1 50 20 33 9 25 33 12 25 50.5 3.25 
ad4 1 1 1 1 40 42 13 42 42 12 42 58.7 0.05 
ad5 1 1 50 1 40 55 15 38 51 15 42 73.3 4.80 
ad6 1 1 1 50 40 53 9 45 54 12 45 70.8 2.76 
ad7 1 1 1 1 60 62 13 62 62 12 62 78.7 0.04 
ad8 1 1 50 1 60 75 15 58 70 15 62 94.8 5.42 
ad9 1 1 1 50 60 74 8 65 74 12 65 90.8 1.93 
ad10 1 1 1 1 80 80 14 83 82 12 82 98.7 0.04 
ad11 1 1 50 1 80 95 15 78 89 15 82 117.1 6.59 
ad12 1 1 1 50 80 94 8 85 94 12 85 110.8 1.58 
ad13 1 1 1 1 100 100 14 103 102 12 102 118.7 -0.03 
ad14 1 1 50 1 100 114 15 97 109 15 102 137.1 5.50 
ad15 1 1 1 50 100 114 8 105 114 12 105 130.8 1.33 
ad16 10 1 1 1 20 27 7 20 26 6 22 41.7 1.87 
ad17 1 10 1 1 20 24 10 17 25 12 16 41.3 0.22 
ad18 10 1 1 1 40 47 7 39 46 6 42 61.7 1.14 
ad19 1 10 1 1 40 48 10 36 45 12 36 61.3 0.76 
ad20 10 1 1 1 60 67 7 60 67 6 62 81.7 0.98 
ad21 1 10 1 1 60 66 11 57 65 12 56 81.3 0.59 
ad22 10 1 1 1 80 85 8 81 87 6 82 101.7 0.64 
ad23 1 10 1 1 80 88 10 76 85 12 76 101.3 0.46 
ad24 10 1 1 1 100 107 7 100 107 6 102 121.7 0.66 
ad25 1 10 1 1 100 106 11 97 105 12 96 121.3 0.39 
ad26 10 1 50 1 20 35 14 18 31 14 22 91.5 2.54 
ad27 1 10 50 1 20 35 15 16 35 15 16 51.4 0.00 
ad28 10 1 50 1 40 55 14 38 50 14 42 112.5 3.07 
ad29 1 10 50 1 40 54 15 36 53 15 36 70.8 0.30 
ad30 10 1 50 1 60 72 15 57 70 14 62 132.5 0.66 
ad31 1 10 50 1 60 73 15 56 73 15 56 91.5 0.00 
ad32 10 1 50 1 80 95 14 78 89 14 82 154.5 3.56 
ad33 1 10 50 1 80 95 15 75 92 15 76 112.1 0.71 
ad34 10 1 50 1 100 115 14 98 109 14 102 174.6 3.19 
ad35 1 10 50 1 100 115 15 95 112 15 96 132.1 0.60 
ad36 10 1 1 50 20 34 6 25 37 6 25 52.3 3.53 
ad37 1 10 1 50 20 33 10 24 31 12 24 89.4 1.60 
ad38 10 1 1 50 40 54 6 45 58 6 45 73.1 3.76 
ad39 1 10 1 50 40 54 9 44 52 12 44 109.2 1.02 
ad40 10 1 1 50 60 74 6 65 78 6 65 93.2 2.97 
ad41 1 10 1 50 60 73 10 64 72 12 64 129.2 0.95 
ad42 10 1 1 50 80 94 6 85 98 6 85 113.2 2.43 
ad43 1 10 1 50 80 94 9 84 92 12 84 149.2 0.75 
ad44 10 1 1 50 100 114 6 105 118 6 105 133.2 2.06 
ad45 1 10 1 50 100 113 10 104 112 12 104 169.2 0.73 
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Table A4.12: Asymmetric Lead-time Robustness Results 
 

Problem hW h1 h2 b1 b2 L2 s*W s*1 s*2 sa
W sa

1 sa
2 Cost % Error

al1 1 1 1 1 1 2 11 13 21 15 12 22 40.4 1.19 
al2 1 1 1 50 1 2 24 15 17 21 15 22 54.4 4.70 
al3 1 1 1 1 50 2 18 10 29 20 12 29 55.7 1.68 
al4 1 1 1 1 1 3 11 13 30 14 12 32 51.2 0.33 
al5 1 1 1 50 1 3 24 15 26 21 15 32 65.5 5.27 
al6 1 1 1 1 50 3 14 12 42 19 12 41 70.0 0.30 
al7 1 1 1 1 1 4 14 11 38 13 12 43 62.3 0.56 
al8 1 1 1 50 1 4 23 15 35 21 15 43 77.4 5.18 
al9 1 1 1 1 50 4 17 10 52 18 12 53 83.4 0.02 
al10 1 10 1 1 1 2 16 7 19 18 6 22 43.2 2.49 
al11 1 1 10 1 1 2 17 10 14 19 12 15 44.6 2.83 
al12 1 10 1 1 1 3 16 7 28 18 6 32 54.4 2.01 
al13 1 1 10 1 1 3 12 13 24 18 12 25 56.5 2.11 
al14 1 10 1 1 1 4 16 7 37 17 6 43 65.9 2.43 
al15 1 1 10 1 1 4 12 13 33 19 12 34 68.7 2.97 
al16 1 10 1 50 1 2 24 14 16 21 14 22 92.5 2.31 
al17 1 1 10 50 1 2 23 15 13 26 15 15 55.1 1.49 
al18 1 10 1 50 1 3 23 14 26 21 14 32 103.6 2.40 
al19 1 1 10 50 1 3 23 15 21 26 15 25 68.1 2.54 
al20 1 10 1 50 1 4 24 14 35 20 14 43 116.6 3.83 
al21 1 1 10 50 1 4 23 15 31 27 15 34 80.4 3.46 
al22 1 10 1 1 50 2 21 6 28 24 6 29 58.1 2.52 
al23 1 1 10 1 50 2 23 8 24 22 12 25 111.7 0.51 
al24 1 10 1 1 50 3 19 6 40 23 6 41 72.4 1.33 
al25 1 1 10 1 50 3 21 9 35 22 12 36 137.7 0.56 
al26 1 10 1 1 50 4 16 6 52 22 6 53 86.9 0.57 
al27 1 1 10 1 50 4 19 10 46 23 12 46 162.2 0.10 
al28 1 1 1 1 1 5 10 13 49 13 12 53 73.2 0.51 
al29 1 1 1 50 1 5 23 15 45 20 15 53 89.7 5.30 
al30 1 1 1 1 50 5 15 11 64 17 12 64 96.7 -0.24 
al31 1 10 1 1 1 5 16 7 46 17 6 53 76.7 1.95 
al32 1 1 10 1 1 5 13 11 41 20 12 43 80.7 1.84 
al33   10 1 50 1 5 23 14 44 20 14 53 127.5 3.49 
al34 1 1 10 50 1 5 23 15 39 27 15 43 91.6 2.63 
al35 1 10 1 1 50 5 21 6 64 21 6 64 98.7 0.00 
al36 1 1 10 1 50 5 21 9 56 21 12 57 184.0 -0.16 
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Table A5.1: Stocking Level and Costs for Non-Delayed Chain (k=3) 

  Non-Delayed (k=3) Cost Results   

  Best Found Base Stock Policy   
b s3 s2 s1 Cost % Error 

2.5 15 9 13 8109.7 N/A 
5 18 9 14 8935.5 N/A 

7.5 17 11 14 9452.7 N/A 
10 18 10 15 9822.9 N/A 
20 19 11 16 10710.9 N/A 
30 19 12 16 11210.8 N/A 
50 20 12 17 11824.1 N/A 
100 19 13 18 12599.2 N/A 

  Newsvendor Bounds Heuristic Policy   

b s3 s2 s1 Cost % Error 
2.5 18 9 13 8169.69 0.7 
5 18 10 14 8985.39 0.6 

7.5 18 11 14 9475.62 0.2 
10 18 11 15 9864.56 0.4 
20 19 11 16 10710.9 0.0 
30 19 12 16 11210.8 0.0 
50 20 12 17 11824.1 0.0 
100 19 13 18 12599.2 0.0 

    

  
 

Decoupling Heuristic Policy   

b s3 s2 s1 Cost % Error 
2.5 19 11 13 8588.5 5.9 
5 19 11 14 9204.5 3.0 

7.5 18 12 14 9606.4 1.6 
10 17 12 15 9944.1 1.2 
20 18 12 16 10758.6 0.4 
30 17 13 16 11234.9 0.2 
50 17 13 17 11850.4 0.2 
100 17 13 18 12681.5 0.7 
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Table A5.2: Stocking Level and Costs for Delayed Chain (k=2) 

 
  Delayed (k=2) Cost Results   
    
  Best Found Base Stock Policy   

b s3 s2 s1 Cost % Error 
2.5 17 16 13 7882.2 N/A 
5 18 17 14 8632.6 N/A 

7.5 19 19 14 9100.5 N/A 
10 18 19 15 9444.2 N/A 
20 19 20 16 10243.7 N/A 
30 20 21 16 10694.3 N/A 
50 21 21 17 11256.3 N/A 
100 22 21 18 11952.2 N/A 

    
  Newsvendor Bounds Heuristic Policy   

b s3 s2 s1 Cost % Error 
2.5 18 18 13 7954.43 0.9 
5 19 19 14 8715.86 1.0 

7.5 20 20 14 9160.29 0.7 
10 21 19 15 9519.34 0.8 
20 21 20 16 10287.7 0.4 
30 21 22 16 10748.9 0.5 
50 22 22 17 11329.2 0.6 
100 23 22 18 12017.9 0.5 

    
  Decoupling Heuristic Policy   

b s3 s2 s1 Cost % Error 
2.5 21 20 13 8376.9 6.3 
5 22 19 14 8926.1 3.4 

7.5 22 20 14 9282.6 2.0 
10 22 19 15 9579.1 1.4 
20 23 19 16 10338.5 0.9 
30 23 20 16 10754.2 0.6 
50 23 20 17 11289.7 0.3 
100 24 19 18 12071.7 1.0 
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Table A5.3: Asymmetric Results for Non-Delayed Differentiation Network 
 

Asymmetric Costs, Nondelayed (k=3) Results 
Echelon 

Holding Costs 
Backordering 

Costs Best Found Base Stock Policy  
h3 h2 h1,1 h1,2 b1 b2 s3 s2,1 s2,2 s1.1 s1.2 Cost %Error
1 1 1 2 10 10 18 11 12 14 13 10131 N/A 
1 2 1 2 10 10 19 9 9 15 14 12891 N/A 
2 1 1 2 10 10 15 10 12 15 13 14969 N/A 
2 2 1 2 10 10 17 9 9 15 14 17625 N/A 
1 1 1 1 5 10 18 10 10 13 15 9388 N/A 
1 1 1 1 5 20 18 10 11 13 16 9839 N/A 
1 1 1 1 10 20 18 10 11 13 16 10386 N/A 
1 1 1 2 5 5 16 10 11 14 12 9134 N/A 
1 1 1 2 5 10 18 10 12 13 13 9696 N/A 
1 1 1 2 5 20 18 10 12 13 15 10274 N/A 
1 1 1 2 10 5 18 11 10 14 12 9572 N/A 
1 1 1 2 10 20 18 11 12 14 15 10709 N/A 
1 1 1 2 20 5 19 12 10 15 12 10008 N/A 
1 1 1 2 20 10 19 12 11 15 13 10566 N/A 
1 1 1 2 20 20 18 12 12 15 15 11146 N/A 
             

Echelon 
Holding Costs 

Backordering 
Costs Newsvendor Bounds Heuristic Policy  

h3 h2 h1,1 h1,2 b1 b2 s3 s2,1 s2,2 s1.1 s1.2 Cost %Error
1 1 1 2 10 10 18 11 12 15 13 10150 0.2 
1 2 1 2 10 10 21 9 10 15 14 12988 0.8 
2 1 1 2 10 10 15 11 12 15 14 15016 0.3 
2 2 1 2 10 10 17 10 10 15 14 17703 0.4 
1 1 1 1 5 10 18 10 11 14 15 9499 1.2 
1 1 1 1 5 20 20 10 11 14 16 9930 0.9 
1 1 1 1 10 20 19 11 11 15 16 10423 0.4 
1 1 1 2 5 5 17 10 12 14 12 9174 0.4 
1 1 1 2 5 10 19 10 12 14 13 9757 0.6 
1 1 1 2 5 20 19 10 12 14 15 10332 0.6 
1 1 1 2 10 5 18 11 12 15 12 9650 0.8 
1 1 1 2 10 20 19 11 12 15 15 10764 0.5 
1 1 1 2 20 5 19 11 12 16 12 10103 1.0 
1 1 1 2 20 10 20 11 12 16 13 10618 0.5 
1 1 1 2 20 20 19 11 12 16 15 11157 0.1 
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Table A5.3, Continued 
Echelon 

Holding Costs 
Backordering 

Costs Decoupling Heuristic Policy 
h3 h2 h1,1 h1,2 b1 b2 s3 s2,1 s2,2 s1.1 s1.2 Cost %Error
1 1 1 2 10 10 18 12 12 15 13 10226 0.9 
1 2 1 2 10 10 18 12 11 15 14 13256 2.8 
2 1 1 2 10 10 18 12 11 15 14 15345 2.5 
2 2 1 2 10 10 18 12 11 15 14 18367 4.2 
1 1 1 1 5 10 18 11 12 14 15 9575 2.0 
1 1 1 1 5 20 19 11 12 14 16 10017 1.8 
1 1 1 1 10 20 18 12 12 15 16 10475 0.9 
1 1 1 2 5 5 19 11 11 14 12 9288 1.7 
1 1 1 2 5 10 19 11 12 14 13 9840 1.5 
1 1 1 2 5 20 19 11 11 14 15 10406 1.3 
1 1 1 2 10 5 19 12 11 15 12 9730 1.7 
1 1 1 2 10 20 18 12 11 15 15 10829 1.1 
1 1 1 2 20 5 19 12 11 16 12 10080 0.7 
1 1 1 2 20 10 18 12 12 16 13 10593 0.2 
1 1 1 2 20 20 18 12 11 16 15 11195 0.4 
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Table A5.4: Asymmetric Results for Delayed Differentiation Network 
 

Asymmetric Costs, Delayed (k=2) Results 
Echelon Holding 

Costs 
Backordering 

Costs Best Found Base Stock Policy  
h3 h2 h1,1 h1,2 b1 b2 s3 s2 s1,1 s1,2 Cost % Error 
1 1 1 2 10 10 19 21 14 13 9740.4 N/A 
1 2 1 2 10 10 20 17 15 14 12373.4 N/A 
2 1 1 2 10 10 17 19 15 14 14481.6 N/A 
2 2 1 2 10 10 18 18 14 14 17033.9 N/A 
1 1 1 1 5 10 18 19 13 15 9040.7 N/A 
1 1 1 1 5 20 19 18 13 17 9456.5 N/A 
1 1 1 1 10 20 19 20 14 16 9845.9 N/A 
1 1 1 2 5 5 18 20 13 12 8826.0 N/A 
1 1 1 2 5 10 19 19 13 14 9343.1 N/A 
1 1 1 2 5 20 19 21 12 15 9893.7 N/A 
1 1 1 2 10 5 19 20 14 12 9229.5 N/A 
1 1 1 2 10 20 20 20 14 15 10266.8 N/A 
1 1 1 2 20 5 19 20 16 12 9627.4 N/A 
1 1 1 2 20 10 20 21 15 13 10137.6 N/A 
1 1 1 2 20 20 20 21 15 15 10667.8 N/A 
            

Echelon Holding 
Costs 

Backordering 
Costs Newsvendor Bounds Heuristic Policy 

h3 h2 h1,1 h1,2 b1 b2 s3 s2 s1,1 s1,2 Cost % Error 
1 1 1 2 10 10 20 21 15 13 9826.5 0.9 
1 2 1 2 10 10 22 18 15 14 12520.6 1.2 
2 1 1 2 10 10 18 20 15 14 14581.9 0.7 
2 2 1 2 10 10 19 18 15 14 17150.7 0.7 
1 1 1 1 5 10 20 19 14 15 9126.9 1.0 
1 1 1 1 5 20 21 20 14 16 9623.2 1.8 
1 1 1 1 10 20 21 20 15 16 9943.3 1.0 
1 1 1 2 5 5 19 20 14 12 8905.7 0.9 
1 1 1 2 5 10 20 21 14 13 9510.1 1.8 
1 1 1 2 5 20 20 21 14 15 10040.3 1.5 
1 1 1 2 10 5 20 21 15 12 9354.3 1.4 
1 1 1 2 10 20 22 20 15 15 10392.8 1.2 
1 1 1 2 20 5 20 22 16 12 9775.0 1.5 
1 1 1 2 20 10 22 21 16 13 10265.6 1.3 
1 1 1 2 20 20 21 21 16 15 10739.9 0.7 
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Table A5.4, Continued 
Echelon Holding 

Costs 
Backordering

Costs Decoupling Heuristic Policy 
h3 h2 h1,1 h1,2 b1 b2 s3 s2 s1,1 s1,2 Cost % Error 
1 1 1 2 10 10 22 20 15 13 9869.2 1.3 
1 2 1 2 10 10 22 19 15 14 12650.0 2.2 
2 1 1 2 10 10 22 19 15 14 14946.1 3.2 
2 2 1 2 10 10 22 19 15 14 17748.7 4.2 
1 1 1 1 5 10 22 19 14 15 9254.2 2.4 
1 1 1 1 5 20 22 20 14 16 9695.7 2.5 
1 1 1 1 10 20 23 19 15 16 9995.7 1.5 
1 1 1 2 5 5 21 20 14 12 9017.9 2.2 
1 1 1 2 5 10 21 20 14 13 9498.5 1.7 
1 1 1 2 5 20 22 19 14 15 10018.5 1.3 
1 1 1 2 10 5 19 20 15 12 9247.8 0.2 
1 1 1 2 10 20 22 19 15 15 10343.3 0.7 
1 1 1 2 20 5 22 20 16 12 9739.8 1.2 
1 1 1 2 20 10 22 20 16 13 10204.3 0.7 
1 1 1 2 20 20 22 19 16 15 10695.5 0.3 
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Table A6.1: Serial System to Create Regressions 

r μ σ2 b p 
*
Ws  *

1s  C* 

2 10 10 5 0.5 10 15 6.31 
2 10 10 5 5 10 14 7.41 
2 10 10 5 10 8 15 8.30 
2 10 10 5 20 8 14 9.60 
2 10 10 10 0.5 12 16 7.44 
2 10 10 10 5 10 16 9.36 
2 10 10 10 10 10 15 10.87 
2 10 10 10 20 8 16 13.05 
2 10 10 20 0.5 12 17 8.39 
2 10 10 20 5 10 17 11.42 
2 10 10 20 10 9 17 13.60 
2 10 10 20 20 8 17 17.08 
2 10 20 5 0.5 13 16 8.85 
2 10 20 5 5 8 17 12.23 
2 10 20 5 10 7 16 14.49 
2 10 20 5 20 3 19 17.62 
2 10 20 10 0.5 14 18 10.51 
2 10 20 10 5 9 18 15.98 
2 10 20 10 10 8 18 19.81 
2 10 20 10 20 4 20 25.20 
2 10 20 20 0.5 15 20 12.07 
2 10 20 20 5 10 20 19.84 
2 10 20 20 10 8 20 25.73 
2 10 20 20 20 6 20 34.68 
2 10 40 5 0.5 12 18 11.54 
2 10 40 5 5 6 17 18.80 
2 10 40 5 10 0 20 23.30 
2 10 40 5 20 1 17 28.78 
2 10 40 10 0.5 15 21 13.83 
2 10 40 10 5 6 21 25.21 
2 10 40 10 10 4 20 32.85 
2 10 40 10 20 4 17 43.00 
2 10 40 20 0.5 18 23 16.02 
2 10 40 20 5 7 24 32.19 
2 10 40 20 10 1 27 43.95 
2 10 40 20 20 1 23 60.69 
2 20 20 5 0.5 19 24 9.02 
2 20 20 5 5 18 24 9.68 
2 20 20 5 10 17 24 10.27 
2 20 20 5 20 17 24 11.14 
2 20 20 10 0.5 20 26 10.67 
2 20 20 10 5 19 26 11.96 
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Table A6.1, Continued 
2 20 20 10 10 18 26 13.00 
2 20 20 10 20 17 26 14.64 
2 20 20 20 0.5 21 27 12.26 
2 20 20 20 5 19 28 14.33 
2 20 20 20 10 19 27 16.03 
2 20 20 20 20 17 27 18.74 
2 20 40 5 0.5 21 28 12.76 
2 20 40 5 5 17 29 15.31 
2 20 40 5 10 16 28 17.20 
2 20 40 5 20 15 27 19.81 
2 20 40 10 0.5 23 31 15.19 
2 20 40 10 5 19 30 19.57 
2 20 40 10 10 17 30 22.81 
2 20 40 10 20 14 31 27.50 
2 20 40 20 0.5 25 33 17.39 
2 20 40 20 5 20 33 23.99 
2 20 40 20 10 16 34 29.17 
2 20 40 20 20 16 32 36.97 
2 20 80 5 0.5 21 31 16.94 
2 20 80 5 5 13 31 23.88 
2 20 80 5 10 10 31 28.37 
2 20 80 5 20 3 35 34.12 
2 20 80 10 0.5 24 34 20.25 
2 20 80 10 5 16 34 31.40 
2 20 80 10 10 5 41 39.18 
2 20 80 10 20 8 35 49.57 
2 20 80 20 0.5 27 38 23.35 
2 20 80 20 5 18 37 39.66 
2 20 80 20 10 13 38 51.21 
2 20 80 20 20 11 35 69.09 
3 10 10 5 0.5 10 15 6.55 
3 10 10 5 5 10 15 6.60 
3 10 10 5 10 10 15 6.64 
3 10 10 5 20 10 15 6.70 
3 10 10 10 0.5 12 15 7.92 
3 10 10 10 5 12 15 7.99 
3 10 10 10 10 11 15 8.09 
3 10 10 10 20 10 16 8.20 
3 10 10 20 0.5 11 17 9.12 
3 10 10 20 5 11 17 9.36 
3 10 10 20 10 11 17 9.47 
3 10 10 20 20 12 16 9.80 
3 10 20 5 0.5 10 17 9.62 
3 10 20 5 5 11 16 10.11 
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Table A6.1, Continued 
3 10 20 5 10 8 17 10.52 
3 10 20 5 20 9 16 11.09 
3 10 20 10 0.5 11 19 11.67 
3 10 20 10 5 9 20 12.64 
3 10 20 10 10 9 19 13.42 
3 10 20 10 20 9 18 14.76 
3 10 20 20 0.5 13 21 13.65 
3 10 20 20 5 11 20 15.23 
3 10 20 20 10 10 20 16.70 
3 10 20 20 20 8 21 18.96 
3 10 40 5 0.5 10 18 12.80 
3 10 40 5 5 6 19 15.18 
3 10 40 5 10 4 19 16.89 
3 10 40 5 20 3 18 19.25 
3 10 40 10 0.5 12 21 15.64 
3 10 40 10 5 7 21 19.80 
3 10 40 10 10 5 22 22.95 
3 10 40 10 20 2 22 27.32 
3 10 40 20 0.5 13 23 18.25 
3 10 40 20 5 7 25 24.66 
3 10 40 20 10 8 22 29.55 
3 10 40 20 20 3 25 36.92 
3 20 20 5 0.5 18 25 9.18 
3 20 20 5 5 19 24 9.17 
3 20 20 5 10 19 24 9.15 
3 20 20 5 20 19 24 9.18 
3 20 20 10 0.5 19 26 11.03 
3 20 20 10 5 20 26 11.01 
3 20 20 10 10 20 26 11.01 
3 20 20 10 20 20 26 11.00 
3 20 20 20 0.5 20 28 12.79 
3 20 20 20 5 21 27 12.68 
3 20 20 20 10 21 27 12.87 
3 20 20 20 20 20 27 12.80 
3 20 40 5 0.5 20 28 13.40 
3 20 40 5 5 19 29 13.48 
3 20 40 5 10 18 29 13.60 
3 20 40 5 20 18 29 13.71 
3 20 40 10 0.5 21 31 16.16 
3 20 40 10 5 21 30 16.51 
3 20 40 10 10 19 32 16.65 
3 20 40 10 20 21 30 17.09 
3 20 40 20 0.5 22 33 18.92 
3 20 40 20 5 22 33 19.41 
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Table A6.1, Continued 
3 20 40 20 10 22 32 19.90 
3 20 40 20 20 20 33 20.61 
3 20 80 5 0.5 18 31 18.47 
3 20 80 5 5 17 30 19.53 
3 20 80 5 10 17 30 20.36 
3 20 80 5 20 14 30 21.81 
3 20 80 10 0.5 22 35 22.56 
3 20 80 10 5 18 34 24.65 
3 20 80 10 10 16 35 26.46 
3 20 80 10 20 13 35 29.28 
3 20 80 20 0.5 24 37 26.52 
3 20 80 20 5 20 38 30.07 
3 20 80 20 10 18 38 33.29 
3 20 80 20 20 16 36 38.15 
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Table A6.2: Serial System Experimental Data Used to Test Regression Models 

r μ σ2 b p 
*
Ws  *

1s  C* H
Ws  1

Hs  CH 

2 5 5 2 2 4 7 3.55 6 7 3.81 
2 5 5 2 8 3 7 4.36 5 7 4.47 
2 5 5 2 32 1 8 5.88 2 7 5.90 
2 5 5 8 2 5 9 5.82 6 9 5.89 
2 5 5 8 8 4 9 8.35 5 9 8.37 
2 5 5 8 32 2 9 13.43 2 9 13.43 
2 5 5 32 2 7 10 8.01 6 11 8.01 
2 5 5 32 8 5 10 13.28 5 11 13.59 
2 5 5 32 32 2 11 25.81 3 11 26.41 
2 5 10 2 2 4 8 5.22 4 9 5.37 
2 5 10 2 8 1 8 6.87 2 9 7.23 
2 5 10 2 32 0 7 9.31 0 7 9.31 
2 5 10 8 2 6 10 9.05 6 12 9.16 
2 5 10 8 8 1 12 14.24 2 12 14.32 
2 5 10 8 32 0 10 23.56 0 11 23.50 
2 5 10 32 2 8 13 13.17 7 15 13.45 
2 5 10 32 8 3 14 24.08 4 15 24.30 
2 5 10 32 32 0 14 48.54 0 14 49.35 
2 5 15 2 2 3 6 5.90 2 8 5.92 
2 5 15 2 8 0 7 7.97 0 8 8.30 
2 5 15 2 32 0 4 10.63 0 4 10.63 
2 5 15 8 2 5 10 10.79 5 11 10.86 
2 5 15 8 8 1 10 17.68 1 11 17.89 
2 5 15 8 32 0 7 29.21 0 7 29.21 
2 5 15 32 2 7 13 16.34 7 15 16.42 
2 5 15 32 8 3 13 31.30 3 15 32.25 
2 5 15 32 32 0 12 63.90 0 12 63.90 
2 15 15 2 2 14 19 5.84 12 19 6.49 
2 15 15 2 8 13 19 6.10 12 19 6.53 
2 15 15 2 32 12 19 6.78 11 19 7.34 
2 15 15 8 2 16 21 9.26 16 21 9.42 
2 15 15 8 8 15 21 10.39 14 21 10.81 
2 15 15 8 32 12 22 13.27 12 21 13.89 
2 15 15 32 2 17 24 12.44 17 24 12.52 
2 15 15 32 8 16 24 15.47 15 24 15.58 
2 15 15 32 32 14 23 23.17 13 24 23.31 
2 15 30 2 2 13 20 8.52 13 20 8.52 
2 15 30 2 8 11 20 9.68 12 20 9.74 
2 15 30 2 32 9 20 11.86 9 20 11.90 
2 15 30 8 2 17 24 14.07 15 24 14.24 
2 15 30 8 8 11 26 18.28 12 24 18.55 
2 15 30 8 32 9 24 26.65 9 24 26.65 
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Table A6.2, Continued 
2 15 30 32 2 18 29 19.66 18 29 19.74 
2 15 30 32 8 15 28 29.29 13 29 29.96 
2 15 30 32 32 9 29 51.38 9 29 52.71 
2 15 45 2 2 11 21 10.36 11 21 10.36 
2 15 45 2 8 5 23 12.54 8 21 12.60 
2 15 45 2 32 1 23 16.25 4 21 16.26 
2 15 45 8 2 15 25 17.66 14 26 17.65 
2 15 45 8 8 12 24 25.05 10 26 24.97 
2 15 45 8 32 7 23 38.99 4 26 39.11 
2 15 45 32 2 18 31 25.51 17 31 25.72 
2 15 45 32 8 12 31 41.25 12 31 41.50 
2 15 45 32 32 8 29 78.35 6 31 79.12 
2 30 30 2 2 27 33 8.18 25 32 9.15 
2 30 30 2 8 27 33 8.23 25 32 9.15 
2 30 30 2 32 26 33 8.43 25 32 9.75 
2 30 30 8 2 30 37 12.72 28 36 13.95 
2 30 30 8 8 29 37 13.12 28 36 14.08 
2 30 30 8 32 28 37 14.37 27 36 15.52 
2 30 30 32 2 31 41 16.92 32 39 17.32 
2 30 30 32 8 31 40 18.36 31 39 18.69 
2 30 30 32 32 29 40 22.17 30 39 22.57 
2 30 60 2 2 28 37 11.77 26 35 13.02 
2 30 60 2 8 26 38 12.22 25 35 13.69 
2 30 60 2 32 25 37 13.40 23 35 15.22 
2 30 60 8 2 32 43 18.84 30 41 20.37 
2 30 60 8 8 28 44 21.16 27 41 24.01 
2 30 60 8 32 26 43 26.40 24 41 30.62 
2 30 60 32 2 34 49 25.78 32 47 28.76 
2 30 60 32 8 31 48 31.97 29 47 35.61 
2 30 60 32 32 27 48 46.76 25 47 52.97 
2 30 90 2 2 26 38 14.67 25 38 14.84 
2 30 90 2 8 23 38 16.12 23 38 16.21 
2 30 90 2 32 19 38 18.83 19 38 18.94 
2 30 90 8 2 29 47 24.11 30 44 24.48 
2 30 90 8 8 26 44 29.59 26 44 29.88 
2 30 90 8 32 21 44 41.17 21 44 41.48 
2 30 90 32 2 35 52 33.44 33 52 34.32 
2 30 90 32 8 28 52 47.12 28 52 47.53 
2 30 90 32 32 23 51 78.62 22 52 78.83 
3 5 5 2 2 5 7 3.43 6 7 3.63 
3 5 5 2 8 4 7 3.54 5 7 3.60 
3 5 5 2 32 4 7 3.84 4 7 3.84 
3 5 5 8 2 5 9 5.53 6 9 5.56 
3 5 5 8 8 5 9 6.03 5 9 6.03 
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Table A6.2, Continued 
3 5 5 8 32 4 9 7.33 4 9 7.33 
3 5 5 32 2 7 10 7.47 7 11 7.72 
3 5 5 32 8 6 10 8.83 6 11 9.18 
3 5 5 32 32 5 10 12.38 5 11 13.50 
3 5 10 2 2 5 9 5.39 5 9 5.39 
3 5 10 2 8 3 8 5.46 4 9 6.09 
3 5 10 2 32 0 9 6.52 1 9 6.57 
3 5 10 8 2 5 11 8.48 5 12 8.65 
3 5 10 8 8 4 12 10.88 4 12 10.88 
3 5 10 8 32 1 11 14.53 0 12 14.54 
3 5 10 32 2 7 15 12.63 7 15 12.63 
3 5 10 32 8 5 13 16.66 4 15 16.95 
3 5 10 32 32 4 12 27.97 1 15 27.89 
3 5 15 2 2 2 7 5.63 3 8 5.79 
3 5 15 2 8 0 8 6.50 2 8 7.11 
3 5 15 2 32 0 6 8.17 0 6 8.17 
3 5 15 8 2 5 10 10.10 5 11 10.25 
3 5 15 8 8 3 9 13.59 2 11 13.70 
3 5 15 8 32 0 9 20.22 0 10 20.51 
3 5 15 32 2 7 14 15.12 6 15 15.17 
3 5 15 32 8 4 13 22.98 4 15 23.99 
3 5 15 32 32 0 13 41.39 0 14 41.84 
3 15 15 2 2 14 19 5.82 12 19 6.10 
3 15 15 2 8 14 19 5.80 12 19 6.07 
3 15 15 2 32 14 19 5.80 12 19 6.07 
3 15 15 8 2 17 21 9.10 15 21 9.38 
3 15 15 8 8 16 22 9.15 15 21 9.41 
3 15 15 8 32 17 21 9.16 15 21 9.40 
3 15 15 32 2 17 24 12.12 17 24 12.12 
3 15 15 32 8 17 24 12.17 17 24 12.17 
3 15 15 32 32 17 24 12.42 17 24 12.42 
3 15 30 2 2 14 20 8.38 14 20 8.38 
3 15 30 2 8 13 20 8.41 14 20 8.41 
3 15 30 2 32 12 21 8.56 13 20 8.55 
3 15 30 8 2 17 24 13.52 17 24 13.52 
3 15 30 8 8 15 24 13.97 15 24 13.97 
3 15 30 8 32 14 25 15.02 14 24 15.06 
3 15 30 32 2 19 28 18.55 18 29 18.54 
3 15 30 32 8 16 29 20.01 16 29 20.01 
3 15 30 32 32 14 29 23.97 14 29 23.97 
3 15 45 2 2 12 20 10.08 12 21 10.13 
3 15 45 2 8 12 19 10.35 11 21 10.36 
3 15 45 2 32 9 21 10.96 10 21 11.08 
3 15 45 8 2 15 25 16.73 16 26 16.81 
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Table A6.2, Continued 
3 15 45 8 8 14 24 18.29 14 26 18.33 
3 15 45 8 32 10 26 21.79 10 26 21.79 
3 15 45 32 2 18 31 23.75 18 31 23.75 
3 15 45 32 8 14 31 27.96 14 31 27.96 
3 15 45 32 32 10 32 38.58 10 31 38.62 
3 30 30 2 2 27 33 8.17 23 32 9.77 
3 30 30 2 8 26 34 8.18 23 32 9.74 
3 30 30 2 32 27 33 8.17 23 32 9.75 
3 30 30 8 2 30 37 12.72 27 36 14.02 
3 30 30 8 8 29 37 12.73 27 36 13.96 
3 30 30 8 32 30 37 12.68 27 36 13.96 
3 30 30 32 2 32 41 16.81 31 39 17.42 
3 30 30 32 8 32 40 16.86 31 39 17.54 
3 30 30 32 32 31 41 16.80 31 39 17.43 
3 30 60 2 2 28 38 11.74 26 35 12.62 
3 30 60 2 8 29 37 11.73 26 35 12.61 
3 30 60 2 32 28 37 11.76 25 35 13.06 
3 30 60 8 2 31 44 18.59 28 41 21.07 
3 30 60 8 8 33 43 18.59 28 41 21.13 
3 30 60 8 32 31 44 18.71 28 41 21.18 
3 30 60 32 2 35 49 25.14 32 47 26.84 
3 30 60 32 8 36 48 25.18 32 47 26.77 
3 30 60 32 32 34 49 25.70 31 47 28.00 
3 30 90 2 2 26 39 14.48 26 38 14.47 
3 30 90 2 8 26 39 14.52 26 38 14.50 
3 30 90 2 32 25 38 14.65 25 38 14.65 
3 30 90 8 2 33 44 23.36 31 44 23.46 
3 30 90 8 8 29 46 23.63 30 44 23.81 
3 30 90 8 32 28 46 24.41 29 44 24.58 
3 30 90 32 2 36 51 31.88 34 52 31.88 
3 30 90 32 8 34 52 33.15 33 52 33.19 
3 30 90 32 32 31 53 36.79 30 52 36.71 
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Table A6.3: Distribution System Experimental Data Used to Test Regression Model 

r μ σ2 b p 
*
Ws  *

1s  C* H
Ws  1

Hs  Ca ErrA 
2 5 5 2 2 9 7 6.30 11 7 6.75 7.09%
2 5 5 2 8 9 6 7.48 11 6 8.21 9.77%
2 5 5 2 32 8 5 9.82 7 5 10.32 5.10%
2 5 5 8 2 11 8 10.50 12 8 10.48 -0.21%
2 5 5 8 8 9 8 14.25 10 8 14.48 1.59%
2 5 5 8 32 8 7 22.33 7 7 22.90 2.58%
2 5 5 32 2 12 10 14.60 12 10 14.60 0.00%
2 5 5 32 8 9 10 23.00 12 9 23.53 2.32%
2 5 5 32 32 8 9 42.75 8 9 42.75 0.00%
2 5 10 2 2 9 7 9.32 11 7 9.59 2.94%
2 5 10 2 8 7 6 11.95 9 6 12.18 1.89%
2 5 10 2 32 6 5 16.13 5 4 17.15 6.36%
2 5 10 8 2 12 10 16.51 16 9 17.55 6.33%
2 5 10 8 8 8 9 24.80 8 9 24.80 0.00%
2 5 10 8 32 7 7 40.59 7 7 40.59 0.00%
2 5 10 32 2 14 13 24.26 17 12 24.84 2.38%
2 5 10 32 8 11 11 42.50 14 11 44.34 4.33%
2 5 10 32 32 7 10 81.91 8 9 84.58 3.26%
2 5 15 2 2 7 6 10.62 3 8 10.80 1.67%
2 5 15 2 8 6 4 14.18 3 6 14.48 2.13%
2 5 15 2 32 4 3 18.83 0 4 19.84 5.39%
2 5 15 8 2 10 9 19.69 10 10 19.93 1.22%
2 5 15 8 8 7 7 31.49 5 9 32.03 1.71%
2 5 15 8 32 5 5 50.92 1 6 53.71 5.49%
2 5 15 32 2 13 13 30.17 15 13 30.24 0.22%
2 5 15 32 8 9 11 56.02 10 12 58.33 4.13%
2 5 15 32 32 7 8 110.09 3 10 113.43 3.03%
2 15 15 2 2 27 19 10.40 22 19 11.46 10.23%
2 15 15 2 8 28 18 10.60 24 18 11.43 7.84%
2 15 15 2 32 27 18 11.25 23 18 12.33 9.65%
2 15 15 8 2 30 21 16.50 25 22 17.74 7.48%
2 15 15 8 8 29 21 17.68 25 21 19.59 10.80%
2 15 15 8 32 28 20 20.94 23 21 23.32 11.35%
2 15 15 32 2 32 24 22.41 29 24 23.10 3.09%
2 15 15 32 8 29 24 26.05 26 24 27.53 5.67%
2 15 15 32 32 27 23 35.29 26 23 37.01 4.87%
2 15 30 2 2 26 20 15.12 26 19 15.16 0.28%
2 15 30 2 8 25 19 16.53 26 18 16.62 0.54%
2 15 30 2 32 25 17 19.69 24 17 19.77 0.44%
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Table A6.3, Continued 
2 15 30 8 2 30 24 25.09 29 23 25.71 2.47%
2 15 30 8 8 27 23 30.99 24 23 31.89 2.90%
2 15 30 8 32 26 21 43.18 24 21 43.07 -0.25%
2 15 30 32 2 34 28 35.51 33 27 35.70 0.52%
2 15 30 32 8 27 27 48.01 28 26 51.10 6.44%
2 15 30 32 32 28 24 80.06 26 24 84.63 5.70%
2 15 45 2 2 24 19 18.41 26 19 18.49 0.41%
2 15 45 2 8 23 17 21.48 24 18 21.71 1.03%
2 15 45 2 32 21 15 27.19 22 16 28.00 2.97%
2 15 45 8 2 27 25 31.59 27 25 31.59 0.00%
2 15 45 8 8 25 23 42.78 25 23 42.78 0.00%
2 15 45 8 32 23 19 64.57 21 21 65.52 1.48%
2 15 45 32 2 33 29 46.17 33 29 46.17 0.00%
2 15 45 32 8 27 27 70.07 29 27 71.12 1.49%
2 15 45 32 32 22 25 128.32 24 25 133.22 3.82%
3 5 5 2 2 9 7 6.11 10 7 6.24 2.24%
3 5 5 2 8 8 7 6.20 8 7 6.20 0.00%
3 5 5 2 32 8 7 6.57 6 7 6.93 5.41%
3 5 5 8 2 10 9 9.89 9 9 9.90 0.08%
3 5 5 8 8 9 9 10.54 7 9 11.14 5.68%
3 5 5 8 32 10 8 12.01 8 8 12.60 4.91%
3 5 5 32 2 12 10 13.52 13 10 13.66 1.02%
3 5 5 32 8 11 10 15.15 11 10 15.15 0.00%
3 5 5 32 32 9 10 19.64 11 9 19.95 1.57%
3 5 10 2 2 9 7 8.92 11 7 9.13 2.34%
3 5 10 2 8 8 7 9.45 12 6 10.02 5.94%
3 5 10 2 32 8 6 10.88 6 6 11.30 3.81%
3 5 10 8 2 11 10 15.37 11 10 15.37 0.00%
3 5 10 8 8 10 9 17.87 11 9 17.96 0.50%
3 5 10 8 32 9 8 24.07 4 9 26.72 11.02%
3 5 10 32 2 12 13 22.10 16 12 22.76 3.01%
3 5 10 32 8 11 12 28.90 11 12 28.90 0.00%
3 5 10 32 32 9 11 46.04 7 11 47.10 2.29%
3 5 15 2 2 8 6 10.11 4 8 10.34 2.24%
3 5 15 2 8 8 5 11.73 4 7 11.94 1.82%
3 5 15 2 32 6 3 14.62 1 5 15.24 4.29%
3 5 15 8 2 10 9 18.36 9 10 18.40 0.22%
3 5 15 8 8 4 10 24.18 4 10 24.18 0.00%
3 5 15 8 32 6 6 35.11 1 6 40.91 16.51%
3 5 15 32 2 13 13 27.49 13 13 27.49 0.00%
3 5 15 32 8 9 13 42.05 9 13 42.05 0.00%
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Table A6.3, Continued 
3 5 15 32 32 9 9 72.53 3 11 72.65 0.16%
3 15 15 2 2 27 19 10.35 21 19 12.02 16.15%
3 15 15 2 8 27 19 10.35 21 19 11.94 15.35%
3 15 15 2 32 27 19 10.39 21 19 12.07 16.25%
3 15 15 8 2 31 21 16.41 24 22 18.41 12.23%
3 15 15 8 8 31 21 16.43 24 22 18.14 10.42%
3 15 15 8 32 31 21 16.31 24 22 18.14 11.24%
3 15 15 32 2 32 24 21.93 28 24 23.37 6.59%
3 15 15 32 8 32 24 21.78 28 24 23.00 5.59%
3 15 15 32 32 31 24 22.09 28 24 23.44 6.15%
3 15 30 2 2 26 20 14.89 27 19 14.93 0.24%
3 15 30 2 8 26 20 14.94 27 19 14.99 0.29%
3 15 30 2 32 26 20 15.04 25 19 15.29 1.63%
3 15 30 8 2 30 24 24.40 28 24 24.64 0.96%
3 15 30 8 8 29 24 24.54 26 24 25.24 2.87%
3 15 30 8 32 28 24 25.05 27 23 25.86 3.20%
3 15 30 32 2 33 28 33.35 33 27 33.73 1.12%
3 15 30 32 8 32 28 34.46 31 27 35.06 1.74%
3 15 30 32 32 31 27 38.36 28 27 39.56 3.14%
3 15 45 2 2 25 19 17.90 25 20 18.05 0.84%
3 15 45 2 8 24 19 18.08 26 19 18.20 0.67%
3 15 45 2 32 22 19 18.86 25 19 19.07 1.14%
3 15 45 8 2 28 25 29.85 30 25 30.02 0.56%
3 15 45 8 8 28 24 31.36 27 25 31.48 0.38%
3 15 45 8 32 26 23 35.91 25 24 36.20 0.79%
3 15 45 32 2 32 30 42.44 32 30 42.44 0.00%
3 15 45 32 8 28 30 47.31 28 30 47.31 0.00%
3 15 45 32 32 26 28 62.84 26 28 62.84 0.00%
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Table A6.4: Two Symmetric Retailer Experimental Data 

r μ σ2 b p 
*
Ws  *

1s  C* 
H
Ws  1

Hs  

2 10 5 0.5 18 15 11.56 18 15 11.56 
2 10 5 5 17 15 12.89 16 15 12.92 
2 10 5 10 18 14 14.00 16 14 14.59 
2 10 5 20 17 14 15.49 14 14 16.92 
2 10 10 0.5 19 16 13.92 19 16 13.92 
2 10 10 5 18 16 16.19 17 16 16.25 
2 10 10 10 17 16 18.22 18 15 18.17 
2 10 10 20 17 15 21.11 17 15 21.11 
2 10 20 0.5 20 17 15.94 20 17 15.94 
2 10 20 5 18 17 19.67 18 17 19.67 
2 10 20 10 18 16 22.96 18 16 22.96 
2 10 20 20 18 16 27.43 17 16 27.60 
2 20 5 0.5 19 17 16.50 19 17 16.50 
2 20 5 5 19 15 21.07 15 16 21.35 
2 20 5 10 18 14 24.59 15 15 24.69 
2 20 5 20 16 14 29.60 12 15 29.89 
2 20 10 0.5 20 19 19.87 22 18 20.56 
2 20 10 5 19 17 27.68 18 17 27.89 
2 20 10 10 19 16 33.48 18 16 33.41 
2 20 10 20 13 17 42.35 14 16 42.34 
2 20 20 0.5 19 22 23.26 23 20 23.75 
2 20 20 5 20 19 34.95 19 19 35.11 
2 20 20 10 18 18 44.20 17 18 44.84 
2 20 20 20 17 17 57.58 14 18 58.11 
3 10 5 0.5 20 14 11.76 17 15 11.92 
3 10 5 5 20 14 11.82 17 15 11.95 
3 10 5 10 18 15 11.91 17 15 12.03 
3 10 5 20 19 14 11.87 17 15 11.93 
3 10 10 0.5 19 16 14.35 18 16 14.52 
3 10 10 5 19 16 14.35 18 16 14.53 
3 10 10 10 19 16 14.38 17 16 14.91 
3 10 10 20 19 16 14.49 17 16 14.98 
3 10 20 0.5 20 17 16.64 18 17 17.25 
3 10 20 5 20 17 16.67 18 17 17.23 
3 10 20 10 20 17 16.73 18 17 17.21 
3 10 20 20 20 17 16.92 18 17 17.33 
3 20 5 0.5 20 16 17.45 17 17 17.55 
3 20 5 5 19 16 17.73 19 16 17.73 
3 20 5 10 19 16 18.15 17 16 18.27 
3 20 5 20 19 15 18.98 17 16 19.02 
3 20 10 0.5 21 18 21.30 20 18 21.35 
3 20 10 5 22 17 22.30 19 18 22.27 
3 20 10 10 21 17 22.98 20 17 22.99 
3 20 10 20 20 17 24.67 19 17 24.65 
3 20 20 0.5 21 20 25.21 22 20 25.11 
3 20 20 5 21 19 27.00 21 19 27.00 
3 20 20 10 21 19 28.52 19 19 28.87 
3 20 20 20 18 19 31.35 18 19 31.35 
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Table A6.5: Four Symmetric Retailer Experimental Data 

r μ σ2 b p 
*
Ws  *

1s  C* 
H
Ws  1

Hs  
2 5 5 0.5 15 8 11.14 16 8 11.13 
2 5 5 5 17 7 12.83 14 7 13.26 
2 5 5 10 19 6 14.15 14 7 14.23 
2 5 5 20 17 6 15.98 12 7 16.29 
2 5 10 0.5 20 8 13.47 21 9 14.72 
2 5 10 5 19 7 16.16 14 8 16.33 
2 5 10 10 18 7 18.27 14 8 18.43 
2 5 10 20 15 7 21.40 11 8 21.72 
2 5 20 0.5 19 9 16.09 20 10 17.10 
2 5 20 5 19 8 20.52 16 9 20.78 
2 5 20 10 17 8 24.06 13 9 24.45 
2 5 20 20 18 7 28.89 14 8 29.39 
2 10 5 0.5 18 8 15.54 19 9 16.09 
2 10 5 5 19 6 19.87 16 8 20.97 
2 10 5 10 16 6 22.59 8 8 23.49 
2 10 5 20 13 6 26.40 9 7 27.08 
2 10 10 0.5 20 9 18.92 20 11 20.45 
2 10 10 5 19 7 25.79 16 9 27.15 
2 10 10 10 20 6 30.31 13 9 33.10 
2 10 10 20 12 7 36.70 8 8 37.24 
2 10 20 0.5 22 10 22.95 22 12 24.08 
2 10 20 5 21 8 33.97 14 11 35.82 
2 10 20 10 20 7 41.52 15 10 45.77 
2 10 20 20 16 7 51.31 9 10 56.67 
3 5 5 0.5 18 7 11.45 19 8 12.29 
3 5 5 5 18 7 11.54 16 8 11.62 
3 5 5 10 18 7 11.65 13 8 11.67 
3 5 5 20 17 7 11.81 13 8 11.85 
3 5 10 0.5 18 8 13.92 18 9 14.79 
3 5 10 5 17 8 14.13 15 9 14.28 
3 5 10 10 17 8 14.33 12 9 14.47 
3 5 10 20 16 8 14.69 12 9 14.88 
3 5 20 0.5 18 9 16.94 17 10 17.79 
3 5 20 5 17 9 17.35 15 10 17.87 
3 5 20 10 20 8 17.71 16 9 17.67 
3 5 20 20 20 8 18.38 16 9 18.45 
3 10 5 0.5 16 8 16.35 17 10 18.72 
3 10 5 5 18 7 17.07 13 9 17.58 
3 10 5 10 17 7 17.68 10 9 18.42 
3 10 5 20 16 7 18.82 11 8 19.02 
3 10 10 0.5 18 9 20.20 19 11 23.01 
3 10 10 5 19 8 21.49 18 10 23.68 
3 10 10 10 17 8 22.74 15 10 25.15 
3 10 10 20 15 8 24.77 11 9 25.16 
3 10 20 0.5 19 10 24.73 19 12 26.48 
3 10 20 5 20 9 27.34 13 12 29.21 
3 10 20 10 18 9 29.54 14 11 30.99 
3 10 20 20 14 9 33.51 9 11 34.30 
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Table A6.6: Asymmetric Backorder Cost Experiment Data 

r μ σ2 p 
*
Ws  *

1s  *
2s  C* 

H
Ws  1

Hs 2
Hs  CH 

2 10 10 0.5 21 14 16 12.54 21 14 15 12.55 
2 10 10 5 20 14 15 14.36 19 14 15 14.37 
2 10 10 10 19 14 15 15.92 17 14 15 16.14 
2 10 10 20 19 13 14 18.24 16 14 15 18.54 
2 10 20 0.5 21 14 17 13.50 21 14 17 13.50 
2 10 20 5 19 14 17 16.17 19 15 16 16.51 
2 10 20 10 19 14 16 18.30 18 14 16 18.41 
2 10 20 20 19 13 15 21.66 16 14 16 22.06 
2 20 10 0.5 23 16 18 17.98 24 15 17 18.05 
2 20 10 5 19 15 17 24.34 19 15 16 24.43 
2 20 10 10 18 14 16 29.04 19 15 15 29.57 
2 20 10 20 15 14 16 35.62 15 15 15 36.07 
2 20 20 0.5 24 16 20 19.56 24 16 19 19.61 
2 20 20 5 19 15 19 28.08 19 16 18 28.30 
2 20 20 10 18 14 18 34.50 19 15 17 34.74 
2 20 20 20 17 13 17 43.69 16 15 17 44.06 
2 40 10 0.5 24 17 21 23.83 29 15 18 24.28 
2 40 10 5 16 15 18 38.90 19 15 17 39.13 
2 40 10 10 13 14 17 48.98 16 15 15 49.88 
2 40 10 20 12 12 15 61.98 12 14 15 62.56 
2 40 20 0.5 24 17 24 26.03 28 16 21 26.31 
2 40 20 5 17 15 21 45.25 16 18 20 46.41 
2 40 20 10 14 14 20 58.78 12 17 19 60.77 
2 40 20 20 13 12 17 77.33 11 15 18 79.15 
3 10 10 0.5 20 14 16 12.94 19 14 16 12.96 
3 10 10 5 20 14 16 12.99 18 14 16 13.20 
3 10 10 10 20 14 16 13.02 19 14 15 13.22 
3 10 10 20 20 14 16 13.06 19 14 15 13.34 
3 10 20 0.5 21 14 17 14.15 19 14 17 14.22 
3 10 20 5 20 14 17 14.17 19 14 17 14.29 
3 10 20 10 20 14 17 14.26 19 14 17 14.31 
3 10 20 20 20 14 17 14.36 19 14 17 14.45 
3 20 10 0.5 20 17 18 19.25 23 15 17 19.33 
3 20 10 5 20 16 18 19.83 22 15 17 19.94 
3 20 10 10 20 16 17 20.58 20 16 17 20.58 
3 20 10 20 18 16 17 21.58 20 15 16 21.67 
3 20 20 0.5 20 16 21 21.18 24 15 19 21.27 
3 20 20 5 21 16 19 22.20 21 16 19 22.20 
3 20 20 10 20 16 19 23.21 21 16 18 23.55 
3 20 20 20 18 16 19 25.02 19 16 18 25.28 
3 40 10 0.5 21 17 20 26.28 27 15 18 26.91 
3 40 10 5 17 16 19 30.78 21 15 17 31.06 
3 40 10 10 16 15 18 34.43 20 15 16 34.82 
3 40 10 20 15 14 17 39.73 17 15 16 39.77 
3 40 20 0.5 22 16 23 28.89 26 16 22 29.06 
3 40 20 5 17 16 22 35.24 18 18 21 35.43 
3 40 20 10 16 15 21 40.50 17 17 20 40.82 
3 40 20 20 16 14 19 48.02 16 16 18 49.10 
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Table A6.7: Asymmetric Demand Experiment Data 

r 
2
1σ  2

2σ  
b p 

*
Ws  *

1s  *
2s  C* 

H
Ws  1

Hs  2
Hs  CH 

2 5 15 5 0.5 20 8 21 11.28 21 8 20 11.26 
2 5 15 5 5 20 7 20 12.77 18 7 22 12.95 
2 5 15 5 10 18 7 21 13.97 17 7 22 14.09 
2 5 15 5 20 19 6 20 15.70 17 6 21 15.84 
2 5 15 10 0.5 21 9 22 13.49 22 9 22 13.57 
2 5 15 10 5 20 8 22 16.07 18 8 24 16.44 
2 5 15 10 10 18 8 23 18.25 17 8 24 18.42 
2 5 15 10 20 15 8 25 21.19 15 8 25 21.19 
2 5 15 20 0.5 23 10 23 15.50 23 10 23 15.50 
2 5 15 20 5 20 9 24 19.65 19 9 26 20.28 
2 5 15 20 10 20 8 23 23.01 17 9 26 23.21 
2 5 15 20 20 19 8 23 27.94 15 9 26 28.60 
2 10 30 5 0.5 22 9 23 16.03 25 8 21 16.40 
2 10 30 5 5 17 8 23 20.79 20 7 22 20.92 
2 10 30 5 10 17 7 22 24.08 15 7 24 24.37 
2 10 30 5 20 16 6 21 28.65 17 6 21 28.61 
2 10 30 10 0.5 24 11 25 19.31 25 10 24 19.33 
2 10 30 10 5 19 9 25 27.06 19 9 25 27.06 
2 10 30 10 10 18 8 24 33.00 16 9 26 33.36 
2 10 30 10 20 17 7 23 41.17 12 9 27 41.61 
2 10 30 20 0.5 26 12 27 22.37 27 11 26 22.46 
2 10 30 20 5 19 11 28 34.21 19 11 28 34.21 
2 10 30 20 10 15 11 29 43.28 15 11 29 43.28 
2 10 30 20 20 15 9 27 56.64 14 10 28 56.81 
3 5 15 5 0.5 19 8 21 11.59 20 8 19 11.90 
3 5 15 5 5 19 8 21 11.70 19 8 20 11.88 
3 5 15 5 10 19 8 21 11.81 17 8 21 12.23 
3 5 15 5 20 21 7 20 11.94 18 7 21 12.11 
3 5 15 10 0.5 21 9 22 14.05 20 10 21 14.83 
3 5 15 10 5 21 8 22 14.25 19 9 22 14.54 
3 5 15 10 10 21 8 22 14.38 17 9 24 14.70 
3 5 15 10 20 21 8 22 14.68 18 8 24 14.77 
3 5 15 20 0.5 21 10 23 16.36 21 10 23 16.45 
3 5 15 20 5 22 9 23 16.70 18 10 25 16.96 
3 5 15 20 10 22 9 23 17.03 14 10 29 18.00 
3 5 15 20 20 20 9 24 17.63 15 9 29 19.46 
3 10 30 5 0.5 20 9 23 16.98 25 9 20 17.75 
3 10 30 5 5 20 8 23 17.66 22 7 23 18.13 
3 10 30 5 10 19 8 23 18.21 20 7 24 18.63 
3 10 30 5 20 19 7 23 19.15 20 6 24 19.87 
3 10 30 10 0.5 21 10 25 20.82 26 10 23 21.27 
3 10 30 10 5 20 10 25 22.23 20 9 27 22.37 
3 10 30 10 10 20 9 25 23.32 18 9 28 23.78 
3 10 30 10 20 20 8 25 25.16 17 8 28 25.76 
3 10 30 20 0.5 22 12 28 24.50 26 11 26 24.60 
3 10 30 20 5 21 11 28 26.90 19 11 30 27.26 
3 10 30 20 10 21 10 27 28.97 15 11 33 29.91 
3 10 30 20 20 19 10 28 32.13 16 10 32 33.03 
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APPENDIX 2 

PROOFS OF ANALYTICAL PROPOSITIONS 

 

 

 

Define the critical fractiles 

W

W

b h
b h h

α
α

α α

+
Θ =

+ +
  ,

,
l d
W

W

b
b h h

α
α

α α

Θ =
+ +

  ,l c
W

W

b
b h hα

Θ =
+ +

  ,u c
W

W

b
b h

Θ =
+

 

Let  

( )1zα α
−= Φ Θ , ( ), 1 ,

, ,
l d l d
W Wz α α

−= Φ Θ , ( ), 1 ,
, ,

u d u d
W Wz α α

−= Φ Θ , ( ), 1 ,l c l c
W Wz −= Φ Θ and 

( ), 1 ,u c u c
W Wz −= Φ Θ . 

Let φ(·) and Φ(·) represent the standard normal pdf and cdf, respectively.  Following the 

approach in Zipkin (2000) (see also Shang and Song, 2003),  

2s L z Lα α α α α αμ σ= +         (A1) 

, , 2
, , ,

l d l d
W W W Ws L z Lα α α α αμ σ= +         (A2) 

, , 2
, , ,

u d u d
W W W Ws L z Lα α α α αμ σ= +         (A3) 

, , 2l c l c
W W W Ws L z Lμ σ= +         (A4) 

, , 2u c u c
W W W Ws L z Lμ σ= +         (A5) 

, ,, ,
, ,2 2

1

( )( )
4 4

u d l du c l c n
W Wa W W

W W W W
i

z zz zs L L Lα α
αμ σ σ

=

++
= + + ∑     (A6) 

( ) ( ) ( ) 2
WC s b h h z Lα α α α α α αφ σ= + +       (A7) 

( ) ( ) ( ), , , 2
, , , , ,

l d u d u d
W W W W W W WC s b h z L h Lα α α α α α α αφ σ μ= + +     (A8) 

, ,
,

1

n
l d l d
W WC C α

α =

= ∑           (A9) 

( ) ( ) ( ), , , 2
, , , , ,

u d l d l d
W W W W W W WC s b h h z L h Lα α α α α α α α αφ σ μ= + + +     (A10) 

, ,
,

1

n
u d u d
W WC C α

α =

= ∑          (A11) 



 

 114

( ) ( ) ( ), , , 2l c u c u c
W W W W W W WC s b h z L h Lφ σ μ= + +       (A12) 

( ) ( ) ( ), , , 2u c l c l c
W W W W W W WC s b h h z L h Lα φ σ μ= + + +      (A13) 

, ,l d d u d
W W WC C C≤ ≤          (A14) 

, ,l c c u c
W W WC C C≤ ≤          (A15) 

 

and from (3),  

( )c a a d
WC C s C≤ ≤          (A16) 

 

Proof of Proposition 4.1 

Proposition 4.1 follows by inspection of equations A1 through A16. 

(a) As bj increases, 

a. jΘ , ,
,

l d
W jΘ , ,

,
u d
W jΘ , ,l c

WΘ ,and ,u c
WΘ increase, increasing A1 to A13.   

b. αΘ remains unchanged where j α≠  

(b) As hi increases, 

a. jΘ , ,
,

l d
W jΘ , and ,l c

WΘ , decrease, decreasing A1, A2, A4, and A6. 

b. Examination of equations A7, A8, A10, A12, and A13 shows that for a 

fixed y, Ci(y) increases with hj due to the increase in the first 

coefficient in A7, A10, and A13.  Meanwhile, A8 and A12 are 

independent of changes in hj.  Hence the collapsed system remains 

unchanged while the decomposed systems increase in costs. 

c. jΘ and hence A1 remains unchanged where j α≠  

(c) As Lj increases,  

a. equations A1 through A13 increase 

b. equations A1 and A7 remain unchanged where j α≠  
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Proof of Proposition 4.2. 

In this proposition, we hold the total system demand constant.  Assuming demand is 

distributed normally with mean μ and variance σ2, splitting among n identical 

terminal locations gives 
1

n

α
α

μ μ
=

= ∑ and 2 2

1

n

α
α

σ σ
=

= ∑ , or 
nα
μμ =  and 

2
2

nα
σσ =  while 

splitting the demand process across n+1 identical terminal locations gives 
1nβ

μμ =
+

 

and 
2

2

1nβ
σσ =
+

. 

(a) We consider three cases, the retail stages, and the collapsed and decomposed 

serial systems. 

a. For the retail stages, βμ  < αμ  and 2
ασ < 2

βσ , hence sα > sβ from 

equations A1.   

b. For the collapsed serial system, 
1

n

α
α

μ μ
=

= ∑ and 2 2

1

n

α
α

σ σ
=

= ∑ remain 

unchanged.  Hence Equations A4 and A5 remain unchanged.  

c. For the decomposed systems, consider 
1

, ,
, ,

1 1

n n
l d l d
W Ws sα β

α β

+

= =

−∑ ∑ .  From 

equations A2,  

= ( ) ( )1
, 2 , 2

1 1

n n
l d l dL z L L z Lα α α α α β β β β β

α β

μ σ μ σ
+

= =

+ − +∑ ∑  

= ( )
21

, 2 ,

1 1 1 1

n n
l d l dn nL z L L z L

n n
α α

α α α α α α α α
α β

μ σμ σ
+

= =

⎛ ⎞
+ − +⎜ ⎟

⎜ ⎟+ +⎝ ⎠
∑ ∑  

= ( )
21

, 2 ,

1 1 1

n n
l d l d nz L z L

n
α

α α α α α
α β

σσ
+

= =

⎛ ⎞
− ⎜ ⎟

⎜ ⎟+⎝ ⎠
∑ ∑  

  
2

, 2 ( 1)
1

l d nz L n n
n

α
α α α

σσ
⎛ ⎞

= − +⎜ ⎟
⎜ ⎟+⎝ ⎠

 

  ( ), 2 2 2( 1)l dz L n n nα α α ασ σ= − +  

 ,l dz nLα α ασ= −  
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  <  0 

  The above holds for 
1

, ,
, ,

1 1

n n
u d u d
W Ws sα β

α β

+

= =

−∑ ∑ as well. 

Hence the echelon base stock level of the warehouse is non-decreasing in the number of 

retailers.  To see the effects on the system costs, consider 

d.   For the retail installations, let K be a positive constant equal to 

( ) ( )Wb h h zα α αφ+ + .  Then 

1

1 1

n n

C Cα β
α β

+

= =

−∑ ∑  

= ( ) ( )1
2 2

1 1

n n

K L K Lα α β β
α β

σ σ
+

= =

−∑ ∑   

= ( )
21

2

1 1 1

n n nK L K L
n

α
α α α

α β

σσ
+

= =

⎛ ⎞
− ⎜ ⎟

⎜ ⎟+⎝ ⎠
∑ ∑   

= ( ) ( )
2

2 1
1

nn K L n K L
n

α
α α α

σσ
⎛ ⎞

− + ⎜ ⎟
⎜ ⎟+⎝ ⎠

 

= ( )2 2( 1)K n L n n Lα α α ασ σ− +  

= 2K n Lα ασ−  

< 0 

 

e.  For the collapsed system, 
1

n

α
α

μ μ
=

= ∑ and 2 2

1

n

α
α

σ σ
=

= ∑ remain unchanged.  

Hence Equations A11 and A12 remain unchanged. 

   

f.  For the decomposed systems, let K be a positive constant equal to 

( ) ( ),
,

u d
W Wb h z αφ+ .  Then 

1
, ,
, ,

1 1

n n
l d l d
W WC Cα β

α β

+

= =

−∑ ∑  

= ( ) ( )1
2 2

1 1

n n

W WK L h L K L h Lα α α α β β β β
α β

σ μ σ μ
+

= =

+ − +∑ ∑   
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( )
21

2

1 1 1 1

n n
W

W
n nhK L h L K L L
n n

α α
α α α α α α

α β

σ μσ μ
+

= =

⎛ ⎞
= + − +⎜ ⎟

⎜ ⎟+ +⎝ ⎠
∑ ∑  

( )
21

2

1 1 1

n n nK L K L
n

α
α α α

α β

σσ
+

= =

⎛ ⎞
= − ⎜ ⎟

⎜ ⎟+⎝ ⎠
∑ ∑  

( ) ( )
2

2 1
1

nK n L n L
n

α
α α α

σσ
⎛ ⎞⎛ ⎞
⎜ ⎟= − + ⎜ ⎟

⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
 

2K n Lα ασ= −  

< 0 

 

The proof for ,
,

u d
WC α follows exactly as above if we instead let K = 

( ) ( ),
,

l c
W Wb h h zα αφ+ + .    

 

Hence the costs of both the retailer and warehouse echelons are nondecreasing in the 

number of retailers. 

 

For Propositions 4.3 and 4.4, we assume the leadtime demand at retailer α is uniformly 

distributed.  Specifically, we will consider Uniform(0,1) distributions.  Let f(·) and F(·) 

represent the Uniform(0,1) pdf and cdf, respectively.  The base stock levels become  

F-1(Θ) = Θ. 

 

Following the standard approach (e.g. see pp 205-209 in Zipkin (2000)) 

( ) ( )( )1 1
2 WC s b hα α α α= − Θ +         (A17) 

( ) ( ), , ,
, , ,

1 1
2

l d u d u d
W W W WC s b h Lα α α α α αμ= − Θ +       (A18) 

( ) ( ), , ,
, , ,

1 1
2

u d l d l d
W W W WC s b h Lα α α α α αμ= − Θ +       (A19) 

( ) ( ), , ,1 1
2

l c u c u c
W W W WC s b h Lαμ= − Θ +         (A20) 
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( ) ( ), , ,1 1
2

u c l c l c
W W W WC s b h Lαμ= − Θ +        (A21) 

 

Proof of Proposition 3. 

 

Here we investigate the effects of backorder asymmetry.  We consider two cases, the 

collapsed and decomposed systems.  Let b1 = bα(1+Δ) and b2 = bα (1-Δ) where 1,2α ≠ . 

(a) For the collapsed systems, 
1

1 n

b bα α
α

μ
μ =

= ∑ remains unchanged.  Hence the critical 

fractiles ,u c
αΘ and ,l c

αΘ remain unchanged and hence base stocking level equations 

A4 and A5,  and equations A20 and A21 remain unchanged. 

 

(b) For the decomposed systems, let B = Wh hα + , and note that B > 0.  Consider 

 
, , ,
, ,1 ,22 l d l d l d

W W Ws s sα − −  

= ( ) ( ) ( )1 1 1
, ,1 ,22 d d d

i i iF F Fα
− − −Θ − Θ − Θ  

1 1 11 2

1 2

2 b b bF F F
b B b B b B

α

α

− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠⎝ ⎠

 

= 1 1 12 b b bF F F
b B b B b B

− − −+ Δ − Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + Δ + − Δ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

= 2 b b b
b B b B b B

+ Δ − Δ
− −

+ + + Δ + − Δ
 

= ( )( )( )
( )( )( )
2 b b B b B
b B b B b B

+ + Δ + − Δ
+ + + Δ + − Δ

 ( )( )( )
( )( )( )

b B b b B
b B b B b B

+ + Δ + − Δ
−

+ + + Δ + − Δ
 

   
( )( )( )

( )( )( )
b B b B b

b B b B b B
+ + + Δ − Δ

−
+ + + Δ + − Δ

 

 

After expansion and intermediate collection of like terms,  
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( )
( )( )( )

3 2 2 22 2b b B bB b

b B b B b B

+ + − Δ
=

+ + + Δ + − Δ ( )( )( )
3 2 2 2 2 22b b B bB bB B b B

b B b B b B
+ + Δ + + Δ − Δ − Δ

−
+ + + Δ + − Δ

 

( )( )( )
3 2 2 2 2 22b b B bB b bB B B

b B b B b B
+ + − Δ − Δ − Δ − Δ

−
+ + + Δ + − Δ

 

= 
( )( )( )

22B
b B b B b B

Δ
+ + + Δ + − Δ

 > 0 

 

The last expression is increasing in Δ. 

The above also holds for , , ,
, ,1 ,22 u d u d u d

W W Ws s sα − −  if we define B = Wh . 

 

Thus increasing asymmetry in backordering costs decreases equations A2 and A3.  

To see the results for the effects on system costs, let A = W ih h+ . First consider  

( ) ( ) ( ), , , , , ,
, , ,1 ,2 ,1 ,22 u d l d u d l d u d l d

W W W W W WC s C s C sα α − −   

( )( ) ( )( ) ( )( ), , ,
, ,1 1 ,2 2

1 11 1 1
2 2

l d l d l d
W W Wb b bα α= − Θ − − Θ − − Θ

1 22 W W Wh L h L h Lα α α αμ μ μ+ − −  

( ) ( )( ) ( )( ), , ,
, ,1 ,2

1 11 1 1
2 2

l d l d l d
W W Wb b bα α α α= − Θ − − Θ + Δ − − Θ − Δ

( ) ( ) ( )1 11 1 1
2 2i

W W W

b b bb b b
b h h b h h b h h

α α α
α α

α α α α α α

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ Δ − Δ
= − − − + Δ − − − Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + Δ + + − Δ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

( ) ( )
( )

( ) ( )
( )

2 22

2 2 2 2
b b b bbb

b A b A b A
+ Δ + Δ − Δ − Δ

= − − + − +
+ + Δ + − Δ +

 

( )
( )

( )
( )

2 22

2 2
b bb

b A b A b A
+ Δ − Δ

= − + +
+ + Δ + − Δ +

 

( )( ) ( )( ) ( ) ( )( ) ( )
( )( )( )

2 2221
2

b b A b A b A b b A b A b b A
b A b A b A

+ Δ + − Δ + − + + Δ − Δ + − + − Δ + Δ +
=

+ + Δ + − Δ +
 

And after expansion and collection of terms, 
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( )( )( )
2 2A

b A b A b A
Δ

=
+ + Δ + − Δ +

>  0 

 

The last expression is increasing in Δ 

 

Note that the above analysis also holds for ( ) ( ) ( ), , , , , ,
, , ,1 ,2 ,1 ,22 l d u d l d u d l d u d

i i i i i iC s C s C sα α − −  if we 

define A= Wh .  Thus asymmetry in backorder cost decreases equations A18 and A19.  

Combined with the above results, we find that both stocking levels and system costs 

are decreasing in backorder cost asymmetry. 

 

Proof of Proposition 4.4. 

 

We show the effects of holding cost asymmetry on stocking levels and total system costs.  

Beginning with the effects on stocking levels, we consider two cases, the collapsed and the 

decomposed systems. 

 

(a) For the collapsed system, with h1 = hα(1+Δ), and h2 = hα (1-Δ), consider that the 

weighted holding cost ( ) ( )1 2
1,2

1h h h hα
αμ ≠

⎛ ⎞
= + + Δ + − Δ⎜ ⎟

⎝ ⎠
∑ is independent of Δ.  

Hence ,l c
WΘ and ,u c

WΘ , and thus the collapsed system stocking levels are 

independent of Δ.    

 

(b) For the decomposed system, consider , , ,
, ,1 ,22 l d l d l d

W W Ws s sα − −  where α ≠ 1,2.  Letting A = 

Wh hα+ , 

, , ,
, ,1 ,22 l d l d l d

W W Ws s sα − −  

, 2 , 2 , 2
, , 1 ,1 , 2 ,2 ,2 2 l d l d l d

W W W W W W W W WL z L L z L L z Lα α α α α α α αμ σ μ σ μ σ= + − − − −  

, 2 , 2 , 2
, , ,1 , ,2 ,2 l d l d l d

W W i W W W Wz L z L z Lα α α α α ασ σ σ= − −  

( )2 , , ,
, , ,1 ,22 l d l d l d

W W W WL z z zα α ασ= − −  
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2
, 2W

W W W

b b bL
b h h b h h b h h

α α α
α α

α α α α α α

σ
⎛ ⎞

= − −⎜ ⎟+ + + + + Δ + + − Δ⎝ ⎠
 

2
, 2W

b b bL
b A b A b A

α α α
α α

α α α

σ
⎛ ⎞

= − −⎜ ⎟+ + + Δ + − Δ⎝ ⎠
 

( )( ) ( )( ) ( )
( )( )( )

2
,

2
W

b b A b A b b A b A b b A b A
L

b A b A b A
α α α α α α α α α

α α
α α α

σ
⎛ ⎞+ + Δ + − Δ − + + − Δ − + + + Δ

= ⎜ ⎟⎜ ⎟+ + + Δ + − Δ⎝ ⎠
 

After expansion and collection of terms, 

( )( )( )
22b

b A b A b A
α

α α α

− Δ
=

+ + + Δ + − Δ
< 0 

 

The last expression is decreasing in Δ 

 

Note that the above also holds for , , ,
, ,1 ,22 u d u d u d

W W Ws s sα − −  if we let A = Wh .  Thus the 

warehouse echelon base stock level is nondecreasing in holding cost asymmetry. 

 

To see the effects of holding cost asymmetry on total system costs, consider 

(c) For the collapsed systems, the weighted holding cost 

( ) ( )1 2
1,2

1h h h hα
αμ ≠

⎛ ⎞
= + + Δ + − Δ⎜ ⎟

⎝ ⎠
∑ is independent of Δ.  Hence equations A20 

and A21 are independent of holding cost asymmetry. 

  

(d) For the decomposed systems, let A = Wh hα+ . First consider 

( ) ( ) ( ), , , , , ,
, , ,1 ,1 ,2 ,22 u d l d u d l d u d l d

W W W W W WC s C s C sα α − −  

( ) ( ) ( ), , ,
, ,1 ,2

1 11 1 1
2 2 2 2

l d l d l dW W
W W W W

h L h Lb h L b bα α α α
α α α α α α

μ μμ= − Θ + − − Θ − − − Θ −  

( ) ( ) ( ), , ,
, ,1 ,2

1 11 1 1
2 2

l d l d l d
W W Wb b bα α α α= − Θ − − Θ − − Θ  

1 2

1 11 1 1
2 2W W W

b b bb b b
b h h b h h b h h

α α α
α α α

α α α α

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − − − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 



 

 122

2 2 2

1 2

1 1
2 2W W W

b b b
b h h b h h b h h

α α α

α α α α

= − + +
+ + + + + +

 

2 2 21
2W W W

b b b
b h h b h h b h h

α α α

α α α α α α

= − + +
+ + + + + Δ + + − Δ

 

2 2 21 1
2 2

b b b
b A b A b A

α α α

α α α

= − + +
+ + + Δ + − Δ

 

( )( ) ( )( ) ( )( )
( )( )( )

2 2 22
2

b b A b A b b A b A b b A b A
b A b A b A

α α α α α α α α α

α α α

− + + Δ + − Δ + + + − Δ + + + + Δ
=

+ + + Δ + − Δ
 

( )( ) ( )( ) ( )( )( )
( )( )( )

2 2
2

b b A b A b A b A b A b A
b A b A b A

α α α α α α α

α α α

+ + − Δ + + + + Δ − + + Δ + − Δ
=

+ + + Δ + − Δ
 

( )( ) ( )( ) ( )( )( )
( )( )( )

2 2
2

b b A b A b A b A b A b A
b A b A b A

α α α α α α α

α α α

+ + − Δ + + + + Δ − + + Δ + − Δ
=

+ + + Δ + − Δ
 

( ) ( )( )
( )( )( )

2 2 2 2 2

2

b b b Ab Ab A A b b Ab Ab A A

b A b A b A
α α α α α α α α α

α α α

− Δ + + − Δ + + + Δ + + + Δ +
=

+ + Δ + + − Δ
 

( )
( )( )( )

2 2 2 22

2

b b Ab b Ab A A b A

b A b A b A
α α α α α α

α α α

+ − Δ + + − Δ + Δ + Δ − Δ
−

+ + Δ + + − Δ
 

 

and collecting like terms gives 

( )( )( )
2 2b

b A b A b A
α

α α α

Δ
=

+ + Δ + + − Δ
 

> 0, and increasing in Δ. 

 

Note that the above also holds for ( ) ( ) ( ), , , , , ,
, , ,1 ,1 ,2 ,22 l d u d l d u d l d u d

W W W W W WC s C s C sα α − − if we let 

WA h= .  Thus the total system costs are nondecreasing in holding cost asymmetry. 

 

 

We next consider asymmetry in demand.  Because demand does not appear in the critical 

fractiles, we revert to normal distributions. 
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Proof of Proposition 4.5. 

 

We consider two cases, the collapsed and decomposed systems. 

(a) For the collapsed system, note that
1

n

α
α

μ μ
=

= ∑ and 2 2

1

n

α
α

σ σ
=

= ∑ are independent 

of Δ.  Thus the collapsed stocking levels , , 2l c l c
W W W Ws L z Lμ σ= + and 

, , 2u c u c
W W W Ws L z Lμ σ= +  are likewise independent of asymmetry in αμ and 2

ασ .  

Also, the cost equations ( ) ( ) ( ), , , 2l c u c u c
W W W W W WC s b h z L h Lαφ σ μ= + +  and 

( ) ( ) ( ), , , 2u c l c l c
W W W W W WC s b h h z L h Lα αφ σ μ= + + +  are likewise independent of 

asymmetry in αμ and 2
ασ .   

 

(b) For the decomposed system, first consider , , ,
, ,1 ,22 l d l d l d

W W Ws s sα − −  

, 2 , 2 , 2
, , 1 ,1 1 , 2 ,2 2 ,2 2 l d l d l d

W W W W W W W W WL z L L z L L z Lα α α α α αμ σ μ σ μ σ= + − − − −  

, 2 , 2 , 2
, , ,1 1 , ,2 2 ,2 l d l d l d

W W W W W Wz L z L z Lα α α α ασ σ σ= − −  

( ), 2 2 2
, , 1 , 2 ,4l d

W W W Wz L L Lα α α α ασ σ σ= − −  

, 2 2 2
, , 4l d

W Wz Lα α α α α
μ μσ σ σ

μ μ
⎛ ⎞+ Δ − Δ

= − −⎜ ⎟⎜ ⎟
⎝ ⎠

 

, 2
, , 4l d

W Wz Lα α α
μ μσ

μ μ
⎛ ⎞+ Δ − Δ

= − −⎜ ⎟⎜ ⎟
⎝ ⎠

 

, 2
, , 2l d

W Wz Lα α α
μ μσ
μ μ μ μ

⎛ ⎞Δ Δ
≥ − − − +⎜ ⎟⎜ ⎟

⎝ ⎠
 

, 2
, , 2 0l d

W Wz Lα α α
μ μσ
μ μ

⎛ ⎞
= − − =⎜ ⎟⎜ ⎟

⎝ ⎠
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Note that the above follows for , , ,
, ,1 ,22 u d u d u d

W W Ws s sα − − as well if we substitute ,
,

u d
Wz α for 

,
,

l d
Wz α .  Thus the echelon base stock level at the warehouse is nonincreasing in 

demand rate asymmetry. 

 

(c) Next, consider ( ) ( ) ( ), , , , , ,
, , ,1 ,1 ,2 ,22 u d l d u d l d u d l d

W W W W W WC s C s C sα α − −  

( ) ( ) ( ) ( )
( ) ( )

, 2 , 2
, , , ,1 1 , 1 ,

, 2
,2 2 , 2 ,

2 2l d l d
W W i W W W W W W W W

l d
W W W W W

b h h z L h L b h h z L h L

b h h z L h L

α α α α α α α α α α

α α α α

φ σ μ φ σ μ

φ σ μ

= + + + − + + −

− + + −

( ) ( ) ( ) ( )( ), 2 , 2 , 2
, , ,1 1 , ,2 2 ,2 l d l d l d

W W W W W W Wb h h z L z L z Lα α α α α α αφ σ φ σ φ σ= + + − −  

( ) ( ), 2
, , 4l d

W W Wb h h z Lα α α α α
μ μφ σ

μ μ
⎛ ⎞+ Δ − Δ

= + + − −⎜ ⎟⎜ ⎟
⎝ ⎠

 

( ) ( ), 2
, , 2 0l d

W W Wb h h z Lα α α α α
μ μφ σ
μ μ μ μ

⎛ ⎞Δ Δ
≥ + + − − − + =⎜ ⎟⎜ ⎟

⎝ ⎠
 

Note that the above follows for ( ) ( ) ( ), , , , , ,
, , ,1 ,1 ,2 ,22 l d u d l d u d l d u d

W W W W W WC s C s C sα α − − as well if we 

substitute ,
,

u d
Wz α for ,

,
l d
Wz α .  Thus the total system inventory costs are nonincreasing 

in demand rate asymmetry. 

 

Proof of Propositions 5.1 and 5.2 

Propositions 5.1 and 5.2 investigate the difference in inventory costs associated 

with varying production network topologies.   Under Assumption 5.2, we may analyze 

the network topologies below in Figures A.1 and A.2. 
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Figure A.1: Serial Topology        

   

 

 

 

 

 

 

 Figure A.2: Distribution Topology 

 

Let the value of delaying differentiation,  

Vd = Z(k+1)-Z(k)         (A21) 

 

Proof of Proposition 1 

By decomposing the network in Figure A2, a lower bound on Vd is obtained.  Under 

the decomposition, the two networks are identical, thus  

 

0dV ≥           (A22) 

 

By allowing instantaneous and costless transshipments between echelons in Figure 

A2, an upper bound on Vd is obtained.  This transforms Figure A2 into a serial 

network.  By reducing the serial chains to single stage problems (see Shang and Song 

(2003)), we have an upper bound for dV which is in turn bounded by 

D1

DI 

D1

DI 
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( ) ( ), , , ,l d u d l c u c
k k k kC s C s−         (A23) 

 

and 

 

( ) ( ), , , ,u d l d u c l c
k k k kC s C s− .        (A24) 

 

Equation A23 is equal to  

 

( ) ( )
1 1 1 1

, 2 , 2
1 1

1 1

k k k k
u c u c

i k k i i i k k i i
i k j i i k i

n b h z L h L b h z n L h n Lα α α αφ σ μ φ σ μ
+ − + −

+ +
= = = =

⎛ ⎞⎛ ⎞ ⎛ ⎞
+ + − + −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑

( ) ( )
1 1

, 2 , 2
k k

u c u c
i k k i k k

i k i k
n b h z L b h z n Lα αφ σ φ σ

+ +

= =

⎛ ⎞ ⎛ ⎞
= + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  

( ) ( )
1

, 2 2
k

u c
i k k

i k
b h z n n Lαφ σ

+

=

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑       (A25) 

Let '
1k kh h− = + Δ and '

k kh h= − Δ .  Then Equation A25 becomes 

( )' 1 2 2
1 '

1

( )k
k k k

k k

b hb h h n n L
b h h αφ σ−

+
+

⎛ ⎞⎛ ⎞+
+ + Φ −⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠

 

( ) 1 2 2
1

1

( )k
k k k

k k

b hb h h n n L
b h h αφ σ−

+
+

⎛ ⎞⎛ ⎞+
= + + − Δ Φ −⎜ ⎟⎜ ⎟⎜ ⎟+ + − Δ⎝ ⎠⎝ ⎠

 

( ) 1 2 21
1

1

( )k
k k k

k k

b hb h h n n L
b h h αφ σ− +

+
+

⎛ ⎞⎛ ⎞+
≤ + + Φ −⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠

    (A26) 

 

Hence Equation A23 is decreasing in Δ . 

 

Likewise, Equation A24 is equal to 
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' ' 1 2 21
1 ' '

, 1 1
, 1

( )k
i k k k

i k k i k k
j k k

b hb h h h n n L
b h h h αφ σ− +

−
≠ − −

≠ −

⎛ ⎞⎛ ⎞
⎛ ⎞ ⎜ ⎟+⎜ ⎟+ + + Φ −⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∑ ∑
 

= 1 2 21
1

, 1 1
, 1

( )k
i k k k

i k k i k k
i k k

b hb h h h n n L
b h h h αφ σ− +

−
≠ − −

≠ −

⎛ ⎞⎛ ⎞
⎛ ⎞ ⎜ ⎟+⎜ ⎟+ + + Φ −⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑
 (A27) 

 

Hence Equation A24 is independent of Δ . 

 

Thus the lower bound of dV  is independent of Δ , while the upper bound is non-

increasing (and potentially decreasing) in Δ .  Hence shifting holding costs downstream 

from the point of differentiation may decrease the value of delaying differentiation.  As n 

increases, the factor 2 2( ) kn n Lασ− also increases, hence the decrease in the value of 

delayed differentiation attributable to the holding cost shift is increasing in n. 

 

Proof of Proposition 5.2 

 

By a similar argument as in Proposition 1, we have 

 

0dV ≥           (A28) 

 

 

( ) ( ), , , ,
1 1 1 1

l d u d l c u c
k k k kC s C s+ + + +−  

( ) ( ) ( ) ( )
1 1

2 2
1 1 1 1

1 1

k k
u u

k k k k i i k k k k i k
i i

n b h h z L n h L b h h z n L h n Lα α α αφ σ μ φ σ μ
− −

+ + + +
= =

= + + + − + + −∑ ∑

( ) ( ) ( ) ( )2 2
1 1

u u
k k k k k k k kn b h h z L b h h z n Lα αφ σ φ σ+ += + + − + +  

( ) ( ) ( )2 2
1

u
k k k kb h h z n n Lαφ σ+= + + −       (A29) 

 

and 
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( ) ( ), , , ,u d l d u c l c
k k k kC s C s−  

( ) ( )
1 1 1 1

, 2 , 2
1 1

1 1 1 1

k k k k
l d l d

i k k i i i k k i i
i i i i

n b h z L n h L b h z n L h n Lα α α αφ σ μ φ σ μ
+ − + −

+ +
= = = =

⎛ ⎞ ⎛ ⎞
= + + − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑

 

( ) ( )
1 1

, 2 , 2

1 1

k k
l d l d

i k k i k k
i i

n b h z L b h z n Lα αφ σ φ σ
+ +

= =

⎛ ⎞ ⎛ ⎞
= + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  

( )
1

, 2 2

1
( )

k
l d

i k k
i

b h z n n Lαφ σ
+

=

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑       (A30) 

 

Let '
2 2h h= + Δ and '

3 3h h= − Δ .  Then (A29) becomes 

 

( ) ( )
'

' ' 1 2 21
1 ' '

1

k
k k k

k k

b hb h h n n L
b h h αφ σ− +

+
+

⎛ ⎞⎛ ⎞+
+ + Φ −⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠

 

( ) ( )1 2 21
1

1

k
k k k

k k

b hb h h n n L
b h h αφ σ− +

+
+

⎛ ⎞⎛ ⎞+ − Δ
= + + Φ −⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠

 

( ) ( )1 2 21
1

1

k
k k k

k k

b hb h h n n L
b h h αφ σ− +

+
+

⎛ ⎞⎛ ⎞+
≥ + + Φ −⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠

     (A31) 

 

Hence (A29) is increasing in Δ . 

 

Likewise, (A30) becomes 

 

'
' ' 1 2 21

1 ' '
1, 1

1,

( )k
i k k k

i k k i k k
i k k

b hb h h h n n L
b h h h αφ σ− +

+
≠ + +

≠ +

⎛ ⎞⎛ ⎞
⎛ ⎞ ⎜ ⎟+⎜ ⎟+ + + Φ −⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑
 

1
1 2 21

1
1

1

( )
k

k
i kk

i
i

i

b hb h n n L
b h

αφ σ
=

− +
=

=

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟+ − Δ⎛ ⎞ ⎜ ⎟⎜ ⎟= + Φ −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑
∑
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1
1 2 21

1
1

1

( )
k

k
i kk

i
i

i

b hb h n n L
b h

αφ σ
=

− +
=

=

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟+⎛ ⎞ ⎜ ⎟⎜ ⎟≥ + Φ −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑
∑

    (A32) 

Hence (A30) is increasing in Δ . 

 

Thus the upper bound of dV is increasing in Δ , the shift of holding costs from the third 

echelon to the second, through the mechanism of effective backordering cost rate at the 

second echelon.  The lower bound remains independent of Δ , hence the value of 

delaying differentiation is non-decreasing, and likely increasing in Δ. As n increases, the 

factor 2 2( ) kn n Lασ− also increases, hence the increase in the value of delayed 

differentiation attributable to the holding cost shift is increasing in n. 
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APPENDIX 3 
SAMPLE SIMULATION CODES 

 
 
 

This appendix presents two sample C++ programs written to generate data for the 

studies discussed above.  The first program identifies a restricted subset of candidate base 

stock solutions.  The second program takes this restricted subset and selects the best 

performing solution, as discussed in the Simulation Methodology sections of Chapters 4, 

5, and 6.  These programs specifically calculate data for symmetric, two-echelon, two-

retailer systems under Poisson demand distributions; however, similar logic was followed 

for data generated throughout this dissertation. 
 
// Program 1: Subset Restriction 
 
 
#include <iostream> 
#include <fstream> 
#include <cstdlib> 
#include <map> 
#include <utility> 
#include <string> 
#include <time.h> 
#include "mt19937ar.h" 
 
using namespace std; 
 
#define RAND_UNIFORM genrand_real1(); 
#define t_INCREMENT_TIMES 50010 
 
double random_normal(double esp,double var) 
{ 
 double u1=RAND_UNIFORM; 
 double u2=RAND_UNIFORM; 
 double z=sqrt(-2.0*log(u1))*cos(2*M_PI*u2); 
 return esp+var*z; 
} 
 
unsigned long random_poisson(double lambda) 
{ 
 double p=exp(-lambda); 
 double g=p; 
 double u=RAND_UNIFORM; 
 unsigned long k=0; 
 while (u>g) 
 { 
  p*=(lambda/(double)(++k)); 
  g+=p; 
 } 
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 return k; 
} 
 
int main(int argc, char *argv[]) 
{ 
 
 float invPosM, invPosW, invPosR1, invPosR2; 
 float aggOrdersW1, aggOrdersW2, aggOrdersM_W; 
 float i1A, i1B, i2, i3, stockOutsA, stockOutsB; 
 float shipToR1, shipToR2; 
 float mean, var; 
 multimap<int, float> ordersW1; 
 multimap<int, float> ordersW2; 
 multimap<int, float> ordersM_W; 
 float max(float x, float y); 
 int random_bimodal(float lambda); 
  
  
 string fileName; 
 
 int LEAD_W_R1; 
 int LEAD_W_R2; 
 int LEAD_M_W; 
 int D1, D2; 
 int lowBoundRA, lowBoundRB, lowBoundW; 
 int highBoundRA, highBoundRB, highBoundW; 
 int totOrders, dole; 
 int supplier,i, j, k, k1, k2; 
 
 float h1A, h1B; 
 float h2; 
 float h3; 
 float bA, bB; 
 float cost[5001]; 
 float lambda; 
 float delta; 
 int numkeep; 
 int invPosWi[9341], invPosR1i[9341], invPosR2i[9341]; 
    float costi[9341], vari[9341],W[9341]; 
    float tval; 
    int keep, point, numpoint; 
 
// declarations of file pointer streams 
 
 ifstream filePointerInLog;          
 ofstream filepointerOutLog; 
 ofstream filepointerOutDemands; 
 
// Random Number Seed 
 
    init_genrand(2); 
    point = 0; 
 
 cout << "Enter filename to write.\n"; 
 cin >> fileName; 
  
 LEAD_M_W = 1; 
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 LEAD_W_R1 = 1; 
 
 h1B = h1A; 
 
  
 cout << "Warehouse holding cost:\n"; 
 cin >> h2; 
 h3 = 0; 
 cout << "Retailer 1 holding cost:\n"; 
      cin >> h1A; 
 cout << "Retailer 2 holding cost:\n"; 
 cin >> h1B; 
 h1B = h1A; 
 cout << "Retailer 1 Backorder cost:\n"; 
 cin >> bA; 
 cout << "Retailer 2 Backorder cost:\n"; 
 cin >> bB;  
 bB = bA; 
 
    cout << "Supplier-DC Leadtime:\n"; 
    cin >> LEAD_M_W; 
    cout << "DC-Retailer1 Leadtime:\n"; 
    cin >> LEAD_W_R1; 
    cout << "DC-Retailer2 Leadtime:\n"; 
    cin >> LEAD_W_R2; 
 
 cout << "Retailer 1 low stocking bound:\n"; 
 cin >> lowBoundRA; 
 cout << "Retailer 1 high stocking bound:\n"; 
 cin >> highBoundRA; 
 cout << "Retailer 2 low stocking bound:\n"; 
 cin >> lowBoundRB; 
 cout << "Retailer 2 high stocking bound:\n"; 
 cin >> highBoundRB; 
  
 
    cout << "Warehouse low stocking bound:\n"; 
    cin >> lowBoundW; 
    cout << "Warehouse high stocking bound:\n"; 
    cin >> highBoundW; 
 
    cout << "t-value: \n"; 
    cin >> tval; 
    cout << "Indifference distance (Delta) : \n"; 
    cin >> delta; 
  
 
  
 cout << "Lambda:\n"; 
 cin >> lambda; */ 
  
 
 supplier = 90000; 
  for (int j = lowBoundW; j < highBoundW+1; ++j) 
  { 
   for (int k1 = lowBoundRA; k1 < highBoundRA+1; ++k1) 
   { 
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               cout << j << "\n"; 
                float cost[5001]; 

for (int clear = 0; clear<5001; ++clear) 
{cost[clear] = 0;} 

    invPosR1 = k1; 
    invPosR2 = k1; 
    invPosW = j; 
    invPosM = supplier; 
    totOrders = 0; 
    dole = 0; 
    int r = 0; 
    int modIndex = 0; 
    srand(r); 
    aggOrdersW1 = 0; 
    aggOrdersW2 = 0; 
    aggOrdersM_W = 0; 
    ordersW1.clear(); 
    ordersW2.clear(); 
    ordersM_W.clear(); 
    i1A = 0; 
    i1B = 0; 
    i2 = 0; 
    i3 = 0; 
    shipToR1 = 0; 
    shipToR2 = 0; 
  
    for (int count = 0; count <5001; ++count) 
    {cost[count]=0;} 
     
    for (int t = 0; t < t_INCREMENT_TIMES; ++t) 
    {             
 
// Receive any ordered inventory coming in today 
      
     multimap<int, float>::iterator 

orderSearch; 
     orderSearch = ordersW1.find(t); 
     if (orderSearch != ordersW1.end()) 
     { 
     invPosR1 += (float) orderSearch->second;  
      ordersW1.erase(orderSearch); 
     } 
     orderSearch = ordersW2.find(t); 
     if (orderSearch != ordersW2.end()) 
     { 
     invPosR2 += (float) orderSearch->second; 
      ordersW2.erase(orderSearch); 
     } 
 
     orderSearch = ordersM_W.find(t); 
     if (orderSearch != ordersM_W.end()) 
     { 
     invPosW += (float) orderSearch->second; 
      ordersM_W.erase(orderSearch); 
     } 
    
     invPosM = supplier; 
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// Calculate demand 
                     D1 = random_poisson(lambda); 
                              D2 = random_poisson(lambda); 
          invPosR1 -= D1; 
          invPosR2 -= D2; 
 
 
// Calculate echelon inventories 
               i1A = 0; 
     stockOutsA = 0; 
     i1B = 0; 
     stockOutsB = 0; 
  
     if (invPosR1 > 0) 
      i1A += invPosR1; 
     else 
      stockOutsA -= invPosR1; 
     if (invPosR2 > 0) 
      i1B += invPosR2; 
     else 
      stockOutsB -= invPosR2; 
       
     i2 = i1A + i1B; 
     if (invPosW > 0) 
      i2 += invPosW; 
      
   for (orderSearch = ordersW1.begin(); orderSearch 

 != ordersW1.end(); ++orderSearch) 
     { 
      i2 += (float) orderSearch->second; 
     } 
   for (orderSearch = ordersW2.begin(); orderSearch  

 != ordersW2.end(); ++orderSearch) 
     { 
      i2 += (float) orderSearch->second; 
     } 
 
     i3 = i2; 
     if (invPosM > 0) 
      i3 += invPosM; 
   for (orderSearch = ordersM_W.begin(); orderSearch  

 != ordersM_W.end(); ++orderSearch) 
     { 
      i3 += (float) orderSearch->second; 
     } 
      
// Calculate cost 
   cost[modIndex] += (h1A * i1A) + (h1B * i1B)+(h2 * 

i2) + (h3 * i3) + (bA * stockOutsA)+ (bB   
* stockOutsB);               

 
      if ((t % 10) == 9) 
      ++modIndex; 
 
// Place orders 
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     orderSearch = ordersW1.find(t+LEAD_W_R1); 
     if (orderSearch != ordersW1.end()) 
     aggOrdersW1 += D1 - orderSearch->second; 
     else 
      aggOrdersW1 += D1; 
 
     orderSearch = ordersW2.find(t+LEAD_W_R2); 
     if (orderSearch != ordersW2.end()) 
     aggOrdersW2 += D2 - orderSearch->second; 
     else 
      aggOrdersW2 += D2; 
 
    aggOrdersM_W = j + k1 + k1 - i2 + stockOutsA +  

   stockOutsB; 
 
 
// Ship Orders 
           
   totOrders = (int) aggOrdersW1 + (int) aggOrdersW2;    
                  if (totOrders > invPosW) {totOrders = (int) invPosW;} 
 
    for (int hold = 0; hold < totOrders; ++hold) 
     {dole = 1; 
     if (aggOrdersW2 >= aggOrdersW1) dole = 2; 
    if (dole == 1) if (invPosW > 0) {shipToR1 += 1;  

invPosW -= 1; aggOrdersW1 -= 1;} 
if (dole == 2) if (invPosW > 0) {shipToR2 += 1; 

invPosW -= 1; aggOrdersW2 -= 1;} 
         } 
     
        if (shipToR1 != 0) 
      ordersW1.insert(pair <int,  

float>(t+LEAD_W_R1, 
shipToR1)); 

     if (shipToR2 != 0) 
      ordersW2.insert(pair <int,  

float>(t+LEAD_W_R2, 
shipToR2)); 

                     
         if (aggOrdersM_W > invPosM) 
     { 
      ordersM_W.insert(pair<int,  

float>(t+LEAD_M_W, invPosM)); 
      aggOrdersM_W -= invPosM; 
      invPosM = 0; 
     } 
     else 
     { 
      ordersM_W.insert(pair<int,  

float>(t+LEAD_M_W, 
aggOrdersM_W)); 

      invPosM -= aggOrdersM_W; 
      aggOrdersM_W = 0; 
     } 
     shipToR1 = 0; 
     shipToR2 = 0; 
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    }   // Increment time 
 
 
// Calculate mean cost 
 
    mean = 0; 
    var = 0; 
    int foo; 
    float bar; 
    for (foo = 1; foo < 5001; ++foo) 
    { 
     mean += cost[foo]; 
    } 
    mean /= 5000; 
    cout << mean << "\n"; 
 
// Calculate standard deviation.   
 
 
    for (foo = 1; foo < 5001; ++foo) 
    { 
     bar = (mean - cost[foo]); 
           var += bar*bar; 
    } 
      
         var /= 4999; 
            
                        invPosWi[point] = j; 
    invPosR1i[point] = k1; 
                costi[point] = mean; 
                cout << costi[point] << "  " << point << "\n"; 
                vari[point] = var; 
    point += 1; 
     
         } // increment k1             
  }   //Increment j 
 
 
//  On to stage 2 Pruning 
 
  
ofstream output(fileName.c_str()); 
  
numkeep = 0; 
numpoint = int(highBoundW-lowBoundW)*int(highBoundRA-lowBoundRA)+1; 
 
for (i=0; i<numpoint; ++i) 
    { 
        for (j=0; j<numpoint; ++j) 
            { 
             W[j]=sqrt(tval*(vari[i]+vari[j])/5000); 
            } 
        keep = 1; 
        for (k=0;k<numpoint;++k) 
            { 
             if (i != k) 
                {   
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                   if (-1*costi[i] < -1*costi[k]-max(0,W[k]-delta))  
                       {           
                       keep = 0; 
                       } 
                } 
            } 
        if (keep == 1)  
        {   output << invPosWi[i] << "\n"; 
            output << invPosR1i[i] << "\n"; 
            output << costi[i] << "\n"; 
            output << vari[i] << "\n"; 
            numkeep += 1; 
            output << numkeep << "\n"; 
        } 
    }     
 
 cout << numkeep; 
 cout << "\n\nDone!\n\n";    
    cout << mean / 10 << "\n" << var / 10 << "\n"; 
    system("PAUSE");    
 return 0; 
} 
 
float max(float x, float y) 
{  if (x >= y) {return x;} 
   return y; 
}  
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// Program 2:  Candidate Selection 
 
#include <iostream> 
#include <fstream> 
#include <cstdlib> 
#include <map> 
#include <utility> 
#include <string> 
#include <time.h> 
#include "mt19937ar.h" 
 
using namespace std; 
 
#define RAND_UNIFORM genrand_real1(); 
 
double random_normal(double esp,double var) 
{ 
 double u1=RAND_UNIFORM; 
 double u2=RAND_UNIFORM; 
 double z=sqrt(-2.0*log(u1))*cos(2*M_PI*u2); 
 return esp+var*z; 
} 
 
unsigned long random_poisson(double lambda) 
{ 
 double p=exp(-lambda); 
 double g=p; 
 double u=RAND_UNIFORM; 
 unsigned long k=0; 
 while (u>g) 
 { 
  p*=(lambda/(double)(++k)); 
  g+=p; 
 } 
 return k; 
} 
 
int main(int argc, char *argv[]) 
{ 
 
 float invPosM, invPosW, invPosR1, invPosR2; 
 float aggOrdersW1, aggOrdersW2, aggOrdersM_W; 
 float i1A, i1B, i2, i3, stockOutsA, stockOutsB; 
 float shipToR1, shipToR2; 
 float mean, var; 
 multimap<int, float> ordersW1; 
 multimap<int, float> ordersW2; 
 multimap<int, float> ordersM_W; 
 float max(float x, float y); 
 int t_INCREMENT_TIMES, numsys, tempWare, tempRet1; 
  
  
 string fileName; 
 string fileName2; 
 
 int LEAD_W_R1; 
 int LEAD_W_R2; 
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 int LEAD_M_W; 
 int D1, D2; 
 int lowBoundRA, lowBoundRB, lowBoundW; 
 int highBoundRA, highBoundRB, highBoundW; 
 int totOrders, dole; 
 int supplier,i, j, k, k1, k2; 
 int tMax; 
 float check; 
 
 float h1A, h1B; 
 float h2; 
 float h3; 
 float bA, bB; 
 float cost, tempCost, h; 
 float lambda; 
 float delta, deltac; 
 int numkeep, cont; 
 int invPosWi[100], invPosR1i[100]; 
    float costi[100], vari[100],W[100]; 
    float tval; 
    int keep, point, numpoint; 
 
// declarations of file pointer streams 
 ifstream filePointerInLog;          

ofstream filepointerOutLog; 
 ofstream filepointerOutDemands; 
 
// Random Number Seed 
 
    init_genrand(2); 
    point = 0; 
 
 cout << "Enter filename to write.\n"; 
 cin >> fileName; 
 ofstream output(fileName.c_str()); 
 h3 = 0; 
  
 do 
 { 
      for (int z = 0; z <101; ++z)  
          {invPosWi[z] = 0;  
          invPosR1i[z] = 0; 
          costi[z] = 0; 
          vari[z] = 1;} 
 
         
        tempCost = 999999; 
        cout << "Enter filename to read. \n"; 
        cin >> fileName2; 
        ifstream input(fileName2.c_str()); 
     cout << "Warehouse holding cost:\n"; 
     cin >> h2; 
          cout << "Retailer 1 holding cost:\n"; 
          cin >> h1A; 
     h1B = h1A; 
     cout << "Retailer 1 Backorder cost:\n"; 
     cin >> bA; 
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     bB = bA; 
          cout << "Leadtime M_W:\n";  
          cin >> LEAD_M_W; 
          cout << "Leadtime W_R1\n"; 
     cin >> LEAD_W_R1; 
     LEAD_W_R2=LEAD_W_R1;  
  
        cout << "t-value: \n"; 
        cin >> tval; 
        cout << "Indifference distance (Delta) : \n"; 
        cin >> delta; 
        cout << "h-value: \n"; 
        cin >> h; 
        cout << "Mean demand rate"; 
        cin >> lambda; 
        check = 0; 
        i = 0; 
  
// Read input file data 
 
    while(input) 
    {input >> invPosWi[i]; 
    lowBoundW = invPosWi[i]; 
    highBoundW = lowBoundW; 
    input >> invPosR1i[i]; 
    lowBoundRA = invPosR1i[i]; 
    highBoundRA = lowBoundRA; 
    lowBoundRB = lowBoundRA; 
    highBoundRB = lowBoundRB; 
    input >> costi[i]; 
    input >> vari[i]; 
    deltac = delta * costi[i]; 
 
     
 
    t_INCREMENT_TIMES = (int)max(0,(h*h*vari[i]/deltac/deltac));              
  
 supplier = 90000; 
 cost = 0; 
      j = lowBoundW; 
 k1 = lowBoundRA; 
 k2 = lowBoundRB; 
 invPosR1 = k1; 
 invPosR2 = k2; 
 invPosW = j; 
 invPosM = supplier; 
 totOrders = 0; 
 dole = 0; 
 int r = 0; 
 int modIndex = 0; 
 srand(r); 
 aggOrdersW1 = 0; 
 aggOrdersW2 = 0; 
 aggOrdersM_W = 0; 
 ordersW1.clear(); 
 ordersW2.clear(); 
 ordersM_W.clear(); 
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 i1A = 0; 
 i1B = 0; 
 i2 = 0; 
 i3 = 0; 
 for (int t = 0; t < t_INCREMENT_TIMES; ++t) 
    {             
                                       
// Receive any ordered inventory coming in today 
      
    multimap<int, float>::iterator orderSearch; 
     orderSearch = ordersW1.find(t); 
    if (orderSearch != ordersW1.end()) 
     { 
     invPosR1 += (float) orderSearch->second;  
      ordersW1.erase(orderSearch); 
     } 
     orderSearch = ordersW2.find(t); 
    if (orderSearch != ordersW2.end()) 
     { 
     invPosR2 += (float) orderSearch->second; 
      ordersW2.erase(orderSearch); 
     } 
 
     orderSearch = ordersM_W.find(t); 
    if (orderSearch != ordersM_W.end()) 
     { 
     invPosW += (float) orderSearch->second; 
      ordersM_W.erase(orderSearch); 
     } 
     invPosM = supplier; 
 
// Calculate demand 
        D1 = random_poisson(lambda) 
     D2 = random_poisson(lambda) 
     invPosR1 -= D1; 
     invPosR2 -= D2; 
 
 
// Calculate echelon inventories 
     i1A = 0; 
     stockOutsA = 0; 
     i1B = 0; 
     stockOutsB = 0; 
  
     if (invPosR1 > 0) 
      i1A += invPosR1; 
     else 
      stockOutsA -= invPosR1; 
     if (invPosR2 > 0) 
      i1B += invPosR2; 
     else 
      stockOutsB -= invPosR2; 
 
     i2 = i1A + i1B; 
     if (invPosW > 0) 
      i2 += invPosW; 
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   for (orderSearch = ordersW1.begin(); orderSearch  
      != ordersW1.end(); ++orderSearch) 
     { 
      i2 += (float) orderSearch->second; 
 
     } 
   for (orderSearch = ordersW2.begin(); orderSearch  
      != ordersW2.end(); ++orderSearch) 
     { 
      i2 += (float) orderSearch->second; 
     } 
 
     i3 = i2; 
     if (invPosM > 0) 
      i3 += invPosM; 
   for (orderSearch = ordersM_W.begin(); orderSearch  
      != ordersM_W.end(); ++orderSearch) 
     { 
      i3 += (float) orderSearch->second; 
     } 
      
// Calculate cost 
   cost += (h1A * i1A) + (h1B * i1B)+(h2 * i2) + (h3  
      * i3) + (bA * stockOutsA)+ (bB *  
      stockOutsB); 
      
// Place orders 
 
     orderSearch = ordersW1.find(t+LEAD_W_R1); 
     if (orderSearch != ordersW1.end()) 
     aggOrdersW1 += D1 - orderSearch->second; 
     else 
      aggOrdersW1 += D1; 
 
     orderSearch = ordersW2.find(t+LEAD_W_R2); 
     if (orderSearch != ordersW2.end()) 
     aggOrdersW2 += D2 - orderSearch->second; 
     else 
      aggOrdersW2 += D2; 
 
    aggOrdersM_W = j + k1 + k1 - i2 + stockOutsA +  
      stockOutsB; 
 
 
// Ship Orders 
           
   totOrders = (int) aggOrdersW1 + (int) aggOrdersW2;    
             if (totOrders > invPosW) {totOrders = (int) invPosW;} 
 
    for (int hold = 0; hold < totOrders; ++hold) 
     {dole = 1; 
     if (aggOrdersW2 >= aggOrdersW1) dole = 2; 
    if (dole == 1) if (invPosW > 0) {shipToR1 += 1;  
      invPosW -= 1; aggOrdersW1 -= 1;} 
              if (dole == 2) if (invPosW > 0) {shipToR2 += 1; 
      invPosW -= 1; aggOrdersW2 -= 1;} 
         } 
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        if (shipToR1 != 0) 
      ordersW1.insert(pair <int,  
      float>(t+LEAD_W_R1, shipToR1)); 
          if (shipToR2 != 0) 
      ordersW2.insert(pair <int,  
      float>(t+LEAD_W_R2, shipToR2)); 
 
                              
         if (aggOrdersM_W > invPosM) 
     { 
      ordersM_W.insert(pair<int,  
      float>(t+LEAD_M_W, invPosM)); 
      aggOrdersM_W -= invPosM; 
      invPosM = 0; 
     } 
     else 
     { 
      ordersM_W.insert(pair<int,   
      float>(t+LEAD_M_W, aggOrdersM_W)); 
      invPosM -= aggOrdersM_W; 
      aggOrdersM_W = 0; 
     } 
                    shipToR1 = 0; 
                    shipToR2 = 0; 
        
    }   // Increment time 
 
 
            costi[i] = cost/t_INCREMENT_TIMES; 
                 
 
 
            cout << costi[i] << "  Done cost i  \n"; 
            numsys = i; 
            input >> i;             
            } // end While not end of file loop 
             
// compare systems 
             
            for (j = 0; j < numsys; ++j) 
                { 
                   if (tempCost > costi[j]) 
                      { 
                           tempWare = invPosWi[j]; 
                           tempRet1 = invPosR1i[j]; 
                           tempCost = costi[j]; 
                      } 
                } 
             
            output << fileName2 << "," << tempWare << "," << tempRet1  
    << "," << tempCost << "\n"; 
             
            cout << "continue? (1 yes 0 no) : "; 
            cin >> cont; 
      }       
      while (cont > 0) ; 
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      // End input file loop 
   system("PAUSE");    
    return 0; 
} 
 
 
 
 
float max(float x, float y) 
{  if (x >= y) {return x;} 
   return y; 
}  
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