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SUMMARY

Last-mile logistics is an essential part of the economy and it makes possible the trans-

portation of goods from producers to end-consumers. As a result of the explosive growth

of e-commerce in the past decade, demand for delivery of packages directly to consumers

is soaring and is expected to grow by 78% globally by 2030. One of the primary objectives

of package logistics is to transport shipments as quickly and cost-effectively as possible. In

this thesis, we consider a number of important service planning problems for the package

trucking carriers that are providing essential service to this e-commerce revolution.

Logistics and service network design models are the important tools for developing

novel enabling technology and enhancing current practices in parcel and freight logistics.

Service network design models are used to create consolidation plans for carriers, pro-

viding the planner with the choice of transfer paths for shipments through a network of

consolidation terminals and the services and resources necessary to execute these paths.

In the most complex package systems, packages may be consolidated and transferred be-

tween vehicles during the last-mile phase of transportation, requiring careful coordination

of vehicle schedules. For packages moving between regions, linehaul consolidation plans

specify shipment flow paths between origin and destination terminals. Feasible flow plans

meet service time requirements, and it can be advantageous if these plans are simple to

operate in practice; one example of a simplifying feature for a plan is when flow paths

form a directed in-tree into each destination terminal such that packages headed to a com-

mon destination are transferred to the same next terminal regardless of their origins. The

selection of hub terminals to use for package transfer between vehicles in the linehaul net-

work is another important decision in package consolidation network design. In this thesis,

we address decision problems in all of the areas discussed above. We develop large-scale

package express service network design methods using integer programming optimization

models specified on flat network models that capture important timing constraints to ensure
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that package flows meet service constraints. The first part of the thesis focuses on a detailed

intracity scheduling service network design problem for megacities, whereas, the last two

parts focus on linehaul consolidation planning.

In Chapter 2, we present a service network design problem in the context of intra-city

package courier service in megacities. The problem consists of designing a cost-effective

consolidation network to transfer packages from their origins to their destinations within

cities while meeting committed service requirements. In this study, we focus on shuttle ac-

tivities and develop optimization technology for the design of shuttle services using novel

rate-based models to determine package flow paths as well as vehicle routes. To ensure

operational simplicity, we build repeatable vehicle operating cycles, which are executed

throughout the day, that provide adequate capacity for transfers along flow paths and meet

package timing requirements. A computational study using data from a large Chinese pack-

age company demonstrates that the technology produces a cost-effective service network

design for shuttle schedules with excellent on-time performance.

In Chapter 3, we present a strategic hub selection problem within the context of service

network design for a package courier system operating fast time-definite services between

urban areas. The selection of intermediate hubs for package transfer adds an additional

layer of complexity to traditional service network flow planning problems. The aim is

to select the hub terminals that enable cost-effective consolidation designs by serving as

linehaul transfer locations along package flow paths, while leaving the remaining facili-

ties to serve only as gateways to last-mile operations. We develop a cost-effective greedy

heuristic approach that solves tractable integer programming models to add a single inter-

mediate hub to the existing set on each iteration. We develop three such IP-based greedy

heuristic variants: (1) Greedy-Hub, (2) Greedy-Hub-Full which solves larger IPs on each

iteration, and (3) GRASP-Hub that randomizes the selection of intermediate hubs. Each of

these approaches only considers flow paths with at most one intermediate hub transfer. A

computational study shows that the greedy approach selects geographically-distributed and

xv



cost-effective hubs for package transfer, and moreover, the heuristic outperforms the full

optimization model by a 20% gap difference for the relevant test instances.

Finally, in Chapter 4, we develop a new approach for solving the flow planning problem

of service network design for large-scale networks with timing constraints; in this chapter,

the selection of intermediate transfer hubs is fixed in advance. We seek plans that can

be executed in practice, and thus focus on a new generalization of the concept of an in-

tree flow plan. We introduce a so-called generalized in-tree, referred to as GIT, which has

useful operational benefits and specifies a common next terminal in the flow path for all

commodities arriving to a transfer terminal with the same destination and similar remain-

ing time to make service. We develop three approaches for finding flow plans conforming

to a GIT structure: (1) a GIT-based approach, (2) a path-based approach and (3) an opti-

mized GIT-based formulation. Both the GIT-based approach and the path-based approach

use a novel dynamic variable generation scheme, similar to column generation for linear

programming, for introducing new candidate GITs or paths into a master integer program-

ming formulation. We demonstrate, via a computational study, the quality of the solutions

found by these various approaches. First, we demonstrate that building flow plans with

paths that may contain more than one intermediate stop can improve the flow plan costs for

the same instances as in Chapter 3 by 3% when the same intermediate hub terminals are

selected. Then, we show ,using a variety of test instances, that imposing a discretized GIT

structure that groups remaining times into fixed-width buckets of 2 hours or 4 hours leads

to solutions that are only 2% to 4% more costly than those that do not require GIT structure

but significantly simpler to operationalize.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Middle and last-mile logistics have become an essential part of the economy, and improve-

ments to these systems have been a key enabler of modern supply systems that move goods

from producers to end-consumers. The last leg of the logistics chain, so-called last-mile

logistics (also known as city logistics), refers to the very last step of the logistic deliv-

ery process when a parcel is moved from a transportation hub or fulfillment center to its

final destination. Last-mile logistics is used to move goods to retail stores for purchase

or directly to consumers at their homes or work locations. Last-mile logistics is perhaps

the most important and difficult-to-plan component of the supply chain because it is often

the most expensive phase of freight transportation (accounting often for more than 50% of

the total shipping cost), but also because customer service constraints place strict timing

constraints on this phase.

Due to the explosive growth of e-commerce in the past decade, demand for last-mile

delivery is soaring and is expected to grow by 78% globally by 2030 ([1]); between 2014 to

2019, e-commerce sales ratios nearly tripled globally and recent growth trends have further

exploded in 2020 during the COVID-19 global pandemic. To enable this rapid growth in

e-commerce, more capacity is required for delivering packages directly to consumers while

meeting requirements to do so both quickly and cost-effectively.

In first-mile and middle-mile transportation, packages are often shipped from large-

volume origins like fulfillment centers and move between hub terminals in full or nearly-

full trailerloads. This economical transportation of packages continues until the last-mile,

when packages must be distributed to a large number of individual destinations that each

receive only a small shipment. Improving the operational efficiency of last-mile logistics

can allow carriers to maintain (or outsource) a smaller fleet of delivery vehicles and drivers
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to ship the same number of products, and building last-mile systems that utilize consolida-

tion to increase efficiency closer to the delivery points while still meeting customer service

expectation is a critical goal.

In general terms, there are two main types of freight shipments: parcel delivery and

freight delivery. Whereas the former is concerned with delivering parcels and small pack-

ages, the latter involves heavier and large items, usually greater than 30kg, such as fur-

niture and appliances, large boxes, and palletized deliveries to stores. Furthermore, parcel

and freight transportation services can be segmented in terms of time allowed from order to

delivery. For example, the parcel segment can be divided into deferred, time-definite, same-

day and instant delivery while freight shipments can be divided into standard, expedited, or

time-definite.

In this thesis, we will consider time-definite delivery of parcels and packages. In terms

of global numbers, more than 100 billion parcels were shipped around the globe in 2019

(according to the Pitney Bowes Parcel Shipping Index, [2]). Due to increased uncertainty

stimulated by the global pandemic, the report forecasts that volumes could range from as

low as 200 billion to as high as 316 billion parcels in six years. China remains the largest

international market for package transportation with 63.5 billion parcels shipped in 2019,

followed by the US with 14.7 billion parcels shipped in 2019. These enormous demands

for package transportation and the high rates of growth create major challenges for large

carriers such as DHL Global, China Post, SFExpress and TNT in China, and USPS, UPS

and FedEx in the US.

Logistics and service network design models are frequently used tools for developing

new enabling technology and improving current practices in parcel and freight logistics.

The general goal of all service network design models is to find efficient and effective ways

of transporting goods while minimizing either the resources utilized or transportation costs

along with imposing relevant tactical and operational restrictions.

In the operations research literature, the standard service network design problem ([3],
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[4]) refers to a problem similar to the network design problem of integer programming. The

standard service network design problem specifies demands as required freight volumes (or

shipments) for a set of origin-destination pairs, where each origin and destination is a node

in a network. Arcs represent transportation services connecting these nodes and potentially

other hub nodes that enable the transfer of freight from one service to another. Service

network design then is to select (or install capacity on) a set of services such that freight

demands can be served, where each transportation service has costs when used. Depending

on the type of service network design formulated, these models will specify which services

to operate and with what capacity, how to schedule the resources providing these services,

and then how to assign freight shipments to service paths through the designed network.

An extension to standard service network design is to consider the roles of terminals

as decisions. Standard problems specify as inputs which terminals may be used as transfer

hubs and which others are only freight origins and/or destinations, but an important exten-

sion is to allow the optimization model to choose which terminals can be used as transfer

hubs. Not all terminals may be suitable to perform cross-docking or package sorting ac-

tivities, for example if buildings are too small and cannot be expanded with appropriate

numbers of docks or sorting areas and equipment. Carriers may only wish to configure a

small number of buildings to serve as transfer hubs, so then the question arises where to

locate such buildings to maximize the cost-effectivenss of consolidation. Some literature

addresses hub location and hub role, but these works do not embed these decisions in de-

tailed service network design models. The review in [4] reveals that minimal attention has

been given to the hub network design problem.

General flow planning problems in service network design are NP -hard optimization

problems and are often formulated as mixed integer programs. The simplest arc cost mod-

els are either fixed-charge or fixed-plus-linear for positive arc flows, and more complex

models where multiple vehicles with different capacities can be installed on arcs can lead

to problems with complicated discontinuous piecewise-linear cost functions in arc flow.
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Such problems become very difficult to solve as the number of commodities and arcs in-

creases, and computational challenges are exacerbated when operational constraints like

in-tree plans are enforced. To ensure that commodities are transferred from origin to desti-

nation while meeting customer service constraints, path-based formulations are used which

enumerate service-feasible paths in advance. However, such approaches may only be com-

putationally practical when the numbers of commodities and arcs are small and the number

of arcs allowed in any flow path is limited to control the number of paths enumerated.

On the other hand, allowing flow paths with more transfers can reduce costs significantly

when such paths remain time-feasible. Solution approaches that generate paths as needed,

such as branch-and-price and heuristic column generation methods, may help improve the

search for high-quality solutions to problems of larger scale. Relevant and related works

using these techniques are described in [5], [6], [7] and [8].

In this thesis, we build a number of approaches to address the challenges discussed

above. We develop computational approaches for solving large-scale package express ser-

vice network design, and in each approach we rely on the use of flat network models that

capture relevant timing constraints without resorting to time-expanded networks that may

explode instance sizes. The first part focuses on a detailed intracity consolidation planning

and scheduling service network design problem for urban areas, whereas the second and

third parts focus on linehaul consolidation planning. In Chapter 2, we develop an optimiza-

tion technology for the design of last-mile shuttle services using novel rate-based models

to determine package consolidation paths as well as vehicle routes. In Chapter 3, we pro-

pose a tactical hub selection approach which aims to select the hubs (either gateway hubs

or local hubs) that are the most cost-effective to serve as freight transfer hubs. Finally, in

Chapter 4, we build operationally-feasible consolidation flow plans given a set of selected

hubs in which solutions conform to a generalized in-tree structure that enhances operational

realism. Next, we provide some background information and outline our contributions to

the topics covered in the following chapters.
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1.1 Operations Design for High-velocity Intra-city Package Service

Driven by the growth in e-commerce, demand for high-velocity services is growing. High-

velocity services include standard next-day services where packages collected today are

delivered tomorrow and also same-day service where pickup and delivery occur on the

same day. In this work, we collaborate closely with one of the largest package couriers in

China; their business model includes a plan to grow high-velocity services within Chinese

megacities with a new operating model.

A consolidation transportation system typically employs a complex network of transfer

hubs, where vehicles transport packages between hubs, and packages are unloaded, sorted,

and loaded. Routing packages through intermediate hubs is key to achieve the cost sav-

ings of freight consolidation, but requires additional time and package handling. Service

network design for such systems includes flow and load planning, and determining vehicle

route to execute these plans. When timing constraints are critical, [4] notes that the stan-

dard optimization modeling approach is to build deterministic time space networks like

those originally presented in [9]. In practice, however, these time-expanded networks can

be gigantic in size leading to intractable optimization problems. To have hope in solving

these problems, assumptions are often made to reduce the size of these networks or even to

avoid time space representations (see, for example, the composite formulations in [10]).

In Chapter 2, we present a service network design problem in the context of intra-city

courier service in megacities. The considered setting is inspired by the activities of one

of the largest courier package companies in China. The problem consists of designing a

cost-effective service network to move packages from their origins to their destinations,

taking into account committed service levels. The operational network includes two layers;

the first layer consists of the network of riders, transporting packages from (to) customer

locations to (from) a series of hubs, while the second layer consists of a fleet of shuttles

responsible for the inter-hub transfers. In this study, we focus on shuttle activities and
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develop optimization technology for the design of shuttle services using novel rate-based

models to determine package as well as vehicle routes. To ensure operational simplicity,

we build repeatable vehicle routes taking the form of cycles that are executed throughout

the day, considering capacity and timing requirements. A computational study using data

from a large Chinese package company shows that our technology produces a cost-effective

service network design for shuttle schedules with excellent on-time performance.

1.2 Service Network Design with Hub Selection

Demand for time-definite package services is growing largely due to growth in e-commerce.

Such services include same-day, next-day and two-day services, where packages are col-

lected, routed through a consolidation network of terminals, and then delivered to cus-

tomers with high velocity. Consolidation terminals include satellites or end-of-line facil-

ities, and hub facilities. Satellites serve only as the interface between the local pickup-

and-delivery (last-mile) subsystem and the linehaul (middle-mile) subsystem, while hub

terminals also provide intermediate consolidation and transfer locations within the linehaul

subsystem. In this work, we collaborate closely with one of the largest package couri-

ers in China; their business model includes a plan to grow high-velocity services between

Chinese cities with a new operating model.

In Chapter 3, we present a strategic hub selection problem within the context of service

network design for a package courier system operating fast time-definite services between

urban areas. In this work, we add another layer of complexity to the service network design

problem: the selection of intermediate hubs for freight transfer. In these problems, the

aim is to identify which terminals can serve as the most cost-effective intermediate hubs

to build time-feasible cross-docking flow paths for all commodities. We develop a cost-

effective greedy heuristic approach that adds one intermediate transfer hub to a plan during

each iteration. We develop three IP-based heuristic greedy variants: (1) a Greedy-Hub, (2)

a Greedy-Hub-Full which solves larger IPs on each iteration, and (3) a GRASP-Hub that
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randomizes the selection of intermediate hubs. Computational experiments show that the

greedy approach selects geographically distributed cost-effective hubs for freight transfer,

and in terms of gap performance, the heuristic outperforms the full optimization model by

a 20% gap difference for the interesting cases.

1.3 Path Generation Based Heuristic for Service Network Design

In the linehaul planning problem setting of Chapter 3, after hubs are identified for the ser-

vice network, it is necessary to create an operationally-feasible consolidation flow plan

that leads to the lowest operational cost. Such flow plans should not constrain the num-

ber of transfer stops for each commodity as long as the flow paths remain time feasible.

Furthermore, consolidation plans should be implementable in practice.

In order to enhance operational realism while building flow plans with the lowest pos-

sible cost, we develop the notion of a consolidation plan that conforms to a generalized

in-tree structure for each destination. A generalized in-tree plan is one where commodi-

ties that are dispatched outbound from a terminal travel next to the same terminal if they

share the same final destination and a similar remaining time to meet service. We develop

flow planning models that build plans that conform to generalized in-trees, and then we

seek low-cost solutions to these models by creating approaches that create new paths for

commodities dynamically during the solution approach. The path generation approach is

inspired by the concepts of column generation in which we employ dual values from a

useful linear program to compute the reduced costs of arcs. These arc reduced costs are

then used in a column pricing scheme which seeks to identify new possible flow paths that

should be used in the mixed-integer programming model.

In Chapter 4, we describe several dynamic path generation heuristic approaches that

seek to find a set of flow paths conforming to a generalized in-tree (GIT) structure. Each

approach relies on solving an approximate variable pricing problem using constrained min-

imum cost paths with a set of arc reduced costs that are estimated from a related linear
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program. Generated paths are then used to solve a mixed integer programming model

for flow planning, and the process is iterated. We develop three approaches: (1) a relax-

ation of the problem using a path-based formulation, (2) a GIT-based approach, and (3)

an optimized GIT-based formulation. We demonstrate, via a computational study, that the

approach can yield high-quality flow plans with 3% lower operational costs than those that

can be achieved when a smaller number of paths with fewer transfer options are enumer-

ated in advance, as in Chapter 3. Furthermore, the path-based relaxation produces solutions

that conform to a 4-hour discretized GIT structure for all tested small instances, and that

closely approximate a GIT structure at the 2-hour and 4-hour discretization for medium and

large instances. We also show that imposing more restrictive discretized GIT structures on

a problem creates a cost penalty typically between 2% and 4%. All three approaches pro-

duce results of similar quality when solving small size instances. However, the path-based

and the optimized GIT-based approaches strongly outperform the GIT-based approach by

more than 10% of gap performance for the large size instances.
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CHAPTER 2

OPERATIONS DESIGN FOR HIGH-VELOCITY INTRA-CITY PACKAGE

SERVICE

2.1 Introduction

We consider an operations network design problem for a package courier operating high-

velocity services within large urban areas. In this setting, high-velocity services include

standard next-day services where packages collected today are delivered tomorrow and

also same-day service where pickup and delivery occur on the same day. Demand for high-

velocity services is growing. In this work, we collaborate closely with one of the largest

package couriers in China; their business model includes a plan to grow high-velocity ser-

vices within Chinese megacities with a new operating model. We build novel optimization

technology to configure vehicle operations using new and novel rate-based routing and

network design models that use parcel demand rates per time as inputs, and that determine

both route capacity and service-level feasibility with vehicle flow rates per time between

locations induced by repeated execution of vehicle routes during an operating day.

Consider a system with a number of small hub terminals throughout an urban area.

These locations, denoted local hubs (LH), are used for consolidation of packages into and

out of a set of small geographic service regions into which the urban area has been par-

titioned. Due to the congested urban environment, the couriers who pick up and deliver

goods directly from and to customers do not operate large vehicles; instead, they walk or

use small delivery bikes with limited package capacity. Many couriers operate within each

local hub service region, but they do not visit the local hub and instead spend the day work-

ing within their assigned unit zone. Packages are transferred to and from couriers within

their unit zones via a fleet of small-capacity transfer vehicles known as riders. Riders trans-
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fer packages with a courier at a designated access hub (AH) location either synchronously

via timed meet-ups, or asynchronously through the use of parcel lockers.

Packages are transported between service regions of different local hubs via a second

set of vehicles, known as shuttles. Shuttle vehicles are larger than rider vehicles, since they

only need to stop at local hub locations. In a large urban area characterized by many service

regions and local hubs, it is likely not economical to schedule direct shuttle movements

between all pairs of local hubs. Packages can be cross-docked between shuttles at local

hubs to enable non-direct service. Overnight storage of parcels is not allowed at local

hubs, and instead only at a small set of larger facilities denoted gateway hubs (GH) that

also provide intercity service for packages moving into or out of the urban area. Shuttle

services thus also transfer outbound intercity packages from LHs to GHs, and inbound

packages from GHs to LHs.

In this research, we consider approaches to design shuttle vehicle operations, and asso-

ciated cross-dock transfers, to enable effective intra-city transfer of packages. The objective

is to create a design that moves packages between LHs and GHs to meet timing require-

ments, while minimizing the cost of providing the services. Unlike traditional approaches

for city logistics design, we seek to construct repeatable service cycles for shuttles that can

be executed during (a portion of) the operating day to provide continuous transfer service.

One of the first models for service network design was developed by [11]. The authors

consider the context of express shipment service in which shipments must be picked up and

delivered within specified time intervals (e.g., 24 hours, 48 hours or 3–5 days) and develop

a column generation approach for the design of schedules. Subsequent studies by [10] and

[12] focus on the next-day air operations developing a technology that determines aircraft

routes, routing of packages and fleet assignments. In these studies, the authors developed

what they call the composite variable formulation, which is an extended formulation that

makes use of aggregated variables, improving lower bounds of the linear relaxation com-

pared to conventional approaches. [13] developed a modeling framework with an iterative
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approach, which is based on the idea of reducing the size of the problem in every iteration.

Our shuttle scheduling and routing has similarities to the context of less than truckload

(LTL) on long-haul transportation. LTL carriers are one of the main building blocks of

order fulfillment in both online and brick-and-mortar stores. In order to deliver goods on

time and in a cost-effective manner, LTL carriers consolidate shipments via planning and

coordinating the paths of different shipments in both space and time. The service network

design problem ([3],[4]) is the common tool used in these planning processes, by providing

the planner with the choice of paths for shipments and the services or resources necessary to

execute them. Building such a plan involves selecting the services to operate, their sched-

ules, and then executing them by routing shipments through the selected service network.

In that sense, the problem of shuttle scheduling can be seen as an intra-city variant of an

LTL carrier problem. [14] consider the LTL problem for motor carriers determining how

freight should be routed through the network while balancing level of service and costs.

They develop a local improvement heuristic given the large size of the problem they ad-

dress. An extension of this work, in [15], presents an enhanced local improvement heuristic

that adds and drops direct services, rerouting the flow to determine the effect of the switch

on costs. In a related subsequent work, [16], aim to synthesize the algorithms and their

implementations and show the relevant interaction among algorithmic approach, software

architecture and implementation.

A variant of the service network design, referred to as the frequency service network

design problem aims at determining the type and frequency of services on freight routes. In

such a problem, demand is usually described as flows between the various origin/destination

pairs. Such a problem is referred to as multi-commodity network design, in which com-

modities are recognized based on their weight, volume, origin, destination, departure time

and delivery condition ([17], [3]), however, it is more and more difficult to identify service

preferences of shippers by the appearance of the goods or the commodity type ([18]).

In a recent work, [19] present a frequency-based model for freight service network
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design aiming to improve service performance. [20] consider a setting where resources at

terminals are limited; a service network model for freight consolidation carriers selecting

the services and routes for commodities. [21] focus on the tactical planning process for

city logistics, that the authors identify as the day-before problem, in the general case of

two-tiered systems, while [22] present an application of the methodology proposed for the

single-tiered case. In a similar work, [23] address a tactical plan of a two-tier city logistic

system considering uncertainty in the forecast demand, which is an aspect not commonly

taken into account explicitly in tactical planning. [24] also consider uncertainties in demand

concluding that consolidation and hub-and-spoke systems deliver better solutions when

there is stochastic demand due to the fact that the solution provides a sort of hedging. In

a similar work, [25], focus on addressing the services of the first tier system of a two-tier

structure.

Excellent reviews of literature on service network design are provided in [26] and re-

lated to freight transportation in [3], which focus on modeling and mathematical program-

ming approaches. [4] present a more recent review of different problem formulations and

a comparison of solution frameworks for service network design for freight transportation

problems.

A branch-and-price approach is developed in [6] to solve service network design prob-

lem with asset management, which is initially presented in [27], addressing the vehicle

management decisions and service network design aspects jointly. [28] present an integer

formulation for load planning in the context of LTL freight transportation. A similar work

for LTL in the context of large-scale problems is presented in [29]. A math-heuristic for

service network design with design-balanced requirements that uses cutting plane methods

to obtain tighter bounds and fixing variables to reduce problem size is presented in [30].

[31] discusses the challenges and opportunities in city logistics, in which it remarks on

the importance of developing highly dynamic models that could be able to handle real-time

information. In a more recent paper, [32] present a review on cluster classification prob-
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lems, mathematical models and their solution methods for urban transportation network

design problems and also propose future research directions. A similar but older review of

urban transportation network design problems is presented in [33].

To the best of our knowledge, no prior work addresses the challenges related to the

service network design problem associated with high-velocity intra-city courier services.

In summary, our contributions are:

• We propose a data-driven approach to design the network and to schedule the move-

ments within the network such that the offered services between different origin-

destination pairs within the city become operationally feasible and efficient.

• We propose a rate-based model; discrete demands are converted into demand rates

per hour. The proposed model takes demand rates as input and constructs shuttle cy-

cles guaranteeing the capacity and dispatch frequencies required to meet the desired

service level. This approach considers a flat network incorporating the frequency of

dispatch frequency on each arc needed to ensure on-time deliveries.

• To ensure time feasibility of the obtained solution, we conduct a post-processing

phase. First, the generated routes are evaluated on a time-space network and if nec-

essary, simple cycles are added to the solution. Then, using a cost-benefit study,

the least beneficial cycles are removed, while preserving a target minimum service

guarantee.

• A comprehensive case study is conducted based on the historical data received from

one of the leading Chinese courier service providers. The outcome of sensitivity

analysis demonstrates the robustness of our proposed routes even in scenarios with

significant shifts in demand patterns.

The remainder of the chapter is structured as follows. In Section 4.3, we present the

setting and description of the problem. Next, Section 2.3 describes the mathematical for-

mulations of our approach. In Section 2.4, we present the post-processing phase of shuttle
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scheduling. Computational study is reported in Section 2.5. Finally, we present conclusions

and future research directions in Section 2.6.

2.2 Problem Setting

We consider an intra-city service network defined on a multigraph G = (U , E) with node

set U representing the set of terminals and arc set E representing (directed) transportation

connections between terminals. The terminal set U comprises three categories of hubs:

gateway hubs (GH), local hubs (LH), and access hubs (AH), represented by UG, UL, and

UA, respectively. Most of the sorting activities occur at GHs. The LHs have limited capac-

ity for sorting activities and are mainly used for transshipment purposes. The AHs act as

local pick-up/drop-off locations. Many-to-one AH-LH and LH-GH assignments are con-

sidered. That is, for each customer location, one can consider an origin AH, an origin

LH, an origin GH, a destination GH, a destination LH, and finally a destination AH. While

this pre-assignment is fixed, packages may skip visits to GHs depending on their service

classes.

Note that, while the network is defined as an intra-city service network, the set of ship-

ments moved may be a mix of intra- and inter-city shipments. We consider a heterogeneous

fleet of vehicles V , with N v and Qv being the number of available vehicle type v and the

capacity of each vehicle of type v, respectively. The cost of traversing an arc e ∈ E by a

vehicle of type v is denoted by cve and the time of traversing the arc is denoted by tve (in

a general setting, different vehicle types may have different speeds). In the multigraph G,

each node (terminal) pair is connected with potentially multiple arcs, representing different

vehicle types.

Let S be the set of intra-city service classes offered. The set includes same-day (SD)

and next-day (ND). The inter-city packages are sorted at GHs and leave the origin city

overnight. Each service class is defined by two cut-off times: (1) the latest time a package

may be picked up from its origin to be eligible for a given service class, and (2) the latest
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time a package can be delivered at its destination based on the committed service class. A

package may go through different hubs and may be loaded on and unloaded from multiple

vehicles on the path from its origin to its destination. The path a package takes and the set

of hubs it visits are impacted by the package service class. A package visit to a hub may

involve sorting operations or cross docking. As a general rule, all packages with service

class ND should visit at least one GH for sorting activities overnight. Conversely, same-day

packages do not typically visit a GH for a sorting purpose (they may still be cross-docked

at a GH).

2.2.1 Daily routines

Three types of transportation activity take place from the moment a package is picked up

from its origin to the time it is delivered to its destination. Following a service request by

a customer, the package is first picked up by a courier from the customer’s location at a

specified time. A courier may pick up several packages from different customers within

the same region, referred to as a unit zone assigned to the courier. Packages picked up by a

courier are then dropped off at an AH. A fleet of riders collect packages from the AHs and

deliver them to LHs. A rider tour may include visits to several AHs. Outbound inter-city

packages as well as intra-city packages with ND service class are consolidated at LHs and

are sent to GHs. After being sorted at the GHs, inbound intra-city packages are transferred

to their destination LHs. Inter-city packages may visit one or more GHs before reaching

their destination LHs (whatever happens beyond the borders of the intra-city network is

out of the scope of this chapter). Same-day intra-city packages are sorted at their origin

LHs and are then sent to their destination LHs. The movements between LHs and GHs are

operated by shuttles. Packages at the destination LHs are again picked up by the riders who

are responsible for transferring them to their destination AHs. Couriers collect packages

from the destination AHs and deliver them to their ultimate destinations. An illustration of

the intra-city network and the interaction among couriers, riders and shuttles is shown in
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Figure 2.1.

Notice that courier, rider, and shuttle routes may potentially incorporate pickups and

deliveries on the same routes, as multiple locations may be visited. However, due to the

pre-assignments of AHs to LHs, a rider can only visit AHs assigned to a single LH. As

for the shuttles, although a shuttle may visit LHs assigned to different GHs, the loading

and unloading of packages on the vehicles are done such that the package paths respect the

hierarchical structure of the network.
Intra-City Network

Figure 2.1: Intra-city Network

Based on the above descriptions, one can notice that apart from same-day packages,

all other packages visit at least one GH on their path from their origin to their destination.

Since providing same-day service may involve certain requirements, the shuttle activities

throughout a day are categorized into two regimes: Morning (Regime 1 - R1) and Afternoon

(Regime 2 - R2). These regimes are differentiated based on a cutoff time. Each regime

involves packages arriving in the system during its corresponding part of the day. Regimes

are also defined based on the overall demand patterns. While R1 mostly incorporates the

transfer of ND intra-city and inbound inter-city packages from GHs to their destination

LHs and subsequently AHs, R2 involves the transfer of ND intra-city and outbound inter-
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city packages picked up during the day to the GHs. Same-day intra-city demand is almost

uniformly distributed over the two regimes. It is worth mentioning that at a micro level,

fluctuations in demand patterns throughout a day are not significant enough to justify major

changes at the operational level. As a result, rider schedules do not undergo changes during

different periods of the day, i.e., R1 and R2. We now describe the two regimes in more

detail.

Regime 1 (R1): Morning This regime involves packages entering the system during the

period starting from 8:00 am to 12:00 pm. The main activities during this regime

include transferring ND intra-city packages picked up the day before in addition to

inbound inter-city packages sorted overnight at a GH, to LHs. These packages are

then transferred to AHs by riders and from there, they are delivered to their final

destinations by the couriers. This regime also serves same-day packages picked up

in the morning and midday. Packages picked up by the couriers before the same-

day service cut-off time are guaranteed same-day delivery; they are delivered by the

same-day delivery cut-off time. Intra-city packages arriving at their origin LHs are

sorted at the LHs and are transferred to their destination LHs through the network of

shuttles (without necessarily visiting any GH in between).

Regime 2 (R2): Afternoon This regime corresponds to packages entering the system dur-

ing the period starting from 12:00 pm to 4:00 pm. During this regime, outbound

inter-city and intra-city packages with service classes ND are transferred to their ori-

gin GHs by a fleet of shuttles. These packages are sorted at the GHs and are poten-

tially dispatched to their destination GHs overnight. The next morning, the packages

are transferred to their destination LHs during the morning regime. Similarly, this

regime serves the afternoon part of same-day delivery packages. Intra-city packages

picked up by the couriers after same-day service cut-off time are then transferred to

the assigned GH, to be delivered next day morning in R1.
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The main focus of this chapter is on shuttle operations. Since the demand arrives over

time, one way to guarantee high quality of service is to generate a set of shuttle cycles that

repeat throughout the day or at least part of the day. A shuttle cycle consists of a sequence

of visits to a subset of LHs and/or GHs. Additionally, a cycle is characterized by its ve-

hicle type, start location and time. The cycles should be designed to ensure the existence

of at least one time feasible path between each origin-destination pair and a service class,

if the service is offered. Moreover, the cycles must provide a certain frequency of visits

to terminals to maintain the required service level, i.e., high on-time delivery rate. Since

demand patterns of different regimes are drastically different, it seems reasonable to poten-

tially generate different paths and cycles for different regimes. Based on this idea, we aim

at generating baseline static shuttle cycles that ensure a reasonable service quality while

maintaining operational costs as efficient as possible.

2.2.2 Shuttle Cycle Operations Periods

As stated before, the demand pattern and consequently the set of shuttle cycles in the two

regimes may be quite different. That is, demand for a given origin-destination pair could

be nonzero in one regime and zero in the other regime. As a result, to ensure that packages

in each regime are delivered to their destination, shuttle cycle operation periods associated

with the regimes are extended beyond the normal hours of the regimes. Specifically, while

the regimes are switched at 12:00 pm, cycle operations of R1 may continue until 4:00 pm,

and similarly, cycles from R2 continue operating until 8:00 pm. Since cycle operations of

R2 begin at 12:00 pm, the period of 12:00 pm to 4:00 pm is covered by both regimes. In

this overlapping period, commodities are permitted to use resources from either regimes.

Cycles associated with each regime start their operations at the beginning of the regime.

We consider deterministic travel times, transferring times and waiting times. Hence,

given a start location for a cycle, we can determine where and when the cycle will finish

operating at the end of the corresponding regime.
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2.3 Shuttle Scheduling

In this section, we only focus on the subnetwork GS ⊂ G that concerns shuttle routes,

namely the set of terminals US = UG ∪ UL. In such a network, package batches arrive

at origin LHs in waves by riders. Each package batch delivered by a rider may contain

inter-city packages or intra-city packages with service class ND that must be transferred to

the GHs, or same-day packages that need to be transferred to their destination LHs.

In this network, we define a commodity k to be the set of packages sharing the same

origin, destination, origin regime, and service class. Let K be the set of all commodities

in the system, where a commodity k ∈ K is identified by a tuple (ok, dk, τk, sk, qk), where

ok, dk ∈ US are the origin and destination respectively, τk ∈ {R1, R2} is the origin regime,

sk ∈ S is the service class and finally qk is the commodity size measured in packages per

hour. In practice, commodities arrive in LHs and GHs in waves or batches based on discrete

arrivals of the riders and shuttles. In order to capture timing in the model, we assume the

demand is uniformly distributed throughout a regime. That is, given a regime of H hours,

the arrival rate of commodity k in that regime is assumed to be qk =
∑

h∈H q
h
k/H , with

qhk being the number of packages of commodity k arriving in hour h. Note too that the

service class corresponds to the total time available between the pickup and delivery times

from the origin to the destination of packages. Thus, only part of this time can be used for

the shuttle operations. Let δk be the available time between the origin and destination of

commodity k for shuttle operations.

The main objective is to move commodities from their origins to their destinations

taking into account their due dates. To do so, for each commodity, we choose a path from

its origin to its destination. A path consists of a direct arc from the origin to the destination

of the commodity, or a sequence of arcs, with possible transfers at intermediate terminals.

We consider a transfer time tu at each terminal u ∈ US , which represents the handling time

required to transfer a commodity through the terminal. Handling time tu may be considered
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independent of commodity flow (fixed handling time) or as a function of the flow (variable

handling time).

Given the fixed fleet size, commodity paths are designed to maximize consolidation

opportunities, which results in minimizing the operational costs (traveling cost and han-

dling costs). We aim to determine vehicle routes such that all paths are covered with the

frequency needed to respect service classes. Vehicle routes take the form of cycles, where

a cycle is a circuit that starts and ends at the same terminal u ∈ US . Obviously, the number

of cycles performed by each vehicle type v may not exceed the available fleet, N v. We

assume each cycle is performed continuously throughout the corresponding regime.

Due to significant differences in demand patterns, we address each regime separately.

For each regime, shuttle schedules are constructed through a three-phase procedure. For

each regime, we first identify one path per commodity. Then, we generate cycles that cover

the paths created in the first phase. In the third phase, taking the shuttle cycles generated in

phase two, we potentially re-path the commodities. Each of these phases are described in

detail in what follows.

2.3.1 Phase 1: Commodity Path Selection

The main goal of this phase is to generate time-feasible paths for each commodity k ∈ K,

maximizing consolidation opportunities. We define a path p as a sequence of terminals

(or a sequence of arcs) (u1 = ok, u2, ..., uk = dk) that commodity k takes from its origin

to its destination, where each (ui, uj) is an arc in GS . We restrict the maximum number

of transfers or intermediate terminals along a path to T Pk . The parameter T Pk may be the

same for all commodities or it may depend on factors such as arrival rate (e.g., the higher

the arrival rate, the smaller is T Pk ). The shape of a commodity path is influenced by the

commodity’s arrival rate and its service class.

A potential commodity path is said to be time-feasible if the sum of the travel times

of all arcs of the path, the handling times at all its intermediate terminals, and expected
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waiting times at the terminals along the paths is no greater than the available time, δk. That

is,

∑
e∈p

te +
∑
u∈p

tu +
∑
u∈p\dk

E(wpu) ≤ δk (2.1)

whereE(wpu) is the expected waiting time along path p at terminal u. LetW p =
∑

u∈p\dk E(wpu)

be the total expected waiting time along path p. Expected waiting time at terminal u along

path p depends on the outbound dispatch frequencies along p at u (frequency of dispatch

frequency on the arc leaving u along p).

Dispatch frequencies on arcs are driven both by the flow requirements and the maxi-

mum allowable waiting time. We define the maximum allowable waiting time of commod-

ity k along path p as

ŵpk = δk −
∑
e∈p

te −
∑
u∈p\dk

tu. (2.2)

where for simplicity of notation, te represents the travel time w.r.t. the vehicle type along

e.

To select a commodity path, we first identify a set of candidate time-feasible paths, Pk

for each commodity k ∈ K. We restrict the set of time-feasible paths considered for each

commodity k ∈ K as follows:

• Consider at most T Pk intermediate terminals for the path.

• Consider intermediate terminals such that the total travel time and handling time of

the path is at most 1 + β times the travel time of the direct path. (The paths should

have enough buffer to absorb potential waiting time at their intermediate terminals,

but still remain time feasible.)

In addition to the parameters introduced before, let binary variable xpk equal 1 if path p

is selected for commodity k, and 0 otherwise. Also, let zve be a variable representing the
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dispatch frequency of truck type v on arc e. The binary parameter γpe equals 1 if arc e is

part of path p. The problem of choosing one path per commodity such that the (variable)

cost of the arcs is minimized while maximizing the opportunity for consolidation in the

network takes the following form.

min
∑
v∈V

∑
e∈E

cvez
v
e (2.3)

s.t
∑
p∈Pk

xpk = 1 ∀k ∈ K (2.4)

∑
k∈K

∑
p∈Pk

γpeqkx
p
k ≤

∑
v∈V

zveQ
v ∀e ∈ E (2.5)

|p| x
p
k

2ŵpk
≤

∑
r∈R

zve ∀e ∈ p,∀p ∈ Pk,∀k ∈ K (2.6)

xpk ∈ {0, 1} ∀p ∈ Pk,∀k ∈ K (2.7)

zve ≥ 0 ∀e ∈ E ,∀v ∈ V (2.8)

The objective function (2.3) minimizes the total variable costs incurred along the chosen

arcs. Constraints (2.4) state that exactly one path per commodity is selected. Constraints

(2.5) guarantee that the dispatch frequency on each arc is enough to handle the flows of all

commodity paths using that arc. Constraints (2.6) ensure that the dispatch frequency on

each arc is enough so that the maximum allowable waiting time along the path is not vio-

lated (distributing the maximum allowable waiting time along the path uniformly between

terminals of the path). Finally, constraints (2.7) and (2.8) indicate the type and domain of

the variables.

2.3.2 Phase 2: Cycle Selection

The outcome of model (2.3)-(2.8) is the set of arcs, Ê , requiring non-zero minimum dis-

patch frequency zve . The vector of zve ∀e ∈ E , v ∈ V , obtained from the path model is
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considered as the main input to the cycle selection phase.

From a practical point of view, it may be more difficult to synchronize or implement

long cycles, either in terms of the number of arcs or the length of the cycle. The two re-

strictions together aim at keeping the drivers in limited distances from their home terminals

(the terminal where they start their shift). This allows us to possibly enumerate all possible

cycles, when the set US is not prohibitively large. The cycle selection phase is based on the

two following steps:

1. We create a set of feasible cycles of vehicle type v, Cv, based on the following criteria:

• Consider all possible cycles with at most T SC arcs.

• Consider cycles no longer than LSC total unit of travel and handling time.

2. We solve the model (2.9)-(2.12) to choose the best set of cycles that guarantees the

required minimum dispatch frequency of the arcs of the network, obtained from the

path model.

Let integer variable yc denote the number of times that cycle c ∈
⋃
v∈V Cv is used. Each

arc of a cycle is visited once per duration of the cycle. Let parameter λce be the dispatch

frequency per hour provided by cycle c on each of its arcs (all arcs of a cycle receive the

same frequency of visit from that cycle). Finally, let cc be the cost (fix + variable) of cycle

c. The problem to select the cycles to ensure minimum required dispatch frequency of the

arcs of the network takes the following form.
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min
∑
v∈V

∑
c∈Cv

ccyc (2.9)

s.t
∑
c∈Cv

λceyc ≥ zve ∀e ∈ Ê ,∀v ∈ V (2.10)

∑
c∈Cv

yc ≤ N v ∀v ∈ V (2.11)

yc ∈ Z+ ∀v ∈ V , c ∈ Cv (2.12)

The objective function (2.9) minimizes the total cost of cycles used to cover the paths.

Constraints (2.10) guarantee that the required dispatch frequencies on arcs of each vehicle

type are met by the selected cycles. Constraints (2.11) state that the total number of cycles

of each vehicle type is restricted by the available fleet size.

2.3.3 Phase 3: Commodity Re-Pathing

This phase aims at revising commodity paths and potentially finding the shortest path for

each commodity given the cycle network built in Phase 2. The network obtained from the

set of selected cycles in Phase 2 provides a limited capacity on a subset of arcs in GS . Given

the available capacity, one can solve a variant of the IP solved in Phase 1, to potentially

improve the path selection of the commodities. A path on a cycle network for a specific

regime, is considered time feasible if the total length of the path, considering deterministic

travel times, transferring times and waiting times, is not greater than the available time to

arrive at its destination (service class). To this end, we design the following optimization

problem that is solved for each regime.

We propose the following IP-based model in order to choose the unique path per com-

modity such that the set dispatch frequencies in Phase 2 are not violated while minimizing

the weighted travel time paths of all commodities. Let E be the set of arcs on the cycle

network of the regime considered. Let Pk denote the set of all time-feasible paths on the
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cycle network for commodity k. We define tp as the total length of path p, including trans-

ferring and waiting times. Let f e be the capacity in terms of dispatch frequency on arc e.

Let parameter wk represent the portion of the overall flow (demand rate) that corresponds

to commodity k (measured as the percentage of the arrival rate of commodity k over the

arrival rate of all commodities). Finally, we define the variable xpk, which equals 1 if path

p ∈ Pk is selected for commodity k, 0 otherwise.

min
∑
k∈K

∑
p∈Pk

wkt
pxpk (2.13)

s.t
∑
k∈K

∑
p∈Pk

γpeqkx
p
k ≤ f e ∀e ∈ E (2.14)

∑
p∈Pk

xpk = 1 ∀k ∈ K (2.15)

xpk ∈ {0, 1} ∀p ∈ Pk,∀k ∈ K (2.16)

The objective function (2.13) minimizes the total weighted travel time. Constraints

(2.14) guarantee that the dispatch frequency on each arc e is not violated by the flow of all

commodity paths using arc e. Constraints (2.15) state that exactly one path per commodity

is selected, and restrictions (2.16) indicate the type and domain of variables.

2.4 Post-Processing Phase of Shuttle Scheduling

The commodity paths and shuttle cycles, obtained through the 3-phase approach described

in Section 2.3 (referred to as the base plan - BP), are designed based on a flat network. More

specifically, constraints (2.6) assume an ideal distribution of dispatches along each arc e,

i.e., inter-dispatch times are all equal. Given the fact the required dispatch frequency on

a given arc is potentially achieved through the coverage of cycles of different lengths, the

inter-dispatch times on an arc could vary over time. As a result, an arc covered by multiple

cycles may be overly congested during certain periods while not having enough number of
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dispatches during certain other periods. To remedy this issue, we propose a post-processing

phase. The goal of this phase is twofold: (1) to add cycles to the BP to improve on-time

performance, and (2) to remove cycles that are not beneficial while ensuring a minimum

performance in terms of service level.

2.4.1 Cycle-Adding Phase (CAP)

Based on the BP, we construct a time-space network in order to compute commodities’ on-

time arrival intervals, which are used to compute an on-time metric for each commodity.

We also compute an overall (average) on-time metric, from all commodity on-time metrics,

which is weighted by the commodity demand rate q. In Figure 2.2, we show an example

of commodity paths from LH1 to LH3, via LH2. The required dispatch frequency over the

first arc of the path is provided by Cycle 1, while the required frequency on the second arc

of the path is provided by two cycles, named Cycles 2, and 3. The length of these cycles

are 0.47, 0.68, and 1.97 hours, respectively. Since the two cycles (Cycle 2 and Cycle 3)

covering arc (LH2, LH3) have different lengths, dispatches along this arc are not evenly

distributed over time. The construction of the time-space network allows us to identify

time intervals during which packages having arrived at the origin would not make it to the

destination on time. An on-time execution of a path is depicted in dashed green lines, while

an execution of the same path that becomes late is shown in dashed red lines.

26



 Commodity  LH1-LH3 Commodity Path:  LH1-LH2-LH3

LH3AL

LH2CA

LH1

0.47 0.94 1.41 1.88 2.34 2.8 3.28 3.75 4.22

0.47 1.15 1.28 1.73 2.3 2.88 3.25 3.46 4.04 4.62 5.2 5.22

4.69 5.16

5.7 6.34 6.9

5.63 6.1 6.56 7.04

On-time path

Late path

Cycle 1

Cycle 2

Cycle 3

Waiting time

Figure 2.2: Time-Space Network

For a given arrival interval (time between two consecutive dispatches from the origin of

the commodity), we first compute the path’s travel time starting from the end of the interval

to determine whether the commodity arrives on-time to its destination. The service level of

the commodity less the length of the path gives the slack or buffer of that specific dispatch.

This buffer indicates the maximum waiting time allowed before this specific dispatch from

the origin of the commodity while ensuring on-time delivery to the destination, as depicted

in the green boxes in Figure 2.3. An on-time metric for each commodity is computed

throughout all arrival intervals of the commodity.
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 Commodity  LH1-LH2 Commodity Path:  LH1-LH2-LH3

LH3AL

LH2CA

LH1

0.47 0.94 1.41 1.88 2.34 2.8 3.28 3.75 4.22

0.47 1.15 1.28 1.73 2.3 2.88 3.25 3.46 4.04 4.62 5.2 5.22

4.69 5.16

5.7 6.34 6.9

5.63 6.1 6.56 7.04

On-time arrival interval

Late arrival interval

Figure 2.3: On-time and Late Arrival Intervals

We propose a greedy heuristic solution for adding cycles in order to improve the on-

time arrival interval metric. For each arc, we calculate a “lateness” score, computed as the

sum of all waiting times exceeding the maximum allowed waiting time on each arc of a

commodity path. Next, the heuristic selects the edge with the maximum lateness score (in

both directions). We design simple two-leg cycles covering the chosen edge. To identify

the best start time of the cycle, we test dispatches at discrete start times every t minutes,

and the start time improving the on-time metric the most is selected. We add the cycle

designed and repeat the procedure until a minimum desired on-time metric is achieved for

all commodities and a target overall on-time metric is reached. Detailed description of this

approach is provided in Online Supplement A.1.

2.4.2 Cycle-Removal Phase (CRP)

We propose a heuristic approach for the cycle-removal phase. Recall that cycle operation

hours of the two regimes overlap for several hours. As a result, removing a cycle from one

regime not only affects some commodities in that regime but it may also affect the on-time

performance of certain commodities in the other regime. Therefore, we use the set of cycles

and commodities from both regimes altogether in this procedure.
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The removal of a cycle may have an impact on one or more commodities by either

disabling their commodity paths or by deteriorating their on-time performance metric. To

quantify this impact, we introduce a metric that represents the loss associated with a dis-

abled commodity based on a monetary measure. First, to estimate this revenue-loss mea-

sure, we make the assumption that the deterioration of the on-time metric following a cycle

removal is a proxy for the number of packages that either arrive later than their due times to

their destination or cannot reach their destination anymore. Let us suppose such packages

will not generate any revenue (even though they are delivered, but arrived late), and refer

to them as zero-revenue packages.

We initially compute the on-time metric for each commodity k when all cycles are

considered, denoted by ok. We also compute the on-time metric for each commodity k

when cycle c is tentatively removed, denoted by ok,c. The impact of removing cycle c

from the cycle schedules on commodity k can be quantified based on ok − ok,c, reflecting

the portion of packages of commodity k turning into zero-revenue packages as a result

of cycle c being removed. Given the average arrival rate per hour, qk, for commodity k

and the length of the time period where commodity arrivals are considered (i.e, number of

hours), denoted by T , one can calculate the number of packages that become zero-revenue

packages as a result of cycle c being removed using T · qk · (ok,c − ok).

In addition to the revenue associated with each package, one can also calculate the

estimated cost of serving each package of a given commodity using a unit cost called the

cost per package per mile, denoted by φ. Unit cost φ is calculated as the sum of all cycle

costs divided by the weighted sum of commodity arrival rate, qk and commodity path

length, lk, over all commodities. The cost of a cycle c, denoted by βc, is defined as the

cycle operation cost throughout a day, i.e, the multiplication of the cycle operating hours

in a day, denoted by hc by the variable cost per hour of operating a vehicle of type v,

denoted by Cv
c , (depending on the vehicle type of the cycle) plus the fixed cost of operating

one of such vehicle, denoted by Cv
f , i.e., βc = Cv

f + Cv
c hc.
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Suppose the pricing policy is such that the revenue of serving a package is set to be µ%

above the cost of serving it. As a result, the loss of revenue from commodity k following

the removal of cycle c is obtained as (1+µ) ·φ · lk ·T ·qk · (ok,c−ok). A cycle is considered

for removal only if the cost of operating the cycle dominates the revenue generated through

its operation. Let rc be the expected return of cycle c, defined as follows:

rc = (1 + µ) ·
∑
k∈K

φ · lk · T · qk · (ok,c − ok)− βc (2.17)

On the other hand, we impose a minimum standard service level for all commodities, i.e.,

ensure a minimum on-time metric for all commodities and an overall on-time metric among

all commodities (which is equivalent to impose a maximum percentage of commodities that

may be late). We also make sure that enough capacity remains available to accommodate

commodities when a cycle is removed. Given these financial and operational considera-

tions, a cycle is said admissible for removal if the minimum (worst) on-time metric, mini-

mum overall on-time metric and maximum utilization requirements are not violated when

the cycle is removed. Therefore, a cycle c is finally considered for removal if rc is negative

and it is admissible for removal.

The CRP heuristic works as follows. For each cycle, we first verify whether it is

admissible for removal. Next, among the cycles that are admissible for removal, we identify

the one with the most negative return rc, denoted by c∗, according to the return function

2.17. Finally, we remove cycle c∗ and we keep iterating in a similar fashion until there

is no cycle admissible for removal or there is no more cycles with a negative return. The

interested reader is referred to Section A.2 for a detailed description of the cycle removal

procedure.
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2.5 Computational Study

We evaluate the performance of our proposed approach through an extensive computational

study based on real-world data provided by our industry partner, one of the leading Chinese

courier service providers. The provided data corresponds to historical waybill data for

inter-city and intra-city packages over July 2017. For each package, the origin, destination,

pickup request time and service class are known. From this information, we compute the

average arrival rate per hour of all commodities per regime for the month of July.

The shuttle network is composed of 52 hubs, among which 3 are GHs and 49 are LHs.

Considering all possible origin-destination pairs, we have up to 2652 commodities without

considering service classes. To reduce the problem size to a more manageable scale, only

commodities with an hourly arrival rate q greater than a fixed threshold α are considered

for the design of the paths and cycles. That is, commodities with low hourly demand rates

(q < α) are not directly considered in the process of choosing paths and cycles. Once the

set of paths and cycles are identified, commodities with q < α are sent over the available

shortest paths.

We allow at most two intermediate stops for the design of commodity paths. Given

that most commodities have to arrive at their final destinations or to a GH during the day

and in order to smooth out the arrival of packages at GHs, we work with one main service

class, 4 hours, for all commodities in the shuttle network. For the creation of cycles, we

allow at most four legs and the maximum duration of a cycle is set to 5 hours. Based on

the existing fleet of the company, we consider five different vehicle types: 1T, 1.5T, 3.5T,

7T and 14T of capacity.

We experiment with two main settings. First, we design the network considering two

regimes, one operating 8am-4pm and the other operating 12pm-8pm, that move both intra-

city and inter-city packages. We assume packages arrive in the period 8am-12pm and

12pm-4pm for Regimes 1 and 2, respectively. In this case, the threshold is set to five pack-
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ages per hour (α = 5). Accordingly, commodities with an arrival rate q ≥ α represent

approximately 90% of the total existing demand. In the second setting, we only consider

one regime, operating 8am-8pm focusing on only same-day intra-city packages arriving

from 8am-4pm. Here, the threshold is set to two packages per hour (α = 2), as the ar-

rival rate volume of same-day delivery packages is significantly lower than intra-city ND

plus inter-city packages. We set the target overall on-time performance to 95% and the

minimum on-time performance to 85% for both scenarios. For both settings, we perform

comprehensive sensitivity analyses.

In what follows, we introduce a series of performance metrics that are used in the

subsequent sections to evaluate the obtained results.

2.5.1 Performance Metrics

The main purpose of this section is to define metrics that allow us to measure the qual-

ity of the solutions and to compare solutions across different experiments. We define the

following main performance metrics making use of the time-space network.

- On-time: This metric measures the percentage of on-time arrival intervals of commodi-

ties. It captures the percentage of the overall arrival demand in the entire network that

is delivered on-time. From the time-space network, we identify all on-time arrival

intervals of commodities. Then, we compute a weighted percentage of these on-time

arrival intervals over all commodities. The metric is computed as

On-time =

∑
k∈K

okqk∑
k∈K

qk
(2.18)

where ok is the percentage of on-time arrival intervals of commodity k over the

regime horizon.
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- Lateness: This metric measures how late commodities arrive to their destinations on

average. This metric is computed as the weighted average lateness over the late

arrival intervals of all commodities. The metric is calculated as follows:

Lateness =

∑
k∈K

lkqk∑
k∈K

qk
(2.19)

where lk is the weighted (by the length of late arrival interval) lateness of the late

arrival intervals of commodity k over the regime horizon.

- Earliness: This metric measures how early commodities arrive to their destinations on

average. This is computed as the weighted average earliness over the on-time arrival

intervals of the commodities. The metric is computed as folllows:

Earliness =

∑
k∈K

ekqk∑
k∈K

qk
(2.20)

where ek is the weighted earliness of the on-time arrival intervals of commodity k

over the regime horizon.

We also evaluate the number and type of vehicles designed in each regime. This is an

important indicator given the fact that the use of more vehicles is more costly in general.

We calculate the utilization of arc measured as the sum of commodity flows passing through

the arc divided by the total dispatch frequency on the arc. Finally, we provide statistics on

the number of intermediate stops along commodity paths.
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2.5.2 Inter- and Intra-city Experiments

In this section, we focus on the two-regime setting moving both intra-city and inter-city

packages. For each phase of the approach, we show how the main metrics evolve for

BP, after CAP, and after CRP. For the final cycles designed, we present and discuss more

detailed results. Additionally, we conduct some sensitivity analysis at the end. Given that

the paths and cycles are designed considering only the commodities with q ≥ α = 5 for

this experiment, in Table 2.1, we report statistics separately for such commodities and also

for all commodities regardless of their arrival rates.

Table 2.1: Commodity Statistics for Inter-city Experiments

Regime R1 R2

Commodities considered All q ≥ 5 All q ≥ 5

Number of commodities 2399 723 2350 675

% volume of commodities 100% 98.31% 100% 97.47%

# commodities paths with 0 stops 292 197 301 210

# commodities paths with 1 stop 858 378 938 367

# commodities paths with 2 or more stops 1249 148 1111 98

As we observe from Table 2.1, a significant level of consolidation occurs in both

regimes because about 70% of the commodities, equivalent to approximately 50% of the

total volume, are taking paths with at least one intermediate stop.

Cycle Adding and Removal Phases

We perform CAP and CRP over the cycles designed for BP. In Table 2.2, we report the

on-time metric for each phase. As we see the average on-time performance achieved by

BP is already high, close to 100%, even taking into account the commodities with q <
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α. This is due to the fact that q ≥ α represent a high portion of the total commodities;

designing paths and cycles based on these commodities guarantees a high average on-time

performance. In the subsequent phases, the on-time metric does not change significantly

even when removing cycles. Since the on-time metric is already higher than the target on-

time metric (95%), the CAP phase mainly aims at bringing up the minimum on-time metric

of commodities with q ≥ α to at least 85%. On the other hand, CRP identifies and removes

cycles that in their absence, neither on-time nor minimum on-time metrics drop below the

respective targets and the maximum arc utilization does not exceed 100%.

Table 2.2: On-time Metrics for Inter-city Experiments

Regime R1 R2

Commodities considered All q ≥ 5 All q ≥ 5

BP 99.69% 99.96 % 99.49 % 99.93%

CAP 99.78% 99.99% 99.64% 99.99%

CRP 99.66% 99.97% 99.45% 99.96%

In Table 2.3, we show how the minimum on-time metric of commodities with q ≥ α

improves among the different phases. BP starts with a minimum on-time metric of 57%.

CAP improves it until the target of 85% by adding 43 cycles of vehicle type 1T to regimes

R1 and R2 (see Table 2.4). Next, CRP removes 72 and 78 cycles of vehicle type 1T from

R1 and R2, respectively, without violating the minimum on-time delivery target of com-

modities with q ≥ α. Note that since commodities with q < α are not considered in the

design, the existence of a path allowing on-time delivery of all such commodities in the

network of cycles is not guaranteed. Consequently, the minimum on-time delivery when

considering all commodities is zero: there is at least one commodity with q < α and no

path guaranteeing its on-time delivery. Due to the low arrival rate of such commodities,

policies such as as-needed single dispatches can be added.
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Table 2.3: Minimum On-time Metrics for Inter-city Experiments

Regime R1 R2

Commodities considered All q ≥ 5 All q ≥ 5

BP 0.00% 57.53% 0.00% 57.14%

CAP 0.00% 86.13% 0.00% 85.60%

CRP 0.00% 85.11% 0.00% 85.27%

Table 2.4: Statistics on Number of Cycles at the End of Different Phases

Regime R1 R2

Phase BP CAP CRP BP CAP CRP

Number of cycles 1T 130 173 101 148 191 112

Number of cycles 3.5T 177 177 177 170 170 170

Total number of cycles 307 343 278 318 368 282

We now focus on the final schedules at the end of CRP. Table 2.4 indicates that although

we allow the model to choose from a wide range of available vehicle capacities, the model

tends to only use vehicles of size 1T and 3.5T. Additionally, Table 2.5 shows that the av-

erage arc utilization is generally low. This indicates that in most of the cases, the timing

requirement constraints on arcs are the main driver for dispatch frequencies, and the capac-

ity requirements are often non-binding constraints. However, the maximum arc utilization

is close to 100%, and this mainly happens on arcs destined to or originating from GHs.

Since we do not consider commodities with q < α in the design, when we compute the

arc utilization metric taking into account all commodities, in some rare cases maximum arc

utilization exceeds 100%.

As we observe in Table 2.5, the average arc utilization in R1 is slightly higher than R2.
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This can be explained by the fact that the number of commodities as well as commodity

volumes in R1 are higher than R2. Additionally, Table 2.4 shows that the proposed ap-

proach was able to design a cycle network involving a smaller number of vehicles of each

size for R1.

Table 2.5: Arc Utilization in the Final Schedule

Regime R1 R2

Commodities considered All q ≥ 5 All q ≥ 5

Average 38.9% 34.66% 27.09% 22.02%

Maximum 107.95% 99.99% 104.97% 99.99%

In Figures 2.4 and 2.5, we show the designed networks showing only the arcs with a

utilization rate above 90%, for R1 and R2, respectively. For both regimes, we observe that

most of the highly utilized arcs are located in the central part of the network. These arcs are

often used for the purpose of consolidation and are typically used by several commodities.

We also observe a high utilization over arcs originating from or destined to GHs. This

can be explained by the fact that the majority of the flow corresponds to inter-city demand

which is required to be directed to a GH for sorting activities. Moreover, due to the many-

to-few trend of flow of commodities originating from LHs and destined for GHs, we notice

that in both regimes, arcs heading to GHs have typically the highest utilization.
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Figure 2.4: Arc utilization over 90% for R1

Figure 2.5: Arc utilization over 90% for R2

In Table 2.6, we report results for on-time, earliness and lateness metrics previously

defined. We observe that the average on-time metric, which is weighted by commodity

volume, is close to 100% for both regimes even when considering all commodities; only

less than 1% of the total volume of commodities is late.
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On-time commodities with q ≥ α arrive to their destination on average 2.4 hours earlier

than their due times in both regimes. This create a wide buffer for unforeseen incidents

causing delays. On the other hand, late commodities with q ≥ α experience a maximum

delay of 4 and 7 minutes in R1 and R2, respectively. In many cases, this amount of lateness

is not perceived as late from a practical viewpoint.

Table 2.6: Statistics on Time-Space Network for Inter-city Experiments

Regime R1 R2

Commodities considered All q ≥ 5 All q ≥ 5

On-time 99.66% 99.97% 99.45% 99.96%

Minimum on-time 0% 85.11% 0% 85.27%

Average lateness (hr) 0.15 0.03 0.24 0.06

Worst lateness (hr) 0.30 0.07 0.48 0.12

Average earliness (hr) 2.43 2.45 2.63 2.66

Worst earliness (hr) 2.09 2.11 2.40 2.44

Sensitivity Analysis

In order to measure the robustness of our approach, we study the performance of the de-

signed schedules vis-vis changes in the demand or the available time allocated to shuttle

activities.

In the first series of tests, we aim at stress-testing the system by accentuating peaks and

valleys in commodity arrival rates. This is done by increasing the demand rate of those

commodities with already high demand rates and reducing the demand rates of commodi-

ties with low demand rates. These changes are conducted in such a way the overall package

volume in the system is kept almost the same. The procedure to create such test sets from

the actual data is as follows. We first sort commodities according to their demand rates
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q. Next, we select the group of commodities with demand rate between the 40th and 50th

percentiles. A second group is selected including commodities with demand between the

50th to 60th percentiles. We then randomly choose a commodity from the first group and a

commodity from the second group. We decrease the demand rate of the the first commodity

by a given percentage (40% or 80%) of q and add this volume to the second demand rate

of the second commodity. This way we ensure total demand is kept unchanged. We do this

procedure for all remaining commodities in these groups.

Table 2.7: Modification of Peaks and Valleys for Inter-city Experiments

Regime R1 R2

Percentage of change 40% 80% 40% 80%

On-time 99.97% 99.97% 99.96% 99.96%

Minimum on-time 85.11% 85.11% 85.27% 85.27%

Average lateness (hr) 0.06 0.06 0.06 0.06

Average earliness (hr) 2.46 2.46 2.66 2.66

Average utilization of arcs 34.89% 35.12% 21.18% 21.46%

Maximum utilization of arcs 151.94% 151.94% 101.34% 101.34%

Percentage of arcs utilized over 100% 1.79% 1.79% 0.69% 1.04%

Table 2.7 reports main results for percentage changes of valleys and peaks equal to 40%

and 80%, respectively. As we observe, the timing metrics including on-time, minimum on-

time, average lateness, earliness metrics remain almost unchanged. Moreover, we observe

that the average arc utilization does not vary either as the flow is shifted across the network.

However, we notice that the maximum arc utilization has increased significantly, and rep-

resents the capacity constraint violation along certain arcs. This is more prominent for R1,

where at least one arc is utilized more than 50% of its available capacity. We also report

the percentage of the arcs with exceeded capacity. We observe that this only occurs in a
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small percentage of arcs. In practice this means that some commodities have to wait more

for a vehicle with enough capacity on the over-utilized arcs, and therefore they may arrive

later than expected to their destinations. On the other hand, for R2, the maximum utilized

arc is only 1% over the available capacity which happens in only a small percentage of the

arcs as well.

In a second series of tests, we perform a sensitivity analysis to measure the impact of

the portion of the available time allocated to shuttle activities vs. those of other activities

(e.g., rider activities), in terms of resources needed (number of cycles). In these tests, we

increase the time a package can spend in the shuttle system by 30 minutes. To maintain the

overall service class unchanged, this can be translated into reducing time available to rider

activities at the origin and destination sides by 15 minutes each. The three-phase shuttle

scheduling approach (discussed in Section 2.3) is run based on these new parameters, fol-

lowed by CAP and CRP. Table 2.8 reports the on-time, earliness and lateness metrics on

these tests. On-time and lateness metrics are similar to the solutions of the original setting.

Not surprisingly, earliness improves approximately 30 minutes for R1 and 26 minutes for

R2. The number of cycles needed (see Table 2.9) decrease by 8.6% (from 278 to 254) for

R1 and by 2.5% (from 282 to 275) for R2 wherein most of the changes are for cycles of

type 1T. An average of 5.5% total decrease in resources is a significant cost reduction.

Table 2.8: Modification of Available Time for Inter-city Experiments

Regime R1 R2

Commodities considered All q ≥ 5 All q ≥ 5

On-time 99.72% 99.97% 99.57% 99.98%

Average lateness (hr) 0.17 0.04 0.30 0.11

Average earliness (hr) 2.93 2.96 3.08 3.12
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Table 2.9: Cycles Designed for Inter-city Experiments

Regime R1 R2

Number of cycles 1T 78 104

Number of cycles 3.5T 176 171

Total number of cycles 254 275

2.5.3 Intra-city Experiments

In this section, we isolate intra-city same-day activities and solely focus on those. For these

experiments, we first present results for commodity path solutions. We then discuss how the

on-time metric evolves throughout the different phases. Next, we discuss a more in depth

analysis of the results for the final cycles designed. Finally, we conduct a sensitivity analy-

sis. Note that since the overall volume of commodities involving the same-day delivery is

significantly lower than the experiments considering all intra- and inter-city commodities,

in these tests the design threshold α is set to 2.

Table 2.10 reports statistics on commodity paths. One can observe a high level of con-

solidation taking place as more than 80% of the commodities, equivalent to approximately

80% of the total volume, are taking paths with at least one intermediate stop. This level of

consolidation is higher in this scenario than the intra- and inter-city setting since most of

the q’s are low (only same-day delivery packages are considered). Therefore, in this setting

there is more incentive for consolidation.
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Table 2.10: Commodity Statistics for Intra-city Experiments

Commodities considered All q ≥ 2

Number of commodities 2299 1441

% volume of commodities 100% 89.24%

# commodity paths with 0 stops 341 279

# commodity paths with 1 stop 1203 868

# commodity paths with 2 or more stops 755 294

Cycle Adding and Removal Phases

In Table 2.11, we report the on-time and minimum on-time metrics for each phase. We

observe that the on-time perfomance is high for both cases with commodities with q ≥ α

and all commodities.

The obtained on-time metric is already higher than the target (95%), and CAP is mainly

to enhance the minimum on-time metric to at least 85%, among the commodities with

q ≥ α. Finally, CRP discards cycles that are not beneficial w.r.t. the target on-time,

verifying that maximum utilization of arcs does not violate the available capacity.

Table 2.11: On-time Metrics for Intra-city Experiments

Metric On-time Minimum On-time

Commodities considered All q ≥ 2 All q ≥ 2

BP 95.73% 97.15% 0.00% 37.78%

CAP 98.10% 99.24% 0.00% 85.04%

CRP 97.52% 98.89% 0.00% 85.04%

As it can be observed from Table 2.11, the BP involves a minimum on-time metric of
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37.78% and 265 cycles type 1T. CAP improves the minimum on-time metric to the target

of 85% by adding 56 cycles of vehicle type 1T. Next, CRP removes 54 cycles of vehicle

type 1T, resulting in a remaining set of 267 cycles of vehicle type 1T. Similarly to the intra-

and inter-city setting, given the fact that commodities with q < α are not considered in

the design, the existence of time-feasible paths for such commodities in the network of

cycles is not guaranteed. Consequently, the minimum on-time metric of 0% indicates the

existence of at least one commodity with q < α and no time-feasible paths.

We now focus on the final schedules designed for the same-day intra-city network.

Based on our approach, a total of 267 cycles of vehicle type 1T are required for this setting.

The fact that the chosen fleet consists of only 1T vehicles (smallest available trucks) is

mainly due to smaller demand rates when considering only same-day intra-city commodi-

ties.

Table 2.12: Arc Utilization for Intra-city Experiments

Commodities considered All q ≥ 2

Average 11.64% 9.96%

Maximum 48.91% 48.45%

Figure 2.6 depicts the designed network featuring only the arcs with utilization above

30%. Most of the highest utilized arcs are concentrated around the center of the network,

where the most used intermediate stop hubs are located. We do not see a high utilization

of arcs in general. The average is around 10% and the maximum approximately 50%.

This suggests that smaller vehicle type may be more efficient in terms of making a better

utilization of the network, and possibly in the total number of resources needed.
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Figure 2.6: Arc Utilization over 30% for Intra-city Experiments

In Table 2.13, we report results for the on-time, earliness and lateness metrics. We see

that the on-time metric is close to 100% even when taking into account all commodities.

Only around 2% of the total volume of commodities is late.

Commodities with q ≥ α arrive on-time to their destination approximately 2 hours

earlier on average than the due time, slightly lower when compared to the 2.4 hours in the

inter-city setting. Late commodities with q ≥ α on the other hand, reach their destination

approximately 10 minutes late on average.
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Table 2.13: Statistics on Time-Space Network for Intra-city Experiments

Commodities considered All q ≥ 2

On-time 97.53% 98.90%

Minimum on-time 0.00% 85.04%

Average lateness (hr) 0.21 0.16

Worst lateness (hr) 0.42 0.32

Average earliness (hr) 1.84 1.90

Worst earliness (hr) 1.30 1.35

Sensitivity Analysis

We conduct sensitivity analysis, similar to the one performed for the intra- and inter-city

scenario. The same procedure for modifying the peaks and valleys in demand rates, and

using the same percentage of change is pursued.

Table 2.14 reports the main results for a percentage change of demand rates’ valleys and

peaks of 40% and 80%, respectively. We see that the on-time metric remains similar and

the minimum on-time metric does not change because this indicator does not depend on

q. In addition, the average lateness, earliness and arc utilization metrics only vary slightly.

Contrary to the case of intra- and inter-city setting, in this scenario, we do not have over

utilization of arcs.
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Table 2.14: Modification of Peaks and Valleys for Intra-city Experiments

Percentage of change 40% 80%

On-time 98.91% 98.92%

Minimum on-time 85.04% 85.04%

Average lateness (hr) 0.16 0.16

Average earliness (hr) 1.90 1.90

Average utilization of arcs 9.95% 9.78%

Maximum utilization of arcs 49.46% 49.90%

We perform a sensitivity analysis to measure the impact of the available time of com-

modities on the network. To this end, once again, we suppose that 30 minutes more is allo-

cated to shuttle activities. The three-phase approach as well as CAP and CRP are run. Table

2.15 shows the on-time, earliness, and lateness metrics. On-time and lateness metrics are

very similar to the proposed solution. Not surprisingly, earliness improves approximately

by 20 minutes given that more time is given to the commodities to reach their destinations.

The number of cycles needed decreases from 267 to 216, representing a 19% reduction in

required resources. Here, the decrease in the number of cycles is more prominent com-

pared to the inter-city setting. This occurs due to the fact that more available time permits

higher consolidation on a network that is under-utilized, and therefore, the impact is more

significant in the resources needed when compared to the intra- and inter-city scenario.

Table 2.15: Modification of Available Time for Intra-city Experiments

Commodities considered All q ≥ 2

On-time 98.28% 99.23%

Average lateness (hr) 0.21 0.16

Average earliness (hr) 2.17 2.23
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2.6 Conclusion

We propose a multi-phase approach to design static schedules for vehicle movements in

a highly dynamic network design system. We propose a heuristic methodology for the

design of shuttle schedules that serves intra-city and part of inter-city packages among LHs

and GHs. We solve the shuttle schedule in separate subsequent phases: first, we design

a single path for each commodity while maximizing consolidation, then we identify the

least-cost set of cycles that cover all the paths with required frequency per regime, next we

re-path everything over the possible shortest path in the cycle network while respecting the

capacity of the network. Finally we add and remove cycles to improve on-time performance

and efficiency.

We implemented our methods on a real-world data set provided by our courier service

provider partner. We design shuttle schedules that ensure nearly 99% on-time performance

and a minimum of 85% on-time performance for the inter-city setting. Most of the com-

modities arrive earlier to their destinations, around 2 hours in advance, which provides a

strong support for unpredictable delays. Among the commodities that are late, most of

them are late within 7 minutes on average.

The shuttle schedules proposed are meant to be implementable on a static basis, where

same schedules are performed during each day of a week or a fixed horizon time. Different

levels of dynamism including settings with static route per day-of-week, re-routing shuttles

in response to demand variations at different times of a day, are challenges we aim to

address in future work as well as other types of dynamics not considered in this work.
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CHAPTER 3

SERVICE NETWORK DESIGN WITH HUB SELECTION

3.1 Introduction

We consider a strategic hub selection problem within the context of service network de-

sign for a package courier system operating time-definite services. Time-definite services

deliver customer shipments with guaranteed transit times, and faster transit time guaran-

tees may limit consolidation opportunities. Common time-definite package services today

include same-day, next-day and two-day services, where packages are collected, routed

through a consolidation network of terminals, and then delivered to customers with high

velocity; same-day service is typically only provided when both the origin and destina-

tion lie within the same urban area. Demand for time-definite package services is growing

largely due to growth in e-commerce ([2]).

Package couriers use consolidation terminals to aggregate small shipments into trailer-

loads or containerloads. They also frequently route packages through intermediate sorting

hubs when volumes are smaller for specific origin and destination terminals and when time

allows. We will use the following nomenclature to refer to terminals in a package courier

system. Consolidation terminals will be labeled satellites (or end-of-line) facilities and hub

facilities. Satellites serve only as origin or destination consolidation and sorting points,

and they provide the interface between the local pickup-and-delivery (last-mile) subsystem

and the linehaul (middle-mile) subsystem. Hub terminals also provide origin/destination

consolidation, but they serve the additional role of intermediate sorting and transfer within

the linehaul subsytem.

In this work, we collaborate closely with one of the largest package couriers in China,

whose business model includes a plan to grow high-velocity ground transportation (truck-
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ing) services between Chinese cities with a new operating model. We construct a strategic

optimization approach to select which terminals are the most cost-effective locations to

serve as transfer hubs for such systems. The approach is also used to assess the marginal

operating cost improvements that result from adding additional hub locations, and thus the

approach can be used to determine the right number of transfer hubs for a given system.

Consider a package service network composed in part by a large number of package

sorting terminals. Our industry partner denotes these terminals as gateway hubs, and there

is a typically at least one such terminal serving a region surrounding a city. Larger mega

cities may be served by multiple gateway hubs located in different geographic subareas of

the city. Gateway hubs receive outbound packages from smaller local pickup-and-delivery

hubs within the city, and send inbound packages to these local hubs for final delivery. Gate-

way hubs enable both small parcel sorting into intermediate containers (like parcel bags)

as well as cross-docking of containers and larger parcels. Our industry partner operates ter-

minal buildings with a variety of sizes and capacities. In some cases, not all truck types are

permitted at a given gateway hub given parking and dock limitations. In addition, gateway

hubs each have a limited number of loading docks (doors) that can be used for dispatching

outbound trucks to other gateway hubs. The number of outbound loading doors can place

limitations on the plans for loading parcels.

Outbound inter-city parcels arriving to a gateway hub are destined for another gate-

way hub serving the destination region. When cost-effective, such parcels can be loaded

into truck trailers traveling direct to the destination gateway hub. The alternative to loading

direct is to load to an intermediate gateway hub; some parcels may visit multiple intermedi-

ate hubs en route. Intermediate sorting, whether parcel sorting or container cross-docking,

requires time and depending on the workload of the hub may require minutes or perhaps

up to a few hours. Flow and load planning problems are common service network design

optimization problems used to make decisions regarding how parcels move through a net-

work of terminals; flow planning problems typically specify a path of intermediate sorting
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terminals to visit (if any) between origin and destination, and load planning problems ad-

ditionally determine how to load parcels into different types of trailers (consistent with the

flow plan) to be dispatched at specific times.

Some inter-city packages are destined for same-day delivery service in nearby cities,

while the remainder of high-velocity packages require next-day delivery or two-day deliv-

ery services and may be traveling further. Different types of trucks are used to transport

packages. Long-haul inter-city packages are usually transported by medium to large truck

types, namely types 14T and 30T, while shorter movements to nearby terminals may be

executed with smaller trucks, namely truck types 7T and smaller.

The region we analyze, the southern area of China, is composed of 29 cities with 69

total gateway hubs; see Figure 3.1 for a map. In this region, out industry partner handles

4 million packages on average every day. These packages can be grouped into 120,000

commodities identified by origin, destination and service time requirement. Problems of

such scale lead to enormously challenging service network design optimization problems.

Therefore, the approaches we develop must scale to problems of these sizes. We will see

in this chapter that it will be necessary to develop optimization models that can be solved

effectively via decomposition approaches to be able to obtain high-quality solutions in a

reasonable amount of computational effort.
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Figure 3.1: Cities in the Southern Region of China

The novelty of this work is that we add an additional layer of complexity on top of

the typical flow and load planning problems of service network design: the selection of

which terminals to designate as intermediate hubs for intermediate sorting. We call this

problem the service network design problem with hub selection (SND-HS). The aim is

to select a subset of the terminals to be used as locations for intermediate sorting; the

remaining gateway hubs will serve only as origin or destination satellite terminals. Since

time-constraints are critical, we explicitly consider the service time requirements of each

commodity and seek a selection of intermediate hubs that enable a flow plan that minimizes

package movement and sorting costs while meeting all commodity time constraints.

Given that we address a more strategic problem, we model the SND-HS problem on a

flat network. Since an integer programming (IP) model with all possible time-feasible paths

through all possible intermediate transfer hubs is very large and impossible to solve in a

reasonable amount of time, we develop heuristic approaches that greedily add one interme-

diate hub on each iteration by solving a smaller integer program. We develop three such

IP-based greedy heuristic variants: (1) Greedy-Hub, (2) Greedy-Hub-Full which solves
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larger integer programs each iteration, and (3) GRASP 1-Hub that randomizes the selection

of intermediate hubs.

In each of the IP-based models we develop, we build on a path-based flow planning

formulation where a path-based approach is used to easily enforce parcel transfer flow paths

to be time-feasible. In the implementation of this approach with our industry partner, we

also enforce a practical restriction on the maximum number of intermediate sorts allowed

for any particular origin-destination terminal pair. When this maximum is small, a path-

based approach can work well since the number of path selection variables does not grow

prohibitively large. Computational experiments show that the greedy approach outperforms

the IP with all time-feasible one stop paths by a 20% gap difference when selecting and

locating 6 or 7 intermediate hubs. The different greedy variants behave relatively similarly

in gap performance, showing a maximum gap difference of at most 2% among them, and

the Greedy-Hub-Full is the variant that performs the best in most of the cases.

The contributions of our work are summarized as follows:

• We propose a strategic approach to select the most cost-effective hubs for intermedi-

ate sorting activities.

• The selection of hubs adds another layer of complexity on top of the traditional flow

and load planning service network design problems. We therefore develop decom-

position approaches to maintain tractability for these dificult optimization problems.

• We develop sequential approaches that greedily select one intermediate hub per iter-

ation.

• We show that the different greedy variants developed behave comparatively similarly,

while they outperform a complete integer programming approach limited to using all

time-feasible one-stop paths.

1Greedy randomized adaptive search procedure
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The remainder of the chapter is structured as follows. In section 3.2, we present a

review of relevant prior literature. In section 3.3, we provide a formal description of the

problem. In section 3.4, we describe assumptions and restrictions for the problem that arise

in practice. In section 3.5, we present the IP-Based hub selection model. In section 3.6, we

describe the greedy approach and the variants we develop: Greedy-Hub, Greedy-Hub-Full,

GRASP-Hub and the swap procedure we perform at the end of the approach. In section

3.7, we conduct a computational study based on a real world data set. Finally, in section

3.8, we present conclusions and avenues for future research.

3.2 Literature Review

Since we are not aware of research that has extended detailed flow and load planning prob-

lems with the selection of intermediate hubs, we briefly review relevant literature on service

network design as well as hub location and hub network design problems.

Early research on service network design problems (SNDP) goes back to the work

of [34], [9], and [11]. In [11], representative of this early work, the model takes into

account many operational constraints, but it does not determine which hubs to employ as

intermediate hubs and instead it assumes the role of the hubs and capabilities as fixed. In

[35], the authors solve a large scale service network design problem for an express delivery

company. The paper focuses on minimizing the movement cost of packages given the hub

capabilities.

In [10], the authors address a large-scale air network design problem for an express

shipment delivery operation in which they introduced a composite variable formulation,

which is an extended formulation that makes use of aggregated variables that provide

stronger lower bounds of the linear relaxation compared to conventional approaches.

Excellent paper reviews on service network design can be found in [35] and reviews

related to freight transportation in [3] which focused on modeling and mathematical pro-

gramming approaches. A more recent review, [4], reveals that scant attention has been
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given to the hub network design problem. The focus has targeted developing efficient tech-

niques to solve large scale problems, focusing on the cost of package movements. We

find a survey of network hub location problems in [36], and subsequent works on hub lo-

cation and the p-hub median problem in [37] and [38]. A review of hub network design

[39] considers whether interconnection among hubs should be full or partial, but capacity

constraints had not been taken into account at the time of this review. A hub network de-

sign work in [40] focuses on finding the optimal set of aircraft routes while minimizing

transportation costs but pays little attention to the hub characteristics. In [41], models and

algorithms for transportation service network design are presented, but attention is given

primarily to the routing of packages and determining which services to include with no

focus on where terminals should be located or how many there should be. The work in [42]

also reveals that there are numerous model applications that do not consider or integrate

logistic hubs.

In a recent paper, [43] focuses on logistic hub location and emphasizes the importance

of considering hubs in service network design. Similar works on the hub location problem

are found in [44], [45], [46], and there are extensive reviews of these models in [33] and

[47]. In a recent work, [20] presents a service network design problem considering hub

capabilities as fixed. In a supply chain article, [48] discusses the economic and technologi-

cal factors, and new delivery systems, like drones and driver-less cars, which will not only

shape the design of the hubs but also the whole infrastructure needed for this to happen.

Most service network design literature focuses on flow and load planning, problems of

determining how to create effective consolidation plans using existing transfer terminals.

For example, [28] develops an integer programming formulation for LTL freight trans-

portation flow and load planning. A similar work for LTL is presented in [29]. In the work

presented in [49], a Lagrangian relaxation approach is presented for a stochastic arc based

formulation of a restricted SNDP for load planning. Again, however, the transfer terminal

locations, capacities, and roles are fixed in advanced.
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In a recent article, [31] discusses the challenges and opportunities in city logistics for

the future in which it emphasizes the relevance of developing highly dynamic models that

could be able to handle real-time information that can be incorporated into models.

3.3 Problem Description

We consider an inter-city service network where packages need to be moved from their

origins to their destinations. The network is defined on a graph G = (U , E) with node set U

representing terminals and an arc set E representing (directed) transportation connections

between terminals. We assume a distance de and a cost ce on arc e corresponding to a

vehicle movement of capacityQe. We assume sorting activity can be performed at terminal

u if the terminal is selected as an intermediate sorting hub; the time required for sorting at

u is tcrossu . We also assume that only a maximum number, s, of terminals may be selected

for use as intermediate sorting hubs.

We define the time requirement of a package as the maximum allowable time to reach

its destination starting from its origin terminal. We define a commodity k to be the set of

shipments sharing the same origin, destination and time requirement. LetK be the set of all

commodities, where a commodity k ∈ K is identified by a tuple (ok, dk, δk, qk), in which

ok ∈ U is the origin, dk ∈ U is the destination, δk is the time requirement and qk is the

commodity volume measured as weight per time to be transferred.

The primary decision problem we consider is to select the terminals to be employed

as an intermediate hubs for sorting, such that there exist time-feasible flow paths for all

commodities. The optimal set of intermediate hubs results in the minimum cost set of such

flow paths, where the total costs include both package movement and sorting costs.

3.4 Restrictions and Practical Assumptions

The problem considered in this chapter is one of strategic design; once selected, inter-

mediate hubs may need to be reconfigured somewhat to handle the package volume and
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thus should not be changed frequently. Given the strategic nature of the problem, we also

approximate actual operating conditions by making a number of assumptions that allow

models to be solved more readily. The assumptions we consider are as follows:

• We only allow flow paths with at most T intermediate hub sorts. For computations, T

may need to be set quite restrictively when used in hub selection problems. However,

in practice, flow paths can be designed with more than T sorts; this will be the subject

of the following chapter.

• We furthermore limit the flow paths considered in the hub selection models by not

including paths that introduce excessive circuity, defined as the ratio between a path’s

travel time and the direct travel time between the commodity origin and destination.

We will use a factor of ρ and not include flow paths with circuity greater than this

factor in the models.

• When the origin and destination of a commodity lie within the same city (but at

different gateway hubs), we force the commodity to travel direct when the travel

time of the direct route is less or equal to a threshold value τ .

• When multiple gateway hub terminals exist in the same city, we only allow one of

these locations to be selected as an intermediate hub for sorting.

• Although our industry partner uses multiple truck types to transfer packages between

terminals, we determine the cost of a solution by assuming that all packages are

transferred with medium-sized trucks (size 7T) on connections with a travel time

lower or equal to τ ; and we use the largest size truck (size 30T) on connections

where the direct travel time is greater than τ .
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3.5 IP-Based Hub Selection Model: Path Formulation

We first present an integer programming formulation for the hub selection model. The

model builds upon a standard path-based formulation for service network flow planning

that uses a flat network representation. The model aims to minimize only the transportation

costs needed to transport the packages, such that all commodities arrive on-time to their

destinations. Note that while sorting costs are ignored here, it is easy to include them in the

objective function if they can be modeled as linear in the path flow variables. The model

furthermore uses the assumptions made in Section 3.4.

We define a path p as a sequence of terminals (u1 = o, u2, ..., uk = d) that a commod-

ity k follows from its origin to its destination. Intermediate sorting and reloading occurs

at each of the terminals u2 to uk−1. Let C be the set of all cities where the set of terminals

U are located, and let Û be the set of terminals that can be considered as candidates to be

intermediate sorting hubs. Let U c denote the set of hubs belonging to city c. Let Pk repre-

sent the set of time-feasible paths for commodity k, and define Up as the set of intermediate

hubs of path p. We also define the following parameters employed in the formulation. Let

γpe be 1 if arc e belongs to path p, and 0 otherwise. Let Γpu equal 1 if hub u belongs to path

p, and 0 otherwise. Let Γ̄pu be 1 if hub u is an intermediate stop belonging to path p, and

0 otherwise. Given the set of all time-feasible paths for commodities, we define Mu as the

maximum number of commodities that can possibly have paths with an intermediate stop at

u and Me as the maximum number of commodities that can possibly have paths containing

arc e. Let fe be the available remaining truck capacity on arc e; recall that some commodi-

ties may have paths fixed in advance, for example the intra-city commodities forced to take

the direct path.

We now define the decision variables to be employed in the formulation. Let binary

variable xpk equal 1 if path p is selected for commodity k, and 0 otherwise. Let integer vari-
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able ye be the number of vehicles used on arc e. Also, let binary variable wu be 1 if terminal

u is selected as an intermediate sorting hub, and 0 otherwise. Finally, let binary variable

ve equal 1 if arc e is used, and 0 otherwise. The model for selecting one time-feasible path

per commodity such that package movement costs are minimized is as follows.

min
∑
e∈E

yece (3.1)

s.t
∑
k∈K

∑
p∈Pk

γpeqkx
p
k ≤ fe +Qe · ye ∀e ∈ E (3.2)

xpk ≤ wu ∀k ∈ K,∀p ∈ Pk,∀u ∈ Up (3.3)∑
u∈Û

wu ≤ s (3.4)

∑
u∈Uc

wu ≤ 1 ∀c ∈ C (3.5)

xpk ≤ ve ∀k ∈ K,∀p ∈ Pk,∀e ∈ p (3.6)∑
e∈δ+(u)

ve ≤ lu ∀u ∈ U (3.7)

∑
p∈Pk

xpk = 1 ∀k ∈ K (3.8)

xpk ∈ {0, 1} ∀k ∈ K,∀p ∈ Pk (3.9)

ye ∈ Z+ ∀e ∈ E (3.10)

ve ∈ [0, 1] ∀e ∈ E (3.11)

wu ∈ [0, 1] ∀u ∈ Û (3.12)

The objective function (3.1) minimizes package movement costs on arcs. In constraints

(3.2), commodity path flows force the number of vehicles needed on arc e. Constraints

(3.3) verify whether hub u is used as an intermediate stop by any commodity. Constraint

(3.4) limits the number of hubs used as an intermediate stop. Constraints (3.5) restrict the
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selection of at most one intermediate hub per city. Constraints (3.6) verify whether arc e

is used by any commodity path. Constraints (3.7) limit the number of different outbound

destinations at each hub u. Constraints (3.8) state that exactly one path per commodity is

selected. Finally, constraints (3.9), (3.10), (3.11) and (3.12) indicate the type and domain

of the variables.

We introduce a second version of the model that employs aggregated versions of the

forcing constraints (3.3) which ensure that paths containing intermediate sorts are only

used when their sorting hubs are selected and constraints (3.6) related to whether arc e is

used in the solution. We use the same sets, parameters and variables defined for the formu-

lation (3.1)-(3.12), and the interpretations of the other constraints remains unchanged. The

aggregated formulation is as follows:
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min
∑
e∈E

yece (3.13)

s.t
∑
k∈K

∑
p∈Pk

γpeqkx
p
k ≤ fe +Qe · ye ∀e ∈ E (3.14)

∑
k∈K

∑
p∈Pk

Γ̄pux
p
k ≤Mu · wu ∀u ∈ Û (3.15)

∑
u∈Û

wu ≤ s (3.16)

∑
u∈Uc

wu ≤ 1 ∀c ∈ C (3.17)

∑
k∈K

∑
p∈Pk

γpex
p
k ≤Meve ∀e ∈ E (3.18)

∑
e∈δ+(u)

ve ≤ lu ∀u ∈ U (3.19)

∑
p∈Pk

xpk = 1 ∀k ∈ K (3.20)

xpk ∈ {0, 1} ∀k ∈ K,∀p ∈ Pk (3.21)

ye ∈ Z+ ∀e ∈ E (3.22)

ve ∈ [0, 1] ∀e ∈ E (3.23)

wu ∈ {0, 1} ∀u ∈ Û (3.24)

3.6 Greedy Heuristic Approach

Solving the models of the previous section exactly is likely to be difficult for larger prob-

lem instances; we will demonstrate the behavior of this model as problem sizes grow larger

in the computational study. Therefore, in this section, we present a greedy methodology

that selects terminals to use as intermediate sorting hubs in a sequential fashion. In each

iteration of this approach, a single new intermediate sorting hub is added to a set of ex-

isting selected intermediate hubs to reduce problem complexity. We propose a number of
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different variants for how we perform the greedy selection procedure.

The aim here is to reduce the problem of finding a good set of intermediate hubs to

one where smaller integer programs can be solved at each iteration in the heuristic search

for good-quality solutions in a reasonable amount of time compared to the IP-based hub

selection model presented in section 3.5.

In Figure 3.2, we illustrate how the algorithm works at a high level. First, we start with

the direct path solution in the first iteration; these paths must be time-feasible, otherwise

no solution that adds circuity and intermediate sorting can reduce the path time. We then

search for the first intermediate sorting hub to add, among the admissible set of intermediate

hubs, that leads to a decrease in total (transportation) costs. One simple way to find an

intermediate hub that reduces package movement costs is to solve a flow planning model

with fixed hubs; we detail this idea in subsection 3.6.1, and provide a number of solution

approach variants. Then, after we select the new intermediate sorting hub, we fix the new

subset of intermediate hubs and repeat the process. We propose to keep iterating in the

same fashion until we either reach the maximum number of intermediate hubs to select, s,

or until we find that solution does not improve by a reasonable amount any more.

Figure 3.2: Illustration of the Greedy Heuristic Approach
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Algorithm 1 Greedy Algorithm

1: S = ∅

2: Set initial path as the direct route for each commodity

3: Set π as the cost of the direct solution

4: while |S| < s do

5: for u ∈ Û do

6: Solve flow planning model for u according to the greedy variant employed.

7: Save solution for each commodity k when evaluating new intermediate hub u,

call cost solution πu

8: end for

9: Call u∗, πu∗ the new intermediate hub selected and the updated solution cost re-

spectively.

10: π ← πu
∗

11: Update commodity paths chosen for the corresponding u∗

12: S ← S ∪ u∗

13: Û ← Û \ u∗

14: Update Û , remove all hubs belonging to the city of the hub u∗ incorporated

15: if it%t then

16: Solve flow planning model using the existing set of intermediate hubs S. Set

time limit TL and gap GP

17: end if

18: end while

19: Solve flow planning model using the final set of intermediate hubs selected, S. Set

time limit TLf and gap 0%

There are a number of ways to implement this basic greedy paradigm. The primary

approach that we employ is denoted the Greedy Algorithm and is described in detailed in

Algorithm 1. In this approach, we solve a separate flow planning model that adds a single
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new terminal u to the set of intermediate hubs. After solving this set of optimization prob-

lems (and different greedy variants use slightly different assumptions about the available

flow paths in this step), a single new intermediate hub u∗ is selected to be added to the

current solution.

Covering the steps in detail, we first set the direct path solution for all commodities and

let π be the solution cost (line 2 and 3). Next, we verify whether we can add more new in-

termediate hubs (line 4). Then, we iterate over each of the new possible intermediate hubs

in set Û . For each new intermediate hub u ∈ Û , we solve a flow planning model (line 7).

We save the solution cost πu and the commodity paths solution. After that, we add the new

intermediate hub selected according to the greedy variant employed (line 9). We update

the current solution cost and the commodity paths solution (from line 10 to 12). We then

remove from set Û the new intermediate hub added and all hubs belonging to the city of the

new hub. We solve a larger flow planning model every t iterations, with a short time limit,

including all time-feasible direct and one-stop paths using all existing intermediate hubs

(line 16). Finally, after the maximum number of intermediate hubs is reached, we solve the

flow planning model including all paths associated with the final set of intermediate hubs,

allowing a longer computation time (line 19).

Since we implement this paradigm in different ways, we now describe each of the

variants in more detail:

Greedy-Hub

In this greedy variant, we solve the flow planning model for each new intermediate hub

u ∈ Û where the path set includes the paths used in the best solution with the existing

intermediate hubs, plus all time-feasible one-stop paths using the new intermediate hub.

We select the intermediate hub to add that yields the lowest solution cost.
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GRASP-Hub

This variant works similarly to the Greedy-Hub variant, but we randomize the selection

of the new intermediate hub among the R best solutions (lowest cost) in each iteration, in

which the set R denotes the set of the R lowest cost new intermediate hubs. This variant

selects the new intermediate hub u with probability pu, which is defined as the inverse

solution cost associated with the new intermediate hub u, denoted by cu, divided by the sum

of all inverse solution costs associated with each new intermediate hub u ∈ R; specifically:

pu =
1
cu∑

u′∈R

1

cu′

(3.25)

Greedy-Hub Full

This variant solves the flow planning model for each new intermediate hub u ∈ Û , allowing

all time-feasible one-stop paths associated with all existing intermediate hubs and the paths

with the new intermediate hub u. The variant chooses the new intermediate hub that returns

the lowest solution cost.

3.6.1 Flow Planning Model with Fixed Hubs

We introduce the flow planning model with fixed hubs employed in all variants of the

greedy heuristic. This formulation aims to decide the unique time-feasible path for each

commodity. The model is similar to the hub selection model described in section 3.5, how-

ever, it is a more compact formulation since many of the restrictions (such as the at most

one intermediate hub per city and the maximum number of intermediate hubs constraints),

are already embedded in the greedy algorithm. Thus, we employ the same sets and param-

eters defined in section 3.5. Likewise, let binary variable xpk equal 1 if path p is selected for

commodity k, and 0 otherwise, and let integer variable ye be the number of vehicles used
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on arc e. The flow planning model used in the greedy variants takes the following form.

min
∑
e∈E

yece (3.26)

s.t
∑
k∈K

∑
p∈Pk

γpeqkx
p
k ≤ fe +Qe · ye ∀e ∈ E (3.27)

∑
p∈Pk

xpk = 1 ∀k ∈ K (3.28)

xpk ∈ {0, 1} ∀k ∈ K,∀p ∈ Pk (3.29)

ye ∈ Z+ ∀e ∈ E (3.30)

The objective function (3.26) minimizes the package movement costs on arcs. Con-

straints (3.27) force the number of vehicles needed on arc e. Constraints (3.28) state that

exactly one path per commodity is selected. Finally, constraints (3.29) and (3.30) indicate

the type and domain of the variables.

3.6.2 Swap Procedure

At the end of the greedy procedure, we perform a simple swap heuristic that aims to im-

prove the final solution of the greedy heuristic. To do so, we define a group of cities where

swaps are permitted to take place. In this procedure, an existing intermediate hub is only

allowed to be swapped for another new hub if both hubs belong to the same cluster. For

our primary computational study, we define four clusters that are essentially grouped ac-

cording to geographical closeness. We illustrate these example city clusters in Figure 3.3

distinguished by four different colors. The swap procedure is described in algorithm 2.
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Figure 3.3: Cluster of Cities Differentiated by Closeness
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Algorithm 2 Swap Procedure

1: Let U in be the final set of intermediate hubs selected in the greedy procedure

2: S ← U \ U in

3: Set initial commodity paths solution and solution cost, π∗, as the the final solution from

the greedy procedure

4: while n < nmax do

5: for h ∈ S do

6: for u ∈ U in do

7: Solve a flow planning model dropping the paths associated with intermedi-

ate hub u and adding the paths for intermediate hub h; call this solution cost πu

8: if πu < π∗ then

9: Save solution for each commodity k when evaluating swapping hub u

for hub h

10: π∗ ← πu

11: end if

12: end for

13: Select u∗ = argmin
u∈U

πu

14: Swap new intermediate hub h with existing intermediate ‘hub u∗ (if exists) and

update the new solution

15: U in ← U ∪ h

16: U in ← U \ u∗

17: end for

18: S ← U \ U in

19: n← n+ 1

20: end while

The core of the swap algorithm 2 works as follows. For each new hub u ∈ S, we

evaluate for each existing intermediate hub u ∈ U in whether it is an improved solution
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cost to swap new hub h for the existing intermediate hub u. If a swap occurs, we save

the solution as the new incumbent, and we update the sets S and U in. We iterate until a

maximum number of iterations is reached.

3.7 Computational Study

We test our approaches presented in the preceding sections by conducting a computational

study based on real-world data provided by our Chinese courier company partner. For the

experiments, we work with the way-bill of inter-city and intra-city packages for April 2019.

From this data, we compute an average weight per day and an average number of parcels

per day for each commodity.

The network is composed of 69 hubs. Taking into account all possible origin-destination

pairs, we may have up to 4692 commodities without considering time requirements. Since

we address a strategic design problem, we further simplify the problem by grouping com-

modities according to different groups of time requirements which are described in subsec-

tion 3.7.1. We also reduce the number of commodities by only including commodities that

contribute to 99% of the total package weight; since we account for most of the volume in

this approach, we believe that the most cost-effective intermediate hubs for sorting will be

selected. We use two different vehicle types: 7T and 30T, we set the τ parameter as 1.5

hours and we set the use of paths with at most one stop, i.e. T = 1.

In initial experiments, we test many different values of s ranging from 5 to 60. These

experiments suggest that for values of s greater than 10, the solution cost does not im-

prove significantly (see B.1). Therefore, we focus on presenting experiments for values

of s ranging from 1 to 8. Furthermore, in initial experiments, we considered including a

restriction of a maximum number of outbound destinations at hubs; however, the values

used in the experiments made the problem infeasible and therefore we had to increase the

actual value at least a few times (See B.1). Thus, we do not include this restriction in the

experiments we present, and instead we report the violation of this constraint. We test the
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different greedy variants described in the previous sections, and we run the hub selection

model in order to be able to compare gap performance across the different greedy variants.

We employ the aggregated formulation of the IP-based hub selection model because it has

drastically fewer constraints, given the size of the problem, and also yields significantly

lower solution costs compared to the unaggregated version of the model.

3.7.1 Consolidation of Commodities

In this section, we describe how commodities are grouped according to similar time re-

quirements.

Most of the package volume corresponds to intra-city packages (of the southern area

of China); in Figure 3.4, we depict the volume percentage (in terms of weight) for both

intra-city and inter-city demand.

26.3%

73.7%

Intra-city

Inter-city

Figure 3.4: Package Volume by Type of Demand

In Figure 3.5, we illustrate the volume of shipments by different time requirements (in

hours).
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66.8%

20.7%

10.5%

1.8%

0.2%

[0,6]
(6,12]
(12,24]
(24,48]
>48

Figure 3.5: Volume of Packages by Time Requirement

We group commodities by employing aggregated time requirement groups, namely in-

tervals, between the bounds of 6, 12, 18, 24, 48 and 72 hours for inter-city packages. Due

to this grouping, we are able to decrease the total number of commodities from roughly

120,000 to 5,297. In Table 3.1, we report statistics for this grouped set of commodities.

Table 3.1: Aggregated Commodities by Time Requirement

# of commodities (O-D-δ) 5297

# of O-D pairs 1864

Average # of services per O-D 2.84

Minimum # of services per O-D 1

Maximum # of services per O-D 42
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3.7.2 Experiments for Different Values of s

Table 3.2: Gap Performance of the Greedy Variants

s 0 1 2 3 4 5 6 7 8

Hub selection model NA NA 30.38% 22.48% 29.02% 32.51% 35.09% 36.10% 32.70%

Greedy-Hub 0.00% 0.00% 24.01% 19.68% 18.02% 17.07% 16.57% 15.76% 15.90%

Greedy-Hub-Full NA NA 23.58% 19.30% 17.52% 16.33% 15.72% 15.49% 14.92%

GRASP-Hub NA NA 23.46% 18.75% 17.55% 16.99% 16.09% 16.13% 15.39%

Table 3.2 shows the gap performance for the different greedy variants and the hub selection

model. The cost lower bound used to compute all gaps is determined by running the full

hub selection model. As we observe, the hub selection model does not yield good gap per-

formance after 16 hours of running time. This result is explained by the fact that this model

allows all time-feasible one-stop paths associated with the admissible set of all intermedi-

ate hubs, resulting in more than 100,000 commodity paths. For the case when s = 0, 1, we

are able to solve the instances optimally because for s = 0, it is trivial to evaluate the direct

route for all commodities and for the case s = 1, we employ the Greedy-Hub variant which

returns the best solution when we evaluate the incorporation of each new intermediate hub,

and we then select the hub with the maximum savings. Since these models are small in

size (we only have the direct path and the path passing through the new intermediate hub),

we are able to solve each flow planning model with fixed hubs exactly. For the cases when

s ≥ 2, the three variants behave comparatively similar in terms of gap performance. For

most of the values of s, except for s = 2, 3, the Greedy-Hub-Full is the variant that per-

forms the best. This result is not surprising because this variant uses more path alternatives

in each iteration, considering all paths associated with all the existing intermediate hubs

when solving the flow planning model.
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Table 3.3: Number of Hubs Violating the Maximum Number of Loading Docks

s 0 1 2 3 4 5 6 7 8

Hub selection model NA NA 4 3 3 2 3 2 3

Greedy-Hub 15 4 2 2 3 3 4 2 3

Greedy-Hub-Full NA NA 2 2 2 2 2 2 2

GRASP-Hub NA NA 3 2 2 3 2 3 2

Table 3.3 shows the number of hubs that violate the maximum number of loading docks.

As we observe, for the most interesting cases, s ≥ 1, this constraint is violated in no more

than four hubs. Moreover, most of these hubs have less than ten loading docks, some having

even between 3 and 4. This suggests that it may be beneficial to incorporate more loading

docks in these hubs given that they are cost-effective for intermediate sorting.

Table 3.4: Commodity Volume Taking Non-direct Paths

s 0 1 2 3 4 5 6 7 8

Hub selection model NA NA 29.1% 30.8% 29.7% 28.8% 27.2% 26.5% 27.8%

Greedy-Hub 0.0% 24.6% 27.0% 27.8% 30.2% 39.0% 38.6% 38.3% 38.0%

Greedy-Hub-Full NA NA 25.0% 25.9% 25.5% 34.1% 35.7% 35.7% 35.1%

GRASP-Hub NA NA 28.9% 29.1% 26.0% 34.3% 35.8% 39.2% 35.8%

In Table 3.4, we report the degree of consolidation, commodity volume taking non-

direct paths, achieved by the different greedy solutions. We observe that the highest per-

centage of consolidation is close to 40% for the GRASP-Hub and Greedy-Hub variants.

This level of consolidation may not be perceived as high, but the vast majority of the intra-

city volume, roughly 26% of total volume, is forced to be sent on the direct path and thus

consolidation is only possible for the other three-quarters of the total flow volume.
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Table 3.5: Inter-city Commodity Volume Taking Non-direct Paths

s 0 1 2 3 4 5 6 7 8

Hub selection model NA NA 39.64% 41.94% 40.43% 39.19% 37.04% 36.03% 37.80%

Greedy-Hub 0 33.50% 36.72% 37.77% 41.05% 53.04% 52.51% 52.14% 51.74%

Greedy-Hub-Full NA NA 34.00% 35.27% 34.69% 46.45% 48.53% 48.54% 47.79%

GRASP-Hub NA NA 39.32% 39.63% 35.38% 46.69% 48.66% 53.33% 48.69%

In Table 3.5, we report the level of consolidation when only considering inter-city de-

mand. As we notice, the degree of consolidation achieved by the different variants is close

to 50%, and greater in some cases. As we increase s, we generally observe a higher level

of consolidation, which is not surprising given that more paths become available as more

new intermediate hubs are incorporated.

In Figure 3.6, we illustrate the geographical location of the cities associated with the

intermediate hubs selected by the Greedy-Hub-Full variant, which is the variant that per-

forms the best in most cases. At the top of Figure 3.6, we show the solution for s = 1, 2,

then going down for s = 3, 4, and so on.
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Figure 3.6: Cities of the Intermediate Hubs Selected in the Greedy-Hub-Full Variant
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In Table 3.6, we report the percentage of commodity volume sorted at the intermediate

hubs selected for s = 8. Given that most of the inter-city volume in this data set comes from

and heads to hubs located in the center, we notice that the hubs that are more frequently

used for sorting are situated around the center. In Figure 3.6, we markedly observe this

behaviour from s = 4 to s = 7. At least 2% of the commodity volume is sorted at each

of the intermediate hubs selected. Note that 2% may seem negligible, but this company

transfers millions of packages daily. In Figure 3.7, we depict the commodity volume sorted

at intermediate hubs; the larger the circle, the greater the commodity volume sorted at the

hub. We observe that three hubs concentrate more than 70% of the sorted volume. These

hubs are located at the center of the geographical area, which is expected, because most of

the package volume is coming from and going to cities situated around the center.

Table 3.6: Commodity Volume Cross-docked at Intermediate Hubs

Hub % Sorted Volume

755WE 37%

769WB 26%

592W 9%

750W 9%

020R 8%

660VW 6%

791WH 4%

759VA 2%
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Figure 3.7: Cross-docked Volume at Intermediate Hubs

3.7.3 Experiments Performing Swap Procedure

We perform a swap procedure at the end of the Greedy-Hub-Full variant. Swaps are only

allowed among hubs belonging to the same city cluster defined in the subsection 3.6.2.

In Table 3.7, we report the number of swaps that the method performs after there is

no change in solution cost in swapping existing intermediate hubs with new intermediate

hubs. We observe that only for s = 2, 3, a swap occurs, and the swaps take place in the

same cities. Moreover, the gap improvement of the swap scheme upon the greedy variant is

not greater than 1%. This suggests that an enhanced swap procedure needs to be developed

to improve current greedy solutions.
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Table 3.7: Statistics when Performing Swap Procedure

s 2 3 4 5 6 7 8

Number of swaps 1 1 0 0 0 0 0

Solution before swap 982,371 932,247 905,261 889,597 880,831 878,304 874,472

Solution after swap 972,590 924,858 905,261 889,597 880,831 878,304 874,472

Gap improvement 1.00% 0.79% 0% 0% 0% 0% 0%

3.8 Conclusions and Future Research

We propose a strategic heuristic approach to select the most cost-effective intermediate

hubs for cross-docking activities. The selection of hubs adds another layer of complexity

on top of service network design. To address this, we develop decomposition approaches

to make the problem tractable and to obtain high-quality solutions. We also make practi-

cal assumptions that arise in practice, which help to reduce the size of the problem. We

implement our methods in a real-world data set provided by our courier partner. We show

that our methodology produces good-quality solutions in terms of the locations of the in-

termediate hubs selected and in terms of gap performance. All different greedy variants

we develop outperform the hub selection model, with all time-feasible one-stop paths, by a

20% gap difference for s = 6, 7.

The best greedy variant solutions return gaps of approximately 15%, which suggests

that further enhancements are needed to improve current solutions and find tighter lower

bounds of the problem. In a few cases, the GRASP-Hub and the swap procedure pro-

duce slightly better solutions compared to the other variants; the improvement obtained is

generally no more than 2% of gap.

As a future research avenue, investigating new heuristics for the problem would be

very interesting given that the methodologies we develop are all mainly based on a greedy

sequential scheme. Heuristics to explore may be other variants of IP-based models. Exact
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methodologies, such as column generation, which may deliver better lower bounds, would

also be intriguing to explore.

Another aspect that is not taken into account in our current approach is the capacity,

in terms of packages, that hubs permit for cross-docking. We currently assume it is unre-

stricted; however, this may turn into an issue for small hubs located in central geographical

areas, in which high volume demand has to be managed.
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CHAPTER 4

PATH GENERATION BASED HEURISTIC FOR SERVICE NETWORK DESIGN

4.1 Introduction

We consider a freight flow planning problem for a package courier system operating fast

time-definite services. The setting in which we develop this work is identical to that con-

sidered in Chapter 3. In this work, we focus on a consolidation freight flow planning

problem that conforms to a special structure that we term generalized in-tree, in which we

assume that the terminals for intermediate sorting are selected or fixed. Since the network

is specified, we aim to build a plan where path flows form a generalized in-tree for each

destination, a concept that we introduce in detail in subsection 4.1.1. This structure intends

to generalize the concept of an in-tree in which all flows at a terminal with a common des-

tination must transfer next to the same hub. We extend this concept by incorporating a time

requirement for the package into the definition, more specifically, the remaining available

time for packages to reach their destinations without violating the service constraint. In

other words, we expand the set of instructions for a terminal, compared to the in-tree struc-

ture, to include how packages are routed over the network depending on their destination

and their remaining available time. In practice, this structure not only allows to enhance

operational realism but also offers a seamless way to operate.

In this work, we consider the region we employ in Chapter 3, the southern area of China

that is composed of 29 cities and 69 hubs. In this region, 4 million packages are handled on

average every day, which is equivalent to 120,000 commodities associated with an origin,

destination and time requirement. Similarly as in Chapter 3, the setting described imposes

a scale challenge to be tackled, and therefore, the approaches we develop must scale to the

size of this problem. To do so, we develop decomposition heuristic approaches in which we
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build a dynamic path generation heuristic that seeks to find multi-stop paths that enables to

take advantage of consolidation opportunities.

4.1.1 Generalized In-Tree Structure

We introduce the concept of a generalized in-tree structure, referred to as GIT, which has

a foundation from an operational perspective that aims to simplify the set of instructions at

terminals for how to plan the flow of packages. Secondly, we aim to generalize the concept

of an in-tree structure which enables simple terminal operations because it allows only the

verification of the destination of a package to determine the proper outbound trailer for

loading. This operational strategy is simple in terms of instructions, nonetheless, it restricts

the flow planning flexibility to take advantage of consolidation opportunities, and therefore,

to be able to reduce operational costs further. On the other hand, a complete relaxation of

this structure is the more flexible strategy where flows can be routed unrestricted through

different terminals regardless of their destinations, origins and remaining available times.

This relaxed plan is more difficult to operate in practice, especially when commodities are

not restricted to follow single all-or-nothing paths from origin to destination.

A more realistic and flexible approach than an in-tree structure, but one that still im-

poses some structure on the solution that enables practical benefits during operations is

what we term a GIT structure. We say that paths conform to a GIT structure (i, d, [α, β), j)

if all flow at terminal i with a final destination d and having a remaining available time be-

tween [α, β) will transfer next to terminal j. We call the interval [α, β) a bucket for a given

terminal i and destination d. We show an example of this concept in Figure 4.1, where at

terminal i, there are three buckets for two flows of packages passing through terminal i and

with a common destination d. Since the remaining available time of flow k1 falls into the

first bucket, [1, 3), the flow will transfer next directly to destination d. The remaining avail-

able time of flow k2 falls into the last bucket, [4,−) (which means any remaining available

time greater than or equal to 4), then it will transfer next to intermediate hub B.
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Figure 4.1: Illustration of a GIT Structure

The definition of a GIT structure is flexible enough to arbitrarily define many high-

granularity buckets, i.e. when β − α is small for each bucket. Therefore, in general it is

true that any set of flows will conform to an arbitrary GIT structure. The exceptional case

occurs when there are two flows with the same remaining available time at terminal i, with

a common destination d, which transfer to a different next terminal. This rarely occurs

because we use rational distances and travel times on arcs. Figure 4.2 depicts an example

of three flows, with different remaining available times at terminal i, which we convert into

a GIT structure by defining suitable buckets constructed from the remaining available times

of the flows at terminal i.

j2i

K1  Rem Time = 1

j3

j1

K2  Rem Time = 2

K3  Rem Time = 3

i

[1,2) j1

[2,3) 

[3,-) 

j2

j3

Figure 4.2: Construction of a GIT Structure

As we previously discussed, given the fact that (almost always) any set of flows form

an arbitrary GIT structure, it is helpful to instead introduce a discretized version of the GIT

structure. The discretized version adds on top of the definition of the GIT the following
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restrictions: we constrain all buckets [α, β) to be of a fixed width ofB hours, i.e., α-β = B,

except for the last bucket which is of the form [α, -); the first bucket starts from zero and

they do not intersect, i.e. buckets are of the form [0,B), [B, 2B) and so on. Thus, when we

refer to this structure, we term it as a B-hour discretized GIT. It is noteworthy to mention

that the example in Figure 4.2 cannot be modified into a 2-hour discretized GIT, because

there are two remaining available time flows that fall into the bucket [2,4) that transfer to

two different next terminals.

4.1.2 Flow Planning with GIT Structure

The novelty of the work presented in this chapter is that we introduce the concept of a GIT

and a discretized GIT, which allows the creation of structured flows plans that are more

flexible but provide useful operational benefits. For flow planning under this structure,

we develop and compare a number of different approaches: a GIT-based approach, an

optimized GIT-based formulation and a relaxation using a path-based formulation. We

develop also novel dynamic path generation procedures for the GIT-based and path-based

formulations, because we cannot enumerate all time-feasible paths given the set sizes that

would result on medium and large problems.

Given that realistically-sized problems can yield large integer programming formula-

tions, we model our approaches on a flat network, where we consider flows of packages

associated with an origin, destination and time requirement. We aim to develop dynamic

path generation approaches that seek to find flow plans comprised of good multi-stop paths,

where planned solutions conform to a reasonable discretized GIT structure for each desti-

nation. The path generation heuristic that we develop is inspired by the concepts of column

generation where dual prices are used to compute arc reduced costs after solving specially-

designed linear programs that capture some of the benefits of consolidation.

We develop three flow planning approaches in this chapter: (1) a relaxation of the

problem using a path-based formulation, (2) a GIT-based approach, and (3) an optimized
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GIT-based approach. We relate and compare results to Chapter 3. We demonstrate, via a

computational study, that the path-based approach that enforces single paths for commodi-

ties generally leads to a 4-hour discretized GIT structure for small instances; for medium

and large instances, the solutions do not conform to a discretized GIT structure overall,

however, more than 90% of the solution does conform to a 2 and 4-hour discretized GIT

structure. The flexibility to use multi-stop paths, having more than one intermediate stop,

using the same set of intermediate hubs selected in Chapter 3, permits us to improve the

flow planning solution costs from that chapter by more than 3% when using the cost struc-

ture of the large truck type. We show that imposing different GIT structures creates so-

lution penalty costs between 2% and 4%. Computational experiments show that the three

approaches behave comparatively similar for the smallest sized instances, nevertheless, the

path-based and the optimized GIT-based approaches strongly outperform the GIT-based

approach by more than 10% of gap performance for the large size set of instances. In-

terestingly, when imposing a tree structure on the optimized GIT-based approach, the gap

performance difference is 3.44% compared to the solutions of the relaxation of the problem

through the path-based approach for the largest instance.

The contributions of our work are summarized as follows:

• We generalize the in-tree concept by introducing the GIT structure which has useful

operational benefits.

• We develop novel GIT-based and optimized GIT-based approaches.

• We build dynamic path generation approaches to avoid enumerating all time-feasible

paths in advance.

• We demonstrate that different GIT structures yield a penalty cost between 2% and

4% for the data set used.

• We demonstrate that approaches that dynamically create multi-stop paths permit us
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to improve solution costs by about 3% in comparison to the setting in chapter 3 in

which we allow at most one-stop for paths.

The remainder of the work is structured as follows. In section 4.2, we present relevant

prior literature review. In section 4.3, we provide a formal description of the problem. In

section 4.4, we present the relaxation of the problem through a path-based formulation. In

section 4.5, we describe the GIT-based and the optimized GIT-based approaches. In section

4.6, we conduct a computational study based on a real world data set that we employed in

Chapter 3. Finally, in section 4.7, we present conclusions and future research.

4.2 Literature Review

Most of the main literature and works on service network design, hub locations and hub

network design problems are presented in the literature review of Chapter 3. We add rel-

evant literature and works related to column generation approaches and branch-and-price

techniques on service network design and bi-objective shortest path problems that are re-

lated to the work we develop in this Chapter.

One of the first frameworks of column generation for solving general large problems

is presented in [50]. [5] presents a branch-and-price-and-cut approach to solve origin-

destination integer multicommodity flow problems. In this work, they develop an enhanced

branch-and-price algorithm by adding cuts, and demonstrate that by generating columns

only at the root node, the branching rule is more effective at finding the optimal solution

than a standard rule. In [6], a branch-and-price algorithm is presented for addressing the

service network design problem with asset management constraints (SNDAM), in which

they integrate two column generation subproblems for integer cycle design and continuous

flow-path variables of the problem. In [7], a branch-and-price-and-cut (BPC) algorithm

is developed for the multicommodity capacitated fixed-charge network design problem, in

which the restricted master problem is a compact arc-based model by considering only

a subset of the commodity flow variables. The pricing subproblem corresponds to a la-
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grangian relaxation of the flow conservation and capacity constraints. The BPC performs

well and is more efficient than an MIP solver and a branch-and-cut algorithm that does

not integrate column generation. [8] also develops a branch-and-price approach for the

directed network design problem with relays (DNDR), and proposes two formulations for

this problem: a node-arc and an arc-path. For the latter, they formulate an arc-path formu-

lation for which they develop a branch-and-price approach with two methods for entering

columns. [51] addresses an integrated tactical planning service network design and hub

location problem for road-rail transport, they develop a path-based model that is solved

by branch-and-price-cut which outperforms a commercial solver employing an arc-based

approach. In [52], they exploit a tree formulation along with a branch-and-price-and-cut

algorithm for the single-source demand case of the network design problem with relays.

We find column generation based algorithms for the location-routing problems in [53] and

[54].

On algorithms for solving the bi-objective shortest path, one of the most common algo-

rithms is the bound label setting algorithm (Blset) in [55], which is based on a label setting

algorithm that employs prune techniques by using labels at nodes and labels at the final

node which are referred to as bounds (also called efficient set). For the one-to-one case

(single origin-destination), results are compared to the label correcting algorithm with and

without bounds in which Blset is the best performer. A recent new method is the Pulse

algorithm, in [56], which is based on a depth first search recursive algorithm truncated by

pruning strategies. Basically it creates a complete solution to the destination, that they call

”pulse” which may be an efficient solution. To avoid large enumeration, it prunes along the

way by nadir point (anti-ideal point), by cycles, efficient set and labels. It performs better

than the Blset algorithm in almost all instances tested for the one-to-one case. For the one-

to-all case, it may not be efficient because there are many nadir points as destinations and

it needs to solve a single shortest path for each objective and destination.

A recent algorithm is the label setting with dynamic update of pareto front (LSDFP)
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in [57]. It is based on a label setting and has a first phase to find the non-dominate pareto

points. The algorithm solves one objective shortest path and convex combinations for prun-

ing, dynamically updates the whole pareto front, and develops 3 strategies for selecting

labels: lexicographic, sum of costs, and convex combinations of costs. It performs better

than the Blset and the Pulse algorithms for medium and large instances, but not for small

instances.

One of the the latest algorithms, up to this date, is the bi-objective Dijkstra method

(BDijkstra), in [58], which is based on a label setting algorithm. They develop a unidirec-

tional and bidirectional variant and use a lexicographic label selection. For the one-to-one

case, it adds pruning strategies, tests bidirectional scheme, and computes the nadir point

(anti ideal point) for further pruning. Both variants of the algorithm, the unidirectional and

bidirectional, perform better than both the Pulse and the Blset algorithms in the instances

studied. In our work, we solve bi-objective shortest path problems for the path and GIT

generation heuristics of the GIT-based and path-based formulations.

4.3 Problem Description

We consider an inter-city service network where packages need to be moved from their

origins to their destinations. The network is defined on a graph G = (U , E) with node

set U representing hubs and an arc set E representing (directed) transportation connections

between terminals. We assume a distance de and a cost ce on arc e corresponding to a

vehicle movement of capacity Qe. Let Ū denote the set of hubs that are admissible as

intermediate hubs, and it takes a time tcrossu for u ∈ Ū . We assume unrestricted capacity at

each hub u ∈ U .

We define the time requirement of a package as the available time to reach its destina-

tion starting from its origin terminal. We define a commodity k to be the set of shipments

sharing the same origin, destination and time requirement. Let K be the set of all com-

modities, where a commodity k ∈ K is identified by a tuple (ok, dk, δk, qk), where ok ∈ U
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is the origin, dk ∈ U is the destination, δk is the time requirement and qk is the commodity

size measured as number of pieces.

The objective is to find time-feasible flow paths that conform to a GIT structure for

each destination so as to minimize package movement costs on arcs while ensuring that

all commodities respect their time requirements. Packages are sorted and reloaded at each

intermediate terminal along the flow path from origin to destination.

4.4 Path-Based Formulation

This section focuses on solving a service network design problem with commodity service

time constraints on a flat network using a formulation where the decision variables are

paths, in which we define a path p as a sequence of terminals (or a sequence of arcs)

(u1 = ok, u2, ..., uk = dk) that commodity k takes from its origin, ok, to its destination, dk,

where each (ui, uj) is an arc in E .

A potential commodity path p is said to be time-feasible if the sum of the travel times of

all arcs of the path and the handling times (unloading and loading) at all of its intermediate

sorting stops along the path is no greater than the time requirement, δk. That is,

∑
e∈p

te +
∑
u∈p

tu ≤ δk (4.1)

4.4.1 Formulation

We present the path-based formulation on a flat network. The model selects one path per

commodity in order to minimize the vehicle resources needed to transport the packages

such that all commodities respect their time requirements. Such a path-based formulation

is known as a single-path formulation.

Let Pk represent a set of time-feasible paths for commodity k ∈ K and let parameter

γpe equal 1 if path p covers arc e, and 0 otherwise. In addition to the set and parameters
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introduced before, we define the variables to be employed in the formulation. Let binary

variable xkp equal 1 if path p is selected for commodity k, and 0 otherwise. Let integer vari-

able ye be the number of vehicles used on arc e. The model of selecting one time-feasible

path per commodity such that package movement costs are minimized is as follows.

min
∑
e∈E

yece (4.2)

s.t
∑
k∈K

∑
p∈Pk

γpeqkx
k
p ≤ Qe · ye ∀e ∈ E (4.3)

∑
p∈Pk

xkp = 1 ∀k ∈ K (4.4)

xkp ∈ {0, 1} ∀k ∈ K, ∀p ∈ Pk (4.5)

ye ∈ Z+ ∀e ∈ E (4.6)

In 4.2, we minimize the cost of arcs. In constraints 4.3, the commodity paths selected

induce the number of trucks needed on each arc. Restrictions 4.4 select one path per com-

modity and constraints 4.5 and 4.6 are the domain variables.

4.4.2 Minimum Reduced Cost Path

We introduce the pricing problem to create a minimum reduced cost path for a commodity

k. Let αe and θk be the dual pricing values associated with the constraints 4.3 and 4.4,

respectively. The reduced cost of the xkp variable to generate a path p for commodity k is

computed as follows:

c̃kp = 0− (
∑
e∈E

γpeqkαe + θk) (4.7)

Thus, for a commodity k, we aim to create a time-feasible path with a minimum re-
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duced cost; when the reduced cost is negative for such a path, it may improve the objective

function value of linear programming relaxation of the path-based formulation. Since we

can take qk and θk out of the sum, we therefore minimize:

∑
e∈E

γpeαe (4.8)

Given the time requirement restriction of each commodity, the problem becomes solv-

ing a constrained shortest path problem for each commodity k ∈ K. Instead of solving a

constrained shortest path for each commodity, we solve a bi-objective shortest path prob-

lem for each destination d ∈ D to find all non-dominated paths, associated with the non-

dominated points of the bi-objective shortest path solution, from all origins to destination

d. We then identify the constrained shortest path for each commodity k ∈ Kd and d ∈ D

depending on its time requirement.

The bi-objective shortest path algorithm is based on a backward label setting algorithm

which starts from the destination d, and finds all non-dominated paths for each origin. Let

δmaxd be the maximum time requirement among all commodities with a common destination

d, i.e. belonging to the set Kd. We outline the bi-objective shortest path procedure in

algorithm 3.
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Algorithm 3 Bi-Objective Shortest Path

1: Set Ld = {(0, 0)}, set of labels, and Li = ∅ ∀i ∈ U \ d

2: Ii index set of labels for each i ∈ U , set Id = (0, 0)

3: Set Ti = ∅ for each i ∈ U

4: while
⋃
j∈U Ij \ Tj 6= ∅ do

5: Choose minimum lexicographic label l, let j be the associated node and tlj and clj

travel time and cost, respectively.

6: Treat label l

7: if j ∈ Ū or j = d then

8: for i ∈ δ−(j) do

9: We say that label l is dominated by labelm if tmi ≤ tlj+tij and cmi ≤ clj+cij

10: if label l is not dominated by any other label m ∈ Ii and tlj + tij ≤ δmaxd

then

11: Delete labels dominated by label l

12: Set Li = Li
⋃
l

13: Add label l to Ii

14: Update t, c, stops with the label l at node i

15: end if

16: end for

17: Ti = Ti
⋃
l

18: end if

19: end while

Algorithm 3 works as follows. We first initialize the set of labels L at the destination

d with cost and travel time zero and empty for all other nodes. We save the set of index

labels in set I and the set of visited labels in set T for each node (from line 1 to 3). While

we have unexplored labels, we select the minimum lexicographic label l associated with

node j. Next, we verify whether the label contains a path with intermediate hubs in the
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admissible set Ū and is not dominated by any other label at node j (from line 5 to 10). If

so, we add the label l to the set of labels L, we delete the labels dominated by l, and we

update the sets L, T and I , and parameters t, c and stops (from line 11 to 17). We iterate

until all labels are visited.

4.4.3 Path Generation Based Heuristic

In this part, we focus on developing a dynamic path generation heuristic procedure for the

path-based formulation. In subsection 4.4.2, we present the pricing problem to generate a

minimum reduced cost path for a commodity. Solving the LP relaxation of the path-based

formulation offers no incentive for consolidating commodities because the optimal LP so-

lution is simply to route commodities either over the direct or the shortest path. Since we

aim to generate non-trivial multi-stop paths that take advantage of consolidation opportuni-

ties, we impose lower bounds on truck variables, ye, because this way the optimal LP path

flow is incentivized to use non-trivial paths containing arcs with the lower bounds. These

lower bounds are driven by the solution from the IP of the path-based model. We construct

the initial set of paths for all commodities using the direct routes. Thus, we aim to set

lower bounds on truck variables that depend on the package flow of the IP solution, i.e.,

fe =
∑
k∈K

∑
p∈Pk

γpeqkx
p
k for each e ∈ E . To determine whether to set a lower bound on the

truck variable on arc e, we randomly set a lower bound with probability p, i.e., if a uniform

random number is lower or equal to p, we set a lower bound on arc e as d fe
Qe
e, otherwise we

do not set a lower bound. We round up the value of fe
Qe

because this is an effective lower

bound for the LP relaxation when seeking integer solutions.

Given a set of imposed lower bounds, we solve the LP relaxation of the path-based

model. Using the dual prices from this solution, we then solve a bi-objective shortest path

problem for each destination to obtain optimal flow paths from all origins to d. All paths

from origins to destination d correspond to minimum reduced cost paths. Depending on the

time requirement of each commodity, we obtain the minimum reduced cost path for each
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commodity. If the reduced cost of the path is negative, we add the new generated path to

the set of time-feasible paths. Then, we solve the IP of the path-based model anew with

the path variables created; we note at this point, new lower bounds are generated for the

linear program. We iterate in this fashion until a maximum number of nmax iterations is

reached or the objective value does not vary more than r% after T iterations. We detail the

procedure in algorithm 4.
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Algorithm 4 Path Generation
1: Set n = 1 and Stop = False

2: Solve LP relaxation problem using the direct paths

3: Solve IP problem using the direct paths

4: Set lower bound ymine = d fe
Qe
e on arc e with probability p

5: while n ≤ nmax and not Stop do

6: for d ∈ D do

7: Solve a bi-objective shortest path problem for destination d

8: for k ∈ Kd do

9: Map the path associated with the origin ok and time requirement δk from

the solution of the bi-objective shortest path problem, call it pk

10: Compute reduced cost of path pk as c̃kp = −θk −
∑
e∈pk

qkαe

11: Add the path if reduced cost is negative

12: end for

13: end for

14: Solve LP relaxation problem with path variables added

15: Solve IP problem with path variables added

16: Set lower bound ymine = d fe
Qe
e on arc e with probability p

17: n← n+ 1

18: If objective value does not change more than r% in the last T iterations set Stop =

True

19: end while

Algorithm 4 works as follows. First, we initialize parameters of iterations (line 1). We

solve initial LP and IP of the path-based formulation by using the direct paths for all com-

modities. Next, we set lower bounds on truck variables, ye, for each arc e ∈ E depending

on probability p (line 4). In each iteration, we employ the dual pricing values from the LP

relaxation solution to solve a bi-objective shortest path problem for each destination d ∈ D.
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We thus obtain the constrained shortest path for each commodity k ∈ Kd in order to com-

pute the reduced cost of the path (lines 9 and 10). We add the constrained shortest path for

each commodity if the reduced cost is negative (line 11). We solve anew the LP relaxation

and IP problems with the new generated paths (lines 14 and 15). We set lower bound on

truck variables using the new IP problem solved (line 16). We iterate in this manner until

a maximum number of nmax iterations is reached or the objective value does not change

more than r% after T iterations.

4.5 GIT-Based Formulation

This section focuses on solving a service network design problem with commodity service

time constraints on a flat network by a formulation where the decision variables are GITs

defined for destinations d ∈ D, where D is defined as the set of destinations such that at

least one commodity k ∈ K has a destination d(k) = d.

To understand the GIT-based formulation, suppose that a solution selects a GIT Gd
g for

each destination d. For each commodity k ∈ K where d(k) = d, the selected GIT Gd
g

defines a unique path from origin to destination for that commodity. Thus, the selection

of Gd
g for destination d implies freight volumes f e,dg that need to be added to each truck

dispatch arc e ∈ E . Let Gd represent a set of time-feasible GITs for destination d ∈ D.

Thus, a constraint to determine the number of trucks needed on arc e ∈ E is as follows:

∑
d∈D

∑
g∈Gd

f e,dg xdg ≤ τe (4.9)

where the variable xdg is binary and equal to one if GIT g is selected for destination d in the

solution, and 0 otherwise.
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4.5.1 Formulation

We present the GIT-based formulation on a flat network. The model selects one GIT per

destination that aims to minimize the vehicle resources needed to transport the packages

such that all commodities meet their corresponding time requirements.

We say that a GIT for a destination d is time-feasible if the unique paths from their

origins to the destination are time-feasible for all commodities, i.e., the travel time of the

path is less than or equal to δk for each commodity k with a common destination d.

In addition to the set and parameters introduced before, we define the variables to be

employed in the formulation. Let binary variable xdg equal 1 if GIT g is selected for desti-

nation d, and 0 otherwise. Let integer variable ye be the number of vehicles used on arc e.

The model of selecting one time-feasible GIT per destination such that package movement

costs are minimized is as follows.

min
∑
e∈E

yece (4.10)

s.t
∑
d∈D

∑
g∈Gd

f e,dg xdg ≤ Qe · ye ∀e ∈ E (4.11)

∑
g∈Gd

xdg = 1 ∀d ∈ D (4.12)

xdg ∈ {0, 1} ∀d ∈ D, ∀g ∈ Gd (4.13)

ye ∈ Z+ ∀e ∈ E (4.14)

In 4.10, we minimize the cost of arcs. Constraints 4.11 determine the number of trucks

needed on each arc induced by the GITs chosen. Restrictions 4.12 select one time-feasible

GIT per destination, and constraints 4.13 and 4.14 are the domain variables.
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4.5.2 Minimum Reduced Cost GIT

We outline the pricing problem to create a GIT for destination d. Let αe and θd be the dual

pricing values associated with the constraints 4.11 and 4.12, respectively. The reduced cost

of the xdg variable to generate a GIT g for destination d is computed as follows:

c̃dg = 0− (
∑
e∈E

f e,dg αe + θd) (4.15)

Thus, for a destination d, we aim to create a GIT with a minimum negative reduced

cost.

We solve the problem of creating a minimum negative reduced cost GIT by finding

the constrained shortest paths from all commodity origins to destination d. In turn, this

problem can be decomposed by commodity with a common destination d. Let Kd denote

the set of commodities such that d(k) = d.

Let us suppose the solution of the constrained shortest path for commodity k ∈ Kd is

pk. Then, the reduced cost of a GIT for destination d, and the associated set of commodities

Kd, can be written as follows:

c̃dg = −θd − (
∑
k∈Kd

∑
e∈pk

qkαe) (4.16)

Since we aim to solve all constrained shortest paths from all commodity origins to

a destination d, instead of solving a constrained shortest path for each commodity, we

solve a bi-objective shortest path problem for a destination d to find all non-dominated

paths, associated with the non-dominated points of the bi-objective shortest path solution,

from each origin to destination d. Then, we identify the constrained shortest path for each

commodity depending on its time requirement.
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Bi-Objective Shortest Path Problem

We solve a bi-objective shortest path problem for each destination which has been exten-

sively studied in recent works for the one-to-one and the one-to-many cases (see [55], [56],

[57] and [58]). For a given destination d, we find all non-dominated points for all origins.

At an origin i, the non-dominated points are of the form (γ, j), which indicates the shortest

path, from i to d, by transferring next to j when the remaining available time is greater or

equal to γ. We employ these non-dominated points to build a GIT and then modify it to

obtain a discretized GIT structure for each destination.

Construction of a Discretized GIT Structure

We detail how we build a discretized GIT structure from the solution of the bi-objective

shortest path problem. Let us suppose we have N non-dominated points (associated to

shortest paths) at terminal i for which we know the travel time tl, from i to d, and the

next terminal to transfer to, jl, for each l = 1, ..., N . We sort the times tl from shortest

to longest and we construct the buckets at terminal i in the form of (i, d, [tl, tl+1), jl+1)

for each l = 1, ..., N − 1 and a last bucket (i, d, [tN , -),jN ). These buckets specify what

the next terminal to transfer to is depending on what bucket the remaining available time

of a commodity falls into at terminal i. In Figure 4.3, we depict an example with N = 4

non-dominated points at terminal i, which we build into buckets.
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Figure 4.3: Construction of Buckets for a GIT Structure

The definition of a B-hour discretized GIT requires only one next transferring terminal

for each bucket. Since the solution from the bi-objective shortest path does not necessarily

guarantee to respect this restriction for all discretized buckets, we then modify the GIT

we construct in order to build a B-hour discretized GIT. To do so, we need to ensure time

feasibility of commodity paths. This means that the next terminal j to transfer to at terminal

i for a given discretized bucket, cannot be a terminal for which it does not define a time-

feasible path, from j to d, for any commodity passing through or originating at terminal i

that falls into a given discretized bucket.

We modify the GIT to obtain a B-hour discretized GIT in the following manner; we

define the next terminal j to transfer to at terminal i for a discretized bucket as the next

terminal of the buckets, from GIT, intersecting the discretized bucket with the smallest

interval bounds. This way, selecting the next terminal to transfer to from the smallest

interval bound bucket with the discretized bucket guarantees that the modified paths are

time-feasible for any remaining available time of a commodity at terminal i. The latter is

explained by the fact that the paths, from the GIT, defined by the buckets built from the

non-dominated points of the bi-objective shortest path solution, are already time-feasible,

therefore, when we map the next terminal to transfer to, associated with an equal or faster

travel time path, to a discretized bucket, it still remains time-feasible. On the other hand,

99



we implicitly enforce commodities with a greater remaining available time within a given

discretized bucket to possibly be routed over a faster but a more expensive path. Depending

on the width of the discretized bucket, B, we may end up routing commodities over shorter

routes for large values of B, and over more cost-efficient paths for small values of B.

Formally, let us suppose we have a GIT in which at terminal i is composed of N ordered

buckets [αi,βi) for each i = 1, ..., N , (constructed from the non-dominated points of the

solution of the bi-objective shortest path). Thus, we select the next transferring terminal ji∗

for a discretized bucket [α,β) as follows.

i∗ = min
i∈{1,...N}

{i ∈ {1, ...N}|[αi, βi) ∩ [α, β) 6= ∅} (4.17)

Figure 4.4 illustrates the same example as Figure 4.3 modified to a 2-hour discretized

GIT structure. Discretized bucket [2,4) intersects with buckets [1,3) and [3,4), then given

that the bucket [1,3) is the smallest interval bound, we set terminal A as the next transferring

terminal of discretized bucket [2,4) and we similarly set the next transferring terminal for

all the other discretized buckets.

i

[1,3) A

[4,7) 

[7,-) 

C

E

[3,4) B

i

[0,2) A

[6,8) 

[8,-) 

C

E

[2,4) A

[4,6) C

Figure 4.4: Modification to a Discretized GIT Structure
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4.5.3 GIT Generation Based Heuristic

In this part, we focus on developing a GIT generation heuristic procedure for the GIT-

based formulation. The core procedure is very similar to the path generation heuristic for

the path-based formulation presented in subsection 4.4.3, although, here we generate GITs.

In subsection 4.5.2, we presented the pricing problem to create a GIT and we detail how to

modify a GIT to obatain a discretized GIT. The main idea is to solve an iterative scheme,

in which at each iteration, we solve the LP relaxation of the GIT-based formulation with

lower bounds on a subset of truck arcs. We impose lower bounds on truck variables, ye, of

the LP relaxation of the GIT-based model in order to generate non-trivial multi-stop paths.

These lower bounds are driven by the solution from the IP of the GIT-based formulation.

We construct the initial discretized GIT for each destination induced by the direct paths.

First, we aim to set lower bounds on truck variables that depend on the package flow of the

integer programming (IP) solution, i.e., fe =
∑
d∈D

∑
g∈Gd

f e,dg xdg for each e ∈ E . To determine

whether to set a lower bound on the truck variable on arc e, we randomly set a lower bound

with probability p, i.e., if a random number is lower or equal to p, we set the lower bound

on arc e as d fe
Qe
e, otherwise we do not set a lower bound.

Then, we solve the LP relaxation of the GIT-based model imposing the lower bounds

set. Using the dual pricing values from the LP relaxation solution, we solve a bi-objective

shortest path problem for each destination, and from this solution, we create a minimum

reduced cost GIT, which we modify to a B-hour discretized GIT. Next, we add a new

generated B-hour discretized GIT for a destination if the reduced cost is negative. We solve

the IP of the GIT-based model anew with the B-hour discretized GIT variables generated.

We iterate in this fashion until a maximum number of nmax iterations is reached or the

objective value does not vary more than r% after T iterations. We detail the procedure in

algorithm 5.
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Algorithm 5 GIT Generation
1: Set n = 1 and Stop = False

2: Solve LP relaxation model with initial B-hour discretized GIT variables induced by

direct paths

3: Solve IP model with initial B-hour discretized GIT variables induced by direct paths

4: Set lower bound ymine = d fe
Qe
e on arc e with probability p

5: while n ≤ nmax and not Stop do

6: for d ∈ D do

7: Solve a bi-objective shortest path problem for destination d

8: Build the B-hour discretized GIT for each destination d

9: For each commodity k ∈ Kd, map the path associated with the origin ok and

time requirement δk from the B-hour discretized GIT, call it pk

10: Compute reduced cost of the B-hour discretized GIT for destination d as c̃d =

−θd − (
∑
k∈Kd

∑
e∈pk

qkαe)

11: Add B-hour discretized GIT if the reduced cost is negative

12: end for

13: Solve LP relaxation model with discretized GIT variables added

14: Solve IP model with discretized GIT variables added

15: Set lower bound ymine = d fe
Qe
e on arc e with probability p

16: n← n+ 1

17: If objective value does not change more than r% in the last T iterations set Stop =

True

18: end while

Algorithm 5 works as follows. First, we initialize parameters of iterations (lines 1 and

2). We solve the initial LP and IP of the GIT-based formulation using the discretized GIT

variables induced by the direct paths for all commodities. Next, we set lower bounds on

truck variables, ye, for each arc e ∈ E , depending on probability p (line 4). In each itera-

102



tion, we employ the dual pricing values from the LP relaxation of the GIT-based solution to

solve a bi-objective shortest path problem for each destination. We then construct aB-hour

discretized GIT for each destination and we map the path, according to its time require-

ment, for each commodity k ∈ Kd in order to compute the reduced cost of the discretized

GIT (line 9 and 10). We add the discretized GIT if the reduced cost is negative (line 11).

We solve anew the LP relaxation and IP of the GIT-based model with the new generated

discretized GIT variables (line 13 and 14). We set the lower bound on truck variables using

the new IP problem solved (line 15). We iterate in this manner until a maximum number

of nmax iterations is reached or the objective value does not change more than r% after T

iterations.

4.5.4 Optimized GIT-Based Formulation

We present a second formulation of the GIT-based model that makes use of a pool of

pre-generated time-feasible paths for commodities to build an optimized version of the

discretized GIT structure. The model minimizes the vehicle resources needed to transport

the packages such that a B-hour discretized GIT is built for each destination.

We define the following parameters and sets for the formulation. Let Ed be the set of

tuples in the form of (i, j, b), which indicates that there is at least a commodity path, from

the pool of paths, passing through or originating at terminal i (not the destination) having

a next terminal j with a remaining available time within bucket b at terminal i, and let

parameter Γp,ki,j,b be equal to 1 if this occurs, and 0 otherwise. Likewise, let Ud represent

the set of tuples in the form of (i, b) which denotes that there is at least a commodity

path passing through or originating at terminal i with a remaining available time within

bucket b at terminal i. In addition to the set and parameters introduced before, we define

the variables to be employed in the formulation. Let binary variable xpk equal 1 if path p

is selected for commodity k, and 0 otherwise. Let integer variable ye be the number of

vehicles used on arc e. Let binary variable zdi,j,b equal 1 if at terminal i there is at least one
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selected commodity path with a remaining available time within bucket b and heading to

terminal j, and 0 otherwise. The model of selecting one time-feasible path per commodity

such that each destination conforms a B-hour discretized GIT while package movement

costs are minimized is as follows.

min
∑
e∈E

yece (4.18)

s.t
∑
k∈K

∑
p∈Pk

γpeqkx
k
p ≤ Qe · ye ∀e ∈ E (4.19)

∑
k∈Kd

∑
p∈Pk

Γp,ki,j,bx
k
p ≤ zdi,j,b|Kd| ∀d ∈ D,∀(i, j, b) ∈ Ed (4.20)

∑
(i,j,b)∈Ed

zdi,j,b ≤ 1 ∀d ∈ D,∀(i, b) ∈ Ud (4.21)

∑
p∈Pk

xkp = 1 ∀k ∈ K (4.22)

xkp ∈ {0, 1} ∀k ∈ K,∀p ∈ Pk (4.23)

zdi,j,b ∈ {0, 1} ∀d ∈ D,∀(i, j, b) ∈ Ed (4.24)

ye ∈ Z+ ∀e ∈ E (4.25)

In 4.18, we minimize the cost of selected arcs. In constraints 4.19, commodity paths

induce the number of trucks needed on each arc. Restrictions 4.20 activate variable zdi,j,b if

there is at least one selected path passing through or originating at terminal i having a next

terminal j with a remaining available time within bucket b for destination d. Constraints

4.21 limit, at terminal i, at most one next terminal j for each bucket b and destination d so as

to form a B-hour discretized GIT. Finally, constraints 4.22 select one path per commodity

and restrictions 4.23, 4.24 and 4.25 are the domain variables.
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4.6 Computational Study

We test our approaches presented in the preceding sections by conducting a computational

study based on real-world data provided by our Chinese courier company partner. For the

experiments, we work with the way-bill of inter-city and intra-city packages for April 2019.

From this data, we compute an average weight per day and an average number of parcels

per day for each commodity.

The network is composed of 69 hubs. Taking into account all possible origin-destination

pairs, we may have up to 4692 commodities without considering time requirements. We

use the same base instance constructed in Chapter 3, i.e., we group time requirements of

commodities according to the different groups of time requirements described in Chapter

3.

From the original instance that is composed of 69 hubs and 5297 commodities, which

we refer to as the All-hubs instance, we build three groups of instances: small, medium

and large size instances. In doing so, to create an instance, we select a given number of

hubs, which we select in two variants; a random selection and geographically disperse

selection. For each instance we create, its network is composed of all the arcs associated

with the hubs selected. The commodities for the instance are defined as the commodities

from the original instance associated with the hubs chosen, i.e., all commodities with an

origin and a destination within the set of hubs selected. We detail this set of instances in

subsection 4.6.2. For the GIT-based and the optimized GIT-based approaches, we build a

2-hour discretized GIT structure for most of the experiments we present.

Given the random nature of the setting of the lower bounds on the arc variables of the

path and GIT-based generation heuristic approaches, each instance is run 10 times, and thus

we report the best solution found.

Initial fine tuning tests in the All-hubs instance suggest that setting a probability of 1
2

to determine lower bounds leads to the best gap performance results, in terms of objective
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value, on average. Therefore, we use this probability value for all the experiments we

present.

4.6.1 Metrics

The purpose of this subsection is to define metrics that allow us to compare solutions across

different experiments. We define the following metrics that permit us to verify whether

solutions form a discretized GIT structure and how effectively resources are utilized.

- GIT B-hour: This metric verifies whether solutions form a B-hour discretized GIT, re-

ferred to as GIT BH. To check the structure, the metric verifies, for a given destination

d, terminal i and each non-intersecting bucket [0, BH), [BH, 2BH), ..., [(Bmax −

1)H,BmaxH), if all remaining available times of commodities passing through or

originating at terminal i have the same next terminal (Bmax is the minimum value

such that BmaxH > δmaxi , and δmaxi is the maximum time requirement among com-

modities at terminal i). If there is at least one bucket having 2 different next terminals,

then we say the pair (i, d) does not respect the B-hour discretized GIT structure for

terminal i and destination d. Let L denote the set of pairs (i, d) for which there exists

a commodity path passing through or originating at terminal i with destination d,

and let parameter indicator Ii,d be equal to 1 if the pair (i, d) complies with a B-hour

discretized GIT structure, and 0 otherwise. The metric is computed as the percentage

of all (i, d) pairs respecting the B-hour discretized GIT structure over all pairs in set

L, as follows:

GIT B-hour =

∑
(i,d)∈L

Ii,d

|L|
(4.26)

- Weighted GIT B-hour : We define the weighted B-hour discretized GIT metric that ver-
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ifies whether solutions form a B-hour discretized GIT structure in which each (i, d)

pair is weighted by the commodity volume passing through or originating at terminal

i with destination d. Let vi,d be the sum of all commodity volume passing through or

originating at i with destination d, then the metric is computed as follows:

Weighted GIT B-hour =

∑
(i,d)∈L

Ii,dv,d∑
(i,d)∈L

vi,d
(4.27)

- Arc utilization: This metric aims to capture how effectively the truck resources selected

are utilized. We define the arc utilization metric as the sum of all commodity volume

flows over each arc e ∈ E , denoted by fe, divided by the total capacity of trucks

allocated over the network. Let ye be the number of trucks selected on arc e, then the

metric is computed as follows:

Arc utilization =

∑
e∈E

fe∑
e∈E

Qeye
(4.28)

4.6.2 Instances

For the small size set of instances, we generate 8 instances; 4 of 10 hubs where hubs are

randomly selected and 4 of 10 hubs where hubs are selected geographically dispersed. We

refer to these instances as 10-hub Rand1, 10-hub Rand2, 10-hub Rand3 and 10-hub Rand4

for the random selection variant, respectively, and 10-hub Geo1, 10-hub Geo2, 10-hub

Geo3 and 10-hub Geo4 for the geographical selection variant, respectively. In Table 4.1,

we show the number of commodities and destinations of the small size set of instances.
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Table 4.1: Description of the Small Size Set of Instances

No of commodities No of destinations

10-hub Rand1 120 10

10-hub Rand2 125 9

10-hub Rand3 170 9

10-hub Rand4 65 7

10-hub Geo1 51 8

10-hub Geo2 52 9

10-hub Geo3 91 8

10-hub Geo4 94 10

For the medium size set of instances, we create 4 instances; 20 hubs where hubs are

randomly selected, 20 hubs where hubs are chosen geographically dispersed, 30 hubs where

hubs are randomly selected and 30 hubs where hubs are chosen geographically dispersed.

We refer to these instances as 20-hub Rand, 20-hub Geo, 30-hub Rand and 30-hub Geo,

respectively. In Table 4.2, we report the number of commodities and destinations of the

medium size set of instances.

Table 4.2: Description of the Medium Size Set of Instances

No of commodities No of destinations

20-hub Rand 400 17

20-hub Geo 191 19

30-hub Rand 1133 28

30-hub Geo 891 29

Similarly, for the large size set of instances, we create 4 instances; 40 hubs where

hubs are randomly selected, 40 hubs where hubs are chosen geographically dispersed, 50
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hubs where hubs are randomly selected and 50 hubs where hubs are chosen geographically

dispersed. We refer to these instances as 40-hub Rand, 40-hub Geo, 50-hub Rand and

50-hub Geo, respectively. We also include the original instance which we refer to as the

All-hubs instance. Table 4.3 shows the number of commodities and destinations of the

large size set of instances.

Table 4.3: Description of the Large Size Set of Instances

No of commodities No of destinations

40-hub Rand 2315 38

40-hub Geo 1634 38

50-hub Rand 3238 45

50-hub Geo 3138 47

All-hubs 5297 58

4.6.3 Primary Results

In this set of experiments, we aim to compare the flow planning results from Chapter 3

when using paths with at most one stop to the path-based and the optimized GIT-based ap-

proaches when no restriction is imposed on the number of intermediate sorts in a path. For

this comparison, we will use the set of intermediate sorting hubs selected by the approach

in Chapter 3 and simply examine the flow planning results given those hubs. To do so, we

run the hub selection approach from Chapter 3 to obtain the 6, 7 and 8 most cost-efficient

intermediate hubs using two cost structures; the medium and the large truck types. We

use the selected intermediate hubs to solve the IP model considering all time-feasible paths

with at most one stop, referred to as the 1-stop variant (1S). We solve the path-based and

the optimized GIT-based approaches, for 2 and 4-hour discretized GIT, constrained by the

set of intermediate hubs but with no restriction on the number of stops of paths, which we

refer to as the unrestricted stop path (USP), the unrestricted stop GIT 2H (USG2) and the
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unrestricted stop GIT 4H (USG4) variants, respectively. We aim to understand how we can

further improve the solution cost by allowing more stops on paths in the same network. To

compare gap performance results, we solve the optimal LP relaxation of the USP variant to

obtain a lower bound of the problem.

In Table 4.4, we report the weighted statistics about the GIT structure and the gap

performance of the solutions when using the medium size truck type. Table 4.5 reports

path statistics of the solution approaches when using the medium truck type. When we

compare the gap performance of the 1S and USP variants of the 6 intermediate hub set

against the performance of the 1S and USP variants of the 7 intermediate hub set, we

observe a slight improvement in gap performance of about 0.2%, which is expected and

desirable given that more intermediate hubs become available. This is also observed for the

USG2 and USG4 counterparts which show a very small gap difference of approximately

0.1%. The improvement in gap performance is more noticeable for all the variants of the 8

intermediate hub set, more than 1%, compared to the variants of the 6 and 7 intermediate

hub sets. Table 4.5 shows that the percentage of commodity path volume routed over

different path lengths is very similar among the USP, USG2 and USG4 variants of the 6,

7 and 8 intermediate hub sets. The IS variants route more commodity volume over paths

with 1 stop compared to the other variants because this variant is restricted by the paths

composed of at most 1 stop.

In terms of the structure of the solutions, none of them show a 2-hour or higher dis-

cretized GIT structure, except for the variants USG2 and USG4, which return a 2-hour

and a 4-hour discretized GIT structure by design, respectively. Nevertheless, all solutions

across all instances show more than 90% of a 2, 4 and 8-hour discretized GIT structure.
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Table 4.4: Weighted Statistics Using the Medium Size Truck Type

Objective Value Gap % GIT 2H % GIT 4H % GIT 8H % GIT 12H % GIT 16H % Tree

6 Intermediate Hubs

1S 1183425 10.37% 95.52% 93.61% 93.18% 89.20% 85.34% 79.14%

USP 1182817 10.31% 93.64% 92.25% 91.39% 88.30% 85.35% 81.47%

USG2 1189221 10.91% 100.00% 96.87% 94.74% 91.93% 88.70% 83.20%

USG4 1189812 10.96% 100.00% 100.00% 97.11% 93.20% 89.25% 83.68%

7 Intermediate Hubs

1S 1180049 10.05% 95.58% 94.33% 94.14% 89.09% 85.69% 78.50%

USP 1181822 10.22% 95.18% 93.41% 93.31% 89.43% 86.34% 80.86%

USG2 1190201 11.00% 100.00% 97.02% 94.94% 90.60% 87.80% 83.09%

USG4 1190637 11.04% 100.00% 100.00% 98.22% 93.55% 90.63% 85.13%

8 Intermediate Hubs

1S 1172422 9.34% 96.03% 94.23% 93.17% 87.38% 83.81% 78.82%

USP 1170350 9.15% 93.82% 91.87% 90.67% 86.73% 83.11% 77.30%

USG2 1177933 9.86% 100.00% 97.30% 95.68% 90.77% 86.67% 81.65%

USG4 1177872 9.85% 100.00% 100.00% 96.80% 91.10% 87.64% 82.68%

Table 4.5: Path Statistics Using the Medium Size Truck Type

Total No of paths % Direct volume % Volume 1 stop % Volume 2 stops % Volume ≥ 3 stops Arc utilization

6 Intermediate Hubs

1S 26622 62.59% 37.41% 0.00% 0.00% 96.03%

USP 20210 62.99% 35.66% 1.34% 0.01% 95.18%

USG2 20210 62.68% 36.02% 1.28% 0.02% 94.76%

USG4 20210 62.06% 36.62% 1.32% 0.01% 94.76%

7 Intermediate Hubs

1S 31126 64.36% 35.64% 0.00% 0.00% 95.58%

USP 21066 65.04% 33.79% 1.17% 0.00% 95.23%

USG2 21066 64.07% 34.79% 1.11% 0.02% 94.70%

USG4 21066 64.28% 34.86% 0.86% 0.00% 94.63%

8 Intermediate Hubs

1S 33077 63.53% 36.47% 0.00% 0.00% 95.91%

USP 22606 64.41% 33.95% 1.61% 0.03% 95.59%

USG2 22606 64.39% 34.35% 1.25% 0.01% 94.96%

USG4 22606 63.89% 34.73% 1.36% 0.02% 94.95%
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Similarly, as in the medium truck type experiments, Table 4.6 reports the weighted

statistics about the discretized GIT structure and the gap performance of the solutions when

using the large size truck type. Table 4.7 reports path statistics of the solution approaches

when using the large truck type. In this case, the gap performance of the variants of the 7

intermediate hub set against the performance of the variants of the 8 intermediate hub set is

slightly better, more than 1% gap improvement. Also, the gap enhancement of the variants

of the 8 intermediate hub set is about 2-3% better than the variants of the 6 intermediate

hub set. The 3.42% gap difference between the 1S and USP variants of the 8 intermediate

hub set reveals that allowing more stops on paths over the same network has a significant

impact on the solution cost for the data set we study.

Table 4.7 shows that, equivalently as we observe in the medium truck type experiments,

the percentage of commodity path volume routed over different path lengths is relatively

similar among all variants in each intermediate hub set, expect for the 1S case. In terms

of the structure of the solutions, none of them return a 2-hour or higher discretized GIT

structure, however, they still show more than 90% of a 2, 4 and 8-hour discretized GIT

structure.
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Table 4.6: Weighted Statistics Using the Large Size Truck Type

Objective value Gap % GIT 2H % GIT 4H % GIT 8H % GIT 12H % GIT 16H % Tree

6 Intermediate Hubs

1S 854833 21.06% 97.72% 96.46% 95.96% 92.74% 88.32% 83.45%

USP 836750 18.50% 95.44% 93.82% 93.51% 91.02% 87.44% 82.33%

USG2 844752 19.63% 100.00% 96.90% 96.30% 93.09% 90.17% 83.67%

USG4 841898 19.23% 100.00% 100.00% 98.00% 95.00% 91.07% 85.34%

7 Intermediate Hubs

1S 840126 18.98% 95.44% 93.75% 92.82% 88.42% 85.79% 78.58%

USP 826340 17.02% 94.16% 92.25% 91.61% 88.37% 85.97% 81.41%

USG2 835626 18.34% 100.00% 95.07% 93.62% 90.38% 87.61% 83.92%

USG4 836958 18.53% 100.00% 100.00% 96.17% 93.19% 89.41% 84.16%

8 Intermediate Hubs

1S 839832 18.93% 95.30% 92.99% 91.68% 86.17% 81.99% 73.90%

USP 815660 15.51% 93.30% 91.50% 90.91% 87.40% 83.69% 77.58%

USG2 825026 16.84% 100.00% 95.66% 93.40% 89.35% 85.92% 79.32%

USG4 825369 16.89% 100.00% 100.00% 97.19% 92.54% 89.87% 82.90%

Table 4.7: Path Statistics Using the Large Size Truck Type

Total No of paths % Direct volume % Volume 1 stop % Volume 2 stops % Volume ≥ 3 stops Arc utilization

6 Intermediate Hubs

1S 24770 58.30% 41.70% 0.00% 0.00% 91.74%

USP 20393 59.51% 38.10% 2.27% 0.12% 91.21%

USG2 20393 58.75% 38.97% 2.21% 0.07% 90.85%

USG4 20393 58.04% 39.58% 2.31% 0.07% 90.70%

7 Intermediate Hubs

1S 29175 57.41% 42.59% 0.00% 0.00% 92.93%

USP 22129 58.23% 39.07% 2.59% 0.11% 92.29%

USG2 22129 56.43% 41.02% 2.45% 0.10% 91.61%

USG4 22129 57.02% 40.50% 2.37% 0.11% 91.43%

8 Intermediate Hubs

1S 33077 58.29% 41.71% 0.00% 0.00% 92.59%

USP 24018 60.12% 37.46% 2.33% 0.09% 92.41%

USG2 24018 58.36% 38.73% 2.89% 0.03% 91.93%

USG4 24018 58.68% 38.99% 2.29% 0.03% 91.57%
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Figures 4.5 and 4.6 show the sorted volume in the cities of the 8 intermediate hubs

for the 1S and USP variants respectively, when using the large truck type. Both figures

illustrate that more than 70% of the sorted volume is concentrated in 4 centered cities. In

both variants, the percentage of sorted volume among hubs remains similar. Figure 4.7

depicts the sorted volume taking paths with 2 or more stops for the USP variant, in which

we observe that more than half of this volume is sorted in centered cities, however, we see

that the percentage of commodity volume taking paths with 2 or more stops passing through

more peripheral cities such as 791, 592 and 594 is more significant than the percentage of

commodity volume taking paths with one stop.

Figure 4.5: Sorted Volume in Cities for the 1S Variant with 8 Intermediate Hubs Using the
Large Truck Type
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Figure 4.6: Sorted Volume in Cities for the USP Variant with 8 Intermediate Hubs Using
the Largest Truck Type

Figure 4.7: Sorted Volume Taking 2 or More Stops in Cities for the USP Variant with 8
Intermediate Hubs Using the Largest Truck Type
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4.6.4 Experiments for Small Instances

In this set of experiments, we aim to understand how effective the performance of the ap-

proaches are, the structure that the solutions show, and how solutions differ among the

approaches. In Table 4.8, we report statistics about the gap performance and discretized

GIT structure of the solutions for the small size set of instances. We show whether the

solutions show a discretized GIT structure for different discretized GITs: 2, 4, 8, 12, and

16-hour, which we refer to as GIT 2H, GIT 4H, GIT 8H, GIT 12H and GIT 16H respec-

tively, and we also verify whether the solutions show an in-tree structure. Similarly, in

Table 4.9, we report the weighted, by commodity volume, discretized GIT statistics. To

obtain lower bounds of the problem and measure the gap performance of the solutions of

the approaches, we compute the optimal solution of the LP relaxation of the path-based

model. Exclusively for this small size set of instances, we solve the path-based model con-

sidering all time-feasible paths (only constrained by the time requirement of commodities),

which we refer to as the full model, allowing a maximum of 10 hours of running time, in

order to obtain tighter lower bounds of the problem. For the larger instances, it is more

cumbersome to compute all time-feasible paths and solve a full model directly into an MIP

solver. As an example, when having 20 hubs and 500 commodities (close to the size of

medium instances), and assuming no restriction on the time requirement to make the com-

putation simple (we need to compute all paths only constrained by time requirements but

not by stops), the number of paths with exactly 3 stops is 500 × 18 × 17 × 16, which is

close to 2.5 millions paths.

We observe that the full model, the path-based, the GIT-based and the optimized GIT-

based solutions all return a 2-hour discretized GIT structure (the GIT-based and optimized

GIT-based approaches are a 2-hour discretized GIT by construction). Furthermore, the

path-based, the GIT-based and the optimized GIT-based solutions all show a 4-hour dis-

cretized GIT structure across all instances. All geographical instances show an 8, 12, and

16-hour discretized GIT structure, except for the full model solutions of the Geo3 instance
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(note that a 16-hour discretized GIT is also an 8, 4 and 2-hour discretized GIT, nonethe-

less, not necessarily a 12-hour discretized GIT). This is expected given the small size of

the instances, and therefore, the less complex the network is. Moreover, the path-based, the

GIT-based and the optimized GIT-based solutions of the Geo1 and Geo2 instances show

an in-tree structure mainly because hubs, and thus the demand associated with them, are

geographically dispersed in which the solution is more prone to form an in-tree structure

for small networks. In terms of an operational viewpoint, a ”large” hour discretized GIT is

simple to operate given that fewer instructions are needed to route packages at a terminal.

We do not report ”pure” GIT structure statistics because all solutions for the small,

medium and large size set of instances, show a GIT structure. In other words, in order not

to comply with a GIT structure, we need to have at least two commodities with the same

remaining available time at a terminal heading to a different next terminal. Since we use

rational numbers for travel times on arcs, this rarely occurs.

Since we feed the optimized GIT-based model with the paths generated in the path-

based approach and given the small size of these instances, it turns out that almost all

instances return the same gap performance for most of the path-based and the optimized

GIT-based solutions, except for the Rand2 and Rand4 instances, nevertheless they are still

close. The GIT-based solutions are slightly better than the path-based and the optimized

GIT-based solutions, except for the Geo4 instance. Half of the instances yield a gap perfor-

mance of about 2%, and all of the path-based and optimized GIT-based solutions are very

close to the gap performance of the full model, around 2% on average. Note that the full

model solutions of the Rand4, Geo1, Geo2 and Geo3 instances are optimal solutions given

that they end up with 0% of gap.
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Table 4.8: Statistics of the Small Size Set of Instances

Objective value Gap % GIT 2H % GIT 4H % GIT 8H % GIT 12H % GIT 16H % Tree

Full model

10-hub Rand1 29675 11.87% 100.0%= 68
68

100.0%= 68
68

97.06%= 66
68

89.71%= 61
68

86.76%= 59
68

76.47%= 52
68

10-hub Rand2 29277 8.07% 100.0%= 56
56

98.21%= 55
56

98.21%= 55
56

98.21%= 55
56

96.43%= 54
56

71.43%= 40
56

10-hub Rand3 39213 2.56% 100.0%= 47
47

100.0%= 47
47

97.87%= 46
47

93.62%= 44
47

85.11%= 40
47

59.57%= 28
47

10-hub Rand4 18155 0.0% 100.0%= 37
37

100.0%= 37
37

100.0%= 37
37

97.3%= 36
37

97.3%= 36
37

91.89%= 34
37

10-hub Geo1 17843 0.0% 100.0%= 38
38

100.0%= 38
38

100.0%= 38
38

100.0%= 38
38

100.0%= 38
38

97.37%= 37
38

10-hub Geo2 20166 0.0% 100.0%= 45
45

100.0%= 45
45

100.0%= 45
45

100.0%= 45
45

100.0%= 45
45

95.56%= 43
45

10-hub Geo3 33889 0.0% 100.0%= 50
50

100.0%= 50
50

100.0%= 50
50

98.0%= 49
50

98.0%= 49
50

76.0%= 38
50

10-hub Geo4 46558 3.43% 100.0%= 61
61

100.0%= 61
61

100.0%= 61
61

100.0%= 61
61

100.0%= 61
61

90.16%= 55
61

Path-based

10-hub Rand1 29848 12.51% 100.0%= 64
64

100.0%= 64
64

100.0%= 64
64

98.44%= 63
64

92.19%= 59
64

79.69%= 51
64

10-hub Rand2 29347 8.32% 100.0%= 48
48

100.0%= 48
48

97.92%= 47
48

97.92%= 47
48

93.75%= 45
48

81.25%= 39
48

10-hub Rand3 39213 2.56% 100.0%= 47
47

100.0%= 47
47

100.0%= 47
47

100.0%= 47
47

91.49%= 43
47

68.09%= 32
47

10-hub Rand4 18196 0.23% 100.0%= 34
34

100.0%= 34
34

100.0%= 34
34

97.06%= 33
34

97.06%= 33
34

97.06%= 33
34

10-hub Geo1 18932 6.11% 100.0%= 38
38

100.0%= 38
38

100.0%= 38
38

100.0%= 38
38

100.0%= 38
38

100.0%= 38
38

10-hub Geo2 20628 2.29% 100.0%= 36
36

100.0%= 36
36

100.0%= 36
36

100.0%= 36
36

100.0%= 36
36

100.0%= 36
36

10-hub Geo3 34314 1.25% 100.0%= 52
52

100.0%= 52
52

100.0%= 52
52

100.0%= 52
52

100.0%= 52
52

88.46%= 46
52

10-hub Geo4 48692 8.17% 100.0%= 55
55

100.0%= 55
55

100.0%= 55
55

100.0%= 55
55

100.0%= 55
55

90.91%= 50
55

GIT-based

10-hub Rand1 30573 15.25% 100.0%= 65
65

100.0%= 65
65

100.0%= 65
65

100.0%= 65
65

100.0%= 65
65

100.0%= 65
65

10-hub Rand2 30056 10.94% 100.0%= 54
54

100.0%= 54
54

98.15%= 53
54

98.15%= 53
54

98.15%= 53
54

98.15%= 53
54

10-hub Rand3 40086 4.84% 100.0%= 47
47

100.0%= 47
47

100.0%= 47
47

100.0%= 47
47

100.0%= 47
47

100.0%= 47
47

10-hub Rand4 18244 0.49% 100.0%= 33
33

100.0%= 33
33

100.0%= 33
33

100.0%= 33
33

96.97%= 32
33

93.94%= 31
33

10-hub Geo1 18919 6.03% 100.0%= 35
35

100.0%= 35
35

100.0%= 35
35

100.0%= 35
35

100.0%= 35
35

100.0%= 35
35

10-hub Geo2 21251 5.38% 100.0%= 36
36

100.0%= 36
36

100.0%= 36
36

100.0%= 36
36

100.0%= 36
36

100.0%= 36
36

10-hub Geo3 34617 2.15% 100.0%= 52
52

100.0%= 52
52

100.0%= 52
52

100.0%= 52
52

100.0%= 52
52

98.08%= 51
52

10-hub Geo4 47835 6.27% 100.0%= 61
61

100.0%= 61
61

100.0%= 61
61

100.0%= 61
61

100.0%= 61
61

100.0%= 61
61

Opt GIT-based

10-hub Rand1 29848 12.51% 100.0%= 63
63

100.0%= 63
63

98.41%= 62
63

96.83%= 61
63

90.48%= 57
63

77.78%= 49
63

10-hub Rand2 29348 8.33% 100.0%= 52
52

100.0%= 52
52

98.08%= 51
52

98.08%= 51
52

92.31%= 48
52

76.92%= 40
52

10-hub Rand3 39213 2.56% 100.0%= 47
47

100.0%= 47
47

97.87%= 46
47

97.87%= 46
47

91.49%= 43
47

68.09%= 32
47

10-hub Rand4 18248 0.51% 100.0%= 32
32

100.0%= 32
32

100.0%= 32
32

100.0%= 32
32

96.88%= 31
32

96.88%= 31
32

10-hub Geo1 18932 6.11% 100.0%= 38
38

100.0%= 38
38

100.0%= 38
38

100.0%= 38
38

100.0%= 38
38

100.0%= 38
38

10-hub Geo2 20628 2.29% 100.0%= 36
36

100.0%= 36
36

100.0%= 36
36

100.0%= 36
36

100.0%= 36
36

100.0%= 36
36

10-hub Geo3 34314 1.25% 100.0%= 52
52

100.0%= 52
52

100.0%= 52
52

100.0%= 52
52

100.0%= 52
52

80.77%= 42
52

10-hub Geo4 48692 8.17% 100.0%= 57
57

100.0%= 57
57

100.0%= 57
57

100.0%= 57
57

100.0%= 57
57

91.23%= 52
57
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Table 4.9: Weighted Statistics of the Small Size Set of Instances

Objective value Gap % GIT 2H % GIT 4H % GIT 8H % GIT 12H % GIT 16H % Tree

Full model

10-hub Rand1 29675 11.87% 100.00% 100.00% 82.94% 57.90% 53.81% 47.10%

10-hub Rand2 29277 8.07% 100.00% 96.93% 96.93% 96.93% 95.87% 66.59%

10-hub Rand3 39213 2.56% 100.00% 100.00% 98.45% 85.33% 73.95% 48.42%

10-hub Rand4 18155 0.00% 100.00% 100.00% 100.00% 90.55% 90.55% 87.70%

10-hub Geo1 17843 0.00% 100.00% 100.00% 100.00% 100.00% 100.00% 88.74%

10-hub Geo2 20166 0.00% 100.00% 100.00% 100.00% 100.00% 100.00% 93.41%

10-hub Geo3 33889 0.00% 100.00% 100.00% 100.00% 86.55% 86.55% 53.07%

10-hub Geo4 46558 3.43% 100.00% 100.00% 100.00% 100.00% 100.00% 76.30%

Path-based

10-hub Rand1 29848 12.51% 100.00% 100.00% 100.00% 96.30% 66.57% 50.50%

10-hub Rand2 29347 8.32% 100.00% 100.00% 95.36% 95.36% 89.75% 78.69%

10-hub Rand3 39213 2.56% 100.00% 100.00% 100.00% 100.00% 89.24% 55.84%

10-hub Rand4 18196 0.23% 100.00% 100.00% 100.00% 62.97% 62.97% 62.97%

10-hub Geo1 18932 6.11% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

10-hub Geo2 20628 2.29% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

10-hub Geo3 34314 1.25% 100.00% 100.00% 100.00% 100.00% 100.00% 78.32%

10-hub Geo4 48692 8.17% 100.00% 100.00% 100.00% 100.00% 100.00% 77.48%

GIT-based

10-hub Rand1 30573 15.25% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

10-hub Rand2 30056 10.94% 100.00% 100.00% 97.43% 97.43% 97.43% 97.43%

10-hub Rand3 40086 4.84% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

10-hub Rand4 18244 0.49% 100.00% 100.00% 100.00% 100.00% 67.17% 65.40%

10-hub Geo1 18919 6.03% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

10-hub Geo2 21251 5.38% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

10-hub Geo3 34617 2.15% 100.00% 100.00% 100.00% 100.00% 100.00% 99.21%

10-hub Geo4 47835 6.27% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Opt GIT-based

10-hub Rand1 29848 12.51% 100.00% 100.00% 96.28% 79.91% 60.46% 43.70%

10-hub Rand2 29348 8.33% 100.00% 100.00% 95.10% 95.10% 73.57% 61.29%

10-hub Rand3 39213 2.56% 100.00% 100.00% 98.47% 98.47% 88.96% 53.78%

10-hub Rand4 18248 0.51% 100.00% 100.00% 100.00% 100.00% 64.81% 64.81%

10-hub Geo1 18932 6.11% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

10-hub Geo2 20628 2.29% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

10-hub Geo3 34314 1.25% 100.00% 100.00% 100.00% 100.00% 100.00% 65.89%

10-hub Geo4 48692 8.17% 100.00% 100.00% 100.00% 100.00% 100.00% 79.05%
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In Table 4.10, we report statistics about the distribution of the number of stops of com-

modity path solutions and arc utilization metrics. Table 4.10 shows that all the solutions

of the approaches tend to route a similar distribution of the number of stops of commodity

paths. Nearly 90% of the commodity volume is routed either over direct paths or paths

with 1 stop for all solutions of the approaches. It is expected that when there are not many

commodities, more volume is sent over the direct route because there are fewer chances to

take advantage of consolidation opportunities. Given that the different approaches return

close solution costs for most of the instances, we notice similar commodity volume routed

over the same length paths and close arc utilization as well.
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Table 4.10: Path Statistics of the Small Size Set of Instances

Total No of paths/GITs % Direct volume % Volume 1 stop % Volume 2 stops % Volume ≥ 3 stops Arc utilization

Full model

10-hub Rand1 1825737 81.08% 11.15% 6.22% 1.54% 88.08%

10-hub Rand2 2116984 50.88% 41.23% 7.31% 0.58% 91.33%

10-hub Rand3 737995 84.41% 12.59% 2.51% 0.49% 90.58%

10-hub Rand4 287979 89.79% 5.92% 2.60% 1.69% 76.22%

10-hub Geo1 104482 48.15% 28.81% 18.87% 4.18% 61.12%

10-hub Geo2 349552 40.46% 36.99% 12.10% 10.45% 52.61%

10-hub Geo3 103039 78.16% 15.11% 5.20% 1.54% 84.31%

10-hub Geo4 218371 68.16% 24.14% 5.00% 2.70% 89.20%

Path-based

10-hub Rand1 790 78.47% 16.15% 5.02% 0.36% 89.21%

10-hub Rand2 721 58.70% 36.01% 4.13% 1.16% 92.85%

10-hub Rand3 812 82.44% 15.86% 0.83% 0.87% 91.24%

10-hub Rand4 295 84.78% 10.43% 2.52% 2.26% 76.20%

10-hub Geo1 267 66.32% 22.46% 5.89% 5.33% 48.16%

10-hub Geo2 282 56.15% 31.59% 6.41% 5.85% 45.05%

10-hub Geo3 459 79.57% 18.47% 1.23% 0.73% 77.56%

10-hub Geo4 497 70.17% 26.24% 2.92% 0.68% 81.87%

GIT-based

10-hub Rand1 1549 72.45% 19.70% 4.35% 3.50% 83.81%

10-hub Rand2 774 52.25% 26.32% 9.31% 12.12% 90.87%

10-hub Rand3 747 69.91% 22.65% 5.70% 1.75% 88.83%

10-hub Rand4 277 83.75% 8.39% 3.35% 4.50% 77.10%

10-hub Geo1 158 59.99% 27.80% 8.21% 4.00% 49.78%

10-hub Geo2 222 56.27% 30.76% 7.11% 5.85% 45.21%

10-hub Geo3 798 71.09% 20.37% 7.22% 1.32% 78.50%

10-hub Geo4 903 53.99% 30.66% 12.04% 3.32% 86.47%

Opt GIT-based

10-hub Rand1 790 78.57% 16.31% 4.45% 0.67% 89.05%

10-hub Rand2 721 73.83% 18.25% 5.70% 2.22% 93.06%

10-hub Rand3 812 82.29% 15.82% 1.02% 0.87% 91.50%

10-hub Rand4 295 85.95% 10.22% 1.52% 2.31% 71.91%

10-hub Geo1 267 66.32% 22.46% 5.89% 5.33% 48.16%

10-hub Geo2 282 56.15% 31.59% 6.41% 5.85% 45.05%

10-hub Geo3 459 79.00% 16.89% 3.29% 0.81% 79.32%

10-hub Geo4 497 70.30% 25.12% 3.34% 1.24% 82.77%

Table 4.11 shows all paths generated in the path-based approach. On average, 29% of
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the paths generated have 2 or more stops, however, the path-based and the optimized GIT-

based solutions only employ 5.73% and 6.37% on average, respectively, of the paths in

this category in their final selection. This result is largely explained by the fact that to find

high-quality paths of 2 or more stops, many more paths have to be generated compared to

1 stop paths simply because there are exponentially many more combinations of possible

stops for longer paths.

Table 4.11: Paths Generated in the Path-based Approach for the Small Size Set of Instances

% Direct % 1 stop % 2 stops % ≥ 3 stops

10-hub Rand1 18.08% 50.94% 26.14% 4.84%

10-hub Rand2 21.71% 39.92% 23.89% 14.49%

10-hub Rand3 22.48% 51.86% 19.49% 6.17%

10-hub Rand4 25.06% 49.93% 22.08% 2.92%

10-hub Geo1 29.60% 46.69% 14.91% 8.80%

10-hub Geo2 20.57% 41.72% 23.61% 14.09%

10-hub Geo3 30.56% 48.45% 19.19% 1.79%

10-hub Geo4 26.30% 42.64% 16.61% 14.46%

4.6.5 Experiments for Medium Instances

In this set of experiments, we aim to understand how effective the approaches are in produc-

ing high-quality solutions as we increase the size of the instances, and more importantly, to

analyze the impact of the discretized GIT structure on the performance and structure of the

solutions compared to the path-based approach. Tables 4.12 and 4.13 report the unweighted

and weighted statistics for the medium size set of instances; 20-hub and 30-hub instances.

We first observe that none of the path-based solutions show a 2-hour discretized GIT struc-

ture, even the optimized GIT-based solutions do not show a 4-hour discretized structure

anymore, which is expected for this formulation, whereas the GIT-based solutions still
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show a 4-hour discretized GIT structure. It is not surprising to see less of discretized GIT

structure and an in-tree structure as we increase the size of the instances given that more

commodities are passing through or originating at terminals, therefore, more outbound arcs

may be activated at terminals that violate the structure of a discretized GIT or an in-tree.

In terms of the performance of the solution of the approaches, instances become harder

to solve in comparison to the small size set of instances. The absolute gap shown is com-

puted with respect to the optimal LP relaxation of the path-based approach, therefore, the

lower bounds are not as tight as in the small instance set. An example of this is the gap

performance of the 20-hub Geo instance. The gap performance difference between the

GIT-based solutions and the path-based solutions is more accentuated, resulting in a gap

difference of 3.23% on average, and the gap performance difference between the path-based

and the optimized GIT-based solutions is relatively small, 0.84% on average. It is intrigu-

ing to observe that the optimized GIT-based approach outperforms the GIT-based approach

more markedly in these instances. On one hand, the optimized GIT-based approach is op-

timizing the construction of the discretized GIT structure for each destination altogether in

the formulation, and not separately as in the GIT-based approach. On the other hand, the

optimized GIT-based approach uses the pool of paths generated in the path-based approach

which can be of higher quality compared to the paths of the discretized GITs generated in

the GIT-based approach.
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Table 4.12: Statistics of the Medium Size Set of Instances

Objective value Gap % GIT 2H % GIT 4H % GIT 8H % GIT 12H % GIT 16H % Tree

Path-based

20-hub Rand 80177 13.91% 97.6%= 163
167

96.41%= 161
167

95.21%= 159
167

94.01%= 157
167

90.42%= 151
167

85.63%= 143
167

20-hub Geo 40073 82.72% 97.97%= 145
148

97.97%= 145
148

97.97%= 145
148

97.3%= 144
148

95.95%= 142
148

95.27%= 141
148

30-hub Rand 292167 6.46% 97.86%= 457
467

97.0%= 453
467

95.07%= 444
467

90.58%= 423
467

87.15%= 407
467

76.45%= 357
467

30-hub Geo 232553 11.51% 97.85%= 501
512

96.68%= 495
512

95.51%= 489
512

90.62%= 464
512

89.26%= 457
512

75.39%= 386
512

GIT-based

20-hub Rand 82648 16.01% 100.0%= 169
169

100.0%= 169
169

100.0%= 169
169

100.0%= 169
169

100.0%= 169
169

100.0%= 169
169

20-hub Geo 39128 78.39% 100.0%= 157
157

100.0%= 157
157

100.0%= 157
157

100.0%= 157
157

100.0%= 157
157

100.0%= 157
157

30-hub Rand 312070 13.3% 100.0%= 466
466

100.0%= 466
466

100.0%= 466
466

100.0%= 466
466

100.0%= 466
466

99.57%= 464
466

30-hub Geo 250106 19.82% 100.0%= 542
542

100.0%= 542
542

99.82%= 541
542

99.63%= 540
542

99.63%= 540
542

99.63%= 540
542

Opt GIT-based

20-hub Rand 80469 14.33% 100.0%= 172
172

98.26%= 169
172

95.93%= 165
172

94.19%= 162
172

91.86%= 158
172

86.63%= 149
172

20-hub Geo 40073 82.72% 100.0%= 150
150

99.33%= 149
150

99.33%= 149
150

98.0%= 147
150

96.0%= 144
150

94.0%= 141
150

30-hub Rand 294156 7.18% 100.0%= 462
462

98.48%= 455
462

95.45%= 441
462

92.86%= 429
462

87.01%= 402
462

75.11%= 347
462

30-hub Geo 237178 13.73% 100.0%= 506
506

98.62%= 499
506

97.83%= 495
506

94.47%= 478
506

91.7%= 464
506

81.23%= 411
506
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Table 4.13: Weighted Statistics of the Medium Size Set of Instances

Objective value Gap % GIT 2H % GIT 4H % GIT 8H % GIT 12H % GIT 16H % Tree

Path-based

20-hub Rand 80177 13.91% 97.22% 91.21% 90.87% 86.51% 84.70% 82.82%

20-hub Geo 40073 82.72% 94.75% 94.75% 94.75% 93.57% 84.87% 84.76%

30-hub Rand 292167 6.47% 91.04% 89.87% 87.76% 83.60% 79.78% 75.67%

30-hub Geo 232553 11.51% 96.50% 95.37% 92.79% 87.02% 76.88% 62.71%

GIT-based

20-hub Rand 82648 16.01% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

20-hub Geo 39128 78.39% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

30-hub Rand 312070 13.30% 100.00% 100.00% 100.00% 100.00% 100.00% 99.84%

30-hub Geo 250106 19.82% 100.00% 100.00% 99.54% 99.31% 99.31% 99.31%

Opt GIT-based

20-hub Rand 80469 14.33% 100.00% 94.58% 88.07% 81.99% 84.66% 77.87%

20-hub Geo 40073 82.72% 100.00% 98.29% 98.29% 95.68% 89.34% 86.31%

30-hub Rand 294156 7.18% 100.00% 99.28% 92.36% 90.26% 81.84% 75.60%

30-hub Geo 237178 13.73% 100.00% 98.51% 97.30% 93.59% 88.99% 81.42%

Table 4.14 shows that the path-based and optimized GIT-based solutions tend to route

a similar distribution of the number of stops of commodity paths, in which 92.44% and

92.34% of the commodity volume is routed either over direct paths or paths with one-

stop for the path-based and optimized GIT-based solutions, respectively. Here, 2.21% and

1.29% more is sent over paths with 2 or more stops respectively, in comparison to the

small size set of instances given that more commodities incentivize taking advantage of

more consolidation opportunities. The GIT-based solutions route more than 3% additional

commodity volume over paths with 3 or more stops compared to both the path-based and

the optimized GIT-based solutions. This tendency of routing a subset of commodities over

paths with many stops may help to explain in part the under-performance of the GIT-based

approach. Arc utilization remains relatively high, between 87% and 89%, and is similar

between the three approaches.
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Table 4.14: Path Statistics of the Medium Size Set of Instances

Total No of paths/GITs % Direct volume % Volume 1 stop % Volume 2 stops % Volume ≥ 3 stops Arc utilization

Path-based

20-hub Rand 3231 57.48% 36.46% 4.93% 1.14% 95.76%

20-hub Geo 1834 67.85% 17.66% 8.22% 6.28% 70.09%

30-hub Rand 10959 71.10% 24.99% 3.03% 0.89% 96.42%

30-hub Geo 10469 71.74% 22.48% 4.35% 1.44% 94.27%

GIT-based

20-hub Rand 5376 53.24% 34.44% 8.43% 3.89% 94.74%

20-hub Geo 3888 64.50% 21.03% 8.35% 6.12% 72.36%

30-hub Rand 9355 59.43% 27.19% 8.37% 5.01% 92.94%

30-hub Geo 10499 59.70% 21.95% 11.28% 7.08% 90.87%

Opt GIT-based

20-hub Rand 3231 57.54% 35.75% 5.69% 1.03% 96.04%

20-hub Geo 1834 67.50% 16.70% 9.99% 5.80% 70.66%

30-hub Rand 10959 68.55% 27.98% 2.77% 0.69% 95.36%

30-hub Geo 10469 72.86% 22.47% 3.68% 0.98% 92.08%

Analogously as we observe in the case of the small size set of instances, Table 4.15

shows that on average, 43% of the paths generated have 2 or more stops, however, both the

path-based and the optimized GIT-based solutions only employ 7.56% and 7.66% of paths

of these lengths in their final solution, respectively. Given the larger size of the instances,

there are many more combinations of possible stops for longer paths compared to the small

size set of instances.

Table 4.15: Paths Generated in the Path-based Approach for the Medium Size Set of In-
stances

% Direct % 1 stop % 2 stops % ≥ 3 stops

20-hub Rand 16.66% 36.95% 29.37% 17.02%

20-hub Geo 15.75% 43.90% 23.68% 16.67%

30-hub Rand 13.51% 44.53% 25.18% 16.78%

30-hub Geo 12.31% 43.30% 26.49% 17.90%
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4.6.6 Experiments for Large Instances

In this large size set of experiments, we aim to understand how effectively the approaches

behave in more realistic instances. One objective is to measure the penalty cost of imposing

a discretized GIT structure in large instances, and also experiment with different ”larger”

hour discretized GIT structures on the All-hubs instance to analyze the impact of more

rigid discretized GIT structures. In Tables 4.16 and 4.17, we report gap performance and

discretized GIT structure statistics for the large size set of instances: 40-hub, 50-hub and

All-hubs instances when using medium and large truck types, respectively. Similarly, in

Tables 4.18 and 4.19, we report the weighted statistics when using medium and large truck

types, respectively.

Path-based solutions do not show a 2-hour discretized GIT structure for medium and

large truck types as expected. Tables 4.16 and 4.17 show that the optimized GIT-based

solutions show a slightly higher percentage of different discretized GIT structures and an in-

tree structure compared to the path-based solutions across all instances for both the medium

and the large truck type variants. The structure of the solutions of the GIT-based approach

varies enormously compared to the path-based and optimized GIT-based solutions. First,

we observe a high percentage of different discretized GIT structures for the GIT-based

solutions. This is noticeably seen in the fact that the GIT-based solutions show more than

90% of an in-tree structure compared to the 60%- 70% of an in-tree structure of the path-

based and optimized GIT-based solutions. This behaviour is observed for the unweighted

and weighted GIT statistics for both the medium and the large truck types.

On the other hand, both the path-based and the optimized-based solutions strongly

outperform the GIT-based solutions by 11.58% and 10.24% of gap respectively, for the

medium truck type and by 13.86% and 10.97% of gap respectively, for the large truck type.

Note that the path-based solutions slightly outperform the optimized GIT-based solutions

by 1.3% of gap on average for the medium truck variant and by 2.88% of gap on average

for the large truck type variant. It is surprising to observe a striking gap performance dif-

127



ference between the GIT-based and the optimized GIT-based solutions. As we discussed

in the medium size set of instances, an explanation of this result can be attributed to the

nature of the formulation of the optimized GIT-based approach and to the fact that it uses

the paths generated in the path-based approach which may be of higher quality compared

to the paths of the discretized GITs generated in the GIT-based approach. Nonetheless,

there is another explanation that is related to the GIT-based formulation. When generating

GITs in the GIT-based generation heuristic approach, the procedure probably creates high-

quality paths for a subset of the commodities and low-quality paths for another subset of

paths, thus creating a discretized GIT composed of a mix of these paths in which the model

has no option but to select one of them for each destination.

We observe a better gap performance for the medium truck type variant instances com-

pared to the large truck type variant instances because employing a smaller vehicle type

favors to more effectively routing commodities, making better use of the vehicle resources,

i.e., higher vehicle utilization, and therefore, further reducing solution cost. We also ob-

serve this in the 2.99% higher arc utilization on average in the path-based solutions, 3.68%

higher arc utilization for the GIT-based solutions and 4.79% higher arc utilization for the

optimized GIT-based solutions of the medium truck type variant compared to the large

truck type variant (see Tables 4.20 and 4.21). It is noteworthy to mention that the solution

cost of the approaches for the large truck type instances are approximately 30% lower on

average in comparison to the medium truck type instances. This is largely explained by the

fact that the unit cost per capacity of the large vehicle type is 34% lower than the unit cost

per capacity of the medium vehicle type.
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Table 4.16: Statistics of the Large Size Set of Instances Using the Medium Truck Type

Objective Value Gap % GIT 2H % GIT 4H % GIT 8H % GIT 12H % GIT 16H % Tree

Path-based

40-hub Rand 508600 7.07% 96.81%= 851
879

95.34%= 838
879

93.63%= 823
879

88.05%= 774
879

84.3%= 741
879

71.56%= 629
879

40-hub Geo 374697 8.35% 97.64%= 787
806

95.41%= 769
806

93.8%= 756
806

89.7%= 723
806

86.85%= 700
806

77.67%= 626
806

50-hub Rand 774045 7.25% 97.93%= 1233
1259

96.74%= 1218
1259

95.47%= 1202
1259

91.18%= 1148
1259

88.01%= 1108
1259

75.54%= 951
1259

50-hub Geo 649366 7.25% 97.58%= 1289
1321

96.21%= 1271
1321

94.32%= 1246
1321

90.08%= 1190
1321

86.68%= 1145
1321

75.02%= 991
1321

All-hubs 1159139 8.1% 97.06%= 2012
2073

95.66%= 1983
2073

93.87%= 1946
2073

90.21%= 1870
2073

86.3%= 1789
2073

74.77%= 1550
2073

GIT-based

40-hub Rand 555612 16.39% 100.0%= 908
908

99.78%= 906
908

99.12%= 900
908

99.12%= 900
908

99.12%= 900
908

98.9%= 898
908

40-hub Geo 414335 19.64% 100.0%= 858
858

100.0%= 858
858

99.88%= 857
858

99.77%= 856
858

99.42%= 853
858

98.48%= 845
858

50-hub Rand 855658 18.05% 100.0%= 1344
1344

99.78%= 1341
1344

99.11%= 1332
1344

98.96%= 1330
1344

98.96%= 1330
1344

98.14%= 1319
1344

50-hub Geo 734338 20.88% 100.0%= 1409
1409

99.65%= 1404
1409

99.5%= 1402
1409

99.5%= 1402
1409

99.36%= 1400
1409

98.79%= 1392
1409

All-hubs 1303157 20.94% 100.0%= 2169
2169

99.31%= 2154
2169

98.66%= 2140
2169

98.43%= 2135
2169

98.29%= 2132
2169

97.69%= 2119
2169

Opt GIT-based

40-hub Rand 514659 8.35% 100.0%= 878
878

98.63%= 866
878

96.24%= 845
878

90.09%= 791
878

88.04%= 773
878

75.85%= 666
878

40-hub Geo 383022 10.76% 100.0%= 812
812

97.54%= 792
812

95.94%= 779
812

92.98%= 755
812

90.02%= 731
812

80.67%= 655
812

50-hub Rand 780447 8.13% 100.0%= 1283
1283

97.82%= 1255
1283

96.1%= 1233
1283

91.11%= 1169
1283

87.61%= 1124
1283

76.38%= 980
1283

50-hub Geo 665029 10.76% 100.0%= 1325
1325

98.42%= 1304
1325

96.3%= 1276
1325

93.13%= 1234
1325

87.55%= 1160
1325

76.91%= 1019
1325

All-hubs 1154249 7.65% 100.0%= 2054
2054

98.0%= 2013
2054

96.35%= 1979
2054

92.6%= 1902
2054

90.07%= 1850
2054

79.5%= 1633
2054
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Table 4.17: Statistics of the Large Size Set of Instances Using the Large Truck Type

Objective value Gap % GIT 2H % GIT 4H % GIT 8H % GIT 12H % GIT 16H % Tree

Path-based

40-hub Rand 349708 11.80% 95.51%= 851
891

93.83%= 836
891

92.82%= 827
891

86.98%= 775
891

84.62%= 754
891

73.51%= 655
891

40-hub Geo 260779 14.51% 95.73%= 784
819

92.55%= 758
819

91.09%= 746
819

86.2%= 706
819

83.76%= 686
819

73.26%= 600
819

50-hub Rand 535869 12.74% 95.35%= 1211
1270

93.62%= 1189
1270

91.5%= 1162
1270

87.95%= 1117
1270

84.41%= 1072
1270

72.2%= 917
1270

50-hub Geo 446851 12.07% 96.53%= 1336
1384

93.5%= 1294
1384

91.33%= 1264
1384

87.36%= 1209
1384

84.32%= 1167
1384

74.06%= 1025
1384

All-hubs 796805 12.84% 97.03%= 2029
2091

95.22%= 1991
2091

93.97%= 1965
2091

89.72%= 1876
2091

87.14%= 1822
2091

78.19%= 1635
2091

GIT-based

40-hub Rand 393341 25.12% 100.0%= 911
911

99.56%= 907
911

99.01%= 902
911

98.9%= 901
911

98.9%= 901
911

98.46%= 897
911

40-hub Geo 295996 29.79% 100.0%= 870
870

100.0%= 870
870

100.0%= 870
870

99.66%= 867
870

99.54%= 866
870

98.97%= 861
870

50-hub Rand 610487 27.89% 100.0%= 1343
1343

99.48%= 1336
1343

98.81%= 1327
1343

98.66%= 1325
1343

98.51%= 1323
1343

96.87%= 1301
1343

50-hub Geo 527067 31.75% 100.0%= 1421
1421

99.72%= 1417
1421

99.44%= 1413
1421

99.37%= 1412
1421

99.01%= 1407
1421

98.31%= 1397
1421

All-hubs 931411 31.25% 100.0%= 2201
2201

99.14%= 2182
2201

98.23%= 2162
2201

98.09%= 2159
2201

97.82%= 2153
2201

96.96%= 2134
2201

Opt GIT-based

40-hub Rand 357813 14.39% 100.0%= 888
888

98.09%= 871
888

95.83%= 851
888

91.44%= 812
888

87.84%= 780
888

77.59%= 689
888

40-hub Geo 266210 16.89% 100.0%= 816
816

98.16%= 801
816

95.83%= 782
816

92.89%= 758
816

90.69%= 740
816

82.6%= 674
816

50-hub Rand 549263 15.56% 100.0%= 1279
1279

98.59%= 1261
1279

97.03%= 1241
1279

93.04%= 1190
1279

89.44%= 1144
1279

78.11%= 999
1279

50-hub Geo 464828 16.57% 100.0%= 1361
1361

98.24%= 1337
1361

96.62%= 1315
1361

92.8%= 1263
1361

89.05%= 1212
1361

79.5%= 1082
1361

All-hubs 811983 14.99% 100.0%= 2082
2082

97.65%= 2033
2082

95.97%= 1998
2082

92.27%= 1921
2082

88.18%= 1836
2082

79.06%= 1646
2082
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Table 4.18: Weighted Statistics of the Large Size Set of Instances Using the Medium Truck
Type

Objective value Gap % GIT 2H % GIT 4H % GIT 8H % GIT 12H % GIT 16H % Tree

Path-based

40-hub Rand 508600 7.07% 87.18% 85.65% 82.09% 77.17% 71.74% 62.36%

40-hub Geo 374697 8.35% 93.45% 89.04% 86.36% 81.31% 76.13% 69.19%

50-hub Rand 774045 7.25% 93.67% 90.39% 88.82% 84.85% 80.19% 68.44%

50-hub Geo 649366 7.25% 95.14% 90.93% 89.08% 82.45% 77.55% 70.02%

All-hubs 1159139 8.1% 93.07% 91.55% 89.39% 86.03% 81.57% 73.10%

GIT-based

40-hub Rand 555612 16.39% 100.00% 99.31% 98.54% 98.54% 98.54% 98.50%

40-hub Geo 414335 19.64% 100.00% 100.00% 99.28% 99.25% 98.65% 98.29%

50-hub Rand 855658 18.05% 100.00% 98.80% 97.86% 97.65% 97.65% 97.47%

50-hub Geo 734338 20.88% 100.00% 95.95% 95.17% 95.17% 95.07% 94.88%

All-hubs 1303157 20.94% 100.00% 96.50% 95.11% 94.89% 94.84% 94.50%

Opt GIT-based

40-hub Rand 514659 8.35% 100.00% 94.18% 90.25% 83.32% 80.35% 72.23%

40-hub Geo 383022 10.76% 100.00% 96.09% 93.99% 89.22% 87.61% 78.23%

50-hub Rand 780447 8.13% 100.00% 96.20% 93.86% 89.29% 84.32% 76.35%

50-hub Geo 665029 9.83% 100.00% 94.82% 92.39% 88.68% 81.69% 71.28%

All-hubs 1154249 7.65% 100.00% 95.11% 92.66% 88.71% 85.37% 77.07%
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Table 4.19: Weighted Statistics of the Large Size Set of Instances Using the Large Truck
Type

Objective value Gap % GIT 2H % GIT 4H % GIT 8H % GIT 12H % GIT 16H % Tree

Path-based

40-hub Rand 349708 11.80% 88.34% 84.58% 82.12% 73.71% 70.47% 63.17%

40-hub Geo 260779 14.51% 91.09% 86.49% 83.68% 78.32% 75.77% 68.46%

50-hub Rand 535869 12.74% 88.08% 85.29% 82.77% 79.78% 76.25% 68.30%

50-hub Geo 446851 12.07% 89.44% 81.46% 76.59% 71.91% 69.52% 60.37%

All-hubs 796805 12.84% 92.51% 88.42% 87.15% 80.75% 78.03% 70.14%

GIT-based

40-hub Rand 393341 25.12% 100.00% 98.41% 96.70% 96.48% 96.48% 96.33%

40-hub Geo 295996 29.79% 100.00% 100.00% 100.00% 98.26% 97.38% 97.19%

50-hub Rand 610487 27.89% 100.00% 97.26% 95.94% 95.86% 95.66% 95.22%

50-hub Geo 527067 31.75% 100.00% 96.70% 95.26% 94.91% 94.15% 93.68%

All-hubs 931411 31.25% 100.00% 94.11% 91.08% 90.94% 90.74% 90.47%

Opt GIT-based

40-hub Rand 357813 14.39% 100.00% 93.83% 87.43% 84.21% 78.86% 72.03%

40-hub Geo 266210 16.89% 100.00% 97.24% 92.87% 90.15% 88.47% 82.19%

50-hub Rand 549263 15.56% 100.00% 97.00% 94.72% 90.32% 86.15% 76.12%

50-hub Geo 464828 16.57% 100.00% 97.13% 95.44% 89.66% 84.81% 77.68%

All-hubs 811983 14.99% 100.00% 94.94% 92.03% 87.93% 83.46% 77.33%

In Table 4.20, we observe that the optimized GIT-based solutions tend to route a similar

percentage of commodity path volume compared to the path-based solutions for both the

medium and the large truck type variants. Nonetheless, equivalently as we observe in the

medium size set of instances, the GIT-based solutions route, on average, more than 11%

more commodity volume through paths with 2 stops, and more than 9% for paths with 3 or

more stops compared to both the path-based and the optimized GIT-based solutions for the

medium truck type (and more than 9% and 15% respectively, for the large truck type). Arc

utilization remains relatively high and similar between the three approaches, close to 90%

for the large truck type and more than 90% for the medium truck type.

The nearness in the gap performance of the optimized GIT-based and path-based solu-
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tions is largely explained by two facts; first, a 2-hour discretized GIT structure is a non-

highly constrained setting, compared to the relaxation of the path-based formulation, which

enables us to achieve very close gap performance solutions among the approaches. And

second, the optimized GIT-based approach is fed by the paths generated in the path-based

approach, thus, we expect to have a similar distribution in the number of stops of the com-

modity paths when imposing a 2-hour discretized GIT structure. To see the latter, consider

the extreme case that we build a fine-granular discretized GIT structure which allows that

almost any path-based solution forms a discretized GIT structure. We observe in Tables

4.20 and 4.21 that more than 94%, on average, of the commodity volume is sent either

over the direct route or paths with one stop for both the path-based and the optimized GIT-

based solutions across all instances. Commodity paths of the path-based and optimized

GIT-based solutions having 2 stops range between 2% and 4% of the commodity volume,

and commodity paths with 3 or more stops range between 1% and 2% of the commodity

volume. This is reasonable because most of the consolidation happens in a few geograph-

ically centered hubs, and thereby taking longer paths that have stops at other intermediate

hubs would only increase operational costs.
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Table 4.20: Path Statistics of the Large Size Set of Instances Using the Medium Truck Type

Total No of paths/GITs % Direct volume % Volume 1 stop % Volume 2 stops % Volume ≥ 3 stops Arc utilization

Path-based

40-hub Rand 22280 63.45% 32.15% 3.87% 0.53% 96.59%

40-hub Geo 18882 71.12% 23.70% 4.22% 0.96% 94.98%

50-hub Rand 35389 68.39% 28.59% 2.56% 0.46% 95.35%

50-hub Geo 37722 68.09% 27.06% 4.13% 0.73% 95.81%

All-hubs 63235 64.51% 30.78% 4.10% 0.60% 95.69%

GIT-based

40-hub Rand 13012 48.03% 27.52% 15.88% 8.56% 93.99%

40-hub Geo 13283 57.04% 21.60% 8.45% 12.91% 92.16%

50-hub Rand 15691 43.68% 24.23% 17.45% 14.64% 93.97%

50-hub Geo 16934 43.57% 27.88% 18.06% 10.48% 93.56%

All-hubs 21410 38.07% 31.05% 15.25% 15.63% 94.31%

Opt GIT-based

40-hub Rand 22280 65.45% 30.18% 3.94% 0.42% 95.38%

40-hub Geo 18882 72.54% 21.83% 4.76% 0.87% 92.59%

50-hub Rand 35389 69.14% 28.10% 2.25% 0.50% 94.39%

50-hub Geo 37722 69.14% 26.32% 3.76% 0.79% 94.06%

All-hubs 63235 65.05% 30.94% 3.50% 0.51% 94.81%
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Table 4.21: Path Statistics of the Large Size Set of Instances Using the Large Truck Type

Total No of paths/GITs % Direct volume % Volume 1 stop % Volume 2 stops % Volume ≥ 3 stops Arc utilization

Path-based

40-hub Rand 25602 61.66% 31.37% 6.01% 0.96% 94.41%

40-hub Geo 24909 65.00% 24.97% 6.56% 3.47% 91.99%

50-hub Rand 43433 63.52% 30.74% 4.70% 1.04% 92.49%

50-hub Geo 44938 64.32% 27.70% 6.63% 1.34% 92.83%

All-hubs 75804 60.81% 32.75% 5.26% 1.18% 92.24%

GIT-based

40-hub Rand 12912 43.52% 28.36% 15.14% 12.97% 90.35%

40-hub Geo 13250 48.50% 24.79% 12.72% 13.99% 87.08%

50-hub Rand 15765 38.66% 28.19% 14.57% 18.58% 90.73%

50-hub Geo 16846 43.91% 24.74% 16.11% 15.25% 89.88%

All-hubs 21282 29.47% 29.14% 18.29% 23.09% 91.55%

Opt GIT-based

40-hub Rand 25602 61.59% 30.95% 6.26% 1.20% 91.85%

40-hub Geo 24909 68.13% 23.53% 6.06% 2.28% 88.13%

50-hub Rand 43433 64.31% 30.60% 4.04% 1.05% 89.82%

50-hub Geo 44938 65.59% 27.94% 5.05% 1.42% 89.64%

All-hubs 75804 61.14% 32.33% 5.27% 1.26% 88.94%

Tables 4.22 and 4.23 show that on average, 50% and 55% of the paths generated have

2 or more stops, for the medium truck type and the large truck type variants, respectively.

Nevertheless, the solutions of the path-based and the optimized GIT-based model employ

on average about 4% and 7% of these paths in their final solutions for the medium and the

large truck types, respectively. Equivalently as we see in the medium size set of instances,

in order to find high-quality paths of 2 or more stops, many more paths have to be generated

compared to one-stop paths, and more prominently in this large set of instances in which

an enormous number of more options for stops of the paths are feasible.
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Table 4.22: Paths Generated in the Path-based Approach when Using the Medium Truck
Type

% Direct % 1 stop % 2 stops % ≥ 3 stops

40-hub Rand 12.62% 39.48% 27.75% 20.14%

40-hub Geo 12.46% 40.04% 27.31% 20.19%

50-hub Rand 11.52% 39.27% 27.60% 21.61%

50-hub Geo 10.99% 39.18% 27.77% 22.06%

All-hubs 10.07% 37.99% 26.33% 25.61%

Table 4.23: Paths Generated in the Path-based Approach when Using the Large Truck Type

% Direct % 1 stop % 2 stops % ≥ 3 stops

40-hub Rand 11.43% 35.98% 28.45% 24.14%

40-hub Geo 9.89% 35.81% 28.20% 26.10%

50-hub Rand 9.43% 35.19% 29.29% 26.09%

50-hub Geo 9.57% 34.71% 29.34% 26.39%

All-hubs Rand 8.64% 35.34% 28.01% 28.00%

In order to measure the impact, on the structure and performance of solutions, of us-

ing a ”larger” hour discretized GIT, we experiment, in addition to the 2-hour discretized

GIT, with 4, 8, 12, 16 and 72-hour discretized GIT variants of the optimized GIT-based

approach for the All-hubs instance using the large truck type. Tables 4.24 and 4.25 report

the unweighted and weighted GIT statistics, respectively. Both tables show that a 4-hour

discretized GIT returns a very close solution, in terms of gap performance, compared to

the 2-hour discretized GIT solutions. In fact, the gap performance of the 4-hour discretized

GIT is slightly better than the 2-hour discretized GIT, which may be attributed to the fact

that models do not finish optimally (we allow a maximum timelimit of one hour of com-
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putation), and moreover the 4-hour discretized GIT is a slightly less difficult problem to

solve than a 2-hour discretized GIT. We observe that the gap performance solutions of the

8 and 12-hour discretized GIT, are approximately 1% and 2% more costly than the 2-hour

discretized GIT solutions, respectively. Interestingly, the gap performance of the solutions

of the 16 and 72-hour discretized GIT are very close, less than 0.1%, to the solutions of

the 12-hour discretized GIT. Since the maximum time requirement of commodities is 72

hours, then the 72-hour discretized GIT returns an in-tree structure for each destination. It

is intriguing to observe that the difference in gap performance between the path-based and

the 72-hour discretized GIT solutions is 3.44%.

Table 4.24: Statistics for Different Discretized GIT of the Optimized GIT-based Approach
for the All-hubs Instance when Using the Large Truck Type

Objective value Gap % GIT 2H % GIT 4H % GIT 8H % GIT 12H % GIT 16H % Tree

Path-based 796805 12.84% 97.03%= 2029
2091

95.22%= 1991
2091

93.97%= 1965
2091

89.72%= 1876
2091

87.14%= 1822
2091

78.19%= 1635
2091

GIT 2H 811983 14.99% 100.0%= 2082
2082

97.65%= 2033
2082

95.97%= 1998
2082

92.27%= 1921
2082

88.18%= 1836
2082

79.06%= 1646
2082

GIT 4H 809501 14.64% 100.0%= 2111
2111

100.0%= 2111
2111

96.83%= 2044
2111

91.66%= 1935
2111

88.68%= 1872
2111

76.84%= 1622
2111

GIT 8H 817078 15.71% 100.0%= 2108
2108

100.0%= 2108
2108

100.0%= 2108
2108

94.78%= 1998
2108

90.32%= 1904
2108

78.46%= 1654
2108

GIT 12H 820339 16.17% 100.0%= 2086
2086

100.0%= 2086
2086

99.66%= 2079
2086

100.0%= 2086
2086

91.71%= 1913
2086

80.97%= 1689
2086

GIT 16H 820430 16.19% 100.0%= 2120
2120

100.0%= 2120
2120

100.0%= 2120
2120

97.41%= 2065
2120

100.0%= 2120
2120

85.75%= 1818
2120

GIT 72H 821109 16.28% 100.0%= 2093
2093

100.0%= 2093
2093

100.0%= 2093
2093

100.0%= 2093
2093

100.0%= 2093
2093

100.0%= 2093
2093

Table 4.25: Weighted Statistics for Different Discretized GIT of the Optimized GIT-based
Approach for the All-hubs Instance when Using the Large Truck Type

Objective value Gap % GIT 2H % GIT 4H % GIT 8H % GIT 12H % GIT 16H % Tree

Path-based 796805 12.84% 92.51% 88.42% 87.15% 80.75% 78.03% 70.14%

GIT 2H 811983 14.99% 100.00% 94.94% 92.03% 87.93% 83.46% 77.33%

GIT 4H 809501 14.64% 100.00% 100.00% 93.69% 86.51% 84.34% 74.73%

GIT 8H 817078 15.71% 100.00% 100.00% 100.00% 93.41% 88.42% 79.16%

GIT 12H 820339 16.17% 100.00% 100.00% 99.37% 100.00% 89.34% 81.90%

GIT 16H 820430 16.19% 100.00% 100.00% 100.00% 98.46% 100.00% 86.21%

GIT 72H 821109 16.28% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
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Table 4.26 shows that the solutions of different discretized GIT runs are relatively sim-

ilar in the percentage of commodity path volume routed over different path lengths, in

general no more than 2% of difference for each path length. The path-based solutions be-

have in a similar manner, nonetheless, showing a 2-3% higher arc utilization compared to

the counterpart discretized GIT solutions, which may explain in part the better gap perfor-

mance of the path-based solutions.

Table 4.26: Path Statistics for Different Discretized GIT of the Optimized GIT-based Ap-
proach for the All-hubs Instance when Using the Large Truck Type

Total No of paths % Direct volume % Volume 1 stop % Volume 2 stops % Volume ≥ 3 stops Arc utilization

Path-based 75804 60.81% 32.75% 5.26% 1.18% 92.24%

GIT 2H 75804 61.14% 32.33% 5.27% 1.26% 88.94%

GIT 4H 75804 60.13% 33.24% 5.33% 1.30% 89.97%

GIT 8H 75804 60.52% 32.49% 5.75% 1.24% 89.28%

GIT 12H 75804 60.76% 32.63% 5.36% 1.25% 89.65%

GIT 16H 75804 60.52% 32.66% 5.82% 1.00% 88.93%

GIT 72H 75804 59.65% 32.55% 6.60% 1.21% 89.73%

In Table 4.27 we show computation time statistics for the GIT-based and the path-based

approaches that involve the generation of paths and GITs. For each metric, we compute the

average over 10 runs. We observe that for the path-based approach, most of the time, 89%,

is spent in solving IP models, whereas for the GIT-based approach, most of the time, 61%,

is devoted generating GITs. This is attributed to the fact that in the GIT-based approach

we generate as many as 3 GITs per destination on each iteration, in which we sample more

lower bounds on truck variables in order to improve solution costs faster. Given the fewer

number of destination, then there are fewer number of variables we add per destination, in

comparison with the 5297 number of commodities in the path-based approach (and conse-

quently more number of variables able to add on each iteration). To observe this, the total

number of paths generated is almost 4 times the number of GITs generated even when we

generate more GITs per destination on each iteration.
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Table 4.27: Average Computational Statistics for The All-hubs Instance

Paths/GITs Time (hr) Solving IPs (Hr) Generating paths/GITs (Hr) % Solving IPs % Generating paths/GITs Gap IPs

Path-based 78574 8.33 7.44 0.89 89% 11% 13.27%

GIT-based 21327 17.65 6.84 10.81 39% 61% 15.97%

In Tables 4.28 and 4.29, we report the 10 most used cities as an intermediate stop for the

path-based and optimized GIT-based solutions, respectively, when using the largest truck

type. Figures 4.8 and 4.9 depict the cities of the sorted volume associated with the 10 most

used intermediate hubs. Red color cities indicate that more than 5% of commodity volume

is sorted in those cities. We observe that in both approach solutions, the same cities, 755

and 020, concentrate approximately 50% of the sorted volume. It is expected to observe

the same intermediate hubs having similar sorted volume given that the difference in gap

performance of the solutions of the approaches is about 2%, and furthermore, the optimized

GIT-based approach employs the same set of paths generated in the path-based approach.

We also see that more than 70% of the sorted volume is concentrated in centered cities, for

both approaches, due to the fact that most of the commodity volume comes from and heads

to those centered cities.
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Table 4.28: 10 Most Used Intermediate Cities for the Path-based Solution of the All-hubs
Instance Using the Large Truck Type

City % Sorted Volume

755 31.08%

020 18.30%

769 8.36%

663 7.66%

757 7.01%

791 3.84%

752 3.30%

592 3.19%

760 2.42%

595 2.21%

Figure 4.8: Sorted Volume in Cities for the Path-based Solution of the All-hubs Instance
Using the Large Truck Type
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Table 4.29: 10 Most Used Intermediate Cities for the optimized GIT-based Solution of the
All-hubs Instance Using the Large Truck Type

City % Sorted Volume

755 29.73%

020 19.91%

663 9.64%

769 8.53%

757 6.09%

791 4.64%

592 2.85%

752 2.75%

595 1.91%

762 1.68%

Figure 4.9: Sorted Volume in Cities for the optimized GIT-based Solution of the All-hubs
Instance Using the Large Truck Type
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4.7 Conclusions and Future Research

In this work, we introduce the concept of GIT and discretized GIT structures, which pro-

vides useful operational benefits in practice. We develop a GIT-based, an optimized GIT-

based approach and a relaxation of the problem through a path-based formulation.

We propose a dynamic path generation methodology to create multi-stop paths and

avoid enumerating all time-feasible paths, which is prohibited to generate for medium and

large problems.

We develop three approaches: a relaxation path-based approach, a GIT-based approach,

and an optimized GIT-based formulation. The exploration of multi-stop path solutions,

compared to one-stop paths, restricted to the set of intermediate hubs selected with the hub

selection model of Chapter 3, permits us to improve solution costs by approximately 1%

and 3% when using the medium and the large size truck types, respectively.

We demonstrate, via a computational study, that the path-based solutions show a 2-

hour and a 4-hour discretized GIT structure, and the gap performance among the three

approaches is comparatively similar for the small size set of instances.

For the medium size set of instances, the path-based solutions do not show a 2-hour

discretized GIT structure. The path-based and optimized GIT-based solutions outperform

the GIT-based solutions by approximately 3%, and between them remain similar, less than

1% of gap performance difference.

In the case of the large size set of instances, the path-based solutions do not show a 2-

hour discretized GIT structure neither for the medium nor for the large truck type variants.

However, they show more than 90% of a 2 and 4-hour discretized GIT structure. The

path-based and the optimized GIT-based approaches strongly outperform the GIT-based

approach by more than 10% of gap performance. This reveals that the GIT generation

heuristic procedure for the GIT-based approach is not effective in producing high-quality

discretized GITs. Interestingly, when enforcing an in-tree structure to the optimized GIT-
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based approach, the gap performance difference is 3.44% higher compared to the solutions

of the path-based approach for the All-hubs instance.

Enforcing a discretized GIT structure has useful operational benefits, such as to enhance

operational realism and an operationally feasible seamless plan which allows only the ex-

amination of the destination of the commodity and the bucket that the remaining available

time of the commodity falls into, in order to determine the appropriate outbound trailer

for loading. Nevertheless, this structure bears a penalty cost of around 2% of deterioration

in the gap performance for a 2-hour discretized GIT, and around 3%-4% for more rigid

GIT structures when compared to the solutions of the relaxation thereof for the All-hubs

instance.

The next future avenue for research is to investigate alternative approaches for finding

discretized GIT structures, test the approaches in other realistic instances to measure the

penalty cost of imposing a GIT structure, and find tighter lower bounds of the problem for

the large problems.
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APPENDIX A

OPERATIONS DESIGN FOR HIGH-VELOCITY INTRA-CITY PACKAGE

SERVICE

A.1 Detailed algorithm to add cycles to the BP

To formally define this procedure, let C be the set of all cycles for a given regime. We

define the set of late commodities as Kl. A commodity is said to be late if it has at least

one late arrival interval. For each late commodity k, we identify all late arrival intervals

in the set Ik. Let Aik be the set of arcs of the path of a late commodity k associated to

the late arrival interval i. We also identify the parameter wt(u,v),ik as the waiting time on

each arc (u, v) of the path of a late commodity k in late arrival interval i. Similarly, we

identify the parameter wtmaxk as the maximum allowable waiting time on each arc of the

path of commodity k such that the commodity is on-time. Let T s denote the set of different

starting times allowed for cycles. Let wk be the fraction of the arrival rate of commodity k

over all commodity arrival rates. Let ok be the on-time metric for commodity k. Finally,

we define the parameter otarget as the overall on-time metric to achieve, and omin as the

minimum on-time metric that must be satisfied for all commodities.

1: while oworst < omin and o < otarget do

2: if oworst < omin then

3: Identify the commodity k having the minimum on-time metric, oworst, call it k∗

4: for i ∈ Ik∗ do

5: for (u, v) ∈ Aik∗ do

6: if wt(u,v),ik > wtmaxk then

7: S(u, v)← S(u, v) + wk[wt
(u,v),i
k − wtmaxk ]
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8: end if

9: end for

10: end for

11: end if

12: if o < otarget and oworst ≥ omin then

13: for k ∈ Kl do

14: for i ∈ Ik do

15: for (u, v) ∈ Aik do

16: if wt(u,v),ik > wtmaxk then

17: S(u, v)← S(u, v) + wk[wt
(u,v),i
k − wtmaxk ]

18: end if

19: end for

20: end for

21: end for

22: end if

23: Select (u∗, v∗) = argmax
(u,v)/∈Tabu

[s(u, v) + s(v, u)]

24: if (u∗, v∗) 6= (u∗l , v
∗
l ) or Sl 6= S(u∗, v∗) + S(v∗, u∗) then

25: for t ∈ T s do

26: if oc(u∗,v∗,t) > o then

27: c← c(u
∗,v∗,t)

28: o← oc(u∗,v∗,t)

29: end if

30: end for

31: Add cycle c to the network

32: Update Kl, Ik,Aik, o, oworst

33: else

34: Add (u∗, v∗) to Tabu
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35: end if

36: Sl ← S(u∗, v∗) + S(v∗, u∗)

37: (u∗l , v
∗
l )← (u∗, v∗)

38: end while

Algorithm A.1 works as follows. We first aim to improve the minimum on-time metric

for all commodities and subsequently we improve the overall on-time metric. In the first

case, we identify the commodity having the minimum on-time metric, then we focus on

improving the on-time metric for only that commodity (line 3). Next, we identify each

late arrival interval and each arc of the commodity path (lines 4 and 5). Then, we check

whether the waiting time on each arc of the commodity path is greater than the maximum

waiting time allowed. If that is the case, we add the difference to the lateness score of

the corresponding arcs weighted by the commodity arrival rate (lines 6 and 7). When we

improve the overall on-time metric, we proceed in a similar fashion but focusing on all late

commodities. We identify each late commodity, each late arrival interval, and each arc of

the commodity path (from lines 13 - 15). Next, we verify whether the waiting time on each

arc of the commodity path is greater than the maximum waiting time allowed. If this is

the case, we add the difference to the lateness score of the corresponding arcs weighted by

the commodity arrival rate (lines 16 and 17). After lateness scores are computed for each

arc, we greedily select the arc with the highest lateness score (line 23). We verify that the

arc selected is different than the previously chosen arcs or the lateness score is different

than the previous iteration (line 24). We then evaluate different starting times of the cycle

every t minutes on the time-space network and choose the one that returns the best on-time

metric, which can be the minimum or the overall metric in consideration (lines 26 - 28).

Finally, we add the cycle to the network and we update the late commodities and late arrival

intervals (lines 31 - 32). In the case we obtain the same selected arc with the same lateness

score value compared to the previous iteration, we do not add the cycle and we insert the

arc to a tabu list for s iterations. We repeat the procedure until a minimum on-time metric
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is achieved for each commodity and a target overall on-time metric is reached.

A.2 Detailed Algorithm to Remove Cycles from the BP

Algorithm 6 Removal Cycle
1: while Iterate do

2: for c ∈ C do

3: Compute oworst,c, oc, umax,c when cycle c is removed

4: if oworst,c > omin and oc > otarget and umax,c ≤ 100% then

5: Compute the expected return of removing cycle c, rc

6: if rc < 0 and rc < rmin then

7: c∗ ← c

8: rmin ← rc

9: Iterate← True

10: end if

11: end if

12: end for

13: C ← C \ c∗

14: end while

The cycle removal algorithm works as follows: In each iteration, we choose the cycle that

has the lowest expected return for removal. To do so, we first verify whether the cycle

is admissible for removal, i.e., the minimum (worst) on-time metric, minimum overall on-

time metric, and maximum utilization (computed on the flat network) are not violated when

the cycle is removed (lines 3 and 4). Next, among the cycles that are admissible for removal,

we identify the lowest expected return of a cycle according to the return of removing a cycle

defined in 2.17 (lines 5 - 9). Finally, we remove the cycle and keep iterating in a similar

way until there is no longer an admissible cycle or there is no negative return of removing
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a cycle.
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APPENDIX B

SERVICE NETWORK DESIGN WITH HUB SELECTION

B.1 Initial Experiments Using Large values of s

In these experiments, we group time requirements of commodities according to the follow-

ing time requirement groups:

Table B.1: Time Requirement Groups

Range (Hrs) Time Requirement Set (hours)

(0, 4] 4

(4, 8] 4

(8, 12] 8

(12, 16] 12

(16, 20] 16

(20, 30] 20

(30, 40] 30

>40 40

After we group commodities according to the time requirement groups defined in Table

B.1, we obtain 6681 commodities, and the time requirement of half of them, according to

the time requirement group they belong, is not sufficient to cover at least two times the

direct travel time route. We redefine the time requirement for those commodities to have

at least two times the direct travel time. Since the truck cost per kilometer for arcs is not

available, we compute an average arc truck cost per kilometer from the available truck arc

cost. Given that the capacity, in terms of packages, of hubs is not available, we consider it
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as unrestricted. We employ mainly two truck sizes: 7T and 14T, which depends on the arc

distance. We only allow paths having at most two intermediate stops and the length of paths

is restricted by the time requirement of each commodity. We experiment with a different

maximum number of outbound destinations, L, and a maximum number of intermediate

hubs, s.

In Figures B.1, B.2, B.3 and B.4, we illustrate how the number of intermediate stops

for commodity paths and the cost of the solution change as we vary s and L. We fix L as 5

times the actual lu for each u ∈ Û for Figures B.1, B.2, and we fix s = 20 for Figures B.3

and B.4.iminary results

38.3%

64.0% 64.0%

53.2%

48.3%
46.1% 45.4%

0.0%
2.8%

8.5%

13.7%
17.6%

22.9%
25.5%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

1 5 10 20 30 50 68

S versus Stops of Commodity Paths (%)

1 Stop 2 stops

Figure B.1: s versus Commodity Stops
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Figure B.2: s versus Solution Cost

In Figure B.1, we observe that the percentage of commodities taking non-direct paths

increases significantly for small s, however, for larger s (such as s ≥ 30) the increase is

not significant; in fact we see more commodity paths with 2 stops and fewer with 1 stop.

In Figure B.2, we observe that there is a huge improvement in the cost of the solution

from s = 1 to s = 5, nearly 30%. Nevertheless, from s = 5 onward, we do not notice a

significant improvement. This evidence strongly suggests that in practice, a large number

of intermediate hubs is not required to obtain good solution costs.
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Figure B.3: L versus Commodity Stops

Figure B.4: L versus Solution Cost

In Figure B.3 and B.4, we do not notice a significant difference in the number of stops

for commodity paths and the cost of the solution across different values of L, which sug-

gests that this restriction may not be of importance, except to some hubs that currently have
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few loading docks.

154



REFERENCES

[1] T. Deloison, E. Hannon, A. Huber, B. Heid, C. Klink, R. Sahay, and C. Wolff, “The
future of the last–mile ecosystem,” Ecosystem. World Economic Forum, 2020.

[2] P. B. Inc., “Pitney bowes parcel shipping index reports continued growth as global
parcel volume exceeds 100 billion for first time ever,” 2020.

[3] T. Crainic, “Service network design in freight transportation,” European Journal of
Operational Research, vol. 122, pp. 272–288, 2000.

[4] N. Wieberneit, “Service network design for freight transportation: A review,” OR
Spectrum, Springer, vol. 30, pp. 77–112, 2008.

[5] C. Barnhart, C. A. Hane, and P. H. Vance, “Using branch-and-price-and-cut to solve
origin-destination integer multicommodity flow problems,” Operations Research,
vol. 48, no. 2, pp. 318–326, 2000.

[6] J. Andersen, M. Christiansen, T. G. Crainic, and R. Grønhaug, “Branch and price for
service network design with asset management constraint,” Transportation Science,
vol. 45, no. 1, pp. 33–49, 2011.

[7] B. Gendron and M. Larose, “Branch-and-price-and-cut for large-scale multicom-
modity capacitated fixed-charge network design,” EURO Journal on Computational
Optimization, vol. 2, pp. 55–75, 2014.

[8] X. Li, Y. P. Aneja, and J. Huo, “Using branch-and-price approach to solve the di-
rected network design problem with relays,” Omega, vol. 40, pp. 672–679, 2012.

[9] J. M. Farvolden and W. B. Powell, “Subgradient methods for the service network
design problem,” Transportation Science, vol. 28, no. 3, pp. 177–272, 1994.

[10] A. Armacost, C. Barnhart, and K. Ware, “Composite variable formulations for ex-
press shipment service network design,” Transportation Science, vol. 36, no. 1,
pp. 1–20, 2002.

[11] C. Barnhart and R. R. Schneur, “Air network design for express shipment service,”
Operations Research, vol. 44, no. 6, pp. 852–863, 1996.

[12] A. Armacost, C. Barnhart, K. Ware, and A. Wilson, “Ups optimizes its air network,”
INFORMS Journal on Applied Analytics, vol. 34, no. 1, pp. 15–25, 2004.

155



[13] C. Barnhart, N. Krishnan, D. Kim, and K. Ware, “Network design for express ship-
ment delivery,” Computational Optimization and Applications, vol. 21, no. 3, pp. 239–
262, 2002.

[14] W. Powell and Y. Sheffi, “The load planning problem of motor carriers: Problem
description and a proposed solution approach,” Transportation Research Part A,
vol. 17, no. 6, pp. 471–480, 1983.

[15] W. Powell, “A local improvement heuristic for the design of less-than-truckload mo-
tor carrier networks,” Transportation Science, vol. 20, no. 4, pp. 227–291, 1986.

[16] W. Powell and Y. Sheffi, “Design and implementation of an interactive optimiza-
tion system for network design in the motor carrier industry,” Operations Research,
vol. 37, pp. 12–29, 1989.

[17] K. O. Kyoung, C. D. Martland, and J. M. Sussman, “Routing and scheduling tempo-
ral and heterogeneous freight car traffic on rail networks,” Transportation Research
Part E: Logistics and Transportation Review, vol. 34, no. 2, pp. 101–115, 1998.

[18] M. Zhang, M. Janic, and L. Tavasszy, “A freight transport optimization model for
integrated network, service, and policy design,” Transportation Research Part E:
Logistics and Transportation Review, vol. 77, pp. 61–76, 2015.

[19] L. Duan, L. A. Tavasszy, and J. Rezaei, “Freight service network design with het-
erogeneous preferences for transport time and reliability,” Transportation Research
Part E, vol. 124, pp. 1–12, 2019.

[20] T. Crainic, M. Hewitt, M. Toulouse, and D. Vu, “Service network design with re-
source constraints,” Transportation Science, vol. 50, pp. 1380–1393, 2014.

[21] T. Crainic, N. Ricciardi, and G. Storchi, “Models for evaluating and planning city
logistics systems,” Transportation Science, vol. 43, no. 4, pp. 432–454, 2009.

[22] T. G. Crainic, N. Ricciardi, and G. Storchi, “Advanced freight transportation systems
for congested urban areas,” Transportation Research Part C: Emerging Technolo-
gies, vol. 12, no. 2, pp. 119–137, 2004.

[23] T. G. Crainic, F. Errico, W. Rei, and N. Ricciardi, “Modeling demand uncertainty in
two-tier city logistics tactical planning,” Transportation Science, vol. 50, pp. 363–
761, 2016.

[24] A. Lium, T. G. Crainic, and S. W. Wallace, “A study of demand stochasticity in
service network design,” Transportation Science, vol. 43, pp. 144–157, 2009.

156



[25] T. Crainic and A. Sgalambro, “Service network design models for two-tier city lo-
gistics,” Optimization Letters, Springer, vol. 8, pp. 1375–1387, 2014.

[26] D. Kim and C. Barnhart, “Transportation service network design: Models and algo-
rithms,” Computer-Aided Transit Scheduling, vol. 471, pp. 259–283, 1999.

[27] J. Andersen, T. G. Crainic, and M. Christiansen, “Service network design with as-
set management: Formulations and comparative analyses,” Transportation Research
Part C, vol. 17, no. 2, pp. 197–207, 2009.

[28] A. Erera, M. Hewitt, M. Savelsbergh, and Y. Zhang, “Improved load plan design
through integer programming based local search,” Operations Research, vol. 47,
no. 3, pp. 412–427, 2013.

[29] A. I. Jarrah, E. Johnson, and L. C. Neubert, “Large-scale, less-than-truckload service
network design,” Operations Research, vol. 57, no. 3, pp. 609–625, 2009.

[30] M. Chouman and T. G. Crainic, “Cutting-plane matheuristic for service network
design with design-balanced requirements,” Transportation Science, vol. 49, no. 1,
pp. 99–113, 2015.

[31] M. Savelsbergh and T. V. Woensel, “50th anniversary invited article?city logistics:
Challenges and opportunities,” Transportation Science, vol. 50, no. 2, pp. 579–590,
2016.

[32] G. Jia, R. Ma, and Z. Hu, “Review of urban transportation network design problems
based on citespace,” Mathematical Problems in Engineering, vol. 2019, 2019.

[33] R. Z. Farahani, E. Miandoabchi, W. Y. SzetoW, and H. Rashidi, “A review of ur-
ban transportation network design problems,” European Journal of Operational Re-
search, vol. 229, pp. 281–302, 2013.

[34] T. G. Crainic and J. M. Rousseau, “Multicommodity, multimode freight transporta-
tion: A general modeling and algorithmic framework for the service network design
problem,” Transportation Research Part B: Methodological, vol. 20, no. 3, pp. 225–
242, 1986.

[35] D. Kim, C.Barnhart, K. Ware, and G. Reinhardt, “Multimodal express package de-
livery: A service network design application,” Transportation Science, vol. 33, no. 4,
pp. 391–407, 1999.

[36] J. Campbell, “A survey of network hub location,” Studies in Locational Analysis,
vol. 6, pp. 31–49, 1994.

157



[37] ——, “Hub location and the p-hub median problem,” Operations Research, vol. 44,
no. 6, pp. 1–13, 1996.

[38] J. F. Campbell, A. T. Ernst, and M. Krishnamoorthy, “Hub location problems,” Fa-
cility Location: Applications and Theory. Springer, 2002.

[39] M. E. O’Kelly and H. J. Miller, “The hub network design problem: A review and
synthesis,” Journal of Transport Geography, Elsevier, vol. 2, pp. 31–40, 1994.

[40] M. Kuby and R. Gray, “Hub network design problem with stoppers and feeders:
Case of federal express,” Transportation Research, vol. 27, pp. 1–12, 1993.

[41] D. Kim and C. Barnhart, “Transportation service network design: Models and algo-
rithms,” Computer-Aided Transit Scheduling, vol. 471, pp. 259–283, 1999.

[42] S. Huber, J. Klauenberg, and C. Thaller, “5consideration of transport logistics hubs
in freight transport demand models,” European Transport Research Review, Springer,
2015.

[43] S. Erol and A.S.Duyguvar, “The evolution of logistics hubs and a conceptual frame-
work for logistics hubs location decisions,” Using Decision Support Systems for
Transportation Planning Efficiency, vol. Chapter 5, 2016.

[44] S. Alumur, B. Kara, and O. Karasan, “Multimodal hub location and hub network
design,” Omega, vol. 40, no. 6, pp. 927–939, 2012.

[45] R. DeCamargo and G. Miranda, “Single allocation hub location problem under con-
gestion: Network owner and user perspective,” Expert Systems with Applications,
vol. 39, no. 3, pp. 3385–3391, 2012.

[46] I. Rodrı́guez-Martı́n, J. Salazar-Gonzalez, and H. Yaman, “A branch-and-cut algo-
rithm for the hub location and routing problem,” Computers Operations Research,
vol. 50, pp. 161–174, 2014.

[47] S. Gelareh and S. Nickel, “Hub location problems in transportation networks,” Trans-
portation Research Part E, Logistics and Transportation Review, vol. 47, no. 6,
pp. 1092–1111, 2011.

[48] B. Luttrell, “Https://www.areadevelopment.com/logisticsinfrastructure/intermodal-
sites-q1-2015/site-selection-process-supplychain-optimization-linked-74421.shtml,”
2015.

[49] T. G. Crainic, X. Fu, M. Gendreau, W. Rei, and S. W. Wallace, “Hub location
problems,” Progressive hedging-based metaheuristics for stochastic network design,
vol. 58, no. 2, pp. 114–124, 2011.

158



[50] C. Barnhart, E. Johnson, G. Nemhauser, M. Savelsbergh, and P. Vance, “Branch-and-
price: Column generation for solving huge integer programs,” Operations Research,
vol. 56, no. 3, pp. 316–329, 1998.
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