
SCALE-BASED DECOMPOSABLE SHAPE
REPRESENTATIONS FOR MEDICAL IMAGE
SEGMENTATION AND SHAPE ANALYSIS

A Dissertation
Presented to

The Academic Faculty

by

Delphine Nain

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
College of Computing

Georgia Institute of Technology
December 2006

Copyright c© 2006 by Delphine Nain



SCALE-BASED DECOMPOSABLE SHAPE
REPRESENTATIONS FOR MEDICAL IMAGE
SEGMENTATION AND SHAPE ANALYSIS

Approved by:

Professor Aaron Bobick, Advisor
College of Computing
Georgia Institute of Technology

Professor Steven Haker
Department of Radiology
Harvard Medical School

Professor Allen Tannenbaum, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor W. Eric. L. Grimson
Department of Electrical Engineering
and Computer Science
MIT

Professor Greg Turk
College of Computing
Georgia Institute of Technology

Date Approved: 18 October 2006



To my parents,

Marie-Pierre and Philippe.

iii



ACKNOWLEDGEMENTS

Many people need to be thanked for their support, help and enthusiasm for my

work throughout my doctorate years. Without you, this thesis would have not been

possible. In particular, I would like to thank:

• My advisors, Aaron Bobick and Allen Tannenbaum. Thank you for giving me

great academic freedom while always guiding me in the right direction. It has

been a privilege to work with you and to learn from you. Your enthusiasm for

science, engineering and much more has been inspiring and contagious.

• Prof. Steven Haker, who suggested looking into spherical wavelets and has

always been a great source of technical and moral support throughout both my

master’s and doctorate theses. Thank you for your friendship.

• Profs. Greg Turk and Tony Yezzi, who advised me througout the vessel seg-

mentation work presented in this thesis and other projects. It was a pleasure

to work with you, thank you for always being supportive and teaching me the

beauty of mathematics and computer graphics.

• Prof. Eric Grimson, my undergraduate and master’s advisor, who remained a

great mentor throughout my Ph.D. What I learned from you and the medical

vision group at MIT has been a tremendous inspiration and help throughout

my doctorate years.

• The Biomedical Imaging Lab: Eric Pichon and Marc Niethammer, my co-jedi-

masters (I will miss our philosophical discussions whether it is about politics or

shape analysis and many fun trips), Amanda Wake (thanks for helping us break

down cubicle barriers, and being a great friend and presence in lab), Patricio (I

iv



have benefited much from your energy and enthusiasm for the many facets of

life), Lei, Yan, Gallagher, Jimi, Eli, Oleg, Yogesh, Ramsey, Sam, Julien, Xavier,

John, Tauseef, Shawn, Yi and friends of the lab from whom I have learned so

much and always bring a smile to my face.

• The CPL, geometry and GVU labs. You have given me great examples to follow

and made these last four years a lot of fun.

• The women@cc group. It has been a pleasure to get to know all of you, thank

you for all the advice and support.

• NA-MIC collaborators. It has been inspiring and rewarding to work with all of

you and always learn more about algorithms, engineering and medicine.

• The Sam Nunn/MacArthur Security Program.

• Gozde Unal and Lauren O’Donnell who has been great mentors throughout my

academic years and dear friends.

• My Pioux, MIT/Boston, Georgia Tech/Atlanta friends, thank you for always

being there for me.

• My family: you are the best one could hope for. To my grand-parents, my

parents and my brother: thank you for your unconditional love and support.

• Omar Zurkiya: thank you for sharing this journey with me. I look forward to

the many more adventures to come.

v



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Shape Representation and Segmentation Framework . . . . . . . . 6

1.1.1 Shape Representation . . . . . . . . . . . . . . . . . . . . . 7

1.1.2 Probabilistic Segmentation using Deformable Models . . . . 7

1.1.3 Adding prior shape information to deformable models . . . 9

1.2 Challenges addressed by this Thesis . . . . . . . . . . . . . . . . . 10

1.3 Contribution of this Thesis . . . . . . . . . . . . . . . . . . . . . . 13

II BACKGROUND: SHAPE REPRESENTATION AND SHAPE PRIORS FOR
MEDICAL IMAGE SEGMENTATION . . . . . . . . . . . . . . . . . . 15

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Shape Characterization . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Two Dimensional Parametric Shape Representation . . . . . 16

2.2.2 Three Dimensional Parametric Shape Representation . . . . 19

2.2.3 Adding Data-Driven Shape Priors to Parametric Models . . 25

2.2.4 2D and 3D Implicit Shape Representation . . . . . . . . . . 29

2.2.5 Shape Priors for Implicit Representations . . . . . . . . . . 30

2.3 Deformable Models for Probabilistic Segmentation . . . . . . . . . 31

2.3.1 Parametric Deformable Models . . . . . . . . . . . . . . . . 32

2.3.2 Geometric Deformable Models . . . . . . . . . . . . . . . . 38

2.3.3 Numerical Implementation: level set method . . . . . . . . . 44

2.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vi



III SOFT SHAPE PRIORS: VESSEL SEGMENTATION USING A SHAPE
DRIVEN FLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Blood Vessel Segmentation . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Shape Driven Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Region Based Flow . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2 Shape Filters . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.3 Curve Evolution using Local Filters . . . . . . . . . . . . . 56

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.1 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . 57

3.4.2 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5.1 2D Images . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.2 3D Images . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

IV MULTI-SCALE 3D SHAPE ANALYSIS USING SPHERICAL WAVELETS 66

4.1 Motivation for a multiscale parametric shape representation . . . . 69

4.1.1 Implicit versus Parametric representation . . . . . . . . . . 69

4.1.2 Statistical Modeling of a population of shapes with paramet-
ric representation . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.3 Statistical Modeling using PCA and its limitations . . . . . 71

4.1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.5 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Spherical wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1 Grid Structure for Spherical Wavelet Construction . . . . . 86

4.2.2 Scaling Function . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.3 Wavelet Function . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Shape Representation using spherical wavelets . . . . . . . . . . . . 90

4.3.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . 91

vii



4.3.2 Shape Remeshing and Registration . . . . . . . . . . . . . . 92

4.3.3 Spherical Wavelets on the Mean Shape . . . . . . . . . . . . 98

4.3.4 Encoding the Shape Signal with Spherical Wavelets . . . . . 99

4.3.5 Filtering the Shape Signal by Projection onto a Reduced Set
of Basis functions . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 Scale-Space Spherical Wavelet Prior for Statistical Population Analysis101

4.4.1 Coefficient Truncation via Power Analysis . . . . . . . . . . 102

4.4.2 Multiscale Decomposition . . . . . . . . . . . . . . . . . . . 104

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

V 3D SEGMENTATION USING THE MULTI-SCALE SPHERICAL WAVELET
PRIOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2 Pose Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3 Shape Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.4 Segmentation Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.5 Parameter Optimization via Multiresolution Gradient Descent . . . 128

5.6 Results of Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 129

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

VI STATISTICAL SHAPE ANALYSIS OF CAUDATE USING THE SPHER-
ICAL WAVELET SHAPE REPRESENTATION . . . . . . . . . . . . . 136

6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2.1 SPHARM-PDM . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2.2 Spherical Wavelet Shape Representation (SWC) . . . . . . . 140

6.2.3 Shape Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.2.4 Significance Map Visualization . . . . . . . . . . . . . . . . 142

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.3.1 Left Caudate Nucleus . . . . . . . . . . . . . . . . . . . . . 143

viii



6.3.2 Right Caudate Nucleus . . . . . . . . . . . . . . . . . . . . 144

6.3.3 Left Hippocampus . . . . . . . . . . . . . . . . . . . . . . . 144

6.3.4 Right Hippocampus . . . . . . . . . . . . . . . . . . . . . . 145

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

VII CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

APPENDIX A APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . 157

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

ix



LIST OF TABLES

1 Properties of parametric and geometric active contours. Adapted from [15] 47

2 Number of truncated basis functions and the average maximum error
between original shapes and their filtered version, using a filter matrix
specific to the shape population, for both the hippocampus and caudate
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3 H , Hf distance for 5 test shapes for Mscale and ASM. . . . . . . . . 135

x



LIST OF FIGURES

1 Three standard orientations shown with MRI brain slices and a 3D
transparent model of the human head . . . . . . . . . . . . . . . . . . 3

2 To visualize the three-dimensional information in an MRI volume, the
physician can visualize an ordered sequence of slices. In this figure,
sagittal slices are displayed . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Segmented White Matter from a MRI Brain Scan. The top window
shows the three-dimensional model superimposed on a coronal slice.
The output of a segmentation is also labelmap where voxels that belong
to the interior or the boundary of structure are labeled in pink in the
bottom three windows (respectively axial, sagittal and coronal views) 4

4 Framework for Shape Representation and Probabilistic Segmentation
with a shape prior. Solid boxes represent tasks, dashed lines represent
categories of techniques to accomplish task. . . . . . . . . . . . . . . 6

5 Framework for Shape Representation and Probabilistic Segmentation
without a shape prior. Solid boxes represent tasks, dashed lines repre-
sent categories of techniques to accomplish task. . . . . . . . . . . . . 8

6 Framework for Shape Representation and Probabilistic Segmentation
with a shape prior. Solid boxes represent tasks, dashed lines represent
categories of techniques to accomplish task. . . . . . . . . . . . . . . 16

7 Visualization of the spherical harmonic functions on the sphere. A
darker color shows where the function has support. The figure shows
the real parts of the spherical harmonic function Y m

l , with l growing
from 0 (top) to 5 (bottom), and m ranging from 0 (left) to l in each
row (from [23]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

8 Visualization of the spherical harmonic correspondence. A first order
ellipsoid and six left ventricles are displayed. The surface net shows the
(θi, φi) parametrization (same parameters = same homologous points).
The ridges on the first order ellipsoid are the equator and 0, π/2, π, 3π/2
meridian lines in all objects. The equator and meridian lines are em-
phasized in different colors. The poles are at the crossing of the merid-
ian lines (from [23]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

9 Visualization of a lateral ventricle (side view) at different spherical
harmonics degrees; m=1,4,8,12 top to bottom (from [23]) . . . . . . . 23

10 Outline of several brain structures in a single model labeled with land-
marks (from [11]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xi



11 In ASM, the learned shape variation can be shown by selecting one of
the eigenvectors (modes of variation) and varying its magnitude from
−n√σ to n

√
σ with n = 2 and adding the result to the mean shape to

display the variation(from [11]) . . . . . . . . . . . . . . . . . . . . . 27

12 Level Sets of an embedding function φ for a closed curve in R
2 . . . . 29

13 An example of a snake active contour (a) Intensity CT image of the
heart left ventricle (b) edge detected image (c) initial contour (d) de-
formable contour moving toward the left ventricle boundary, driven by
an inflating pressure force (from [41]) . . . . . . . . . . . . . . . . . . 33

14 Ventricle segmentation in MRI heart image via shrinking conformal
active contour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

15 Bone segmentation in CT image with splitting shrinking conformal
active contour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

16 Four steps in the segmentation of two different corpora callosa. The
last image in each case shows the final segmentation in red. The cyan
contour is the standard evolution without the shape influence (from
[36]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

17 A Region Based Geometric Active Contour is prone to leak if the image
term is not reliable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

18 (a) ǫ1(x, r) is the intersection of the ball of radius r centered at x and
the region R inside the contour. (b) Points inside the widening region
have a higher ǫ1 measure but most points on the contour have the same
measure. (c)Contour points close to the widening of the contour have
a higher ǫ2 measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

19 Dilation Flow without Shape Prior . . . . . . . . . . . . . . . . . . . 60

20 Dilation Flow with Shape Prior . . . . . . . . . . . . . . . . . . . . . 60

21 Flow with Shape Prior on 2D Synthetic Images . . . . . . . . . . . . 61

22 Vessel Flow on Angiogram Images . . . . . . . . . . . . . . . . . . . . 62

23 Vessel Flow on Angiogram Images . . . . . . . . . . . . . . . . . . . . 62

24 Different Flows on the first CT Coronary Data . . . . . . . . . . . . . 63

25 Base Flow with Shape Prior on the second CT coronary dataset . . . 64

26 (a-b) Coronal and Sagittal view of the left caudate nucleus (c-e) Ex-
ample of 3 shapes from the left caudate nucleus dataset . . . . . . . . 67

27 (a-b) Coronal and Sagittal view of the left hippocampus (c-e) Example
of 3 shapes from the left hippocampus dataset . . . . . . . . . . . . . 68

xii



28 Shape Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

29 Synthetic Shape Global Deformations . . . . . . . . . . . . . . . . . . 74

30 Synthetic Shape Local Deformations . . . . . . . . . . . . . . . . . . 75

31 Synthetic Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

32 Visualization of the deformation of the mean shape along the eigen-
vectors found by PCA. The transparent shape is the reference mean
shape with no deformation. For each figure, the mean shape is de-
formed along a particular eigenvector (or mode) according to a certain
magnitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

33 Reconstruction experiment for Test Shape 1 using PCA as a shape
space compared to WDM (technique presented in this chapter) . . . . 78

34 Reconstruction experiment for Test Shape 2, using PCA as a shape
space compared to WDM (technique presented in this chapter) . . . . 79

35 A wavelet transform is applied to the parametric functions represent-
ing a deformable contour. The resulting wavelet coefficients are then
grouped into 64 bands, and the joint probability function of each band
is estimated from the available training samples, via its mean and co-
variance matrix. This effectively transforms the covariance matrix of
the full joint probability function into a matrix that is close to, but
not necessarily exactly, a block diagonal matrix. The submatrix corre-
sponding to band B reflects global shape characteristics, whereas the
submatrix corresponding to B reflects local shape characteristics at a
particular segment. B reflects local shape characteristics of a neigh-
boring segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

36 Recursive Partitioning of an icosahedron: successive levels of the tri-
angulation are obtained by subdividing triangles into 4 children triangles 83

37 The wavelet transform of a random scalar signal defined on spherical
mesh. The mesh is an icosahedron subdivided 3 times. The original
signal is decomposed into a series of high-pass (HP) and low-pass (LP)
coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

38 Visualization of Scaling and Wavelet Basis Functions. The color corre-
sponds to the value of the function at each point on the sphere. Notice
that the support of each basis gets smaller as the resolution increases 86

39 Refinement of the surface grid by subdivision of the edges . . . . . . . 87

40 Example of 5 shapes from the Prostate dataset . . . . . . . . . . . . . 91

41 Illustration of the remeshing step for two left hippocampus shapes. See
Section 4.3.2 for details. . . . . . . . . . . . . . . . . . . . . . . . . . 92

xiii



42 Example of principal axes and 3 points xN , xS and xE found on three
left hippocampus and left caudate shapes. . . . . . . . . . . . . . . . 93

43 A new point xS is found such that it is the farthest point on the mesh
from xN (in geodesic distance) for the three left hippocampus and left
caudate shapes shown in Figure 42 . . . . . . . . . . . . . . . . . . . 94

44 After remeshing, shapes are aligned with Procrustes alignment and the
Mean shape is computed for (a-c) left hippocampus dataset (d-f) left
caudate dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

45 (a-c) Icosahedron mesh shown with the Mean shape(d-f) Visualization
of wavelet basis functions constructed on the Mean shape at various
levels. The color corresponds to the value of the functions . . . . . . 99

46 Example of the filtering operation for Shape 1 of Left Caudate (a-d)
and Left Hippocampus (e-h) dataset. . . . . . . . . . . . . . . . . . . 102

47 Result of the Filtering Operation to create a reduced basis set. (a,c)
original shapes (b,d) filtered shapes with mean squared error from the
original shape as colormap . . . . . . . . . . . . . . . . . . . . . . . . 105

48 Shape Representation from Sections 4.3-4.4.2 . . . . . . . . . . . . . 106

49 Illustration of Band Creation Algorithm . . . . . . . . . . . . . . . . 108

50 Coefficient Clustering and selected Band Variation Visualization for
the left hippocampus data . . . . . . . . . . . . . . . . . . . . . . . . 111

51 Coefficient Clustering and selected Band Variation Visualization for
the left caudate data . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

52 Band Decomposition: various bands Bj,i, where j is the resolution and
i is the band number, shown in Anterior view (A) and Posterior view
(P), see text for color . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

53 Band Decomposition, Caudate Nucleus dataset: various bands shown
for scale 2 (shown in Anterior view and Posterior view), see text for color114

54 Max Squared Reconstruction Error (averaged over testing shapes) for
various training set sizes . . . . . . . . . . . . . . . . . . . . . . . . . 118

55 Reconstruction Task for a test shape using 10 training shapes (first 2
columns) and a test shape using 20 training shapes (last 2 columns) . 119

56 Prostate dataset: Ground Truth Test shape, Test shape with noise,
and reconstruction with PDM and WDM with scale and bands with 5
training samples. Color is error from blue (lowest) to red. . . . . . 120

xiv



57 Caudate dataset: Ground Truth Test shape, Test shape with noise,
and reconstruction with PDM and WDM with scale and bands shape
priors with 25 training samples. Color is error from blue (lowest) to
red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

58 Surface Evolution using the Ground Truth label-map as the image
force for the ASM algorithm. The ground truth is shown in red (light-
gray if seen in grayscale), the evolving surface in blue (dark gray if seen
in grayscale). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

59 Surface Evolution using the Ground Truth label-map as the image
force for the Mscale algorithms. The ground truth is shown in red
(light-gray if seen in grayscale), the evolving surface in blue (dark gray
if seen in grayscale). . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

60 Surface Evolution using the density estimation as the image force for
ASM. The ground truth is shown in red (light-gray if seen in grayscale),
the evolving surface in blue (dark gray if seen in grayscale) . . . . . . 132

61 Surface Evolution using the density estimation as the image force
for Mscale (bottom row) algorithms. The ground truth is shown in red
(light-gray if seen in grayscale), the evolving surface in blue (dark gray
if seen in grayscale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

62 Visualization of spherical wavelet functions and associated membership
regions at three levels (columns). Top row : Values of single spherical
Wavelet Basis Function shown on the sphere at scales 1 through 3.
Middle and Bottom row: Membership regions of spherical wavelet
basis functions shown on the sphere and on the original surface, color-
ing is random. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

63 Left Caudate Shape Analysis Results - Significance maps for the PDM
features. This figure is best seen in color. . . . . . . . . . . . . . . . . 146

64 Left Caudate Shape Analysis Results - Significance maps for the SWC
features. This figure is best seen in color. . . . . . . . . . . . . . . . . 147

65 Right Caudate Shape Analysis Results - Significance maps for the PDM
features. This figure is best seen in color. . . . . . . . . . . . . . . . . 148

66 Right Caudate Shape Analysis Results - Significance maps for the SWC
features. This figure is best seen in color. . . . . . . . . . . . . . . . . 149

67 Left Hippocampus Shape Analysis Results - Significance maps for the
PDM features. This figure is best seen in color. . . . . . . . . . . . . 150

68 Left Hippocampus Shape Analysis Results - Significance maps for the
SWC features. This figure is best seen in color. . . . . . . . . . . . . 151

xv



69 Right Hippocampus Shape Analysis Results - Significance maps for the
PDM features. This figure is best seen in color. . . . . . . . . . . . . 152

70 Right Hippocampus Shape Analysis Results - Significance maps for the
SWC features. This figure is best seen in color. . . . . . . . . . . . . 153

xvi



SUMMARY

In this thesis, we propose and evaluate two novel scale-based decomposable repre-

sentations of shape for the segmentation and shape analysis of anatomical structures

in medical imaging. We propose two representations that are adapted to a particular

class of anatomical structures and allow for a richer description and a more fine-

grained control over the deformation of models based on these representations, when

compared to previous techniques. In particular, the decomposition of these shape

representations can be localized both in space and in scale, enabling the construction

of more descriptive, non-global, non-uniform shape priors to be included in the seg-

mentation framework. For each representation, we derive a segmentation algorithm

using the parameters of the shape representation to easily include and benefit from

the prior in the optimization framework.

We first review the two main classes of shape representation, parametric and

implicit models, and discuss the impact of existing representations on the construction

of data-driven or knowledge-driven shape priors and segmentation algorithms. In

particular, we note that most shape priors fall either under the category of global

priors, constraining the full shape model to a predefined shape space, or very local

priors, constraining the smoothness of the model on a very local level. This thesis

addresses the gap between the two categories by proposing and evaluating two novel

multi-scale shape representations and shape probability priors adapted to particular

classes of anatomical shapes.

The first novel shape probability prior proposed by this thesis is a knowledge-

driven semi-local prior using local shape filters that measure shape properties for
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implicit shape representations. We use these filters for the segmentation of blood

vessels, and introduce the notion of segmentation with a soft shape prior, where

the segmented model is not globally constrained to a predefined shape space, but

is penalized locally if it deviates strongly from a tubular structure. We introduce

the concept of a scale-space shape filter that measures the deviation from a tubular

shape in a local neighborhood of points, given a particular scale of analysis. Using

this filter, we derive a region-based active contour segmentation algorithm for tubular

structures that penalizes leakages. We present results on synthetic and real 2D and

3D datasets.

The second novel shape representation proposed by this thesis is a multi-scale

parametric shape representation using spherical wavelets. This work is motivated by

the need to compactly and accurately encode variations at multiple scales in the shape

representation in order to drive the segmentation and shape analysis of deep brain

structures, such as the caudate nucleus or the hippocampus. Our proposed shape rep-

resentation can be optimized to compactly encode shape variations in a population at

the needed scale and spatial locations, enabling the construction of more descriptive,

non-global, non-uniform shape probability priors to be included in the segmentation

and shape analysis framework. We apply this representation to two important med-

ical imaging tasks, segmentation and shape analysis. For segmentation, we derive a

parametric active surface evolution using the multiscale prior coefficients as param-

eters for our optimization procedure to naturally include the prior for segmentation.

Additionally, the optimization method can be applied in a coarse-to-fine manner. Our

results on synthetic and real data show that our algorithm is computationally efficient

and outperforms the Active Shape Model (ASM) algorithm, by capturing finer shape

details. For shape analysis, we use the coefficients of our shape representation as

features to describe a population of shapes and perform hypothesis testing using an

existing non-parametric permutation testing technique. The technique tests for shape
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differences in the caudate brain structure among two population of patients with and

without schizo-typal disorder. Our results show that significant differences are found

among the group of patients, and in particular the spherical wavelet representation

finds a greater number of locations on the shapes that exhibit a statistical shape

difference among the shapes, when compared to a point distribution representation

of the shapes.
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Roadmap

In chapter 1, we present an overview of shape representation, segmentation and

shape analysis for medical imaging. We discuss the challenges addressed by this

thesis and the main contributions of this thesis.

In chapter 2 we present in greater detail existing work for the topics of shape

representation, shape priors and deformable models for medical image segmentation.

We present two main shape representations: parametric models and geometric models,

for both curves in R
2 and surfaces in R

3 . For parametric models, we focus in

particular on shape representations using basis functions. We then discuss the types

of knowledge-driven and data-driven shape priors that can be learned from existing

shape representations. Finally, we give an overview of the theory of segmentation

using active contours and active surfaces, both for the parametric and geometric

models.

In chapter 3, we present a segmentation method for blood vessels using an im-

plicit deformable model with a knowledge-driven localized shape prior. We combine

image statistics and scale-space shape information in a variational framework to de-

rive a region-based active contour that segments tubular structures and penalizes

leakages. We present results on synthetic and real 2D and 3D datasets.

In chapter 4, we present a novel algorithm that learns the shape variation at mul-

tiple scales and locations from a training set. Our technique uses spherical wavelets

to generate a multi-scale description of surfaces and spectral graph partitioning to

adaptively discover independent shape variations at multiple scales. We compare our

technique to the standard Point Distribution Model (PDM) shape prior and present

results on synthetic datasets, as well as 3D brain and prostate datasets.

In chapter 5, we present a parametric active surface evolution using the multiscale

shape prior presented in chapter 4 as parameters for our optimization procedure to
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naturally include the prior for segmentation. We compare our technique to the stan-

dard Active Shape Model (ASM) algorithm and present results on synthetic datasets,

as well as 3D brain and prostate datasets.

In chapter 6, we present a statistical shape analysis application of the spheri-

cal wavelet shape representation to detect shape differences in the caudate nucleus

between healthy patients and patients with schizotypal personality disorder. We

compare the test results using the spherical wavelet representation (SWC) to the test

results using a point distribution model (PDM) representation and show that the

SWC verifies previous findings by the PDM technique, as well as finds more areas of

the shape that appear to differ among groups.

In the Conclusion, we summarize and discuss the contributions and results of this

thesis and in particular focus on challenges that remain to be addressed. We also

suggest future research directions based on the techniques and frameworks laid out

in this thesis.
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CHAPTER I

INTRODUCTION

Medical Imaging has rapidly become a useful tool for physicians to peek noninvasively

into the human body and diagnose, treat and track the progress of a disease. The

goal of the medical imaging community is to assist physicians by extracting, with the

assistance of computers, clinically useful information about anatomical structures

digitally imaged through CT, MRI and other modalities in an efficient, repeatable

and accurate manner [4, 41].

A medical scanner often outputs a three-dimensional volume that represents a

portion of the human body. The volume can then be visualized as a sequence of 2D

images, by “slicing” the volume along a chosen direction. Standard medical directions

are Axial, Sagittal and Coronal, shown in Figure 1. Figure 2 shows a typical sequence

through an MRI volume of a human head in a sagittal direction. The size of the

volume is 256 × 256 × 124 voxels. By scrolling through the slices, physicians can

create a mental 3D reconstruction of the body part being imaged. Often, however, it

is useful to be able to visualize particular structures directly in three dimensions, to

(a) Axial Slice (b) Sagittal Slice (c) Coronal Slice

Figure 1: Three standard orientations shown with MRI brain slices and a 3D trans-
parent model of the human head
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Figure 2: To visualize the three-dimensional information in an MRI volume, the
physician can visualize an ordered sequence of slices. In this figure, sagittal slices are
displayed

Figure 3: Segmented White Matter from a MRI Brain Scan. The top window
shows the three-dimensional model superimposed on a coronal slice. The output
of a segmentation is also labelmap where voxels that belong to the interior or the
boundary of structure are labeled in pink in the bottom three windows (respectively
axial, sagittal and coronal views)
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directly observe the shape of the structure, as shown in Figure 3, where the segmented

white matter from an MRI Brain Scan is displayed in the top window. In this thesis,

we will describe in detail two important medical imaging tasks, segmentation and

shape analysis [2, 26]. Segmentation is a process to detect anatomical structures

in medical scans. Shape Analysis is a process to locate morphological changes

between healthy and pathological anatomical structures. Segmentation is therefore a

precursor to shape analysis since structures have to first be extracted before they can

be further analyzed and compared.

For segmentation and shape analysis to be carried out, a fundamental task is to

establish a shape representation in order to characterize useful properties of the

structure under study. To characterize a class of anatomical structures, a probability

function can be learned over such a representation using a collection of representative

structures. The probability function can then be included as a probability prior

in a probabilistic segmentation framework to overcome imaging limitations, such as

noise. A representation that is both expressive and specific to a structure is also

useful to increase the accuracy of shape analysis.

In this thesis, we propose and evaluate two novel scale-based decomposable rep-

resentations of shape for the segmentation of blood vessels and the segmentation and

shape analysis of brain structures. We propose two representations that are adapted

to the class of anatomical structures under study. For blood vessel characterization,

we present a novel scale-space shape filter that measures the deviation from a tubular

shape in a local neighborhood of points, given a particular scale of analysis. For deep

brain structure characterization, we propose a multi-scale parametric shape repre-

sentation using spherical wavelets that can be optimized to compactly encode shape

variations in a population at the needed scale and spatial locations. We demonstrate

that learning a prior over those representations allow for a richer description and a

more fine-grained control in segmentation and shape analysis tasks, when compared
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Figure 4: Framework for Shape Representation and Probabilistic Segmentation with
a shape prior. Solid boxes represent tasks, dashed lines represent categories of tech-
niques to accomplish task.

to previous techniques. In particular, the decomposition of these shape representa-

tions can be localized both in space and in scale, enabling the construction of more

descriptive, non-global, non-uniform shape priors. For each representation, we derive

a segmentation algorithm using the parameters of the shape representation to easily

include and benefit from the prior in the optimization framework. We also conduct

shape analysis using the spherical wavelet representation to detect morphological dif-

ferences between patients diagnosed with schizophrenia and healthy controls.

1.1 Shape Representation and Segmentation Framework

Figure 4 presents a general framework and categorizes techniques used in the medi-

cal imaging community for shape representation and probabilistic deformable model

segmentation. In the remainder of this introduction we give a high level overview

of each task presented in this framework and detail the specific contributions of this

thesis for each task. Chapter 2 further explains the framework from Figure 4 and
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presents related work in the medical imaging literature. Chapters 3-5 present our

novel contributions for shape representation and segmentation. Chapter 6 presents

an application of our multiscale shape representation to shape analysis.

1.1.1 Shape Representation

Shape representation is a key first step in many medical image processing tasks. The

chosen parameters to represent shape create a mathematic model that is used for

subsequent tasks. In Figure 4, the shape is denoted by S and is described by a set of

parameters α, β, γ, .... The researcher has to carefully pick the parameters to balance

expressiveness (how well can all the shapes in a population be represented with the

shape parameters), complexity (the number of parameters) and specificity (whether

the parameters are specific enough to the shape population being studied). Para-

metric representations are models that describe a shape with a set of parameters.

For example, a circle can be represented parametrically with two independent param-

eters: the position of its center and its radius. Implicit representations are models

that describe a shape with a scalar function, where the shape boundary is represented

implictly as a level set of the function. For example, a circle in two-dimensions can

be represented implicitly by the equation (x − px)
2 + (y − py)

2 − r2 = 0, where the

center of the circle is at position (px, py), its radius is r and the circle boundary is the

set of (x, y) points in R
2 that verify the previous equation. In Chapter 2, we present

various representations from each category.

1.1.2 Probabilistic Segmentation using Deformable Models

Traditional segmentation techniques, such as edge detection and thresholding tech-

niques, often fail to locate the object boundary or generate disconnected boundaries

or invalid boundaries that must be refined in a post-processing step. This is due

to imaging limitations, such as noise and sampling artifacts, or due to the fact that

many structures do not have a distinctive intensity range or distinctive connected
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Figure 5: Framework for Shape Representation and Probabilistic Segmentation
without a shape prior. Solid boxes represent tasks, dashed lines represent categories
of techniques to accomplish task.

edges [41]. To address these difficulties, deformable models have been extensively

studied and widely used in medical image segmentation, with good results [71, 2].

In deformable models, the boundary of the structure to be segmented is explicitly

encoded in a model. The model is deformed to fit the image data with constraints on

the topology of the boundary (usually that the boundary remains closed), overcoming

previous limitations.

There are two types of deformable models, based on the object representation

used for the model: parametric deformable models and geometric deformable models.

Parametric models are compact representations that are computationally efficient.

However changes in model topology during the deformation, such as splitting and

merging, need to be detected and require special handling. Geometric deformable

models that use an implicit shape representation have a higher computational cost,

but topological changes during the evolution do not need to be detected and are

automatically handled.
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The segmentation techniques described in this thesis are part of a probabilistic

segmentation framework using deformable models. If S is a shape representation

and D is the image data, the segmented shape is the maximum a posteriori esti-

mate S∗ = arg maxS P (S|D). Assuming that P (D) is uniform, the posterior can

be expressed as the product of the likelihood P (D|S) and the model prior P (S):

P (S|D) ∝ P (D|S)P (S). As will be further explained in Chapter 2, the maximum

a posteriori formulation can be translated into an energy minimization formulation

where the shape parameters are evolved via a gradient descent to fit the image data.

A simplified view of probabilistic segmentation is given in Figure 5, where the prior

probability of shape is uniform. The case with non-uniform probability is explained

in the next section.

1.1.3 Adding prior shape information to deformable models

In medical images, the general topology, shape, location and orientation of anatom-

ical structures to be segmented are either known, or can be learned prior to the

segmentation task. For this reason, object segmentation with deformable models and

statistical shape modeling are often combined to obtain a more robust and accurate

segmentation [11, 36, 64, 71, 41]. Statistical shape modeling is the process of esti-

mating a priori the probability function of the shape to be segmented, P (S), from a

collection of representative shapes, called a training set. This additional step is shown

in Figure 4. Statistical shape information can guide the model fitting procedure in

the presence of noise since only shapes that have been previously seen in a training

set have a high probability (or low energy) during the optimization procedure.

There exists two types of shape priors: knowledge-driven and data-driven.

Knowledge-driven shape priors are derived from human knowledge of what a

shape should “look like” and translate this knowledge to a constraint on the param-

eters of the model. One of the most commonly used knowledge-driven priors is the
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local smoothness constraint applied to curves or surfaces. This smoothness prior can

be applied by minimizing the curvature, or second derivative, of the curve by ex-

pressing curvature in terms of the model parameters. Unless the parameters of the

shape representation have a particular meaning for the shape of the object (such as

the radius parameter for a sphere), it is often hard to know a priori how to con-

strain the parameters of the shape representation for a particular class of objects.

Therefore in practice, the smoothness prior is a common knowledge-driven prior used

both for parametric and geometric deformable models. We also note that choosing

a shape representation for deformable models is itself a knowledge-driven prior since

the type of representation chosen (parametric or implicit), as well as the type and

number of parameters, affects the initial topology, possible topological changes and

expressiveness of the shape model.

A data-driven shape prior can be used to represent a class (or population) of

shapes by learning the distribution of the shape parameters from a training set. The

prior represents the generic shapes of the object belonging to the class, as well as the

possible shape variations within the class, while excluding variations not previously

seen in the training set. The most common approach is to assume a multivariate

Gaussian probability function of the model parameters and learn the mean and major

modes of variation of the training set by using principal component analysis. This

prior is fully global, constraining all shape parameters.

1.2 Challenges addressed by this Thesis

In this thesis, we develop targeted shape representations for two important classes of

anatomical structures in medical imaging and derive probabilistic segmentation and

shape analysis algorithms based on these representations. The first class of shapes

that we study are two-dimensional or three-dimensional tubular anatomical structures

with branches, such as blood vessels. Blood vessel segmentation and visualization of
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blood vessels are important for clinical tasks such as diagnosis of vascular diseases,

surgery planning and blood flow simulation. The second class of shapes are three-

dimensional anatomical structures with genus zero 1 and high levels of detail, such as

deep brain structures. Segmentation and shape analysis of deep brain structures are

important for the study and diagnosis of neurological disorders.

The particular challenges we face with such structures are:

• Vessel structures do not have a fixed topology. Vessels have many branches,

and the number and location of the branches are patient specific. Therefore a

geometric active contour for segmentation is desirable since the topology is not

known in advance. However, using image intensity alone to deform the contour

often results in leakages at areas where the image information is ambiguous,

motivating the need to use a shape prior. The issue is that to date only strictly

local or fully global shape priors have been developed for geometric active con-

tours. A global data-driven shape prior is not desirable since there does not

exist a known a priori shape. A very local shape prior that imposes smoothness

of the contour is not constraining enough to prevent leaks.

• Deep brain structures have fixed topology, therefore a parametrized active con-

tour is desirable due to its efficiency. Again, image information alone is not

reliable for brain segmentation motivating the need to incorporate a shape prior

in the segmentation. Given the complexity of the surface, a data-driven prior

is preferable over a knowledge-driven one. The surface contain high frequency

information that varies from patient to patient therefore the shape prior needs

to encode high frequency variations at specific locations. Existing data-driven

shape priors favor the encoding of global (low frequency) information, particu-

larly if they have been trained on a limited number of samples. This means that

1shapes that do not have holes or handles, shapes that are equivalent to a sphere topologically
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high frequency information on the surface of the shapes (such as small bumps

or sharp edges) are not encoded in the prior representation.

Most shape priors used for deformable models fall either under the category of

global priors, constraining the full shape model to a predefined shape space, or very

local priors, constraining the smoothness of the model on a very local level. This thesis

addresses the gap between the two categories by proposing and evaluating multi-scale

shape representations that enable the estimation of shape priors that span the range

of scales, from local to global.

The notion of multi-scale has been developed by the computer vision community to

decompose image data in order to control the scale of observation, using for example

quadtrees or image pyramids [63]. Similarly an object boundary can be encoded as

a 2D or 3D signal that can be decomposed and analyzed at different scales. The

notion of scale is coupled with the location and spatial support of a filter used to

analyze the signal. At the coarsest scale of analysis, the filter has global support

and is applied to the whole object boundary. As the scale becomes finer, the spatial

support of the filter is decreased so that the filter is only applied to a segment of

the object boundary. This decomposition reveals different information content of the

shape signal depending on the scale, information not readily available from looking at

the original signal. Filters at a coarse scale usually analyze the global, low-frequency

content of the signal (global features) while filters at the finest scale analyze the

local, high frequency content (local features). This decomposition enables shape

representations and shape priors to encode information at various scales.

In this thesis, we propose to use operators and basis functions that can decompose

shape information both in space and in scale, enabling the construction of more

descriptive, non-global, non-uniform shape priors to be included in the segmentation

framework.
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1.3 Contribution of this Thesis

The contributions of this thesis are:

• A novel knowledge-driven prior based on local shape filters for implicit repre-

sentations of shape. We use these filters for the segmentation of blood vessels,

and introduce the notion of segmentation with a soft shape prior, where the

segmented model is not globally constrained to a predefined shape space, but is

penalized locally if it deviates strongly from a tubular structure. We introduce

the concept of a scale-specific shape filter that measures the deviation from

a tubular shape in a local neighborhood of points, given a particular scale of

analysis. Using this filter, we derive a region-based active contour segmentation

algorithm for tubular structures that penalizes leakages. We present results on

synthetic and real 2D and 3D datasets where we show that our technique can

prevent leaks in the segmentation when compared to a traditional region-based

active contour segmentation technique.

• A novel multi-scale shape representation using spherical wavelets for parametric

models from which a data-driven prior can be learned to segment shapes with

fine variations, such as deep brain structures. This novel representation is mo-

tivated by the observation that the classical active shape models prior (ASM)

technique cannot accurately encode fine, localized shape variations when the

training set is of moderate size, since the relatively few eigenvectors will repre-

sent the most global modes of variation in the shapes. To address this issue,

we present a novel algorithm that learns shape variations from data at multi-

ple scales and locations using the spherical wavelet representation and spectral

graph partitioning. Our results show that for a given training set size, our al-

gorithm significantly improves the approximation of shapes in a testing set over

ASM, even in the presence of noise.
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• The derivation of a parametric active surface evolution equation using the mul-

tiscale prior coefficients as parameters for the optimization procedure to natu-

rally include the prior for segmentation. The advantage of such a segmentation

framework is that the spherical wavelet shape prior can directly be used to

constrain the parameters during the surface evolution. Additionally, the opti-

mization method can be applied in a coarse-to-fine manner. Our validation on

caudate datasets in brain MRI shows that our algorithm is computationally effi-

cient, qualitatively captures finer shape details and quantitatively outperforms

the Active Shape Model (ASM) algorithm when measuring the distance of the

segmentation to the ground truth using the Hausdorff distance.

• Shape analysis using spherical wavelets. We use the spherical wavelet coeffi-

cients of our shape representation to locate morphological changes in the cau-

date nucleus brain structure between healthy control patients and patients di-

agnosed with schizo-typal personality disorder (SPD). The hypothesis testing

is conducted using a non-parametric permutation testing technique with cor-

rection for multiple comparisons. Our results show that statistically significant

differences are found among the group of patients (p<0.05), and in particular

the spherical wavelet representation finds a greater number of locations on the

shapes that exhibit a statistical shape difference among the shapes, when com-

pared to a point distribution model (PDM) that represents shape at a single

scale of analysis

Our conclusion discusses remaining challenges and extensions of the representa-

tions and algorithms presented in this thesis, and discusses future work directions.
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CHAPTER II

BACKGROUND: SHAPE REPRESENTATION AND

SHAPE PRIORS FOR MEDICAL IMAGE

SEGMENTATION

2.1 Overview

This chapter gives an overview of existing techniques for shape representation and

segmentation used in the framework shown in Figure 6.

We focus in particular on reviewing existing shape representations and their im-

pact on the construction of data-driven or knowledge-driven shape priors in Sec-

tion 2.2. The description of shape priors is of particular importance as a background

to our work.

We then present deformable model segmentation algorithms. We present two

types of deformable models based on the chosen shape representation: parametric

models in Section 2.3.1 and geometric models in Section 2.3.2. Geometric models

will be used in in our vessel segmentation framework presented in Chapter 3 and

parametric models will be used in our multiscale shape representation presented in

Chapter 4 and segmentation using the multiscale shape representation in Chapter 5.

2.2 Shape Characterization

In a model-driven segmentation framework, it is necessary to have a mathematical

description of the boundary of an object. Two main approaches exist: to represent the

boundary explicitly in a parametric form, or implicitly as the level set of a higher-

dimensional function. We describe both approaches in this section. We note that

this thesis only focuses on closed curves for 2D boundaries and simply-connected
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Figure 6: Framework for Shape Representation and Probabilistic Segmentation with
a shape prior. Solid boxes represent tasks, dashed lines represent categories of tech-
niques to accomplish task.

surfaces (surfaces with no holes) for 3D boundaries. See [45] for a treatment of open

curves/open surfaces.

2.2.1 Two Dimensional Parametric Shape Representation

Parametric models represent curves explicitly with a set of ordered control points

located on the boundary of the curve. The points are identified with a parameter p

varying from 0 to 1. Mathematically, the curve is represented as a collection of control

points
−→C (p) : [0, 1] → R

2 such that
−→C (p) = (x(p), y(p)). If one assumes that it takes

constant time to travel from one control point to another, a special parametrization

is arc-length parametrization (denoted s in this thesis), where the distance traveled

between points is equal (hence the curve is traversed at constant speed). In this case,

the parameter s varies from 0 to L, where L is the total length of the curve. However

with parametrized models, it is often the case that the distance between each control

point is not equal, and we denote the arbitrary parametrization with p that varies
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(a) A parametrized polygonal boundary (b) The snake model is a parametrized closed
boundary: it is a spline parametrized by a set of
node points in R

2

between 0 and 1 (see Figure 7(a)).

To represent a closed curve with control points, the simplest technique is to use

a polygonal approximation, where control points are vertices connected by straight

lines (segments), as shown in Figure 7(a).

A more sophisticated and visually pleasing representation is to use a piecewise

polynomial interpolation between control points (see Figure 7(b)). B-splines rep-

resentation is an example of using a linear combination of local, continuous bases

functions to represent a piecewise polynomial curve. For a nth order B-spline, the

bases functions are nth order polynomials (with the first n − 1 derivatives contin-

uous). Let xi = (x(i), y(i)), i = 1, ..., n be control points of a curve
−→C (p), and p

be a linearly increasing parameter that has integer value at control points, that is

xi =
−→C (i). The curve

−→C (p) is given by:

−→C (p) =
n+1∑

i=0

viBi(p) (1)

where vi are coefficients and Bi are bases functions whose shape is given by the spline

order. Third order splines are most common because they are the lowest order with

a continuous second derivative, used to calculate curvature. The bases functions are

non-negative and have local support. Each basis function Bi(p) is non-zero only for
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p ∈ (i− 2, i+ 2). This means that if a control point changes its position, a resulting

change of the curve will only occur in a small neighborhood around the control point.

The position of points of the curve between control points can be calculated directly

from equation 1, using any positive real number for p.

Using B-splines, the curve can be decomposed spatially in terms of local polynomial

bases functions. The scale of the decomposition however (the size of the support of

the bases function) is predetermined by the spacing of the control points.

To represent a curve at multiple scales, global Fourier bases functions can be

used. Using arc-length parametrization, a continuous curve
−→C (s) : [0, L] → R

2 can

be represented as:

−→C (s) =
∑

n

Tne
i(2π/L)ns (2)

The coefficients Tn of the series are called the Fourier descriptors and they uniquely

represent the curve. They are given by:

Tn =
1

L

∫ L

0

−→C (s)e−i(2π/L)ns ds (3)

In practice
−→C (s) is only evaluated at discrete control points, so the Tn are cal-

culated from the discrete Fourier transform. The main advantage of using Fourier

descriptors is that n represents the frequency of the Fourier basis, the higher the n,

the higher the frequency. Therefore, the curve can be represented at a particular scale

by filtering out (zeroing) Fourier descriptors that fall outside of the frequency content

of that scale in equation 2. A spectrum analysis of the Fourier descriptors can also

reveal which scale contains significant content, allowing for a compact representation

of the curve by using only the Fourier descriptors with significant power.
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2.2.2 Three Dimensional Parametric Shape Representation

Just like for the 2D case, the continuous three-dimensional surface
−→S : [0, 1]× [0, 1] →

R
3 is represented as discrete points and linear combination of basis functions evaluated

at those points.

The simplest representation for the shape is a triangular mesh (piecewise linear

surface) and the use of finite difference methods or finite element methods to discretize

derivatives. In the finite difference case, one might choose the space of Dirac delta

functions as bases functions. This means that the shape can be represented as a finite

linear combination of K Dirac functions (where K is the number of vertices) defined

at each vertex of the triangulation. In the finite element case, one uses the space of

piecewise linear functions. This means that the shape can be represented as a finite

linear combination of K functions vk : [0, 1] × [0, 1] → R
3, k ∈ [0, K] (where K is

the number of vertices). Each basis function vk is defined to be 1 at vertex xk and

linearly decreases to 0 at every other vertex.

One disadvantage of such techniques is the local support of the bases functions

(a function has support where it evaluates to nonzero). In the finite difference case

for example, the movement of one vertex is completely independent of the movement

of other vertices due to the fact that the Dirac delta function only has support at

that vertex. As the surface evolves, vertices of triangles can move independently of

each other and triangles can cross or overlap. As a result, frequent re-parametrization

are needed to ensure that the surface does not develop holes, handles or foldings. In

[10, 40], the surface is represented in the form of weighted sums of local polynomial

basis functions. The use of higher order polynomials ensures a larger support for

each basis function. However frequent re-parametrization remain an issue with these

techniques.

For this reason, smooth, complete bases functions with global support are used

in practice. The global support ensures a smoothness constraint between vertices of
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the triangulation and therefore require less frequent re-parametrization in practice

[41]. The requirement of completeness means that every function f ∈ L2(R3) may be

expanded in the basis as a linear combination of coefficients and basis functions [70].

We present such shape representation that are relevant to our work.

2.2.2.1 Fourier Surfaces

In the work of Staib et al. [57], a Fourier parametrization decomposes the surface into

a weighted sum of sinusoidal basis functions. The surfaces are represented explicitly

by three functions of two surface parameters:

−→S (u, v) = (x(u, v), y(u, v), z(u, v)) (4)

.

The function is then represented by:

−→S (u, v) =
2K∑

m=0

2K∑

l=0

λm,l

[am,l cos 2πmu cos 2πlv + bm, l sin 2πmu cos 2πlv+

cm,l cos 2πmu sin 2πlv + dm, l sin 2πmu sin 2πlv]

where

λm,l =






1 for m = 0, l = 0

2 for m > 0, l = 0 or m = 0, l > 0

3 for m > 0, l > 0

The parameters of the model are p = [ax, bx, cx, dx, ay, by, cy, dy, az, bz, cz, dz], where

ax represents all the am,l for the function x(u, v). The main issue with this technique,

as with any 3D parametrized active surface, is the choice of surface parametrization

(u, v). Spheres or cylinders can be easily parametrized, but more complex surfaces

are not. The torus is the easiest surface to represent because surface parameters

are forced to be periodic. Other types of surfaces can be described using subsets of

the Fourier bases which flatten out or constrain the torus in different ways. Since

parameters representing open surfaces result in discontinuities at the boundaries, the

discontinuities are avoided by having the two surface parameters start at one side of
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the surface, trace along the surface to the other end, and then retrace the surface in

the opposite direction to create a closed path and a periodic parametrization. Closed

surfaces are the most difficult to represent because they are the most dissimilar to

the torus. They are represented as open surfaces (tubes) whose ends close up to a

point at both ends.

Despite this complexity, one nice feature of the Fourier representation is the inher-

ent multi-resolution properties. The coefficients associated with the basis functions

with higher frequency represent higher spatial variations on the surface. These co-

efficients can thus be truncated and the series will still represent relatively smooth

objects accurately, using only a few coefficients associated with the lowest frequen-

cies. Another advantage of the Fourier representation is the geometric interpretation

of the coefficients. Low index coefficients describe global shape deformations and

higher indexed coefficients represent more local deformations.

More recent work on using Fourier bases has avoided the parametrization problem

by first mapping the surface to the sphere, and decomposing the shape signal using

bases functions defined on the sphere.

2.2.2.2 Spherical Harmonics

In the work of Brechbuhler et al. [5], a continuous, one-to-one mapping from the

surface of an original object to the sphere is defined. The mapping is a nonlin-

ear optimization constrained by two requirements: minimization of distortions and

preservation of area. The basic idea is to start with an initial parametrization of

the shape. Then the initial parametrization is optimized so that every surface patch

gets assigned an area in parameter space that is proportional to its area in object

space, while the distortion is minimized. This global parametrization allows for the

systematical scanning of the object surface by the variation of two parameters θ and

φ, overcoming previous limitations of expressing object surfaces in polar-coordinates,
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Figure 7: Visualization of the spherical harmonic functions on the sphere. A darker
color shows where the function has support. The figure shows the real parts of the
spherical harmonic function Y m

l , with l growing from 0 (top) to 5 (bottom), and m
ranging from 0 (left) to l in each row (from [23])

which restrict such descriptions to star-shaped objects. The object surface can then

be expanded into a complete set of spherical harmonics basis functions.

The basis functions are defined as:

Y m
l (θ, φ) =

√
2l+1
4π

(l−m)!
(l+m)!

Pm
l (cos θ)eimφ

Y −m
l (θ, φ) = (−1)mY m∗

l (θ, φ)
(5)

where Y m∗
l denotes the complex conjugate of Y m

l and Pm
l describes the associated

Legendre polynomials

Pm
l (w) =

(−1)m

2ll!
(1 − w2)

m
2

dm+l

dwm+l
(w2 − 1)l (6)
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Figure 8: Visualization of the spherical harmonic correspondence. A first order
ellipsoid and six left ventricles are displayed. The surface net shows the (θi, φi)
parametrization (same parameters = same homologous points). The ridges on the
first order ellipsoid are the equator and 0, π/2, π, 3π/2 meridian lines in all objects.
The equator and meridian lines are emphasized in different colors. The poles are at
the crossing of the meridian lines (from [23])

Figure 9: Visualization of a lateral ventricle (side view) at different spherical har-
monics degrees; m=1,4,8,12 top to bottom (from [23])
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Figure 7 shows a visualization of the spherical harmonic functions on the sphere.

A darker color shows where the function has support. The figure shows the real parts

of the spherical harmonic function Y m
l , with l growing from 0 (top) to 5 (bottom),

and m ranging from 0 (left) to l in each row.

To express the surface
−→S (θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ)) using spherical harmon-

ics:

−→S (θ, φ) =
∞∑

l=0

l∑

m=−l

cml Y
m
l (θ, φ) (7)

where the SPHARM coefficients cml are three-dimensional vectors due to the three

coordinate functions x, yandz. The coefficients cml are obtained by solving a least

squares problem, see [5] for the derivation.

Just like for the Fourier surfaces, the coefficients of the spherical harmonic func-

tions of different degrees provide a measure of the spatial frequency constituents that

comprise the structure. Partial sums of the series in Equation 7 can be used to repre-

sent selected frequencies of the object. As higher frequency components are included,

more detailed features of the object appear. This process is shown in Figure 9.

The parametrization of surfaces is invariant to object scaling since the whole sur-

face is mapped to the unit sphere. It is also invariant to translation if the object

is centered at the origin. However the coefficients obtained still depend on the ori-

entation of the object in space. This means for example that if two objects with

identical shape differ by a rotation, different points of the two objects will be mapped

to the north pole. To get rid of these dependencies, it is necessary to rotate the

object to a standard position, so that in our previous example, the two same points

on the object map to the north pole. This can be done by representing the object

using only the first order ellipsoid (using the first three coefficients) and applying a

rotation in parameter space so that for all shapes the poles of the first order ellipsoid

correspond to the poles of the sphere, and one end of the short axis of the ellipsoid
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corresponds to the point where the Greenwich meridian meets the equator (there is a

mirroring ambiguity depending on which end of the axis is mapped to the Greenwich-

equator point. The authors propose to use information from higher degree coefficient

to disambiguate that case). Figure 8 shows this process.

Spherical harmonics have been used in medical imaging for shape analysis [23].

For shape analysis, a distance between two objects is calculated directly from their

spherical harmonics coefficients via a difference calculation. The authors conducted a

statistical shape analysis of the lateral ventricles, a fluid filled structure in the center

of the human brain, that aimed to distinguish monozygotic twins from dizogotic twins

and from unrelated pairs. They took pairwise differences in volume and SPHARM

coefficient for each pair of twins. Significant differences between MZ and DZ pairs

could not be found by volume measurements but only by SPHARM measurements.

The authors identified that one weakness of shape analysis by SPHARM is the non-

intuitive and non-localized nature of the set of coefficients. If a particular coefficient

is found to be statistically significant in shape difference findings, the coefficient itself

does not reveal the localization of the effect, only its “frequency”.

In chapter 4, we propose to use a set of basis functions, spherical wavelets, that

address this shortcoming.

2.2.3 Adding Data-Driven Shape Priors to Parametric Models

Parametric models can be restricted to a particular shape space by constraining the

values of the coefficients of the bases functions used the represent the shapes. The

main challenge is to learn the probability function of the coefficients from example

shapes, called a training set. These shapes are said to belong to the same “pop-

ulation”, meaning that they represent the same type of object (for example brain

ventricles). The most common assumption is to assume a joint Gaussian probability

function for the shape coefficients, as in the active shape model.
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2.2.3.1 Point Distribution Models

In active shape models (ASM) [11], the authors represent shapes as linear combina-

tions of landmark points. The landmark points must be placed in the same way on

each object boundary in a training set. Figure 10 shows an example of landmarks

placed on several brain structures in a single model.

Each shape can be described by three coordinate functions, x, y, z ∈ R such that

the position of the nth landmark is (x(n), y(n), z(n))T , n ∈ [1, N ].

The kth shape in a population of K shapes is a column vector of size 3N × 1:

Sk = [xk(1), ..., xk(N), yk(1), ..., yk(N), zk(1), ..., zk(N)]T , k ∈ [1, K] (8)

Since all landmarks are registered, we can interpret each entry in Sk as a random

variable so that each shape is a realization from a multivariate probability function,

P (S).

A mean shape can then be calculated as S = 1
K

(
∑K

k=1 Sk).

The main assumption of ASM is that the set of K shapes in the training set gives

a cloud of K points in 3N dimensional space that is approximately ellipsoidal and

has a multivariate normal probability function in R
3N :

P (S = si) =
1

z
.exp{−(si − S)TC−1(si − S)} (9)

where si is a shape realization, z is a normalization constant, S is the mean shape

and C is the covariance matrix that encodes the axes of the ellipsoid cloud of data.

To find the major axes, the covariance matrix C is estimated by building a covari-

ance matrix SST from the data and diagonalizing it via singular value decomposition,

such that C ≃ SST = UΣUT . The eigenvectors U are the major axes of the ellip-

soidal cloud and form an orthonormal L2 basis for the shapes. Hence each major axis

represents a mode of variation of the data. The corresponding eigenvalue σ is the

magnitude of the variation.
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Figure 10: Outline of several brain structures in a single model labeled with land-
marks (from [11])

(a) Varying the most significant mode of vari-
ation (±2 std)

(b) Varying the second most significant mode
of variation (±2 std)

Figure 11: In ASM, the learned shape variation can be shown by selecting one of the
eigenvectors (modes of variation) and varying its magnitude from −n√σ to n

√
σ with

n = 2 and adding the result to the mean shape to display the variation(from [11])

With this interpretation, it is common practice in the literature to show shape

variation by selecting one of the eigenvectors and varying its magnitude from −n√σ

to n
√
σ where n = 2 for example and adding the result to the mean shape to display

the variation, as shown in Figure 11.
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2.2.3.2 Using the Covariance Matrix for Shape Prior

To use the preceding L2 basis as a shape prior, one could directly apply Equation (9)

to a new shape sn to test whether it has a high probability of belonging to the shape

class. Alternatively, to restrict a new shape to belong to the population, we can

project the shape unto the most significant eigenvectors Ut(the ones who cumulative

eigenvalues account for a high percentage of the total eigenvalues) and translate the

coordinates of the new shape to the closest point that lies inside or at a reasonable

distance of the training data point cloud. A shape sn is corrected to s′n by applying

equations 10-12:

bn = UT
t (sn − S) (10)

b′n(m) =






bn(m) if −3
√

(σm) ≤ bn(m) ≤ 3
√

(σm)

−3
√

(σm) if bn < −3
√

(σm)

3
√

(σm) if bn > 3
√

(σm)






(11)

s′n = S + Utb
′
n (12)

2.2.3.3 Limitation of PCA in Representing Finer Shape Details

One problem with this technique is that PCA favors the discovery of global variations

over local variations. For a training set size of K shapes with N vertices, where

N ≫ K and the size of S is 3N ×K, the rank of the covariance matrix SST will be

at most K. It can be shown that the eigenvectors of the covariance matrix describe

the longest axes of the ellipsoid, and thus the most significant modes of variation in

the vertices [11]. If there exist M shape “processes”, such that M ≫ K, then only

the first K processes that account for the most variation in the data (the most global

processes) will be represented. This problem is aggravated if the training sample

is very small since the number of independent processes discovered to build a shape

prior will be at most K, the size of the training sample, as will be shown in Chapter 4.
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(a)

(b)

Figure 12: Level Sets of an embedding function φ for a closed curve in R
2

2.2.4 2D and 3D Implicit Shape Representation

With this representation, curves are represented implicitly as the zero level set of a

higher-dimensional scalar function in R
2 and surfaces are the zero level set of a scalar

function in R
3. The scalar function used is usually a signed distance map. In 2D,

a curve
−→C (p) : [0, 1] → R

2 to be represented is embedded as the zero level set of

a surface, φ, in R
3 whose height is sampled at regular intervals on the x, y grid as

shown in Figure 12(a). Each height value z = φ(x, y) encodes the distance to the

nearest point on the curve, with negative values inside the curve. Similarly, a surface

−→S (u, v) : [0, 1] × [0, 1] → R
3 to be represented is embedded as the zero level set of a

hyper-surface, φ, in R
4. To visualize the curve, only the set of grid points φ(x, y) = 0

are shown. For a surface, only the isosurface φ(x, y, z) = 0 is shown.
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2.2.5 Shape Priors for Implicit Representations

Shape priors in the geometric active contours were introduced by Leventon et al [36].

They compute a statistical shape model over a training set of curves.

To build the shape model, they choose a representation of curves, and then define

a probability density function over the parameters of the representation, in similar

spirit to active shape models [11]. The major difference however is in the curve

representation. Each curve in the training dataset is embedded as the zero level

set of a higher dimensional surface, u, whose height is sampled at regular intervals

(say Nd samples, where d is the number of dimensions). The embedding function

chosen is the commonly used signed distance function, where each sample encodes the

distance to the nearest point on the curve, with negative values inside the curve. Each

such surface (distance map) can be considered a point in a high dimensional space

(u ∈ R
Nd

). The training set, T , then consists of a set of n surfaces T = u1, u2, ..., un.

The cloud of points corresponding to the training set is approximated to have a

Gaussian probability function, where most of the dimensions of the Gaussian collapse,

leaving the principal modes of shape variation. The mean surface, µ, is computed by

taking the mean of the signed distance functions,

µ =
1

n

∑
ui.

The variance in shape is computed using Principal Component Analysis (PCA). The

mean shape, µ, is subtracted from each ui to create an mean-offset map, ũi. Each

such map, ũi, is placed as a column vector in an Nd×n-dimensional matrix M . Using

Singular Value Decomposition (SVD), the covariance matrix

1

n
MMT

is decomposed as:

UΣUT =
1

n
MMT (13)
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where U is a matrix whose column vectors represent the set of orthogonal modes

of shape variation and Σ is a diagonal matrix of corresponding singular values. An

estimate of a novel shape, u, of the same class of object can be represented by k

principal components in a k-dimensional vector of coefficients, α.

α = UT
k (u− µ) (14)

where Uk is a matrix consisting of the first k columns of U that is used to project

a surface into the eigen-space. Given the coefficients α, an estimate of the shape u,

namely u′, is reconstructed from Uk and µ.

u′ = Ukα + µ (15)

The authors note that in general u′ will not be a true distance function, since

convex linear combinations of distance maps do not produce distance maps. However,

in practice the surfaces generally still have advantageous properties of smoothness,

local dependence, and zero level sets consistent with the combination of original

curves.

2.3 Deformable Models for Probabilistic Segmentation

As explained in Chapter 1, the segmentation techniques described in this thesis are

part of a probabilistic segmentation framework using deformable models. If S is a

shape representation and D is the image data, the segmented shape is the maximum

a posteriori estimate

S∗ = arg max
S

P (S|D) (16)

Assuming that P (D) is uniform, the posterior can be expressed as the product of the

likelihood P (D|S) and the model prior P (S)

P (D,S) = P (S|D)P (D) (17)
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P (S|D) =
P (D|S).P (S)

P (D)
(18)

P (S|D) ∝ P (D|S)P (S) (19)

To derive an evolution equation for deformable models, an energy formulation is

given:

E(D,S) ≡ −log(p(S|D)) (20)

E(D,S) = −log(p(D|S)) − log(p(S)) (21)

E(D,S) = Edata(D,S) + Eprior(S) (22)

Segmentation can then be formulated as an energy minimization problem:

S∗ = arg min
S
E(I, S) (23)

This minimization is often solved via gradient descent optimization. The shape

representation is augmented with an artificial time parameter t and an initial shape

at time t = 0 of the optimization procedure is given by S|t=0 = S0. The shape

representation is then updated at each iteration in the gradient direction so as to

minimize the overall energy by using the forward Euler equation:

St+1 = St + δ
∂S

∂t

∂S

∂t
= −∇SE (D,S) (24)

This formulation applies both to parametric and implicit deformable models de-

scribed in the next sections.

2.3.1 Parametric Deformable Models

The classical parametric model is the snake formulation. We also present interesting

extensions of parametric models relevant to our work.
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Figure 13: An example of a snake active contour (a) Intensity CT image of the
heart left ventricle (b) edge detected image (c) initial contour (d) deformable con-
tour moving toward the left ventricle boundary, driven by an inflating pressure force
(from [41])
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2.3.1.1 Snakes

Mathematically, a snake is a parametrized contour embedded in the image plane

I(x, y) : R
2 → R. The contour is represented by

−→C (p) = (x(p), y(p))T where p ∈ [0, 1]

is an arbitrary parametrization of the curve. The shape of the contour is defined by

the energy functional:

E(
−→C ) = S(

−→C ) + P(
−→C ) (25)

The final shape of the contour will correspond to the minimum of this energy

functional. The first term,

S(
−→C ) =

∫ 1

0

α(p)|−→C p|2 + β(p)|−→C pp|2 dp (26)

is the internal deformation energy. α(p) controls the “tension” of the contour while

β(p) controls its “rigidity”. Since
−→C p(p) is equivalent to the local length of the contour

at p, a high value of α places a penalty on extraneous ripples of the curve. Similarly

a high value of β places a penalty on extraneous bending. The second term,

P(
−→C ) =

∫ 1

0

Ψ(
−→C (p)) dp (27)

is the potential energy that couples the snake to the image. P (x, y) : R
2 → R is a

scalar function designed to have local minima to coincide with strong edges in the

image that correspond to structure boundaries. A classical choice is:

Ψ(x, y) =
1

1 + ‖(∇(Gσ(x, y) ∗ I(x, y))|2
(28)

where Gσ(x, y) is the two-dimensional Gaussian function with standard deviation σ,

∇ is the gradient operator, and ∗ is the 2D image convolution operator. Minimizing

P(
−→C ) will therefore attract

−→C toward the edges.

Finding a curve
−→C that minimizes the overall energy function E is a variational

problem [13]. To minimize Equation 25,
−→C must satisfy the following Euler-Lagrange
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equation[13]:

∂E

∂
−→C

= − ∂

∂p

(
α
∂
−→C
∂p

)
+

∂2

∂p2

(
β
∂2−→C
∂p2

)
+ ∇P (

−→C ) = 0 (29)

To solve Equation 29 given an initial curve
−→C 0, the curve is made dynamic by aug-

menting it with a time parameter,
−→C (p, t), with

−→C (p, 0) =
−→C 0(p).

By the chain rule,

<
∂E

∂
−→C
,
∂
−→C
∂t

>=
∂E

∂t
(30)

where < ., . > represents an inner product between two functions (infinite dimensional

vectors). Therefore the energy is minimized in time when ∂E

∂
−→
C

= −∂
−→
C

∂t
(the inner

product between two vectors < u, v > is minimum when u = −v).

The curve is then deformed at each time step according to the following gradient

descent equation:

γ
∂
−→C
∂t

=
∂

∂p

(
α
∂
−→C
∂p

)
− ∂2

∂p2

(
β
∂2−→C
∂p2

)
−∇Ψ(

−→C ) (31)

The coefficient γ is introduced to make units consistent. Thus the minimization

is solved by placing an initial contour on the image domain and allowing it to deform

at each time step according to equation 31. This can be done with Forward-Euler

Equation [53]:

−→C (p, t+ 1) =
−→C (p, t) + ∆t ∗ ∂

−→C (p, t)

∂t
(32)

where ∆t is chosen based on stability conditions (the CFL condition [53]).

One limitation of the classical snake model is that it needs to be initialized very

close to the object boundary in order to be within the attraction range of the po-

tential force [41]. To address this limitation, Cohen [9] proposes to increase the

attraction range by using a pressure force in addition to the potential energy defined

in Equation 27. The pressure force can either inflate or deflate the contour, removing

the requirement that the model is initialized near the desired object boundary. The

pressure force is defined as:

P (
−→C ) = wpN (

−→C ) (33)
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where N (
−→C ) is the inward unit normal and wp is a constant weighting parameter.

P (
−→C ) is added to as an additional term in Equation 31 and has the effect of moving the

control points of the model either along their inward normal (if wp is positive) or along

their outward normal (if wp is negative). An example of using a deformable contour

using an inflationary (wp < 0) pressure force is shown in Figure 13. See [41, 71] for a

detailed survey of snakes and their use in medical image analysis.

2.3.1.2 Snakes Implementation

Various numerical implementations of snakes exist in the literature [41, 71]. In order

to numerically compute the snake evolution, it is necessary to discretize the energy

E(
−→C ). The approach is to represent the continuous contour

−→C in terms of discrete

points and linear combinations of basis functions expressed at those sample points.

Finite differences [32], finite elements [47] and geometric splines [19] are local basis

functions. Fourier Bases have also been used as global representation methods [56].

The trade-off is that local representations have more degrees of freedom to represent

complex shapes with high local variations, but require special care to guarantee the

smoothness of the curve. Global representations have built-in smoothness constraints,

but fewer degrees of freedom.

The points are parametrized by the parameter p and the spacing between the

points evolves dynamically as the curve evolves. The spacing between the points can

be represented mathematically as the length of the tangent at each sample point,

||∂
−→
C

∂p
||. If the spacing between two points becomes too small or too large (relative

to the rest of the points), a re-parametrization is necessary to keep the numerical

implementation well behaved.

2.3.1.3 Snakes Limitations

Parametric deformable models such as snakes have been applied successfully in a wide

range of applications [71]. However two limitations are often cited in the literature:
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• In situations where the initial contour and the final solution differ greatly, it is

necessary to re-parametrize the curve to keep the sample points equally spaced

to more faithfully recover the object boundary and keep sample points from

crossing and create “loops” in the contour. Methods for re-parametrization

in 2D are straightforward, but in 3D re-parametrization is more complex and

requires computationally expensive methods.

• The contour has a fixed topology and cannot automatically merge or split. If

a topology change is needed, a new parametrization needs to be constructed

which requires sophisticated schemes for detection and re-parametrization [42].

On the other hand, if the desired topology of the contour is known a priori and a

shape prior is applied to the contour to regularize the parametrization, parametrized

models are still a method of choice due to their fast running time. In addition, the

shape prior probability function is a function of a smaller number of shape parameters

when compared to implicit models, which is an advantage to estimate the function

more accurately. We will discuss the pros and cons of parametric models versus

geometric models further at the end of this chapter.

2.3.1.4 Parametric Deformable Surfaces

Since most medical structures are three-dimensional, the use of a true 3D deformable

surface to segment a structure in a volume ensures a globally smooth and coherent

segmentation. The theory presented in section 2.3.1.1 can easily be extended to

surfaces by using a parametrized surface embedded in the volume I(x, y, z) : R
3 → R.

The surface is represented by
−→S (u, v) = (x(u, v), y(u, v), z(u, v))T where u ∈ [0, 1], v ∈

[0, 1] parametrize the surface.

As an example of surface evolution, Staib et al. [57] use the Fourier surface repre-

sentation presented in 2.2.2.1 for segmentation of 3D medical images. In order to fit

one of these models to the image data, a measure of fit is optimized by varying the
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model parameters. They assume that the surface is distinguishable by a measure of

boundary strength b(
−→S ) computed from the image (using a term similar to Ψ defined

in Equation 28). A measure of fit for curves can then be written as:

M(b,p) =

∫ ∫
|b(x(p, u, v), y(p, u, v), z(p, u, v)|dA (34)

where p is a vector consisting of the Fourier coefficients. Equation 34 can be evaluated

by numerical integration by taking the derivative of the function M(b, p) with respect

to each parameter in p. They show results for smooth spherical shapes, such as the

heart’s endocardium.

2.3.1.5 Discussion

Parametric Deformable Models can be a very fast and powerful technique, so long as

topological changes are not expected to happen during the segmentation. If topolog-

ical changes happen, more complex bookkeeping is needed. In addition to their fast

running time, another main advantage of parametric models is the fact that shape

priors can easily be included in the formulation by learning a prior probability func-

tion of the model parameters and limiting the evolution within a particular shape

space by keeping the model parameters within a certain standard deviation of the

values of the training set. One main issue is the problem of aligning training samples

in order to learn a prior probability function. In 3D, techniques that use spherical

harmonics to align shapes address this issue.

2.3.2 Geometric Deformable Models

Geometric deformable models, proposed independently by Caselles et al. [6] and Mal-

ladi et al. [48], provide an elegant solution to address the topological change limitation

of parametric deformable models. Curves and surfaces are evolved using only geo-

metric measures that can easily be represented by an implicit shape representation.
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By representing evolving curves and surfaces implicitly as a level set of a higher-

dimensional function [44, 53], the evolution no longer depends on parametrization.

As a result, topology changes can be handled automatically.

The purpose of geometric curve evolution theory is to study the deformation

of curves using only geometric measures such as the unit normal, the arc length

parameter and curvature as opposed to using quantities that depend on an arbi-

trary parametrization of the curve. Let us consider a moving curve
−→C (s, t) =

(x(s, t), y(s, t)) where s is an arbitrary parametrization and t is an artificial time

parameter. If we denote the inward normal at point p at time t as N (s, t) and the

curvature at point s at time t as κ(s, t), then the evolution of the curve along its

normal direction can be characterized by the following partial differential equation:

∂
−→C (s, t)

∂t
= V (κ(s, t))N (s, t) (35)

where V (κ) is called speed function, since it determines the speed of the curve evolu-

tion. Only the normal direction is needed since the tangent deformation affects only

the curves parameterization, not its shape and geometry [44]. The partial differen-

tial equation in 35 is derived by defining an energy functional that depends on the

geometry of the curve and possibly other external quantities, such as image intensi-

ties, and finding the curve that maximizes or minimizes this energy using calculus of

variations.

There are two types of energies: edge-based, where quantities used in the energy

definition are a function only of the curve boundary, or area-based, where quantities

used in the energy are a function both of the curve boundary and the region inside

the curve.

In the next sections, we present the most extensively studies curve deformations

using various energy functionals.
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2.3.2.1 Curvature Flow

The Curvature deformation evolution equation is derived by setting up an energy

that represents the total length of the curve:

E(
−→C ) =

∫ L

0

ds (36)

where s corresponds to the arc-length parameter. The solution to minimize such an

energy (and hence to minimize arc-length) is the following gradient flow, also called

the geometric heat equation:

∂
−→C (p, t)

∂t
= ακ(p, t)N (p, t) (37)

where α is a positive constant. This equation will smooth a curve, eventually

shrinking it to a circular point [27]. The use of the curvature deformation has a

smoothing effect similar to the use of the elastic internal force in parametric de-

formable models.

2.3.2.2 Dilation/Erosion Flow

To derive the constant deformation flow, we write down an energy that represents

the enclosed area of the contour:

E(
−→C ) =

∫ ∫

R

dA (38)

where R is the region enclosed by
−→C and A is the area element. The solution to

minimize/maximize such an energy (and hence to minimize/maximize total area) is:

∂
−→C (p, t)

∂t
= V0N (p, t) (39)

where V0 is either +1 for an erosion flow (recall that N is the inward normal) and −1

is the erosion flow. Constant deformation plays the same role as the pressure force in

parametric deformable models.
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(a) Initial active contour. (b) Evolving active contour. (c) Steady state.

Figure 14: Ventricle segmentation in MRI heart image via shrinking conformal
active contour.

The properties of curvature deformation and constant deformation are comple-

mentary to each other. Curvature deformation removes singularities by smoothing

the curve, while constant deformation can create singularities from an initially smooth

curve. The basic idea of the geometric deformable model is to couple the speed of

deformation (using curvature and/or constant deformation) with the image data, so

that the evolution of the curve stops at object boundaries. The evolution is im-

plemented using the level set method [44, 53]. Most of the research in geometric

deformable models has been focused in the design of speed functions. We present the

most popular in the next sections.

2.3.2.3 Conformal (Geodesic) Active Contours

Caselles et al. [7] and Kichenassamy et al. [33] both used an energy minimization

formulation that includes image data in the speed function. It is based on finding a

geodesic in a Riemannian space where the metric is derived from the image content,

i.e., a curve of minimal weighted length. The metric used is Ψ, previously defined in

Equation 28. This will result in finding a curve that has minimum energy when it is

located on an edge (when Ψ is the smallest).
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(a) Initial active contour. (b) Evolving active contour.

(c) Evolving active contour. (d) Splitting of active contour and
steady state.

Figure 15: Bone segmentation in CT image with splitting shrinking conformal active
contour.
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E(
−→C ) =

∫ L

0

Ψ(
−→C ) ds (40)

This leads to the gradient flow:

∂
−→C
∂t

= {(∇Ψ · N ) − Ψκ}N (41)

The term ∇Ψ · N is large when the gradient of the edge detector Ψ coincides

with the normal N of the evolving curve and leads the curve into the boundary and

eventually forces it to stay there [7]. An example of the geodesic active contour is

shown in Figure 14. Note that in the case where Ψ would be uniform, Eq. (42)

reduces to the geometric heat equation [27]. Figure 15 shows a bone segmentation in

CT image with splitting shrinking conformal active contour.

2.3.2.4 Conformal (Geodesic) Active Contours with Inflationary Term

The geodesic active contour of Equation 42 is strictly deflationary, meaning that in

the presence of no edges, the contour will just shrink to minimize its length (due to

the curvature term). Other contours have been devised to allow for inflation as well,

using an inflationary term c [71].

∂
−→C
∂t

= {(∇Ψ · N ) − (κ+ c)Ψ}N (42)

2.3.2.5 Region-Based Active Contours

One issue with edge-based active contours is that they are not robust to noise in

the image and the gradient terms can stop the curve evolution at spurious edges.

Recently there has been a considerable amount of work on image segmentation using

region-based curve evolution techniques. In those technique, the force that influences

the evolution of the curve depends on a region statistics, inspired by the region

competition work of Zhu and Yuille [75] and more recently the work of Chan and
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Vese [8] and Yezzi [73]. For example in [73], the authors developed a segmentation

technique that evolves a curve in order to maximizes the difference between the mean

of the pixels that lie inside the curve and the mean of the pixels that lie outside the

curve.

The basic underlying mathematical idea is to write down an energy that minimizes

a particular function f inside a region R, enclosed inside the curve
−→C . The goal is

then to find a gradient flow of
−→C that minimizes the following energy:

E(
−→C ) =

∫

R

f(x) dx (43)

The gradient flow for this energy is derived in the appendix, and we give its final

form:

∂
−→C
∂t

= −f−→N (44)

This type of flow can be very interesting for medical imaging applications where strong

edges are not necessarily present, but image statistics can be used reliably to segment

particular structures. For example, if an organ has a know mean and variance for the

pixel values that lie inside and on its boundary, then this type of energy can be used:

E(
−→C ) =

∫

R

φ(x) dx (45)

where φ is negative if it lies within the range and positive otherwise (where the

magnitude depends on how close it is in the range). This type of curve evolution will

be used in Chapter 3.

2.3.3 Numerical Implementation: level set method

The level set method is used to account for automatic topology adaptation, and it

also provides the basis for a numerical scheme that is used by geometric deformable

models. The level set method for evolving curves is due to Osher and Sethian [44, 53].
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Figure 16: Four steps in the segmentation of two different corpora callosa. The
last image in each case shows the final segmentation in red. The cyan contour is the
standard evolution without the shape influence (from [36])

In the level set method, the curve or surface is represented implicitly as a level set of

a scalar function which is usually defined on the same domain as the 2D or 3D image

that is to be segmented. The level set is defined as the set of points that have the

same function value. Figure 12 shows an example of embedding a curve as a zero level

set. The sole purpose of the level set function is to provide an implicit representation

of the evolving curve and this is made possible by the fact that the evolution equation

is defined in terms of geometrical or external quantities. A detailed description of the

level set scheme will be given in Section 3.4.1.

2.3.3.1 Shape Priors for Geometric Active Contours

Shape priors in the geometric active contours were introduced by Leventon et al [36].

Their approach to object segmentation extends geodesic active contours by incorpo-

rating shape information into the evolution process. They first compute a statistical

shape model as described in section 2.2.5 over a training set of curves. To segment

a structure from an image, they then evolve an active contour both locally, based on

image gradients and curvature, and globally to a maximum a posteriori estimate of

shape and pose.

Overall the authors use the learned α shape parameters, as well as rigid pose

parameters p (rotation, translation) to parametrize the model. To segment the curve,

their technique uses a two step approach: they evolve an initial contour according
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to the geodesic curve evolution defined in Equation 42. Then, they seek to estimate

the shape parameters, α, and the rigid pose parameters, p, of the final curve using a

maximum a posteriori approach:

< αMAP , pMAP >= argmaxα,pP (α, p|−→C (t),∇I) (46)

In this equation,
−→C (t) is the evolving curve (or surface) at some point in time

t. The term ∇I is the gradient of the image containing the object to be segmented.

In calculating Equation 46, the authors use a shape prior P (α) to be the Gaussian

model over the shape parameters, α, with shape variance Σk:

P (α) =
1

sqrt2πk|Σk|
exp(−1

2
αT Σ−1

k α) (47)

Once the optimal shape and pose parameters are found, the optimal curve
−→C

∗

is calculated from αMAP and pMAP and the prior is balanced with the image prior

according to the following curve evolution equation:

∂
−→C
∂t

= λ1{(∇Ψ.N ) − Ψκ}N + λ2{
−→C

∗
−−→C } (48)

This technique gives convincing results on imagery where the classic geodesic

active contour leaks, as shown in Figure 16.

2.3.4 Discussion

The parametric representations are Lagrangian in nature, meaning that coordinates

representing the shape (either the coordinate of the control points, or the coefficients

of the basis functions) move as the shape deforms. In contrast, implicit representa-

tions are Eulerian representations where the underlying coordinate system remains

fixed as the shapes change (it is the value of each grid point that changes). One

advantage of using an implicit representation is that topological changes in the shape

during the evolution are automatically handled, as shown in Figure 12. Figure 12(a)
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shows the shape at time t = 0 that consists of two disjoint circles. As the value of

the function φ changes over time, the shape becomes a single blob at time t = 1.

No special handling is needed during merging or splitting of the shape. In contrast,

changes in model topology for parametric models during the deformation, such as

splitting and merging, need to be detected and require special handling. For exam-

ple when two disjoint (individually parametrized) boundaries merge, the single object

needs to be re-parametrized to reflect the new topology. One drawback of the implicit

representation however is the higher dimensionality of the model as well as the loss

of meaningful shape representation since the shape of the object is only represented

as a collection of unordered pixels. Further analysis is required to link pixels in a

particular order to represent the notion of a parametrized curve.

Table 1 summarizes this chapter by comparing parametric and geometric active

contours.

Table 1: Properties of parametric and geometric active contours. Adapted from [15]
.

Parametric Geometric
Efficiency *** *
Ease of Implementation (2D) *** **
Ease of Implementation (3D) ** **
Topology Change No Yes
Inclusion of Smoothness Shape Prior Yes Yes
Inclusion of Global Shape Prior Yes Yes

We note therefore that the need for topology change vs. efficiency are big factors

in deciding whether one should choose parametric or geometric active contours for

shape segmentation.

Shape priors, both for parametric or geometric models, generally fall into two

categories:

• Very local Priors that impose a smoothness constraint (usually based on second
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derivatives)

• Fully Global Priors that constrain the whole shape of the model to a predefined

shape space, learned from a training sample.

These priors are good to segment structures that have a consistent shape and

topology across the population, for example the brain’s ventricles that are consistently

“butterfly-shaped” objects. However some structures, such as vessels, do not always

have a consistent shape across patients. Each patient can have a different number

of branches, located at different areas down from the root of the vessel. In another

situation, when the training set is very small, the global prior can be very constraining

since it only allows new shapes to resemble shapes seen in the training set. While

it might be true that the shapes “overall” look the same (at a low resolution), it is

usually the case that higher frequency information differs among shapes. We address

these issues in our work.
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CHAPTER III

SOFT SHAPE PRIORS: VESSEL SEGMENTATION

USING A SHAPE DRIVEN FLOW

In this chapter, we present a segmentation method for vessels using an implicit de-

formable model with a knowledge-driven scale-specific shape prior. Blood vessels are

challenging structures to segment due to their branching and thinning geometry as

well as the decrease in image contrast from the root of the vessel to its thin branches.

Using image intensity alone to deform an active contour for the task of segmenta-

tion often results in leakages at areas where the image information is ambiguous. To

address this problem, we combine image statistics and a semi-local shape prior in a

variational framework to derive a region-based active contour that segments tubular

structures and penalizes leakages. We present results on synthetic and real 2D and

3D datasets.

3.1 Blood Vessel Segmentation

Blood vessel segmentation and visualization of blood vessels are important for clinical

tasks such as diagnosis of vascular diseases, surgery planning and blood flow simu-

lation. A number of methods have been developed for vessel segmentation, however

most of those techniques do not use a shape prior, or use a strong global shape prior.

Using image intensity alone for the task of segmentation often results in leakages

perpendicular to the vessel walls at areas where the image information is ambiguous.

Leakages cause the segmented model to expand into areas that are not part of the

vessel structure, and result in incorrect segmentations.

To remedy this problem, strong knowledge-driven global shape priors can be used,
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such as tubular shape templates to constrain the segmentation to a particular shape

space. However since diseased vessels can have abnormal shapes, a strict shape tem-

plate may result in incorrect segmentation that misses important anatomical infor-

mation.

Data-driven shape templates, where a shape prior is learned from a training set,

are not typically used for vessel structures given that the topology of vessels (the

number and location of branches) is highly variable based on the patient.

In this work, we introduce the notion of segmentation with a soft knowledge-

driven shape prior, where the segmented model is not constrained to a predefined

shape space with a predefined shape template, but is penalized if it deviates strongly

from a tubular structure, since those deviations have a high probability of being leaks.

Our method uses a shape prior localized in space in addition to image statistics to

deform an active contour for the task of blood vessel segmentation.

3.2 Related Work

Many geometric methods exist for vessel segmentation that range from using no shape

priors to strong shape priors. Tubular structures can be identified by the response of

derivative and Gaussian filters convolved with the image. Sato et al use the second

derivatives of a set of multi-scale Gaussian filters to detect curvilinear structures

and penalize high intensity (bumps) on the vessel walls [50]. The filter response can

be used to visualize the vessels through Maximum Intensity Projections (MIP) or

isosurface extraction. Since these methods rely on the intensity of the image, a noisy

intensity map may result in incorrect filter response and additional shape information

might be needed for a correct segmentation. Skeletons [21, 16] can be used as a basis

of graph analysis of vessels, and further processing is needed to extract the 3D shape of

the vessel. Krissian et al. use multi-scale filtering, based on a set of Gaussian kernels

and their derivatives to extract a skeleton of vasculature [34]. The local maxima of
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the filter response is used to find centerpoints and radius information in order to fit a

cylindrical model to the data. The restriction of the shapes can be a limitation since

diseased vessels can have cross-sections that deviate from an elliptical shape.

As presented in chapter 2, deformable models are a powerful technique for flexible

automatic 3D segmentation. Deformable models are based on an initial contour or

surface deformed by a combination of internal (shape) and external (image and user

defined) forces to segment the object of interest. In particular, the addition of a

shape prior as an internal force can greatly increase the robustness of deformable

models when applied to the task of vessel segmentation. Snakes are parametrized

models and shape templates can easily be incorporated in this framework [22, 42].

However those methods have a limitation since the surface cannot handle topological

changes as easily as the level set methods and re-parameterization is often necessary

and complex in 3D.

Wang et al [66] did an analysis of different active contour models and reported

that geometric active contours are the best choice for vessel segmentation due to their

topological adaptability. As presented in section 2.3.2, geometric deformable models

represent a surface implicitly by the zero level set of a scalar-valued function. The

evolution is carried out within this framework without the need for parameterization

or explicit handling of topological changes [44, 53].

However, since there is no explicit parameterization, incorporating a knowledge-

driven shape prior in the geometric active contour framework is more difficult and

ad-hoc. For example, to address the issue of leaks that form at the root of vessels

during a fast marching segmentation, Deschamps et al. [62] freeze a percentage of

the points that are closer to the starting seed (since it is assumed that they have

segmented the structure of interest) while allowing the fast evolving points to evolve

normally. However this technique does not prevent leaks that form far away from the
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root of the vessels, close to the fast evolving part of the front. Strong knowledge-

driven shape priors in combination with level set techniques for vessel segmentation

was used by Lorigo et al. [38]. They evolve 1D curves in a 3D volume and then

estimate the radius of the vessels locally using the inverse of principal curvature.

However, this technique makes a strong assumption about the shape of the vessels

since they are modeled as tubes with varying width.

To segment vessels with a knowledge-driven shape prior, it would be useful to have

a shape prior that constrains the shape of the model locally to have a tubular shape,

without over-constraining the shape globally. We call this concept a soft shape prior.

The scale of the soft prior should be adapted to the vessel radius, so that deviations

from a tubular shape on a small scale are acceptable, to account for fine details

in vessel structure, but that on the scale of the vessel radius, the structure keeps a

tubular structure and does not exhibit leaks. To our knowledge, no existing geometric

active contour uses such a prior for vessel segmentation.

3.3 Shape Driven Flow

We first present a classical region-based geometric active contour that is prone to

leakage problems. We then present our method that adds a soft shape prior for a

better behaved flow.

3.3.1 Region Based Flow

The classical region-based geometric active contour flow deforms the curve of interest

according to a smoothing term and an image term φ. In this work, we use image

intensity statistics to determine the optimal image term φ. We learn the mean µ and

standard deviation σ of a sample of pixels located inside the vessel structure to be

segmented (the pixels are chosen interactively by the user). The φ term evaluated at
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pixel x is then an adaptive threshold:

φ(x) = 1 −
∣∣∣∣
I(x) − µ

σ

∣∣∣∣ ,

where I(x) is the image intensity at point x. The term φ(x) is positive if I(x)

falls within one standard deviation of the learned mean µ and negative otherwise.

More sophisticated schemes can be used to determine φ, such as using a Bayesian

classifier [72].

We define the following energy in the region R inside the curve
−→C parameterized

by arc-length s:

E(
−→C ) = −

∫

R

φ dx +

∫

−→
C

ds. (49)

The first term is a region based active contour (see Section 2.3.2.5) that moves the

curve towards the region of interest (the energy is minimum when the region enclosed

inside the curve is as large as possible, with φ of positive value). The second term is an

edge-based active contour that regularizes the curve as shown in Section 2.3.2.1. As

shown in section 2.3.2.5 and the Appendix, we minimize Equation 49 by computing its

first variation and solving the obtained Euler-Lagrange equation by means of gradient

descent. We find the following curve evolution equation:

∂
−→C (x)

dt
= (−φ(x) + κ(x))

−→N , (50)

where φ is a speed determined by the underlying image, κ(x) is the curvature of the

curve at point x and
−→N is the unit inward normal to the curve. We evolve this active

contour using Level Set Techniques [44, 53].

Image statistics alone might lead to unsatisfactory segmentations. Figure 17 shows

an example of very noisy image data where areas of pixels close to the vessel have

very similar image statistics. This results in a leak when segmented with the type of

flow in Equation 50. More sophisticated algorithms can be devised based on image
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Figure 17: A Region Based Geometric Active Contour is prone to leak if the image
term is not reliable.

statistics or prior knowledge such as multi-scale filter responses tuned to detect vessels

[73, 22, 65], but these algorithms will be very specific to the type of data and image

acquisition. This leakage problem can be addressed in a more general way by adding

a soft shape constraint to the flow so that the algorithm penalizes obvious leaks.

3.3.2 Shape Filters

We would like to locally determine the shape of a contour, and particularly areas

where it is widening and potentially leaking. The information from derivatives of

the curve, such as curvature, is too local since widening of the contour cannot be

discriminated from small noise and bumps. We propose to use a local filter at a scale

larger than the derivative scale. We define a local neighborhood B(x, r) in the shape

of a ball (disk in R2, solid sphere in R3) centered at the point x and of radius r,

see Figure 18(a). For every point x inside and on the contour (region R), we define

a filtering operation that calculates a measure ǫ1 in the neighborhood B(x, r). The

measure ǫ1 is the percentage of points that fall both within the ball centered at x and

the region R inside the contour1:

1If R → 0, then ǫ1(x) is just the curvature at x.
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(a)

(b) (c)

Figure 18: (a) ǫ1(x, r) is the intersection of the ball of radius r centered at x and
the region R inside the contour. (b) Points inside the widening region have a higher
ǫ1 measure but most points on the contour have the same measure. (c)Contour points
close to the widening of the contour have a higher ǫ2 measure

ǫ1(x, r) =

∫

R

X (x, r,y)dy where X (x, r,y) =





1 if y ∈ B(x, r)

0 if y /∈ B(x, r)
. (51)

The parameter r defines the scale of analysis. It must be chosen by the user and

be an upper bound to the expected radius of the vessels. In our simulations, the user

picked the width of the largest vessel with the mouse to define r.

The filter response ǫ1 for a synthetic shape that represents a potential leak is

shown in Figure 18(b). Given a radius that is the width of the tube, the points inside

the widening region will have a higher measure than the points inside the tube. We
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will formalize this observation in the next Section by defining an energy minimization

that uses the measure ǫ1 to penalize regions inside the contour that deviate from a

tubular shape.

3.3.3 Curve Evolution using Local Filters

We design a flow that uses the shape filter to penalize leaks by using the following

energy:

E(
−→C ) = −

∫

R

φ dx +

∫

−→
C

ds+ α

∫

R

ǫp1(x) dx. (52)

The first and second term are the same as for the region flow previously introduced.

The third term is a constraint on shape. When we minimize E(
−→C ), the third term

will force deviations from tubular shapes to be penalized. In order to obtain a curve

evolution formula, we need take the first variation of Equation 52.

The first variation for such an equation with nested integrals was first derived

in [3]. We give the full derivation in Appendix A.2 and state here its result (from

Equation 133):

∂
−→C
∂t

=

(
− φ(

−→C ) + κ(
−→C ) + αǫ2(

−→C , p, r))
)
N , (53)

where

ǫ2(
−→C , p, r) = ǫp1(

−→C , r) + p

∫

R

ǫp−1
1 (

−→C )X (x, r,
−→C ) dx. (54)

We note that ǫ2 that comes out of the energy minimization is an interesting term.

The measure ǫ2 is again the output of a local ball filter. For a point, the response is

its ǫ1 measure plus the sum of the ǫ1 measure of its neighboring points that are inside

the contour. For a radius r similar to the vessel width, most points on the contour

have the same ǫ1 measure since locally the same percentage of neighbors fall within

the filter radius. This can be seen in Figure 18(b), on the left. To see if the contour

point lies near a leak region, it is necessary to look at the ǫ1 measure of its neighbors
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inside the contour since their measure is high for points inside widening regions. This

is what ǫ2 measures, as shown in Figure 18(c), on the right. We observe that contour

points close to the widening of the contour have a higher measure than contour points

on the tube 2.

Since ǫ2 is always positive, the third part of Equation 53 is an erosion term (flow

along the inward normal) that is proportional to the ǫ2 measure. At a point with a

high measure, the contour shape deviates from a tubular shape and therefore the flow

is penalized. The parameter α is chosen according to the amount of penalty desired.

3.4 Implementation

In the section, we describe the level set technique used to implement numerically the

proposed flow.

3.4.1 Numerical Methods

We use the level set technique to evolve the curves described in Equations 50 and 53.

The level set implementation of Equation 50 has this form:

ψt = −d
−→C
dt

· ∇ψ =

(
φ+ κ + α(ǫ2)

)
N · ∇ψ (55)

where ψ : R
2 → R is a signed distance function. If

−→C at time t is the set of points

where ψ = 0 and we let ψt < 0 inside
−→C and ψt > 0 outside

−→C , and use the fact that

−→N = ∇ψ/||∇ψ|| and κ = ∇ · (∇ψ/||∇ψ||), we can write:

ψt =

(
φ+ ∇ · ∇ψ

||∇ψ|| + α(ǫp1 + (p− 1)ǫp−1
2 )

)
||∇ψ|| (56)

We then use a Forward-Euler Equation to update the value of the level set function

ψ at every time step:

ψt+1 = ψt + ∆t ∗ ψt (57)

2In our implementation, we scale both measures to lie between 0 and 1 so that all three terms in
Equation 54 have similar scaling.
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We choose a ∆t that satisfies the CFL stability condition (ψt+1 cannot be greater

than ψt + 1).

3.4.1.1 Extensions

The image term φ should only depend upon the values of the image along the curve

(the zero level set). For other level sets, we have to use the value of the image from

nearby points on the zero level set. We therefore use the extension technique described

in [53]. Similarly the value of ǫ1 and ǫ2 is extended from the zero level set to all other

level sets.

The second term is a curvature term that depend on the second and first deriva-

tives of the curve C. We calculate those derivatives using central differences (for more

details on numerical schemes for curvature, see [53]).

When the sum of the first, third and fourth term is negative, the flow is a dilation

since we are going in the negative direction of the inward normal. Conversely, when

the sum is positive, the flow is an erosion. We use a different scheme to calculate

derivatives depending on whether the flow at a point is an erosion or dilation, as

described in [53]. This is to handle to creation of singularities called “shocks” with

these types of flow that propagate information in one direction. To still obtain a

solution, an entropy condition is used. This condition states that “once a particle is

burnt, it stays burnt”, meaning that once a corner has developed in the curve, the

corner is propagated during the evolution of the curve with a special scheme to stop

the curve from self-intersecting (or in other terms, to stop the solution from being

multiple-valued). The scheme we use in an upwinding scheme that correctly calculates

derivatives in the presence of shocks. The scheme is further described in [53], chapter

6.
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3.4.2 Optimizations

The filter operations are time consuming. At every time step, we need to calculate

ǫ1 for every point inside the curve and ǫ2 for every point on the zero level set.

We devised a scheme to only recompute those values for the set of grid points that

changes from being positive to negative (points that were outside the contour and are

now inside the contour).

We define a valid neighborhood of a point P as its neighboring points that fall both

inside the local filter centered at P and inside the curve. We store for every point

inside the curve their valid neighborhood size.

At every time step, we do the following:

1. When the curve evolves, we detect all the grid points that were positive and be-

came negative and put them in the set S+. We then update the valid neighbor-

hood of points ∈ S+ by adding +1 to their valid neighborhood count. Finally,

we calculate the measure for points ∈ S+.

2. We then detect all the points that were removed from inside the contour (points

that were negative and became positive) and put them in the set S−. We

then update the valid neighborhood of points ∈ S− by adding -1 to their valid

neighborhood count.

3.5 Results

It is interesting to evolve a curve using Equation 53 on a blank image so that φ = 1 just

to see the effect that our flow has on the evolution of a small near-circle. Without the

second and third term of the equation, the curve evolution would be a simple dilation

of the circle, as shown in Figure 19. We then ran the full curve evolution using all

terms of Equation 53, with 2 different radii (r = 20, r = 40, α = 0.75). As seen in

Figures 20(a) and 20(b), the curve evolves keeping a “tubular” shape at all times. The

59



Figure 19: Dilation Flow without Shape Prior

(a) Evolution in time, p=2, r=20, α=0.75

(b) Evolution in time, p=2, r=40, α=0.75

Figure 20: Dilation Flow with Shape Prior

width of the tube depends on the radius of the local filter. This demonstrates that

our shape prior (second and third terms of Equation 53) has the desired effect since

the optimal curve is one that keeps a tubular shape, with a width proportional to
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the radius value. We also verified that if we ran the full evolution on a perfect circle,

then the evolving shape does not become tubular since all points on the curve have

the same values for the second and third terms of Equation 53, therefore all points

evolve at the same speed and the perfect circle shape remains circular. However, with

a near-circle, some points that do not lie on the perfectly circular portion of the curve

have a slightly different speed due to their non-uniform neighborhood.

We now test our flow on both 2D and 3D datasets for synthetic and real data.

For all flows presented, the user specified the expected biggest radius by clicking two

points on the image.

3.5.1 2D Images

In 2D, we first used our flow evolution on a synthetic model of a branching vessel.

The radius was chosen to be the largest width of the vessel. We observed that the

value of the chosen α influences the penalty on deviations from tubular structures.

In Figure 21(a), for α > 0.65, we observe an erosion around the branching area since

points in that region have a higher measure. Figure 21(b), for α <= 0.65, the penalty

is softened and the vessel is correctly segmented. This value is used for subsequent

segmentations and erosion in branching areas was not observed.

We used our flow on a noisy projection of an angiogram and compared it to the

base flow without a shape constraint. We show details of the segmentation where

leaks were detected. When the neck of the leak is thin, the leak disconnects from the

(a) A high penalty α=0.75 causes ero-
sion around the branch.

(b) α=0.65. Erosion around the branch
is not observed.

Figure 21: Flow with Shape Prior on 2D Synthetic Images
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(a) Base Flow, no Shape Prior, 100 iterations

(b) Flow with Shape Prior, at t=50(left), 100(middle) and 200(right) iterations.

Figure 22: Vessel Flow on Angiogram Images

main vessel as shown in Figure 22. This is because points on the contour near the

leak region have a high ǫ2 measure (as can be seen in Figure 18(c)) that causes the

contour to erode and eventually pinch off. Once the leak pinches off, the user can

then click on the disconnected contour to eliminate it, or the algorithm can detect the

change of topology [29] and automatically remove the leakage. The contour points at

the neck of the leak are frozen so that the leak does not re-appear while the rest of

the contour evolves.

In Figure 23 we observe that the flow with a shape prior is able to prevent many

leaks and produce a flow that is much better behaved than the same flow without

a shape prior. We notice that without a shape prior, the flow becomes “chaotic”

and leaky regions merge with vessel regions (see Figure 23(a) ). The repair of

(a) Base Flow, no Shape Prior (b) Flow with Shape Prior

Figure 23: Vessel Flow on Angiogram Images
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such leaks with user interaction would almost amount to a manual segmentation.

Figure 23(b), shows that the flow is much better behaved and produces a better

segmentation for most of the image. In the left part of the image, we notice an

interesting behavior of the shape-constrained flow. This part of the image is very

noisy and image statistics are almost identical inside and outside the vessel, so the

base flow without a shape prior completely leaks out of the vessel area. The flow

with a shape prior also leaks into the background since the image statistics no longer

discriminates between foreground and background, but the flow maintains a “vessel-

like” shape due to the shape constraint and the leak is mostly contained. This is

important since we do not want the leak to expand to areas of the image that are

correctly segmented.

3.5.2 3D Images

In this section we demonstrate our flow on two 3D CT datasets of a coronary artery.

The mathematics derived for the 2D case extend to the 3D case and the level set

numerical scheme is easily extended to the 3D case as well. In all Figures, the color

on the surface represents the measure ǫ2. We see that this measure is closely related

to the thickness of a vessel.

(a) Base Flow with no
Shape Prior

(b) Flow with Shape Prior,
400 iterations

(c) Flow with Shape Prior,
800 iterations

Figure 24: Different Flows on the first CT Coronary Data
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(a) Initial Leak into an adjacent
structure

(b) Leaking structure
pinches off

(c) Final Segmentation, from a
different viewpoint

Figure 25: Base Flow with Shape Prior on the second CT coronary dataset

For the first CT coronary dataset, if we use a flow based on image statistics alone,

the artery “leaks” into the heart cage (Figure 24(a)). As we can see, the connecting

area between the coronary and the heart has the highest measure. However, when we

use the flow with the shape constraint, the leak “pinches” off from the main vessel

artery (Figure 24(b) and 24(c)). The second CT coronary dataset leaks into an

adjacent structure (Figure 25, left). Again, running the vessel flow separates the

coronary from the leak. The user can then click on the isolated leak to remove it.

The full segmentation is shown on the right.

We note that in the future, it would be interesting to fully validate our algorithm

by using ground truth vessel segmentations by physicians. In order to do so, it would

be nice to include an automatic way to remove parts of the vessel that have split

away from the main vessel contour, in order to reduce the amount of user interaction

during the segmentation.

3.6 Conclusion

We have presented a soft shape prior that can be combined with any other image

force to deform an active contour and penalize leaks. We found that the shape prior
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successfully penalizes leak regions and either disconnects the leak from the vessel, or

contains the leak. We find these results encouraging since in the presence of noise,

the shape driven flow is better behaved than the flow based on image statistics alone.

This flow can be combined with minimal user interaction to repair leak effects that

were not prevented by the algorithm.
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CHAPTER IV

MULTI-SCALE 3D SHAPE ANALYSIS USING

SPHERICAL WAVELETS

The characterization of local variations specific to a shape population is an important

problem in medical imaging since a given disease often only affects a portion of the

surface of an organ. One motivation for our work is the study of schizophrenia, a

multi-faceted illness affecting 1% of the US population and consuming a significant

portion of the health-care budget (estimates of yearly costs are 60 billion dollars) [67].

One important contribution of medical imaging in the study of schizophrenia is the

segmentation and shape analysis of selected brain structures, such as the hippocampus

or the caudate nucleus, in order to find differences between groups of healthy and

diseased patients and localize those differences to better understand the effect of the

disease.

Currently such segmentations are typically carried out by hand. An automatic

tool would be a great advance if it were reliably and reproducibly segment corti-

cal structures for multiple patients, across multiple time points. After the shapes

are segmented the geometrical differences between brain structures of patients with

schizophrenia and patients without can be studied.

Figure 26 shows a rendering of left caudate nucleus along with an MRI slice in

the coronal and sagittal view, as well as three typical surfaces from our dataset. The

caudate nucleus is located in the basil ganglia, a group of nuclei in the brain associated

with motor and learning functions [68]. Figure 27 shows the same information for

the left hippocampus. The hippocampus is a part of the brain located inside the

temporal lobe. It forms a part of the limbic system and plays a part in memory
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(a) (b)

(c) (d) (e)

Figure 26: (a-b) Coronal and Sagittal view of the left caudate nucleus (c-e) Example
of 3 shapes from the left caudate nucleus dataset

and navigation [69]. As can be seen on Figure 26 and Figures 27, those structures

contain sharp features that could be important in shape analysis [61]. An automated

segmentation of such structures must therefore be highly accurate and include high

frequency variations in the surface. Since shape representation is a key component

of the segmentation, it must be descriptive enough to express shape variations at

various frequency levels, from low harmonics to sharp edges. Additionally, a shape

representation that encodes variations at multiple scales can be useful in itself as a

rich feature set for shape analysis and classification.

As discussed in Section 2, medical object segmentation with deformable models

and statistical shape modeling are often combined to obtain a more robust and ac-

curate segmentation [71, 11, 36, 64, 49]. In that framework, a joint prior probability

over shape parameters is learned using a training set in order to learn the existing

shape variations in the population to better constrain the parameter values during

the segmentation process.
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(a) (b)

(c) (d) (e)

Figure 27: (a-b) Coronal and Sagittal view of the left hippocampus (c-e) Example
of 3 shapes from the left hippocampus dataset
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To encode relevant variations in a population of shapes at multiple scales, a de-

composable shape representation targeted to the population seems natural, where the

shape parameters are separated into groups that describe independent global and/or

local biological variations in the population, and a prior induced over each group

explicitly encodes these variations.

Wavelet basis functions are useful for such a representation since they range from

functions with global support to functions localized both in frequency and space, so

that their coefficients can be used both as global and local shape descriptors, unlike

Fourier basis functions or principal components over landmarks which are global

shape descriptors. The use of spherical wavelet basis in medical imaging has been

investigated for statistical shape analysis and segmentation in 2D imagery [14] but

not yet for surfaces in 3D imagery. This work addresses this gap.

In the remaining sections of this chapter, we first motivate the need for a multiscale

representation by showing the limitations of principal component analysis (PCA)

as a shape representation in Section 4.1. We then describe the spherical wavelet

transform in Section 4.2 and our shape representation based on the spherical wavelet

transform in Section 4.3. In Section 4.4, we detail the construction of a scale-space

prior over the wavelet coefficients for a population of shapes and evaluate this prior

in a reconstruction task both for a synthetic dataset and 3D brain structures in

Section 4.5.

4.1 Motivation for a multiscale parametric shape represen-

tation

4.1.1 Implicit versus Parametric representation

In this chapter, we consider 3D shapes with a spherical topology, meaning that those

shapes have no holes or handles. We chose to represent shapes using a parametrized

surface as opposed to distance maps used in the level set framework since we do

not expect topological changes during the segmentation process. This representation
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can be more accurately and efficiently manipulated compared to a distance map

representation of the shape that is higher-dimensional and increases in complexity

if the volume is supersampled. Surface meshes can be represented at any level of

accuracy desired (subvoxel accuracy), while still maintaining a fixed set of parameters

(typically a set of sample points).

Additionally, as long as topology changes are not expected during the segmenta-

tion evolution, a parametrized active contour can be used in this framework which is

more efficient than a geometric active contour implemented via the level sets technique

due to the lower number of parameters to evolve.

4.1.2 Statistical Modeling of a population of shapes with parametric rep-
resentation

As discussed in Section 2.2.3, a popular parametric representation for a population

of shapes is the Point Distribution Model (PDM). Each shape is represented by a set

of N discrete 3D points connected that form a mesh (piecewise linear surface). The

shapes are assumed to be registered, meaning that the shapes are all represented by

N 3D points, where the kth points across shapes are assumed to correspond to the

same anatomical point.

Each shape can be described by its three coordinate functions, x, y, z ∈ R such

that the kth shape Sk is a column vector of size 3N :

Sk = [xk(1), ..., xk(N), yk(1), ..., yk(N), zk(1), ..., zk(N)]T .

Since all vertices in the shape population are registered, we interpret each entry of

Sk as a random variable and each shape as a realization from a multivariate probability

density function. We assume that a population of K shapes can be described by a

mean shape S = 1
K

(
∑K

k=1 Sk) and a set of M transformations T = [T1, ..., TM ] that

describe the variability observed in the population. Each transformation vector Tm

is of size 3N where the ith entry is a transformation applied to the ith entry of the

mean shape with a corresponding magnitude βm ∈ R. This representation is shown

70



Figure 28: Shape Model

in Figure 28.

Each transformation vector (also called variation mode) can be characterized by :

1. scale: the transformation vectors Tk can be global and apply to all vertices (all

entries of Tk are non-zero) or local (Tk is a sparse vector).

2. spatial location: the effect of the transformation vector Tk can be localized in

space (non-zero entries of Tk are close spatially), or not.

3. magnitude: the value of each βk

We postulate that characterization of local variations could be important for shape

analysis since a disease, such as cancer, could affect only a portion of an organ’s

surface. Therefore descriptive shape priors should discern shape variations at different

scales and spatial location.

4.1.3 Statistical Modeling using PCA and its limitations

As we have previously described in Section 2.2.3.3, in the Point Distribution Model

(PDM) of Cootes and Taylor [12], the joint shape probability function is assumed

to be a multivariate Gaussian probability function. It is estimated over a set of

landmarks on the shapes using principal component analysis (PCA). A covariance
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matrix is built from the data, and a diagonalization of the covariance matrix provides

eigenvectors that are the principal axes of the function (also called principal modes).

The eigenvectors span a space of shapes and the eigenvalues provide the coordinate

of the shapes seen in the training set in that space. Using the notation introduced

previously, each eigenvector is a transformation vector Tm and each corresponding

eigenvalue is a magnitude βm and therefore each shape in the population should be

expressed as a linear combination of the eigenvectors found by PCA, with a reason-

able bound on the eigenvalues (usually within certain standard deviation of observed

eigenvalues in a representative set of the population).

However as previously described, using PCA on PDM to represent shape variations

in a population has two major limitations. First, it often restricts deformable shape

too much, particularly if it has been trained on a relatively small number of samples

since the number of principal components extracted from diagonalizing the covariance

matrix is bound by the number of training shapes. Indeed, for a training set of K

shapes withN vertices, typicallyN ≫ K and therefore the rank of the data covariance

matrix will be at most K−1. Therefore if there exist M shape variation modes, such

that M ≫ K − 1, then only the first K − 1 processes that account for the most

variation in the data (the most global processes) will be represented. Second, PCA

favors the discovery of global variations over local variations since it can be shown that

the eigenvectors of the covariance matrix describe the longest axes of the ellipsoid,

and thus the most significant modes of variation in the vertices [11]. This means

that for a limited training set size, only the first K − 1 processes that account for

the most variation in the data (the most global processes) will be represented, hence

finer, more local variations of shapes are often not encoded given a limited training

set.

To illustrate this limitation, we present an experiment on synthetic shapes. We

simulate a simple shape present in a population with a combination of local and
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global transformations. To this end, we produce a base shape that is an ellipsoid

shown in the top left of Figure 29. We then apply 7 independent global non-linear

transformations to the base shape (with its vertices denoted by x0, y0, z0), varying the

magnitude according to a normal probability function with a fixed mean and variance

for each transformation:

x = x0 + β1 ∗ y2
0 + β2(y0/4)3, (58)

y = y0 + β3 ∗ (x0/4)3 + β4 ∗ (z0/4)3, (59)

z = z0 + β5(x0/4)3 + β6 ∗ y2
0 + β7(y0/4)3, (60)

The effect of each transformation is shown in Figures 29.

We then add 2 smaller processes that vary in scale and spatial location. The first

process is a bump on negative z where |y0| < 4 & |x0| < 4 with magnitude β8, the

second process is a bump on positive z where |y| < 4 & |x| < 4 with magnitude β9.

The effect of each transformation is shown in Figures 30.

We produce 15 shapes by sampling the values of β from a normal probability

function with a fixed mean and standard deviation for each β. The first 10 resulting

shapes are shown in Figure 31.

Using a procedure that will be described in Section 4.3.2, we register the shapes

so that each shape is described by N vertices. We then perform a PCA analysis on

a training set of size 8 and obtain a set of 7 eigenvectors and eigenvalues.

As expected the first few eigenvectors describe the most global variations, and no

single eigenvector describes only the local variations, as seen in Figures 32. We see

that the local variations are included in most eigenvectors, as part of more global

deformations.

To test whether the preceding eigenvector basis is an expressive shape prior, we

can project a test shape not included in the training set unto the new eigenvector

basis and see how much the projected shape differs from the original test shape.
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(a) Initial Shape

(b) Global Defor-
mation 1 (+)

(c) Global Defor-
mation 1 (-)

(d) Global Defor-
mation 2 (+)

(e) Global Defor-
mation 2 (-)

(f) Global Defor-
mation 3 (+)

(g) Global Defor-
mation 3 (-)

(h) Global Defor-
mation 4 (+)

(i) Global Deforma-
tion 4 (-)

(j) Global Deforma-
tion 5 (+)

(k) Global Defor-
mation 5 (-)

(l) Global Deforma-
tion 6 (+)

(m) Global Defor-
mation 6 (-)

(n) Global Defor-
mation 7 (+)

(o) Global Defor-
mation 7 (-)

Figure 29: Synthetic Shape Global Deformations
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(a) Initial Shape (b) Local Deforma-
tion 1 (+)

(c) Local Deforma-
tion 1 (-)

(d) Local Deforma-
tion 2 (+)

(e) Local Deforma-
tion 2 (-)

Figure 30: Synthetic Shape Local Deformations

We show the results for two training shapes in Figures 33(a-d)-34(a-d). In both

figures, subfigures (a) and (b) show two views of a test shape. Subfigures (c) and (d)

show the projection of the test shape onto the PCA space for the same two views. We

see that the prior is not descriptive enough to model the small scale variations in the

test shape. For test shape 1, the bottom bump does not appear in the reconstruction.

This is due to the fact that no single eigenvector models just the variation of the

bottom bump since all eigenvectors model the more global deformations in the data.

For test shape 2, the bottom bump appears when it should not, due to the fact that

the two bumps are modeled by the same eigenvector.
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(a) Shape 1 (b) Shape 2 (c) Shape 3

(d) Shape 4 (e) Shape 5 (f) Shape 6

(g) Shape 7 (h) Shape 8 (i) Shape 9

(j) Shape 10

Figure 31: Synthetic Shapes
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(a) Mode 1, magnitude
-2

(b) Mode 1, magni-
tude 2

(c) Mode 2, magnitude
-2

(d) Mode 2, magni-
tude 2

(e) Mode 3, magnitude
-2

(f) Mode 3, magnitude
2

(g) Mode 4, magnitude
-2

(h) Mode 4, magni-
tude 2

(i) Mode 5, magnitude
-2

(j) Mode 5, magnitude
2

(k) Mode 6, magnitude
-2

(l) Mode 6, magnitude
2

(m) Mode 7, magni-
tude -2

(n) Mode 7, magni-
tude 2

Figure 32: Visualization of the deformation of the mean shape along the eigenvectors
found by PCA. The transparent shape is the reference mean shape with no deforma-
tion. For each figure, the mean shape is deformed along a particular eigenvector (or
mode) according to a certain magnitude.
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(a) Test Shape, lateral view (b) Test Shape, bottom view

(c) PCA Reconstruction, lateral
view

(d) PCA Reconstructed Shape,
bottom view

(e) WDM Reconstructed Shape,
lateral view

(f) WDM Reconstructed Shape,
bottom view

Figure 33: Reconstruction experiment for Test Shape 1 using PCA as a shape space
compared to WDM (technique presented in this chapter)
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(a) Test Shape, lateral view (b) Test Shape, bottom view

(c) PCA Reconstructed Shape,
lateral view

(d) PCA Reconstructed Shape,
bottom view

(e) WDM Reconstructed Shape,
lateral view

(f) WDM Reconstructed Shape,
bottom view

Figure 34: Reconstruction experiment for Test Shape 2, using PCA as a shape space
compared to WDM (technique presented in this chapter)
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Figure 35: A wavelet transform is applied to the parametric functions representing
a deformable contour. The resulting wavelet coefficients are then grouped into 64
bands, and the joint probability function of each band is estimated from the available
training samples, via its mean and covariance matrix. This effectively transforms the
covariance matrix of the full joint probability function into a matrix that is close to,
but not necessarily exactly, a block diagonal matrix. The submatrix corresponding to
band B reflects global shape characteristics, whereas the submatrix corresponding to
B reflects local shape characteristics at a particular segment. B reflects local shape
characteristics of a neighboring segment

To address this issue, a decomposable shape representation targeted to the pop-

ulation seems natural, where the shape parameters are separated into groups that

describe independent global and/or local biological variations in the population, and

a prior induced over each group explicitly encodes these variations. We describe

such a prior in the remainder of this chapter. As a preview, we show in subfigures

33(e,f))-34(e,f) the result of projecting the test shape on the Wavelet Distribution

Model (WDM) prior described in the remainder of this chapter. As we can see, local

variations are better captured by the WDM prior.
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4.1.4 Related Work

As previously stated, we would like a decomposable shape representation where the

shape parameters are separated into groups that describe independent global and/or

local biological variations in the population. As discussed in 2.2.2.2, previous tech-

niques have expressed functions representing a surface into a complete set of spherical

harmonics basis functions (SPHARM). The advantage of this representation is that

the coefficients of the spherical harmonic functions of different degrees provide a mea-

sure of the spatial frequency constituents that comprise the structure. However, due

to the global support of the spherical harmonic functions, the coefficients cannot be

used to identify where on the surface the frequency content appears. Spherical wavelet

functions can address this shortcoming since they have local support at various reso-

lutions. In [74], the authors showed that a spherical wavelet basis can capture shape

changes with fewer coefficients than a spherical harmonic basis.

The authors in Davatzikos et al. [14] have proposed a hierarchical active shape

model framework for contours in 2D medical imagery using standard 1D wavelets,

with convincing results. The basic idea is to use the wavelet transform [39] to pro-

duce a scale space decomposition of the signal. The authors apply a wavelet trans-

form to the parametric functions (x, y, z) representing a deformable contour. One

nice property of the wavelet transform is that it is often a decorrelator of real-world

signals [39] and therefore the covariance matrix of the wavelet coefficients is sparse.

Using this property, the authors approximate the full covariance matrix of the wavelet

coefficients as a a matrix that is block diagonal, when rearranging the coefficients in

the right order, as shown in Figure 35. Coefficients that belong to the same band

make up a diagonal block of the covariance matrix. Coefficients are grouped into

bands using a logarithm tree to divide the space-frequency domain. This groups co-

efficients of the same scale and nearby spatial location in the same band, following

the assumption that only coefficients close in space and scale are closely correlated.
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Each diagonal block can then be statistically modeled independently of the rest of

the matrix and eigenvectors are extracted for each diagonal block, bringing the total

number of eigenvectors to (approximately) B(K − 1) if there are B blocks and K

training shapes. The eigenvectors corresponding to bands at coarse scales reflects

global shape characteristics, whereas the eigenvectors corresponding to bands at finer

scales reflect local shape characteristics at a particular segment of the curve. Using

this technique, the authors show that a segmentation using the wavelet shape prior

is more accurate than a segmentation with traditional active shape models.

4.1.5 Our Contributions

In this chapter, we propose to extend the framework proposed by Davatzikos et al

in two novel ways. First we describe a multi-scale representation of surfaces in 3D

medical imagery using conformal mapping and spherical wavelets. Spherical wavelets

have been used primarily by the computer graphics community to generate multires-

olution description of 3D shapes but have not yet been widely used by the medical

imaging community[52].

Further, we present a novel algorithm to discover optimal multi-scale bands from

the data. Our technique is different from Davatzikos et al [14] where the authors

cluster coefficients of spatially adjacent bases into bands in each frequency plane. In

this work, we cluster highly correlated coefficients into a band, with the constraint

that coefficients across bands have minimum cross-correlation. Such a decomposition

and its visualization can in itself be interesting for shape analysis.

We first present the theory of Spherical Wavelets in Section 4.2. We then ex-

plain our shape representation using spherical wavelets in Section 4.3. In section 4.4,

we explain our framework to conduct statistical population analysis using spheri-

cal wavelets. We derive and compare a number of shape priors based on spherical

wavelets to pick the optimal scale-space band decomposition when building the prior,
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(a) Original
Icosahedron,
12 vertices, 20
triangles

(b) Subdivision
1, 42 vertices,
80 triangles

(c) Subdivision
2, 162 vertices,
320 triangles

(d) Subdivision
3, 642 vertices,
1280 triangles

(e) Subdivision
4, 2562 vertices,
5120 triangles

Figure 36: Recursive Partitioning of an icosahedron: successive levels of the trian-
gulation are obtained by subdividing triangles into 4 children triangles

and present our results.

4.2 Spherical wavelets

A spherical wavelet basis is an L2 basis composed of functions defined on the sphere

that are localized in space and characteristic scales and therefore match a wide range

of signal characteristics, from high frequency edges to slowly varying harmonics [39].

The basis is constructed of scaling functions defined at the coarsest scale and wavelet

functions defined at subsequent scales.

In this work, we use the discrete biorthogonal spherical wavelets functions de-

fined on a 3D mesh proposed by Schröder and Sweldens [52, 51]. These are second-

generation wavelets adapted to manifolds with non-regular grids. The main difference

with the classical wavelet is that the filter coefficients of second generation wavelets

are not the same throughout, but can change locally to reflect the changing (non

translation invariant) nature of the surface and its measure. This means that wavelet

functions defined on a mesh are not scaled and shifted versions of the function on

a coarser grid, although they are similar in shape, in order to account for the vary-

ing shape of mesh triangles. The second-generation spherical wavelets that we use

are defined on surfaces which are topologically equivalent to the unit sphere (S) and
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Figure 37: The wavelet transform of a random scalar signal defined on spherical
mesh. The mesh is an icosahedron subdivided 3 times. The original signal is decom-
posed into a series of high-pass (HP) and low-pass (LP) coefficients.

equipped with a multiresolution mesh. A multiresolution mesh is created by recur-

sively subdividing an initial polyhedral mesh so that each triangle is split into 4

“child” triangles at each new subdivision (resolution) level. This is done by adding a

new midpoint at each edge, and connecting midpoints together.

This process is shown on Figures 36(a)-Figures 36(e). The starting shape is an

icosahedron with 12 vertices and 20 faces, and at the fourth subdivision level, it

contains 5120 faces and 2562 vertices. Any shape (not necessarily a sphere) that is

equipped with such a multiresolution mesh can be used to create a spherical wavelet

basis and perform the spherical transform of a signal defined on that mesh.

The transform is shown pictorially in Figure 37. We start with a random scalar
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signal defined on a spherical mesh produced by subdividing an icosahedron 3 times

(therefore with 642 points) in the first row of the Figure. In the second row, the

signal is decomposed into a high pass component by projecting it onto a set of spher-

ical wavelet basis functions that represent high pass filters (note the local support of

each function). We only show 2 of those functions, but in total there are 480 basis

functions for that high frequency. These basis functions are said to be of resolution

3 because they are associated with points on the mesh that were introduced at the

third subdivision of the icosahedron (480 new points). At that resolution, what differs

for each function is the location of the “center” of the function, that is the point on

the sphere where the function has its highest value. In the third row, the remaining

signal is again decomposed into a high pass component by projection onto another

set of spherical wavelet functions that represent band pass filters (note that the sup-

port of each function on the sphere is larger than the previous functions in the row

above). Here again we only show 2 functions but there are in total 120 functions for

that medium frequency of resolution 2 (the 120 new points added after the second

subdivision). Finally in the fourth row, the remaining signal is again decomposed

into a high pass component by projection onto band pass spherical wavelet functions

of resolution 1 (30 of them) and a low pass component by projection onto scaling

functions of resolution 0 (12 of them). Scaling functions also exist at other resolution

levels but only the scaling functions of resolution 0 are in the basis, the other scaling

function are only used to build wavelet functions, as will be described next. At every

row, the coefficients denoted γj,k shown on the Figure represent the value of the pro-

jection of the signal onto the spherical wavelet function at resolution j and centered

at point k. Therefore the set of all coefficients represent the initial function in the

spherical wavelet domain.

We now sketch the construction of the spherical wavelet and scaling functions, the

analysis step that transforms a signal on the sphere to the wavelet domain and the
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(a) scaling func-
tion, position 1

(b) scaling func-
tion, position 2

(c) wavelet func-
tion, resolution 1,
position 1

(d) wavelet func-
tion, resolution 1,
position 2

(e) wavelet function,
resolution 2, position 1

(f) wavelet function,
resolution 2, position 2

(g) wavelet function,
resolution 3, position 1

(h) wavelet function,
resolution 3, position 2

Figure 38: Visualization of Scaling and Wavelet Basis Functions. The color cor-
responds to the value of the function at each point on the sphere. Notice that the
support of each basis gets smaller as the resolution increases

synthesis step that transforms a signal in the wavelet domain back to a signal defined

on the sphere.

4.2.1 Grid Structure for Spherical Wavelet Construction

Spherical scaling functions and spherical wavelets functions are defined on a mul-

tiresolution mesh as shown in Figure 36. On this mesh, we denote the set of all

vertices obtained after j subdivisions with an index set K(j) (see Figure 39). The

j + 1st resolution mesh is obtained by introducing new nodes, identified by an in-

dex set M(j) which subdivide existing edges (typically at their midpoint, but this

is not a requirement). The complete set of nodes in the j + 1th resolution mesh is

given by K(j + 1) = K(j)
⋃
M(j). Figure 39 represents a portion of a triangular

surface mesh at resolution j + 1, here K(j) = [k0, ..., k6], M(j) = [m7, ..., m12] and

K(j + 1) = [k0, ..., k6, m7, ..., m12]. Therefore, for the icosahedron case shown in Fig-

ures 36(a)-Figures 36(e), K(0) = 12,M(0) = 30, K(1) = 42,M(1) = 120, K(2) =

162,M(2) = 480, K(3) = 642,M(3) = 1920, K(4) = 2562.
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Figure 39: Refinement of the surface grid by subdivision of the edges

4.2.2 Scaling Function

A scaling function is a scalar function defined on a spherical mesh of a chosen res-

olution r (icosahedron subdivided r times) denoted by ϕj,k : S → R where j is the

scale (or resolution) of the function and k ∈ K(j) is a spatial index that indicates

where on the surface the function is centered. The initial functions are constructed

at the highest resolution (r) and there is one function centered at every point in the

set K(r). The typical function is delta function defined to be 1 at its center and 0

everywhere else.

We use the notation x to denote a point (vertex) on the surface. As in the one-

dimensional case, the scaling function on the jth resolution mesh can be expressed

as a combination of scaling functions on the j + 1st resolution mesh:

ϕj,k(x) = ϕj+1,k(x) +
∑

m∈n(j,k)

hj
0[k,m]ϕj+1,m(x) (61)

where n(j, k) is the set of neighboring subdivision points at the j+ 1 level that share

an edge with the vertex xk at level j (in the Figure 39,n(j, k) = [m7, ..., m12]). At

every resolution these functions are “hat-shaped” and vary linearly from the value

of 1 at their center vertex to 0 at at the vertices that share an edge with the center
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point at the same resolution (in the Figure 39, the hat function would be 1 at xk0

and 0 at xk1
− xk6

). Therefore as the resolution j decreases, the spatial support of

the scaling function on the spherical mesh increases. The top left in Figure 38 shows

two scaling functions centered at different vertices for resolution 0. The color on the

sphere indicates the value of the function ϕ0,k at every point on the sphere.

4.2.3 Wavelet Function

At resolution level j, a wavelet function is defined for every vertex m ∈M(j): ψj,m :

S → R.

At a particular scale j, wavelet functions are combinations of resolution j and

(j + 1) scaling functions:

ψj,m(x) = ϕj+1,m(x) −
∑

k∈A(j,m)

hj
1[k,m]ϕj,k(x) (62)

where A(j,m) is a neighborhood of node m. The simplest choice for A(j,m) is to use

the two immediate neighbors, e.g. the parents of the subdivision point m. Wavelet

functions capture finer features since they are composed of higher resolution (j + 1)

scaling functions. Figures 38 show scaling and wavelet functions for different values

of j and m. Note that the support of the functions becomes smaller as the resolution

increases.

4.2.3.1 Spherical Wavelet transform of functions:

Together, the coarsest level scaling function and all wavelet scaling functions construct

a basis for the function space L2 (all functions of finite energy):

L2 = {ϕ0, k|k ∈ N0}
⋃

{ψj , m|j ≥ 0, m ∈ Nj+1}. (63)

A given scalar data function defined on the sphere f : S → R can be expressed in the

basis as a linear combination of basis functions and coefficients:

f(x) =
∑

k

λ0,kϕ0,k(x) +
∑

0≤j

∑

m

γj,mψj,m(x). (64)
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This is the Inverse Wavelet Transform. For the Forward Wavelet Transform, the

coefficients γj,m are calculated by inner product between the data function f and a

dual wavelet function ψ−1
j,m(x) such that the inner product < ψj,m, ψ

−1
l,n >= 1 when

j = l and n = m and < ψj,m, ψ
−1
l,n >= 0 otherwise. This dual function is needed since

the wavelet basis is not orthogonal.

As shown pictorially in Figure 37, scaling coefficients λ0,k represent the low pass

content of the signal f , localized where the associated scaling function has support,

whereas wavelet coefficients γj,m represent localized band pass content of the signal,

where the band pass frequency depends on the resolution of the associated wavelet

function and the localization depends on the support of the function.

Why are scaling functions of resolution 0 low pass filters and wavelet functions

band pass filters? At the lowest resolution level j = 0, there are only K(0) = 12

scaling functions and projecting a function onto each scaling function ϕ0,k results in an

averaging of the function f in a large neighborhood. Projecting a data function f onto

a wavelet function of resolution j ψj,m defined in Equation 62 is a difference between

a projection onto scaling functions of resolution j + 1 and a projection onto scaling

functions of resolution j. That difference is the content lost from the smoothing

operation when projecting onto scaling functions of resolution j + 1. Therefore the

wavelet function can be viewed as a band pass filter.

4.2.3.2 Discrete Spherical Wavelet Transform

The algorithm for the fast discrete spherical wavelet transform (FSWT) is given

in [51]. Here, we sketch the transform algorithm in matrix form which gives a more

compact and intuitive notation for the rest of this thesis. In practice, we use the

FSWT in our implementation.

If there exist N vertices on the highest resolution mesh (j subdivisions), a total of

N basis functions are created, composed of K(0) scaling functions and
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M(0)
⋃
M(1)...

⋃
M(j) wavelet functions. In the remainder of this thesis, we refer to

all basis functions as wavelet basis functions as a shorthand.

In matrix form, the set of basis functions can be stacked as columns of a matrix

Φ of size N × N where each column is a basis function evaluated at each of the

N vertices. The basis functions are arranged by increasing resolution (subscript j)

and within each resolution level, by increasing spatial index (subscript k). Since the

spherical wavelet functions are biorthogonal, ΦT Φ 6= Id (the identity matrix), so the

inverse basis Φ−1 is used for perfect reconstruction, since Φ−1Φ = Id.

Any finite energy scalar function evaluated at N vertices, denoted by the vector

F of size N ×1, can be transformed into a vector of basis coefficients ΓF of size N×1

using the matrix version of the Forward Wavelet Transform:

ΓF = Φ−1F, (65)

and recovered using the matrix version of the Inverse Wavelet Transform:

F = ΦΓF . (66)

The vector of coefficients Γ is composed of coefficients associated with each basis

function in Φ. It contains scaling coefficients as its first N0 entries, then wavelet

coefficients associated with wavelet functions of resolution 0 for the next N1 entries,

and so forth, all the way to wavelet coefficients of resolution R for the last NR+1

entries. Therefore in total the vector contains N entries. Next, we describe how to

represent shapes using spherical wavelets.

4.3 Shape Representation using spherical wavelets

In this section, we explain how to equip a set of anatomical shapes with the correct

multiresolution mesh structure in order to build wavelet functions directly on a mean

shape that is representative of the population. We then explain how to encode a

shape signal into wavelet coefficients.
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(a) (b) (c) (d) (e)

Figure 40: Example of 5 shapes from the Prostate dataset

4.3.1 Data Description

We will use three real datasets to illustrate our technique in the remainder of this

chapter. The first dataset of prostates was chosen as a test dataset due to the existence

of some interesting high frequency content on the surface (for example on the superior

side of the surface). We use a dataset of 39 prostates obtained from pre-operative

1.5T MRI scans (axial, T2-weighted, 120mm field of view, matrix size 256 × 256,

3.0mm thickness, 0.5mm gap, 1.5T, using both endorectal and pelvic coil arrays) using

endorectal coil imaging provided to us by the Surgical Planning Lab of Brigham and

Women’s Hospital. In these images the prostate capsule is visible and was manually

segmented by a radiologist. Each manual segmentation defined a 3D surface which

was extracted as a triangulated surface using the Marching Cubes algorithm, with

examples shown in Figure 40.

The other two datasets are two key brain structures. We use a dataset of 29 left

caudate nucleus structures and a dataset of 25 left hippocampus structures from a

1.5 Tesla GE Echospeed MR system, coronal SPGR images, 124 slices of 1.5 mm

thickness, voxel dimensions 0.9375 × 0.9375 × 1.5 mm. The MRI scans were hand-

segmented by an expert neuroanatomist to provide ground truth segmentations for

each structure. Each manual segmentation defined a 3D surface for each structure

extracted by a standard isosurface algorithm with examples shown in Figures 26

and 27.
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Figure 41: Illustration of the remeshing step for two left hippocampus shapes. See
Section 4.3.2 for details.

4.3.2 Shape Remeshing and Registration

Before we can perform our wavelet analysis, we need to re-triangulate and register all

the surfaces in the dataset, so that they have the same mutiresolution mesh and mesh

nodes at corresponding anatomical locations. One approach to surface registration

is based on the theory of conformal (angle-preserving) mappings of surfaces with

spherical topology [1]. Regardless of the degree of surface variation, such as variations

in convexity to concavity, the method efficiently unfolds each surface, yielding an

analytic one-to-one (conformal) mapping of each surface onto the sphere, and between

each pair of surfaces by composition of mappings. Although we have had success

with the conformal mapping approach of [1] presented next, we note that the wavelet

analysis presented here does not require this particular method of spherical mapping.

Indeed, other techniques such as inflation [20], harmonic mapping with rectangular

grids [5], circle packing [30], least squares mapping [31], and conformal mapping
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(a) (b) (c)

(d) (e) (f)

Figure 42: Example of principal axes and 3 points xN , xS and xE found on three
left hippocampus and left caudate shapes.

with parabolic equations [28] could also be used. The steps of our registration and

re-meshing technique are:

4.3.2.1 Conformal Mapping

Let Σ be a surface of spherical topology we wish to register and remesh. As noted

above, our registration method is based on complex variables and the conformal

mapping of Riemann surfaces. The core of the algorithm requires the solution of a

pair of sparse linear systems of equations, and uses finite element techniques to solve

an elliptic partial differential equation of the form:

∆f =
∂

∂w
δp, (67)

where ∆ denotes the Laplace-Beltrami operator on Σ, p is an arbitrary point on Σ,

f is the desired conformal mapping to the sphere S, δp is the Dirac delta function at

p, and w denotes a complex conformal coordinate around p. See [1] for details.

The resulting mapping f to the sphere can be made unique by specifying three

points on Σ to be mapped respectively to the north pole, south pole, and an equatorial
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(a) (b) (c)

(d) (e) (f)

Figure 43: A new point xS is found such that it is the farthest point on the mesh
from xN (in geodesic distance) for the three left hippocampus and left caudate shapes
shown in Figure 42

point on the sphere. Choosing these points consistently helps insure that correspond-

ing surface locations are well registered. We now show how to consistently pick three

corresponding points (xN , xS, xE) on each shape of the prostate, hippocampus and

caudate population in an automatic way. These three points will be used as boundary

conditions of the conformal mapping so that xN is mapped to the North Pole of the

sphere, xS is mapped to the South Pole and xE to the point on the equator that

intersects the Greenwich meridian. The steps are as follows:

1. Let Σ (R → R
3) be a mesh in RAS patient coordinate space, with N points

denoted x1...xN . The RAS coordinate space signifies that the first axis is the

patient’s left-right (LR) where left is negative and right is positive, the second

axis is the patient’s posterior-anterior (PA) and the third axis is the patient’s

inferior-superior (SI).

2. For each point xi on the mesh, let a(xi) be the sum of 1/3 of the triangles area

that have xi at its vertex. Hence a(xi) measures the portion of surface area
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attributed to vertex xi.

3. Calculate the weighted mean of the surface

m =

∑N
i=1 a(xi)xi∑N
i=1 a(xi)

(68)

4. Center shape Σ around its mean:

Σ′ = Σ −m (69)

5. Extract the principal axes of the shape by finding the eigenvectors V of the

weighted moment tensor (xi(k) means we are taking the kth coordinate of xi):

T =




∑
xi(1)xi(1)

∑
xi(1)xi(2)

∑
xi(1)xi(3)

∑
xi(2)xi(1)

∑
xi(2)xi(2)

∑
xi(2)xi(3)

∑
xi(3)xi(1)

∑
xi(3)xi(2)

∑
xi(3)xi(3)




(70)

T = T




a(xi)

a(xi)

a(xi)




(71)

T = V DV T (72)

6. reorder the eigenvectors to most L → R, P → A, I → S. The axes are shown

in Figure 42 for three hippocampus and three caudate shapes. The magenta

axis is LR, the blue axis is PA and the green axis is IS.

7. Define xN to be the farthest surface point from the center of the shape in the

A direction of the PA axis (shown in blue in Figure 42), xS to be the surface

point in the P direction of the PA axis (shown in yellow in Figure 42) and xE

to be the surface point in the L direction of the LR axis (shown in magenta in

Figure 42).
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8. Since the xN and xS should be as far as possible, we change the xS location to

be the farthest point (in geodesic distance) from xN . The distance is calculated

on the mesh, using Dijkstra’s algorithm as an approximation of the geodesic

distance. We show the result of this step on Figure 43 for the same six shapes.

This first step of the registration is illustrated in the first two columns of Figure 41,

where each row of the first column represents a different initial left hippocampus

surface Σ with 3 automatically chosen control points. The color represents the z

coordinate of Σ for reference. The second column shows the result of mapping each

point on Σ to the sphere using the conformal mapping f. The sphere S then has the

same triangulation as Σ. The color shown at the vertices of S is still the z coordinate

of the corresponding vertex on Σ.

4.3.2.2 Area Correction

As pointed out in the early spherical mapping work of [5], conformal mappings may re-

sult in extreme distortion of area which needs to be corrected for certain applications.

In particular, when remeshing a surface using a standard multi-resolution mesh, large

distortions in area can result in a non-uniform distribution of mesh nodes on the orig-

inal surface and a loss of fine detail. To prevent this, we have implemented a simple

method to adjust the conformal mapping to have better area-preservation properties.

The method works as follows. Let qn =
(
(1 − z2

n)
1

2 cos(θn), (1 − z2
n)

1

2 sin(θn), zn

)
for

n = 1, 2, . . . , N represent the mesh points on the sphere, indexed so that z1 = −1 ≤

z2 ≤ · · · ≤ zN = 1. Then z1 is the south pole (0, 0,−1) and zN is the north pole

(0, 0, 1). For each zn, the area of the region of the sphere south of the latitude

through zn is given analytically by 2π(zn + 1). This region corresponds to a region

on the original surface Σ of area An, which can be calculated using the triangula-

tion of Σ. In particular, A1 = 0 and AN = A, where A is the total area of Σ. If
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An

A
= 2π(zn+1)

4π
for all n, then these areas on Σ and the sphere are spread out pro-

portionally from south to north pole. This is unlikely to be the case in practice, so

we adjust each point pn to get a new point p̃n by setting z̃n = 2An

A
− 1 and setting

p̃n =
(
(1 − z̃2

n)
1

2 cos(θn), (1 − z̃2
n)

1

2 sin(θn), z̃n

)
. This effectively spreads out the areas

on the sphere in proportion to their original surface areas. The advantage of this

approach is that the algorithm involved does not require iteration, as a functional

minimization or flow technique would, and guarantees that the adjusted spherical

mapping remains bijective. In the third column of Figure 41, each row shows an ad-

justed spherical mapping. The color coding is again the z coordinate of the original

surface shown in the first column. Comparison of the second and third columns to

the first clearly shows that the third has a better distribution of area than the second.

We note that although this method has produced satisfactory results for the surfaces

we analyze here, more irregular surfaces may require additional area adjustments.

4.3.2.3 Remeshing

We retriangulate S with the vertices of a subdivided icosahedron shown in Fig-

ure 36(e). This yields a sphere with a new triangulation denoted by S
R. If we apply

the inverse mapping to the vertices of S
R, f−1(SR) = ΣR, we then obtain a retriangu-

lated version of the original surface Σ. After this transformation, the retriangulated

shape ΣR has two nice properties: 1) it has the required mesh for spherical wavelet

analysis; 2) it has a one-to-one mapping with a canonical spherical mesh, therefore

providing one-to-one correspondence with other shapes that have this property.

4.3.2.4 Registration

After remeshing, all shapes have the same mesh with N vertices. A Procrustes trans-

formation [17] can be applied to all shapes to register them in Euclidean space. This
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(a) Remeshed shapes be-
fore alignment

(b) Remeshed shapes af-
ter alignment

(c) Mean Shape

(d) Remeshed shapes be-
fore alignment

(e) Remeshed shapes af-
ter alignment

(f) Mean Shape

Figure 44: After remeshing, shapes are aligned with Procrustes alignment and the
Mean shape is computed for (a-c) left hippocampus dataset (d-f) left caudate dataset

result of the Procrustes alignment is shown in Figure 44(a)-44(b) for the left hip-

pocampus dataset and in Figure 44(d)-44(e) for the left caudate dataset. After Pro-

crustes alignment, we denote shape i by a vector ΣP
i of size 3N×1 (the first N entries

are the x coordinates of the vertices, the next N entries are the y coordinates and

the last N entries are the z coordinates). After all K shapes are registered, the Mean

shape is found with the following equation:

ΣP =
1

K

K∑

i=1

ΣP
i (73)

The mean shape for the left hippocampus dataset is shown in Figure 44(c) and for

the left caudate dataset in Figure 44(f).

4.3.3 Spherical Wavelets on the Mean Shape

After the spherical mapping and registration, all shapes in the population are equipped

with the same multiresolution mesh, where each vertex of the mesh corresponds to the

same anatomical location across shapes. Since the spherical wavelet functions used in
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(a) scaling function, reso-
lution 0

(b) wavelet function, res-
olution 0

(c) wavelet function, res-
olution 2

Figure 45: (a-c) Icosahedron mesh shown with the Mean shape(d-f) Visualization
of wavelet basis functions constructed on the Mean shape at various levels. The color
corresponds to the value of the functions

this work can be defined on any surface of spherical topology with a multiresolution

mesh, we can build the basis functions directly on the mesh of a mean shape for a

population. This creates a set of basis functions adapted to the geometry of the mean

shape since the spherical wavelet transform in [51] takes triangle area into account

when building the functions. Therefore the basis on the mean shape is more specific

to each shape in the population than if we had used a basis built on a sphere. For

each shape, we denote the matrix of basis functions built on the mean shape mesh

as Φm. A scaling function for resolution 0 and a wavelet function for resolution 2

and 4 are shown in Figure 45(a)- 45(c) on the mean shape of the left hippocampus

population.

4.3.4 Encoding the Shape Signal with Spherical Wavelets

We represent each shape in the population by encoding the deviation from the mean

using the spherical wavelet transform. We first encode the variation from the mean

for the ith shape with the signal vi of size 3N × 1:

vi = ΣP
i − ΣP (74)

We then transform vi into a matrix of spherical wavelet basis coefficients Γvi
with

the forward spherical wavelet transform:
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Γvi
=




Φ−1
m 0 0

0 Φ−1
m 0

0 0 Φ−1
m




︸ ︷︷ ︸
Π−1

vi, (75)

where Φm is the wavelet basis functions evaluated on the mean shape for that popula-

tion. Therefore a shape is transformed into wavelet coefficients by taking the forward

wavelet transform of the x, y and z variation from the mean signal. The resulting

vector of coefficients Γvi
contains as the first N entries the wavelet encoding of the

x coordinates of the shape, ranked from coarse resolution to high resolution, and

similarly for the next N entries that encode the y coordinates, and the last N entries

that encode the z coordinate.

4.3.5 Filtering the Shape Signal by Projection onto a Reduced Set of
Basis functions

This representation is already useful in itself by allowing us to represent the shape

at various resolution levels, by a filtering operation that projects the shape onto a

limited set of basis functions. This can be done by creating a filter matrix P of size

M × N , where M is the number of basis functions to keep. Each row of the matrix

P keeps a particular basis function of index j by having entries of value 0, except for

the jth entry that is set to 1. The filtering (for all coefficients) is then performed with

the following equation:

Γ∗
vi

=




p 0 0

0 p 0

0 0 p




︸ ︷︷ ︸
P∗

Γvi
. (76)

The resulting filtered coefficients Γ∗
vi

are of size 3M×1. To display the filtered shape,

Γ∗
vi

is first premultiplied by the transpose of P to be of size 3N×1 (the coefficients that
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correspond to the eliminated basis functions are zero), the inverse wavelet transform

is applied and the mean shape is added:

ΣP
i = ΣP + ΠP∗T Γ∗

vi
. (77)

One example of this projection process is shown in Figure 46 for the left caudate

shape 1 and left hippocampus shape 1. Figure 46(a) shows the mean shape for the left

caudate population. The following three subfigures show the mean caudate shape plus

filtered variations from the mean for shape 1. If only low resolution basis functions are

used (Figure 46(b)), the resulting shape is coarse with low frequency variations from

the mean shape. If basis functions of higher resolution are added to the projection

set, the resulting shape contains additional high frequency variations (Figure 46(c)-

Figure 46(d)). The same information is shown for the hippocampus in Figures 46(e)-

46(h). This type of filtering (or truncation) operation where a whole resolution level

is suppressed is commonly used with Fourier functions, such as spherical harmonics.

However, one advantage of spherical wavelets is that due to the local support of its

basis functions, a more granular truncation can be done, where only certain basis

functions at a resolution level are suppressed, instead of all functions for that level.

This allows for a targeted truncation, by selecting only those functions that represent

important information in the signal, at all resolution levels. The next section explains

how we do this in a principled way for a whole population of shapes.

4.4 Scale-Space Spherical Wavelet Prior for Statistical Pop-

ulation Analysis

To build a prior that captures both global and local variations in the population, we

first reduce the dimensionality of the Γi coefficients and keep only the coefficients

that encode relevant variations in the training data. This process is described in

Section 4.4.1. After truncation, we wish to decompose the set of remaining coeffi-

cients such that highly correlated coefficients in the population are grouped together
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(a) Mean Shape (b) Mean Shape +
Low frequency varia-
tions (res 0-2)

(c) Mean Shape
+ Low-Medium
frequency variations
(res 0-3)

(d) Mean Shape +
All frequency varia-
tions (res 0-4)

(e) Mean Shape (f) Mean Shape +
Low frequency varia-
tions (res 0-2)

(g) Mean Shape
+ Low-Medium
frequency variations
(res 0-3)

(h) Mean Shape +
All frequency varia-
tions (res 0-4)

Figure 46: Example of the filtering operation for Shape 1 of Left Caudate (a-d) and
Left Hippocampus (e-h) dataset.

in a band, with the constraint that coefficients across bands have minimum cross-

correlation. This allows us to model the joint probability function of the coefficients

by a product of smaller independent probability functions over each band, assumed

to model uncorrelated shape variations. This process is described in Section 4.4.2.

4.4.1 Coefficient Truncation via Power Analysis

Given the total power ‖p‖2 of the shape signal for a population, we would like to

remove the basis functions that do not contribute significantly to that power. We

define the population shape signal p (size N × 1) by:

p(n) :=

(
K∑

i=1

vi(n)2 + vi(N + n)2 + vi(2N + n)2

) 1

2

(78)
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where vi(n) selects the variation from the mean of vertex n of shape i along the x

axis, and vi(N + n) and vi(2N + n) along the y and z axis respectively.

Since the wavelet basis functions are not orthonormal, we cannot directly apply

Parseval’s theorem for spectrum analysis. Indeed:

< p, p > 6=< Γp,Γp > (79)

where Γp = Φ−1
m p are the coefficients of the spherical wavelet transform of p.

In order to still perform a power analysis, we wish to see the contribution of each

wavelet basis function to the total power for the population ‖p‖2. We know that for

any signal p sampled at N vertices of the mean shape

< p, p >= pT ΦmΦ−1
m p, (80)

since ΦmΦ−1
m = Id. Then:

< p, p >= pT ΦmΓp (81)

The contribution of the kth wavelet basis function to the sum in (81) is therefore

c(k) = pT Φm(:, k)Γp(k), (82)

where Φm(:, k) is the kth column of the basis matrix Φm and Γp(k) is the kth element

of the coefficients vector Γp.

Since we wish to remove basis functions that have no effect on ‖p‖2, we remove

those whose contribution c(k) is close to 0. Noting that c(k) can be both positive and

negative, we rank the contribution of each basis by their absolute value from highest

to lowest, and truncate the lowest basis functions whose cumulative contribution is

lower than 0.01% of the total power. Based on this analysis, we build a filter matrix

P∗ that indicates which basis functions to keep to represent that population of shapes.

This truncation step leads to a nice compression property since the reduced set of

basis functions match variations specific to a shape population, without introducing
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large error between the filtered shape and the non-filtered shape. Table 2 shows

the number of truncated basis functions and the average maximum error between

original shapes and their filtered version, using a filter matrix P∗ specific to the

shape population, for both the hippocampus and caudate dataset. The error is shown

in percentage of the shape’s bounding box (smallest axis). We show the amount of

truncation and error for varying population size from 5 to 20. For the caudate dataset,

between 958 and 1383 basis functions out of 2562 are truncated, depending on the

number of shapes used to find P∗. This represents a compression level between 45%

and 54%. With the truncation, the filtered shapes differ less than 2% of their bounding

box from the non-filtered shapes. Figure 47(a) shows the original caudate shape 1 and

Figure 47(b) shows the filtered shape (based on a 54% truncation level). The colormap

shows the distance between the filtered and non-filtered shapes. As can be seen in the

figure, the truncation filtering does not seem to effect the shape significantly and all

high resolution variations are still present. For the hippocampus dataset, between 780

and 888 basis functions are truncated, representing a compression level between 30%

and 35%. Again, the filtered shapes differ less than 2% of their bounding box from

the non-filtered shapes. Figure 47(c) shows the original hippocampus shape 1 and

Figure 47(d) shows the filtered shape (based on a 35% truncation level). Again, the

truncation filtering does not affect the shape significantly and all the high resolution

variation is still present.

Figure 48 summarizes the steps from Sections 4.3-4.4.1 to transform a shape into

its wavelet representation. Next, we detail the steps to learn the multivariate proba-

bility function of the truncated wavelet coefficients for a shape population.

4.4.2 Multiscale Decomposition

After finding a truncated set of basis functions for a population of shapes, we wish to

estimate the joint multivariate probability function P (Γ∗) of the wavelet coefficients
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Table 2: Number of truncated basis functions and the average maximum error
between original shapes and their filtered version, using a filter matrix specific to the
shape population, for both the hippocampus and caudate dataset.
Dataset \ Num Training N=5 N=10 N=15 N=20
Caudate

# initial fn. 2562 2562 2562 2562
# truncated fn. 1125 958 1050 1383
(% truncation) (44) (37) (41) (54)
Avg. Max. Error
(%bounding box) 1.69 0.99 1.33 1.33

Hipp.
# initial fn. 2562 2562 2562 2562
# truncated fn. 888 820 780 888
(% truncation) (35) (32) (30) (35)
Avg. Max. Error
(%bounding box) 0.05 1.07 0.68 0.81

(a) Original Caudate, Shape 1 (b) Filtered Caudate (54% trun-
cation), Shape 1

(c) Original Hippocampus, Shape
1

(d) Filtered Hippocampus (35%
truncation), Shape 1

Figure 47: Result of the Filtering Operation to create a reduced basis set. (a,c)
original shapes (b,d) filtered shapes with mean squared error from the original shape
as colormap
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Figure 48: Shape Representation from Sections 4.3-4.4.2

for that population. Each shape of that population is then a random realization from

P (Γ∗).

4.4.2.1 Motivation

To model the variation in the data, we take advantage of the natural multiresolution

decomposition of the wavelet transform and learn variations in the population at

every resolution level. This means that small scale variations in the data will not be

overpowered by large scale variations, which would be the case if we were to apply
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PCA directly to all the vertices or to all the wavelet coefficients since PCA is a least-

squares fit that finds the first K − 1 major (large scale) variations in a dataset of K

shapes. By finding variations at separate scales, we find K − 1 variations for each

scale of analysis.

One additional benefit of the wavelet transform is that it often acts as a decorre-

lator of many real-world signals [39]. We computed the correlation matrix of wavelet

basis coefficients for each scale, and observed that the matrices were indeed sparse.

As a comparison, the correlation matrix of the coordinates of the vertices (used in

PDM) is dense.

For a given scale, we can refine our model by taking advantage of this decorrelation

property and cluster correlated basis coefficients together, with the constraint that

coefficients across clusters have minimum correlation. Coefficients in the same cluster

then represent areas of the shape that have correlated variations in the population,

for a given scale. Coefficients that do not belong to the same cluster do not tend to

be correlated in the population. This further decomposition, learned from the data,

allows us to model variations for each cluster at a given scale, hence increasing the

number of variation modes learned from the data.

We note that this hierarchical decomposition is inspired by the previous work of

Davatzikos et al. [14] who used 1D wavelet basis functions to analyze shape contours

in 2D imagery and performed a scale-space decomposition of the wavelet coefficients.

However, their work assumes that coefficients associated with wavelet functions of

the same resolution that are also close in space are correlated to each other. In this

work, we relax the assumption that only spatial proximity would dictate correlation,

and find clusters directly based on the correlation that exists in the data.

In the next section 4.4.2.2 we show how to discover the clusters from the data. In

section 4.4.2.4 we show how to learn variations over every cluster and how to combine

them into a multiscale prior.
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Figure 49: Illustration of Band Creation Algorithm

4.4.2.2 Coefficient Clustering via Spectral Graph Partitioning

Figure 49 shows a simple example used throughout this section to illustrate our

clustering algorithm. We used 20 left hippocampus training shapes to create the

graph.

To cluster correlated wavelet coefficients, we use a spectral graph partitioning

technique [54]. We use a fully connected undirected graph G = (Vj , E) where each

node indexed by n ∈ Vj is a random variable that represents the coefficients associated

with the nth wavelet basis function of resolution j. Each wavelet basis function

n has 3 associated coefficients per shape i that represent the x, y and z variation,

we denote those coefficicents by γxn

i , γyn

i and γzn

i . For each shape i, we combine

those three coefficient values associated with basis function n into one variable un
i =

γxn

i +γyn

i +γzn

i . Then the random variable at node n is represented by itsK realizations

(K is the number of training shapes): Un = [un
1 , ..., u

n
K ].
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The weight on the edge that connects node n and m is a function of similarity

between those nodes and is denoted w(n,m). To define w(n,m), we first find the

sample correlation and p-value between the random variables Un and Um:

rn,m =

∑K
j=1(U

n(j) − Un)(Um(j) − Um)

(K − 1)σUnσUm

, (83)

where Un is the sample mean of Un, σUn is the sample standard deviations of Un and

K is the total number of samples (number of shapes in the population).

With the correlation we compute an associated p-value that is the probability of

getting a correlation as large as the observed value by random chance, when the true

correlation is zero. If pn,m is small then the correlation rn,m is significant. We pick a

significance threshold of 0.05.

We then define the weight on the edge that connect nodes n and m to be:

w(n,m) =





rn,m if p(n,m) < 0.05,

0 otherwise.
(84)

This similarity between the nodes can be represented as a matrix where each entry

n,m is the value w(n,m). In Figure 49 the similarity matrix for the hippocampus

population for all nodes of resolution 0, is shown at the top left. The lighter the entry

(n,m), the more similarity between coefficients of basis n and m.

Using the normalized cuts technique [54], we find the optimal partitioning of the

nodes of resolution j in the set V 0
j into two disjoint sets V 1

j and V 2
j such that nodes

within a partition have the highest similarity and nodes across partitions have the

lowest similarity. For example in Figure 49, nodes 2, 3, 5, 6, 7, 8, 9, 10 and 11 are put in

the subgraph V 1
0 and nodes 1, 4 and 12 are put in the subgraph V 2

0 . We show the new

similarity matrix where the node indices are re-ordered such that the first contiguous

nodes belong to V 1
0 and the next contiguous nodes belong to V 2

0 . This effectively

transforms the similarity matrix into a block diagonal matrix, where entries outside

of the diagonal blocks have minimum correlation.
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For each subgraph, we recursively iterate the normalized cuts until we reach a

stopping criterion. The stopping criterion is based on the quality of the decomposi-

tion of each graph, validating whether the total correlation between the coefficients

separated in two subgraphs V k+1
j and V k+2

j is less than a percentage p of the total

correlation between coefficients in the combined set V k
j . So if V k

j is partitioned into

sets V k+1
j and V k+2

j , we ensure that

∑

u∈V k+1

j

∑

v∈V k+2

j

w(u, v) < p ∗
∑

u∈V

∑

v∈V

w(u, v). (85)

In practice, we use p ≤ 0.1. For example in Figure 49, subgraph V 2
0 is further

subdivided into subgraphs V 3
0 and V 4

0 .

After the recursion, each subgraph represents a set of wavelet basis functions whose

coefficients are correlated at that scale. We group these wavelet basis functions into

a band, encoded by an index set Bj,b where j is the resolution level of the band and

b is the band index. For example in Figure 49, a total of 3 bands were discovered

for resolution 0: Band B0,1 corresponding to the nodes in subgraph V 1
0 , Band B0,2

corresponding to the nodes in subgraph V 3
0 and Band B0,3 corresponding to the nodes

in subgraph V 4
0 .

4.4.2.3 Visualizing Clustering Results

The visualization of resulting bands on the mean shape can in itself be interesting for

shape analysis by indicating which surface patches co-vary across the training set.

To visualize the band Bj,b, we visualize the cumulative support of all wavelet basis

functions in band Bj,b on the surface of the mean shape. This can be done by using as

a colormap the sum of wavelet basis functions indexed by Bj,b. The higher (lighter)

values of the colormap then indicate where the wavelet basis functions in the band

cumulatively have support.

This is shown in Figure 49 at the bottom right for all three bands of resolution
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Figure 50: Coefficient Clustering and selected Band Variation Visualization for the
left hippocampus data
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Figure 51: Coefficient Clustering and selected Band Variation Visualization for the
left caudate data

0. Band B0,1 indicates correlated variation at the anterior/lateral side of the hip-

pocampus (the wider portion of the shape) for that population. Band B0,2 indicates

correlated variation at the posterior/lateral side (the thinner portion) and Band B0,3

indicates variation on the medial side (the portion that appears at the bottom in the

Figure). These variations make sense anatomically. It is also interesting that each

band has contiguous spatial support, though this is not a constraint of our technique.

Further visualizations of the bands at various resolutions of the left hippocampus

dataset with 20 training shapes are shown in the left columns of Figure 50. Each

row corresponds to a resolution level. The first column shows the initial similarity

matrix for each level. The second column shows the resulting partitioned similarity

matrix. As expected, the off-diagonal inter-band covariance is minimal. There are

various band sizes, due to the fact that new bands are only recursively divided if

condition (85) is met. The last three columns show the location of a selected band
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(a) B0,1, A (b) B0,1, P (c) B2,1 A (d) B2,1, P

(e) B(2,2), A (f) B2,2, P (g) B2,3, A (h) B2,3, P

Figure 52: Band Decomposition: various bands Bj,i, where j is the resolution and i
is the band number, shown in Anterior view (A) and Posterior view (P), see text for
color

and the variation found within that band, as will be explained next.

Figures 52(a)- 52(b) show the first band for the lowest scale for the prostate data.

The second band is the complement of the first. As expected each band has a large

spatial extent and indicate two uncorrelated shape processes on the prostate data: the

variation of the anterior wall of the prostate (typically rounded) and the variation of

the posterior wall of the prostate (typically flatter). Figures 52(c)- 52(h) show three

bands for scale 3. These bands are more localized. These are uncorrelated variations

of the superior and inferior walls of the shape, as well as an uncorrelated variations

of the anterior wall at that scale. Bands have contiguous support, though this is not

a constraint of our technique. The symmetry in bands 2 and 3 is also interesting,

showing that both the right and left side tend to co-vary similarly. This symmetry of

variation is plausible for the prostate, and we plan to investigate this further. Notably

a diseased organ could possibly be detected if there is a lack of symmetry. Figures 53

show the band decomposition of the caudate population for scale 2. Again, the bands

seem to be well localized in space.
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(a) Scale2, Band 1, Anterior View (b) Scale 2, Band 1, Posterior View

(c) Scale 2, Band 2, Anterior View (d) Scale 2, Band 2, Posterior View

(e) Scale 2, Band 5, Anterior View (f) Scale 2, Band 5, Posterior View

(g) Scale 2, Band 6, Anterior View (h) Scale 2, Band 6, Posterior View

Figure 53: Band Decomposition, Caudate Nucleus dataset: various bands shown
for scale 2 (shown in Anterior view and Posterior view), see text for color
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4.4.2.4 Building the Prior

The final step for building the prior consists in finding variations within each band of

wavelet coefficients. We call this approach the wavelet distribution model (WDM).

Given a band index set Bj,b, we create a filter matrix Pj,b that selects the wavelet

basis functions associated with the coefficients in the band Bj,b. We then select the

wavelet coefficients corresponding to band Bj,b for shape i using the equation:

Γ
∗j,b
vi =




Pj,b 0 0

0 Pj,b 0

0 0 Pj,b




︸ ︷︷ ︸
Pj,b

Γ∗
i . (86)

The size of Γ
∗j,b
vi is 3|Bj,b| × 1, where |Bj,b| is the number of basis functions in Bj,b.

We learn the major modes of variations in a band just like in PDM, by calculating

the mean:

Γ
∗j,b

=
1

K

K∑

i=1

Γ
∗j,b
vi , (87)

forming a shape matrix

Γ∗j,b =

[
Γ
∗j,b
v1 ... Γ

∗j,b
vK

]
, (88)

and covariance matrix

Cj,b = (Γ∗j,b − Γ
∗j,b)(Γ∗j,b − Γ

∗j,b)T , (89)

and then diagonalizing the covariance matrix to find the eigenvectors (major modes of

variation) U j,b. Each column of U j,b is an eigenvector of size 3|Bj,b|×1 that represents

an axis of variation for the coefficients Γ∗j,b . In total for that band, we find 3|Bj,b| or

K − 1 eigenvectors, whichever number is smaller.

To create the shape prior, we transform the eigenvectors back into the right di-

mensions:

U∗j,b = PT
j,bU

j,b, (90)
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so that the only non-zero entries of U∗j,b are at the indices corresponding to band

Bj,b.

We can visualize the effect of the kth eigenvector for band b and resolution j,

U∗j,b(k), by varying the shape wavelet coefficients along that eigenvector by an amount

α∗j,b(k):

Γ∗
vi

= Γ
∗
+ U∗j,b(k)α∗j,b(k), (91)

and then recovering the shape with equation (77).

This process is shown for the hippocampus dataset in Figure 50 and the caudate

dataset in Figure 51 for a selected band for 4 different resolution levels. The eigen-

vectors of lower scale bands represent relatively global aspects of shape variability,

whereas bands at higher scales represent higher frequency and more localized aspects

of shape variability. Hence, our technique discovers shape variations at every scale,

where the variations are all the eigenvectors of all the bands, and does not favor the

discovery of global variations over local variations. Additionally, our prior accurately

encodes finer details even with small training sets, since if there are a total of B

bands, there exists on the order of L = B(K − 1) eigenvectors, as opposed to just

K − 1 eigenvectors when using PDM.

The full prior contains all the eigenvectors for all bands and all resolutions in a

matrix U∗ of size 3M × L if there are L eigenvectors in total.

A shape i can then be represented with the full prior:

Γ∗
vi

= Γ
∗
+

[
U∗0,1 ... U∗r,k

]

︸ ︷︷ ︸
U∗

αvi
(92)

where αvi
(size L×1) represents the coordinates of the wavelet coefficients of that

shape in the eigenvector space.

To summarize, each shape ΣP is now represented with the following equation:
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ΣP = ΣP + ΠP∗T (Γ∗ + U∗αvi
) (93)

4.5 Experiments

In this section, we evaluate the multiscale shape prior based on WDM and band

decomposition for a shape reconstruction task. The basic idea is to learn a prior with

a training set, and to project shapes from a test set onto the prior to evaluate how

close a projected test shape is to its ground truth.

We have three goals for the evaluation:

1. Compare the WDM prior using scale-band decomposition to WDM using only

scale decomposition;

2. Compare both WDM priors to PDM;

3. Test the effect of noise on all priors.

We partition our data with N shapes randomly into T training samples and N−T

testing samples, where T = [5, 10, 15, 20] and learn a shape prior from the training set.

The prior for PDM consists of the mean shape and the eigenvectors of the landmarks

on the shape. The prior for WDM using scale only consists of the mean shape, the

mean wavelet coefficient vector, the eigenvectors for coefficients from each shape. The

prior for WDM using scale and bands consists of the mean shape, the mean coefficient

vector, the band indices, the eigenvectors for coefficients from each band.

Once we learn the priors from a training set, we project a each shape in the

testing set onto the eigenvectors of the prior and translate the coordinates of the

projected test shape to a point lying at a reasonable distance of the training data

(± 3 observed standard deviation). We then reconstruct the modified test shape. A

mean squared error between the vertices of the ground truth and the reconstructed

shape is calculated for all shapes in the testing set.
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(a) Hippocampus: Max Squared Recon-
struction Error

(b) Hippocampus: Max Squared Recon-
struction Error with Noise projection

(c) Caudate: Max Squared Reconstruc-
tion Error

(d) Caudate: Max Squared Reconstruc-
tion Error with Noise projection

Figure 54: Max Squared Reconstruction Error (averaged over testing shapes) for
various training set sizes

To test the robustness of each prior, we also test the reconstruction in the presence

of noise. To add noise to the test shape, we displace each vertex according to a

Gaussian probability function with mean 0 and a standard deviation that is 5% of

the bounding box of the object, as shown in Figure 55 (columns 2 and 4), producing

a shape with noise sn. Ideally, we would want the prior to not be affected by the

noise and the reconstructed shape to be close to the ground truth (the shape without

noise). To test this, we project the noisy shape onto the priors, and calculate the

mean squared error between the reconstructed shape and the ground truth shape.

Figure 54 shows the maximum squared reconstruction error, averaged over all the

shape in the testing set, for the various shape priors and various training set sizes of
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Figure 55: Reconstruction Task for a test shape using 10 training shapes (first 2
columns) and a test shape using 20 training shapes (last 2 columns)

the hippocampus (top row) and caudate (bottom row) datasets. The left graph show

the error using the ground truth as a projection onto the priors, the right graphs show

the error using the noisy ground truth as a projection onto the priors (the error is then

computed between the reconstructed shape and the original ground truth). As we

can see in the graphs, the WDM prior with scale and band decomposition outperform

the other techniques, even when the training set size is large (20 shapes). It is also

interesting to see that all priors are minimally affected by Gaussian noise. Therefore,

although the WDM prior with scale and band decomposition is more specific than

PDM (meaning it represents a population more accurately), it is not more sensitive

to noise.

As an example, 55 shows the Ground Truth shape, Noisy shape, and reconstruction

with PDM and wavelet shape priors with 10 and 20 training samples for the

119



(a) Test shape (b) Test shape with Noise

(c) PDM reconstruction from Test
shape

(d) PDM reconstruction from Test
shape with Noise

(e) WDM with Scale and Bands re-
construction from Test shape

(f) WDM with Scale and Bands re-
construction from Test shape with
Noise

Figure 56: Prostate dataset: Ground Truth Test shape, Test shape with noise, and
reconstruction with PDM and WDM with scale and bands with 5 training samples.
Color is error from blue (lowest) to red.

120



(a) Test shape (b) Test shape with Noise

(c) PDM reconstruction from Test shape (d) PDM reconstruction from Test shape
with Noise

(e) WDM with scale and bands recon-
struction from Test shape

(f) WDM with scale and bands recon-
struction from Test shape with Noise

Figure 57: Caudate dataset: Ground Truth Test shape, Test shape with noise,
and reconstruction with PDM and WDM with scale and bands shape priors with 25
training samples. Color is error from blue (lowest) to red.
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hippocampus dataset. The figures show the reconstruction when the Ground Truth

shape is projected onto the prior (column 1 and 3), and when the Noisy shape is

projected onto the prior (column 2 and 4). We see that details that appear in the

WDM (row 3 and 4) are lacking in the PDM (row 2) reconstruction, especially on the

posterior side (thinner part of the shape). When comparing WDM with scale only

(row 3) and WDM with scale and band decomposition (row 4), we see that the latter

has a smaller error and contains finer details.

As another example, Figures 56 and 57 show the Ground Truth Test shape, Noisy

shape, and reconstruction with PDM and WDM with scale and band decomposition

with 5 training samples for the prostate dataset and 25 training samples for the

caudate dataset. The figures show the reconstruction when the Test shape both with

and without noise is projected onto the priors. We see that again details are lacking

in the PDM reconstruction. The WDM technique incorporates both local and global

details that PDM does not encode.

4.6 Conclusion

By using the spherical wavelet transform as shape representation, we have been able

to take advantage of two types of decomposition: scale decomposition by using the

transform structure and space decomposition by using the decorrelation property of

the wavelet transform at every scale for the two brain structures we analyzed. We have

demonstrated that our spherical wavelet based technique, called wavelet distribution

model (WDM), is a better shape prior than ordinary PDM when it is important to

represent finer, more localized shape variations for these brain structures. From our

results we have shown that WDM with scale and band decomposition outperforms

WDM using only scale decomposition for the caudate and hippocampus shapes. We

note that if this technique is applied to other anatomical structures where the decor-

relation property does not exist at particular scales, our technique will nicely default
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to including all coefficients from that scale into a single band.
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CHAPTER V

3D SEGMENTATION USING THE MULTI-SCALE

SPHERICAL WAVELET PRIOR

In this chapter, we derive an efficient active contour segmentation algorithm in the

space of the spherical wavelet basis functions in order to directly and naturally include

the multiscale prior presented in chapter 4 into a 3D surface evolution framework.

In order to exploit the multiscale prior, we derive a parametric surface evolution

equation by evolving the shapes in the wavelet prior subpspace directly. This amounts

to evolving the shapes in the subspace defined by all the eigenvectors of the bands

associated with the wavelet prior. As the surface evolves to fit the image data, we

constrain the shape to stay within an allowable part of the subspace spanned by

shapes in a training set, or a certain standard deviation away.

The parameters of our model are the shape parameters α, as well as pose pa-

rameters that accommodate for shape variability due to a similarity transformation

(rotation, scale, translation) which is not explicitly modeled with the shape parame-

ters.

5.1 Related Work

As seen in chapter 2, deformable models offer robustness to both image noise and

boundary gaps [71], and have been extensively studied and widely used in medical

image segmentation, with good results. There are two types of deformable models,

based on which representation is used for the model: parametric deformable models

and geometric deformable models. In this work, since we will be segmenting brain

structures of a fixed topology, our initial and final contour will remain of the same
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topology and we will therefore use the parametric model given its computational

efficiency. One point of departure with the snakes model is that we will be deriving

an evolution equation using the shape parameters directly as opposed to landmarks

on the shape, in similar spirit to Tsai et al. [64].

Initial formulations of active contours, called “edge-based active contours,” com-

bined smoothness constraints with image data forces sampled on the boundary of

the model. One issue with edge-based active contours is that they are not robust to

noise in the image and the gradient terms can stop the curve evolution at spurious

edges. Recently there has been a considerable amount of work on image segmenta-

tion using region-based curve evolution techniques, as discussed in Section 2.3.2.5. In

those techniques, the force that influences the evolution of the curve depend on region

statistics, inspired by the region competition work of Zhu and Yuille [75] and more

recently the work of Chan and Vese [8] and Yezzi [73]. Our work uses the region-based

active contour formulation in a parametric framework.

5.2 Pose Parameters

Given a surface mesh with N vertices Σ : [1, ..., N ] → R
4, expressed in homoge-

neous coordinates so that a mesh point is denoted by Σ(i) = xi = [xi, yi, zi, 1]T , a

transformed surface Σ̃ is defined by:

Σ̃(i) = T [p]Σ(i). (94)

The transformation matrix T [p] is the product of a translation matrix with 3

parameters tx, ty, tz, a scaling matrix with 1 parameter s and a rotation matrix with

3 parameters wx, wy, wz, using the exponential map formulation [35].
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5.3 Shape Parameters

A surface point Σ(i) can be represented in the wavelet basis with homogeneous coor-

dinates by re-arranging Equation (93).

Σ(i) =Σ(i)+ (95)

H







Φm(i, :) 0 0

0 Φm(i, :) 0

0 0 Φm(i, :)




︸ ︷︷ ︸
Πmi

P∗T(Γ∗ +U∗α)




,

where the function H : [3N × 1] → [4 × N ] rearranges a matrix to have the correct

homogeneous coordinates and Φm(i, :) is a row vector of all the basis functions evalu-

ated at point xi. The weight parameters α = [α1, ..., αL] (where L is the total number

of eigenvectors of the shape prior) are the shape parameters of our model.

By combining equations (94)-(95), the shape to be evolved is:

Σ̃(i) = T [p](Σ(i) + H(ΠmiP∗T (Γ∗ + U∗α))). (96)

5.4 Segmentation Energy

We use a region-based energy to drive the evolution of the parametric deformable

surface for segmentation. With region-based energies, the force that influences the

evolution of a contour depends on more global statistical information [64, 49]. We

employ the discrete version of a segmentation energy presented in [49]:

E(α,p) :=
∑

x∈R

L(x)∆x, (97)

where R is the region inside the evolving surface Σ̃ and the force is L(x) = − log( PI(I(x))
PO(I(x))

)

where I(x) is the image intensity at a point x located inside the region R of the evolv-

ing surface, PI(I(x)) is the probability that a point x with intensity I(x) belongs to
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the interior of an object to be segmented in the image, and PO is the probability that

the point belongs to the exterior of the object to be segmented. The segmentation

energy is minimized when the surface evolves to include points that have maximum

L (points that have a higher PI than PO). To estimate the probability density func-

tions PI and PO from a training set, we collect sample voxel intensity values inside

and outside the segmented shapes in a neighborhood of width 10 pixels around the

boundary and use Parzen windows [17].

The surface evolution is defined by a gradient flow of Σ that minimizes the energy

in terms of the pose p and shape parameters α. We augment the parameters p and

α with an artificial time parameter t and find gradient descent equations dp
dt

and dα
dt

by solving dE(p(t),α(t))
dt

= 0.

We now show the derivation of the region flow for the segmentation algorithm.

We use the area formula [55], and then the discrete divergence theorem to express

the region sum in (109) as a surface sum. Note that this derivation applies to N

dimensions, but here we take the special case N = 3. Let R be an open connected

bounded subset of R
3 (the region inside the surface) with smooth boundary Σ: R →

R
3 (the surface) parametrized by a parameter pk ∈ R. Let F t : R → R

3 be a family

of embeddings, such that F0 is the identity. Here we consider the case where the

given surface depends upon parameter pk that varies with time. Let L : R
3 → R be

a C1 function. Setting R(t) := F t(R) and Σ(t) := F t(Σ) to remove the dependence

on time, we define the following family of L-weighted volumes:

E(pk(t)) :=
∑

R(t)

L(y)∆y (98)

=
∑

R

L(F t(x))∆F t(x) (99)

We set f = dFt

dt
, then using the area formula [55], and the discrete divergence
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theorem:

dE(pk(t))

dt
|t=0 =

∑

R

div(L(x)f(x))∆x (100)

= −
∑

Σ

(L(y))f(y)) · N (y))∆y (101)

= −
∑

Σ

(
L(y)

dy

dpk

dpk(t)

dt

)
· N (y))∆y (102)

= −dpk(t)

dt

∑

Σ

(
L(y)

dy

dpk

)
· N (y))∆y (103)

where N (y) is the inward normal to Σ at point (y).

Setting (100) to 0, we obtain:

d(pk(t))

dt
=
∑

Σ

(
L(y))

dy

dpk

)
· N (y))dy. (104)

When pk is one of the pose (p) parameters, then using (94) we have:

dy

dpk

=
dΣ̃(i)

dpk

=
dT [p]

dpk

Σ(i).

When pk is one of the shape (α) parameters, then using (eq:fullsurf) we have:

dy

dαk

=
dΣ̃(i)

dαk

= T [p]H(ΠmiP∗TU∗(:, k)).

5.5 Parameter Optimization via Multiresolution Gradient

Descent

We can now use the gradient equation refeq:dp-dt to conduct a parameter optimiza-

tion via gradient descent for each parameter in p and α. Explicitly, the update

equations are:

p(t+ 1) = p(t) + δpt
dp

dt
, (105)

α(t+ 1) = α(t) + δα
t

dα

dt
, (106)
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where δα
t and δpt are positive step size parameters, dp

dt
is given in (104-105) and dα

dt
is

given in (104-105) and α(t+ 1), p(t+ 1) denote the values of the parameters α and

p at the (t+ 1)th iteration of the surface evolution.

We start with an initial shape and iterate between (105) and (106). We update the

α parameters in a multiresolution fashion. Since each shape parameter αi corresponds

to a band at a wavelet resolution j, we first only update α coefficients corresponding

to the coarsest level bands (j = 1). Once α changes less than a threshold value

vα, we add the α parameters of the next resolution level to the gradient and update

(106). This results in a more stable segmentation since few global parameters are

first updated when the shape is far from the solution, and more localized parameters

are added as the shape converges to the solution.

We start with (105) until (pt+1 − pt) < vp where vp is a threshold value. We

then run (106) for 1 iteration, and iterate the process. At each α iteration, we

ensure that the value of the α parameters stays within ±3 standard deviation of the

observed values in the training set. After each iteration, the updated shape and pose

parameters are used to determine the updated surface.

5.6 Results of Segmentation

We have applied our algorithm to the segmentation of the caudate nucleus shapes.

We learned a shape prior from a training set of 24 shapes and used the remaining 5

shapes as a test set. We use spherical wavelet basis functions of resolution up to j = 5.

In total, we obtained 16 bands in the shape prior. We learned the mean position pm

of the caudate shapes in the MRI scans (in patient RAS coordinates, described in

Appendix A). To initialize the segmentation, we use the mean caudate shape learned

during the training phase and positioned it at position pm in the scan to be segmented.

We then evolved the surface according to the process described in Section 5.5. The

step size parameters were δα
t = 0.5, δpt = 0.001 for translation and δpt = 0.0001 for

129



(a) ASM, iter=1

(b) ASM, iter=25

(c) ASM, iter=122

Figure 58: Surface Evolution using the Ground Truth label-map as the image
force for the ASM algorithm. The ground truth is shown in red (light-gray if seen in
grayscale), the evolving surface in blue (dark gray if seen in grayscale).
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(a) Mscale, iter=1

(b) Mscale, iter=96, levels 1-2 active

(c) Mscale, iter=122, levels 1-5 active

Figure 59: Surface Evolution using the Ground Truth label-map as the image
force for the Mscale algorithms. The ground truth is shown in red (light-gray if seen
in grayscale), the evolving surface in blue (dark gray if seen in grayscale).
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(a) ASM, iter=1

(b) ASM, iter=32

(c) ASM, iter=202

Figure 60: Surface Evolution using the density estimation as the image force for
ASM. The ground truth is shown in red (light-gray if seen in grayscale), the evolving
surface in blue (dark gray if seen in grayscale)
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(a) Mscale, iter=1

(b) Mscale, iter=150, levels 1-2 active

(c) Mscale, iter=202, levels 1-5 active

Figure 61: Surface Evolution using the density estimation as the image force for
Mscale (bottom row) algorithms. The ground truth is shown in red (light-gray if seen
in grayscale), the evolving surface in blue (dark gray if seen in grayscale)
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scale and rotation and the evolution threshold values were vp = vα = 0.02.

To measure the discrepancy between segmented shape (Σ) and ground truth

(G) (obtained from the hand-segmented label-maps), we use the Hausdorff distance

H(G,Σ) that measures the maximum error between the boundary of two shapes G

and Σ, as well as the partial Hausdorff distance Hf(G,Σ) that measures the f% per-

centile of the Hausdorff distance. We compare our algorithm (called Mscale) to the

standard ASM algorithm [11], using the same training, testing shapes and degrees of

freedom (we keep 100% of the eigenvectors).

To validate our algorithm, we first use the Ground Truth label-map as the image

force in (104) by replacing L with a value of 1 inside the (known) object and −1

outside. The end goal is to validate whether the surface evolution converges to the

right solution, given perfect image information. Since we are evolving in the space of

the shape prior, the discrepancy between the ASM and Mscale algorithm is due to

the expressiveness of the shape prior. Figures 58-59 show the result for test shape 5.

The final segmentation with the multiscale prior captures more of the shape and finer

details than the ASM segmentation. Furthermore, we see that for as the resolution

level is increased for the α parameters, the Mscale segmentation is able to capture

finer details.

We then validated the full segmentation algorithm, using the proposed image force

in (109). The results of the validation for both algorithms is shown in Table 3. For

each test shape, the lowest error among the two algorithms is in boldface. The Mscale

algorithm consistently outperforms the ASM algorithm. Figures 60-fig:PIPO-mscale

qualitatively compares the segmentation of Test shape 3 for both algorithms. The

Mscale algorithm is more accurate and captures finer details, especially at the tail of

the shape. We note that the segmentation is not fully accurate due to non-perfect

image statistics. Our algorithm runs under 5 minutes on a Pentium IV 2GHz using

non-optimized MATLAB code.
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Table 3: H , Hf distance for 5 test shapes for Mscale and ASM.
N=1 N=2 N=3 N=4 N=5 Mean

H95 (mm) Mscale 4.82 2.22 3.03 3.04 3.95 3.16
ASM 5.51 3.24 3.98 3.18 4.26 3.83

H (mm) Mscale 5.89 4.06 3.75 5.23 5.57 4.85
ASM 9.79 5.68 6.33 7.22 6.06 7.07

5.7 Conclusion

Using the multiscale representation and prior presented in Chapter 4, we presented a

computationally efficient segmentation algorithm. Our results show that the proposed

segmentation algorithm outperforms standard ASM. One advantage of the technique

is the ability to evolve coarse scale parameters first, in order to quickly bring the

evolving shape close to the solution and then evolving higher resolution parameters

to improve the fit. The technique is general and can be used with any kind of prior

based on WDM, regardless of the decompositions used. In our work, we have use the

WDM prior with scale-band decomposition given that it outperformed other priors

in the reconstruction task.
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CHAPTER VI

STATISTICAL SHAPE ANALYSIS OF CAUDATE USING

THE SPHERICAL WAVELET SHAPE

REPRESENTATION

One important challenge for the medical imaging community is the ability to de-

tect variations between the anatomy of healthy individuals and individuals with a

pathology. The neuroimaging community is particularly interested in detecting vari-

ations in the shape of brain structures for patients with neurological disorders, such as

schizophrenia. In this chapter, we apply the wavelet shape representation of Chapter 4

to a shape analysis task in the study of patients with neuroanatomic abnormalities,

such as schizophrenia or schizo-typal personality disorder.

6.1 Related Work

The study of brain morphology has emerged as a new field of computational neu-

roanatomy and can provide great insights into brain function, development and

pathologies. The aim of our work in this chapter is to investigate whether there exists

morphological differences of selected brain structures between groups of neuropsychi-

atric patients with neuroanatomic abnormalities and a group of healthy controls. To

reach this aim, we compare structures extracted from MRI images of different subjects

using statistical tests.

Both functional and structural neuroimaging studies of subjects with schizophre-

nia have pointed to abnormalities in the basal ganglia [37]. One common studied

brain structure is the caudate nucleus that is part of the striatal nuclei (caudate,

putamen, and nucleus accumbens) that serves as the “input nuclei” for the basal
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ganglia.

Statistical analysis of brain structures is often based on global features, such as

volumetric measurements [37]. However, studies have shown that morphometric anal-

ysis of brain structures provides new information which is not available by conven-

tional volumetric measurements [24]. To conduct 3D morphometry, various shape

representations have been proposed, ranging from dense sampled 3D Point Distribu-

tion Models (PDM) [12, 58] to medial shape descriptions [25, 46, 24, 59] and surface

parametrization using expansion into a series of Fourier [57] or spherical harmonic

basis functions [5]. Combined, these representations provide new complementary

measurement tools to answer clinical research questions.

In [59, 60], Styner et. al. use a point distribution model called SPHARM-PDM

to test for local shape differences in the caudate nucleus between healthy patients

and patients with schizotypal personality disorder (SPD). They first establish corre-

spondences between shapes and align the shapes using spherical harmonics. After the

shapes are registered and equally sampled, they test the two groups for differences in

the mean spatial location at each point on the surface using a statistical test.

In Hypothesis testing, one picks a test statistic, which assesses a hypothesis of

interest. The value of the test statistic is compared to a reference distribution, the

distribution of the test statistic assuming the null hypothesis is true. The p-value is

the probability that the test statistic would assume a value greater than or equal to

the observed value strictly by chance.

In their experiments, they use the Hotelling T 2 statistic to test the null hypoth-

esis that the mean location of a 3D point in two groups of patients does not differ.

The Hotelling T 2 statistic is a generalization of Student’s t statistic for multivariate

hypothesis testing (here the multivariate quantity is the 3D vector). They use non-

parametric permutation tests to conduct the hypothesis testing. A non-parametric

137



permutation test is a type of statistical significance test in which a reference dis-

tribution is obtained by calculating all possible values of the test statistic under

rearrangements on the observed data points. The advantage of such a technique is

that there is no need for a parametric reference distribution.

The null hypothesis for their test is that the mean of the location of a point in the

two groups is the same. The output of this test is a raw p-value at each point that

indicates the probability that the null hypothesis is true. A significance level of 5%

is chosen, meaning that any point with a p-value less than 0.05 is considered to have

a mean location that differs among the two groups in a statistically significant way.

The final step is to correct for multiple comparisons using a technique known as false

discovery rate (FDR) that controls for the maximum number of false positives. The

final output of the test is a corrected p-value that is pessimistic in order to control

for false positives. As a result, they find a significant shape difference between the

two populations in the right caudate head, but not in the left caudate head.

In this chapter, we use the framework developed by Styner et. al, but substitute

the spherical wavelet coefficients as shape descriptors instead of (x, y, z) coordinates

of points on the surface. When representing shape information, spherical wavelet

coefficients have a more intuitive interpretation than Fourier or spherical harmonic

coefficients due to the localized nature of spherical wavelet basis functions. Each

coefficient describes a portion of the surface and the size of that portion depends

on the scale of the coefficient. However coefficients are not as localized as points

in a PDM representation, potentially capturing shape characteristics that exist at

different spatial locations and different spatial extent, i.e a bending of a portion of

the shape. We use this shape representation for statistical shape analysis of two brain

structures, the caudate nucleus and hippocampus, and compare the results obtained

to shape analysis using a SPHARM-PDM representation.

Our motivation is two-fold. First, we would like to test whether the results found
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with spherical wavelet features correlate with the results found using vertex coordi-

nates as features. Second, we would like to see if the multiscale nature of the SWC

allow for a richer shape description and test whether running the shape analysis at

various levels of resolution provide additional information about the difference be-

tween groups of healthy patients and patients with SPD not previously found with

PDM analysis.

6.2 Methods

Our technique first constructs a SPHARM-PDM representation of surfaces (sec-

tion 6.2.1) and then represents these surfaces using an expansion in a spherical wavelet

series (section 6.2.2). We then conduct statistical tests using both the SPHARM-PDM

and SWC representation (Section 6.2.3).

6.2.1 SPHARM-PDM

The input of the proposed shape analysis is a set of binary segmentations of a single

brain structure. These segmentations are transformed into a SPHARM-PDM repre-

sentation using a procedure described in [60]. Here we sketch the major steps of the

algorithm. The binary voxel objects provided by expert slice-by-slice segmentations

are first preprocessed to fill any interior holes and to smooth boundary voxel noise.

The processed binary segmentations are converted to surface meshes, and a spherical

parametrization is computed for the surface meshes using an area-preserving, dis-

tortion minimizing spherical mapping. The SPHARM description is computed from

the mesh and its spherical parametrization. Using the first order ellipsoid from the

spherical harmonic coefficients, the spherical parametrizations are aligned to establish

correspondence across all surfaces. The SPHARM description is then sampled into a

triangulated surface (SPHARM- PDM) via icosahedron subdivision of the spherical

parametrization (4 subdivisions). These SPHARM-PDM surfaces are all spatially

aligned using rigid Procrustes alignment.
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6.2.2 Spherical Wavelet Shape Representation (SWC)

The spherical wavelet description is computed from the SPHARM-PDM surface. Each

surface contains N vertices and has a spherical parametrization. The mean shape is

substracted from each shape in the dataset, resulting in a deviation signal v for

each shape. Each shape is then expressed in the spherical wavelet basis function by

representing it as three signals vx, vy and vz on the discrete sphere, corresponding to

the x, y and z deviation of all vertices from the mean shape. We then expand each

signal into a series of spherical wavelet basis functions using the forward spherical

wavelet transform, as described in Chapter 4. For example:

vx(n) =
∑

k

λx
0,kϕ0,k(n) +

∑

0≤j

∑

m

γx
j,mψj,m(n). (107)

where ϕ0,k and ψj,m are basis functions defined over all vertices indexed by n ∈ N ,

j denotes the scale (spatial extent) and k,m the center of the basis function, and

λx
0,k, γ

x
j,m are the associated wavelet coefficients. As a result, each shape is represented

by a series of spherical wavelet coefficients (SWC). The top row of Figure 62 shows

the decreasing spatial support of a single basis function at scales j = 1, j = 2 and

j = 3. Note that the supports of the basis functions overlap across scales but also

slightly within a scale. To locate and visualize the influence of all basis functions at

a given scale, each point on the sphere is associated to the basis function with the

highest value at that point. These basis membership regions are shown in the middle

and bottom row of Figure 62.

6.2.3 Shape Analysis

6.2.3.1 Test Statistic

The difference between a multivariate feature in two groups is computed using a

modified Hotelling T 2 two sample metric that is less sensitive to group differences

than the standard T 2 metric. Given a group i with ni samples, we calculate the mean
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Figure 62: Visualization of spherical wavelet functions and associated membership
regions at three levels (columns). Top row : Values of single spherical Wavelet Basis
Function shown on the sphere at scales 1 through 3. Middle and Bottom row:
Membership regions of spherical wavelet basis functions shown on the sphere and on
the original surface, coloring is random.

µi and covariance Σi of a 3D feature. The modified T 2 for two groups is given by:

T 2 = (µ1 − µ2)
T (Σ1

1

n1
+ Σ2

1

n2
)−1(µ1 − µ2) (108)

A PDM feature is a point with 3D coordinates. A SWC feature is a basis function

φj,k with 3D coordinates corresponding to the spherical wavelet coefficients γx
j,k, γ

y
j,k

and γz
j,k.
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6.2.3.2 Non-parametric permutation tests

We want to test the two groups for differences in the means of the T 2 metric at each

feature. Permutation tests are a valid and tractable approach for such an application,

as they rely on minimal assumptions and can be applied even when the assumptions of

the parametric approach are untenable. Our null hypothesis is that the distribution

of the value of each feature is the same for every subject regardless of the group.

Given n1 members of the first group ak, k = 1, ..., n1 and n2 members of the second

group bk, k = 1, ..., n2, we can create M ≤ (
n1+n2

n2 ) permutation samples. A value of

M from 20, 000 and up should yield results that are negligibly different from using all

permutations for a typical experiments of 40 samples in each group [18]. To calculate

a P-value for a feature, the real group difference T 2
0 for that feature is compared to

the distribution of group differences T 2
j computed from random permutations of the

group labels for that feature. The quantile in the T 2
j histogram associated with T 2

0 is

called the raw P-value. Given a chosen significance value α, the hypothesis that the

feature value is the same in both groups is rejected if the P-value for that feature is

less than α.

6.2.3.3 Correction for Multiple Comparisons

Since the shape analysis involves testing from a few to many thousands of hypotheses

(one per feature), it is important to control for the multiple testing problem. We

use a False Discovery Rate (FDR) estimation, a procedure that controls the expected

proportion of false positives among those tests for which a local significance has been

detected [60]. FDR allows an expected proportion (usually 5%) of the FDR-corrected

significance values to be falsely positive.

6.2.4 Significance Map Visualization

For PDM features, we visualize both the raw and FDR corrected P-values as signifi-

cance color maps on the surface of the mean shape of the structure under study. The
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color at each point is the P-value. For SWC features, we would also like to build such

a significance map. If a feature (basis function) is found significant, we color all points

that are in the support of that basis function at that scale with the corresponding

P-value. If more than one basis function is found significant and the support of the

basis functions overlap, we assign the overlapping region to the function with higher

value, and color the region with the P-value of that basis function.

6.3 Results

We applied our shape analysis framework using both the PDM features and SWC

features to two studies1. The first is a schizo-typal personality disorder (SPD) study

on the caudate brain structure in female adult patients [43]. 32 SPD subjects and

29 healthy control subjects were analyzed. The second is a schizophrenia study on

the hippocampus brain structure in male adult schizophrenia [59]. 56 schizophrenia

subjects (age: 30.1y (11.9) ) and 26 healthy control (age: 31.2y (10.7)) subjects were

analyzed. The subjects in both studies have same handedness and the structures were

corrected for difference in head size.

For both structures, we analyzed the right and left hemisphere separately. We

present results on left structures for brevity. For SWC features, the shape analysis

is conducted at various cumulative scales: all features associated to basis functions

up to a given scale are tested for difference among the groups. For all structures

we present results up to scale 3 since no new features were discovered at subsequent

scales.

6.3.1 Left Caudate Nucleus

The result for PDM is shown in Figure 63. The raw significance map displays an

overly optimistic estimate of significance in the superior body and anterior head

1GE 1.5 Tesla MR system using a 3D IR Prepped SPGR acquisition protocol with a 256x256x124
image matrix at 0.9375x0.9375x1.5mm resolution.
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region. The FDR-corrected map is a more pessimistic estimate and does not show

any significance. The result for SWC are shown in Figures 64(a)-64(c). For the raw

map (top rows), scale 1 displays significance at the anterior inferior head region. At

cumulative scales 1-2 and 1-3, the raw map displays additional significance in the

anterior superior head region, as well as superior body and posterior tail. Overall,

the SWC raw map at scales 1-3 displays similar significant areas than the raw PDM

map. However, unlike the PDM FDR map, the SWC FDR map displays significant

area in the anterior superior region (raw P-value 5e-5, FDR P-value 0.0085).

6.3.2 Right Caudate Nucleus

The result for PDM is shown in Figure 65. The raw significance map displays regions

of significance in the superior body and anterior region that are larger than for the

left caudate. The FDR-corrected map preserves most of the areas of significance,

except in areas of the tail. The result for SWC are shown in Figures 66(a)-66(c).

The raw maps at all scales display similar areas of significance than for the raw PDM

results. At all scales, the FDR correction preserves areas of significance in the anterior

head. The FDR map at cumulative scales 1-2 is very similar to the PDM FDR map,

indicating that most of the differences happen at coarse scales 1 and 2. At scale 3,

the FDR correction is more severe due to the increasing number of tests, and only

preserves coefficients with very high significance (very small p-values). These regions

are again located in the same areas of the anterior head than the PDM FDR maps.

6.3.3 Left Hippocampus

The result for PDM is shown in Figure 67. The raw significance map displays signifi-

cance both in the superior-anterior and inferior-posterior regions. The FDR-corrected

map is a more pessimistic estimate and does not show any significance. The result

for SWC are shown in Figures 68(a)-68(c). At scale 1, the raw significance map dis-

plays significance in the superior and inferior region, indicating that these differences
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occur already at a coarse scale. At scales 1-2 and 1-3, additional smaller regions of

significance appear in the superior-anterior and inferior-posterior, similar to the PDM

regions, indicating those group difference are at a fine scale (small spatial support).

At scale 1, the FDR map preserves the significance in most regions, and at scale 1-3 a

small region in the medial side is preserved (raw P-value 0.0001, FDR P-value 0.016).

The FDR correction is more severe at higher scales due to the increasing number of

tests, and only preserves the regions with high significance.

6.3.4 Right Hippocampus

The result for PDM is shown in Figure 69. The raw significance map displays many

areas of significance in the superior and inferior regions of the lateral side, and the

middle region of the medial side. Again, the results for the SWC shown in Fig-

ures 70(a)-70(c) agree with the PDM results and find similar areas of significance.

6.4 Conclusion

We have presented a novel method for statistical analysis of morphological differences

of brain structures based on a spherical wavelet (SWC) representation and compared

it to a similar analysis with a PDM representation. Overall, the SPHARM-PDM

shape analysis shows more pronounced right sided findings compared with left sided

findings for both structures. The SWC analysis results are similar to the SPHARM-

PDM for the right structures, and it unmasks differences not found by the SPHARM-

PDM analysis for the left structures, even with FDR-correction. We notice that for

the left structures the coefficients that were found to be different among groups with

FDR-correction are located at resolution 1 and 2, which are coarse scales. This

might explain why purely local features, such as PDM, might not find differences

that SWC features find since the scale of analysis of PDM is too fine. Therefore

one key property of the spherical wavelet representation is the ability to conduct

statistical tests at various scales, therefore providing features that are targeted to
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Figure 63: Left Caudate Shape Analysis Results - Significance maps for the PDM
features. This figure is best seen in color.

particular types of multiscale group differences. Further studies providing correction

for age and medication will be needed to draw clinical conclusions.

146



(a) SWC SCALE 1

(b) SWC SCALES 1-2

(c) SWC SCALES 1-3

Figure 64: Left Caudate Shape Analysis Results - Significance maps for the SWC
features. This figure is best seen in color.
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Figure 65: Right Caudate Shape Analysis Results - Significance maps for the PDM
features. This figure is best seen in color.
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(a) SWC SCALE 1

(b) SWC SCALES 1-2

(c) SWC SCALES 1-3

Figure 66: Right Caudate Shape Analysis Results - Significance maps for the SWC
features. This figure is best seen in color.
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Figure 67: Left Hippocampus Shape Analysis Results - Significance maps for the
PDM features. This figure is best seen in color.

150



(a) SWC SCALE 1

(b) SWC SCALES 1-2

(c) SWC SCALES 1-3

Figure 68: Left Hippocampus Shape Analysis Results - Significance maps for the
SWC features. This figure is best seen in color.
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Figure 69: Right Hippocampus Shape Analysis Results - Significance maps for the
PDM features. This figure is best seen in color.
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(a) SWC SCALE 1

(b) SWC SCALES 1-2

(c) SWC SCALES 1-3

Figure 70: Right Hippocampus Shape Analysis Results - Significance maps for the
SWC features. This figure is best seen in color.
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CHAPTER VII

CONCLUSION

In this thesis, we proposed and evaluated two novel scale-based decomposable repre-

sentations of shape for the segmentation of blood vessels and the segmentation and

shape analysis of shapes with spherical topology, such as the prostate gland or brain

structures. We proposed two representations that are adapted to the class of anatom-

ical structures under study. For blood vessel characterization, we presented a novel

scale-space shape filter that measures the deviation from a tubular shape in a local

neighborhood of points, given a particular scale of analysis. For characterization of

structures with spherical topology, we proposed a multi-scale parametric shape repre-

sentation using spherical wavelets that can be optimized to compactly encode shape

variations in a population at the needed scale and spatial locations. We demonstrated

that learning a prior over those representations allow for a richer description and a

more fine-grained control in segmentation and shape analysis tasks, when compared to

previous techniques. In particular, we showed that the decomposition of these shape

representations can be localized both in space and in scale, enabling the construction

of more descriptive, non-global, non-uniform shape priors. For each representation,

we derived a segmentation algorithm using the parameters of the shape representa-

tion to easily include and benefit from the prior in the optimization framework. We

also demonstrated that an existing shape analysis algorithm can benefit from using

our multiscale shape representation.

There remains challenges to the techniques presented in this thesis, as well as

future extensions that could provide exciting research directions. We discuss those in

the remainder of this Conclusion.
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In Chapter 3, we presented a framework for vessel segmentation using local filters

as soft shape priors. Currently the local filters only apply a tubular shape constraint

to the evolving contour. A future extension to this work would be to extend the

framework to other types shape constraints. One opportunity would be to use local

filters to constrain a surface to remain a thin sheet, for example for cortical surface

segmentation. A second limitation with the current algorithm is that the scale of

the local filters (radius) remains constant throughout the curve evolution. A useful

extension to address this limitation would be to add the radius as an extra parameter

in the curve evolution and find the optimal radius at each point of the curve. Con-

straints, such as monotonic radii values along a vessel, should be added in order to

model the anatomy of vessels. Another limitation with the current algorithm is that

each local filter is modeled as its own independent shape prior term, and the overall

shape probability is the product of the probability of each local filter. To address

this limitation, one interesting area of research would be to depart from this strictly

independent view and to learn the joint probability of nearby filters, a somewhat “lo-

calized” data-driven prior. For example, we could learn the joint probability function

of neighboring filter responses to learn characteristic parts of the vessel shape such

as branching areas, flatter or more curved vessel areas. This shape prior probability

could either in segmentation task (i.e to recognize that a part of the vessel surface is

a branch as opposed to a leak and not penalize the branch) or even for shape analysis

to detect characteristic parts of the vessel.

In Chapter 4 and 5, we presented a framework for segmentation using a multiscale

shape representation. Currently, the technique presented is limited to shapes with

spherical topology. In the future, one could use wavelets defined on surfaces of genus

higher than zero into our framework. Another extension of the framework would be

to apply the multiscale representation to groups of shapes with spherical topology.

For example, it would be especially interesting to apply our band discovery algorithm
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to left and right shapes of the same anatomical structure (i.e. left and right caudate

nucleus) to test whether bands detect symmetrical variations. One critical step in our

framework is the remeshing and registration of the training shapes. If shapes are not

correctly aligned, then our representation is sensitive to the misalignment and will

not represent the shape population accurately. In the future, we should investigate

the sensitivity of our algorithms to misalignment. We note however that this “corre-

spondence” problem exist for most shape representation techniques, whether implicit

or parametric. Another limitation of our current framework is that the wavelet co-

efficient probability estimation assumes a product of multivariate normal probability

functions. One could depart from this assumption and attempt to learn a more accu-

rate probability function by using more complex models using for example graphical

models, kernel PCA or other non linear PCA estimation techniques.

In Chapter 6, we used the spherical wavelet representation for shape analysis. One

extension of the current hypothesis test would be to test for differences in bands of

coefficients found during our prior estimation, to test whether bands (that represent

areas of covariability in a population on a shape) capture morphological differences

among groups of patients. In the future, the multiscale representation could also be

used in a classification task for potential diagnosis of a pathology.

In the last two decades, researchers in the medical imaging community have strived

to develop algorithms and visualization techniques that leverage the fact that medical

scans provide patient specific data. In this work, we have also emphasized the need

to develop representations and algorithms based on those representations that are as

structure specific as possible in order to better segment, analyse and visualize patient-

specific data. We hope that this contribution will further help physicians diagnose,

treat and track the progress of diseases.
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APPENDIX A

APPENDIX

A.1 Region-Based Flow derivation

In this section, we show the derivation for the region-based flow. The basic underlying

mathematical idea is to write down an energy that minimizes a particular function f

inside a region R, enclosed inside the curve
−→C . The goal is then to find a gradient

flow of
−→C that minimizes the following energy:

E(
−→C ) =

∫

R

f(x) dx =

∮

−→
C

<
−→
F ,

−→N > ds, (109)

where
−→N denotes the unit normal of

−→C , ds is the Euclidean arclength element, and

−→
F (x) is a vector field chosen so that ∇ ·−→F (x) = f(x). For example, given x = (x, y)

−→
F (x, y) =




F x(x, y)

F y(x, y)


 ,

where:

F x(x, y) =
1

2

∫ x

0

f(λ, y) dλ,

F y(x, y) =
1

2

∫ y

0

f(x, λ) dλ,

so that:

∇ · −→F (x, y) =
∂F x(x, y)

∂x
+
∂F y(x, y)

∂y
=

1

2
f(x, y) +

1

2
f(x, y) = f(x, y). (110)

The equivalence between the region integral based on f and the contour integral based

on
−→
F in Equation 109 follows from the divergence theorem.

To derive the gradient flow, we start by considering a fixed parameterization

p ∈ [0, 1] of the curve
−→C which does not vary as the curve evolves in time t so that
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(p, t) are indendent variables. By a change of variable we may write E as follows:

E(
−→C ) =

∫ 1

0

<
−→
F , J

−→C p > dp, (111)

where J =




0 1

−1 0


 denotes a −90o rotation matrix. Differentiating with respect

to t yields:

dE

dt
=

∫ 1

0

〈
d
−→
F

dx

−→C t, J
−→C p

〉
+
〈−→
F , J

−→C pt

〉
dp, (112)

where d
−→
F

dx
denotes the Jacobian matrix of

−→
F with respect to x, that is if x = (x, y)

and

d
−→
F

dx
=




∂F x

∂dx
∂F x

∂dy

∂F y

∂dx
∂F y

∂dy


 . (113)

If we integrate by parts the second term of Equation 112, we obtain

∫ 1

0

〈−→
F , J

−→C pt

〉
dp =

〈−→
F , J

−→C t

〉
|01 −

∫ 1

0

〈
d
−→
F

dx

−→C p, J
−→C t

〉
dp, (114)

∫ 1

0

〈−→
F , J

−→C pt

〉
dp = −

∫ 1

0

〈
d
−→
F

dx

−→C p, J
−→C t

〉
dp, (115)

where we are using the fact that for a parametrized closed curve,
−→C (0) =

−→C (1),

therefore
−→C t(0) =

−→C t(1). Now Equation 112 becomes:

dE

dt
=

∫ 1

0

〈
d
−→
F

dx

−→C t, J
−→C p

〉
−
〈

d
−→
F

dx

−→C p, J
−→C t

〉
dp. (116)

Reaaranging terms leads to:

dE

dt
=

∫ 1

0

〈
−→C t,

d
−→
F

dx

T

J
−→C p

〉
−
〈
JT d

−→
F

dx

−→C p,
−→C t

〉
dp, (117)

dE

dt
=

∫ 1

0

〈
−→C t, (

d
−→
F

dx

T

J − JT d
−→
F

dx
)
−→C p

〉
dp. (118)

Since the expression

d
−→
F

dx

T

J − JT d
−→
F

dx
=




0∂F x

∂dx
+ ∂F y

∂dy

−(∂F x

∂dx
+ ∂F y

∂dy
)0


 =




0∇ · −→F

−∇ · −→F 0


 = fJ,
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Equation 118 becomes:

dE

dt
=

∫ 1

0

〈−→C t, fJ
−→C p

〉
dp =

∮

−→
C

〈−→C t.f
−→N
〉

ds. (119)

We see then that the form of the gradient flow for
−→C (the negative of the gradient so

that the region integral decreases most rapidly) is revealed to be:

∂
−→C
∂t

= −f−→N . (120)

Thus the flow depends only upon f, not upon our particular choice for F.

A.2 Soft Shape Prior Region-Based Flow derivation

In this section, we consider a more general class of region-based energy functionals

where the integrand f depends upon another family of region integrals over R. From

Chapter 3, Equation 52, we have the following energy:

E(
−→C ) = −

∫

R

φ dx +

∫

−→
C

ds+ α

∫

R

ǫp1(x) dx. (121)

We focus on the third term, and therefore want to solve for the minimum of the

following energy:

E(
−→C ) =

∫

R

f(ǫ1(x, r, t)) dx, (122)

where f(x) = xp and

ǫ1(x, r, t) =

∫

R

X (x, r,y)dy where X (x, r,y) =





1 if y ∈ B(x, r)

0 if y /∈ B(x, r)
. (123)

Note that we make ǫp1(x, t) depend on the artificial time parameter t since R (the

interior of
−→C ) changes as the curve evolves over time.

We start out as in the previous section to rewrite the integral as a contour integral

E(
−→C ) =

∫

R

f(ǫ1(x, r, t)) dx =

∮

−→
C

<
−→
F (x, t),

−→N > ds, (124)
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where
−→N denotes the unit normal of

−→C , ds is the Euclidean arclength element, and

−→
F (x, t) is a vector field chosen so that ∇x ·

−→
F (x) = f(ǫ1(x, r, t)) (note that ∇x means

the divergence operator with respect to x only).

As in the previous section A.1, to derive the gradient flow, we start by considering

a fixed parameterization p ∈ [0, 1] of the curve
−→C which does not vary as the curve

evolves in time t so that (p, t) are indendent variables. By a change of variable we

may write E as follows:

E(
−→C ) =

∫ 1

0

<
−→
F (x, t), J

−→C p > dp, (125)

where J =




0 1

−1 0


 denotes a −90o rotation matrix. Differentiating with respect

to t yields

dE

dt
=

∫ 1

0

〈
d
−→
F

dx

−→C t, J
−→C p

〉
+
〈−→
F , J

−→C pt

〉
+
〈−→
F t, J

−→C p

〉
dp, (126)

where d
−→
F

dx
denotes the Jacobian matrix of

−→
F with respect to x. As seen in the previous

section A.1, the first two terms of Equation 112 simplify to [
∮
−→
C

〈−→C t.f(ǫ1)
−→N
〉

ds] so

Equation 126 becomes (with a change of variable for the third term):

dE

dt
=

∮

−→
C

〈−→C t.f(ǫ1)
−→N
〉

+
〈−→
F t,

−→N
〉

ds. (127)

Using Green’s theorem,

∮

−→
C

〈−→
F t,

−→N
〉

ds =

∫

R

∇x·
−→
F t(x) dx =

∫

R

∂f(ǫ1(x, t))

∂t
dx =

∫

R

f ′(ǫ1(x, t))ǫ1t(x, t) dx.

So,

dE

dt
=

∮

−→
C

〈−→C t.f(ǫ1)
−→N
〉

ds+

∫

R

f ′(ǫ1(x, t))ǫ1t(x, t) dx. (128)

The second term does not immediately reveal the form of the gradient for
−→C (recall

that we need to have an inner product with <
−→C t, . >). We further manipulate

this term by noticing that ǫ1 itself has the form of an energy (region integral whose
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integrand does not depend on
−→C ) and so taking its derivative with respect to t is

equivalent to (using the technique of Section A.1):

ǫ1t =

∮

−→
C

〈−→C t,X (x, r,
−→C )

−→N
〉

ds. (129)

Plugging this in to Equation 128, we obtain:

dE

dt
=

∮

−→
C

〈−→C t, f(ǫ1)
−→N
〉

ds+

∫

R

f ′(ǫ1(x, t))

[∮

−→
C

〈−→C t,X (x, r,
−→C )

−→N
〉

ds

]
dx,

(130)

dE

dt
=

∮

−→
C

〈−→C t, f(ǫ1)
−→N
〉

ds +

∫

R

∮

−→
C

〈−→C t, f
′(ǫ1(x, t))X (x, r,

−→C )
−→N
〉

ds dx, (131)

dE

dt
=

∮

−→
C

〈−→C t,

[
f(ǫ1) +

∫

R

f ′(ǫ1(x, t))X (x, r,
−→C ) dx

]−→N
〉

ds. (132)

Therefore the final gradient flow is:

∂
−→C
∂t

= −
[
f(ǫ1(

−→C )) +

∫

R

f ′(ǫ1(x, t))X (x, r,
−→C ) dx

]−→N , (133)

∂
−→C
∂t

= ǫp1(
−→C , r) + p

∫

R

ǫp−1
1 (

−→C )X (x, r,
−→C ) dx. (134)
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