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                                                      SUMMARY 

Cancer is one of the leading causes of death around the world, with lung, breast 

and prostate cancer being the most commen cancers. Most of current cancer treatments 

are associated with various side effects such as depression, fatigue, hair loss, nausea, 

infection, fertility problems, anemia, and myelosuppression. Therefore, there is an unmet 

need to develop new and more potent anticancer therapeutic agents with less off-target 

toxicities. This thesis documents efforts at the design and synthesis of different classes of 

HDAC inhibitors (HDACi) as promising therapeutic agents in cancer therapy. These 

HDACi are anticpated to accumulate at the site of tumor due to selective tissue/cell 

distribution conferred on them by ligands, known to accumulate in certain tissues or 

target receptors that are overexpressed on tumor cells, incorporated into their the cap 

group. 

FDA approved macrolide, azithromycin, is known to accumulate in macrophage 

cells. Macrophage cells are known to have a high concentration in lung, hence, 

azithromycin has the potential to target and acuumulate in lung tissue. An unpublished in 

vivo data in our lab, showed that azithromycin maintains its lung accumulation after 

being modified and attached to HDACi moiety. Thus, we hypothesized conjugating the 

HDACi to azithromycin can lead to their delivery to lung tissues. To this end, in the 

second chapter, we designed and synthesized three different classes of azithromycin 

conjugated hydroxamic acid derived HDACi and evaluated their HDAC inhibitory 

potency and anti-proliferative activity in lung (A549) and breast (MCF-7) cancer cell 

lines.  

It is believed that isoform selective HDACi may be endowed with less off-target 

toxicities and better therapeutic outcome and efficacy compared to pan HDACi which 

have no selectivity toward different HDAC isoforms. To evaluate this hypothesis, in the 

third chapter, we designed and synthesized isoform selective azithromycin conjugated 



 xx 

HDACi, by replacing the hydroxamic acid zinc binding group with the N-(2-amino-5-

(thiophen-2-yl)phenyl)acylamide  zinc binding group which is a HDAC1 and HDAC2 

selective. Additionally to determine these compounds ability to target lung tissue and 

protect it from metastasis, we tested the lead compound in a model of lung metastasis of 

breast cancer using spontaneous mouse mammary tumor model MMTV-PyMT-Tg. The 

in vivo study results showed that there was a greater tumor regression in mice that were 

treated with N-(2-amino-5-(thiophen-2-yl)phenyl)acylamide derived HDACi compared to 

hydroxamic acid derived HDACi. Additionally this class of HDACi was able to protect 

the lung tissue from metastasis better than its hydroxamic acid analogue.     

 The fourth chapter focuses on continuation of prior SAR study on design 

multiple ligand compounds with selective estrogen receptor modular (SERM) and 

HDACi activities. In this study tamoxifen, an estrogen receptor (ER) antagonist, with a 

high binding affinity for ER, was used as the HDACi cap group. These antiestrogen 

equipped HDACi are expected to be better uptaken by ER positive breast cancer cells 

possibly due to tamoxifen affinity for binding to ER. This selective uptake is anticipated 

to eventually lead to an improved antiproliferative activity. MTT assay results confirmed 

the hypothesis. Hydroxamic acid derived HDACi showed about 4 fold more cytotoxicity 

toward ERα positive breast cancer cells compared to ERα negative breast cancer cells. 

Two of these SERM HDACi conjugates are currently being studied in animal models.   

The fifth chapter illustrates bifunctional STAT3/HDAC inhibitors for treating 

STAT3 activated cancers, such as acute myeloid leukemia. In this study, pyrimethamine, 

a selective STAT3 inhibitor was used as the HDACi cap group. We hypothesized that 

design multiple ligand compounds comprising STAT3 inhibitor and HADCi will 

integrate direct STAT3 and HDAC inhibition, and downregulation of Mcl-1 within a 

single molecular template. These bifunctional compounds can be potential inhibitors of 

proliferation of CLL, DLBCL and probably other tumors that are dependent on STAT3 

signaling pathway. 



 

1 

CHAPTER 1 

INTRODUCTION 

1.1. Background 

               Cancer is one of the leading causes of death worldwide and is the second cause 

of death after cardiovascular diseases in the United States [1], [2]. According to National 

Cancer Institute there will be approximately 1,685,210 new cases of cancer, and 595,690 

cancer deaths which is equal to 1600 deaths per day only in United States in 2016 [3]. 

 Cancer develops when there is an environmental or inherited mutation or damage 

in the genetic materials of cells such as proto-oncogenes that are responsible for coding 

for proteins involved in cell proliferation and differentiation or tumor suppressor genes 

inhibit cancer cell growth or induce apoptosis. Normal cells grow, divide, die, and 

eventually are replaced by new cells. However, cancer is an uncontrollable cell growth, 

division and proliferation that is resistant to normal cell death, consequently leading to 

the formation of an abnormal cell mass or tumor [4]. Cancerous cells can become 

metastatic with time and migrate to other parts of body as well [5]. In fact tumor cells 

ability to sustain proliferating signaling and replicative immortality helps them to evade 

tumor growth suppressors, activate invasion and metastasis, induce angiogenesis and 

finally resist cell death, which is why it is difficult to eradicate tumor growth and cure 

cancer [6].  

The most common cancers in US are that of the lung, bronchus, colorectal and 

prostate (in men), and breast (in women). Together, these cancers account for about 46% 

of cancer prevalence with the lung cancer being the most prevalent with 27% occurrence 

[1]. Moreover, cancer mortality is higher for men rather than women and it has its highest 

rate for African American men and lowest rate for Asian/Pacific Islander women [7].   
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Surgery, chemotherapy, and radiation are the most common cancer treatments [8], 

with hormone therapy, immunotherapy or targeted therapy serving as other choices of 

treatment. Surgery is used to remove the tumor as well as other cells or parts of the body 

that were affected by tumor cells. For example, a common surgical procedure is the 

removal of part or all of breast or prostate gland in the case of breast and prostate cancers. 

Chemotherapy on the other hand is the administration of drugs orally or intravenously to 

kill tumor cells or to slow their growth [9]. Additionally, radiation is another choice of 

treatment used in combination with other treatments or as a standalone therapy to treat 

cancer. Surgery and radiotherapy are the most effective therapy for non-metastatic 

cancers that are limited to certain areas of the body and has not yet spread to other 

tissues, whereas, chemotherapy and hormone therapy are the only treatments for 

metastatic cancers since they can reach all the organs in the body through blood 

circulation [10]. Unfortunately, these treatments are accompanied with side effects such 

as nausea, vomiting, fatigue, anemia, and lymphedema due to their off-target toxicities to 

healthy cells. Furthermore, emergence of multi-drug resistance in addition to cytotoxicity 

of current anticancer agents brings up the critical need for developing targeted cancer 

drugs.                        

1.2. Epigenetics 

Epigenetics is mitotically and meiotically heritable changes in DNA expression 

and histone modification without alteration to gene sequences that regulate cell function. 

Epigenetic silencing is caused by RNA- associated silencing, chromatin remodeling and 

most importantly DNA methylation, and histone modifications such as methylation, 

acetylation, phosphorylation, ubiquitination and sumoylation. These processes are 

associated with dysfunctions in transcriptional activation. Aberrant regulation of the 

epigenome results in dysfunction in the control of gene expression which can present in 
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various physiological conditions. Disruption of these regulating systems can lead to 

various diseases including cancer [11]. 

 Nucleosomes are the basal units of chromatin, and are made of five histone 

proteins. Nucleosome core consists of the core histone octamers H2A, H2B, H3 and H4. 

Core histones are involved in both histone-histone interactions as well as histone-DNA’s. 

H1 on the other hand, is a linker histone and is responsible for chromatin compaction and 

maintaining chromosome structure.   The state of chromatin is very important for many 

cellular mechanisms such as transcription, translation and repair. Chromatin state is 

determined by changes in amino terminal tails of the histones.  Around 30-40% of core 

histone amino acids are positively charged lysine and arginine. The high density of 

positive charge, along with the undetectable secondary structure of free histones, led to 

the presumption that N-termini of histones operate by binding as unstructured coils to 

DNA components in nucleosome [12].   

The histone amino tail groups are believed to interact with negatively charged 

DNA backbone or other chromatin related proteins. The DNA interaction with chromatin 

can facilitate or hinder cellular processes like transcription, translation and apoptosis 

[13]. Histone tail post-translation modifications such as methylation, acetylation, 

phosphorylation, and ubiquitination have been the subject of many studies [14].  

The focus of this thesis is on histone deacetylation, the link between aberrant 

histone deacetylation tumorigenesis and design of small molecules which promote 

histone acetylation through inhibition of the deacetylase activities of various histone 

deacetylase isoforms. The sections below are focused on histone deacetylation and its 

inhibition in efforts aimed at identifying tumor selective histone deacetylase inhibitors.  

Additionally, it focuses on different methods for HDACi specific tissue delivery to 

enhance their potency and lower their off-target toxicities.   
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1.3. Histone acetylation 

Nucleosome consists of 146 base pairs of DNA wrapped around core histone 

octamer [15]. Nucleosome has two copies of each core histone. All four core histones in 

nucleosome are subject to post acetylation of their terminus amino groups of specific 

lysine residues (Figure 1.1) [16].  Core histones H2B, H3 and H4 each has 16 possible 

isoforms including 1 non-acetylated, 4 mono-acetylated, 6 di-acetylated, 2 tri-acetylated 

and 1 tetra-acetylated. H2A only has 2 isoforms: 1 non-acetylated and 1 mono-acetylated. 

Thus altogether there are 16 x 16 x 16 x 2 = 8192 possible combinations within every 

single nucleosome [14]. Furthermore, H1 histone protein is associated with each 

nucleosome and plays an important role in DNA level of condensation [17].  

The idea of histone acetylation and its relation with gene transcription was suggested 

about five decades ago [18]. Histones are acetylated by histone acetyl transferase enzyme 

(HAT) which transfers the acetyl group from acetyl coenzyme (acetyl CoA) to the 

terminal amine group of histone lysine residues. Histone acetylation revamps the 

structure of chromatin and therefore influences transcription as well as DNA replication. 

Acetylation affects initiation and elongation of transcription by diminishing the 

interactions between DNA and histone leading to an open chromatin and more accessible 

transcription factors [19]. In vitro studies have revealed that acetylation of lysine residues 

of histone promotes binding of particular transcription factors to DNA and therefore 

stimulate gene expression [19].  
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Figure 1.1. Nucleosome consists of 4 core histones, H2A, H2B, H3, H4, and the linker 

histone H1. Histones are the main proteins of chromatin which DNA winds around. 

These core histones are subject to post-translation modifications, one of which is 

acetylation of the amine group of specific terminal lysine residues by histone acetyl 

transferase enzyme. Adding acetyl group on positively charged lysine residues results in 

less electrostatic interactions between histone and negatively charged DNA leading to an 

open chromatin which is accessible transcription factors.     

1.4. Histone deacetylation 

Dynamic acetylation and deacetylation of histones is one of the mechanisms of 

regulation of gene expression. Histone acetylation status is controlled by the activities of 

histone acetyl transferases (HAT) and histone deacetylase (HDAC) enzymes. HDACs are 

functionally opposing to HATs as they hydrolyze the acetyl groups of acetylated lysine 

residues on the tail of histones [20]. HDAC isoforms not only remove the acetyl group 

from the tail of histones, they also bind to and deacetylate other non-histone proteins that 
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are responsible for regulating cell growth, differentiation, transcription, apoptosis and 

tumorigenesis inhibition: such as p53, p21, p65, E2F, STAT3 and NF-ҝB [21]. Histone 

deacetylation has a vital role in cancer development by regulating expression of proteins 

that are involved in initiation and progression of cancer (Figure 1.2).    

 

Figure 1.2. HDAC activation regulates expression of genes that are involved in 

tumorigenesis [21]. 
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The hydrolysis of the acetyl group increases the net positive charge on histones, 

resulting in enhanced electrostatic interactions with the negative charge of DNA 

backbone and ultimately compacting chromatin (Figure 1.3). 

Figure 1.3. HDAC enzymes are functionally opposite to the HAT enzymes. They 

hydrolyze the acetyl groups from the amine moiety of terminal lysine residues of 

histones. This leaves a positive charge on histone and induces electrostatic interactions 

with negatively charged DNA, resulting in condensed chromatin less accessible to 

transcription factors. HDACi impede HDAC isoforms functions and shift the equilibrium 

towards an open and accessible chromatin.  

 

           Apart from cancer, HDAC activities have also been implicated in survival of 

Plasmodium spp., the causative organisms of malaria, neurodegenerative diseases, 

embryogenesis, immunological responses and cell differentiation. Impeding the activity 

of HDAC enzymes by using HDACi shifts the equilibrium toward more open and 

accessible chromatin which leads to gene transcription [22]. 
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1.4.1. Histone deacetylase isoforms  

There are 18 isoforms of HDAC. These isoforms are divided into four classes 

depending on their sequence homology to their yeast homologs as well as their cellular 

location. Classes I, II, IV are zinc atom (Zn2+) dependent while class III is nicotinamide 

adenine dinucleotide (NAD+) dependent, and is not the focus of this dissertation. Class I 

isoforms (HDAC1 - 483 AA, HDAC2 - 488 AA, HDAC3 - 423 AA, HDAC8 - 377 AA) 

are located in nucleus and are homologous to yeast Rpd3 protein. Class II isoforms are 

divided into two subclasses. Class IIa isoforms (HDAC4 - 1084 AA, HDAC5 - 1122 AA, 

HDAC7 - 855 AA, HDAC9 - 1011 AA) have both nucleus and cytoplasmic localizations 

while class IIb isoforms (HDAC6 - 1215 AA, HDAC10 - 699 AA) are mainly localized 

in cytoplasm. Class IIb isoforms are the only isoforms with two catalytic active sites [21]. 

The only isoform of class IV is HDAC11 (with 347 AA) can be found both in nucleus 

and cytoplasm (Table 1.1) [24].  

 

Table 1.1. HDAC isoforms with their size, function, localization, and selected examples 

of their target proteins [25], [26], [27].  

Class 
HDAC 

isoform 

Size 

(AA) 
Physiological function 

Expressio

n 

Selected 

target 

proteins 

Class 

I 

HDAC1 483 Cell survival and proliferation 

Nucleus 

p53, 

NF-ҝB, 

E2F1,St

at3, AR 

HDAC2 488 
Cell proliferation/ Insulin 

resistance 

Bcl-6, 

NF-ҝB, 

Stat3 
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Table 1.2. HDAC isoforms with their size, function, localization, and selected 

examples of their target proteins (continued) 

 

HDAC3 423 Cell survival and proliferation 

 

Stat3, 

SHP 

HDAC8 377 Cell proliferation _ 

Class 

IIa 

HDAC4 1084 
Regulation of skeletogenesis 

and gluconeogenesis 

Nucleus/ 

Cytoplasm 

GATA-

1, HP-1 

HDAC5 1122 

Cardiovascular growth and 

function/ Gluconeogenesis/ 

Cardiac myocytes and 

endothelial cell function 

Smad7, 

HP-1 

HDAC7 855 

Thymocyte differentiation/ 

Endothelial function/ 

Gluconeogenesis 

Plag1/ 

Plag2 

HDAC9 1011 

Homologous recombination/ 

Thymocyte differentiation/ 

Cardiovascular growth and 

function 

_ 

Class 

IIb 

HDAC6 1215 
Cell motility/ Control of 

cytoskeletal dynamics 

Cytoplasm 

Tubulin, 

Hsp90, 

Smad7 

HDAC10 669 

Homologous recombination/ 

Autophagy mediated cell 

survival 

_ 

Class 

IV 

HDAC11 347 
Immunomodulators- DNA 

replication 

Nucleus/ 

Cytoplasm 

_ 
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1.4.1.1. Class I isoforms 

Class I HDAC isoforms are located in the nucleus. They are found in many 

human tissues and cell lines [28].  Class I isoforms can be divided into three subclasses, 

class Ia (HDAC1 and HDAC2), class Ib (HDAC3) and class Ic (HDAC8) [26], [27]. 

HDAC1 and HDAC2 interact with each other, and form the catalytic core of multiprotein 

complexes, while HDAC3 is in complex with nuclear receptor corepressors [29]. 

HDAC8, with less tissue expression compared to other class I HDAC isoforms, is an 

unusual member of class I family. According to its sequence homology it should be 

classified as a class I member, but based on phylogenetic analysis it is on the border line 

of class I and class II. The main difference between HDAC8 and other class I isoforms is 

that HDAC8 lack the 50-111 amino acid terminal domain which is necessary for other 

class I isoforms to modulate their enzyme activity and localization [30]. Furthermore, 

unlike other class I members it is not phosphorylated by Casein kinase II (CKII) but by 

protein kinase A (PKA) which is involved in regulation of catalytic activity of HDAC8 

[31].  

Class I HDAC isoforms are activated by other mechanisms including inositol 

phosphate which are derived from membrane phospholipids. Class I HDAC isoforms 

regulation by inositol phosphate was first reported by the discovery of inositol 1,4,5,6-

tetrakisphosphate (Ins(1,4,5,6)P4) in the crystal structure of HDAC3:SMRT [32]. Inositol 

phosphates locate in a binding pocket between HDACs and co-repressor proteins and 

meditate their interactions [32].  

1.4.1.2. Class II isoforms        

Class II isoforms are homologues to Hda1 yeast protein. This class of HDAC 

isoforms shuttle between nucleus and cytoplasm and their expression level varies 

between different tissues. Class IIa HDAC isoforms are involved in differentiation 
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process, and is believed their deacetylation activity is due to their interaction with 

HDAC3 [33].  

The unique property of class IIb isoforms is the presence of two catalytic active 

sites [22]. HDAC6 has a C-terminal zinc finger domain with cysteine and histidine rich 

regions that binds to proteins. However, since HDAC6 is mainly located in cytosol it is 

not counted strictly as an epigenetic enzyme. HDAC6 does not deacetylase histones. The 

anti-cancer activity of HDAC6 inhibitors, such as tubacin and Tubastatin A, is not due to 

the perturbation of epigenomes which leads to re-expression of tumor suppressor genes, 

but most likely due to regulation of protein degradation through aggresome and 

controlling the Hsp90 chaperone activity [34].  

HDAC6 is the only class II isoform that is able to deacetylate α-tubulin [35]. 

Furthermore, inhibition of HDAC6 results in acetylation of HSP90 and disruption of its 

chaperone activity. HDAC6 has a key role in degradation of misfolded proteins by using 

its ubiquitin-binding domain [36]. Additionally, HDAC6 is involved in tumorigenesis 

especially in Ras-induced transformation [37].  

HDAC10 is the least characterized and the last isoform of class II that was 

discovered [38]. Even though it is in the same subclass as HDAC6 they are different in 

some aspects. For example, unlike HDAC6 that mostly resides in the cytoplasm and 

possesses two independent active sites, only one of the HDAC10 catalytic site is active 

and the other one is catalytically inactive. HDAC10 can be found both in cytoplasm and 

nucleus [38].     

1.4.1.3. Class IV isoforms 

The only isoform of class IV is HDAC11. HDAC11’s structure is related to both 

class I and class II HDAC isoforms. It is mostly found in the nucleus and in tissues such 

as brain, heart, kidney, testis and skeletal muscle. HDAC 11 is a promising target for 

autoimmune diseases [39].  
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1.5. Histone Deacetylase inhibition 

Since HDAC enzymes induce gene silencing and transcription factors repression, 

they are implicated in various diseases including cancer, malaria, and leishmanial [20]. 

Inhibition of HDAC activity can reverse epigenetic silencing associated with cancer. As a 

result, HDAC isoforms have become promising targets for drug discovery and 

development. HDACi induce cellular differentiation and migration, cell cycle arrest 

(mostly at the G1/S checkpoint) and apoptosis [40], leading to growth arrest, DNA 

damage and tumor cell death. HDACi boost host immune response and decrease 

angiogenesis in tumor [41], [42].  

1.6. Pharmacophoric model of HDACi 

Despite all the structurally differences among HDACi, they all follow a well-

established pharmacophoric model (Figure 1.4). They all are comprised of three distinct 

groups, a variable surface recognition cap group that interacts at the protein surface, a 

linker group which travels through the tunnel of the active site, and a zinc binding group 

(ZBG) that chelates the zinc ion at the active site of the HDAC enzyme (Figure 1.5) [43]. 
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Figure 1.4. Pharmacophoric model of HDACi with selected examples of each group. All 

HDACi have surface recognition group that interacts with amino acid at the protein 

surface, a linker group that traverses the active site and a zinc binding group that chelates 

zinc atom in the active site pocket of the enzyme.  

 

Recognition 
 cap group  

Linker group  Zinc binding 
group (ZBG) 
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Figure 1.5. Selected examples of HDACi. Most HDACi follow a common three-motif 

pharmacophoric model comprising of recognition cap group, linker moiety and ZBG. 

(Note the color coding, purple indicates the cap recognition group, green shows the linker 

groups and blue indicates the ZBG).  

1.6.1. Recognition cap group 

The recognition cap group is generally a hydrophobic group that interacts with 

amino acids at the entrance of the active site and has an important role in inhibitory 

potency and isoform selectivity of HDACi [23].  
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Cyclic-peptide and depsipeptide recognition cap groups have been shown to 

impact class I isoform selectivity to HDACi. Their selectivity towards class I isoforms is 

due to their similarity to and/or imitation of the natural substrates of this class of HDAC 

proteins [44].  Natural products such as trapoxin A (TPX) (Figure 1.6), chlamydocin and 

Cyl-2 show great selectivity for class I isoforms. Romidepsin (depsipeptide, FK-228) is a 

FDA approved HDACi that shows a high selectivity for HDAC1 and HDAC2 compared 

to class II isoforms [45]. In addition to the similarities to the natural substrates, existence 

of two loops in class II isoforms prevents binding of bulky cap groups and makes it 

sterically unfavorable for cyclic peptides to bind and interact with the amino acids at the 

surface. The trends show that compounds with smaller cap groups have less isoform 

selectivity towards class I HDACs compared to the bulky ones. In fact using a bulky 

recognition cap group has turned into a strategy for developing class I isoform selective 

HDACi [23].  

 

                        

Figure 1.6. Chemical structure of trapoxin A, a naturally occurring selective class I 

isoform HDACi [46]. 

1.6.2. Linker group 

The linker group traverses the tunnel leading to the active site and connects the 

surface recognition cap group to the zinc binding group. The linker domain typically 

consists of hydrophobic groups that interact with the lipophilic residues within the tunnel 

leading to the active site. The linker group can be a linear chain or a cyclic chain with 
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saturated or unsaturated bonds. Like two other compartment of the pharmacophoric 

model, this region can be modified to yield isoform selective HDACi as well. However, 

only a few class I selective HDACi have been reported up to date [23].    

1.6.3. Zinc binding group 

 The ZBG, which chelates the Zn2+ ion in the active site pocket, is a major 

determinant of HDACi isoform selectivity and potency. However, the sequence similarity 

near the catalytic metal makes it very difficult to design and synthesize HDACi that are 

selective toward certain isoforms. Figure 1.7 illustrates zinc ion at the base of the 

catalytic pocket of HDAC 1, a class I isoform of HDAC enzymes.  

 

Figure 1.7. Zinc atom in the catalytic pocket of HDAC1, a class I HDAC isoform. Green 

sphere represents zinc atom.  

The most common ZBG is hydroxamic acid. It owes its high potency to its strong 

bidentate chelation of zinc ion. The most well-known example of an HDACi with 

hydroxamic acid-based ZBG is suberoylanilide hydroxamic acid (SAHA) (also known as 

Vorinostat). The second common zinc binding group is alkyl thiol found in naturally 
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occurring depsipeptide prodrugs like largazole, FK228, or spiruchostatins. These 

prodrugs disulfide bridge is reduced to alkyl thiol ZBG upon their administration in vivo, 

resulting in isoform selective HDAC inhibition [45]. The third most common ZBG is the 

benzamide moiety which leads to class I isoform selectivity. Entinostat (MS-275) is a 

benzamide based HDACi which is currently in clinical trials for treating various types of 

cancers [22]. Additionally, there are other ZBGs that are not as common as the previously 

mentioned ones. These less common ZBGs include ketones, fluoroketones, carboxylic 

acids, carboxamide, thioamide, and epoxides (Table 1.2) [44]. 

 

Table 1.2. Selected examples of HDACi with various zinc binding groups [47].  

Zinc binding group Name Isoform selectivity 

Hydroxamic acid Vorinostat (SAHA) Pan inhibitor 

Belinostat (PXD101) Pan inhibitor 

Panobinostat (LBH589) Pan inhibitor 

Abexinostat (PCI 24781) Pan inhibitor 

Pracinostat (SB939) Pan inhibitor 

Givinostat (ITF2357) Pan inhibitor 

Resminostat (4SC-201) Pan inhibitor 

Carboxamide Azumamides Class I 
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Table 1.2. Selected examples of HDACi with various zinc binding groups 

(continued). 

Alkyl thiol Romidepsin (FK228) Class I 

Benzamide Entinostat (MS-275) Class I 

Mocetinostat 

(MGCD0103) 

Class I 

Fatty acid Valproic acid (VPA) Class I 

Phenylbutyrate Class I and II 

  

 

1.6.3.1. Zinc dependent mechanism of lysine deacetylation 

Finnin et al. [48] was the first to propose a mechanism for zinc dependent lysine 

deacetylation for HDLP which is almost similar for all zinc dependent HDAC enzymatic 

activity (Figure 1.8). In class I HDAC isoforms, the zinc ion in the active site is 

surrounded by two histidine-aspartic acid dyads (His131-Asp166 and His132-Asp173). 

Each histidine has a hydrogen bond with aspartic acid carboxylate oxygen, which is a 

characteristic of a charge-rely system found in the active site. The charge-rely system of 

His131-Asp166 is more buried in the active site than His132-Asp173. His131-Asp166 

makes a hydrogen bind to the zinc bound water molecule. In class II isoforms in one of 

the dyads, one aspartic acid is replaced by asparagine, resulting in His-Asn pair. There is 

also a tyrosine residue (Tyr297) in class I HDAC isoforms that provides a proton. The 

tyrosine residue interacts with two aspartic acids (Asp258 and Asp168) as well as one 
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histidine (His170).  In class II HDAC isoforms, the tyrosine residue is replaced with a 

histidine.  

Lysine deacetylation starts with the zinc ion chelation of the water molecule as 

well as the carbonyl group of the acetyl lysine. The chelated water molecule is activated 

through H-bonding interaction with His131, resulting in nucleophilic attack of the 

carbonyl group of acetylated lysine. The resulting acyl anion is stabilized by the H-

bonding with the hydroxyl group of Tyr297. The acyl anion then undergoes a 

rearrangement which results in formation of an acetate ion as well as a terminal 

ammonium on the terminal lysine residue of histone [49]. 

 

                 

Figure 1.8. Proposed mechanism for lysine residue deacetylation by zinc-dependent 

HDAC enzymes [49]. Zinc atom chelates a water molecule and the carbonyl group of 

acetylated lysine ultimately leading to the hydrolysis of the acetyl group from the 

terminal lysine residues.  
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1.6.3.2. Hydroxamic acid derived HDACi 

Hydroxamic acid based antiproliferative therapeutic agents were the first group of 

HDACi that were introduced. Hydroxamic acid-based HDACi are the broadest group of 

agents used in establishment of HDACi pharmacophoric model. Like all other classes of 

HDACi, this group is comprised of a bulky cap recognition group that interacts with the 

amino acids at the surface of the active site and a linker which helps position the 

hydroxamic acid ZBG for chelation to the zinc ion at the base of HDAC catalytic pocket 

and blocks the access of the substrate to the zinc atom [50]. The most well-known 

hydroxamic acid based HDACi is the FDA approved SAHA, which is pan inhibitor of 

HDAC isoforms [51]. 

Trichostatin A (TSA) (Figure 1.9), one of the first naturally occurring hydroxamic 

acid-based HDACi discovered, is isolated from Streptomyces hygroscopicus strain. TSA 

is known as an antifungal agent due to its ability to inhibit HDAC isoforms. TSA inhibits 

cell proliferation and induces growth arrest, differentiation, and apoptosis in various 

transformed cell lines. However its toxicity, relative instability, and lack of HDAC 

isoform selectivity led to the search for other substances. Many HDACi drug designs 

have been inspired by the structure of TSA [52].  

 

                             

 

Figure 1.9. Chemical structure of tichostatin A (TSA), a naturally occurring non-

selective HDACi. TSA was among the first naturally occurring HDACi to be described 

[44], [53]. 

 



 21 

1.6.3.3. Depsipeptide-derived HDACi  

This class of HDACi has the most complex structure. They inhibit HDAC 

isoforms at nanomolar concentrations. They have also shown to be antiangiogenic by 

modulation of the expression of c-myc and regulatory genes [52]. Romidepsin (FK-228), 

a natural prodrug, is the most distinguished depsipeptide in this class. It is believed that 

its disulfide bond breaks and forms alkyl thiol once it is inside the cells. The 4-mer-

captobut-1-enyl fits into the HDAC enzyme catalytic pocket and chelates the zinc atom at 

the base of the active site [45].  

1.6.3.4. Benzamide-derived HDACi  

This group of HDACi is less potent compared to their corresponding hydroxamic 

acid derivatives.  However, several class I isoform-selective HDACi are derived from this 

group. Entinostat (MS-275) shows about 135 fold preference for HDAC1 and HDAC3 

compared to HDAC6 and HDAC8 [54]. MS-275 is in clinical trials for treating patients 

with advanced and refractory solid tumors and lymphoma [55].  

A crystallographic comparison between bacteria homologues of class I (HDLP) 

and class II (FB188HDAH) HDAC enzymes revealed the existence of a 14 Å 

hydrophobic internal cavity within the active site near the zinc ion. It is believed this 

internal cavity is an exit channel for releasing the acetate byproduct after deacetylation 

process [56]. The sequence difference in the internal cavity for HDLP and FB188HDAH 

can be used to design and synthesize isoform selective HDACi [57]. In fact, docking of 

MS-275 in the active site of an HDAC1 homology model revealed that more nonpolar 

substituents can be placed on the benzamide ring to favor the hydrophobic interactions 

with the lipophilic residues into the 14 Å internal cavity [58]. Furthermore, SAR study 

has shown the 2´-amino moiety of the benzanilide group is essential for HDAC inhibition 

[47]. The amino group is involved in zinc chelation in addition to interactions with 

histidines 140 and 141 through hydrogen binding [59].  
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1.6.3.5. Epoxide-derived HDACi 

The HDAC inhibitory potency of epoxide-derived HDACi comes from their 

chelation of the active site zinc ion or an interaction with an amino acid within the active 

pocket. However, these compounds do not show much activity in vivo due to liability 

issues. Previously mentioned natural product, cyclic tetrapeptide trapoxin A is a member 

of this family [50]. 

1.6.3.6. Carboxylic acid (short fatty acid) HDACi 

This group of HDACi has simple structures, and are less potent compared to the 

hydroxamic acid-derived HDACi. Two members of this group, valproic acid (VPA) and 

phenylbutyrate (Figure 1.10) are well-characterized and have already been approved for 

treating epilepsy. These two HDACi are in clinical trials for treating various types of 

cancer, including such as refractory solid tumors, lymphoma, prostate and breast cancers 

[60]. VPA promotes selective proteasomal degradation of HDAC2 [52] and shows 

growth suppression, proliferation inhibition and apoptosis induction [52]. VPA has been 

tested in many clinical trials both as a standalone and in combination therapies. It has 

been tested in a phase I study in patients with refractory solid or central nervous system 

tumors (CNS) [61]. VPA, in combination with 5-aza-2´-deoxycytidine (decitabine), was 

tested in patients with non-small cell lung cancer (NSCLC). Even though this 

combination therapy was found to be effective, it had to be terminated due to 

neurological toxicities at low doses [62].  
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Figure 1.10. Chemical structures of valproic acid and phenylbutyrate, two well-

established short fatty acid HDACi have been tested in clinical trials for treating various 

types of cancer [27]. 

1.7. FDA approved HDACi  

In the last few years more than 490 clinical trials have been performed on a wide 

variety of HDACi [63], with phenybutyrate being the first one enter clinical trials for 

treating various types of cancers such as prostate cancer, lymphoma and leukemia [64]. 

There are currently four FDA approved HDACi in the market. Vorinostat was the first to 

obtain FDA approval, followed by romidepsin and belinostat. Panobinostat is the latest 

HDACi which got approved in 2015 (Figure 1.11).  

 

      Figure 1.11. US FDA approved HDACi and their clinical indications [27]. 
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1.7.1. Suberoylanilide hydroxamic acid (SAHA) 

SAHA, also known as vorinostat, is the first HDACi in the clinic. It was approved 

by the US FDA in 2006 for treating relapsed and refractory cutaneous T-cell lymphoma 

(CTCL). Vorinostat is an orally active drug, manufactured by Merck & Co., Inc. [65]. Its 

approval was based on a phase II clinical trials in 74 patients with stage IB or higher 

CTCL, who already had two failed systematic therapies. This clinical trial only had 30% 

objective response rate [65], and nine patients had to stop taking the drug because of 

adverse side effects while eleven needed dose modification [66]. 

Vorinostat has been investigated in several clinical trials for treating solid tumors 

including relapsed and refractory breast and non-small cell lung cancers. Unfortunately 

vorinostat showed either a low or no activity in all of these trials [67]. Vorinostat is 

currently being studied in clinical trials in combination with other therapeutic agents [68]. 

For example, it is in phase I study in combination with bortezomib in patients with 

advanced, relapsed and refractory multiple myeloma [69], [70]. Additionally, vorinostat 

in combination with decitabine is in a phase I clinical trials for treatment of relapsed or 

newly diagnosed acute myelogenous leukemia or myelodysplastic syndrome [71].  

Despite its potent HDAC inhibition vorinostat is a pan HDACi which suffers from toxic 

side effects possibly due to its lack of isoform selectivity [62].    

1.7.2. Romidepsin (FK228) 

Romidepsin (FK228) is the second HDACi and only depsipeptide that has so far 

obtained FDA approval. It was approved in 2009 for treating patients with cutaneous T-

cell lymphoma as well as peripheral T-cell lymphoma (PTCL) who had received at least 

one failed systematic therapy. Romidepsin, is a potent, bicyclic class I isoform selective 

HDACi isolated from chromobacterium violaceum, a gram negative bacteria in a 

Japanese soil sample [72]. Romidepsin acts as a prodrug and its disulfide bond is reduced 



 25 

by glutathione upon administration, leading to formation of a free thiol which is able to 

chelate and interact with the zinc ion in the HDAC enzyme pocket (Figure 1.12) [73].   

 

 

 

 

 

 

 

 

 

Figure 1.12. Reduction of romidepsin to its active form. Romidepsin is a prodrug, and its 

disulfide bond is reduced to alkyl thiol by glutathione in vivo [22].  

1.7.3. Belinostat (PXD101) 

Belinostat (PXD101) is a hydroxamic acid-based pan HDACi given FDA 

accelerated approval in 2014 for treating patients with relapsed or refractory peripheral T-

cell lymphoma. Its approval was based on efficacy and safety data acquired from a single 

arm phase II trial. Belinostat has the trade name Beleodaq and it is manufactured by 

Spectrum Pharmaceuticals, Inc [65].  

Belinostat inhibits tumor cell proliferation and like all other HDAC inhibitors, 

promotes expression of cycline dependent kinase inhibitor, p21, and apoptosis [74]. It 

inhibits growth of several human cell lines such as non-small cell lung, breast and 

prostate in vitro, and shows antitumor activity in vivo in human tumor xenografts [75]. 

Following the same trend for FDA approved HDACi, belinostat was tested in clinical 

trials for both solid and hematological cancers which resulted in no or poor activity. It is 
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suggested that HDACi lack of efficacy in treating solid tumors is due to their instability 

to reach the tumor site [27]. 

1.7.4. Panobinostat (LBH589)    

Panobinostat (LBH589) is another potent hydroxamic acid-based pan HDACi. It 

is developed by Novartis with the trade name Farydak and can be administered both 

orally and intravenously. Panobinostat was granted FDA approval in 2015 based on 

progression free survival in pre-specified analysis of a phase III PANORAMA 1 trial 

[76]. Panobinostat is the first HDACi approved in US for treating patients with multiple 

myeloma who had received at least two prior treatments including the 

immunomodulatory agent, bortezomib. Panobinostat is undergoing more clinical trials as 

a combination therapy with other therapeutic agents in the relapsed, refractory and newly 

diagnosed patients with myeloma [77]. Currently, there is a regulatory submission for use 

of panobinostat in combination therapy for treating multiple myeloma in Europe and 

Japan [78]. 

1.8. Mechanism of HDACi-induced cell death 

In general, HDACi induce tumor cell death through five mechanisms [26]. The 

first mechanism is through apoptosis which by itself has two aspects - extrinsic and 

intrinsic. Extrinsic or death receptor pathway occurs when a ligand like tumor necrosis 

factor-related apoptosis-induced ligand (TRAIL) binds to their death receptors and 

triggers activation of caspase-8 and recruitment of adaptor protein FADD. The promotion 

of TRAIL- induced apoptosis is due to blocking of the activity of HDAC1 and HDAC2 

enzymes. The intrinsic or mitochondrial pathway is stress-stimulated, resulting in damage 

to the mitochondria membrane. This damage causes the release of proteins like 

cytochrome C and SMAC and eventually leads to apoptosis [79]. 
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HDACi also trigger formation of reactive oxygen species (ROS) which has been 

suggested to induce cell death through intrinsic pathway [80].  

Another mechanism of HDACi-induced tumor cell death involves angiogenesis 

inhibition. Angiogenesis is an essential process for tumor development and metastasis.  

HDACi have been shown to decrease the levels of pro-angiogenic factors including 

vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1α (HIF1α) 

[81].  

The last putative mechanism of HDACi-induced tumor cell death is promotion of 

autophagy. Autophagy is a protein degradation system whose activation induces a 

necrotic-type cell death. However, autophagy acts as a double edge sword [82]. It can 

both mediate cell death, associated with HDACi antitumor activity improvement, or 

promotes tumor cell survival during nutrient or hypoxic stress which contributes to 

HDACi undesired side effects [83]. 

1.9. FDA approved HDACi in combination therapy  

Despite the success of HDACi in treating hematological tumors such as CTCL, 

PTCL and multiple myeloma, they have been ineffective against solid tumors. It has been 

suggested that HDACi will be more effective if they are used in combination with other 

therapeutic agents. Specifically, HDACi are expected to reduce tumor cells threshold to 

undergo apoptosis induced by other agents, primarily due to their effect in lowering the 

levels of anti-apoptotic molecules such as XIAP, survivin and Bcl-2 and enhancing the 

levels pro-apoptotic molecules like bim, bid, and bmf [84], [85].     

HDACi have been tested in combination therapy with direct activators of the 

apoptotic process, lexatumumab and mapatumumab, to improve their efficacy in treating 

cancer. Lexatumumab and mapatumumab are DR5 and DR4 agonist antibodies 

respectively that bind to death receptors on the surface of tumor cells to initiate extrinsic 

apoptosis [86]. In addition to inducing apoptosis, HDACi promote formation of the 
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death-inducing signaling complex (DISC) [87]. Combination of compounds that are 

agonists of death receptor with HDACi promotes both intrinsic and extrinsic apoptosis 

pathways. This strategy sensitizes TRAIL-resistance tumors to apoptosis [26]. HDACi 

also induce expression of p21 that leads to cell cycle arrest in G1 phase [86]. Studies have 

shown that tumor cells are more sensitive to TRAIL-induced apoptosis when arrested in 

G1 phase of cell cycle. Additionally p21-mediated induction by HDACi helps to inhibit 

Cdc2 activity which blocks the phosphorylation of survivin and promotes its degradation 

[86].     

HDACi also have synergistic effects in combination with the proteasome 

inhibitor, bortezomib [26]. Both HDACi and bortezomib inhibit NF-ҝB activity, a key 

factor for angiogenesis and tumor metastasis [89]. Furthermore, both agents induce ROS 

generation and endoplasmic reticular (ER) stress which enhances apoptosis [90]. 

Chloroquine and 3-methyladenine have been used in combinational therapy with HDACi 

to suppress their autophagy mediated cell survival effect and induce apoptosis [91]. 

 

1.10. HDACi in clinical trials 

In addition to the four FDA approved HDACi, there are several more in various 

phases of clinical trials as a standalone or combination therapy for treating multiple 

cancer types (Figure 1.13). 
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Figure 1.13. HDACi in clinical trials. 

1.10.1. Abexinostat (PCI-24781) 

Abexinostat is an orally available hydroxamic acid-based pan HDACi that has 

shown antitumor activity for a wide range of cancers. It has been in clinical trials as 
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monotherapy as well as combinational therapy. Abexinostat promotes apoptosis by 

cleaving caspase-3 and PARP. Its combination with the tyrosine kinase inhibitor, 

pazopanib was tested in phase I study in patients with metastatic solid tumor. The result 

from this study revealed a partial response and disease stabilization (clinical trial 

informationNCT01543763). Currently, abexinostat is in combination therapy with 

cisplatin in phase I study in patients with advanced keratinizing nasopharyngeal 

carcinoma (NPC) (clinical trial information: ISRCTN96922360) [27].  

1.10.2. Givinostat (ITF2357) 

Givinostat is a hydroxamic acid-based pan HDACi with anti-inflammatory, anti-

angiogenic, and antineoplastic activities. Givinostat has shown activity towards 

Hodgkin’s lymphoma, multiple myeloma and chronic lymphocytic leukemia. It is 

currently undergoing a phase II clinical study for treatment of myeloproliferative 

neoplasms (MPN) [92]. 

1.10.3. Resminostat (4SC AG) 

Resminostat is another hydroxamic acid-based pan HDACi has been tested in 

phase I study for treating advanced solid tumors [93]. It has also shown cell growth and 

apoptosis induction in multiple myeloma cell lines [94]. In a phase II study it was tested 

in relapsed and refractory Hodgkin lymphoma and showed promising results with a good 

safety profile [95]. Resminostat is in phase II clinical trial for treating liver cancer [96]. 

1.10.4. Pracinostat (SB939) 

Pracinostat is a hydroxamic acid based-pan HDACi which is in phase II studies in 

patients with intermediate or high risk myelofibrosis (MF) [97] or advanced solid tumors 

[98]. Additionally, pracinostat is in a phase III study for acute myeloid leukemia 

treatment as well as a phase II study for treating myelodysplastic syndrome [96]. 
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1.10.5. CUDC-101 

CUDC-101 is a multi-target inhibitor of HDACs and epidermal growth factor 

(EGFR) and human epidermal growth factor receptor 2 (HER2). It shows anti-

proliferative and pro-apoptotic activities in vitro and in vivo [99]. It has a hydroxamic 

acid moiety as its ZBG. Its dual inhibition activity makes it a potential therapeutic 

compound for treatment of drug-resistant tumors that cannot be treated with single target 

agents. CUDC is in clinical trials for treating advanced solid tumors [100]. 

1.10.6. Mocetinostat (MGCD0103) 

Mocetinostat is a benzamide-based HDACi that is selective for class I isoforms. It 

showed anti-leukemia activity in a phase I trials in patients with leukemia or 

myelodysplastic syndromes (MDS) [101]. It shows synergetic growth arrest, cell death, 

and cell cycle arrest effects in treating pancreatic cancer when combined with tubastatin 

A (an HDAC 6 selective inhibitor) or MC1568 (a class IIa selective HDACi). 

Furthermore, it showed promising results in a phase II study for treating relapsed 

classical Hodgkin’s lymphoma. However, the study had to be terminated due to four 

patients sudden death, which two of whom were probably treatment related deaths 

(clinical trial identifier: NCT00358982) [27], [102].  

1.10.7. Entinostat (MS-275) 

Entinostat is a benzamide derived class I selective HDACi which has been tested 

in many clinical trials for treating various types of cancer such as breast, colon, renal cell, 

non-small cell lung cancers, and lymphoblastic leukemia either as a monotherapy or 

combinational therapy [103]. Entinostat showed promising results when it was tested in a 

phase II clinical trial in combination with exemestane in patients with estrogen receptor 

positive advanced breast cancer [104]. Moreover, testing entinostat in patients with 
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refractory solid tumors and lymphomas resulted in disease stabilization and antitumor 

activities [105]. 

1.10.8. Valproic acid (VPA) 

 Valproic acid is a short fatty acid HDACi that has been in clinical trials as a 

standalone agent and in combination therapy. In a phase I study, treatment of patients 

with refractory solid or central nervous system tumors with VPA resulted in HDAC 

inhibition in half of the patients [61]. Combination of VPA and bevacizumab has been 

tested in patients with colorectal, prostate and gastroesophageal cancers [106].  

1.11. HDACi deficiencies  

Despite the HDACi encouraging results in treating CTCL, PTCL, and multiple 

myeloma, they suffer from various common side effects. The prevalent and predominant 

toxicities of HDACi are diarrhea, nausea, fatigue, vomiting, neutropenia, peripheral 

neuropathy [70], dehydration, and thrombocytopenia [107]. In addition to all these side 

effects, their lack of accumulation in solid tumors, as well as their cardiotoxicities has 

hampered their use [22].       

1.11.1. Lack of accumulation in solid tumors 

Up to date, none of the HDACi has shown benefits in treating solid tumors. 

HDACi have been tested extensively in various clinical trials to treat different solid 

tumors, such as breast, colorectal, prostate, head and neck, ovarian, and non-small cell 

lung cancers, but lack of potency and activation was observed when they were used as a 

single therapy. However their antitumor activity improved when they were used in 

combination with other therapeutic agents [108], [109]. 

 

 



 33 

1.11.2. Cardiotoxicity 

 HDACi are associated with serious cardiotoxicities, such as ST-segment 

depression, T-wave-flattering and QT interval prolongation with the last one being the 

most severe and predominant one [22], [110]. QT prolongation is associated with 

torsades de pointes (TdP) which is a life threatening arrhythmia leading to syncope, 

ventricular and sudden cardiac death [111]. 

 QT is considered prolonged when it is more than 430 msec for men and more 

than 450 msec for women. QT intervals can be influenced by ventricular conduction 

velocities as well as the velocity of repolarization. It is measured when the QRS complex 

starts and continues till T-wave ends. It demonstrates the time needed for ventricular 

depolarization. QT prolongation is mostly the result of factors that are able to prolong the 

action potential in most cases by delaying the repolarization phase 3, which can be 

caused either by blocking the ion channel cavity of hERG or triggering an abnormal 

trafficking that is essential for locating hERG subunit in the cell membrane [112].  

Targeted therapeutic agents can affect cardiac and vascular function. Targeted 

anticancer drugs are usually associated with QT prolongation because of their influence 

on ventricular repolarization mostly through restricting the activating rectifier K+ current 

(Ikr) carried by pore-forming α-subunit encoded by human ether-a-go-go-related gene 

potassium ion channels (hERG K+) [113], [114]. It has been hypothesized that HDACi, 

anti-hER2, anti-VEGF, and tyrosine kinase inhibitors are associated with the risk of 

delayed ventricular repolarization and various life-threatening arrhythmias [115]. These 

drugs all block the potassium channel, resulting in increase in the repolarization time and 

hence QT interval prolongations [116]. The blockage of the hERG K+ channel by various 

drugs is due to the interactions of lipophilic molecules with the hydrophobic aromatic 

residues in the channel’s large inner cavity [111]. 

There are other suggested mechanisms for QT prolongation induced by targeted therapies 

in addition to blocking the hERG K+ channel. The mechanism of QT prolongation in 



 34 

some drugs lies in their ability to increase Na+ current. For instance, alfuzosin, an α1-

andrenergic receptor antagonist, which is designed to help men to urinate, increases QT 

prolongation by involving the Na+ channel. In fact alfuzosin is one of the few examples 

of agents that cause cardiac repolarization through enhancing the sodium current [117]. 

Additionally, mutations or lack of proteins, such as Mink and Mink-related 

peptide 1 (MiRP1) that forms assemblies with hERG and are needed for its proper 

functioning in vivo, are associated with arrhythmia and changes in channel function thus 

leading to QT prolongation [118].      

No major cardiotoxicity other than QT prolongation has been reported for 

vorinostat, belinostat and panobinostat; there was a report of death for romidepsin. 

Preclinical studies in dogs and rats have shown FK228 is able to induce myocardial 

inflammation and prolong QT intervals [119]. In a phase II study, a total of 15 patients 

with metastatic neuroendocrine tumors, received a 4-hour i.v. infusion of romidepsin at 

14 mg/m2 on days 1, 8, 15 every 28 days. This study had to be terminated because of a 

sudden death possibly related to ventricular arrhythmia, as well as a high number of 

cardiac side effects including 2 patients with asymptomatic grade 2 ventricular 

tachycardia (n=2), 3 patients with QT prolongation (n=3) [120]. Six patients out of the 

more than 500 patients who were treated with romidepsin died unexpectedly [119], [121]. 

Although observations from the use of HDACi in the clinic strongly suggest that 

they can induce cardiotoxicity, pre-existing cardiovascular diseases in cancer patients can 

contribute to cardiovascular adverse effects after treatments with anti-cancer agents. 

Sinus tachycardia, previous myocardial infection, atrial fibrillation as well as other 

cardiac abnormalities increases the chance of QT prolongation upon drug administration 

[122]. Furthermore, other factors such as obesity, gender, and age will elevate 

cardiotoxicity risk as well [123]. 
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1.12. Mechanism of resistance to HDACi  

Cancer cells have the ability to develop resistance to growth inhibitory and 

damaging factors. Tumorigenesis is a selection of malignant cells that are able to adjust 

to environmental constraints and be more independent from external proliferative and 

survival inhibitors. Factors including drug efflux, target overexpression and 

desensitization, epigenetic changes, anti-apoptotic and pro-survival mechanisms, and 

stress response mechanisms are involved in development of resistance to HDACi by the 

tumor cells [124]. However, in addition to the aforementioned factors, the tissue of 

origin, as well as genetic context are critical features in resistance development [124].  

1.12.1. Efflux pump 

Tumor overexpression of the ATP-binding cassette transporter family of efflux 

pumps is a hallmark of multidrug resistance. Various HDACi, including vorniostat, 

romidepsin and belinostat, have been tested in multidrug-resistant human cancer cell lines 

and only romidepsin has shown to be a substrate for a multidrug resistance associated 

protein [125]. 

1.12.2. Epigenetic changes 

Inactivation and mutation of various isoforms of HDACs have been identified in 

different types of cancers. For instance, mutation in HDAC2 was observed in human 

colon and endometrial cancer cell lines with microsatellite instability [126]. Histone 

acetylation and DNA methylation activate or suppress gene transcription. However, DNA 

methylation is a predominant mechanism of tumor suppressor genes silencing, and has 

dominance over histone repressive markers in cancer cells [127]. Therefore, methylation 

of DNA impedes the ability of HDACi to restore expression of epigenetically silenced 

genes leading to resistance to HDACi. Studies have revealed that gene silencing induced 
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by DNA methylation cannot be overcome by the single action of HDACi and they need 

to be used with other hypomethylation-inducing agents [128]. 

1.12.3. Anti-apoptotic and pro-survival mechanisms 

HDACi induced cell death is through apoptotic pathways involving mitochondria 

damage, cytochrome c release and production of reactive oxygen species. These cell-

death mechanisms can be hindered by overexpression of anti-apoptotic proteins Bcl-2 

and Bcl-XL. It has been observed in various types of cancers that Bcl-2 was 

overexpressed while pro-apoptotic genes such as Bim and Bid were silenced. [129], 

[130]. It is suggested that changes in these proteins may be responsible for resistance to 

HDACi [126].  

Additionally, the anti-apoptotic nuclear factor ҝB (NF-ҝB) is another mediator that may 

be involved in resistance to HDACi. In some cases inhibiting HDACs results in 

activation of NF-ҝB via acetylation of the Rel/p65 subunit and stimulates expression of 

genes that interfere with triggered cell death [131]. In fact, it has been shown the 

activation of NF-ҝB by some HDACi hinders apoptosis in non-small cell lung cancer 

[132] as well as leukemia [133].  

  The HDACi-mediated cyclin-dependent kinase inhibitor p21 (CIP1/WAF1) 

upregulation is involved in induction of cell cycle arrest, differentiation, and programmed 

cell death through p53-dependent and p53-indepe pathway [134]. However, some studies 

have revealed that in U937 leukemia cell line, HDACi-mediated induction of p21 

(CIP1/WAF1) protected cells from apoptosis [135]. 

1.12.4. Autophagy  

Despite the role of autophagy in the death of some cancer cells, it has a protective 

role in some others which help them to adjust and manage the HDACi-induced cellular 

damage and apoptosis [136]. Combining HDACi with inhibitors of autophagy leads to 
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enhancement in efficacy of HDACi. For example, combination of chloroquine, an 

autophagy inhibitor, with vorinostat in treating imatinib-resistant chronic myeloid 

leukemia results in enhanced antineoplastic activity of vorinostat [91].    

Based on the preceding discussion, several mechanisms of tumor resistance to 

HDACi have been described and many more are expected to be unraveled. 

Understanding these tumor resistance mechanisms is of great significance not only in 

design and development of new HDACi with higher potency and tumor selectivity but 

also in combinational therapy of the current HDACi with other therapeutic anticancer 

agents to develop optimum combination cocktails able to overcome the resistance 

pathways.    

1.13. Improving HDACi efficacy in clinic 

Despite HDACi potent antitumor activity, their use in clinic is hampered by their 

poor bioavailability, lack of accumulation in solid tumors, and off-target toxicities. In 

many cases they have to be used in combination with other anticancer drugs to 

compensate for their deficiencies [26], [27]. In the efforts to overcome HDACi 

deficiencies, developing non-viral and tumor selective delivery methods to enhance their 

concentration at the tumor site and diminish their off-target toxicities is of a great 

importance. Design and synthesis of isoform-selective HDACi, their localized 

administration or targeted delivery to the desired tissue and tumor site, as well as 

reducing their hERG binding affinity are strategies being pursued to improve their 

potency and activity and lower their adverse effects. 

1.13.1. Localized administration  

  Localized administration is a target independent strategy for releasing the active 

ingredient near the area of the target site to avoid possible off-target toxicities. Local 

administration can be very beneficial in case of solid tumors which comprise about 85% 
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of human cancers [137]. It is used to overcome several drugs poor and variable oral 

bioavailability and adverse side effects. Additionally this strategy provides a sustainable 

and higher concentration of the drug in close proximity of target site [138].  

In recent years, injection of therapeutic drugs as a means of localized 

administration has received much interest. In a study done by Eyupoglu, et al. 

intratumoral injection of HDACi MS-275 in rats to treat malignant gliomas showed 

enhanced level of acetylate H3 in brain tissue as well as low neurotoxicity, indicating 

MS-275 as a promising drug candidate for treating malignant gliomas [139].  

Second strategy for localized administration is the topical application of the 

therapeutic agents. It has been shown that topically applying a drug which can easily and 

rapidly penetrate skin, enhances the pace of wound healing by accelerating the formation 

of granulation tissue even in severe tumor lesions [140]. HDACi are mainly used for 

treating CTCL. Despite their promising results for treating aforementioned cancer, they 

still suffer from cytotoxicity and lack of effectiveness when they are administered 

internally. This gets worse when it involves skin tumors, skin ulcer or repeated shedding 

of the skin. Indeed many CTCL patients die due to skin infections. To overcome the off-

target toxicity of HDACi and to boost their potency and selectivity, some HDACi have 

been studied as viable candidates for topical therapy [141]. In a phase I study conducted 

by national Cancer Institute (NCI), a formulation of romidepsin was applied on the skin 

of patients with CTCL (clinical identifier number: NCT01445340). This study had to be 

terminated due to the side effects. Chung et al. also tested a topical formulation of two 

HDACi - PB (phenylbutyrate) and TSA - in vivo study to achieve increased level of local 

concentrations and avoid potential systematic adverse effects in treating rheumatoid 

arthritis. The topical formulations of these HDACi possessed high stability and high skin 

penetration ability with a low skin irritation and a long shelf-life. Additionally, a selective 

induction of cell cycle inhibitors in the synovium as well as pervasive suppression of 

TNF-α in affected tissues were observed once the prepared cream or ointment was 
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applied [142].     Another example of HDACi being investigated in phase I clinical trial 

as a topical therapy in treating CTCL is SHP-141, a HDACi derived from SAHA. In a 

study done by Kim.Y.H. et al. SHP-141 showed excellent tolerability and efficacy with 

no systematic HDACi related toxicity [143]. 

The last method for localized administration is utilizing surgically placed natural 

and synthetic biodegradable polymers, which can benefit from high drug concentration at 

the target site, longer drug exposure duration, and lower systematic toxicity [137]. 

1.13.2. Reduction of hERG binding 

Cardiotoxicity of HDACi is one of the major and serious drawbacks that has 

hampered their use in clinics. As discussed earlier, the commonly accepted mechanism of 

cardiotoxicity of HDACi is their interactions with hERGK+ channel inner cavity residues 

which lead to blockage of human ether-a-go-go-related gene potassium ion channel. 

Understanding the link between HDACi cardiotoxicity and QT prolongation in relation to 

their hERG binding affinity is of great importance. This appreciation has been explored 

to design and synthesize novel potent HDACi that have lower affinity for hERG. 

Specifically, Novartis was able to design and synthesize non-cardiotoxic highly potent 

hydroxamic acid-based HDACi that show low or no hERG affinity [144].     

1.13.3. Isoform-selective HDACi  

Although, it is not completely clear if selective inhibition of one HDAC isoform 

yields less cardiotoxicity and more clinical benefit, it has nonetheless been hypothesized 

that the HDACi cytotoxicity and side effects are partially due to their lack of selectivity 

toward one HDAC isoform. It is believed HDAC5 and HDAC9 are modifiers of cardiac 

diseases phenotypes and their dysfunction results in susceptibility to cardiovascular 

diseases [145]. It has been shown that class I HDAC isoforms induce cardiomyocyte 

hypertrophy while class II HDAC enzymes suppress cardiomyocyte hypertrophy through 
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protein interactions in cardiomyocyte nucleus specifically with cardiomyocyte 

hypertrophy and not through their histone deacetylation mechanism [146]. Therefore 

inhibiting certain HDAC isoforms can have a great impact in diminishing some of 

HDACi-related cytotoxicity. Extensive efforts are currently on-going to design and 

synthesize isoform selective HDACi. In addition to class I selective, FDA approved 

romidepsin, there are several isoform selective HDACi in clinical or preclinical trials. 

Isoform selectivity can be achieved through utilizing certain groups as recognition cap 

group or ZBG [23].  

1.13.3.1. Isoform selectivity through cap group modification 

There has been substantial effort and research dedicated to modification of the cap 

group to achieve isoform selectivity. Surface recognition cap group interacts with the 

amino residues near the entrance of active site. The amino acid residues are specific to 

each HDAC enzyme class. Key examples of modification to the cap group which have 

resulted in isoform selective HDACi are the use of cyclic peptide which impacted class I 

isoform selectivity [21], and carboline in Tubastatin A which impacted exclusive HDAC6 

selectivity [147]. 

1.13.3.2. Isoform-selectivity through ZBG modification 

Although amino acids sequence similarity near the catalytic metal has made it 

problematic and challenging to design and develop isoform-selective HDACi, isoform 

selectivity has also been achieved through modification to HDACi ZBG. As a prime 

example, benzamide group is a ZBG that provides class I selectivity due to its 

interactions with the lipophilic residues in 14 Aº internal cavity. An example of 

benzamide based HDACi in clinical trial is MS-275 which is under investigation for 

treating NSCL, breast cancer, and advanced solid tumors, refractory solid tumors and 

lymphoma [27]. Epidaza (chidamide) is another benzamide-derived HDACi which was 
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recently approved by the Chinese regulatory authority to treat peripheral T cell 

lymphoma [148]. 

1.13.4. Targeted delivery 

Targeted drug delivery is a promising strategy to improve anticancer agents’ 

therapeutic window and their target to non-target ratio. Targeted delivery has several 

advantages including decreasing the drug off-target toxicity, increasing the drug 

concentration at the site of tumor and lowering the minimum effective dose of the drug 

which all lead to improvement in drug efficacy and potency [149].    

Several approaches are plausible to achieve targeted delivery of HDACi to tumor 

site. Approaches mentioned below are the ones that are the focus of this thesis study. The 

first approach is to employ FDA approved drugs that are known to accumulate in certain 

tissues as the surface recognition group.  

The second approach in targeted HDACis design is, equipping them with FDA 

approved targeting ligands such as anti-folate, anti-androgen, and anti-estrogen that have 

a preference for a certain receptor, which is overexpressed in particular cancers resulting 

in their selective accumulation in malignant cells [153], [154]. 

These targeting delivery strategies have the potential to result in selective delivery 

of HDACi to the site of tumor and lead to higher efficacy and therapeutic properties as 

well as and greater potency and lower off-target toxicity.  

1.13.4.1. Tissue selective FDA approved drugs as the ‘cap group’ 

One of the FDA approved class of drugs that selectively accumulate in lung tissue 

is macrolides [143]. Macrolides are a class of natural product with antibiotic and 

antifungal activity. They consist of a large macrocyclic lactone ring which is attached to 

deoxy sugars mostly cladinose and desosamine. Azithromycin is a macrolide which is 

approved for treating bacterial infection. It has been shown that azithromycin mostly 
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accumulates in lungs 1, which is due to its high accumulation in macrophage cells [144]. 

Although macrophages are in almost all tissues, it has been proved that they mainly 

reside in lung and liver [145], which in return results in azithromycin high accumulation 

in these tissues. Different macrolides such as azithromycin, clarithromycin, or 

telithromycin can be modified through their sugar rings to serve as surface recognition 

cap group in HDACi pharmacophoric model. In fact in an in vivo study done by my 

labmate Dr. Will Guerrant (unpublished data), it was shown that macrolide based HDACi 

maintain their lung accumulation even after modification.  

Herein, following our lab’s previous work, I designed, developed and synthesized 

various classes of azithromycin conjugated HDACi with two different zinc binding 

groups for treating lung cancer (chapter 2 and chapter 3). Based on our unpublished data, 

these conjugated HDACi are anticipated to accumulate selectively in lung tissue by 

taking advantage of azithromycin selective accumulation in macrophage cells which 

predominantly reside in lung tissue [155], [156]. Chapter 2 is focused on azithromycin 

conjugated hydroxamic acid based HDACi, while chapter 3 is devoted to azithromycin 

conjugated N-(2-amino-5-(thiophen-2-yl)phenyl)acylamide derived HDACi, as isoform 

selective HDACi. These classes of HDACi exhibited nanomolar range HDAC inhibition 

potency toward all or selected zince-dependent HDAC enzymes based on their zinc 

binding groups. Furthermore, evaluation of their antiproliferative activity against various 

transformed cell lines, showed a high nanomolar to low macromolar range cytotoxicity to 

cancer cells with less cytotoxicity against healthy cells compared to FDA approved 

HDACi SAHA. In fact, one of these azithromycin conjugated HDACi currently under 

investigation in animal models for further studies of its tumor regression ability.  
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1.13.4.2. Tumor receptor antagonist as the “cap group” 

Estrogen receptor (ER) is overexpressed on tumor cells. Tamoxifen, an antagonist 

of estrogen receptor alpha (ERα), competes with estrogen for binding to ERα in ERα 

positive breast cancers. Conjugating tamoxifen as the cap group to HDACi, results in 

tissue selective accumulation of the target compounds due to tamoxifen high affinity for 

ERα. Additionally, it improves tamoxifen efficacy in ERα negative or tamoxifen 

resistant-developed tumors because of HDACi-mediated induction of ER expression.   

It was previously shown in our lab that tamoxifen conjugated HDACi, have 

antiestrogen activity similar to tamoxifen with improved antiproliferative activity and 

nanomolar range HDAC inhibitory potency [157]. I synthesized various tamoxifen 

conjugated HDACis with different zinc binding groups and evaluated their 

antiproliferative activity as well as HDAC inhibitory potency. In addition to nanomolar 

range HDAC inhibitory activity, one class of these target compounds, tamoxifen 

conjugated hydroxamic acid HDACis, exhibited greater antiproliferative activity toward 

ERα positive breast cancer cells compared to tamoxifen, the most common and first line 

therapy for ERα positive breast cancer. Furthermore, many of these compounds were 

more selective toward ERα positive breast cancer cells relative to ERα negative breast 

cancer cells compared to tamoxifen that shows no selective antiproliferative activity 

between ERα positive and ERα negative breast cancer cells.  

The promising results of HDAC inhibition potency and antiproliferative activity 

of these class of compounds encouraged us to continue our studies further and test these 

compounds in animal models. Tamoxifen conjugated hydroxamic acid HDACis are 

currently under in vivo study. 

1.14. Thesis Overview 

I have designed and synthesized various HDACi with different cap recognition 

group and ZBG that have the potential to selectively accumulate in the macrophage and 
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lung tissues as well as have HDAC isoform selectivity. Additionally, in some cases, such 

as tamoxifen conjugated HDACi, synthesizing a dual functioning compounds, improved 

the therapeutic efficacy of the HDACi through dual effects which resulted in more anti-

cancer activity and potency. 

In all cases, cytotoxicity of designed conjugated HDACi were enhanced against 

transformed cell lines, while their cytotoxicity to healthy cells were reduced.  

Furthermore, in case of tamoxifen conjugated HDACi, in addition to an improved 

antiproliferative activity, I was able to achieve selectivity toward ERα positive breast 

cancer cells over ERα negative breast cancer cells, in comparison to tamoxifen which 

possesses the same antiproliferative activity toward ERα positive and ERα negative 

breast cancer cells.  
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CHAPTER 2 

STRUCTURE ACTIVITY RELATIONSHIP 

OFAZITHROMYCIN DERIVED HISTONE DEACETYLASE 

INHIBITORS WITH HYDROXAMIC ACID AS ZINC BINDING 

GROUP 

 

This work has been published in: 

S. Tapadar, S. Fathi, I. Raji, W. Omesiete,  J. Kornacki, S. Mwakwari, M. Miyata, K. 

Mitsutake, J. Li, M. Mrksich, M. Oyelereǀ.A structure–activity relationship of non-

peptide macrocyclic histone deacetylase inhibitors and their anti-proliferative and anti-

inflammatory activities. Bioorganic & Medicinal Chemistry, 2015, 23 (24), 7543-7564. 

2.1. Introduction 

Histone acetyltransferase (HAT) together with histone deacetylase (HDAC) 

control the acetylation state of histone proteins as well as non-histone proteins including 

p53, HSP90 and ERα [1]. Inhibition of the enzymatic activity of HDACs has become a 

potentially viable therapeutic approach for treating many human diseases such as malaria, 

leishmanial infection, and cancer [2], therefore various small molecule histone 

deacetylase inhibitors (HDACi) have been designed and synthesized.  

 HDACi cause growth arrest, differentiation and apoptosis with a high potency 

both in vitro and in vivo. To date four HDACi have been approved by FDA for 

cutaneous/peripheral T-cell lymphoma and multiple myeloma, and there are many more 

in different stages of clinical trials for treating solid tumors as well as hematological 

malignancies [3]. The approved HDACi are suberoylanilide hydroxamic acid (SAHA) 

approved in 2006 for cutaneous T-cell lymphoma [4], romidepsin (FK228) approved in 

2009 for cutaneous T-cell lymphoma and peripheral T-cell lymphoma [5], belinostat 
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(PXD101) approved in 2014 for peripheral T-cell lymphoma [6], and panobinostat 

(SB939) approved in 2015 for multiple myeloma [7]. Additionally, chidamide is a 

benzamide based HDACi which is only approved in China for refractory peripheral T-

cell lymphoma. Chidamide is in phase I and phase II clinical trials for treating non-small 

cell lung cancer and breast cancer in the U.S., respectively [8], [9].        

All HDACi follow a three-motif pharmacophoric model with a recognition cap 

group, linker group, and a zinc binding group (ZBG) (Figure 2.1) [10]. To date, several 

classes of small molecule HDACi have been designed and synthesized following this 

pharmacophoric model. Macrocylcic HDACi including cyclic tetrapeptides and 

depsipeptides possess the most complicated cap group that are able to maintain optimum 

interactions with the amino acid residues near the entrance of the HDAC enzyme active 

site. Despite the nanomolar range anticancer activity of this class of HDACi, their clinical 

development has been hampered by the drawbacks affiliated with peptide moieties and 

complex synthesis required to conduct structure activity relationship (SAR), [11]. To 

overcome these disadvantages, there has been an extensive research going on to replace 

the cap group with nonpeptide macrocyclic ones [12].    

We have previously shown that macrocycles derived from 15-membered azalide 

ring azithromycin mimic the peptide backbone of macrocyclic HDACi [13]. Our design 

is based on the hypothesis that replacing the cyclic peptide moiety of a cyclic peptide 

HDACi with macrolide skeleton will lead to a new class of potent HDACi [14]. 

Azithromycin belongs to a class of glycosylated polyketide antibiotics called 

macrolides which comprise of a large macrocyclic lactone ring with two deoxy sugars, 

mostly cladinose and desosamine [15]. Macrolides have been in the market for treating 

respiratory tract infections for more than half a century now. They are endowed with 

additional non-antibiotic effects such as anti-inflammatory and immunomodulatory 

effects [16].  
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Moreover, we envisioned that equipping HDACi with macrolides, as the 

recognition cap group, will result in developing therapeutic agents with selective lung 

tissue accumulation property, due to macrolides accumulation in macrophage cells. 

Although macrophage cells reside in almost all tissues, they are highly concentrated in 

the liver (Kupffer cells), the lung (alveolar macrophages) and linings of splenic and 

lymph node medullary sinusoids to filter foreign materials [17], where they are 

responsible for nonspecific host defense as well as in specific immune responses in each 

tissue [18]. Macrophage cell accumulation in lungs consequently leads to macrolide 

selective accumulation in lung tissue. Therefore, conjugating azithromycin as the 

recognition cap group to HDACi could result in HDACi with selective tissue 

accumulation property [19], [20].  

 

Figure 2.1. Naturally occurring HDACi trichostatin A and FDA approved HDACi 

SAHA. All following the three-motif pharmacophoric model of HDACi. 
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2.2. Azithromycin derived HDACi design 

Following the three motif pharmacophoric model of HDACi, and inspired by 

previous study done in our lab [14], [25], I designed and disclosed three different classes 

of macrolide conjugated HDACi with different point of aryl-triazole moiety attachment, 

where azithromycin served as the recognition cap group and hydroxamic acid as the ZBG  

 To further define the depth of the structure activity relationship (SAR) of these 

azithromycin-derived HDACi, they were synthesized with various linker length (Figure 

2.2).  The influence of linker length on their HDAC inhibitory, anti-proliferative and anti-

inflammatory activities was then investigated. 

 

Figure 2.2. Structure activity relationship of azithromycin conjugated HDACis by 

modifying desosamine and cladinose sugar rings. 
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2.3. Chemistry and synthesis 

To synthesize the first group of azithromycin derived HDACi, the ethynylbenzyl 

moiety was installed at desosamine sugar after removing one of the methyl groups and 

formation of the secondary amine 2 [21]. Subsequently, copper (I) catalyzed azide-

alkyne-cycloaddition (AAC) reaction [22] between TBS-protected azidohydroxamates 

5a-d and compound 4, followed by removal of TBS-group [23] afforded the final 

compounds 6a-d (Scheme 2.1). Compounds 6e-f (n=5-6) were previously synthesized by 

Dr. Subhasish Tapadar and are tested as controls.   

 

 

 

 

Scheme 2.1. (a) I2, NaOAc, MeOH, 50 °C, 2 h, 50% (b) Hünig’s base, DMSO, 85 °C, 3 

h, 97%; (c) CuI (15 mol%), Hünig’s base, THF-DMSO (1:1), 40 °C, 12 h; (d) CsF, 

MeOH, rt, 30 min (40-83%, c and d). 

 

For the synthesis of the second group of azithromycin derived HDACi, a dimethyl 

amine group was installed at  the C4״ position of cladinose sugar of 4, a substitution that 

may influence the acid stability of the cladinose sugar glycosidic bond [24] (Scheme 2.2).  
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Scheme 2.2. (a) I2, NaOAc, MeOH, 50 °C, 2 h, 50% (b) Hünig’s base, DMSO, 85 °C, 3 

h, 97%;  (c) acetic anhydride, CH2Cl2, 40 °C, 48 h, 100% conversion; (d) NCS, DMS, 

TEA, CH2Cl2, -15 °C, 6 h, 95%; (e) (CH3)3SOI, NaH, DMSO, THF, rt, 4 h, 89%; (f) 

KI, MeOH, 60 °C, 6 h; (g) MeOH, 90 C, 3 days, (84%, f and g); (h) CuI (15 mol%), 

Hünig’s base, THF, rt, 12 h; (i) CsF, MeOH, rt, 2 h (70-80%, h and i). 

 

Finally, the third group of azithromycin derived HDACi was synthesized through 

the introduction of the ethynylbenzyl to cladinose sugar of azithromycin in four steps 

[21]. Acetic anhydride treatment of azithromycin 1 in dichloromethane selectively gave 

2-O-acetylazithromycin 13. Corey-Kim oxidation on 13 followed by Corey-Chaykovsky 

epoxidation of intermediate 4-oxo-2-O-acetylazithromycin 14 yielded epoxy 

compounds 15. Regioselective opening of epoxide ring of 15 with 4-ethynylbenzyl-N-
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methyamine 16 in methanol, followed by a concomitant acetyl group deprotection, gave 

key intermediate 17. Then it was subjected to AAC reaction with various TBS-protected 

azido hydroxamates 5a-f followed by removal of TBS-group to give target molecules 

18a-f in moderate to good yields (Scheme 2. 3). 

 

Scheme 2.3. (a) CH2Cl2, Ac2O, rt, 3 h, 100% conversion; (b) NCS, DMS, TEA, CH2Cl2, 

-15 °C, 4.5 h, 93%; (c) (CH3)3SOI, NaH, DMSO, THF, rt, 4 h, 75%; (d) KI, MeOH, 60 

°C, 6 h, 92%; (e) CuI (15 mol%), Hünig’s base, THF, rt, 12 h; (f) CsF, MeOH, rt, 2 h, 

(70-85%, e and f) . 

2.4. Docking study 

Docking studies on different azithromycin conjugated HDACis were performed 

using AutoDock Vina. These compounds were docked against various isoforms of 

HDACs. Compounds with more than four methylene groups exhibited more potent 

HDAC inhibition potency which is in correlation with obtained HDAC inhibitory 

potency in table 2.1(Figure 2.3).  
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Figure 2.3. Docking studies of example cladinose modified azithromycin HDACi with 

six methylene linker group (18f) against HDAC1 and HDAC6. As illustrated, these 

compounds chelate zinc atom and show HDAC inhibition potency. The first two figures 

show zinc ion chelation in the active pocket of HDAC1 isoform. The grey spheres 
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illustrates the zinc atom. The last two figures show zinc ion chelation in the active site of 

HDAC6. The grey sphere represents zinc ion. 

2.5. HDAC inhibitory activity  

All the three groups of azithromycin derived HDACi and previously synthesized 

controls [14], [25] and compounds were tested against class I (HDAC1 and HDAC8) and 

class IIb (HDAC6) enzymes to evaluate their anti-HDAC activities. HDAC activity was 

determined using label-free mass spectrometry-based SAMDI assay [26]. As expected 

from previous observations, most of these new HDACis were less active against HDAC8 

(Table 2.1). 

 

     

Table 2.1. HDAC 1, HDAC6, and HDAC8 inhibition activities of azithromycin derived 

hydroxamic acid compounds.  

Compound n HDAC1 nM HDAC6 nM HDAC8 nM 

6a 1 >10 µM 5660 ± 320 >10 µM 

6b 2 >10 µM 2170 ± 200 >10 µM 

6c 3 >10 µM 106 ± 13 >10 µM 

6d 4 1650 ± 456 145 ± 42 5380 ± 650 

6e 5 316 ± 61 14.3 ± 0.6 644 ± 244 

6f 6 68.6 ± 3.3 7.29 ± 0.56 314 ± 90 

18a 1 >10 µM >10 µM 4510 ± 660 
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Table 2.1. HDAC 1, HDAC6, and HDAC8 inhibition activities of azithromycin 

derived hydroxamic acid compounds (continued). 

18b 2 >10 µM 2030 ± 300 2230 ± 560 

18c 3 >10 µM 181 ± 24 1180 ± 210 

18d 4 531 ± 79 95.3 ± 12.3 709 ± 141 

18e 5 203 ± 35 31.9 ± 1.2 786 ± 176 

18f 6 50.4 ± 8.4 31.3 ± 1.3 817 ± 308 

12a 5 160 ± 66 14.7 ± 1.8 1090 ± 240 

12b 6 79.5 ± 54 18.9 ± 3.4 749 ± 98 

SAHA - 42 34 2800 

 (HDAC inhibition assay was performed by Dr. James Kornaki at Northwestern University) 

Analysis of the HDAC1 and HDAC6 inhibitory effects of these macrolide derived 

HDACi revealed that their potency is largely dependent on the macrolide template as 

well as the length of the methylene spacer-group connecting the triazolyl group to the 

ZBG, hydroxamic acid. An increase in the length of the linker group (C1 to C6) led to an 

increase in HDAC1 and HDAC6 potencies. Introduction of the dimethylamino methyl 

group at cladinose sugar of azithromycin had moderate impact on HDAC inhibition 

(Table 1, compare 6e-f and 12a-b). Points of attachment of the aryl triazolyl hydroxamate 

group on the macrolide template also influenced HDAC inhibition potency. Attachment 

of the aryl-triazolyl cap group to cladinose sugar of azithromycin did not negatively 

impact HDAC1 inhibition while it only moderately attenuated HDAC6 inhibition potency 

(Table 1, compare 6e-f and 18e-f).  Overall, the optimum HDAC1 and HDAC6 inhibition 

was obtained for the five and six methylene spacers. .  

2.6. Anti-proliferative activity 

To determine if the HDAC inhibitory activities of these macrolide derived 

HDACi translate to anti-proliferative activity,  representative members from each class 
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were tested against three cell lines, two transformed cell lines, lung (A549) and breast 

(MCF-7) cancers as well as one normal cell line (VERO- monkey kidney epithelial cell). 

The selected compounds have diverse HDAC inhibitory activities ranging from weak to 

potent HDAC inhibition. 

Compound 6c is inactive against all transformed cell lines tested. The lack of 

cytotoxicity of 6c may be due to its poor HDAC inhibition activity. The other two 

compounds tested – 12b and 18f have broad HDAC inhibition activity. Surprisingly 

however, only 12b displayed the characteristic broad cytotoxicity activity of HDACi 

against all the cell lines investigated (Table 2.2). The reason for the lack of whole cell 

effect of 18f is not apparent from this study. Relative to the previously synthesized 6f 

and12b has slightly weaker anti-proliferative activity.    

     

Table 2.2. Anti-proliferative activity of selected azithromycin conjugated HDACi (IC50 

values in µM). 

Compound A549 MCF-7 Vero 

6c NI NI NT 

6f       2.32 ± 0.53        4.08 ± 1.03        5.90 ± 0.18 

18f NI NI NT 

12b       6.80 ± 0.50         5.92 ± 1.82       5.73 ± 0.49 

SAHA      5.00 ± 0.24       3.27 ± 0.05     1.03  0.09 

Each value is obtained from a duplicate of three simultaneous experiments. NI=No inhibition, NT=not tested. 
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2.7. Anti-inflammatory activity 

Cancer, especially lung cancer and many other lung diseases are associated with 

inflammation [27]. The transcriptional regulator nuclear factor-ҝB (NF-kB) is the main 

driver of inflammation [28], [28]. In 1863, Virchow discovered that cancer occurs at the 

site of chronic inflammation, and chronic inflammatory diseases are affiliated with higher 

risk of cancer [29]. It has been shown that HDACs play an important role in regulating 

inflammation [30], [31]. HDAC activity is essential for initiation of NF-ҝB mediated 

transcription of inflammatory genes. HDACis such as SAHA [32], entinostat [33], and 

trichostatin A [34] diminish inflammation by inhibiting NF-ҝB activation and signaling 

as well as promoting blockage of pro-inflammatory cytokine release [31]. 

To determine azithromycin conjugated HDACi anti-inflammatory activity, their 

effects on NF-ҝB activity in BEAS-2B cell infected with nontypeable Haemophilus 

influenza (NTHi) was evaluated using NF-B luciferase assay [35]. NTHi, a Gram-

negative bacterium, causes infection in the human respiratory tract [36]. This infection 

leads to activation of NF-B in human epithelial cell by translocating it from cytoplasm 

to nucleus and consequently up-regulating certain pro-inflammatory cytokines such as 

IL-1β, IL-6, and TNF-α. For prescreening, these azithromycin derived HDACi were first 

treated with NTHi infected BEAS-2B cells at 1 µM. It was observed that the compounds 

ability to inhibit NF-B had a direct correlation with their HDAC inhibitory potency. 

Analogs lacking or possessing weak anti-HDAC activities did not suppress NF-B 

activation while those with potent anti-HDAC activities suppressed NF-B activation to 

varying degrees with a close correlation with their HDAC inhibition potency. 

Subsequently, selected compounds were screened to determine the IC50 of their 

NF-B inhibitory activity. SAHA was used as the positive control. It was observed that 

these compounds suppressed the NTHi-induced NF-B activation with IC50 ranging from 

low to high nanomolar (Table 2.3). Azithromycin did not show any effect in this assay as 
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its relative percentage luciferase activity was indistinguishable from no drug treatment in 

presence of NTHi (100%), which indicates that the anti-inflammatory activity of these 

compounds is derived from their HDAC inhibition activities.  

  

Table 2.3. Anti-inflammatory activity (NF-B inhibition) of selected HDACis 

Compound IC50 (nM) Imax% 

6f 280 41.4 

18e 368 46.1 

12b 575 43.4 

SAHA 88 37.4 

 *Imax (%) at 1 M. Anti-inflammatory activity was performed at Dr. Li lab at Georgia State University 

2.8. Conclusion 

Toward delineating the SAR of macrolide derived HDACi, I synthesized three 

new classes of hydroxamic acid-based HDACis derived from azithromycin. A subset of 

these compounds showed nanomolar range HDAC inhibitory activity. Compounds with 

more potent HDAC inhibition activity, exhibited low micromolar cytotoxicity against 

lung (A549) and breast (MCF-7) cancer cell lines. They were less cytotoxic against 

healthy cells (VERO) compared to the FDA approved HDACi SAHA that is more 

cytotoxic against healthy cells rather than transformed cells. Additionally, selected 

compounds exhibited anti-inflammatory activity in NTHi infected BSAS-2B cells.      
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2.9. Experimental 

2.9.1. Materials and methods 

Azithromycin was purchased from Greenfield chemical. 4-ethynylbenzyl alcohol 

was purchased from Sigma-Aldrich. All commercially available starting materials were 

used without purification. Reaction solvents were high performance liquid 

chromatography (HPLC) grade or American Chemical Society (ACS) grade and used 

without purification. Analtech silica gel plates (60 F254) were used for analytical TLC, 

and Analtech preparative TLC plates (UV 254, 2000 µm) were used for purification.  UV 

light and anisaldehyde/iodine stain were used to visualize the spots.  200-400 Mesh silica 

gel was used in column chromatography. Nuclear magnetic resonance (NMR) spectra 

were recorded on a Varian-Gemini 400 MHz or Bruker 500 MHz magnetic resonance 

spectrometer.  1H NMR Spectra were recorded in parts per million (ppm) relative to the 

residual peaks of CHCl3 (7.24 ppm) in CDCl3 or CHD2OD (4.78 ppm) in CD3OD or 

DMSO-d5 (2.49 ppm) in DMSO-d6. 
13C spectra were recorded relative to the central peak 

of the CDCl3 triplet (77.0 ppm) or CD3OD septet (49.3 ppm) or DMSO-d6 septet (39.7 

ppm) and were recorded with complete hetero-decoupling. Original ‘fid’ files were 

processed using MestReNova LITE (version 5.2.5-5780) program. High-resolution mass 

spectra were recorded at the Georgia Institute of Technology mass spectrometry facility 

in Atlanta.  

2.9.2. Cell viability assay 

All cell lines used in this study were maintained in Dulbecco’s Modified Eagle 

Medium (DMEM) (Lonza, GA), supplemented with 10% fetal bovine serum (FBS) 

(Atlanta Biologicals, Atlanta, GA) and 1% Penicillin-Streptomycin. Cells were incubated 

in 96 well plates for 24 h prior to treatment and then treated with various drugs’ 

concentration for 72 h. Drug anti-proliferative activity was measured using the MTS 
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assay (CellTiter 96 Aqueous One Solution and CellTiter 96 Non-Radioactive Cell 

Proliferation Assays, Promega, Madison, WI) as described by the manufacturer. All 

drugs solution were made in DMEM while DMSO concentration was maintained at 

0.1%. 

2.9.3. SAMDI assay (In vitro HDAC inhibition, performed by Dr. James Kornaki at 

Northwestern University) 

HDAC1, HDAC6 were purchased from BPS Biosciences. To obtain IC50 values, 

in 96-well microtiter plates (60 min, 37 °C), isoform- optimized substrates (50 μM) were 

incubated with enzyme (250nM) and inhibitor (at concentrations ranging from .1 nM to 

1.0 mM) in HDAC buffer (25.0 mM Tris-HCl, pH 8.0, 140 mM NaCl, 3.0 mM KCl, 1.0 

mM MgCl
2
, and 0.1 mg/mL BSA). Solution-phase deacetylation reactions were quenched 

with trichostatin A (TSA) and transferred to SAMDI plates to immobilize the substrate 

components. SAMDI plates consist of an array of self-assembled monolayers (SAMs) 

presenting maleimide in standard 384-well format for high-throughput handling 

capability. Following immobilization, plates were washed to remove buffer constituents, 

enzyme, inhibitor, and any unbound substrate and analyzed by MALDI mass 

spectrometry using automated protocols. Deacetylation yields in each triplicate sample 

were obtained from the integrated peak intensities of the molecular ions for the substrate 

and the deacetylated product ion by taking the ratio of the former over the sum of both. 

Yields were plotted with respect to inhibitor concentration and fitted to obtain IC50 

values for each isoform−inhibitor pair.  

Isoform-optimized substrates were prepared by traditional FMOC solid-phase 

peptide synthesis (Anaspec) and purified by semi-preparative HPLC on a reverse-phase 

C18 column (Waters). The peptide GRKacFGC was used for HDAC1 and HDAC8 

assays, whereas the peptide GRKacYGC was used for HDAC6 assays.  
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2.9.4. Anti-inflammatory assay (Performed at Dr. Li lab at Georgia State 

University) 

Luciferase assay was used for measuring NF-B activity. BEAS-2B cells were 

transfected with NF-B luciferase reporter construct in pGL3 basic vector [35]. 24 hours 

after transfection, the cells were treated with drugs for 1 hour followed by stimulation 

with NTHi for 5 hours. Then cells were lysed with cell lysis buffer (250 mM Tris HCl 

(pH 7.5), 0.1% Triton-X, 1 mM DTT) and luciferase activity was measured by luciferase 

assay system (promega). Relative luciferase activity (RLA) was evaluated using the 

equation: RLA = luciferase unit of the cells treated with NTHi and drug / luciferase unit 

of the cells treated with mock. IC50 was determined by treating the cells with a serial dose 

of the drug followed by luciferase assay. % Inhibition was calculated using the equation: 

% inhibition = RLA of the cells treated with indicated concentration of the drug / RLA of 

the cells treated with mock. 

2.9.5. Synthesis   

Desmethylazithromycin 2, 3′-N-(4-Ethynylbenzyl) azithromycin 4, 4-ethynylbenzyl 

methanesulfonate 30, and linker 5c were synthesized as previously described in [14], 

[25].  

2.9.5.1. 3′-Desmethylazithromycin (2) 

To a 50 mL solution of azithromycin (20 g, 0.02 mmol) and sodium acetate (29 g, 

0.21 mmol) in 80% aqueous methanol at 90°C. Iodine (7 g, 0.03 mmol) was added in 

three batches within 5 min. The mixture was maintained at pH 8-9 by addition of 1 M 

NaOH (once at 10 min of reaction time), and stirring continued for 3 h. The mixture was 

poured into cold water containing 5% sodium thiosulfate and extracted with CH2Cl2 

(2×40 mL). The aqueous layer was basified with concentrated NH4OH and extracted with 
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10% MeOH in CH2Cl2 (3×40 mL), and the organic layer was dried over Na2SO4. Solvent 

was evaporated off to give 17.7 g of compound 2 as an off-white solid (>90% purity, 

TLC, CH2Cl2/MeOH/NH4OH 12:1:0.1). The crude 2 was used without further 

purification. 

2.9.5.2. 4-Ethynylbenzyl methanesulfonate (3) 

4-Ethynyl benzyl alcohol (1.20 g, 9.08 mmol) was dissolved in anhydrous DCM 

(15 mL) at rt. Triethyl amine (2.52 mL, 18.16 mmol) was added and reaction mixture 

stirred for 10 minutes. Then cooled to -15 °C and methane sulfonyl chloride (1.25 g, 

13.62 mmol) was added. The reaction mixture stirred at -15 °C for 40 minutes. Then 

reaction mixture was quenched with NaHCO3 followed by Brine (work up). The organic 

layer was separated and dried over Na2SO4.  The crude product was purified by column 

chromatography (Silica gel, 2:3 Hex: DCM) to give the product (1.46 g, 88%) as a pale 

yellow solid. 

2.9.5.3. (3′-N-(4-Ethynylbenzyl)) azithromycin (4) 

Desmethyl azithromycin 2 (2.72 g, 3.70 mmol) was dissolved in anhydrous 

acetonitrile (20 mL), followed by addition of 4-Ethynylbenzyl methanesulfonate 3 (1.46 

g, 6.94 mmol) and K2CO3 (3.58 g, 25.91 mmol). The rraction stirred at 80 °C for 3 h. 

Then it was washed with EtOAC (3x30 mL), NaHCO3 and then brine solution and dried 

over Na2SO4 and concentrated in vacuo. The crude product was purified by column 

chromatography (Silica gel, 12:1:0.5 DCM: MeOH: NH4OH) to give the product (3.03 g, 

96%) as a white solid. 

2.9.5.4. 4-Azido-N-((tert-butyldimethylsilyl)oxy)butanamide (5c) 

2-Azidoacetic acid (540 mg, 5.34 mmol) was dissolved in anhydrous 

dichloromethane (20 mL). The solution was cooled to 0 C and then TBTU (2.06 g, 6.41 

mmol) was added and the solution was stirred for another 15 min at 0 C. After that O-
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(tert-butyldimethylsilyl) hydroxylamine  (1.28 g, 6.95 mmol) dissolved in 5 mL of 

anhydrous dichloromethane containing Hünig’s base (2 mL, 10.69 mmol) was added and 

the resulting reaction mixture was stirred at room temperature for 12 h. Reaction was 

quenched by adding water (5 mL) and the organic layer was separated. The aqueous layer 

was extracted twice with dichloromethane (10 mL) and the combined organic layer was 

washed with saturated aqueous NaHCO3 solution (5 mL), water (10 mL), brine (10 mL), 

dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude was purified 

by column chromatography (Silica gel, 15% ethyl acetate in hexane) to afford the target 

compound 5c (438 mg, 35%) as colorless oil 1H NMR (CDCl3, 400 MHz)   (ppm)7.79 

(bs, 1H), 3.33 (t, J = 6.9 Hz, 2H), 2.17 (t, J = 6.9 Hz, 2H), 1.89 (q, J = 6.9 Hz and 4.3 Hz, 

2H), 0.93 (s, 9H), 0.16 (s, 6H). 

2.9.5.5. (Azithromycin-3-(N-(4-triazolylbenzyl)))-N-hydroxyacetamide (6a)                                              

(3-N-(4-ethynylbenzyl))azithromycin 4 (0.10 g, 0.12 mmol) and 2-Azido-N-

((tert-butyldimethyl silyl)oxy) ethanamide 5a (0.05 g, 0.22 mmol) were dissolved in 

degassed anhydrous THF (5 mL) . CuI  (0.01 g, 0.06 mmol) and Hünig’s base (0.04 mL, 

0.24 mmol) were added to the reaction and the resulting reaction was stirred at room 

temperature for another 12h. Then, the reaction mixture was diluted with excess ethyl 

acetate (30 mL) and was transferred to a separatory funnel and then the ethyl acetate 

layer was washed with a solution (20 mL) of 4:1 mixture of saturated aqueous NH4Cl 

solution /NH4OH solution, water (10 mL), brine (10 mL), dried over anhydrous Na2SO4, 

filtered, and concentrated in vacuo. The crude was dissolved in 5 mL of anhydrous 

methanol and to that the solution caesium fluoride (0.03 g, 0.18 mmol) was added and the 

reaction was stirred at room temperature for 2 h. Afterward, water (10 mL) and ethyl 

acetate (30 mL) were added to the reaction and the organic layer was separated and then 

the organic layer was washed with brine (10 mL), dried over anhydrous Na2SO4, filtered 

and concentrated in vacuo. .The crude was purified by preparative chromatography 
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(Silica gel, 5:1:1 EtOAc/MeOH/NH4OH) to give the title compound 6a as light yellow 

solid (0.045 g, 40% yield). 1H NMR (400 MHz, CD3OD) δ (ppm) 8.47 (d, J = 2.4 Hz, 

1H), 7.96 (d, J = 7.0 Hz, 2H), 7.62 (d, J = 7.4 Hz, 2H), 5.13 (d, J = 4.6 Hz, 2H), 4.66 (d, 

J = 7.2 Hz, 1H), 4.31 – 4.20 (m, 2H), 4.15 (d, J = 12.9 Hz, 1H), 3.86 (d, J = 12.7 Hz, 

2H), 3.76 – 3.70 (m, 2H), 3.52 (d, J = 6.9 Hz, 2H), 3.43 (dd, J = 3.2, 1.6 Hz, 3H), 3.29 (s, 

3H), 3.20 – 3.12 (m, 2H), 3.07 (s, 1H), 3.01 – 2.97 (m, 1H), 2.88 (s, 3H), 2.55 (s, 3H), 

2.30 (d, J = 14.2 Hz, 2H), 2.09 – 2.01 (m, 28H), 1.69 (dd, J = 15.2, 5.1 Hz, 2H), 1.56 (s, 

3H), 1.44 (s, 3H), 1.32 (s, 3H), 1.17 (s, 3H), 1.03 (t, J = 7.4 Hz, 3H). 13C NMR (126 

MHz, CD3OD) δ (ppm) 180.7, 177.2, 149.5, 141.0, 140.9, 131.7, 127.5, 124.5, 104.7, 

102.3, 97.6, 85.1, 80.1, 78.9, 76.8, 76.7, 76.2, 75.5, 73.2, 70.2, 70.1, 67.5, 66.8, 65.4, 

59.3, 52.0, 51.0, 50.1, 49.3, 47.5, 44.1, 43.5, 38.4, 37.7, 36.7, 33.8, 32.7, 31.6, 29.1, 27.7, 

24.5, 22.8, 19.8, 18.2, 16.5, 12.3, 10.6, 8.9. HMRS (ESI) m+2/2z Calcd for C48H82N6O14 

[M+2H+]: 483.2939, found for 483.2935. 

2.9.5.6. Azithromycin-3-(N-(4-triazolylbenzyl)))-N-hydroxypropanamide (6b) 

Reaction of (3-N-(4-ethynylbenzyl))azithromycin   4 (0.18 g, 0.22 mmol) and 3-

Azido-N-((tert-butyldimethyl silyl)oxy) propanamide 5b (0.08 g, 0.33 mmol) followed by 

TBS deprotection with caesium fluoride as described for the synthesis of 6a, gave 6b as 

light yellow solid (170 mg, 79%). 1H NMR (400 MHz, CD3OD) δ (ppm) 8.39 (s, 1H), 

7.93 (d, J = 8.0 Hz, 2H), 7.61 (d, J = 8.3 Hz, 2H), 5.14 (d, J = 4.5 Hz, 1H), 4.88 (s, 3H), 

4.67 (d, J = 7.3 Hz, 1H), 4.23 (d, 2H), 4.15 (d, J = 13.2 Hz, 1H), 3.86 (d, J = 13.3 Hz, 

2H), 3.77 – 3.71 (m, 2H), 3.62 – 3.52 (m, 2H), 3.46 – 3.41 (m, 3H), 3.30 (s, 3H), 3.16 (d, 

J = 9.5 Hz, 2H), 2.91 (s, 3H), 2.55 (s, 3H), 2.32 (s, 1H), 2.15 – 2.01 (m, 24H), 1.70 (d, J 

= 10.6 Hz, 2H), 1.57 (s, 3H), 1.48 (d, J = 6.9 Hz, 2H), 1.43 (s, 3H), 1.38 – 1.33 (m, 2H), 

1.29 (s, 3H), 1.20 (s, 3H), 1.16 (s, 3H), 1.03 (t, J = 7.4 Hz, 3H). 13C NMR (126 MHz, 

CD3OD) δ (ppm) 178.3, 175.0, 147.1, 138.1, 129.6, 125.4, 102.5, 95.4, 83.0, 78.4, 77.8, 

76.5, 73.9, 73.2, 72.3, 70.7, 70.0, 69.8, 65.4, 64.7, 60.8, 57.1, 5.54, 51.2, 48.2, 48.0, 47.9, 



 79 

47.2, 46.1, 45.7, 45.3, 45.2, 41.9, 41.1, 36.1, 35.6, 31.7, 29.4, 29.1, 25.5, 22.7, 22.4, 20.6, 

16.1, 13.2, 12.9, 10.1, 8.5, 6.9. HRMS (ESI) m/z Calcd. for C49H83N6O14 [M+H+]: 

979.5962, found for 979.5958. 

2.9.5.7. Azithromycin-3-(N-(4-triazolylbenzyl)))-N-hydroxybutanamide (6c) 

Reaction of (3-N-(4-ethynylbenzyl))azithromycin 4 (0.15 g, 0.17 mmol) and 4-

Azido-N-((tert-butyldimethyl silyl)oxy) butanamide 5c (0.08 g, 0.32 mmol) followed by 

TBS deprotection with caesium fluoride as described for the synthesis of 6a, gave 6c as 

light yellow solid (110 mg, 62%). 1H NMR (400 MHz, CD3OD) δ (ppm) 8.21 (s, 1H), 

7.66 (d, J = 7.5 Hz, 2H), 7.33 (d, J = 6.2 Hz, 2H), 4.35 (d, J = 7.1 Hz, 2H), 3.97 – 3.88 

(m, 1H), 3.66 – 3.55 (m, 1H), 3.42 (s, 3H), 3.26 (d, J = 10.4, 7.0 Hz, 3H), 3.13 – 3.11 (m, 

2H), 2.96 (s, 3H), 2.92 – 2.78 (m, 1H), 2.66 (dd, J = 12.4, 7.4 Hz, 3H), 2.59 (s, 3H), 2.29 

(s, 3H), 2.18 (d, J = 15.0 Hz, 2H), 2.00 (dd, J = 20.2, 12.5 Hz, 2H), 1.81 (d, J = 7.6 Hz, 

2H), 1.75 (s, 24H), 1.39 (dd, J = 15.2, 9.7 Hz, 2H), 1.26 (s, 3H), 1.16 (d, J = 6.8 Hz, 3H), 

1.11 (d, J = 3.8 Hz, 3H), 1.06 – 1.00 (m, 1H), 0.96 (s, 3H), 0.88 (d, J = 7.4 Hz, 3H), 0.84 

(d, J = 6.8 Hz, 3H), 0.71 (t, J = 7.3 Hz, 3H). 13C NMR (126 MHz, CD3OD) δ (ppm) 

180.5, 177.2, 172.2, 149.5, 131.7, 131.6, 127.5, 123.1, 104.7, 97.6, 85.2, 80.6, 80.1, 78.8, 

76.7, 76.1, 75.6, 75.1, 73.1, 70.1, 65.4, 59.4, 51.5, 50.8, 50.5, 50.2, 50.1, 49.5, 47.6, 44.1, 

38.2, 37.7, 36.7, 32.8, 31.6, 31.5, 31.3, 31.2 28.1, 27.8, 22.9, 22.9, 22.8, 22.4, 19.8, 18.2, 

16.5, 12.3, 10.6, 9.0. HRMS (ESI) m/z Calcd for C50H85N6O14 [M+H+]: 993.6118, found 

993.6113 

2.9.5.8. Azithromycin-3-(N-(4-triazolylbenzyl)))-N-hydroxypentanamide (6d) 

Reaction of (3-N-(4-ethynylbenzyl))azithromycin 4 (0.14 g, 0.16 mmol) and 5-

Azido-N-((tert-butyldimethyl silyl)oxy) pentanamide 5d (0.07 g, 0.24 mmol) followed by 

TBS deprotection with caesium fluoride as described for the synthesis of 6a, gave 6d as 

light yellow solid (110 mg, 66%). 1H NMR (400 MHz, CD3OD) δ (ppm) 8.28 (s, 1H), 



 80 

7.73 (d, J = 7.7 Hz, 2H), 7.40 (d, J = 7.9 Hz, 2H), 4.47 (d, J = 7.2 Hz, 1H), 4.41 (s, 2H), 

4.12 (d, J = 17.0 Hz, 2H), 3.80 (d, J = 13.0 Hz, 1H), 3.68 (s, 1H), 3.64 – 3.50 (m, 4H), 

3.35 – 3.24 (m, 2H), 3.13 (s, 3H), 3.00 – 2.91 (m, 2H), 2.76 (dd, J = 7.5, 4.4 Hz, 2H), 

2.65 (d, J = 11.8 Hz, 1H), 2.39 (s, 3H), 2.32 (d, J = 15.0 Hz, 2H), 2.24 (s, 3H), 2.15 – 

2.09 (m, 3H), 1.98 – 1.86 (m, 22H), 1.31 (s, 3H), 1.23 (d, J = 5.9 Hz, 5H), 1.18 – 1.09 

(m, 7H), 1.06 (s, 3H), 1.01 (d, J = 7.5 Hz, 4H), 0.91 (s, 2H), 0.84 (t, J = 7.3 Hz, 3H). 13C 

NMR (126 MHz, CD3OD) δ (ppm) 180.5, 177.2, 149.5, 141.7, 131.6, 131.4, 127.4, 

122.9, 104.8, 97.3, 85.3, 80.5, 80.2, 78.9, 76.3, 76.2, 76.1, 75.1, 73.3, 70.0, 67.3, 65.3, 

59.6, 51.8, 50.8, 50.3, 50.1, 50.0, 49.8, 49.5, 49.3, 47.5, 44.3, 43.9, 38.2, 37.6, 36.8, 32.8, 

31.5, 28.5, 28.3, 24.4, 23.1, 22.9, 22.5, 19.8, 18.2, 16.5,12.4, 10.7, 8.6. HRMS (ESI) m/z 

Calcd. for C51H87N6O14 [M+H+]: 1007.6275, found 1007.6272. 

2.9.5.9. ((3-O-Acetyl)-4-N-(4-ethynylbenzyl))azithromycin (7) 

To the solution of (4-ethynylbenzyl)azithromycin 4 (1.00 g, 1.18 mmol) in DCM 

(10 mL) was added acetic anhydride (0.13 mL, 1.41 mmol). Then the mixture was heated 

to 40 °C in a pressure tube and stirring continued for 48 h. The reaction mixture was 

cooled and diluted with DCM (100 mL) and washed with saturated NaHCO3 (50 mL), 

water (50 mL), and brine (50 mL). The organic layer was dried over anhydrous Na2SO4, 

filtered and concentrated in vacuo. The solid crude product 7 (1.1 g, 95%) was 

sufficiently pure to be used for the next reaction without any further purification. . 1H 

NMR (400 MHz, CDCl3) δ (ppm) 7.38 (d, J = 8.1 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H), 5.06 

– 5.00 (m, 1H), 4.94 (dd, J = 10.6, 2.3 Hz, 1H), 4.86 (dd, J = 10.5, 7.6 Hz, 1H), 4.79 (d, J 

= 4.4 Hz, 1H), 4.45 (d, J = 7.6 Hz, 1H), 4.13 (t, J = 5.6 Hz, 1H), 3.97 (dq, J = 12.5, 6.2 

Hz, 1H), 3.64 (d, J = 13.8 Hz, 1H), 3.57 – 3.44 (m, 2H), 3.40 (d, J = 4.3 Hz, 1H), 3.29 

(dd, J = 12.3, 4.8 Hz, 1H), 3.20 (s, 3H), 3.02 – 2.94 (m, 2H), 2.74 (td, J = 12.2, 4.2 Hz, 

1H), 2.67 – 2.58 (m, 1H), 2.53 (q, J = 7.2 Hz, 2H), 2.28 (d, J = 14.9 Hz, 2H), 2.19 (s, 

3H), 2.14 (d, J = 6.8 Hz, 3H), 2.10 (d, J = 7.4 Hz, 3H), 2.04 (d, J = 5.4 Hz, 3H), 1.99 – 
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1.89 (m, 1H), 1.82 – 1.70 (m, 3H), 1.68 – 1.34 (m, 3H), 1.28 – 1.17 (m, 13H), 1.13 (d, J 

= 7.1 Hz, 6H), 1.04 – 0.91 (m, 10H), 0.89 – 0.80 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 

(ppm) 176.5, 175.5, 171.0, 170.0, 140.8, 132.0, 128.4, 128.1, 128.0, 120.7, 101.4, 96.5, 

84.3, 83.7, 80.6, 79.8, 77.9, 76.4, 75.3, 74.1, 72.9, 71.2, 69.0, 65.6, 61.9, 61.1, 58.2, 49.4, 

48.9, 45.5, 42.9, 41.4, 36.9, 35.1, 34.4, 31.0, 29.6, 27.1, 25.2, 23.6, 21.9, 21.6, 20.6, 17.9, 

14.1, 11.7, 11.1, 8.3. HRMS (ESI) m+2/2z Calcd. for C48H80N2O13 [M + 2H+]: 446.2825, 

found 446.2810. 

2.9.5.10. ((4-Oxo)-3-O-acetyl)-4-N-(4-ethynylbenzyl))azithromycin (8) 

A solution of N-chlorosucciniamide (0.46 g, 3.47 mmol) in DCM (5 mL) was 

stirred at -15 °C for 10 min. Then DMS (0.30 mL, 3.90 mmol) was added drop wise to 

form a white solution. After stirring for 20 min a DCM (5 mL) solution of compound 7 

(1.93 g, 2.17 mmol) was added over 30 min and the resulting suspension was stirred at -

15 °C for 30 min. Subsequently, TEA (0.5 mL, 3.47 mmol) was added and the reaction 

cleared up within a minute. Stirring continued at -10 °C for 2 h and the reaction was 

quenched with saturated aqueous NaHCO3 solution (20 mL), extra DCM (20 mL) was 

added and the organic layer was separated. The aqueous layer was again extracted with 

DCM (2 x 10 mL) and the combined organic layer was dried over anhydrous Na2SO4, 

filtered, and concentrated in vacuo. The crude was purified by column chromatography 

(Silica gel, 12:1:0.5 DCM: MeOH: NH4OH) to give the title compound 8 (1.79 g, 93% 

yield) aswhitle solid. 1H NMR (400 MHz, CDCl3) δ (ppm) 7.37 (d, J = 8.1 Hz, 2H), 7.17 

(d, J = 7.3 Hz, 2H), 5.18 – 5.04 (m, 1H), 5.05 – 4.73 (m, 2H), 4.65 (d, J = 9.7 Hz, 1H), 

4.48 – 4.34 (m, 1H), 4.20 (d, J = 4.3 Hz, 1H), 4.16 – 4.06 (m, 1H), 3.95 (dd, J = 15.2, 8.5 

Hz, 1H), 3.72 – 3.57 (m, 2H), 3.56 – 3.37 (m, 3H), 3.31 (dd, J = 16.4, 9.8 Hz, 1H), 3.23 

(t, J = 5.2 Hz, 1H), 3.19 (s, 1H), 3.07 (d, J = 6.2 Hz, 1H), 3.05 – 2.91 (m, 2H), 2.86 – 

2.55 (m, 2H), 2.49 (d, J = 10.1 Hz, 1H), 2.27 (dd, J = 11.5, 6.2 Hz, 3H), 2.20 (d, J = 5.6 

Hz, 3H), 2.17 – 2.13 (m, 2H), 2.11 (d, J = 5.3 Hz, 2H), 2.08 – 1.95 (m, 5H), 1.83 – 1.70 
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(m, 2H), 1.66 – 1.46 (m, 2H), 1.44 – 1.34 (m, 3H), 1.34 – 1.16 (m, 14H), 1.13 (dd, J = 

6.8, 4.2 Hz, 4H), 1.10 – 1.01 (m, 4H), 1.00 – 0.91 (m, 3H), 0.90 – 0.73 (m, 3H). 13C 

NMR (126 MHz, CDCl3) δ (ppm) 211.6, 177.2, 176.5, 170.0, 169.7, 140.6, 132.0, 128.3, 

120.6, 100.5, 94.6, 83.6, 75.8, 75.3, 74.3, 73.9, 73.0, 72.4, 72.2, 71.2, 69.8, 69.0, 68.0, 

65.6, 63.1, 61.8, 58.3, 51.2, 49.5, 48.9, 45.1, 37.1, 36.9, 35.2, 34.4, 29.5, 23.0, 22.1, 21.5, 

21.1, 20.6, 18.1, 15.5, 14.3, 12.3, 11.3, 9.0, 7.7. HRMS (ESI) m/z Calcd. for C48H77N2O13 

[M+H+]: 889.5420, found 889.5412. 

2.9.5.11. ((4-Epoxy)-3-O-acetyl)-4-N-(4-ethynylbenzyl))azithromycin (9) 

NaH (0.2 g, 4.67 mmol, 60%w/w) was added to an oven dried three necked flask 

and was washed with petroleum ether (×3). The flask was immediately flushed with Ar 

and dry DMSO (6 mL) was introduced through a septum. The mixture was stirred at 

room temperature under Ar. Then trimethyloxosulfonium iodide (1.05 g, 4.67 mmol) was 

added over a period of 5 min. After hydrogen gas ceased to evolve, the resulting yellow 

clear solution was treated with a solution of  compound 8 (1.88 g, 2.12 mmol) in 

anhydrous THF (5 mL) over 10 min and stirring continued for 2 h after which TLC 

(4:1:0.5 Hex, EtOAc: EtOH) showed a near quantitative conversion to a new product. 

THF was evaporated off, EtOAc (20 mL) was added to the remaining residue and the 

mixture was washed  with water several times to remove DMSO. The organic layer was 

dried over Na2SO4 and concentrated to give light yellow solid product 9 (1.63 g, 85% 

yield). 1H NMR (400 MHz, CDCl3) δ (ppm) 7.37 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 6.7 Hz, 

2H), 5.26 (s, 1H), 5.06 (d, J = 10.0 Hz, 1H), 4.98 (d, J = 8.5 Hz, 1H), 4.95 – 4.76 (m, 

2H), 4.72 (dd, J = 12.6, 6.2 Hz, 1H), 4.62 (t, J = 7.4 Hz, 1H), 4.50 (s, 1H), 4.44 (d, J = 

7.6 Hz, 1H), 4.09 (t, J = 7.3 Hz, 1H), 4.03 (dd, J = 12.6, 5.9 Hz, 1H), 3.70 – 3.60 (m, 

1H), 3.60 – 3.52 (m, 1H), 3.51 – 3.42 (m, 1H), 3.34 (d, J = 19.2 Hz, 1H), 3.28 – 3.14 (m, 

2H), 3.09 (d, J = 7.6 Hz, 1H), 3.01 (d, J = 4.1 Hz, 1H), 2.91 (d, J = 4.3 Hz, 1H), 2.82 – 

2.61 (m, 3H), 2.61 – 2.52 (m, 1H), 2.35 – 2.25 (m, 1H), 2.24 – 2.11 (m, 6H), 2.10 – 2.00 
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(m, 4H), 1.95 – 1.84 (m, 2H), 1.83 – 1.64 (m, 4H), 1.56 (ddd, J = 20.9, 13.1, 6.4 Hz, 2H), 

1.49 – 1.32 (m, 3H), 1.30 – 1.14 (m, 10H), 1.12 (d, J = 8.3 Hz, 2H), 1.06 (s, 3H), 1.03 (d, 

J = 4.9 Hz, 3H), 1.03 – 0.97 (m, 4H), 0.94 (dd, J = 15.2, 8.7 Hz, 3H), 0.91 – 0.75 (m, 

3H). 13C NMR (126 MHz, CDCl3) δ (ppm) 182.2, 175.8, 173.7, 169.7, 145.2, 142.9, 

140.2, 132.2, 131.9, 128.6, 128.1, 120.9, 106.6, 105.0, 103.7, 97.4, 83.7, 78.3, 75.5, 74.3, 

73.7, 72.5, 71.0, 70.6, 69.9, 69.3, 65.5, 65.3, 61.7, 60.9, 59.3, 49.9, 49.4, 42.7, 40.4, 39.7, 

37.0, 31.9, 29.2, 22.9, 21.5, 19.3, 17.9, 15.2, 14.1, 11.7, 11.0, 10.3, 8.8. HRMS (ESI) m/z 

Calcd. for C49H79N2O13 [M+H+]: 903.5577, found 903.5568. 

2.9.5.12. ((4-(N,N-Dimethylaminomethyl)-4-N-(4-ethynylbenzyl))azithromycin (11) 

Reaction of compound 9 (2.00 g, 2.2 mmol) and N,N-dimethylmethyl amine 10 

(8.92 mL, 168.3, 2M in THF) mmol) in anhydrous methanol (20 mL). The solution was 

heated at 60 C for 6 h. MeOH and residual methylamine was evaporated off to give light 

yellow solid which was again dissolved in MeOH (10 mL) and heated at 90 C for three 

days after which TLC showed complete conversion. Excess MeOH was evaporated off to 

give compound give 11 as white solid (2.0 g, 90%) after purification by column 

chromatography (Silica gel, 20:1:0.1 DCM, MeOH, and NH4OH). 1H NMR (400 MHz, 

CDCl3) δ (ppm) 7.38 (t, J = 5.6 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 4.98 (d, J = 4.7 Hz, 

1H), 4.80 (dd, J = 10.7, 7.5 Hz, 1H), 4.61 (dd, J = 16.8, 8.0 Hz, 1H), 4.53 – 4.47 (m, 1H), 

4.32 (dd, J = 11.6, 6.2 Hz, 1H), 4.08 (t, J = 7.2 Hz, 1H), 4.02 (q, J = 6.4 Hz, 1H), 3.70 

(dt, J = 9.6, 5.5 Hz, 1H), 3.67 – 3.59 (m, 2H), 3.54 (d, J = 6.2 Hz, 1H), 3.49 (s, 1H), 3.41 

(ddd, J = 22.7, 11.0, 6.6 Hz, 2H), 3.31 (d, J = 7.3 Hz, 1H), 3.20 – 3.12 (m, 1H), 3.11 – 

2.98 (m, 3H), 2.92 (d, J = 3.3 Hz, 1H), 2.85 (d, J = 2.4 Hz, 1H), 2.78 (dd, J = 17.2, 10.1 

Hz, 1H), 2.73 (s, 1H), 2.65 (dd, J = 14.3, 7.6 Hz, 2H), 2.57 (d, J = 9.5 Hz, 1H), 2.45 (dt, J 

= 23.1, 10.2 Hz, 1H), 2.31 (d, J = 11.6 Hz, 7H), 2.24 – 2.16 (m, 3H), 2.13 (dd, J = 11.4, 

4.5 Hz, 1H), 2.10 – 2.01 (m, 4H), 2.00 – 1.78 (m, 6H), 1.68 (dd, J = 23.3, 12.9 Hz, 2H), 

1.23 (qd, J = 15.5, 7.1 Hz, 17H), 1.13 (dd, J = 9.7, 4.5 Hz, 3H), 1.09 – 0.98 (m, 8H), 0.86 
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(ddd, J = 11.8, 10.2, 6.2 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ (ppm) 178.0, 169.7, 

140.7, 131.8, 128.3, 120.5, 100.4, 95.6, 84.2, 83.5, 78.8, 76.8, 76.0, 74.9, 74.2, 73.3, 71.4, 

70.2, 70.1, 67.5, 67.4, 61.9, 61.3, 58.4, 57.9, 53.6, 49.0, 47.3, 47.2, 45.1, 44.7, 41.9, 41.4, 

40.1, 36.8, 36.5, 31.5, 30.6, 30.0, 27.0, 26.5, 21.7, 21.3, 20.9, 18.5, 16.1, 15.7, 14.7, 11.1, 

9.38, 7.5. ESI MS m/z Calcd. for C51H86N3O13 [M+H+]: 948.61. 

2.9.5.12. (Azithromycin-(4-N-(4-benzyltriazolyl))-4-(N,N-dimethylaminomethyl))-N-

hydroxyhexanamide (12a) 

Compound 11 (0.17 g, 0.18 mmol) and 6-Azido-N-((tert-butyldimethyl silyl)oxy) 

hexanamide 5e (0.08 g, 0.30 mmol) were dissolved in anhydrous THF (5 mL) and stirred 

under Ar at room temperature. Copper (I) iodide (0.02 g, 0.09 mmol) and Hunig’s base 

(0.07 mL, 0.37 mmol) were added to the mixture and stirring continued for 12 h. 

Caesium fluoride (0.04 g, 0.28 mmol) and MeOH (4 mL) were added to the mixture to 

remove TBS protecting group and stirring continued for an additional 2h.  A solution of 

4:1 saturated NH4Cl/NH4OH (30 mL) was added to the reaction mixture and extracted 

with 20% MeOH/ CH2Cl2 (3×30 mL). The organic layer was dried over Na2SO4 and 

concentrated in vacuo. The crude product was purified by preparative chromatography  

(Silica gel, 5:1:1 EtOAc: MeOH: NH4OH) to give the product (0.16 g, 80%) as light 

yellow solid. 1H NMR (400 MHz, CD3OD) δ (ppm) 7.74 (s, 1H), 7.20 (d, J = 7.8 Hz, 

2H), 6.83 (d, J = 7.9 Hz, 2H), 3.83 (s, 2H), 3.74 (d, J = 7.3 Hz, 1H), 3.60 – 3.46 (m, 2H), 

3.26 (d, J = 13.0 Hz, 1H), 2.99 – 2.89 (m, 3H), 2.78 (s, 1H), 2.75 – 2.67 (m, 3H), 2.37 (d, 

J = 3.6 Hz, 3H), 2.23 – 2.10 (m, 2H), 1.96 (t, J = 14.2 Hz, 3H), 1.80 – 1.64 (m, 11H), 

1.60 – 1.45 (m, 3H), 1.43 – 1.30 (m, 11H), 1.28 (s, 1H), 1.22 (d, J = 6.6 Hz, 1H), 1.13 

(dd, J = 24.4, 9.4 Hz, 3H), 1.02 (d, J = 15.3 Hz, 2H), 0.93 – 0.81 (m, 1H), 0.74 (dd, J = 

14.2, 7.2 Hz, 3H), 0.68 (dd, J = 10.0, 4.1 Hz, 5H), 0.67 – 0.58 (m, 3H), 0.55 (d, J = 6.7 

Hz, 6H), 0.48 (d, J = 4.3 Hz, 6H), 0.38 (d, J = 7.5 Hz, 3H), 0.33 – 0.21 (m, 10H). 13C 

NMR (126 MHz, CD3OD) δ (ppm) 180.5, 178.8, 177.3, 173.7, 172.8, 149.4, 141.7, 
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131.8, 127.5, 122.8, 105.1, 102.9, 97.3, 86.5, 80.7, 78.8, 77.9, 76.3, 75.9, 73.7, 72.8, 71.4, 

70.0, 69.2, 64.7, 63.2, 61.6, 60.1, 55.7, 53.1, 52.1, 50.9, 48.5, 47.3, 44.5, 44.1, 43.9, 38.3, 

37.6, 32.9, 32.4, 32.3, 32.2, 31.9, 31.7, 30.2, 28.4, 27.9, 23.1, 22.7, 19.7, 18.1, 16.4, 12.4, 

10.7, 8.4. HRMS (ESI) m+2/2z Calcd. for C55H97N7O14 [M + 2H+]: 539.8541, found 

539.8549.                                 

2.9.5.13. (Azithromycin-(4-N-(4-benzyltriazolyl))-4-(N,N-dimethylaminomethyl))-N-

hydroxyheptanamide (12b) 

Reaction of compound 11 (0.08 g, 0.09 mmol)  with 7-Azido-N-((tert-

butyldimethylsilyl)oxy)heptanamide 5f (0.04 g, 0.14 mmol) followed by TBS removal 

with caesium fluoride as described for the synthesis of compound 12a, gave 12b as light 

yellow solid (0.069 g, 70%). 1H NMR (400 MHz, CD3OD) δ (ppm) 7.46 (s, 1H), 6.92 (d, 

J = 8.0 Hz, 2H), 6.56 (d, J = 8.0 Hz, 2H), 3.55 (d, J = 6.2 Hz, 2H), 3.47 (d, J = 7.2 Hz, 

1H), 3.33 – 3.17 (m, 2H), 2.99 (d, J = 12.9 Hz, 1H), 2.76 (d, J = 13.2 Hz, 1H), 2.67 (dd, J 

= 14.5, 9.8 Hz, 3H), 2.51 (s, 1H), 2.43 (ddd, J = 6.2, 4.9, 2.3 Hz, 2H), 2.26 (t, J = 15.8 

Hz, 1H), 2.09 (d, J = 5.7 Hz, 3H), 1.98 – 1.83 (m, 2H), 1.69 (dd, J = 14.5, 9.6 Hz, 2H), 

1.55 – 1.37 (m, 13H), 1.35 – 1.23 (m, 2H), 1.22 (d, J = 13.4 Hz, 3H), 1.16 – 1.01 (m, 

11H), 0.87 (t, J = 11.8 Hz, 3H), 0.75 (d, J = 15.1 Hz, 3H), 0.46 (d, J = 19.0 Hz, 6H), 0.44 

– 0.40 (m, 3H), 0.35 (dt, J = 15.7, 9.2 Hz, 6H), 0.32 – 0.25 (m, 6H), 0.20 (t, J = 5.5 Hz, 

6H), 0.11 (d, J = 7.5 Hz, 3H), 0.07 – 0.06 (m, 6H). 13C NMR (126 MHz, CD3OD) δ 

(ppm) 180.4, 180.1, 177.3, 173.5, 172.7, 149.5, 141.7, 141.2, 131.8, 131.4, 127.4, 122.8, 

105.1, 102.8, 97.3, 86.1, 80.3, 78.9, 76.5, 75.7, 73.7, 72.8, 71.5, 70.1, 69.2, 64.6, 63.5, 

61.7, 60.1, 55.7, 53.2, 52.1, 51.0, 48.5, 47.6, 47.4, 44.1, 43.8, 38.5, 38.0, 37.6, 32.1, 31.5, 

29.0, 28.8, 27.7, 26.8, 23.1, 22.4, 20.0, 18.2, 16.4, 16.0, 12.6, 10.8, 8.5. HRMS (ESI) 

m+2/2z Calcd. for C56H99N7O14 [M + 2H+]: 546.8620, found 546.8611.  

 



 86 

2.9.5.14. 3-O-Acetylazithromycin (13)   

Acetic anhydride (0.8 mL, 8.34 mmol) was added to a solution of azithromycin 1 

(2.50 g, 3.34 mmol) in DCM (10 mL) at room temperature. The resulting solution was 

stirred under Ar for 3 h. The reaction was quenched by adding saturated NaHCO3 and the 

organic layer was separated. The aqueous layer was extracted twice with DCM (20 mL) 

and the combined organic layer was washed with water, brine, dried over anhydrous 

Na2SO4, filtered and concentrated in vacuo to give the target compound as a white solid 

(2.50 g, 95%). 1H NMR (400 MHz, CDCl3) δ (ppm) 5.25 (dd, J = 1.6, 0.9 Hz, 1H), 4.93 

(s, 3H), 4.74 – 4.67 (m, 2H), 4.59 (d, J = 10.2 Hz, 2H), 4.51 (d, J = 7.5 Hz, 2H), 4.18 – 

4.13 (m, 2H), 4.01 – 3.93 (m, 2H), 3.59 (s, 2H), 3.54 (d, J = 6.3 Hz, 2H), 3.30 (s, 3H), 

3.23 (s, 2H), 2.96 (d, J = 9.0 Hz, 2H), 2.79 – 2.71 (m, 2H), 2.68 – 2.52 (m, 4H), 2.40 (d, J 

= 11.8 Hz, 2H), 2.28 (d, J = 13.8 Hz, 4H), 2.04 – 2.01 (m, 1H), 1.98 (d, J = 2.3 Hz, 3H), 

1.94 – 1.85 (m, 3H), 1.64 (d, J = 13.7 Hz, 3H), 1.53 (dd, J = 15.3, 4.9 Hz, 2H), 1.28 – 

1.23 (m, 7H), 1.20 (d, J = 6.4 Hz, 3H), 1.16 (d, J = 6.0 Hz, 3H), 1.11 (d, J = 8.3 Hz, 3H), 

1.09 (s, 3H), 1.03 (d, J = 6.7 Hz, 3H), 0.99 (s, 3H). 13C NMR (101 MHz, CDCl3) δ (ppm) 

178.2, 176.2, 169.8, 166.3, 100.6, 95.4, 83.8, 78.7, 78.1, 75.8, 74.9, 74.4, 73.5, 72.6, 71.8, 

70.1, 68.2, 65.6, 63.7, 61.9, 49.3, 45.1, 42.0, 40.7, 36.5, 35.1, 30.4, 27.2, 26.3, 22.5, 22.0, 

21.6, 21.2, 21.1, 18.5, 16.3, 15.4, 11.3, 9.2, 7.8. HRMS (ESI) m+2/2z Calcd. for 

C40H76N2O13 [M+2H+]/2: 396.2668, found 396.2656. 

2.9.5.15. 4-Oxo-3-O-acetylazithromycin (14) 

N-Iodosuccinimide (0.75 g, 5.61 mmol) was dissolved in anhydrous DCM (20 

mL) and the solution was cooled to -15 °C. After 10 min, dimethyl sulfide (0.5 ml, 6.32 

mmol) was added drop wise. The white suspension was stirred at -15 C for 20 min, then 

a DCM solution (5 mL) of compound 13 (2.78 g, 3.51 mmol) was added over 30 min. 

The resulting suspension was stirred at -15 °C for 30 min, and triethylamine (0.8 ml, 5.6 

mmol) was added. The solution became clear in a minute and stirring was continued at -
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10 °C for 2 h. The reaction was quenched by adding saturated aqueous NaHCO3 solution 

and the organic layer was separated. The aqueous layer was extracted twice with DCM 

(2x 50 mL). The combined organic layer was washed with water 50 mL), brine (50 mL), 

dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude was purified 

by column chromatography (Silica gel, 12:1:0.5 DCM: MeOH: NH4OH) to yield the 

product (2.49 g 90%) as white solid. 1H NMR (400 MHz, CDCl3) δ 1H NMR (400 MHz, 

CDCl3), 6.21 (d, J = 41.6 Hz, 2H), 5.27 (t, J = 6.6 Hz, 1H), 5.19 (s, 1H), 5.05 (t, J = 7.0 

Hz, 1H), 5.00 – 4.93 (m, 1H), 4.93 – 4.87 (m, 1H), 4.72 – 4.54 (m, 1H), 4.39 (q, J = 6.6 

Hz, 1H), 4.36 – 4.27 (m, 1H), 4.11 – 4.06 (m, 1H), 4.05 – 3.99 (m, 5H), 3.50 – 3.41 (m, 

1H), 3.36 (d, J = 6.1 Hz, 1H), 3.29 (s, 1H), 3.26 (s, 3H), 3.24 – 3.20 (m, 5H), 3.18 – 3.12 

(m, 1H), 2.70 – 2.51 (m, 4H), 2.41 (d, J = 12.0 Hz, 1H), 2.20 (dt, J = 16.6, 9.6 Hz, 4H), 

2.15 – 2.08 (m, 2H), 2.01 (d, J = 4.6 Hz, 1H), 1.97 (s, 3H), 1.93 (s, 1H), 1.86 (s, 3H), 

1.72 – 1.65 (m, 1H), 1.65 – 1.57 (m, 1H), 1.53 (d, J = 14.9 Hz, 1H), 1.47 – 1.38 (m, 1H), 

1.34 – 1.28 (m, 7H), 1.22 (t, J = 6.2 Hz, 1H), 1.18 (d, J = 7.3 Hz, 1H), 1.09 (ddd, J = 

23.5, 15.0, 8.7 Hz, 3H), 0.97 (d, J = 8.6 Hz, 3H), 0.84 (dd, J = 6.6, 3.3 Hz, 3H), 0.82 – 

0.72 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 211.4, 210.7, 177.7, 176.6, 173.3, 170.0, 

169.9, 101.8, 100.4, 97.7, 95.4, 85.1, 82.8, 81.2, 73.8, 72.6, 70.7, 69.2, 68.4, 63.2, 62.3, 

60.7, 50.9, 49.8, 45.4, 44.5, 41.4, 40.2, 36.2, 29.3, 26.9, 24.0, 22.6, 20.7, 16.2, 14.5, 11.6, 

10.8, 8.5, 7.8. HRMS (ESI) m/2z Calcd. for C40H73N2O13 [M + 2H+]/2: 395.2590, found 

395.2587. 

2.9.5.16. 4-Epoxy-3-O-acetylazithromycin (15) 

NaH (0.3 g, 7.18 mmol, 60% w/w) was added to an oven dried three necked 

round bottom flask and was washed with petroleum ether (×3). The flask was 

immediately flushed with argon and dry DMSO (6 mL) was introduced through a septum. 

The mixture was stirred at room temperature under Ar. Over a priod of 5 min, 

trimethyloxosulfonium iodide (1.58 g, 7.18 mmol) was added to the reaction mixture. 
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When hydrogen gas ceased to evolve, the resulting yellow clear solution was treated with 

a solution of oxidized azithromycin 14 (2.57 g, 3.26 mmol) in anhydrous THF (5 mL) 

over 10 min, and left to stir for 2 h. TLC (4:3:1:0.1 Hexane: EtOAc: MeOH: NH4OH) 

after 2 h showed 100% conversion to the product. THF was removed under vacuum and 

EtOAc (50 mL) was added to the remaining solution. The solution was washed severely 

with water to remove DMSO. Organic layer was dried over Na2SO4 and concentrated to 

give the product (2.48 g, 95% yield) as white solid. 1H NMR (400 MHz, CDCl3) δ 5.04 

(d, J = 17.3 Hz, 2H), 4.83 (s, 1H), 4.68 (d, J = 11.2 Hz, 2H), 4.06 (s, 1H), 3.68 (s, 2H), 

3.63 – 3.52 (m, 2H), 3.29 (p, J = 16.5 Hz, 7H), 2.86 (s, 2H), 2.72 – 2.39 (m, 9H), 2.11 

(dd, J = 21.0, 9.5 Hz, 4H), 1.98 (d, J = 14.8 Hz, 2H), 1.83 (s, 3H), 1.66 – 1.47 (m, 5H), 

1.41 (s, 3H), 1.27 (dt, J = 58.5, 7.3 Hz, 14H), 1.06 – 0.98 (m, 9H), 0.96 (s, 3H), 0.90 – 

0.73 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 180.6, 167.0, 158.0, 127.9, 121.1, 104.1, 

102.5, 95.8, 92.1, 74.2, 73.6, 64.7, 63.5, 60.3, 56.2, 50.0, 49.6, 46.4, 45.4, 43.3, 42.3, 

41.2, 40.4, 37.1, 36.7, 31.9, 29.8, 28.4, 26.9, 25.5, 23.6, 22.6, 20.9, 18.3, 16.8, 15.4, 14.1, 

13.9, 11.4, 8.9, 7.9. HRMS (ESI) m/z Calcd. for C41H74N2O13 [M + H+]: 803.5264, found 

803.5262. 

2.9.5.17. 1-(4-Ethynylphenyl)-N-methylmethanamine (16) 

Methylamine (9.32 mL, 18.63 mmol, 2M in THF) was added to a solution of 4-

ethynylbenzyl methanesulfonate (3) (0.39 g, 1.86 mmol) in THF (20 mL) and left to stir 

at 50 C for 12 h. Methylamine was evaporated off and the residue dissolved in 1M HCl. 

This was then extracted multiple times with DCM. The aqueous layer was basified with 

1M NaOH and extracted with DCM. Organic layer was dried over anhydrous Na2SO4 and 

concentrated in vacuo. The residue obtained was purified by column chromatography to 

give compound 16 as a yellow liquid (0.15g, 55%). 1H NMR (400 MHz, CDCl3) δ (ppm) 

7.41 – 7.36 (d, 2H), 7.20 (d, J = 8.4 Hz, 2H), 3.65 (d, J = 9.0 Hz, 2H), 3.03 (d, J = 3.2 
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Hz, 1H), 2.65 (s, 1H), 2.34 (s, 3H). 13C NMR (101 MHz, CDCl3) δ (ppm) 140.5, 132.1, 

128.1, 120.6, 83.7, 55.3, 35.6. 

2.9.5.18. (4-(Methylamino)-N(methyl)(4-ethynylbenzyl))azithromycin (17) 

Compound 35 (1.057 g, 7.3 mmol) was added to a solution of compound 34 (1.95 

g, 2.4 mmol) in MeOH (10 mL). The mixture was stirred under argon at 60 C for 6 h , 

after that the solution was cooled to room temperature and diluted with excess ethyl 

acetate (100 mL). The organic layer was washed with saturated aqueous NaHCO3 

solution (30 mL), water (20 mL), brine (20 mL), dried over anhydrous Na2SO4, filtered 

and concentrated in vacuo. The crude was purified by column chromatography column 

(Silica gel, 4:3:2:0.1 Hexane: EtOAc: MeOH: NH4OH) to give compound 37 as light 

yellow solid ( 2.0 g, 92% yield) .1H NMR (400 MHz, CDCl3) δ (ppm) 7.43 (d, J = 8.2 

Hz, 2H), 7.21(d, 2H), 5.04 (d, J = 4.6 Hz, 1H), 4.62 (d, J = 8.6 Hz, 1H), 4.44 (d, J = 6.0 

Hz, 1H), 4.24 – 4.15 (m, 3H), 3.67 (d, J = 6.4 Hz, 2H), 3.63 (s, 3H), 3.46 (s, 3H), 3.26 (d, 

J = 21.0 Hz, 6H), 3.05 (s, 1H), 2.95 (d, J = 14.7 Hz, 3H), 2.81 (d, J = 7.1 Hz, 3H), 2.66 

(s, 3H), 2.44 (d, J = 10.1 Hz, 2H), 2.31 (d, J = 10.5 Hz, 9H), 2.18 (s, 3H), 2.15 (d, J = 0.5 

Hz, 1H), 2.02 (t, J = 11.7 Hz, 3H), 1.92 (dd, J = 15.0, 5.0 Hz, 2H), 1.29 (s, 3H), 1.21 (t, J 

= 6.9 Hz, 10H), 1.14 (s, 3H), 1.12 – 1.02 (m, 10H), 0.88 (t, J = 7.6 Hz, 3H). 13C NMR 

(126 MHz, CDCl3) δ (ppm) 178.6, 139.4, 132.2, 128.8, 121.2, 102.8, 95.0, 94.8, 83.8, 

83.3, 76.8, 74.2, 73.5, 70.9, 70.1, 68.1, 67.2, 67.2, 65.7, 63.2, 62.6, 62.5, 56.9, 49.6, 49.5, 

45.4, 45.2, 43.2, 42.3, 42.2, 41.1, 40.9, 40.5, 40.4, 36.2, 31.3, 29.0, 27.5, 26.7, 22.7, 21.9, 

21.3, 18.8, 16.2, 15.0, 14.6, 11.2, 9.2, 7.2. HRMS (ESI) m+2/2z Calcd. for C49H85N3O12 

[M + 2H+]: 453.8061, found 453.8055. 

2.9.5.19. (Azithromycin-4-(methylamino)-N(methyl)(4-benzyltriazolyl))-N-

hydroxyacetamide (18a)  
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(4-(Methylamino)-N(methyl)(4-ethynylbenzyl))azithromycin  17 (0.14 g, 0.16 

mmol) and 2-Azido-N-((tert-butyldimethyl silyl)oxy) ethaneamide 5a (0 .06 g, 0.23 

mmol) were dissolved in anhydrous THF (5 mL) and purged with Ar for 15 min. Copper 

(I) iodide (0.01 g, 0.08 mmol) and Hunig’s base (0.06 mL, 0.31 mmol) were then added 

to the reaction mixture. The reaction mixture was purged with Ar for additional 15 

minand stirring continued for 12 h. Caesium fluoride (0.04 g, 0.24 mmol) and MeOH 

(5mL) were added to the mixture to remove TBS protecting group and the reaction 

continued for an additional 2 h. The reaction was quenched by adding a solution of 4:1 

saturated NH4Cl/NH4OH (30 mL) and extracted with 20% MeOH/ CH2Cl2 (3×30 mL). 

The organic layer was dried over Na2SO4 and concentrated in vacuo. The crude product 

was purified by preparative TLC (Silica gel, 5:1:1 EtOAc: MeOH: NH4OH) to give the 

product (0.131 g, 80% yield) as light yellow solid.  1H NMR (400 MHz, CD3OD) δ 

(ppm) 8.33 (s, 1H), 7.79 (d, J = 6.5 Hz, 2H), 7.37 (d, J = 7.1 Hz, 2H), 5.46 (s, 1H), 5.07 

(d, J = 4.6 Hz, 3H), 4.44 (d, J = 6.9 Hz, 1H), 4.32 – 4.18 (m, 3H), 3.69 (s, 2H), 3.64 – 

3.56 (m, 3H), 3.48 (d, J = 25.5 Hz, 2H), 3.34 (s, 3H), 3.32 – 3.21 (m, 3H), 3.09 – 2.93 

(m, 3H), 2.85 – 2.64 (m, 3H), 2.41 (t, J = 20.9 Hz, 12H), 2.33 – 2.20 (m, 3H), 2.19 – 2.09 

(m, 3H), 2.00 (dd, J = 25.3, 18.4 Hz, 3H), 1.95 – 1.83 (m, 3H), 1.82 – 1.70 (m, 3H), 1.52 

– 1.39 (m, 3H), 1.32 (s, 3H), 1.24 (d, J = 6.3 Hz, 3H), 1.22 – 1.12 (m, 13H), 1.08 (s, 3H), 

1.03 (d, J = 7.2 Hz, 3H), 0.96 – 0.82 (m, 3H). 13C NMR (126 MHz, CD3OD) δ (ppm) 

180.5, 177.3, 149.4, 140.9, 131.9, 131.6, 127.7, 124.6, 105.0, 102.0, 97.7, 85.6, 80.3, 

78.9, 78.3, 76.3, 76.0, 73.6, 73.2, 73.0, 71.0, 69.8, 69.5, 67.0, 65.5, 65.0, 59.0, 51.0, 47.6, 

45.0, 44.5, 44.1, 41.4, 37.7, 33.9, 33.2, 32.6, 31.6, 31.4, 28.6, 28.2, 24.6, 23.2, 23.0, 20.2, 

18.2, 16.5, 15.3, 12.3, 10.7, 8.8. HRMS (ESI) m+2/2z Calcd. for C51H89N7O14 [M + 2H+]: 

511.8228, found 511.8230. 
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2.9.5.20. (Azithromycin-4-(methylamino)-N(methyl)(4-benzyltriazolyl))-N-

hydroxypropanamide (18b) 

Reaction of (4-(methylamino)-N(methyl)(4-ethynylbenzyl))azithromycin  17 

(0.20 g, 0.218 mmol) and 3-azido-N-((tert-butyldimethylsilyl)oxy)propanamide 5b (0.08 

g, 0.32 mmol) followed by TBS deprotection with cesium fluoride as described for the 

synthesis of 18a, gave 18b as light yellow solid (0.178 g, 79%). 1H NMR (500 MHz, 

CD3OD) δ (ppm) 8.26 (d, J = 10.7 Hz, 1H), 7.78 (d, J = 7.6 Hz, 2H), 7.39 (d, J = 7.8 Hz, 

2H), 5.48 (s, 1H), 5.13 – 5.07 (m, 2H), 4.74 (s, 3H), 4.46 (d, J = 7.2 Hz, 2H), 4.32 – 4.22 

(m, 1H), 3.69 (d, J = 18.3 Hz, 3H), 3.67 – 3.57 (m, 1H), 3.57 – 3.48 (m, 2H), 3.38 (d, J = 

13.2 Hz, 3H), 3.33 – 3.25 (m, 1H), 3.02 (dd, J = 23.0, 16.2 Hz, 3H), 2.86 – 2.75 (m, 3H), 

2.74 – 2.65 (m, 3H), 2.44 (s, 3H), 2.31 – 2.19 (m, 3H), 2.19 – 2.10 (m, 2H), 2.09 – 1.97 

(m, 3H), 1.94 – 1.87 (m, 9H), 1.87 – 1.82 (m, 2H), 1.81 – 1.72 (m, 3H), 1.53 – 1.40 (m, 

3H), 1.35 (d, J = 11.2 Hz, 3H), 1.27 (t, J = 11.9 Hz, 13H), 1.24 – 1.19 (m, 3H), 1.16 (d, J 

= 6.7 Hz, 3H), 1.10 (s, 3H), 1.05 (d, J = 7.5 Hz, 3H), 0.96 – 0.86 (s, 3H). 13C NMR (126 

MHz, CD3OD) δ (ppm) 180.4, 177.1, 169.8, 149.2, 140.8, 131.8, 131.3, 127.5, 123.5, 

104.8, 97.3, 85.4, 80.3, 78.9, 78.3, 76.2, 76.0, 74.5, 73.4, 72.9, 70.9, 69.9, 69.2, 66.8, 

65.6, 65.0, 63.0, 58.8, 57.0, 55.8, 50.9, 48.1, 47.5, 44.8, 43.9, 41.3, 37.7, 33.9, 32.7, 31.6, 

28.3, 24.5, 23.3, 22.8, 21.2, 20.1, 18.2, 16.8, 15.2, 12.3, 10.8, 8.8. HRMS (ESI) m/z 

Calcd. for C52H90N7O14 [M+H+]: 1036.6540, found 1036.6550. 

2.9.5.21. (Azithromycin-4-(methylamino)-N(methyl)(4-benzyltriazolyl))-N-

hydroxybutanamide (18c) 

Reaction of (4-(methylamino)-N(methyl)(4-ethynylbenzyl))azithromycin  17 

(0.20 g, 0.18 mmol) and 4-azido-N-((tert-butyldimethylsilyl)oxy) butanamide 5c (0 .08 g, 

0.31 mmol) followed by TBS deprotection with caesium fluoride as described for the 

synthesis of 18a, gave 18c as light yellow solid (0.173 g, 80%). 1H NMR (400 MHz, 
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CD3OD) δ (ppm) 8.30 (s, 1H), 7.76 (d, J = 7.2 Hz, 2H), 7.34 (d, J = 7.7 Hz, 2H), 5.44 (s, 

1H), 5.06 (d, J = 4.7 Hz, 1H), 4.51 – 4.35 (m, 3H), 4.30 – 4.19 (m, 2H), 3.60 (dd, J = 

23.4, 16.5 Hz, 3H), 3.45 (d, J = 25.7 Hz, 1H), 3.32 (s, 3H), 3.27 – 3.16 (m, 3H), 2.99 (d, 

J = 14.7 Hz, 1H), 2.84 – 2.69 (m, 2H), 2.63 – 2.43 (m, 2H), 2.30 (d, J = 14.5 Hz, 10H), 

2.24 – 2.04 (m, 15H), 1.95 (dd, J = 13.7, 6.5 Hz, 3H), 1.91 – 1.77 (m,3H), 1.77 – 1.64 

(m, 3H), 1.49 – 1.30 (m, 3H), 1.27 (s, 3H), 1.21 (d, J = 6.0 Hz, 6H), 1.16 (d, J = 6.1 Hz, 

11H), 1.03 (dd, J = 19.7, 6.7 Hz, 7H), 0.85 (dd, J = 14.1, 7.0 Hz, 3H). 13C NMR (126 

MHz, CD3OD) δ (ppm) 180.7, 177.2, 149.4, 141.0, 131.9, 131.6, 127.7, 123.7, 104.9, 

97.6, 85.5, 80.4, 78.8, 78.4, 76.4, 76.2, 74.5, 73.6, 73.1, 70.9, 69.9, 69.4, 66.9, 65.7, 64.9, 

57.2, 55.6, 51.1, 48.2, 47.5, 44.9, 44.3, 43.9, 41.5, 37.7, 34.0, 33.6, 33.4, 32.8, 31.7, 31.4, 

28.5, 28.2, 24.6, 23.2, 22.7, 20.3, 18.2, 16.7, 15.3, 12.5, 10.8, 8.7. HRMS (ESI) m+2/2z 

Calcd. for C53H93N7O14 [M+2H+]: 525.8385, found 525.8385. 

2.9.5.22. (Azithromycin-4-(methylamino)-N(methyl)(4-benzyltriazolyl))-N-

hydroxypentanamide (18d) 

Reaction of (4-(methylamino)-N(methyl)(4-ethynylbenzyl))azithromycin  17 

(0.14 g, 0.15 mmol) and 5-azido-N-((tert-butyldimethylsilyl)oxy) pentanamide 5d (0.06 

g, 0.23 mmol) followed by TBS deprotection with caesium fluoride as described for the 

synthesis of 18a, gave 18d as light yellow solid (0.125 g, 75%). 1H NMR (400 MHz, 

CD3OD) δ (ppm) 7.72 (s, 1H), 7.19 (d, J = 7.9 Hz, 2H), 6.77 (d, J = 8.0 Hz, 2H), 4.47 (d, 

J = 5.0 Hz, 1H), 3.85 (d, J = 6.7 Hz, 3H), 3.63 (dd, J = 17.6, 4.5 Hz, 2H), 3.09 (s, 2H), 

3.04 – 2.97 (m, 3H), 2.75 (s, 3H), 2.68 (dt, J = 3.3, 1.6 Hz, 2H), 2.43 (d, J = 14.3 Hz, 

2H), 2.19 (dd, J = 7.4, 4.6 Hz, 2H), 2.12 (d, J = 11.6 Hz, 1H), 1.89 (d, J = 18.4 Hz, 15H), 

1.64 (d, J = 7.1 Hz, 5H), 1.59 – 1.46 (m, 6H), 1.37 (dd, J = 16.4, 7.9 Hz, 7H), 1.15 (t, J = 

7.3 Hz, 1H), 1.03 (s, 3H), 0.85 (td, J = 14.5, 7.5 Hz, 3H), 0.73 (s, 3H), 0.60 (ddd, J = 

18.8, 13.2, 6.4 Hz, 15H), 0.49 (s, 3H), 0.43 (d, J = 7.3 Hz, 3H), 0.32 (d, J = 6.8 Hz, 3H), 

0.27 (t, J = 7.4 Hz, 3H) .13C NMR (126 MHz, CD3OD) δ (ppm) 180.2, 176.9, 172.9, 
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149.1, 140.6, 131.6, 127.3, 122.8, 104.7, 97.1, 85.3, 80.1, 78.6, 78.0, 76.1, 75.8, 74.3, 

73.1, 71.1, 69.7, 66.6, 64.6, 64.5, 62.8, 58.7, 56.9, 55.5, 52.7, 51.6, 50.8, 47.3, 44.5, 44.1, 

43.9, 41.4, 37.3, 33.6, 33.0, 32.7, 31.3, 30.0, 28.6, 26.7, 24.2, 23.1, 22.7, 20.0, 17.9, 16.4, 

16.1, 15.0, 12.2, 10.6, 8.2. HRMS (ESI) m/z Calcd. for C54H94N7O14 [M+H+]: 1064.6853, 

found 1064.6854. 

2.9.5.23. (Azithromycin-4-(methylamino)-N(methyl)(4-benzyltriazolyl))-N-

hydroxyhexanamide (18e) 

Reaction of (4-(methylamino)-N(methyl)(4-ethynylbenzyl))azithromycin  17 

(0.09 g, 0.10 mmol) and 6-azido-N-((tert-butyldimethylsilyl)oxy)hexanamide 5e (0.04 g, 

0.16 mmol) followed by TBS deprotection with caesium fluoride as described for the 

synthesis of 18a, gave 18e as light yellow solid (0.090 g, 80%). 1H NMR (400 MHz, 

CD3OD) δ (ppm) 8.27 (s, 1H), 7.74 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 5.05 (d, 

J = 5.0 Hz, 1H), 4.78 (dd, J = 10.0, 2.3 Hz, 3H), 4.37 (dd, J = 15.3, 7.2 Hz, 3H), 4.23 (dd, 

J = 12.4, 5.5 Hz, 2H), 4.00 (dq, J = 13.6, 6.9 Hz, 1H), 3.66 (d, J = 17.8 Hz, 1H), 3.60 – 

3.52 (m, 2H), 3.46 (dd, J = 9.9, 5.4 Hz, 1H), 3.29 (d, J = 12.7 Hz, 3H), 3.26 – 3.16 (m, 

3H), 3.02 – 2.93 (m, 1H), 2.78 – 2.68 (m, 2H), 2.59 – 2.46 (m, 1H), 2.27 (d, J = 16.0 Hz, 

3H), 2.22 – 2.15 (m, 3H), 2.10 (t, J = 8.1 Hz, 2H), 2.03 (d, J = 16.0 Hz, 3H), 1.97 – 1.91 

(m, 5H), 1.91 – 1.86 (m, 3H), 1.83 (d, J = 3.9 Hz, 2H), 1.73 – 1.63 (m, 2H), 1.60 – 1.47 

(m, 3H), 1.32 (dd, J = 21.9, 6.6 Hz, 6H), 1.26 (d, J = 5.2 Hz, 3H), 1.23 – 1.17 (m, 6H), 

1.17 – 1.08 (m, 11H), 1.01 (dd, J = 17.4, 6.0 Hz, 11H), 0.89 – 0.79 (m, 3H). 13C NMR 

(126 MHz, CD3OD) δ (ppm) 180.2, 177.0, 173.3, 149.2, 140.7, 131.8, 131.3, 127.4, 

122.9, 104.8, 97.2, 85.4, 80.1, 78.8, 78.3, 76.4, 75.9, 73.3, 73.2, 71.3, 69.9, 69.1, 66.6, 

64.9, 58.7, 55.6, 53.0, 52.0, 50.9, 47.5, 44.7, 44.2, 43.9, 41.4, 37.4, 34.2, 33.7, 33.1, 32.6, 

31.6, 30.3, 28.5, 28.2, 27.5, 26.6, 24.4, 22.9, 22.7, 20.0, 18.0, 16.4, 16.1, 12.4, 10.6, 8.4. 

HRMS (ESI) m+2/2z Calcd. for C55H97N7O14 [M+2H+]: 539.8541, found 539.8539. 
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2.9.5.24. (Azithromycin-4-(methylamino)-N(methyl)(4-benzyltriazolyl))-N-

hydroxyheptanamide (18f) 

Reaction of (4-(methylamino)-N(methyl)(4-ethynylbenzyl))azithromycin  17 

(0.16 g, 0.18 mmol) and 7-azido-N-((tert-butyldimethylsilyl)oxy)heptanamide 5f (0.08 g, 

0.27 mmol) followed by TBS deprotection with caesium fluoride as described for the 

synthesis of 18a, gave 18f as light yellow solid (0.154 g, 80%). 1H NMR (400 MHz, 

CD3OD) δ (ppm) 7.71 (s, 1H), 7.18 (d, J = 8.1 Hz, 2H), 6.77 (d, J = 8.1 Hz, 2H), 4.49 (d, 

J = 5.0 Hz, 1H), 3.83 (dd, J = 10.2, 7.1 Hz, 3H), 3.72 – 3.63 (m, 2H), 3.50 – 3.40 (m, 

1H), 3.11 (d, J = 16.2 Hz, 1H), 3.02 (d, J = 7.0 Hz, 1H), 2.99 – 2.95 (m, 1H), 2.90 (dd, J 

= 17.7, 14.2 Hz, 1H), 2.75 (s, 3H), 2.71 – 2.62 (m, 3H), 2.43 (d, J = 14.7 Hz, 1H), 2.24 

(d, J = 7.0 Hz, 1H), 2.18 (dd, J = 7.5, 4.6 Hz, 1H), 2.00 (t, J = 14.8 Hz, 1H), 1.75 (d, J = 

10.6 Hz, 9H), 1.70 – 1.58 (m, 6H), 1.55 – 1.44 (m, 3H), 1.44 – 1.34 (m, 3H), 1.33 – 1.30 

(m, 3H), 1.31 – 1.25 (m, 3H), 1.19 – 1.10 (m, 2H), 1.04 (d, J = 7.4 Hz, 3H), 0.76 (dd, J = 

20.3, 12.8 Hz, 3H), 0.70 (s, 3H), 0.68 – 0.61 (m, 6H), 0.60 (dt, J = 12.7, 4.4 Hz, 12H), 

0.53 – 0.46 (m, 10H), 0.43 (d, J = 7.5 Hz, 5H), 0.34 – 0.24 (m, 3H). 13C NMR (126 MHz, 

CD3OD) δ (ppm) 180.5, 177.4, 173.6, 149.4, 149.0, 140.7, 132.3, 131.9, 131.5, 127.6, 

123.2, 122.9, 105.1, 97.3, 85.6, 80.2, 78.9, 78.2, 76.5, 75.8, 73.5, 71.6, 70.1, 69.3, 66.7, 

65.1, 64.7, 58.7, 55.8, 53.3, 52.2, 50.9, 47.7, 44.9, 44.5, 44.3, 41.8, 37.7, 34.4, 33.4, 32.9, 

32.0, 31.6, 30.7, 30.3, 28.9, 28.0, 27.4, 23.3, 20.2, 18.4, 16.7, 16.5, 12.6, 10.9, 8.6. 

HRMS (ESI) m+2/2z Calcd. for C56H99N7O14 [M+2H+]: 546.8620, found 546.8621. 
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CHAPTER 3 

ISOFORM SELECTIVE AZITHROMYCIN HDAC INHIBITOR 

CONJUGATES 

3.1. Introduction 

Epigenetic irregularities are key factors in many human diseases including cancer 

[1]. One class of epigenetic regulators is histone deacetylase (HDAC) that, together with 

histone acetyl transferase (HAT), regulate the chromatin structure by determining the 

histone acetylation state [2].  

HDACs repress gene expression by removing the acetyl group from the terminal 

lysine of histone tail. There are 18 HDAC isoforms divided into two groups of zinc and 

NAD+ dependent. Class I (HDAC1, 2, 3, 8), class IIa (HDAC4, 5, 7, 9), class IIb 

(HDAC6, 10), and class IV (HDAC11) are zinc dependent and have a zinc cation in their 

active site pockets [3] while class III (SIRT 1-7) is NAD+ dependent. HDACs 

dysfunction including overexpression has been observed in many cancerous pathologies. 

Various HDAC isoforms are expressed in different tumor tissues, therefore, they have 

emerged as encouraging therapeutic targets over the past few decades [4]. 

It has been shown that small molecules can modulate HDAC enzymes biological 

activities [5]. There has been extensive research on the design and synthesis of HDAC 

inhibitors (HDACi) and this has so far led to FDA approval of suberoylanilide 

hydroxamic acid (SAHA) for cutaneous T-cell lymphoma [6], romidepsin (FK228) for 

cutaneous T-cell lymphoma and refractory peripheral T-cell lymphoma [7], belinostat 

(PXD101) for relapsed and refractory peripheral T-cell lymphoma [8], and recent 

accelerated approval of panobinostat (SB939) for multiple myeloma [9]. Chidamide 

(epidaza), is another HDACi that was developed and approved in China for relapsed and 

refractory peripheral T cell lymphoma [10]. Chidamide is currently in clinical trials in US 

[11].  
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However, despite the promising results of HDACi, they are associated with 

several side effects possibly due to the role of HDAC enzymes in regulation of various 

proteins involved in different normal biological processes [12]. Clinical studies revealed 

that non-selective inhibition of HDAC enzymes (Figure 3.1) lead to adverse effects 

including bone marrow depression, fatigue, diarrhea, weight lost, and cardiac toxicities 

and arrhythmias [13]. Thus, there is an unmet need to design and synthesize isoform-

selective HDACis to impede only cancerous pathologies rather than affecting the normal 

cells in order to avoid side effects.  

Figure 3.1. US FDA approved pan-HDACis. These HDACi are affiliated with numerous 

side effects mostly due to their non-selective HDAC inhibition. 

3.2. Isoform selective HDACi  

Hydroxamate zinc binding group (ZBG) is associated with poor bioavailability as 

well as short half-life due to its enzymatic hydrolysis [14]. FDA approved HDACi 

bearing hydroxamate moiety are pan-inhibitors and lack isoform selectivity. They show 

poor pharmacokinetics and rapid clearance as well as various off-target interactions 

including inhibition of the hERG cardiac channel leading to cardiotoxicity [15]. 

However, in contrast, there is a hope that more selective HDACi will have wider 
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therapeutic index [16], [17]. There has been extensive effort aimed at developing isoform 

selective HDACi. Much of these studies have focused on replacing the common HDACi 

hydroxamate ZBG with alternatives that, in addition to being more stable and have longer 

half-lives, possess isoform selective HDAC inhibitory activity.    

Previous study has shown that substitution of hydroxamate with benzamide 

resulted in HDACi with class I isoform selectivity [18]. Crystallographic comparison of 

bacterial homologues of class I and class II revealed the existence of a 14 Å internal 

cavity within the HDAC active site near the catalytic metal cation (Figure 3.2) [19], [20], 

which is postulated to act as a channel for the release of the acetate byproduct after 

deacetylation of histone tail [21], [22]. The hydrophobic nature of the inner cavity 

suggested that hydrophobic substituents can be placed on the benzamide to enhance 

binding affinity to HDACs 1, 2 and 3[23].          
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Figure 3.2. Docking study of our proposed design of N-(2-amino-5-(thiophen-2-

yl)phenyl)acylamide derived azithromycin against HDAC2. The grey sphere represents 

zinc ion in the active pocket of HDAC2.  

 

To date, several class I isoform selective HDACi containing benzamide ZBG 

have been synthesized. Chidamide (CS055), is a benzamide derived HDACi that has been 

used for relapsed and refractory peripheral T-cell lymphoma in China, and is in clinical 

trials in US [10]. Etinostat (MS-275) is a benzamide derived class I HDACi that is in 

clinical trials both as a monotherapy and in combination with other therapeutic agents for 

treating advanced and refractory solid tumors, non-small cell lung cancer (NSCLC) and 

breast cancer [24]. Mocetinostat (MGCD0103) is another HDACi with benzamide zinc 

binding group that is selective toward class I and class IV HDAC isoforms. Mocetinostat 

is in clinical trials as a standalone therapy for treating leukemia, myelodysplastic 

syndrome (MDS), chronic lymphocytic leukemia (CLL), advanced solid tumors, and 

relapsed Hodgkin’s lymphoma (Figure 3.3) [25], [26]. 

    

Figure 3.3. Mocetinostat entinostat, and chidamide three benzamide derived HDACi in 

clinical trials for treating various types of cancers [11], [27].   
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3.3. Isoform selective HDACi design 

To design and develop more selective HDACi, various benzamide-derived 

HDACi have been evaluated [23], [28]. MS-275 was the first reported benzamide derived 

HDACi with strong HDAC inhibitory potency, suggesting that the 2‘-substituent of 

benzanilide has hydrogen bonding and electrostatic interactions with the enzyme amino 

acid residues  [29], [30]. In 2007, Moradei O. M. et al. reported isoform selective 

benzamide derived HDACi with enhanced potency and selectivity bearing an 

aminophenyl group attached to the benzamide zinc bonding group. Their most potent 

synthesized HDACi with a thienyl substitution on the benzamide exhibited a nanomolar 

range HDAC inhibitory potency toward HDAC1 and HDAC2 as well as nanomolar range 

cytotoxicity toward HCT116, human colon cancer cell line [23].   

In chapter 1, I had synthesized non-peptide macrocyclic pan HDACi with 

hydroxamic acid as the ZBG, derived from azithromycin that mimic the peptide 

backbone of macrocyclic HDACi [2], [31]. I hypothesized that replacement of the 

hydroxamic acid ZBG of azithromycin conjugated HDACi with benzamide ZBG will 

result in class I isoform selective HDACi [27]. Therefore, following the three motif 

pharmacophoric model of HDACi, I designed and synthesized a new class of 

azithromycin conjugated HDACi by changing the ZBG from hydroxamic acid to the 

thienyl benzamide in order to achieve isoform selective HDACi [23], [32]. Aryl triazole 

group was attached to the cap recognition group to enhance HDAC inhibition potency 

(Figure 3.4) [31], [33]. 
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Figure 3.4. Three-motif pharmacophoric model of SAHA as well as selected examples of 

designed and published class I selective N-(2-amino-5-(thiophen-2-yl)phenyl)acylamide  

derived HDACi, which led to the design of azithromycin conjugated N-(2-amino-5-
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(thiophen-2-yl)phenyl)acylamide derived HDACi. The thienyl group fits favorably in the 

14 Å internal cavity of HDAC enzyme and improve the HDAC inhibitory potency 

through hydrophobic interactions with lipophilic amino acids residues of the cavity [22].   

Additionally, a structure activity relationship (SAR) was performed on the linker 

length to attain the optimal length for maximum HDAC inhibitory potency. Our previous 

study in designing macrolide conjugated HDACi revealed that the methylene spacers of 

the linker moiety ranging from one to four methylene groups exhibits no or low HDAC 

inhibition potency. While five and six methylene spacers had the maximum HDAC 

inhibitory activity [2]. Thus, in this design the linker length is varied from five to seven 

methylene spacers.      

3.4. Chemistry 

The azido N-(2-amino-5-(thiophen-2-yl)phenyl)acylamide intermediates 9a-c 

were synthesized as described in the literature [32], [28]. Starting from 4-bromo-2-

nitroaniline 1. Boc protection of 1, followed by Suzuki coupling [34], [35] with 2-

thiophenyl boronic acid 4 and reduction of the nitro group to amine using zinc powder 

[36] gave the Boc protected 2-amino-4-(thiophen-2-yl)phenyl 6. Coupling of compound 6 

with the azido carboxylic acid derivatives 8a-c [37], [38] followed by acid-promoted 

removal of the Boc protecting group yielded 9a-c (Scheme 3.1).   
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Scheme 3.1. (a) Et3N, DCM, reflux, overnight, 82%; (b) Pd(PPh3)4, K2CO3, THF, 70 °C, 

77%; (c) Zn, H2O: Dioxane (1:4), 70 °C, 3 days, 76%; (d) EDCI, HOBT, DMF, 70 °C, 6 

h, 62-92%; (e) TFA (1%), DCM, rt, 2h, 45-73%.  

The surface recognition cap group, 3′-N-(4-ethynylbenzyl) azithromycin 13 was 

synthesized by removing the methyl group and formation of desmethyl azithromycin 11, 

followed by introduction of ethynylbenzyl on the desosamine sugar ring (Scheme 3.2) 

[2], [31], [39].  

 

Scheme 3.2. (f) I2, NaOAc, MeOH, 50 °C, 2 h, 90%; (b) Hünig’s base, DMSO, 85 °C, 3 

h, 96%.   

Azithromycin conjugated N-(2-amino-5-(thiophen-2-yl)phenyl)acylamide derived 

HDACi 14a-c were synthesized through copper (I) catalyzed azide-alkyne-cycloaddition 

(AAC) reaction [40] of 2-thienyl benzamide zinc binding group 9a-c with 3′-N-(4-

ethynylbenzyl) azithromycin 13 (Scheme 3.3).  
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Scheme 3.3. (h) CuI, Hunig’s base, THF, rt, overnight, 47-71%.  

3.5. HDAC inhibitory activity (Performed by Dr. James Kornaki at 

Northwestern University and BPS BioScience)  

 To investigate the HDAC inhibition activities of azithromycin conjugated N-(2-

amino-5-(thiophen-2-yl)phenyl)acylamide derived HDACi 14a-c, they were tested 

against class I (HDAC1, 2, 3 and 8) and class IIb (HDAC6) enzymes. We used the 

previously synthesized hydroxamate derivative of azithromycin 15 (synthesized by Dr. 

Subhasish Tapadar) and SAHA as positive controls. HDAC inhibition activity was 

determined using the label-free mass spectrometry-based SAMDI assay. As expected 

azithromycin conjugated N-(2-amino-5-(thiophen-2-yl)phenyl)acylamide derived HDACi 

showed class I isoform selectivity with no HDAC inhibition activity against HDAC6, 

while azithromycin derived hydroxamate HDACi hit HDAC6 as well and exhibited no 

selectivity for HDAC isoforms (Table 3.1).  We then screened lead 15 and compound 

14b against all Zn-dependent HDAC isoforms using the Fluor de Lys assay available 

through BPS Bioscience (San Diego, USA). Fluorescent intensity was measured at 

certain wavelengths. The IC50 values were obtained employing fluorescent intensity in 

related equations to determine the concentration leading to half maximal percent activity 

(Table 3.2). 
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Table 3.1. HDAC 1, 2, 3, 6, and 8 inhibition activities of azithromycin conjugated N-(2-

amino-5-(thiophen-2-yl)phenyl)acylamide derived HDACi compounds (IC50 in nM) 

obtained using label-free mass spectrometry-based SAMDI assay, and their comparison 

with azithromycin derived hydroxamate and FDA approved pan- HDACi SAHA.   

Compound HDAC1 HDAC2 HDAC3 HDAC6 HDAC8 

14a 125±28 NI 123 NI NI 

14b 232±28 159±17 NI NI NI 

14c 217±23 65.1±23 29.4±7.8 NI NI 

15 50.4±8.4 NT NT 31.3±1.3 817±308 

SAHA 42 190 20 34 2800 

     NI= No Inhibition. NT= Not Tested 
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Table 3.2. HDAC inhibition potency against all Zn-dependent HDAC isoforms using the 

Fluor de Lys assay available through BPS Bioscience. 

HDAC inhibition  15 14b 

HDAC1 2.7 509 

HDAC2 8.1 3454 

HDAC3/NCOR2 1.7 NI 

HDAC4 1904 NI 

HDAC5 1773 NI 

HDAC6 1.7 NI 

HDAC7 2621 NI 

HDAC8 839 NI 

HDAC9 6910 NI 

HDAC10 4.5 2285 

HDAC11 7361 NI 

 

SAMDI assay was analyzed by SAMDI-MS and compounds were characterized 

by their m/z shifts after their acetyl loss. Fluor de Lys assay was analyzed by measuring 

the fluorescent signal generated after adding the developer to the substrate combination, 

by fluorescent plate scanner. The fluorescent signal was compared to positive and 

negative controls.   

3.6. Docking study  

Docking studies on azithromycin conjugated HDACi against HDAC isoforms 

were performed using AutoDock Vina. This study revealed a strong chelation of the zinc 
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ion at the bottom of the active pocket of class I isoforms to the benzamide ZBG (Figure 

3.5). This docking study confirmed the observed class I HDAC selectivity.  

 

Figure 3.5. Docked structure of azithromycin-HDACi conjugate with six methylene  

linker group (14b) against HDAC2.  

3.7. Anti-proliferative activity 

The azithromycin conjugated N-(2-amino-5-(thiophen-2- yl)phenyl)acylamide 

derived HDACi 14a-c were tested against three transformed cell lines, lung (A549), 

Estrogen receptor (ER) positive (MCF-7) and ER negative (MDA-MB231) breast cancers 

as well as one normal cell line (VERO) monkey kidney epithelial cell. We used 

hydroxamate derivative of azithromycin 15 and SAHA as positive controls. Despite their 

considerably weaker HDAC inhibition activities, compounds 14a-c possessed potent anti-
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proliferative activities against the tested tumor cell lines with 14b inherently more 

cytotoxic and tumor cell selective relative to 15 and SAHA (Table 3.2).  

 

 

Table 3.3. Anti-proliferative activity of azithromycin conjugated HDACi (IC50 values in 

µM). 

Compound A549 MCF-7 MDA-MB231 VERO 

14a 2.24±0.35 0.85±0.19 2.10±0.67 2.54±0.27 

14b 1.72±0.09 0.83±0.07 1.20±0.058 6.46±1.15 

14c 1.70±0.25 1.50±0.53 0.84±0.48 3.48±0.60 

15 2.32±0.53 4.08±0.30 NT 5.90±0.18 

SAHA 5.00±0.24 3.27±0.05 3.40±0.20 1.03±0.97 

Each value is obtained from a duplicate of three simultaneous experiments. NT=not tested 

   

Compound 14b was synthesized in a larger scale (1.5 g) sent to Augusta 

University (Professor Muthusamy Thangaraju’s Lab) for animal study.  
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3.8. In vivo study (Performed by Professor Muthusamy Thangaraju’s Lab at 

Augusta University)  

For in vivo studies, MMTV-PyMT-Tg mice were chosen since their mammary 

tumors mimic formation and progression of human breast cancer and they eventually 

metastasize to lung tissues. At the beginning tumors possess ER expression but ultimately 

they turn into ER negative breast tumors [41]. Mice with metastatic breast cancer were 

treated with 40 mg/kg body of compounds 14b (azithromycin conjugated N-(2-amino-5-

(thiophen-2- yl)phenyl)acylamide derived HDACi) and 15 (azithromycin conjugated 

hydroxamic acid derived HDACi) 3 times a week. After 6 weeks mice were sacrificed 

and the tumor volume in each case was measured (Figure 3.6).  
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Figure 3.6. (A) Tumor regression and (B) number of nodules in MMTV-PyMT-Tg mice 

with metastatic lung cancer that were treated with compounds 14b and 15. Compound 

14b an isoform selective HDACi resulted in a better tumor regression compared to 

compound 15 a pan HDACi (Performed by Professor Muthusamy Thangaraju’s Lab 

at Augusta University). 

 

Compound 14b, a class I isoform selective HDACi, resulted in a greater tumor 

size regression compared to compound 15 a pan HDACi (Figure 3.7). HDAC1 strongly 

influences breast cancer progression. It promotes tumorigenesis and colony formation by 

suppressing the induction of ERα expression and its transcription activity [42]. ERα plays 

an important role in modulating tumor growth in breast cancer and loss of its expression 

and activity results in significant increase in tumor cell proliferation [43], [44], [45]. 

Therefore, selective inhibition of HDAC1 leads to a better breast cancer progression 

repression through re-expression of ER α-mRNA and its proteins [43].  

3.9. Conclusion 

I synthesized a new class of non-peptide macrocyclic N-(2-amino-5-(thiophen-2- 

yl)phenyl)acylamide derived HDACi that exhibited isoform selectivity toward class I 

HDAC isoforms, unlike their hydroxamate analogue and FDA approved pan-HDACin 

SAHA which show no selectivity for any classes of HDAC isoform. These azithromycin 

conjugated HDACi had a better therapeutic window and showed a low macromolar, and 

in some cases, high nanomolar cytotoxicity against transformed cell lines, lung (A549), 

ER positive (MCF-7) and ER negative (MDA-MB231) breast cancer, and less 

cytotoxicity toward healthy cell line (VERO) compared to SAHA.   
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3.10. Experimental 

3.10.1. Materials and methods 

Azithromycin was purchased from Greenfield chemical. 4-ethynylbenzyl alcohol, 

thiophen-2-ylboronic acid, and 4-bromo-2-nitroaniline were purchased from Sigma-

Aldrich. All commercially available starting materials were used without purification. 

Reaction solvents were high performance liquid chromatography (HPLC) grade or 

American Chemical Society (ACS) grade and used without purification. Analtech silica 

gel plates (60 F254) were used for analytical TLC, and Analtech preparative TLC plates 

(UV 254, 2000 µm) were used for purification.  UV light and anisaldehyde/iodine stain 

were used to visualize the spots.  200-400 Mesh silica gel was used in column 

chromatography. Nuclear magnetic resonance (NMR) spectra were recorded on a Varian-

Gemini 400 MHz or Bruker 500 MHz magnetic resonance spectrometer.  1H NMR 

Spectra were recorded in parts per million (ppm) relative to the residual peaks of CHCl3 

(7.24 ppm) in CDCl3 or CHD2OD (4.78 ppm) in CD3OD or DMSO-d5 (2.49 ppm) in 

DMSO-d6. 
13C spectra were recorded relative to the central peak of the CDCl3 triplet 

(77.0 ppm) or CD3OD septet (49.3 ppm) or DMSO-d6 septet (39.7 ppm) and were 

recorded with complete hetero-decoupling. Original ‘fid’ files were processed using 

MestReNova LITE (version 5.2.5-5780) program. High-resolution mass spectra were 

recorded at the Georgia Institute of Technology mass spectrometry facility in Atlanta. 

Compounds 3, 5, 6, 8a-c, 9a-c, 11 and 13 were synthesized as described before [2], [32]. 

3.10.1.1. tert-butyl (4-bromo-2-nitrophenyl) carbamate (3) 

4-Bromo-2-nitroaniline 1 (10 g, 0.046 mol) was dissolved in anhydrous 

dichloromethane (15 mL). Boc anhydride 2 (22.12 g, 0.1 mol) followed by triethyl amine 

(14 mL, 0.1 mol) were added to the reaction mixture. Reaction stirred at reflux overnight. 

Reaction mixture was washed with NaHCO3 (10 mL) and brine solution (10 mL) and 
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dried over Na2SO4 and concentrated in vacuo. The crude product was purified by column 

chromatography (Silica gel, 10:1 Hex: EtOAc) to give the product (12.02 g, 82%) as a 

pale yellow solid. 1H NMR (400 MHz, CDCl3) δ 8.51 (d, J = 9.2 Hz, 1H), 8.33 (dd, J = 

2.4, 0.8 Hz, 1H), 7.69 (dd, J = 9.2, 2.4 Hz, 1H), 1.60 – 1.47 (m, 9H).      

3.10.1.2. tert-butyl (2-nitro-4-(thiophen-2-yl)phenyl)carbamate (5) 

Compound 3 (12.02 g, .038 mol) was dissolved in anhydrous THF (30 mL) 

followed by K2CO3 (15.71 g, 0.11 mol). After purging with argon for 20 minutes, 

thiophen-2-ylboronic acid 4 (6.30 g, 0.05 mol) was added followed by Pd(PPh3)4 (4.38 g, 

0.003 mol). The reaction mixture stirred at reflux overnight. Then it was washed with 

NaHCO3 (15 mL) and brine solution (20 mL) and dried over Na2SO4 and concentrated in 

vacuo. The crude product was purified by column chromatography (Silica gel, 10:1 Hex: 

EtOAc) to give the product (9.25 g, 77%) as a pale yellow solid. 1H NMR (400 MHz, 

CDCl3) δ 9.66 (s, 1H), 8.57 (dd, J = 13.2, 8.7 Hz, 1H), 8.40 (d, J = 2.3 Hz, 1H), 7.82 (dd, 

J = 8.9, 2.3 Hz, 1H), 7.38 – 7.27 (m, 1H), 7.10 (ddd, J = 13.6, 6.8, 4.9 Hz, 1H), 1.63 – 

1.47 (m, 9H).  

3.10.1.3. tert-butyl (2-amino-4-(thiophen-2-yl)phenyl)carbamate (6) 

Compound 5 (8.86 g, 0.027 mmol) was dissolved in 1,4-dioxane and water (20 

mL, 4:1). The mixture stirred at room temperature till all the starting material dissolved 

completely. Then zinc powder was added and the mixture stirred for three days at 70 °C. 

The reaction mixture stirred at reflux overnight. Then it was washed with NaHCO3 (15 

mL) and brine solution (15 mL) and dried over Na2SO4 and concentrated in vacuo. The 

crude product was purified by column chromatography (Silica gel, 3:1 Hex: EtOAc) to 

give the product (6.1 g, 76%) a brown solid. 1H NMR (400 MHz, CDCl3) δ 7.36 – 7.16 

(m, 3H), 7.08 – 6.91 (m, 3H), 1.64 – 1.42 (m, 9H).  
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3.10.1.4. tert-butyl (2-(4-azidohexanamido)-4-(thiophen-2-yl)phenyl)carbamate (8a) 

4-Azidohexanoic acid 7a (60 mg, 0.38 mmol) was dissolved in anhydrous DMF 

(5 mL) followed by adding EDCI (73 mg, 0.38 mmol) and HOBT (52 mg, 0.38 mmol). 

After 30 minutes of stirring at room temperature, compound 6 (80 mg, 0.27 mmol) was 

added and then the reaction mixture was heated to 70 °C for 6 h. The reaction mixture 

stirred at reflux overnight. Then it was washed with water (3×5 mL) NaHCO3 (5 mL) and 

brine solution (5 mL) and dried over Na2SO4 and concentrated in vacuo. The crude 

product was purified by preparative TLC (Silica gel, 30:1 DCM: Acetone) to give the 

product (109 mg, 92%) as a pale yellow solid. 1H NMR (400 MHz, CDCl3) δ 8.12 (s, 

1H), 7.73 (s, 1H), 7.38 (p, J = 8.5 Hz, 2H), 7.11 – 6.95 (m, 1H), 6.85 (s, 1H), 3.25 (dt, J = 

14.6, 6.6 Hz, 2H), 2.39 (t, J = 7.4 Hz, 2H), 1.82 – 1.68 (m, 2H), 1.63 (dd, J = 14.8, 7.3 

Hz, 2H), 1.56 – 1.47 (m, 9H), 1.50 – 1.34 (m, 2H).  

3.10.1.5. tert-butyl (2-(4-azidoheptanamido)-4-(thiophen-2-yl)phenyl)carbamate (8b) 

4-Azidoheptanoic acid 7b (687 mg, 4.01 mmol) was dissolved in anhydrous DMF 

(10 mL) followed by adding EDCI (767 mg, 4.01 mmol) and HOBT (542 mg, 4.01 

mmol). After 30 minutes of stirring at room temperature, compound 6 (832 mg, 2.87 

mmol) was added and then the reaction mixture was heated to 70 °C for 6 h. The reaction 

mixture stirred at reflux overnight. Then it was washed with water (3×10 mL), NaHCO3 

(5 mL) and brine solution (5 mL) and dried over Na2SO4 and concentrated in vacuo. The 

crude product was purified by column chromatography (Silica gel, 40:1 DCM: Acetone) 

to give the product (953 mg, 75%) as a pale yellow solid. 1H NMR (400 MHz, CDCl3) δ 

8.02 (s, 1H), 7.75 (s, 1H), 7.48 – 7.28 (m, 2H), 7.05 (dd, J = 5.0, 3.7 Hz, 1H), 6.83 (s, 

1H), 3.26 (dd, J = 16.5, 9.5 Hz, 2H), 2.40 (t, J = 7.4 Hz, 2H), 1.72 (d, J = 31.7 Hz, 2H), 

1.66 – 1.58 (m, 2H), 1.54 (d, J = 15.0 Hz, 9H), 1.39 (d, J = 25.7 Hz, 2H). 
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3.10.1.6. tert-butyl (2-(4-azidooctanamido)-4-(thiophen-2-yl)phenyl)carbamate (8c) 

4-Azidooctanoic acid 7c (808 mg, 4.36 mmol) was dissolved in anhydrous DMF 

(10 mL) followed by adding EDCI (833 mg, 4.36 mmol) and HOBT (589 mg, 4.36 

mmol). After 30 minutes of stirring at room temperature, compound 6 (908 mg, 3.11 

mmol) was added and then the reaction mixture was heated to 70 °C for 6 h. The reaction 

mixture stirred at reflux overnight. Then it was washed with water (3×10 mL), NaHCO3 

(10 mL) and brine solution (10 mL) and dried over Na2SO4 and concentrated in vacuo. 

The crude product was purified by column chromatography (Silica gel, 40:1 DCM: 

Acetone) to give the product (882 mg, 62%) as a pale yellow solid. 1H NMR (400 MHz, 

CDCl3) δ 7.98 (s, 1H), 7.75 (s, 1H), 7.40 (s, 2H), 7.13 – 6.95 (m, 1H), 6.83 (s, 1H), 3.25 

(dd, J = 14.3, 7.5 Hz, 2H), 2.40 (t, J = 7.4 Hz, 2H), 1.70 (d, J = 44.0 Hz, 2H), 1.61 – 1.55 

(m, 2H), 1.60 – 1.42 (m, 9H), 1.39 (s, 2H). 

3.10.1.7. N-(2-amino-5-(thiophen-2-yl)phenyl)-4-azidohexanamide (9a) 

Compound 8a (224 mg, 0.52 mmol) was dissolved in 1% TFA (1 mL) in DCM (5 

mL). The reaction mixture stirred for 1h at rt. The reaction mixture was quenched with 

NaHCO3 (5 mL) and then brine solution (5 mL) and dried over Na2SO4 and concentrated 

in vacuo. The crude product was purified by column chromatography (Silica gel, 40:1 

DCM: Acetone) to give the product (180 mg, 73%) a pale yellow solid. 1H NMR (400 

MHz, CDCl3) δ 7.42 (d, J = 2.0 Hz, 1H), 7.31 (dt, J = 10.1, 5.1 Hz, 1H), 7.15 (dd, J = 

3.6, 1.2 Hz, 1H), 7.02 (dd, J = 5.0, 3.6 Hz, 1H), 6.79 (d, J = 8.3 Hz, 1H), 3.35 – 3.21 (m, 

2H), 2.42 (t, J = 7.5 Hz, 2H), 1.78 (dt, J = 15.1, 7.4 Hz, 2H), 1.64 (dd, J = 14.6, 7.1 Hz, 

2H), 1.53 – 1.41 (m, 2H). 13C NMR (126 MHz, CDCl3) δ 171.6, 144.1, 140.5, 127.7, 

126.8, 126.4, 125.0, 124.4, 123.5, 123.0, 121.8, 118.6, 51.1, 36.5, 28.5, 26.6, 25.2. 

HRMS (ESI) m/z Calcd. for C16H20N5S [M+H+]: 330.1383, found for 330.1382. 
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3.10.1.8. N-(2-amino-5-(thiophen-2-yl)phenyl)-4-azidoheptanamide (9b) 

Compound 8b (953 mg, 2.15 mmol) was dissolved in 1% TFA (1 mL) in DCM (5 

mL). The reaction mixture stirred for 1h at rt. The reaction mixture was quenched with 

NaHCO3 (5 mL) and then brine solution (5 mL) and dried over Na2SO4 and concentrated 

in vacuo. The crude product was purified by column chromatography (Silica gel, 7:1 

DCM: Acetone) to give the product (496 mg, 67%) a pale yellow solid. 1H NMR (400 

MHz, CDCl3) δ 7.39 (t, J = 16.6 Hz, 1H), 7.31 (dt, J = 10.0, 5.0 Hz, 1H), 7.21 – 7.13 (m, 

2H), 7.02 (dd, J = 5.0, 3.6 Hz, 1H), 6.79 (d, J = 8.2 Hz, 1H), 3.93 (s, 2H), 3.37 – 3.19 (m, 

2H), 2.54 – 2.23 (m, 2H), 1.77 (d, J = 6.9 Hz, 2H), 1.63 – 1.55 (m, 2H), 1.41 (dd, J = 

10.2, 6.3 Hz, 2H). 13C NMR (126 MHz, CDCl3) δ 171.6, 144.1, 140.5, 128.0, 126.1, 

125.2, 124.5, 123.5, 122.8, 121.8, 118.6, 51.4, 36.8, 29.0, 28.7, 26.4, 25.4. HRMS (ESI) 

m/z Calcd. for C17H22ON5S [M+H+]: 344.1540, found for 344.1537. 

3.10.1.9. N-(2-amino-5-(thiophen-2-yl)phenyl)-4-azidooctanamide (9c) 

Compound 8c (882 mg, 1.93 mmol) was dissolved in 1% TFA (1 mL) in DCM (5 

mL). The reaction mixture stirred for 1 h at rt. The reaction mixture was quenched with 

NaHCO3 (5 mL) and then brine solution (5 mL) and dried over Na2SO4 and concentrated 

in vacuo. The crude product was purified by column chromatography (Silica gel, 70:1 

DCM: Acetone) to give the product (163 mg, 45%) a pale yellow solid. 1H NMR (400 

MHz, CDCl3) δ 10.62 (s, 1H), 7.79 (d, J = 1.4 Hz, 1H), 7.53 (dt, J = 8.4, 5.0 Hz, 2H), 

7.25 – 7.16 (m, 1H), 7.05 (dd, J = 5.1, 3.6 Hz, 1H), 3.09 (dt, J = 14.7, 7.1 Hz, 2H), 2.97 

(t, J = 7.7 Hz, 2H), 1.95 – 1.75 (m, 2H), 1.42 (ddd, J = 17.0, 12.1, 11.1 Hz, 2H), 1.31 – 

1.07 (m, 4H). 
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3.10.1.10. 3′-Desmethylazithromycin (11) 

To a solution of azithromycin 10 (20 g, 0.02 mmol) and sodium acetate (29 g, 

0.21 mmol) in 80% aqueous methanol (50 mL) at 90 °C. Iodine (7 g, 0.03 mmol) was 

added in three batches within 5 min. The mixture was maintained at pH 8-9 by addition 

of 1 M NaOH (once at 10 min of reaction time), and stirring continued for 3 h. The 

mixture was poured into cold water containing 5% sodium thiosulfate and extracted with 

CH2Cl2 (2×40 mL). The aqueous layer was basified with concentrated NH4OH and 

extracted with 10% MeOH in CH2Cl2 (3×40 mL), and the organic layer was dried over 

Na2SO4. Solvent was evaporated off to give 17.7 g of compound 13 as an off-white solid 

(>90% purity, TLC, CH2Cl2/MeOH/NH4OH 12:1:0.1). The crude 13 was used without 

further purification. 

3.10.1.11. (3′-N-(4-ethynylbenzyl)) azithromycin (13) 

Desmethyl azithromycin 11 (2.72 g, 3.70 mmol) was dissolved in anhydrous 

acetonitrile (15 mL), followed by addition of 4-thynylbenzyl methanesulfonate 12 (1.46 

g, 6.94 mmol) and K2CO3 (3.58 g, 25.91 mmol). The rraction stirred at 80 °C for 3 h. 

Then it was washed with EtOAC (3×30 mL), NaHCO3 (10 mL) and brine solution (10 

mL) and dried over Na2SO4 and concentrated in vacuo. The crude product was purified 

by column chromatography (Silica gel, 12:1:0.5 DCM: MeOH: NH4OH) to give the 

product (3.03 g, 96%) as a white solid. 

3.10.1.12. Azithromycin-3-(N-(4-triazolylbenzyl)))- N-(2-amino-5-(thiophen-2-

yl)phenyl) hexanamide (14a) 

(3-N-(4-Ethynylbenzyl))azithromycin 13 (127 mg, 0.15 mmol) and N-(2-amino-

5-(thiophen-2-yl)phenyl)-4-azidohexanamide 9a (49 mg, 0.15 mmol) were dissolved in 

degassed anhydrous THF (5 mL). CuI (8 mg, 0.075 mmol) and Hünig’s base (0.05 mL, 

0.30 mmol) were added to the reaction and the resulting reaction was stirred at room 
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temperature overnight. Then, the reaction mixture was diluted with excess ethyl acetate 

(30 mL) and was transferred to a separatory funnel and then the ethyl acetate layer was 

washed with a solution (20 mL) of 4:1 mixture of saturated aqueous NH4Cl solution 

/NH4OH solution, water (10 mL), brine (10 mL), dried over anhydrous Na2SO4, filtered, 

and concentrated in vacuo. The crude was purified by preparative chromatography (Silica 

gel, 30:1:0.5 EtOAc/MeOH/NH4OH) to give the title compound 14a (111 mg, 63%) as a 

light yellow solid. 1H NMR (400 MHz, CD3OD) δ 8.33 (s, 1H), 7.76 (d, J = 8.3 Hz, 2H), 

7.43 (d, J = 8.1 Hz, 2H), 7.30 (dd, J = 8.3, 2.1 Hz, 1H), 7.22 (d, J = 5.1 Hz, 1H), 7.20 – 

7.13 (m, 1H), 7.00 (dd, J = 5.1, 3.6 Hz, 1H), 6.84 (d, J = 8.3 Hz, 1H), 4.98 (d, J = 18.1 

Hz, 2H), 4.48 (dd, J = 17.6, 7.1 Hz, 2H), 4.25 – 3.98 (m, 3H), 3.61 (d, J = 16.0 Hz, 3H), 

3.16 (s, 2H), 2.99 (d, J = 9.4 Hz, 1H), 2.79 (s, 2H), 2.42 (dd, J = 19.9, 12.7 Hz, 3H), 2.31 

(d, J = 21.5 Hz, 4H), 2.06 – 1.93 (m, 6H), 1.95 – 1.84 (m, 14H), 1.76 (d, J = 8.7 Hz, 3H), 

1.39 (dd, J = 57.2, 29.4 Hz, 10H), 1.32 – 1.18 (m, 8H), 1.19 (dd, J = 16.9, 11.3 Hz, 8H), 

1.13 (d, J = 14.6 Hz, 3H), 1.08 (d, J = 17.2 Hz, 4H), 1.08 – 0.98 (m, 3H), 0.98 – 0.85 (m, 

6H). 13C NMR (126 MHz, CD3OD) δ 178.4, 175.1, 173.7, 155.3, 147.3, 144.2, 141.7, 

129.4, 127.5, 125.6, 125.0, 124.4, 123.8, 122.8, 122.3, 121.1, 120.7, 117.1, 102.5, 83.2, 

77.7, 76.3, 74.0, 72.6, 71.2, 67.9, 65.0, 63.9, 62.7, 60.3, 60.1, 57.0, 56.0, 55.8, 49.9, 45.2, 

42.0, 35.3, 34.6, 30.4, 29.2, 28.0, 25.6, 24.9, 21.1, 20.6, 20.2, 20.0, 19.5, 18.8, 17.6, 16.2, 

15.8, 13.8, 13.2, 12.6, 12.2, 10.3, 8.4. HRMS (ESI) m/z Calcd. for C62H97O13N7S 

[M+2H+/2]: 589.8424, found for 589.8421. 

3.10.1.13. Azithromycin-3-(N-(4-triazolylbenzyl)))- N-(2-amino-5-(thiophen-2-

yl)phenyl) heptanamide (14b) 

(3-N-(4-Ethynylbenzyl))azithromycin 13 (257 mg, 0.30 mmol) and N-(2-amino-

5-(thiophen-2-yl)phenyl)-4-azidoheptanamide 9b (104 mg, 0.30 mmol) were dissolved in 

degassed anhydrous THF (5 mL). CuI (29 mg, 0.15 mmol) and Hünig’s base (0.10 mL, 

0.60 mmol) were added to the reaction and the resulting reaction was stirred at room 
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temperature overnight. Then, the reaction mixture was diluted with excess ethyl acetate 

(30 mL) and was transferred to a separatory funnel and then the ethyl acetate layer was 

washed with a solution (20 mL) of 4:1 mixture of saturated aqueous NH4Cl solution 

/NH4OH solution, water (10 mL), brine (10 mL), dried over anhydrous Na2SO4, filtered, 

and concentrated in vacuo. The crude was purified by preparative chromatography (Silica 

gel, 30:1:0.5 EtOAc/MeOH/NH4OH) to give the title compound 14b (256 mg, 71%) as a 

light yellow solid. 1H NMR (400 MHz, CD3OD) δ 8.16 (s, 1H), 7.61 (d, J = 8.2 Hz, 2H), 

7.27 (dd, J = 9.4, 5.1 Hz, 3H), 7.16 (dd, J = 8.3, 2.2 Hz, 1H), 7.10 – 7.03 (m, 2H), 7.03 

(dd, J = 3.6, 1.0 Hz, 1H), 6.86 (dd, J = 5.1, 3.6 Hz, 1H), 6.71 (d, J = 8.3 Hz, 1H), 4.85 (t, 

J = 12.7 Hz, 1H), 4.71 (dd, J = 10.1, 2.5 Hz, 2H), 4.34 (dd, J = 22.9, 7.1 Hz, 2H), 4.31 (t, 

J = 6.9 Hz, 2H), 4.12 – 3.95 (m, 2H), 3.68 (d, J = 13.1 Hz, 1H), 3.50 (ddd, J = 45.5, 18.6, 

8.4 Hz, 4H), 3.21 – 3.11 (m, 4H), 3.03 (s, 3H), 2.85 (d, J = 9.5 Hz, 1H), 2.64 (dt, J = 

18.8, 9.2 Hz, 3H), 2.29 (t, J = 7.4 Hz, 2H), 2.21 (d, J = 15.5 Hz, 4H), 2.13 (s, 4H), 1.85 

(dd, J = 14.2, 7.0 Hz, 4H), 1.76 – 1.54 (m, 5H), 1.44 – 1.21 (m, 8H), 1.17 (d, J = 24.4 Hz, 

6H), 1.12 (t, J = 7.9 Hz, 4H), 1.09 – 0.98 (m, 7H), 0.96 (dd, J = 20.5, 14.4 Hz, 8H), 0.91 

(d, J = 7.5 Hz, 4H), 0.76 (dd, J = 15.3, 7.6 Hz, 6H). 13C NMR (101 MHz, CD3OD) δ 

209.7, 178.1, 173.6, 163.1, 157.6, 148.5, 145.8, 144.2, 129.3, 128.6, 127.4, 126.0, 125.2, 

124.5, 123.1, 122.6, 121.1, 120.5, 117.4, 115.9, 114.7, 114.0, 105.9, 102.5, 94.9, 82.9, 

78.1, 77.6, 76.7, 74.3, 72.9, 71.2, 67.8, 65.9, 65.2, 62.8, 57.3, 52.3, 49.9, 38.9, 35.8, 35.3, 

35.0, 34.6, 30.7, 29.5, 28.1, 26.4, 26.0, 25.2, 21.2, 20.7, 20.2, 17.8, 15.9, 14.2, 10.4, 8.5, 

5.4, 5.1, 1.3. HRMS (ESI) m/z Calcd. for C63H99O13N7S [M+2H+/2]: 596.8505, found for 

598.8502. 

3.10.1.14. Azithromycin-3-(N-(4-triazolylbenzyl)))- N-(2-amino-5-(thiophen-2-

yl)phenyl) octanamide (14c) 

(3-N-(4-Ethynylbenzyl))azithromycin 13 (118 mg, 0.14 mmol) and N-(2-amino-

5-(thiophen-2-yl)phenyl)-4-azidooctanamide 9c (50 mg, 0.14 mmol) were dissolved in 



 145 

degassed anhydrous THF (5 mL). CuI (13 mg, 0.07 mmol) and Hünig’s base (0.05 mL, 

0.27 mmol) were added to the reaction and the resulting reaction was stirred at room 

temperature overnight. Then, the reaction mixture was diluted with excess ethyl acetate 

(30 mL) and was transferred to a separatory funnel and then the ethyl acetate layer was 

washed with a solution (20 mL) of 4:1 mixture of saturated aqueous NH4Cl solution 

/NH4OH solution, water (10 mL), brine (10 mL), dried over anhydrous Na2SO4, filtered, 

and concentrated in vacuo. The crude was purified by preparative chromatography (Silica 

gel, 30:1:0.5 EtOAc/MeOH/NH4OH) to give the title compound 14c (78 mg, 47%) as a 

light yellow solid. 1H NMR (400 MHz, CDCl3) δ 7.74 (dd, J = 15.3, 12.0 Hz, 3H), 7.50 

(t, J = 5.8 Hz, 1H), 7.40 – 7.29 (m, 3H), 7.15 (dd, J = 8.0, 4.3 Hz, 2H), 7.01 (dd, J = 5.0, 

3.7 Hz, 1H), 6.78 (d, J = 8.4 Hz, 1H), 5.05 (d, J = 4.4 Hz, 1H), 4.70 (s, 1H), 4.39 (dt, J = 

16.8, 8.5 Hz, 3H), 4.23 (d, J = 2.8 Hz, 1H), 4.07 – 3.90 (m, 2H), 3.83 – 3.71 (m, 1H), 

3.66 (d, J = 22.0 Hz, 1H), 3.60 (d, J = 7.2 Hz, 1H), 3.53 – 3.38 (m, 3H), 3.36 (d, J = 10.6 

Hz, 1H), 2.98 (t, J = 9.8 Hz, 1H), 2.87 (s, 1H), 2.75 (s, 2H), 2.54 (s, 2H), 2.40 (dd, J = 

18.5, 10.7 Hz, 5H), 2.26 (d, J = 19.7 Hz, 5H), 2.17 (s, 1H), 2.12 – 2.01 (m, 2H), 2.02 – 

1.81 (m, 5H), 1.82 – 1.65 (m, 4H), 1.57 – 1.45 (m, 2H), 1.45 – 1.28 (m, 13H), 1.24 (dt, J 

= 20.9, 9.4 Hz, 11H), 1.19 – 1.13 (m, 4H), 1.07 (t, J = 12.9 Hz, 8H), 1.03 (d, J = 7.5 Hz, 

3H), 0.99 – 0.79 (m, 6H). 13C NMR (126 MHz, CDCl3) δ 178.9, 172.2, 147.5, 144.4, 

140.5, 129.8, 129.5, 128.0, 127.4, 126.1, 125.9, 124.8, 123.6, 123.0, 121.8, 119.6, 118.4, 

102.9, 94.6, 83.5, 74.2, 73.8, 73.3, 72.8, 70.6, 69.9, 68.7, 65.5, 64.2, 61.7, 57.7, 56.0, 

50.3, 49.3, 45.4, 42.6, 42.1, 36.9, 36.6, 36.3, 34.6, 32.0, 30.1, 29.6, 29.3, 28.8, 28.3, 27.5, 

26.8, 26.0, 25.4, 22.7, 22.1, 21.5, 21.3, 18.0, 16.4, 14.6, 14.2, 11.3, 8.9, 7.5. HRMS (ESI) 

m/z Calcd. for C63H101O13N7S [M+2H+/2]: 603.8584, found for 603.8591. 
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3.10.2. Cell viability assay 

All cell lines used in this study were maintained in phenol red free Dulbecco's Modified 

Eagle Medium (DMEM) (Corning, VA), supplemented with 10% fetal bovine serum 

(FBS) (Atlanta Biologicals, Atlanta, GA) and 1% Penicillin-Streptomycin. Cells were 

incubated in 96 well plate for 24 h prior to treatment and then treated with various drugs’ 

concentration for 72 h. Their anti-proliferative activity was measured using the MTS 

assay (CellTiter 96 Aqueous One Solution and CellTiter 96 Non-Radioactive Cell 

Proliferation Assays, Promega, Madison, WI) as described by the manufacturer. All 

drugs solution were made in DMEM while DMSO concentration was maintained at 

0.1%.  

 

3.10.3. SAMDI assay (In vitro HDAC inhibition, performed by Dr.  James Kornaki 

at Northwestern University) 

HDAC1, 2, 3, and 6 were purchased from BPS Biosciences. To obtain IC50 

values, in a 96-well microtiter plates (60 min, 37 °C), isoform- optimized substrates (50 

μM) were incubated with enzyme (250nM) and inhibitor (at concentrations ranging from 

0.1 nM to 1.0 mM) in HDAC buffer (25.0 mM Tris-HCl, pH 8.0, 140 mM NaCl, 3.0 mM 

KCl, 1.0 mM MgCl
2
, and 0.1 mg/mL BSA). Solution-phase deacetylation reactions were 

quenched with trichostatin A (TSA) and transferred to SAMDI plates to immobilize the 

substrate components. SAMDI plates were consist of an array of self-assembled 

monolayers (SAMs) presenting maleimide in standard 384-well format for high-

throughput handling capability. Following immobilization, plates were washed to remove 

buffer constituents, enzyme, inhibitor, and any unbound substrate and analyzed by 

MALDI mass spectrometry using automated protocols. Deacetylation yields in each 

triplicate sample were obtained from the integrated peak intensities of the molecular ions 

https://www.thermofisher.com/us/en/home/life-science/cell-culture/mammalian-cell-culture/classical-media/dmem.html
https://www.thermofisher.com/us/en/home/life-science/cell-culture/mammalian-cell-culture/classical-media/dmem.html
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for the substrate and the deacetylated product ion by taking the ratio of the former over 

the sum of both. Yields were plotted with respect to inhibitor concentration and fitted to 

obtain IC50 values for each isoform−inhibitor pair.  

Isoform-optimized substrates were prepared by traditional FMOC solid-phase 

peptide synthesis (Anaspec) and purified by semi-preparative HPLC on a reverse-phase 

C18 column (Waters). The peptide GRKacFGC was prepared for HDAC1 and HDAC8 

experiments, whereas the peptide GRKacYGC was prepared for HDAC6 experiments.  

3.10.4. In vitro HDAC inhibition (Performed through contractual agreement with 

BPS Bioscience) 

HDAC inhibition was performed via Fluor de Lys assay. This assay is based on 

Fluorimetric Histone deAcetylaseLysyl substrate and developer combination. First the 

substrate with the acetylated lysine chain is incubated with HDAC enszymes. Then the 

developer is added which results in generating a fluorophore.  

To perform the in vitro HDAC inhibition assay, different concentration of HDACi 

with 10% DMSO in HDAC assay buffer were prepared and added to the enzymatic 

reaction containing HDAC assay buffer, BSA, substrate and enzyme (all the HDAC 

isoforms) in 96 well plate. Developer was then added to each well and the plate was 

incubated at room tempretaure for 15 minutes. Fluorescent intensity at the certain 

wavelengths was measured using Bioteck Synergy microplate reader. Fluorescent 

intensities were measured in the absence and presence of the compounds as well as in the 

absence of HDAC , and the data was analyzed using Graphpad Prism. IC50 value for each 

compound was determined by the concentration leading to a half-maximal percent 

inhibition.   
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3.12. Supplementary data 

 

3 1HNMR 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 153 
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6 1H NMR  
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8a 1H NMR  
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8b 1H NMR  
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8c 1H NMR  
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9a 1H NMR  
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9a 13C NMR  
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9b 1H NMR  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 161 

9b 13C NMR  
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9c 1H NMR  
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14a 1H NMR  
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14a 13C NMR  
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14b 13C NMR  
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14c 13C NMR  
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CHAPTER 4 

HISTONE DEACETYLASE INHIBITORS EQUIPPED WITH      

ESTROGEN RECEPTOR MODULATORS FOR SELECTIVELY 

TARGETING BREAST CANCER 

4.1. Introduction 

Histone deacetylase enzymes (HDAC) are among the most promising targets in 

cancer therapy due to their critical role in chromatin remodeling and gene expression 

regulation. Through their deacetylase activities, HDACs are not only involved in 

regulating DNA-histone interaction, they regulate non-histone protein functions as well 

[1]. Removal of the acetyl group by HDAC enzymes from lysine residue of the histone 

proteins leads to a condensed chromatin and transcriptional repression [2], while addition 

of the acetyl group by HAT results in an open and accessible chromatin and favors the 

expression of tumor suppresser genes [3].  

Epigenetic changes leading to gene expression modulations are responsible for 

cancer progression, therefore, inhibiting HDACs activity has emerged as a potential 

strategy to invert changes that are affiliated with cancer, and an ongoing research has 

been dedicated to develop potent and selective HDACi. Currently, there are four US FDA 

approved HDACi, with many others in various stages of clinical trials [4]. SAHA was the 

first FDA approved HDACi in the clinic. SAHA obtained approval in 2006 for treating 

cutaneous T-cell lymphoma [5], followed by approval of FK228 in 2009 for cutaneous T-

cell lymphoma and peripheral T-cell lymphoma [6], and belinostat in 2014 for peripheral 

T-cell lymphoma [7]. Panobinostat is the last HDACi that received accelerated FDA 

approval in 2015 for treating multiple myeloma [8]. Chidamide (CS055) is a HDACi only 

approved in China for treating relapsed/refractory peripheral T-cell lymphoma. 

Chidamide is currently being investigated in phase II clinical trials in US [9].  Despite 
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promising results in treating certain types of cancer, HDACi share common drawbacks 

including lack of isoform selectivity and poor solid tumor accumulation as well as poor 

bioavailability and cardiotoxicity [10].  

Studies have shown HDACi are more potent and have a greater efficiency when 

they are used in combination with other therapeutic agents [11], [12]. One promising 

example of HDACi combinational therapy is their use in hormone resistant breast cancer 

together with selective estrogen receptor modulators (SERM) such as tamoxifen (Tam). 

Tamoxifen is a potent estrogen receptor (ER) antagonist [13]. It is considered one of the 

essential drugs by world health organization (WHO) and is a first line therapy and the 

most commonly used treatment for endocrine dependent breast cancer. However its use is 

limited since almost all patients with metastatic breast cancer, 40% of whom received 

tamoxifen as an adjuvant therapy, relapse and acquire resistance to it and eventually die 

[14], [15]. Although the mechanism of tamoxifen resistance development is not fully 

defined to date, it is however clear that tamoxifen resistant tumors still exhibit ER 

expression 70% of the time in form of ERα or upregulation of ERβ expression, a closely 

related ERα isoform [16]. In some cases, however, tumors are ER negative due to 

epigenetic silencing of ERα subtypes [17]. Tamoxifen sensitivity in ER negative breast 

cancers can be restored by inducing ERα expression, using DNA demethylating agents 

such as [5-aza-2′-deoxycytidine (5-aza-dC)] and HDACi like SAHA or trichostatin A 

[17], [18], [19]. 

One potential strategy to extend the therapeutic utility of antiestrogens to ER 

expressing, antiestrogen resistant breast tumors is to use design-multiple ligand approach 

[20] wherein a prototypical antiestrogen such as tamoxifen is covalently linked to a 

moiety having independent anticancer activity [21], [22] Recent studies have shown that 

covalent linkage of ER antagonist ligands to HDACi resulted in bifunctional agents with 

improved in vitro therapeutic indices and anti-proliferative activity [23], [24]. 
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In our effort to achieve more potent HDACi with targeted delivery to the site of 

tumor we designed three classes of SERM-HDACi. We hypothesized that dual-acting 

SERM-HDACi not only could result in targeted delivery of compounds to the breast 

tissue due to tamoxifen affinity for ER but also could explore cell ER expression status to 

achieve higher concentrations in ER antagonist resistant, ER expressing breast tumors 

and subsequent HDAC inhibition by the HDACi moiety of these agents will result in 

selective tumor growth inhibition.   

ERs reside in cytoplasm while they are bound to heat shock proteins. Upon 

binding to estrogen they get activated and are translocated to nucleus. However, small 

populations of ERs that are involved in modulating cell survival and proliferation exist on 

the plasma membrane [25] of target tumor cells. These ERs can facilitate tumor selective 

uptake of SERM conjugated HDACi [26].     

A previous study by Gryder et al revealed that incorporation of tamoxifen into 

HDACi surface recognition group furnished dual-acting SERM-HDACi with antagonist 

activity similar to tamoxifen and exhibiting nanomolar range HDAC6 inhibition activity. 

These dual-acting SERM-HDACi also demonstrated more potent anti-proliferative 

activity against MCF-7 (ERα positive breast cancer cell line) compared to tamoxifen.     

In order to complete the SAR from the previous project, I synthesized various 

tamoxifen conjugated HDACi having different zinc binding groups and compared 

activities for compounds with various linker lengths to determine the optimal length.  

4.2. Synthesis of Tamoxifen-derived Dual-acting SERM-HDACi 

Following the previously disclosed dual-acting SERM-HDACi template [24], 

[27], I designed three classes of tamoxifen conjugated HDACi having different zinc 

binding groups and methylene linker lengths to evaluate the impact of these modification 

on HDAC inhibitory potency.  
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Based on our previous work, the optimal linkers were predicted to be five or six 

methylene groups [28].  Therefore, I limited my SAR study on the linkers having 

between five and eight methylene groups. Additionally, Gryder et al [24] disclosed that 

having the triazolyl moiety attached to benzyl-tamoxifen moiety results in a better HDAC 

inhibitory potency and anti-proliferative activity. 

 

 

Figure 4.1. Three classes of tamoxifen conjugated HDACi with different ZBG and linker 

length.   
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4.3. Chemistry and synthesis 

N-Desmetyl tamoxifen 3 was obtained through demethylation of tamoxifen 1 by 

reacting it with 1-chloroethyl chloroformate 2 [29]. Compound 3 was then reacted with 4-

ethynylbenzyl methanesulfonate 4 to yield N-alkynated tamoxifen 5 (Scheme 4.1) [30].  

 

                      

Scheme 4.1. (a) DCM, 30 min; (b) MeOH, reflux, overnight 98% (a and b); (c) Hunig’s 

base, DMSO, 85 °C, 4 h, 62%.   

 

The reaction of bromo alkanoic acids 6a-b with sodium azide resulted in azide 

alkanoic acids 7a-b which was then coupled with O-trityl hydroxylamine  [31] to yield 

9a-b. Additionally, the azido thiophene-benzamide 20a-c were synthesized as described 

in literature and chapter 3 (Scheme 4.2) [32].  

 



 174 

 

 

Scheme 4.2. (a) NaN3, DMF, 80 °C, overnight, 90%; (b) N-Methyl morpholine, O-

tritylhydroxyl amine, isobutyl chloroformate, THF, 3h, 97%; (c) Et3N, DCM, reflux, 

overnight, 82%; (d) Pd(PPh3)4, K2CO3, THF, 70 °C, 77%; (e) Zn, H2O: Dioxane (1:4), 70 

°C, 3 days, 76%; (f) EDCI, HOBT, DMF, 70 °C, 6 h, 62-92%; (g) TFA (1%), DCM, rt, 

2h, 45-73%. 

 

All the three classes of tamoxifen conjugated HDACi were synthesized through 

Cu (I) catalyzed azide-alkyne cycloaddition reaction between benzyl-alkynyl tamoxifen 5 

and azides 9a-b and 20a-c to furnish the requisite compounds 10a-b and 12a-c [24], 

[33], [34]. Control carboxylic compound 8 was similarly synthesized from 5 and azido 

acid 7b (Scheme 4.3) [35]. 
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Scheme 4.3. (a) THF, CuI, Hunig’s base, rt, overnight, 25%; (b) THF, CuI, Hunig’s base, 

rt, overnight; (c) TFA, TIPS, DCM, rt, 1 h, 61-70% (b and c); (d) THF, CuI, Hunig’s 

base, rt, overnight, 14-93%.  

4.4. HDAC inhibitory potency (Performed by Lindsey Szymczak at 

Northwestern University) 

All three classes of synthesized tamoxifen conjugated HDACi were tested against 

class I HDAC isoforms and HDAC6 to evaluate their HDAC inhibitory potency as it has 

been established that these HDAC isoforms are involved in breast cancer [36], [37]. 

HDAC activity was determined by the label-free mass spectrometry-based SAMDI assay 

[38].  

As expected, the thiophene-benzamide-based compounds 12a-c were selective 

toward HDAC1 and HDAC2 and did not inhibit other HDAC isoforms [39], while the 

hydroxamate-based compounds 10a-b showed low to mid nanomolar range HDAC 

inhibitory potency toward all tested isoforms. Compound 8 did not exhibit any HDAC 
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inhibitory potency. Based on this finding, the tamoxifen-derived hydroxamic acid 

compounds 10a-b were the most potent HDACi among these three groups (Table 4.1).  

 

Table 4.1. HDAC 1, 2, 3, 6, and HDAC8 inhibition activities of three different classes of 

tamoxifen conjugated HDACi (IC50 in nM). 

Compound n HDAC1 HDAC2 HDAC3 HDAC6 HDAC8 

8 4 NI NI NI 1880±540 NI 

10a* 3 524 ND ND 567 ND 

10b 4 317±29 785±66 96±12 33±7.6 3050±250 

12a 3 635±110 281±25 NI NI NI 

12b 4 543±82 281±39 NI NI NI 

12c 5 NI 1130±120 NI NI NI 

SAHA - 42 190 20 34 2800 

ND: Not determind, NI: No inhibition.  * HDAC inhibitory potency of compound 10a was previously reported by Gryder et al and performed byy BPS BioScience 

[24].  

4.5. Anti-proliferative activity and therapeutic index 

After obtaining the HDAC inhibitory activity of tamoxifen conjugated HDACi, 

they were tested against three cell lines, two transformed cell lines, ER positive (MCF-7) 

and ER negative (MDA-MB231) breast cancers as well as one non-cancerous mamalian 

cell line (VERO- monkey kidney epithelial cell). These compounds were compared to 

tamoxifen, the first line therapy for treating ER positive breast cancer, and SAHA, an 

FDA approved HDACi. As anticipated, the control carboxylic acid compound 8 was 

inactive against all tested cell lines. Surprisingly, the benzamide compounds 12a-c did 

not show cytotoxicity against these cancer cell lines despite their class I HDAC 

selectivity. The reason for the lack of antiproliferative activity of compounds 12a-c is not 

apparent from this study. Gratifyingly, we observed that the hydroxamic acid compounds 
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10a-b displayed ER dependent antiproliferative activity. Relative to tamoxifen, 10a-b 

were about 8 fold more potent toward ER positive breast cancer cells and about 2 fold 

more potent toward ER negative breast cancer cells (Table 4.2).  

Furthermore, compounds 10a-b displayed tumor-selective cytotoxicity with in 

vitro therapeutic index (IVTI) of 4.3 and 1.4 while tamoxifen and SAHA showed no 

tumor-selective cytotoxicity (Table 4.2).    

 

Table 4.2. Anti-proliferative activity of selected azithromycin conjugated HDACi (IC50 

values in µM). 

Compound n MCF-7 MDA-MB231 VERO 

In vitro therapeutic index  

IC50 in VERO 

IC50 in MCF-7 

8 4 NI NI NI - 

10a 3 2.1±0.1 10±0.5* 9.1±2.8 4.3 

10b 4 2.4±0.4 6.4±0.5 3.4±0.1 1.4 

12a 3 NI NI NI - 

12b 4 NI NI NI - 

12c 5 NI NI NI - 

Tamoxifen - 15.6±1.3 17±1.2 16±0.1 1.1 

SAHA - 3.3± 0.1 3.4±0.2 1±0.1 0.2 

          Each value is obtained from a duplicate of three simultaneous experiments. NI=No inhibition. * Value reported previously by           

Gryder. et al [24]. 

 

IVTI is safety window for comparing the therapeutic efficacy of drug candidates [40]. It 

is a comparison between drug cytotoxicity to transformed cells and healthy cells. The 

higher the therapeutic index, the safer the drug is expected to be. 
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Overall, these tamoxifen-derived dual-acting SERM-HDACi are more selective 

toward breast cancer cells compared to SAHA.   The promising anti-proliferative activity 

and HDAC inhibitory potency results of compounds 10a and 10b encouraged us to 

synthesize these two compounds in a larger scale to study their activity in animal models. 

Compounds 10a and 10b are currently under in vivo investigation.  

4.6. Conclusion 

Tamoxifen is the most common therapy for treating ER positive breast cancer 

[41], however, many patients relapse and acquire resistance during the course of 

treatment. A high percentage of the tamoxifen resistant tumors still express ER, either in 

form of ERα or ERβ. Additionally, in tumors that are ER negative, ER expression can be 

stimulated by using HDACi as an adjuvant therapy [42].  

I have identified tamoxifen-derived dual-acting SERM-HDACi that displayed 

enhanced potency and improved IVTI. Unlike tamoxifen that exhibits no selectivity for 

ER positive and ER negative breast cancer cells, these compounds are more potent and 

cytotoxic toward ER positive breast cancer cells (MCF-7). Furthermore, compared to the 

FDA approved HDACiSAHA which is significantly toxic to VERO cells, these SERM-

HDACi are less cytotoxic toward healthy cells. The improvement in potency and IVTI 

could potentially be due cell to ER expression status dependent cell uptake and/or 

intracellular retention of these SERM-HDACi.  

4.7. Experimental 

4.7.1. Materials and methods 

Tamoxifen was purchased from Cayman chemical company. 4-ethynylbenzyl 

alcohol and 1-chloroethyl chloroformate were purchased from Sigma-Aldrich. All 

commercially available starting materials were used without purification. Reaction 

solvents were high performance liquid chromatography (HPLC) grade or American 
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Chemical Society (ACS) grade and used without purification. Analtech silica gel plates 

(60 F254) were used for analytical TLC, and Analtech preparative TLC plates (UV 254, 

2000 µm) were used for purification.  UV light and anisaldehyde/iodine stain were used 

to visualize the spots.  200-400 Mesh silica gel was used in column chromatography. 

Nuclear magnetic resonance (NMR) spectra were recorded on a Varian-Gemini 400 MHz 

or Bruker 500 MHz magnetic resonance spectrometer.  1H NMR Spectra were recorded 

in parts per million (ppm) relative to the residual peaks of CHCl3 (7.24 ppm) in CDCl3 or 

CHD2OD (4.78 ppm) in CD3OD or DMSO-d5 (2.49 ppm) in DMSO-d6. 
13C spectra were 

recorded relative to the central peak of the CDCl3 triplet (77.0 ppm) or CD3OD septet 

(49.3 ppm) or DMSO-d6 septet (39.7 ppm) and were recorded with complete hetero-

decoupling. Original ‘fid’ files were processed using MestReNova LITE (version 5.2.5-

5780) program. High-resolution mass spectra were recorded at the Georgia Institute of 

Technology mass spectrometry facility in Atlanta. Compounds 3, 5, 7a-b, 9a-b, and 10a 

were synthesized as it was discussed before [24], [28], [30], [31], [43]. Compounds 4, 

20a-c were synthesized as described in chapter 2 and 3.  

 

4.7.1.1. N-Desmethyltamoxifen (3)  

Tamoxifen 1 (2.3 g, 6.2 mmol) was dissolved in DCM (10 mL). The reaction 

mixture was purged for 15 minutes, then cooled to 0 °C, and then 1-chloroethyl 

chloroformate 2 (2.7 mL, 24.8 mmol) was added dropwise and stirred for another 15 

minutes. Then it was refluxed overnight. Solvent was evaporated. Then reaction mixture 

was quenched with NaHCO3 (10 mL) and brine (10 mL). The organic layer was separated 

and dried over Na2SO4.  The crude product was purified by column chromatography 

(Silica gel, 3:2:0.1 EtOAc: Hex: NEt3) to give the product (2.1 g, 98%) as a white solid. 

1H NMR (400 MHz, CDCl3) δ 7.41 – 7.32 (m, 2H), 7.32 – 7.24 (m, 3H), 7.23 – 7.19 (m, 

1H), 7.17 – 7.08 (m, 3H), 7.04 – 6.96 (m, 1H), 6.95 – 6.90 (m, 1H), 6.86 – 6.79 (m, 2H), 
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6.62 – 6.54 (m, 2H), 3.94 (t, J = 5.1 Hz, 2H), 2.90 (dd, J = 6.8, 3.1 Hz, 2H), 2.51 (dd, J = 

12.3, 4.8 Hz, 2H), 2.47 (d, J = 8.2 Hz, 3H), 0.98 (dd, J = 11.8, 4.4 Hz, 3H). 

4.7.1.2. 4-(4-Ethynylbenzyl)−Tamoxifen (5)  

To a stirring solution of desmethyl tamoxifen 3 (572.2 mg, 1.28 mmol) in DMSO 

(5 mL), compound 4 (350 mg, 1.7 mmol) and Hunig’s base (0.7 mL, 4.1 mmol) were 

added. The reaction mixture was heated for 4 h at 85 °C. Then reaction mixture was 

washed with water (3×10 mL) EtOAc (5 mL) and quenched with NaHCO3 (5 mL) and 

brine (5 mL). The organic layer was separated and dried over Na2SO4.  The crude product 

was purified by column chromatography (Silica gel, 1:3:0.1 EtOAc: Hex: NEt3) to give 

the product (373 mg, 62%) as a pale yellow solid. 1H NMR (400 MHz, CD3OD) δ 7.36 

(dt, J = 7.3, 3.7 Hz, 2H), 7.32 – 7.29 (m, 2H), 7.27 – 7.14 (m, 5H), 7.15 – 7.01 (m, 5H), 

6.73 (dt, J = 4.9, 2.2 Hz, 2H), 6.56 – 6.46 (m, 2H), 4.91 (t, J = 1.1 Hz, 1H), 3.90 (dd, J = 

7.2, 3.9 Hz, 2H), 3.50 (d, J = 17.8 Hz, 2H), 2.67 (t, J = 5.5 Hz, 2H), 2.42 (q, J = 7.4 Hz, 

2H), 2.21 (d, J = 1.8 Hz, 3H), 0.95 – 0.82 (m, 3H). 

4.7.1.3. 7-Azido heptanoic acid (7b)  

Sodium azide (1.95 g, 30 mmol) was added to a stirring solutioin of 7-bromo 

heptanoic acid 6b (3.1 g, 15 mmol) in DMF (10 mL). Reaction stirred overnight. After 

TLC indicated the complete consumption of the starting material, DMF was evaporated 

off, and then reaction mixture was dissolved in EtOAc (10 mL) and acidify to pH=3. 

Then it was washed with brine (5 mL) and organic layer was separated and dried over 

Na2SO4. It yielded product (2.5 g, 97%) as a light brown oil. 1H NMR (400 MHz, CDCl3) 

δ 11.86 (s, 1H), 3.26 – 3.10 (m, 2H), 2.27 (t, J = 7.0 Hz, 2H), 1.61 – 1.42 (m, 4H), 1.32 

(d, J = 2.5 Hz, 4H). 
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4.7.1.4. 4-Azido-N-(trityloxy)heptanamide (9b) 

7-Azido heptanoic acid 7b (2.5 g, 14.5 mmol) was dissolved in anhydrous THF 

(15 mL). N-methyl morpholine (1.6 ml, 14.5 mmol) was added to the solution. The 

reaction mixture was then cooled to -15 °C and stirred for 5 min. Isobutyl chloroformate 

(1.9 mL, 14.5 mmol) was added and the mixture stirred for another 10 min at -15°C. O-

Tritylhydroxyl amine (4.0 g, 14.5 mmol) was added followed by additional 2 eq of N-

methyl morpholine (3.2 mL, 29 mmol). Stirring continued for another 15 min at -15°C 

and 2 h at room temperature.  Reaction mixture was acidified with 1N HCl to pH=3 to 

neutralize excess amine, followed by work up. The organic layer was separated and dried 

over Na2SO4.  The crude product was purified by column chromatography (Silica gel, 1:2 

EtOAc: Hex) to give the product (3.3 mg, 53%) as a white solid. 1H NMR (400 MHz, 

CDCl3) δ 7.46 (d, J = 26.8 Hz, 3H), 7.29 (dd, J = 38.2, 18.5 Hz, 13H), 3.17 (s, 2H), 1.57 

(d, J = 27.1 Hz, 1H), 1.54 – 1.33 (m, 3H), 1.22 (tt, J = 35.4, 17.9 Hz, 4H), 1.07 (s, 2H). 

4.7.1.5. Tamoxifen−N-(4-triazolylbenzyl)-N-heptanoic Acid (8)  

4-(4-Ethynylbenzyl)−Tamoxifen 5 (92.5 mg, 0.2 mmol) and 7-azido heptanoic 

acid 7b (36.9 mg, 0.2 mmol) were dissolved in degassed anhydrous THF (5 mL). CuI 

(18.6 mg, 0.1 mmol) and Hünig’s base (0.07 mL, 0.4 mmol) were added to the reaction 

and the resulting reaction was stirred at room temperature overnight. Then, the reaction 

mixture was diluted with excess ethyl acetate (30 mL) and was transferred to a separatory 

funnel and then the ethyl acetate layer was washed with a solution (20 mL) of 4:1 mixture 

of saturated aqueous NH4Cl solution /NH4OH solution, water (10 mL), brine (10 mL), 

dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude was purified 

by preparative chromatography (Silica gel, 10:2:0.5 EtOAc/Hex/NEt3) to give the title 

compound 8 (31.8 mg, 25%) as a light yellow solid. 1H NMR (400 MHz, CDCl3) δ 7.88 – 

7.70 (m, 3H), 7.47 – 7.36 (m, 2H), 7.33 (t, J = 7.2 Hz, 2H), 7.24 (dt, J = 8.0, 6.0 Hz, 3H), 

7.13 (dq, J = 14.7, 7.4 Hz, 5H), 6.77 (d, J = 8.7 Hz, 2H), 6.53 (d, J = 8.6 Hz, 2H), 4.37 (t, 
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J = 7.1 Hz, 2H), 4.06 (s, 2H), 3.80 (s, 2H), 3.01 (d, J = 37.8 Hz, 2H), 2.47 (dd, J = 15.8, 

8.7 Hz, 2H), 2.41 (d, J = 6.5 Hz, 3H), 2.25 (d, J = 22.6 Hz, 2H), 1.93 (s, 2H), 1.37 (s, 

3H), 1.25 (s, 3H), 0.90 (dd, J = 14.5, 7.1 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 177.8, 

156.3, 147.3, 143.8, 143.2, 142.4, 141.5, 138.2, 136.0, 132.0, 130.8, 130.6, 130.4, 129.7, 

129.5, 128.1, 127.9, 127.8, 127.3, 126.5, 126.1, 125.8, 119.7, 114.1, 113.4, 64.8, 61.4, 

56.0, 54.9, 50.4, 41.6, 31.9, 30.2, 29.7, 29.0, 28.5, 26.3, 24.8, 22.7, 14.2, 13.6. HRMS 

(ESI) m/z Calcd. for C41 H47 O3 N4 [M+H+]: 643.3643, found for 643.3637. 

4.7.1.6. Tamoxifen−N-(4-triazolylbenzyl)-N-hydroxyhexanamide (10a)  

4-(4-Ethynylbenzyl)−tamoxifen 5 (264.5 mg, 0.5 mmol) and 6-azido-N-

(trityloxy)hexanamide 9a (279.0 mg, 0.7 mmol) were dissolved in degassed anhydrous 

THF (5 mL). CuI (53.3 mg, 0.3 mmol) and Hünig’s base (0.2 mL, 1.1 mmol) were added 

to the reaction and the resulting reaction was stirred at room temperature overnight. Then, 

the reaction mixture was diluted with excess ethyl acetate (30 mL) and was transferred to 

a separatory funnel and then the ethyl acetate layer was washed with a solution (20 mL) 

of 4:1 mixture of saturated aqueous NH4Cl solution /NH4OH solution, water (10 mL), 

brine (10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The 

crude was then dissolved in DCM: TFA (1: 0.2 mL) solution. Triisopropyl silane was 

added dropwise until the color transformed from dark yellow to pale yellow. TLC 

indicated the complete consumption of the starting material after 1 h. Solvent and TFA 

were evaporated off, then reaction mixture was quenched with NaHCO3 followed by 

work up and dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude 

was purified by preparative chromatography (Silica gel, 12:1:0.1 DCM/MeOH/NH4OH) 

to give the title compound 10a (196.0 mg, 61%) as a white solid. 1H NMR (400 MHz, 

CD3OD) δ 8.22 (s, 1H), 7.77 (d, J = 7.3 Hz, 2H), 7.39 – 7.28 (m, 2H), 7.30 – 7.21 (m, 

2H), 7.17 (t, J = 7.3 Hz, 3H), 7.03 (dt, J = 14.1, 6.3 Hz, 5H), 6.72 (d, J = 8.5 Hz, 2H), 

6.49 (d, J = 8.4 Hz, 2H), 4.32 (s, 2H), 3.88 (s, 2H), 3.58 (s, 2H), 2.72 (s, 2H), 2.44 – 2.31 
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(m, 2H), 2.24 (s, 3H), 2.06 (s, 2H), 1.87 (s, 2H), 1.61 (s, 2H), 1.26 (d, J = 21.4 Hz, 2H), 

0.84 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, CD3OD) δ 156.6, 147.1, 143.6, 142.2, 

141.2, 138.3, 137.1, 135.5, 131.7, 129.9, 129.1, 128.0, 127.6, 126.7, 126.0, 125.5, 120.9, 

113.1, 64.9, 61.6, 55.2, 49.9, 41.5, 29.5, 28.6, 25.5, 24.7, 12.8. HRMS (ESI) m/z Calcd. 

for C40 H44 O3 N5 [M+H+]: 642.3439, found for 642.3451. 

4.7.1.7. Tamoxifen−N-(4-triazolylbenzyl)-N-hydroxyheptanamide (10b)  

4-(4-Ethynylbenzyl)−Tamoxifen 5 (617.3 mg, 1.3 mmol) and 7-azido-N-

(trityloxy)hexanamide 9b (673.1 mg, 1.6 mmol) were dissolved in degassed anhydrous 

THF (5 mL). CuI (123.8 mg, 0.6 mmol) and Hünig’s base (0.5 mL, 2.6 mmol) were 

added to the reaction and the resulting reaction was stirred at room temperature 

overnight. Then, the reaction mixture was diluted with excess ethyl acetate (30 mL) and 

was transferred to a separatory funnel and then the ethyl acetate layer was washed with a 

solution (20 mL) of 4:1 mixture of saturated aqueous NH4Cl solution /NH4OH solution, 

water (10 mL), brine (10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in 

vacuo. The crude was then dissolved in DCM: TFA (1: 0.2 mL) solution. Triisopropyl 

silane was added dropwise until the color transformed from dark yellow to pale yellow. 

TLC indicated the complete consumption of the starting material after 1 h. Solvent and 

TFA were evaporated off, then reaction mixture was quenched with NaHCO3 followed 

by work up and dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The 

crude was purified by column chromatography (Silica gel, 12:1:0.1 

DCM/MeOH/NH4OH) to give the title compound 10b (60.0 mg, 70%) as a white solid. 

1H NMR (400 MHz, CD3OD) δ 8.19 (s, 1H), 7.76 (s, 2H), 7.40 – 7.18 (m, 4H), 7.12 (d, J 

= 28.3 Hz, 3H), 7.04 (s, 5H), 6.71 (d, J = 7.4 Hz, 2H), 6.47 (d, J = 6.6 Hz, 2H), 4.29 (s, 

2H), 3.83 (s, 2H), 3.49 (s, 2H), 2.64 (s, 2H), 2.37 (d, J = 5.8 Hz, 2H), 2.17 (s, 3H), 2.07 

(d, J = 14.9 Hz, 2H), 1.82 (s, 2H), 1.54 (s, 2H), 1.26 (s, 4H), 0.83 (s, 3H). 13C NMR (101 

MHz, CD3OD) δ 171.4, 156.7, 147.1, 143.6, 142.3, 141.1, 138.4, 137.8, 135.5, 131.7, 
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129.9, 129.5, 129.1, 128.0, 127.7, 126.4, 125.8, 125.3, 120.9, 113.3, 104.9, 65.2, 61.6, 

55.4, 49.9, 41.8, 32.4, 29.8, 28.6, 27.8, 25.7, 25.0, 12.8. HRMS (ESI) m/z Calcd. for C41 

H48 O3 N5 [M+H+]: 658.3752, found for 658.3746. 

4.7.1.8. Tamoxifen−N-(4-triazolylbenzyl)-N-(2-amino-5-(thiophen-2-yl)phenyl) 

hexanamide (12a) 

4-(4-Ethynylbenzyl)−tamoxifen 5 (50 mg, 0.1 mmol) and N-(2-amino-5-

(thiophen-2-yl)phenyl)-4-azidohexanamide 9a (38.4 mg, 0.1 mmol) were dissolved in 

degassed anhydrous THF (5 mL). CuI (10 mg, 0.05 mmol) and Hünig’s base (0.04 mL, 

0.2 mmol) were added to the reaction and the resulting reaction was stirred at room 

temperature overnight. Then, the reaction mixture was diluted with excess ethyl acetate 

(30 mL) and was transferred to a separatory funnel and then the ethyl acetate layer was 

washed with a solution (20 mL) of 4:1 mixture of saturated aqueous NH4Cl solution 

/NH4OH solution, water (10 mL), brine (10 mL), dried over anhydrous Na2SO4, filtered, 

and concentrated in vacuo. The crude was purified by preparative TLC (Silica gel, 

12:1:0.1 DCM/MeOH/NH4OH) to give the title compound 12a (72.0 mg, 85%) as a 

yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.95 (s, 1H), 7.77 – 7.66 (m, 3H), 7.40 (dd, J = 

14.9, 4.1 Hz, 1H), 7.39 – 7.28 (m, 5H), 7.29 – 7.27 (m, 1H), 7.25 – 7.22 (m, 2H), 7.18 – 

7.08 (m, 7H), 7.02 – 6.93 (m, 1H), 6.80 – 6.72 (m, 2H), 6.59 – 6.51 (m, 2H), 4.33 (dd, J 

= 19.0, 12.1 Hz, 2H), 4.01 – 3.87 (m, 2H), 2.76 (t, J = 5.9 Hz, 2H), 2.51 – 2.39 (m, 2H), 

2.34 (dd, J = 9.3, 5.1 Hz, 2H), 2.26 (d, J = 10.5 Hz, 3H), 1.90 (td, J = 14.3, 7.0 Hz, 2H), 

1.77 – 1.62 (m, 2H), 1.30 (dt, J = 16.6, 5.0 Hz, 4H), 0.92 (t, J = 7.4 Hz, 3H). 13C NMR 

(101 MHz, CDCl3) δ 171.9, 156.7, 147.6, 144.3, 143.8, 142.4, 141.4, 140.6, 138.3, 135.6, 

131.9, 129.7, 129.6, 129.4, 128.1, 127.9, 127.7, 127.3, 126.5, 126.0, 125.8, 125.6, 124.8, 

124.6, 123.5, 123.0, 121.6, 119.8, 118.3, 113.2, 66.0, 62.2, 55.7, 50.0, 42.7, 36.2, 29.9, 

29.6, 29.1, 26.1, 25.0, 13.7. HRMS (ESI) m/z Calcd. for C50 H53 O2 N6 S [M+H+]: 

801.3952, found for 801.3941.   
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4.7.1.9. Tamoxifen−N-(4-triazolylbenzyl)-N-(2-amino-5-(thiophen-2-yl)phenyl) 

heptanamide (12b) 

4-(4-Ethynylbenzyl)−tamoxifen 5 (50 mg, 0.1 mmol) and N-(2-amino-5-

(thiophen-2-yl)phenyl)-4-azidoheptanamide 9b (36.4 mg, 0.1 mmol) were dissolved in 

degassed anhydrous THF (5 mL). CuI (10 mg, 0.05 mmol) and Hünig’s base (0.04 mL, 

0.2 mmol) were added to the reaction and the resulting reaction was stirred at room 

temperature overnight. Then, the reaction mixture was diluted with excess ethyl acetate 

(30 mL) and was transferred to a separatory funnel and then the ethyl acetate layer was 

washed with a solution (20 mL) of 4:1 mixture of saturated aqueous NH4Cl solution 

/NH4OH solution, water (10 mL), brine (10 mL), dried over anhydrous Na2SO4, filtered, 

and concentrated in vacuo. The crude was purified by preparative TLC (Silica gel, 

12:1:0.1 DCM/MeOH/NH4OH) to give the title compound 12b (80.0 mg, 93%) as a 

yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.81 – 7.67 (m, 3H), 7.47 – 7.39 (m, 1H), 7.39 

– 7.29 (m, 4H), 7.29 – 7.19 (m, 4H), 7.20 – 7.04 (m, 8H), 7.03 – 6.92 (m, 1H), 6.81 – 

6.74 (m, 2H), 6.55 (d, J = 8.8 Hz, 2H), 4.32 (dd, J = 8.8, 5.0 Hz, 2H), 3.96 (t, J = 5.8 Hz, 

2H), 2.76 (t, J = 5.8 Hz, 2H), 2.48 (dq, J = 14.8, 7.4 Hz, 2H), 2.40 – 2.30 (m, 2H), 2.27 

(d, J = 10.1 Hz, 3H), 1.87 (d, J = 7.0 Hz, 2H), 1.70 (t, J = 18.5 Hz, 2H), 1.30 (ddd, J = 

31.5, 16.0, 7.3 Hz, 6H), 0.99 – 0.87 (m, 3H). 13C NMR (101 MHz, MeOD) δ 174.9, 

158.0, 148.6, 145.5, 145.0, 143.7, 142.6, 139.7, 138.8, 137.0, 133.0, 131.2, 130.9, 130.4, 

129.2, 129.0, 128.9, 128.3, 127.7, 127.1, 126.7, 126.4, 125.8, 125.2, 124.3, 124.1, 122.7, 

122.5, 122.2, 118.7, 114.3, 66.5, 63.0, 56.6, 51.2, 43.3, 37.0, 31.3, 30.1, 29.4, 27.2, 26.7, 

14.3. HRMS (ESI) m/z Calcd. for C51 H55 O2 N6 S [M+H+]: 815.4102, found for 

815.4084. 

4.7.1.10. Tamoxifen−N-(4-triazolylbenzyl)-N-(2-amino-5-(thiophen-2-yl)phenyl) 

octanamide (12c) 
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4-(4-Ethynylbenzyl)−tamoxifen 5 (60 mg, 0.1 mmol) and N-(2-amino-5-

(thiophen-2-yl)phenyl)-4-azidooctananamide 9c (50 mg, 0.1 mmol) were dissolved in 

degassed anhydrous THF (5 mL). CuI (12 mg, 0.06 mmol) and Hünig’s base (0.04 mL, 

0.2 mmol) were added to the reaction and the resulting reaction was stirred at room 

temperature overnight. Then, the reaction mixture was diluted with excess ethyl acetate 

(30 mL) and was transferred to a separatory funnel and then the ethyl acetate layer was 

washed with a solution (20 mL) of 4:1 mixture of saturated aqueous NH4Cl solution 

/NH4OH solution, water (10 mL), brine (10 mL), dried over anhydrous Na2SO4, filtered, 

and concentrated in vacuo. The crude was purified by preparative TLC (Silica gel, 

12:1:0.1 DCM/MeOH/NH4OH) to give the title compound 12a (13.0 mg, 14%) as a 

yellow oil. 1H NMR (500 MHz, CDCl3) δ 7.84 – 7.67 (m, 3H), 7.46 – 7.33 (m, 6H), 7.26 

(d, J = 7.0 Hz, 3H), 7.21 (dd, J = 22.4, 14.8 Hz, 4H), 7.16 – 7.07 (m, 5H), 6.79 (d, J = 8.6 

Hz, 2H), 6.57 (d, J = 8.3 Hz, 2H), 4.02 (s, 2H), 3.66 (d, J = 5.8 Hz, 2H), 2.83 (s, 2H), 

2.46 (dt, J = 25.8, 13.0 Hz, 3H), 1.96 (s, 4H), 1.67 – 1.57 (m, 4H), 1.38 (s, 6H), 1.01 – 

0.90 (m, 5H). 13C NMR (126 MHz, CDCl3) δ 168.1, 143.8, 142.4, 138.2, 136.5, 131.9, 

131.8, 129.7, 129.5, 128.1, 127.9, 127.8, 126.5, 126.2, 126.0, 125.9, 125.6, 124.7, 119.4, 

115.7, 114.1, 113.9, 113.4, 100.0, 56.1, 51.5, 42.6, 32.0, 31.1, 31.0, 30.1, 29.7, 29.7, 29.4, 

29.0, 28.9, 28.8, 28.8, 26.6, 26.2, 25.3, 25.1, 22.6, 17.0, 16.8, 14.1, 13.6. HRMS (ESI) 

m/z Calcd. for C52 H55 O2 N6 S [M+H+]: 827.4102, found for 827.4100. 

4.7.2. Cell viability assay 

All cell lines used in this study were maintained in phenol red free Dulbecco's 

Modified Eagle Medium (DMEM) and Eagles’s Minimum Essential Medium (EMEM) 

(Corning, VA), supplemented with 10% fetal bovine serum (FBS) (Atlanta Biologicals, 

Atlanta, GA) and 1% Penicillin-Streptomycin. Cells were incubated in 96 well plate 24 h 

prior to treatment and then treated with various drugs’ concentration for 72 h. Their anti-

proliferative activity was measured using the MTS assay (CellTiter 96 Aqueous One 

https://www.thermofisher.com/us/en/home/life-science/cell-culture/mammalian-cell-culture/classical-media/dmem.html
https://www.thermofisher.com/us/en/home/life-science/cell-culture/mammalian-cell-culture/classical-media/dmem.html
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Solution and CellTiter 96 Non-Radioactive Cell Proliferation Assays, Promega, Madison, 

WI) as described by the manufacturer. All drugs solution were made in DMEM and 

EMEM while DMSO concentration was maintained at 0.1%. 

4.7.3. SAMDI assay (In vitro HDAC inhibition, performed by Lindsey Szymczak at 

Northwestern University) 

HDAC1, 2, 3, 8 and 6 were purchased from BPS Biosciences. To obtain IC50 

values, in a 96-well microtiter plates (60 min, 37 °C), isoform- optimized substrates (50 

μM) were incubated with enzyme (250nM) and inhibitor (at concentrations ranging from 

.1 nM to 1.0 mM) in HDAC buffer (25.0 mM Tris-HCl, pH 8.0, 140 mM NaCl, 3.0 mM 

KCl, 1.0 mM MgCl
2
, and 0.1 mg/mL BSA). Solution-phase deacetylation reactions were 

quenched with trichostatin A (TSA) and transferred to SAMDI plates to immobilize the 

substrate components. SAMDI plates were consist of an array of self-assembled 

monolayers (SAMs) presenting maleimide in standard 384-well format for high-

throughput handling capability. Following immobilization, plates were washed to remove 

buffer constituents, enzyme, inhibitor, and any unbound substrate and analyzed by 

MALDI mass spectrometry using automated protocols. Deacetylation yields in each 

triplicate sample were obtained from the integrated peak intensities of the molecular ions 

for the substrate and the deacetylated product ion by taking the ratio of the former over 

the sum of both. Yields were plotted with respect to inhibitor concentration and fitted to 

obtain IC50 values for each isoform−inhibitor pair.  

Isoform-optimized substrates were prepared by traditional FMOC solid-phase 

peptide synthesis (Anaspec) and purified by semi-preparative HPLC on a reverse-phase 

C18 column (Waters). The peptide GRKacFGC was prepared for HDAC1 and HDAC8 

experiments, whereas the peptide GRKacYGC was prepared for HDAC6 experiments.  
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9b 1H NMR  
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8 1H NMR  
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10a 13C NMR  
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12c 13C NMR  
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CHAPTER 5 

BIFUNCTIONAL STAT3/HISTONE DEACETYLASE 

INHIBITORS FOR TREATING STAT3 DEPENDENT TUMORS 

5.1. Introduction 

Pyrimethamine is an antifolate drug used as an antimalarial agent (Figure 5.1) [1] 

and has also been used in chemotherapy along with other drugs such as proguanil for few 

decades [2]. Its antimalarial activity originates from its ability to specifically bind and 

inhibit dihydrofolate reductase (DHFR, 5,6,7,8-tetrahydrofolate: NADP+ oxidoreductase, 

EC 1.5.1.3) in Plasmodium falciparum and some other protozoa [3], [4]. DHFR is critical 

for folate metabolism and has been a drug target for fungal, protozoal and bacterial 

infections and cancer. It facilitates an NADPH-dependent reduction of dihydrofolate to 

tetrahydrofolate, a cofactor necessary for the biosynthesis of thymidylate, purine 

nucleotides, and many other essential amino acids required for protein, RNA and DNA 

synthesis [5]. DHFR inhibition by antifolate compounds interferes with these pathways, 

resulting in cell cycle arrest and cell death [6]. 

 

                                     

Figure 5.1. Structure of pyrimethamine, an antifolate drug with antimalarial activity. 

Pyrimethamine is a STAT3 inhibitor and is currently in clinical trial for treating relapsed 

chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL). 

 

Unfortunately, pyrimethamine’s use as a standalone antimalarial agent has been 

hampered by naturally occurrence of drug resistance in the parasite [1].  Mutations in the 

gene encoding dihydrofolate reductase-thymidylate synthesis are responsible for the 
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developed drug resistance [7], [8]. To overcome the developed resistance obstacle, 

pyrimethamine has been used in combination therapy with other drugs such as 

sulfadoxine to treat malaria. However, parasite mutations in DHFR conferred 

sulfadoxine- pyrimethamine- resistant as well [9]. 

However, despite the pyrimethamine failure in treating malaria recent years, 

studies have shown it inhibits proliferation of acute myeloid leukemia (AML) by 

targeting a protein in tumor cells called STAT3 (Signal transducer and activator of 

transcription 3) [10], [11], [12]. In fact, pyrimethamine is currently in phase I/II clinical 

trials for the treatment of relapsed chronic lymphocytic leukemia (CLL) and small 

lymphocytic lymphoma (SLL) (ClinicalTrials.gov Identifier: NCT01066663).  

STAT proteins, a family of seven members (STAT1, 2, 3, 4, 5a, 5b, 6), were 

discovered in 1993 by Shuai et al [13]. STAT3, an oncogenic transcription factor with 

critical role in the signaling of a number of cytokines and growth factors, confers 

resistance to apoptosis in various cell types [14] and is activated in many cancers [15], 

[11]. STAT3 activation through its tyrosine phosphorylation by JAK (Janus kinase) or 

IL-6 signaling cascade [16] enhances its dimerization and translocation from cytoplasm 

to nucleus where it can bind to certain DNA sequences and regulates genes expression 

involved in various cellular processes. Tyrosine phosphorylation is not the only way to 

activate STAT3. It can be activated through other processes such as serine 

phosphorylation, acetylation, methylation and glutathionylation [17], [18], [19]. Once 

STAT3 is activated it enhances various cell processes such as cell proliferation, 

differentiation, survival and angiogenesis that contribute to malignant transformation and 

progression in many cancers such as breast, ovary, and prostate [20]. Although STAT3 

has non-transcriptional responsibilities, such as regulation of mitochondrial function, 

most of its oncogenic activities is related to its gene regulation in nucleus [12]. 

Activation of STAT3 is tightly regulated in normal conditions, however in cancer, 

it is highly activated and leads to malignant cancer cells phenotype [21]. Therefore, 
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inhibiting STAT3 can be a promising strategy for cancer therapy as a wide variety of 

cancers depend on STAT3 for their survival. Additionally, there is less chance for 

developing resistance due to convergence of many cellular pathways on STAT3. STAT3 

inhibitors exhibit synergetic effect with other therapeutic agents in inhibiting tumor stem 

cells, leading to improved therapeutic indices for these agents.  

Histone deacetylase (HDAC) enzymes are a class of proteins that play an 

important role in regulating STAT3 activation [22]. HDACs along with histone acetyl 

transferase (HAT) control gene expression, chromatin condensation and play an essential 

role in transcriptional activation by regulating acetylation state of histone proteins [23]. 

In addition to histone proteins, several non-histone proteins, including transcription 

factors (E2F, STAT3, P53, NF-ҝB), estrogen receptor (ERα), androgen receptor (AR), α-

tubulin, and chaperons (HSP90) are regulated by HDAC and HAT activity [24]. Due to 

critical role of HDACs in regulating a wide range of cellular pathways such as cell 

survival, differentiation, cell cycle progression, angiogenesis and immunity, HDACs are 

considered as promising targets, and their inhibition has emerged as a potential strategy 

in treating various diseases like malaria, leishmania, and most importantly cancer [25], 

[26]. To date, there are four US FDA approved HDACis, namely, SAHA (suberoylanilide 

hydroxamic acid, vorinostat) approved in 2006 for relapsed and refractory cutaneous T-

cell lymphoma (CTCL) [27], romidepsin (FK228) approved in 2009 for 

relapsed/refractory peripheral T-cell lymphoma [28], belinostat (PXD101) approved in 

2014 for relapsed/refractory peripheral T-cell lymphoma [29], and lastly panobinostat 

(LBH589) in 2015 for treating acute myeloma (Figure 5.2) [30]. Chidamide (CS055) is 

another HDACi which is only approved in China for treating relapsed/ refractory 

peripheral T-cell lymphoma. Chidamide is in phase II clinical trials in US [31]. 



 210 

   

   Figure 5.2. US FDA approved HDACi. 

 

Inhibition and knockdown of class I HDAC, specifically HDAC3, has been 

shown to result in upregulated STAT3Lys685 acetylation, attenuated STAT3Tyr705 

phosphorylation and inhibition of survival of pSTAT3-positive diffuse large B-cell 

lymphoma (DLBCL) cells. The DLBCL cytotoxicity is linked to downregulation of the 

direct STAT3 target myeloid leukemia cell differentiation protein (Mcl-1), a pro-cell 

survival protein encoded by MCL1 gene [32]. Therefore, targeting STAT3-positive 

DLBCL cells with HDACi is another potentially viable therapeutic option for managing 

CLL and DLBCL tumors. We hypothesized that designed multiple ligands comprising 

pyrimethamine and HDAC inhibition chemotype will integrate direct stat3- and HDAC-

inhibition, and downregulation of Mcl-1 within a single molecular template. These 

pyrimethamine-HDACi conjugates are anticipated to be more efficient inhibitors of 
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proliferation of CLL, DLBCL and possibly other tumors which are exquisitely dependent 

on STAT3 signaling pathway.  

5.2. Design of Pyrimethamine-HDACi Conjugates 

The three-motif HDACi pharmacophoric model consists of a recognition cap 

group, linker group, and zinc binding group (ZBG) (Figure 5.3) [33]. Pyrimethamine 

structure closely resembles HDACi aryl-derived cap group. Moreover, substitution of the 

pyrimithamine halogen group with alkyl, aryl and ring systems have been shown to be 

compatible with DHFR inhibition. Based on these observations, I designed two classes of 

pyrimethamine-HDACi conjugates using pyrimethamine as a surrogate for HDACi cap 

group.                                          

 

Figure 5.3. Pharmacophoric model of HDACi, and the two classes of pyrimethamine 

HDACi-conjugates.  
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For aryl triazolyl HDACi, we had previously shown that five and six methylenes 

are ideal length of for linker group to ensure optimal zinc chelation [25].  Therefore, I 

limited the linker length to five and six methylene groups in my design.  

5.3. Chemistry and synthesis 

To synthesizethe the class I pyrimethamine-HDACi conjugates, 4-bromophenyl 

acetonitrile 1 was reacted with ethyl propanioate 2 under basic condition to yield β-

ketonitrile 3 [34] the keto group of which was then converted to methoxy 5 using 

trimethyl orthoformate 4 [35]. Pyrimidine ring was formed through cyclization reaction 

with guanidine hydrochloride [36]. Boc protection of amine groups [37], [38] followed 

by sonogashira reaction with trimethylsilylacetylene 8 resulted in compound 9 [39]. 

Trimethylsilyl group was removed using potasium carbonate to afford alkyne 10. 

Subsequently,  copper (I) catalyzed azide-alkyne-cycloaddition (AAC) reaction [40] 

between alkyne 10 and compounds 11a-b, followed by removal of trityl- protecting 

group resulted the final product 12a-b. Compounds 11a-b were synthesized as described 

in chapter 4 [41] (Scheme 5.1). 
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Scheme 5.1. (a) KOtBu Amyl 25% toluene,THF, rt, 20 min, 90%; (b) 6 h, 107 °C, 

33%; (c) Guanidine hydrochloride, NaHCO3, DMSO, 100 °C, 6 h, 72%; (d) Boc2O, THF, 

DMAP, 45 °C, THF, 86%; (e) Hunig’s base, Pd(PPh3)4, acetonitrile, CuI, 75 °C, 

overnight; (f) K2CO3, MeOH, 0 °C, 2 h, 36% (e and f); (g) CuI, Hunig's base, rt, 

overnight; (h) TFA, DCM, rt, 2 h, 84-88% (g and h). 

 

To synthesize the class II pyrimethamine-HDACi conjugates, a Heck reaction was 

performed on intermediate 6 with methyl acrylate 13 [42]. After the Boc protection, the 

ester group was converted to carboxylic acid 16 using sodium hydroxide [43]. The final 

hydroxamic acid derivative 18 was synthesized through coupling of carboxylic acid 16 

and O-trityl hydroxylamine 17 followed by trityl deprotection (Scheme 5.2) [41].       
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Scheme 5.2 . (a) Tri-O-tolyl phosphine, Pd(OAc)2, TEA, DMF, 120 °C, overnight, 55%; 

(b) Boc2O, THF, DMAP, 45 °C, THF, 56%; (c) NaOH, H2O, Dioxane, 20 °C, 12 h, 60%; 

(d) EDCI, HOBT, DCM, rt, 6 h; (e) TFA, DCM, rt, 2 h, 24% (d and e). 

5.4. HDAC inhibitory potency (Performed by BPS Bioscience) 

All three pyrimethamine conjugated HDACi were tested against HDAC isoforms 

1, 6 and 8. Compounds 12a and 12b showed both HDAC1 and HDAC6 inhibition 

activity while compound 18 exhibited HDAC inhibition potency more selectively toward 

HDAC6.   

 

Table 5.1. HDAC inhibition activities of pyrimethamine-HDACi conjugates (IC50 in 

µM). 

     Compound           HDAC1         HDAC6         HDAC8  

12a 0.26 0.046 2.8 

12b 0.045 0.017 0.78 

18 2.2 0.40 1.8 

SAHA 0.042 0.034 2.8 
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5.5. Docking study  

Molecular docking analyses using AutoDock Vina confirmed that compounds 12a 

and 12b chelates the zinc ion in the active stie of both HDAC1 and HDAC6 while 

compound 18 only chelates the zinc ion in the pocket of HDAC6 and does not exhibit 

HDAC1 inhibion potency (Figure 5.4). 

  

  

A 

A 
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Figure 5.4. Docking structures of various pyrimethamin conjugated HDACi. Grey sphere 

represents zinc ion in the active site of HDAC isoform. (A) 12b against HDAC1 (B) 12b 

against HDAC6 (C) 18 against HDAC1 (D) 18 against HDAC6.   

 

D 

D 
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5.6. Antiproliferative activity 

The pyrimethamine-HDACi conjugates were tested against four cell lines. Three 

transformed cell lines, lung (A549), ER positive (MCF-7), ER negative (MDA-MB231) 

cancer cell lines, and one healthy cell line (VERO- monkey kidney epithelial cell). 

SAHA, the FDA approved HDACi, was used as the control.  

As expected compound 18 did not show anti-proliferative activity towards 

transformed cell lines, since it did not exhibit HDAC inhibitory activity. Additionally, 

compound 12b was a more potent HDAC inhibitor compared to 12a, therefore it was 

more cytotoxic towards transformed cell lines than 12a.  

Furthermore, The data showed that pyrimethamine conjugated HDACi 12a and 

12b were most cytotoxic toward MDA-MB231 with STAT3 activity. STAT3 is not 

activated in other cell lines, therefore the pyrimethamine conjugated HDACi did not 

show porent anti-proliferative activity towards them. 

 

Table 5.2. Anti-proliferative activity of pyrimethamine-HDACi conjugates (IC50 values 

in µM).      

Compound A549 MCF-7 MDA-MB231 VERO Hs.505 T 

12a NI NI 38.38± 1.0 ND ND 

12b 26.27± 3.0 52.6 ± 6.2 1.11 ± 0.2 11.5 ± 2.7 ND 

18 NI NI NI ND ND 

SAHA 5.00±0.24 3.27±0.05 3.40±0.20 1.03±0.97 52± 2.2 

Each value is obtained from a duplicate of three simultaneous experiments. NI: No Inhibition. ND: Not Determined at maximum 

concentration of 50 µM.  

 



 220 

5.7. Conclusion 

I designed and synthesized two classes of pyrimethamine conjugated HDACi. 

Compounds 12a and 12b inhibited both HDAC1 and HDAC6 activity while compound 

18 was a very weak HDAC inhibitor. Additionally, it was 5 fold more selective toward 

HDAC6 compared to HDAC1. Compound 18 did not show HDAC anti-proliferative 

activity due to lack of HDAC inhibition potency. 

These pyrimethamine HDACi conjugates were most cytotoxic toward STAT3 actived 

transformed cell line such as MDA-MB231.   

5.8. Experimental 

5.8.1. Materials and methods 

4-Bromophenyl acetonitrile, ethyl propionate, O-tritylhydroxylamine, methyl 

acrylate, were purchased from Sigma-Aldrich. Trimethylsilylacetylene was purchased 

from Alfa Aesar. All commercially available starting materials were used without 

purification. Reaction solvents were high performance liquid chromatography (HPLC) 

grade or American Chemical Society (ACS) grade and used without purification. 

Analtech silica gel plates (60 F254) were used for analytical TLC, and Analtech 

preparative TLC plates (UV 254, 2000 µm) were used for purification.  UV light and 

anisaldehyde/iodine stain were used to visualize the spots.  200-400 Mesh silica gel was 

used in column chromatography. Nuclear magnetic resonance (NMR) spectra were 

recorded on a Varian-Gemini 400 MHz or Bruker 500 MHz magnetic resonance 

spectrometer.  1H NMR Spectra were recorded in parts per million (ppm) relative to the 

residual peaks of CHCl3 (7.24 ppm) in CDCl3 or CHD2OD (4.78 ppm) in CD3OD or 

DMSO-d5 (2.49 ppm) in DMSO-d6. 
13C spectra were recorded relative to the central peak 
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of the CDCl3 triplet (77.0 ppm) or CD3OD septet (49.3 ppm) or DMSO-d6 septet (39.7 

ppm) and were recorded with complete hetero-decoupling. Original ‘fid’ files were 

processed using MestReNova LITE (version 5.2.5-5780) program. High-resolution mass 

spectra were recorded at the Georgia Institute of Technology mass spectrometry facility 

in Atlanta.  

5.8.1.1. 2-(4-Bromophenyl)-3-oxopentanenitrile (3)  

To a solution of 4-bromophenyl acetonitrile (1.4 g, 7 mmol) in THF (10 mL), 

potassium tert-pentylate (25% in toluene) (12.2 mL, 21 mmol) was added dropwise, 

followed by addition of ethyl proponiate. The reaction mixture stirred for 20 minutes, and 

then diluted with 1N HCl solution to pH=7, and water (5 mL) and EtOAc (10 mL). The 

organic layer was then washed with water (10 mL) and brine (10 mL) and dried over 

Na2SO4. Crude product was purified by column chromatography using (Silica gel, 4:1, 

Hex: EtOAc) and yielded the product (1.6 g, 90%) as yellow oil. 1H NMR (400 MHz, 

CD3OD) δ 7.62 – 7.53 (m, 2H), 7.49 – 7.41 (m, 2H), 2.71 – 2.55 (m, 2H), 1.31 – 1.23 (m, 

3H). 13C NMR (101 MHz, CD3OD) δ 173.5, 132.1, 131.9, 130.9, 130.0, 128.9, 120.0, 

119.4, 85.6, 28.8, 11.2. HRMS (ESI) m/z Calcd. for C11 H10 N O Br [M+H+]: 250.9946, 

found for 250.9946.  

 

5.8.1.2. 2-(4-Bromophenyl)-3-methoxypent-2-enenitrile (5) 

Compound 3 (3.1 mg, 12.5 mmol) and trimethyl orthoacetate 4 (12.3 ml, 96.5 

mmol) were heated at 107 °C for 6 h. The reaction mixture was washed with water (15 

ml), NaHCO3 (15 ml), and brine (15 ml). The organic layer was dried over Na2SO4. 

Crude product was purified by column chromatography using (Silica gel, 3:1, Hex: 

EtOAc) and yielded the product (1.1 g, 33%) as yellow oil. 1H NMR (400 MHz, CDCl3) 

δ 7.57 – 7.35 (m, 4H), 2.77 (q, J = 7.6 Hz, 2H), 1.32 – 1.26 (m, 3H). 13C NMR (101 



 222 

MHz, CDCl3) δ 173.1, 131.4, 130.8, 129.8, 120.7, 119.7, 91.5, 56.4, 24.1, 12.8. HRMS 

(ESI) m/z Calcd. for C12 H12 N O Br [M+H+]: 265.0102, found for 265.0103.  

5.8.1.3. 5-(4-Bromophenyl)-6-ethylpyrimidine-2,4-diamine (6) 

A mixture of compound 5 (846 mg, 3.2 mmol), sodium hydrogen carbonate (588 

mg, 7mmol) and guanidine hydrochloride (668 mg, 7 mmol) in dry DMSO (10 mL) was 

heated at 100 °C for 5 h. The reaction mixture was washed with water (15×3 mL) and 

10% MeOH: DCM (15 mL). Organic layer was seperated and washed with brine (10 

mL), and dried over Na2SO4.  Crude product was purified by precipitation with EtOAc 

and yielded the product (670 mg, 72%) as a white powder. 1H NMR (400 MHz, CD3OD) 

δ 7.62 (d, J = 8.5 Hz, 2H), 7.16 (d, J = 8.5 Hz, 2H), 2.22 (q, J = 7.6 Hz, 2H), 1.03 (t, J = 

7.6 Hz, 3H). 13 C NMR (126 MHz, DMSO) δ 166.8, 162.6, 162.4, 135.9, 133.4, 132.3, 

121.0, 105.9, 49.1, 27.9, 13.7. HRMS (ESI) m/z Calcd. for C12 H14 N4 Br [M+H+]: 

293.0396, found for 293.0399. 

5.8.1.4. Di-tert-butyl (5-(4-bromophenyl)-6-ethylpyrimidine-2,4-diyl)bis((tert-

butoxycarbonyl)carbamate) (7)  

 Compound 6 (104.4 mg, 0.3 mmol) and DMAP (4.3 mg, 0.03 mmol) were 

dissolved in THF (5 mL) and flushed with argon. Boc2O (622.7 mg, 2.8 mmol) was 

added to the solution. Reaction went overnight at 40 °C. The reaction mixture was 

washed with water (5 mL) and DCM (5 mL) and the organic layer was seperated and 

washed with brine (5 mL), and dried over Na2SO4.  The crude product was purified on 

preparative TLC using 4:1 (Hex: EtOAc) to yield the product (204 mg, 86% conversion) 

as a yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.56 – 7.48 (m, 2H), 7.14 – 7.03 (m, 2H), 

2.59 (q, J = 7.5 Hz, 2H), 1.42 (s, 18H), 1.31 (s, 18H), 1.13 (t, J = 7.5 Hz, 3H). 13C NMR 

(101 MHz, CDCl3) δ 173.9, 158.6, 157.4, 150.3, 149.8, 132.0, 131.7, 130.8, 128.3, 122.6, 
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83.5, 83.1, 28.4, 27.9, 13.0. HRMS (ESI) m/z Calcd. for C32 H46 O8 N4 Br [M+H+]: 

693.2494, found for 693.2493. 

 5.8.1.5. Di-tert-butyl (6-ethyl-5-(4-((trimethylsilyl)ethynyl)phenyl)pyrimidine-2,4-

diyl)bis((tert-butoxycarbonyl)carbamate) (9). 

Compound 7 (315 mg, 0.4 mmol), Pd(PPh3)4 (26 mg, 0.02 mmol), and CuI (8.6 

mg, 0.04 mmol) were dissolved in acetonitrile (5 mL) under argon. 

Trimethylsilylacetylene (0.1 mL, 0.9 mmol) was added, followed by Hunig’s base (0.2 

mL, 0.9 mmol) . The reaction mixture was heated to 75 °C overnight.  The reaction 

mixture was washed with water (3 mL) and DCM (5 mL). The organic layer was 

seperated and washed with brine (5 mL), and dried over Na2SO4. Crude product was used 

in the next step without purification.  

5.8.1.6. Di-tert-butyl (6-ethyl-5-(4-ethynylphenyl)pyrimidine-2,4-diyl)bis((tert-

butoxycarbonyl)carbamate) (10) 

Potassium carbonate (74 mg, 0.5 mmol) was added to a solution of crude 

compound 9 (190 mg) in methanol (3 mL). The reaction mixture stirred for 2 h at rt. The 

reaction mixture was washed with water (1 mL) and DCM (3 mL). The organic layer was 

seperated and washed with brine (3 mL), and dried over Na2SO4. The crude product was 

purified on preparative TLC using 8:1:1 (Hex: EtOAc: Ether) and yielded the product (93 

mg, 36% overall yield of 9 and 10) as a white powder. 1H NMR (400 MHz, CDCl3) δ 

7.57 – 7.49 (m, 2H), 7.25 – 7.18 (m, 2H), 3.14 (s, 1H), 2.61 (dt, J = 7.5, 6.0 Hz, 2H), 1.45 

(s, 18H), 1.34 (s, 18H), 1.17 (q, J = 7.6 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 173.8, 

158.7, 157.1, 150.9, 150.0, 134.0, 132.3, 129.5, 128.8, 122.4, 83.8, 83.5, 83.1, 78.4, 28.5, 

27.7, 13.0. HRMS (ESI) m/z Calcd. for C34 H47 O8 N4 [M+H+]: 639.3388, found for 

639.3382.  
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5.8.1.7. 4-(4-(4-(2,4-Diamino-6-ethylpyrimidin-5-yl)phenyl)-1H-1,2,3-triazol-1-yl)-N-

hydroxyhexanamide (12a) 

Compound 10 (41 mg, 0.06 mmol) and 4-azido-N-(trityloxy)hexanamide 11a (32 

mg, 0.08 mmol) were dissolved in anhydrous THF (5 mL) and purged with argon for 15 

min. Copper (I) iodide (6 mg, 0.03 mmol) and Hunig’s base (0.02 mL, 0.1 mmol) were 

then added to the reaction mixture. The reaction mixture was purged with argon for 

additional 15 min and stirring continued for overnight 12 h. The crude was then dissolved 

in DCM: TFA (1: 0.2 mL) solution. Triisopropyl silane was added dropwise until the 

color transformed from dark yellow to pale yellow. TLC indicated the complete 

consumption of the starting material after 1 h. Solvent and TFA were evaporated off. The 

crude product was purified by precipitation in EtOAc to give the title compound (23 mg, 

88%) as a pale yellow solid. 1H NMR (500 MHz, MeOD) δ 8.46 (s, 1H), 8.02 (d, J = 7.7 

Hz, 2H), 7.40 (dd, J = 15.1, 8.0 Hz, 2H), 4.50 (d, J = 6.2 Hz, 2H), 2.42 (q, J = 7.2 Hz, 

2H), 2.21 – 2.04 (m, 2H), 2.02 (s, 2H), 1.71 (s, 2H), 1.41 (s, 2H), 1.21 – 1.12 (m, 3H). 

13C NMR (126 MHz, MeOD) δ 165.2, 155.5, 154.6, 146.9, 131.6, 130.9, 126.7, 121.4, 

108.8, 71.2, 50.1, 29.8, 29.2, 25.6, 24.6, 23.9, 17.3, 11.8. HRMS (ESI) m/z Calcd. for C20 

H27 O2 N8 [M+H+]: 411.2251, found for 411.2246. 

5.8.1.8. 4-(4-(4-(2,4-Diamino-6-ethylpyrimidin-5-yl)phenyl)-1H-1,2,3-triazol-1-yl)-N-

hydroxyheptanamide (12b) 

Compound 10 (40 mg, 0.06 mmol) and 4-azido-N-(trityloxy)heptanamide 11b (32 

mg, 0.08 mmol) were dissolved in anhydrous THF (5 mL) and purged with argon for 15 

min. Copper (I) iodide (6 mg, 0.03 mmol) and Hunig’s base (0.02 mL, 0.1 mmol) were 

then added to the reaction mixture. The reaction mixture was purged with argon for 

additional 15 min and stirring continued for overnight 12 h. The crude was then dissolved 

in DCM: TFA (1: 0.2 mL) solution. Triisopropyl silane was added dropwise until the 

color transformed from dark yellow to pale yellow. TLC indicated the complete 
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consumption of the starting material after 1 h. Solvent and TFA were evaporated off. The 

crude product was purified by precipitation in EtOAc to give the title compound (22 mg, 

84%) as a pale yellow solid. 1H NMR (400 MHz, CD3OD) δ 8.43 (s, 1H), 7.99 (d, J = 6.4 

Hz, 2H), 7.37 (s, 2H), 4.47 (s, 2H), 2.39 (s, 2H), 2.19 (d, J = 31.3 Hz, 2H), 1.99 (d, J = 

11.8 Hz, 2H), 1.60 (s, 2H), 1.38 (s, 4H), 1.14 (d, J = 6.1 Hz, 3H). 13C NMR (126 MHz, 

MeOD) δ 164.9, 155.4, 154.8, 146.7, 131.4, 130.9, 130.6, 126.5, 121.4, 108.8, 50.1, 29.8, 

29.4, 28.1, 26.1, 25.0, 23.7, 23.0, 11.8. HRMS (ESI) m/z Calcd. for C21 H29 O2 N8 

[M+H+]: 425.2408, found for 425.2402. 

5.8.1.9. Methyl-3-(4-(2,4-diamino-6-ethylpyrimidin-5-yl)phenyl)acrylate (14) 

Compound 6 (90 mg, 0.3 mmol), methyl acrylate 13 (0.09 mL, 0.9 mmol), TEA 

(0.1 mL, 0.8 mmol), and tri-O-tolylphosphine (28 mg, 0.09 mmol) were dissolved in 

DMF (3 mL). The reaction mixture was purged with argon for 15 min, then Pd(OAc)2 

(10.3 mg, 0.05 mmol) was added, and then was heated at 120 °C overnight.  The reaction 

mixture was washed with water (10 mL) and DCM (10 mL). The organic layer was 

seperated and washed with brine (5 mL), and dried over Na2SO4. Crude product was 

purified on preparative TLC using 10:1:0.5 (EtOAc: Hex: NEt3) and yielded the product 

(50 mg, 55%) as a pale yellow powder. 1H NMR (400 MHz, CD3OD) δ 7.74 (d, J = 8.2 

Hz, 3H), 7.32 (d, J = 7.7 Hz, 2H), 6.60 (d, J = 16.2 Hz, 1H), 2.38 – 2.21 (m, 2H), 1.10 (t, 

J = 7.4 Hz, 3H). 13C NMR (126 MHz, MeOD) δ 167.4, 164.1, 157.7, 144.1, 134.6, 134.2, 

130.9, 128.7, 118.6, 107.9, 70.3, 51.1, 31.8, 29.2, 25.4, 12.0. HRMS (ESI) m/z Calcd. C16 

H19 O2 N4 [M+H+]: 299.1503, found for 299.1503. 

5.8.1.10. Methyl-3-(4-(2,4-bis(bis(tert-butoxycarbonyl)amino)-6-ethylpyrimidin-5-

yl)phenyl)acrylate (15) 

Compound 14 (27 mg, 0.09 mmol) and DMAP (1.1 mg, 0.009 mmol) were 

dissolved in THF (3 mL) and flushed with argon. Boc2O was added to the solution. 
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Reaction went overnight at 40 °C. The reaction mixture was washed with water (1 mL) 

and DCM (3 mL) and the organic layer was seperated and washed with brine (3 mL), and 

dried over Na2SO4.  The crude product was purified on preparative TLC using 3:1 (Hex: 

EtOAc) to yield the product (35 mg, 56%) as a white solid. 1H NMR (400 MHz, CD3OD) 

δ 7.77 (s, 1H), 7.74 (d, J = 7.0 Hz, 2H), 7.34 (dd, J = 17.5, 8.2 Hz, 2H), 6.63 (dd, J = 

16.1, 10.6 Hz, 1H), 3.80 (s, 3H), 2.80 – 2.57 (m, 2H), 1.48 (s, 18H), 1.35 (d, J = 4.3 Hz, 

18H), 1.19 (t, J = 7.5 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 173.8, 167.3, 158.6, 157.4, 

150.9, 149.8, 143.8, 135.3, 134.5, 129.8, 128.0, 118.7, 82.2, 81.3, 70.4, 51.9, 51.8, 29.7, 

29.0, 28.6, 28.2, 28.0, 27.9, 27.8, 27.7, 13.2, 12.9. HRMS (ESI) m/z Calcd. C36 H51 O10 

N4 [M+H+]: 699.3600, found for 699.3595. 

5.8.1.11. 3-(4-(2,4-Bis(bis(tert-butoxycarbonyl)amino)-6-ethylpyrimidin-5-

yl)phenyl)acrylic acid (16) 

Compound 15 (60 mg, 0.08 mmol) was dissolved in 1,4-dioxane (3 mL) and 

added dropwise to an aqueous solution (3 mL) containing hydroxylamine (6 mg, 0.2 

mmol) and sodium hydroxide (10.2 mg, 0.2 mmol) at rt, and stirred for 12 h and 

concentrated under vaccume to remove organic solvent. The aquous solution was 

adjusted to pH=1 with 1N HCl. The resulting precipitate was collected by filteration and 

dried to give the product (35 mg, 60%) as a pale yellow solid. 1H NMR (400 MHz, 

CDCl3) δ 7.70 (s, 1H), 7.60 – 7.52 (m, 2H), 7.27 (d, J = 5.2 Hz, 1H), 7.22 (d, J = 8.1 Hz, 

1H), 6.54 (s, 1H), 2.62 (dq, J = 15.2, 7.5 Hz, 2H), 1.51 (d, J = 15.4 Hz, 6H), 1.50 – 1.44 

(m, 12H), 1.32 (s, 18H), 1.24 (d, J = 3.9 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 174.3, 

158.9, 158.2, 157.6, 156.7, 150.7, 150.5, 150.0, 130.0, 129.5, 128.8, 128.1, 125.5, 81.5, 

29.7, 29.0, 28.6, 28.3, 28.0, 27.8, 27.7, 13.1, 12.9. HRMS (ESI) m/z Calcd. C35 H49 O10 

N4 [M+H+]: 685.3443, found for 685.3434. 

5.8.1.12. 3-(4-(2,4-Diamino-6-ethylpyrimidin-5-yl)phenyl)-N-hydroxyacrylamide (18) 
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Compound 16 (35 mg, 0.05 mmol), EDCI (9.5 mg, 0.05 mmol) and HOBT (6.9 

mg, 0.05 mmol) were dissolved in DCM (3 mL) at 0 °C. After stirring at 0 °C for 15 min, 

amine (20.6 mg, 0.07 mmol) and Hunig’s base (0.03 mL, 0.15 mmol) were added. And 

the reaction mixture stirred for 12 h at rt. The reaction mixture was washed with water (1 

mL) and DCM (3 mL) and the organic layer was seperated and washed with brine, and 

dried over Na2SO4.  The crude was then dissolved in DCM: TFA (1: 0.2 mL) solution. 

Triisopropyl silane was added dropwise until the color transformed from dark yellow to 

pale yellow. TLC indicated the complete consumption of the starting material after 1 h. 

Solvent and TFA were evaporated off. The crude product was purified by precipitation in 

EtOAc to give the title compound (3.6 mg, 24%) as a pale yellow solid.  1H NMR (500 

MHz, MeOD) δ 7.75 (d, J = 7.4 Hz, 2H), 7.66 (d, J = 15.6 Hz, 1H), 7.37 (d, J = 6.9 Hz, 

2H), 6.59 (d, J = 15.3 Hz, 1H), 2.38 (d, J = 7.4 Hz, 2H), 1.15 (t, J = 7.3 Hz, 3H). 13C 

NMR (126 MHz, MeOD) δ 171.8, 165.2, 158.0, 155.3, 144.8, 135.7, 130.7, 128.7, 120.4, 

29.6, 27.2, 23.9, 12.0. HRMS (ESI) m/z Calcd. C15 H18 O2 N5 [M+H+]: 300.1455, found 

for 300.1451. 

5.8.2. Cell viability assay 

All cell lines used in this study were maintained in phenol red free Dulbecco’s 

Modified Eagle Medium (DMEM) (Corning, VA), supplemented with 10% fetal bovine 

serum (FBS) (Atlanta Biologicals, Atlanta, GA) and 1% Penicillin-Streptomycin. Cells 

were incubated in 96 well plate for 24 h prior to treatment and then treated with various 

drugs’ concentration for 72 h. Their anti-proliferative activity was measured using the 

MTS assay (CellTiter 96 Aqueous One Solution and CellTiter 96 Non-Radioactive Cell 

Proliferation Assays, Promega, Madison, WI) as described by the manufacturer. All 
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drugs solution were made in DMEM while DMSO concentration was maintained at 

0.1%. 

5.8.3. In vitro HDAC inhibition (Performed through contractual agreement with 

BPS Bioscience) 

HDAC inhibition was performed via Fluor de Lys assay. This assay is based on 

Fluorimetric Histone deAcetylaseLysyl substrate and developer combination. First the 

substrate with the acetylated lysine chain is incubated with HDAC enszymes. Then the 

developer is added which results in generating a fluorophore.  

To perform the in vitro HDAC inhibition assay, different concentration of HDACi 

with 10% DMSO in HDAC assay buffer were prepared and added to the enzymatic 

reaction containing HDAC assay buffer, BSA, substrate and enzyme (HDAC1, HDAC6 

and HDAC8) in 96 well plate. Developer was then added to each well and the plate was 

incubated at room tempretaure for 15 minutes. Fluorescent intensity at the certain 

wavelengths was measured using Bioteck Synergy microplate reader. Fluorescent 

intensities were measured in the absence and presence of the compounds as well as in the 

absence of HDAC , and the data was analyzed using Graphpad Prism. IC50 value for each 

compound was determined by the concentration leading to a half-maximal percent 

inhibition.   
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Chapter 6 

CONCLUSION AND FUTURE STUDIES 

 

6.1. Conclusion 

Cancer is one of the leading causes of death worldwide [1]. Genetic and 

epigenetic alterations are involved in tumorigenesis, therefore, epigenetic regulations 

have become a new promising therapeutic strategy over the past few decades. Epigenetic 

regulation has various ways to modify DNA and histone state through processes such as 

DNA methylation, histone modification and remodeling via histone acetylation and 

deacetylation. Histone acetyl transferase (HAT) and histone deacetylase (HDAC) are able 

to add or remove acetyl group, respectively, from histone core tail, leading to an open or 

restricted chromatin. Histone modification impacts DNA access to transcription factors 

and, consequently, gene expressions [2].      

Development of HDAC inhibitors (HDACi) that impede HDAC enzyme function 

and result in expression of tumor suppressor proteins such as p53 has emerged as an 

encouraging anticancer therapeutic approach [3]. To date, there are four US FDA 

approved HDACi for treating CTCL, PTCL and myeloma  with many others being 

investigated in different phases of clinical trials [4]. Chidamide is another HDACi that is  

approved only in china for treating relapsed and refractory peripheral T-cell lymphoma 

and currently in phase II clinical trials in US [5]. Despite the promising results of these 

HDACi, they mostly suffer from poor bioavailability, lack of accumulation in solid 

tumors and side effects including severe cardiotoxicity [6]. Thus, there is an unmet 

medical need to develop a new class of HDACi that are more potent towards solid tumors 

and less cytotoxic to healthy cells. 

This thesis focused on two approaches to overcome the common limitations of 

HDACi: 1) Design and development of isoform-selective HDACi. 2) Targeted delivery 

of HDACi to the site of tumor through their conjugation to FDA approved drugs that are 
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known to accumulate in certain tissues or target certain receptors overexpressed on tumor 

cells.  

In chapter 2 and 3, I showed that HDACi that are conjugated to azithromycin, an 

FDA approved antibiotic, has the potential to target lung tissues, possibly due to 

azithromycin accumulation in macrophage cells [7], [8]. I described the designed and 

synthesis of pan HDACi and isoform selective HDACi conjugated to azithromycin for 

delivery to lung tissues, and evaluated their HDAC inhibitory potency and anti-

proliferative activity. Interestingly, despite the lower HDAC potency of isoform selective 

HDACi they exhibited more potent anti-proliferative activity towards transformed cell 

lines. Additionally, data from in vivo efficacy study on a lead pan HDACi and isoform 

selective HDACi in mouse model strongly suggest that these azithromycin conjugated 

HDACi have the potential to accumulate in lung tissue and protect it from metastasis. 

Furthermore, the in vivo study also confirmed the general hypothesis that isoform 

selective HDACi have better efficacy and therapeutic outcome compared to pan HDACi. 

Animal model showed greater tomur regression as well as less number of lung nodules in 

the mice that were treated with the isoform selective HDACi compared to the ones that 

were treated with pan HDACi.  

In chapter 4, a series of dual functioning compounds with both selective estrogen 

receptor modulator (SERM) and HDAC inhibition activities having various zinc binding 

groups was synthesized and tested against both ERα positive (MCF-7) and ERα negative 

(MDA-MB231) cell lines. In this project, tamoxifen, a SERM that is the most common 

and the first line therapy in treating ERα positive breast cancer [9], was used as the 

HDACi cap group. Conjugating tamoxifen to the HDACi resulted in their better uptake 

by ERα positive breast cancer cell line compared to ERα negative breast cancer cell line 

possibly due to tamoxifen’s binding to ERα [10], [11]. The lead tamoxifen conjugated 

HDACi exhibited more selectivity and cytotoxicity toward ERα positive (MCF-7) rather 
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than ERα negative (MDA-MB231) compared to tamoxifen itself [12]. Leads compounds 

are currently being investigated in animal models.  

The last chapter focused on design and synthesis of bifunctional STA3/ HDAC 

inhibitors, where pyrimethamine, a known STAT3 selective inhibitor [13] was used as 

the cap group. We hypothesized that multiple ligand compounds comprising of 

pyrimethamine and HDAC inhibitors will result in both STAT3 and HDAC inhibition. 

The anti-proliferative activity of these compounds were evaluated against three 

transformed cell lines, lung (A549), ERα positive (MCF-7), ERα negative (MDA-

MB231) with activated STAT3 and one normal cell line (VERO). These compounds anti-

proliferative activity was in correlation with their HDAC1 inhibition potency. The lead 

compound with the nanomolar range HDAC1 and HDAC6 inhibitory potency had the 

most potent anti-proliferative activity whereas the one with low HDAC inhibition 

potency (macromolar range) was not cytotoxic against cancer cells. Additionally, the lead 

compound exhibited the most cytotoxicity toward ERα negative (MDA-MB231) where 

STAT3 is activated. This data shows that pyrimethamine HDACi conjugates have the 

potential to inhibit proliferation of other tumors which are dependent on STAT3 signaling 

pathway including myeloma cell lines, INA6, and U266, and prostate cancer cell line 

DU145. 

Pyrimethamine is currently in clinical trials for treating relapsed chronic 

lymphocytic leukemia and small lymphocytic lymphoma due to STAT3 activation in 

these cancers [14].  

Furthermore, pyrimethamine is an FDA approved anti-folate and anti-malarial 

drug. However, its use as an anti-malarial therapeutic agent is hampered due to naturally 

developed resistance in the parasite [15], [16]. It has been shown that HDACi are 

associated with anti-parasitic activity, therefore, pyrimethamine conjugated HDACi have 

the potential to overcome the developed resistance to pyrimethamine in treating malarial. 
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Hence, these compounds anti-malarial activity is another important factor that needs to be 

evaluated.  

Finally, to complete this project and SAR study, more pyrimethamine conjugated 

HDACi with different zinc binding groups need to be synthesized. 
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APPENDIX A 

LIPOSOMAL DRUG DELIVERY SYSTEMS FOR TARGETED 

CANCER THERAPY 

 

This work was published Future Medicinal Chemistry.  

S. Fathi, A. Oyelere, Future Med. Chem, (2016) 8(17), 2091–2112. 

 

A.1. Introduction         

Cancer is one of the leading causes of death worldwide. According to American 

Cancer Society, cancer is the second deadliest disease, after cardiovascular diseases [1], 

[2]. Mutations or damages to the genes, which occur due to genetic disposition or 

environmental factors, are the main cause of cancer. Cancer cells are prone to rapid 

division, metastasis and are resistant to cell death [3]. Available treatments - like surgery, 

chemotherapy, hormone therapy, or radiotherapy - have terrible side effects. Most 

chemotherapeutic agents are hampered by narrow therapeutic indices, poor 

pharmacokinetics and non-selective distribution in the body, leading to off-target toxicity.  

To date, one of the main obstacles in cancer treatment has been selective delivery of 

drugs to tumor site, a feat which holds great promise at enhancing drug therapeutic 

efficacy and lowering off-target toxicities [4]. Nanoparticles (NP) have emerged as a 

promising therapeutic agents in recent years as they facilitate increased uptake and 

accumulation of drugs at the tumor sites [5]. Among all classes of nanoparticles, 

liposomal drug delivery system has received the most attention over the past few decades 

[6]. 

The idea of a liposome as a delivery vehicle goes back to 1965. It was first 

introduced by Alec Bangham and colleagues [7]. Liposomes are self-assembled small and 

spherical vesicles consisting of an aqueous core which is surrounded by one or more 
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phospholipid bilayers. Because of their amphiphilic nature, liposomes are able to carry 

both hydrophobic and hydrophilic compounds [8] (Figure 1.A). Various types of small 

molecules including antifungal and anticancer drugs as well as macromolecules such as 

hormones, enzymes and different varieties of peptides have been incorporated into 

liposomes [9]. Liposomes’ biocompatibility, bioavailability and site specific drug 

delivery properties have stimulated intense interest in them as unique drug carrier 

systems for delivery and release of therapeutic drugs at the site of a tumor to  potentially 

enhance drug potency efficacy and minimize side effects [10]. Liposomes’ 

pharmacokinetic properties depend greatly on size, surface charge, number of bilayers 

and fluidity [11]. They can be classified in multiple categories such as: conventional (first 

generation of liposomes), stealth (PEG grafted liposomes), long release, triggered release 

or ligand targeted [8], [12]. In some liposome conjugates, a drug molecule is linked to the 

carrier through covalent bonds that are usually acid cleavable or redox sensitive [13]. In 

other liposome systems, the therapeutic drug is encapsulated by the carrier, without a 

need for a covalent bond. These designs allow liposomes to carry multiple drugs 

simultaneously [14].    
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Figure A.1. Liposomes as carriers in drug delivery systems. They can be used to 

encapsulate one or several hydrophobic and hydrophilic therapeutic agents [15]. A) 

Conventional liposomes (The first generation of liposomes). B) Stealth liposomes (PEG 

grafted liposomes) - PEG conjugated lipids impede the liposome clearance by RES and 

enhance circulation time in bloodstream, increasing concentration at the tumor site. (C) 

Some drugs can be conjugated directly to the surface of the liposome. (D) Targeted 

liposomes - a ligand (proteins, antibodies, small molecule, etc.) is coupled to the surface 

of the liposome to increase selectivity toward tumors and reduces its off-target toxicity.   

In 1986 Matsumura and Maeda suggested that the liposome facilitated tumor drug 

delivery is largely mediated through the enhanced permeability and retention (EPR) 

effect [16], [17] as solid tumors are made of vascular fenestrate that helps liposomes to 
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penetrate through tumor tissue [18].  It is becoming clear that the tumor vascular 

endothelial linings are usually more permeable than the vascular endothelial linings in 

healthy tissues. EPR relies on the permeability of tumor vasculature to sequester 

nanoparticles and therapeutic agents within its interstitial space. EPR also depends on 

tumor cell deficient lymphatic drainage to allow drugs to remain in the interstitial fluid 

compartment after being released from their carrier [19]. EPR is not effective for 

metastatic tumors or the ones with larger size. In vivo studies have revealed that these 

type of tumors suffer from low accumulation of pharmaceutical macromolecules, due to 

being hypovascular in the central area and consequently having less vascular leakage 

which results in a poor EPR effect and low drug accumulation within tumor tissue [17], 

[20], [21]. 

Tumor properties are not the only factors that determine EPR effect success. 

Liposome and pharmaceutical agent features are determining factors as well. Only 

liposomes with sizes as large as 200nm can penetrate tumor endothelia and are 

commonly used as drug delivery vehicles. These liposomes are being excluded from 

healthy tissues since they are limited to species smaller than 2nm [22]. Furthermore, 

circulation time of these liposomes needs to be long enough for the liposome to reach an 

effective concentration within the tumor interstitial space, and then accumulate in tumor 

tissue through EPR effect [23]. Therefore, optimization of tumor targeting and clearance 

mechanism is considered the next pressing step toward improved NP-based drug delivery 

systems [24]. In addition,  pharmaceutical agent size  influences EPR effect as very low 

molecular weight drugs diffuse back into blood stream and do not retain in the tumor 

interstitial fluid [19], [23]. 

Doxil®, the first US Food and Drug Administration (FDA) approved liposome, 

encapsulates Doxorubicin. It received FDA approval in 1995 for treating refractory 

ovarian cancer and Kaposi sarcoma in AIDS.  Since Doxil® approval, the scope of 

research into liposome facilitated drug delivery has widened. To date, twelve FDA 



 265 

approved liposomes are available on the market (Table 1) and many more are in different 

phases of clinical trials.  

          

Table A.1. FDA approved liposomal and lipid based formulations [7], [10], [12], [25], 

[26]. 

    Platform        Drug         Indication      Marketed by 
   Year 

approved 

Doxil Doxorubicin 

Refractory ovarian 

cancer and Kaposi 

sarcoma in AIDS 

Alza 

Corporation 
1995 

DaunoXome Daunorubicin 
Kaposi sarcoma in 

AIDS 
Gilead Sciences 1996 

Marqibo Vincristine 
Acute lymphoblastic 

leukemia 
Talen 2012 

Ambisome 
Amphotericin 

B 

Serious fungal 

infections 
Gilead Sciences 

1990 

(Europe), 

1997 

(USA), 

2000 

Myocet Doxorubicin 
Metastatic breast 

cancer 

Elan 

Corporation 
2000 
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Table A.1. FDA approved liposomal and lipid based formulations (continued) 

Lipo-dox Doxorubicin 

Kaposi’s sarcoma, 

ovarian and breast 

cancer 

Taiwan-

Liposome 

2001 

(Taiwan) 

Estrasorb Estrogen Menopausal therapy King 2003 

Visudyne Verteporfin 
Age-related molecular 

degeneration 
QLT 

2000 

(USA), 

2003 

(Japan) 

Depocyt Cytarabine 

Neoplastic meningitis 

and lymphomatous 

meningitis 

Pacira 1999 

DepoDur 
Morphine 

sulfate 
Pain Pacira 2004 

Abelect 
Amphotericin 

B 

Serious fungal 

infections 

Elan 

Corporation 
1995 

Amphotec 
Amphotericin 

B 

Serious fungal 

infections 

Alza 

Corporation 
1996 
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A.2. Liposome properties 

Liposomes are made from cholesterol and non-toxic phospholipids. Their 

properties greatly depend on their size, surface charge, surface hydration and their lipid 

bilayer. Liposomes size ranges from 30 nm to several micrometers and this size variation 

influences circulation times and RES uptake rates. Liposomes of well-defined size are 

prepared by extrusion of lipids through filters containing pores having the desired size. 

However, liposomes that are made this way are about 20-50 % larger than the pore size 

[27]. Medium size liposomes (150nm <d< 200nm) have the highest circulation time. 

Liposomes with size greater than 300nm or smaller than 70nm commonly accumulate in 

liver and spleen [28] and cleared out from the blood circulation.  

Liposomes may compose of one (uni-lamellar) or multiple (multi-lamellar) lipid bilayers 

surrounding an aqueous layer. Polar and hydrophilic head groups are oriented towards the 

aqueous phase while the hydrophobic nonpolar tail groups are oriented away from water 

[29].  

R
1
 : 

Head 
group 

R
2
 

an
d 
R

3
 :  

Tail 
gro
ups 
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Figure A.2. General structure of phospholipid constituent of liposomes with the head and 

fatty acid tail groups [12].  

Tail group (R2, R3) of liposome (Figure A.2) is a fatty acid chain with a carbon 

length between C14 and C18. When R2 and R3 are saturated chains, rigidity is higher and 

fluidity is lower. When the fatty acid chain is unsaturated the bilayer is less stable and 

more permeable. Furthermore, longer chains lead to a thicker bilayer. The saturation 

status and length of fatty acid chains affect the degree of liposome membrane leakiness 

and the lipid phase transition temperature. 

(R1) represents the head group. The identity of the head group has a direct impact 

on surface hydration. Some head groups like Choline and ethanolamine are positively 

charged and make the overall charge of liposome neutral, while others such as serine, 

PEG amide of ethanolamine, and glycerol are neutral and thus result in a negatively 

charged liposome (Table A.2). A charge free liposome with ethanolamine as its head 
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group has a minimal degree of surface hydration whereas a negatively charged liposome 

with PEG (ethanolamine) as the head group has an enhanced surface hydration [12].   

 

Table A.2. Different head groups and their effect on the liposome overall charge. 

Compound Structure 
Liposome overall 

charge 

Choline 

       

Neutral 

Ethanolamine 
       

Neutral 

PEG amide of 

ethanolamine 
    

Negative 

Glycerol 

       

Negative 

Serine 

       

Negative 

 



 270 

A.2.1. Liposome surface charge and hydration 

Liposomes’ lipid head groups and surface charge have a significant influence on 

liposome cell binding and endocytosis. Head group charge determines in large part 

liposome stability and bio-distribution. Due to the negative charge of DNA backbone, 

cationic or neutral liposomes are used for intracellular DNA delivery, while anionic 

liposomes are used for transporting other macromolecules to other targets [30]. Liposome 

surface charge is one of the most important factors which dictate how liposome will 

interact with cells and how fast it will be cleared by macrophages or cells of the 

reticuloendothelial system (RES). Neutral liposomes have a high tendency to aggregate 

and the least tendency to be cleared out by RES. In negatively charged liposomes, 

aggregation is reduced and they are more stable in suspensions. However, the negative 

charge can be recognized by receptors on the surface of many cells including 

macrophages [31], resulting in faster endocytosis and up take by RES and MPS [12]. The 

rapid clearance of negative liposomes limits their use compared to neutral liposomes. 

Positively charged liposomes are up taken faster than negatively charged or neutral 

liposomes. Their interaction with serum proteins increases endocytotic uptake and 

clearance by the lung, liver and spleen. The positively charged liposomes faster clearance 

results in a low in vivo transfection efficiency [12]. In general, the interaction of specific 

opsonizing proteins with phospholipid head groups is a major factor in liposome 

clearance. Both positively and negatively charged phospholipid head groups enhance 

opsonization. One common solution to preventing opsonization, consequently reducing 

liposome clearance rate, is to use poly ethylene glycol (PEG). The flexible polymeric 

chains of PEG form a shield that can mask the liposome’s surface charge. An aqueous 

layer forms around the surface of liposome once PEG is installed onto its surface. 

Formation of this aqueous layer prevents liposome recognition by opsonins, resulting in 

longer circulation time and evading rapid uptake by RES [32]. PEG grafted liposomes are 

called “stealth” liposomes [23].   
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Additionally, in order to reduce aggregation and cellular uptake of liposomes by 

macrophages, the surface of the liposomes can be modified using hydrophilic polymers 

such as PEG to increase liposome thermodynamic stability. PEG addition to the surface 

of liposome prevents its recognition by macrophages and extends its blood circulation 

time [33]. This process is called surface hydration or steric modification [12], [34].    

A.2.2. Fluidity of lipid bilayer 

The fluidity of liposome membrane plays an important role in liposome mobility 

and morphology [35]. A liposome membrane can exist in both fluid and gel phases, 

which vary below and above Tc, the lipid phase transition temperature, where a liposome 

has maximum leakiness and both phases exist. Below Tc liposome is in gel phase and 

above Tc, it is in fluid phase. The lower membrane fluidity corresponds to a highly 

ordered structure [12]. The composition, length of phospholipid and the amount of 

cholesterol used in liposome formation has a direct impact on Tc and consequently 

liposome penetration [36]. Cholesterol content is a very vital factor in effectively 

delivering therapeutic agents to the site of a tumor [37]. Higher cholesterol content in the 

liposome formulation results in a lower drug encapsulation efficacy due to its possible 

effect on disruption of membrane linear structure [38]. 

A.2.3. Liposome bio-distribution in vivo 

Liposome bio-distribution in vivo highly depends on lipid bilayer size, 

composition, charge, surface hydration and degree of saturation. For instance, liposomes 

with saturated fatty acyl chains have an improved bio-distribution compared to ones that 

contain unsaturated chains. The phase transition state of phospholipids is also another 

important factor. Liposomes with phospholipids of different transition phase such as PG 

and DSPC are retained less in the body and eliminated faster due to leakage and phase 

separation [39]. Additionally, PEG coated liposomes gain a longer circulation time and 

improved bio-distribution by introducing steric hindrance to the phagocyte system [40].    
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Liposomes can be injected via three routes: subcutaneous (sc), intravenous (iv) or 

intraperitoneal (ip). Each route results in a different bio-distribution pattern [37], thereby 

having a great influence on the delivery of an encapsulated drug to the site of a tumor. 

Liposome injection via a subcutaneous route results in a higher level of drug in the 

bloodstream. In such injections, smaller liposomes have the highest concentration and 

remain in the body 12 to 24 hours post injection, whereas larger liposomes do not 

circulate well and remain at the site of injection [41]. Intravenous and intraperitoneal 

injections of liposomes result in a lower half-life compared to subcutaneous injections 

[42].  

Liposome’s surface hydration and charge as well as size have direct impacts on 

bio-distribution, pathway and rate of cellular uptake [43] by affecting liposome’s 

interaction with cells and thus its penetration through tumor tissue [44], [45]. For 

Liposome to maintain long circulation time in the body its size has to fit within a certain 

range. Liposomes smaller or larger than this size range are removed rapidly from blood 

stream. Positively and negatively charged liposomes are recognized and uptaken by RES 

faster compared to the charge free liposomes. Installing PEG on the surface of liposome 

prevents opsonization and liposome uptake by macrophages. To obtain a liposome that is 

optimal for drug delivery these factors have to be considered and be optimum. A neutral 

stealth liposome with a size range of 70-150 nm is one of the ideal candidates for drug 

delivery system.  

A.3. Liposomes enhance delivery via triggered release 

In spite of their versatility as drug delivery vehicles, liposomes suffer from key 

limitations.  In particular, the rate of drug release once the liposomes are internalized in 

the tumor endosomal compartment can be slow. Also, liposomes internalized by tumor 

cells through endocytosis are eventually transferred to the lysosome, where the 

encapsulated drugs may be degraded if they are unable to escape the harsh lysosomal 
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environment. [46]. Various triggers mechanisms, which facilitate drug release, have been 

incorporated into liposome design. Therefore, applicable strategies should be developed 

to release the drug at the site of a tumor prior to degradation. The commonly used 

triggers for liposome cargo release rely on pH [47], [48], [49], light [50], [51], heat or 

temperature difference [52], [53], [54], specific enzymes, ultrasound, or magnetic field 

[55].  These triggers induce changes in the carrier assembly which leads to destabilization 

and release of the encapsulated drug.  The logic behind the triggered release is not only to 

control the place and time the drug is released but also to decrease the injected dose and 

minimize side effects.  

A.3.1. Acid triggered release 

Acid triggered release was first suggested by Yatvin et al. in 1980 [48]. Since then 

extensive studies have been done on pH-sensitive liposomes [56], [57]. They are 

designed to introduce macromolecules or hydrophilic molecules to the cytoplasm of 

tumor cells and are generally made from phosphatidylethanolamine (PE) or its 

derivatives and a compound with an acidic group such as a carboxylic acid moiety which 

plays a stabilizing role at neutral pH [58]. Several acid sensitive liposomes contain 

dioleoylphosphatidylethanolamine (DOPE) in combination with Cholesteryl 

hemisuccinate (CHEMS) because of the fusogenic potential of these lipids, making them 

stable at physiological pH [59], [60], [61]. DOPE by itself does not form a liposome, but 

it can be stabilized and used to make liposomes by mixing with other PEG-coated lipids 

[46]. CHEMS gets protonated under acidic conditions and it loses its ability to stabilize 

the charged bilayer. The ensuing electrostatic repulsion causes liposome destabilization 

[62]. DOPE and CHEMS or a combination in the formulation of pH-sensitive liposomes 

have been used for encapsulating several anticancer and antibacterial agents such as 

doxorubicin, staurosporin, methotrexate, and  gentamicin [60]. Acid triggered release 

liposomes are also grafted with a low molar ratio PEG to extend circulation time as 
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discussed earlier. Liposomes shielded with PEG-lipids have reduced sensitivity to acidic 

conditions and slower cargo release compared to conventional liposomes. Acid sensitive 

liposomes are stable at physiological pH (pH= 7.4), but undergo quick destabilization and 

degradation upon entering the acidic condition in the late endosomal environment (5 

<pH< 6.3) [61], [63]. Once liposome is endocytosed by tumor cells, upon exposure to an 

acidic environment and cleavage of PEG lipids, it fuses the endosome membrane and 

releases the drug into the cytoplasm of the tumor cells [61]. It must be noted that the 

encapsulated drug has to be released from its carrier once it is in the late endosomal 

environment, and before liposome entrance to the harsh acidic environment of lysosome 

which degrades both carrier and cargo [64]. 

A.3.2. Light triggered release 

Light activation is another approach for triggering the release of liposome cargoes 

that has been extensively studied. Light-dependent techniques that have been used to 

elicit cargo include photoisomerization, photocrosslinking, photosensitization-induced 

oxidation, surface plasmon absorption, and photothermal effects [65].  In 

photoisomerization, the part of the lipid components used to make the liposome has a 

double bond which changes configuration from trans to cis upon exposure to light [66]. 

Azobenzenes, moieties with a nitrogen-nitrogen double bond to which benzene rings are 

attached on each side, are the most commonly used compounds for photoisomerization. 

Once the compound is exposed to light, it changes its configuration from planar trans 

isomer to the less hydrophobic cis isomer which is less favorable for forming micelles 

[67]. Consequently, light radiation results in destabilization of the assembly and triggers 

release of the liposome encapsulated drug(s).   

Photocrosslinking-mediated liposome cargo release was first introduced by Regen 

et al. [68]. Liposomes designed for photocrosslinking are made by doping the lipids with 

photocrosslinkable lipids such as 1, 2 bis-(tricosa-10, 12-dinoyl)-sn-glycero-3-
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phosphocholine) (DC8,9PC) or gelatin methacryloyl (GelMA) which have polymerizable 

triple and double bonds respectively [69], [70]. Photo irradiation of liposomes containing 

these polymerizable bonds results in polymers which disrupt the uniformity of the 

bilayer, creates pores, release the liposome encased drug(s).  

Photosensitization-induced oxidation, which was first introduced by Anderson et. 

al in 1992 [71], utilizes lipids which are prone to photo-oxidation [72]. 

Photosensitization-induced oxidation occurs when oxidizing agents such as singlet 

oxygen are formed upon light exposure. These oxidizing agents cause damage to the 

liposome bio-membrane by oxidizing the plasmogenic lipids and inducing a transition 

from laminar to hexagonal phase which results in the leakage of cargo from the carrier 

[73]. Tissue is irradiated when the liposome is uptaken by tumor cells and has entered the 

endosome. Once the tissue is irradiated, the photosensitizer reagent contained in the 

liposome acts on the endosomal membrane, resulting in releasing the drug into the tumor 

cytosol.   

Near infrared radiation (NIR) is the ideal light- triggered release mechanism since 

it can penetrate through blood and tissues up to 10 cm [74]. Upon irradiation with NIR 

light, liposomes convert the absorbed light into a thermal energy which increases the 

regional energy and temperature and leads to the cargo release [75]. However this method 

suffers from a lack of organic compounds which are capable of converting NIR light 

(700- 950nm) energy to a chemical response to trigger drug release. Gold nanoparticles 

are among the few agents that can absorb NIR light well, making them useful in photo-

thermal therapy [76]. The first gold nanoparticle was introduced by Radt et al. [65] and 

since then extensive studies have been done on utilizing gold nanoparticles in surface 

plasmon absorption triggered release [75]. Wu et al. [77] showed that irradiating gold 

nanoshells can lead to almost complete release of an encapsulated drug.     
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A.3.3. Heat triggered release 

Thermosensitive liposomes (TSL) respond to heat stimulus, such as IR lasers or 

microwave, to release the encapsulated drug. Most thermosensitive liposomes release 

their encapsulated drug at about 35-45 °C in a span of 30 minutes [78].  When TSLs are 

exposed to heat stimulation, their phase status changes from gel to liquid, making their 

bilayers become more permeable and releasing an encapsulated drug [79]. As mentioned 

earlier, melting temperature (Tm) depends on the character of the phospholipid used in 

forming the liposome [80]. However, for PEG grafted liposomes, the concentration of 

lipid-PEG applied on the liposome surface (in most cases 1, 2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-PEG2000 “DSPE2000”) matters as well since PEG can 

influence the permeability of the liposome bilayer [81]. Also, heat triggered release 

depends on tumor microvasculature features. Exposure to heat can influence tumor vessel 

leakiness and enhances tumor perfusion [82], leading to higher accumulation and 

concentration of liposome in the tumor endosome [83]. Cisplatin, doxorubicin, and 

methotrexate are some examples of anticancer drugs that have been encapsulated in heat 

sensitive liposomes [84], [85]. This method is generally combined with chemotherapy or 

radiation therapy to improve the treatment outcome. Improved survival rate has been 

noted in cohort of patients who undergo combination of chemotherapy and hyperthermia 

compared to the patients who receive only chemotherapy [86].  

A.4. In-vivo liposomal drug delivery 

Liposome mediated drug delivery in vivo occurs through two different targeting 

modes - passive and active targeting. Active targeting delivery development of liposomes 

is hindered by many barriers (discussed below) and hence is less advanced compared to 

passive targeting delivery [87].  In passive targeting, the liposome complex diffuses into 

leaky microvasculature such as tumors or inflamed tissues and shows selectivity toward 

any tissues with permeable endothelium cells. In active targeting, the liposome complex 
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incorporates a ligand that is specific for the epitope of a certain tissue or a distinct 

receptor that is overexpressed by cancer cells. Active targeting of liposomes has the 

potential to result in the delivery of elevated levels of drugs at disease sites with 

concomitant increase in drug efficacy [88].  

 

A.4.1. Passive Targeting 

Passive targeting of liposome is a means of delivery and transportation of the 

encapsulated drug into tumor cells through convection or passive diffusion. Convection is 

the movement of molecules within the fluid whereas diffusion is the transport of 

molecules across the membrane based on their concentration gradient (Figure A.3). Small 

molecules with low molecular weights mainly rely on diffusion for tissue distribution, 

while convection occurs when a large molecule is being transported through the large 

pores. [89]. However, since convection through the tumor interstitium is deficient, due to 

interstitial hypertension of tumors, diffusion is the main means for drug delivery in 

passive targeting. Following injection, liposome enters the tumor cytoplasm through the 

EPR effect. Maximum EPR effect is reached when a liposome has a longer circulation 

time in the body and it is not up-taken by RES organs quickly. To provide liposomes with 

longer blood circulation, they are often grafted with PEG to diminish their rapid 

clearance rate by RES.  

Passive targeting relies on liposome size and tumor vasculature, and varies for different 

types of tumors based on their extravasation, angiogenesis, and vascularization. In solid 

tumors, passive targeting is not very efficient because of the interstitial fluid pressure. 

Tumor interstitial fluid pressure has a nonlinear correlation to its lymphatic drainage [90]. 

As the interstitial fluid pressure for a tumor gets higher, its lymphatic drainage decreases 

[91]. Tumor interstitial fluid pressure is a barrier in cancer therapy that results in 

inefficient therapeutic agents uptake [92]. 
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Liposome size plays an important role in extraversion into tumor cells. As the 

liposome size gets larger, its clearance by RES or phagocyte systems (MPS) becomes 

more rapid. Liposomes of size below 400nm have enough circulation time in the 

bloodstream to extravasate into tumors, however, extraversion is more effective if 

liposomes have diameters lower than 200nm [23]. 
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Figure A.3. Passive liposomal delivery. Liposomes reach the tumor site through 

diffusion and accumulate in tumor tissue via EPR effect.   

 

Passive targeting through the EPR effect is applicable for targeting all tumor cells 

except prostate and pancreatic cancer cells [93], [94]. To date, there are many passive 

targeting liposomes that are FDA approved and there are many more currently in clinical 

trials. Liposomal encapsulated Doxorubicin, Vincristine, and cisplatin are examples of 

liposome formulated drugs in the market that function through passive targeting. The first 

two are conventional liposomes whereas the latter is categorized as a PEG grafted one.  

While conventional liposomes are uptaken rapidly by RES or macrophages in liver and 

spleen, PEGylated liposomes have longer half lives in the body, which in some cases can 

reach a couple of days [23].   

A.4.2. Active Targeting/ Ligand Targeting Liposomes (LTL) 

New strategies that may improve the tumor selective delivery of liposome 

encapsulated drugs are currently under active investigation. So far, ligand- targeting 

liposomes (LTL) have emerged as the most promising drug delivery tools [95], [96], [97]. 

In ligand targeting liposomes (LTLs) (Figure A.4), a ligand that selectively targets a 

specific receptor is coupled to the surface of the liposome. After EPR effect mediated 

selective accumulation within tumor interstitum, the attached ligand promotes tumor cell 

uptake of the [98]. Active targeting has been noted to enhance liposome delivery to 

diseased organs, tissues, or subcellular domains [99] and elevate therapeutic efficacy 

[100].  The ideal ligand is that for a receptor that is overexpressed by tumor cells relative 

to normal cells (Figure A.5) [101], [102]. The interaction between the ligand on liposome 

surface and the receptor overexpressed on cancer cells must be sufficiently strong and 

capable of receptor mediated endocytosis to enable efficient delivery of liposomes to the 
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site of a tumor and within the tumor cells. [103]. Receptors overexpressed on the tumor 

surface are more accessible, and therefore are better targets, compared to receptors 

overexpressed within the cancer cell nucleus or cytoplasm. For LTLs to reach the 

intracellular receptors, they have to be able to penetrate tumor cell membranes [104]. 

These non-selective targeted liposomes may enter the cytoplasm of healthy cells leading 

to unwanted side effects caused by damage to healthy cells along with cancer cells [105].  

Figure A.4. Ligand targeted liposome. Liposome is conjugated to a targeting ligand that 

specifically interacts with a certain receptor which is overexpressed only by tumor cells.  

 

Active targeting highly depends on the physicochemical properties of the ligand 

such as size, charge, orientation, and physical adsorption [106], [107]. The type of ligand, 

as well as its conjugation chemistry to the nanoparticle surface, has a great impact on the 

liposome’s overall targeting efficacy. Nonspecific binding of the ligand to other proteins 

in the bloodstream is another important factor that should be taken into consideration 

[108], [109]. By far, covalent attachment is the most preferred approach for conjugating 

ligands on to the surface of liposomes. 
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Figure A.5. Liposomal active targeting. A variety of targeting moieties can be coupled 

on the surface of liposome to enhance selective delivery to the site of tumor [110]. 

Ligand conjugated liposomes interact with the receptors overexpressed on the surface of 

tumor cells. In addition to increasing drug concentration at tumor site, this phenomena 

also decreases drug toxicity to healthy cells [111].  

The targeting ligand can vary from proteins to a nucleic acids, peptides, small 

molecules, sugars or antibodies in order to target a sugar, protein, or nucleic acid existing 

in diseased tissues and organs [112], [113].  Using antibodies or antibody fragments as a 

targeting moiety is one of the more promising approaches to active targeting due to their 

high affinity and selectivity for target receptors. However, some studies revealed that 

using antibodies does not help tumor localization but instead helps with internalization in 

tumor tissue in animal models [103]. Peptides are another encouraging targeting ligand 

that are easy to prepare at low cost and can be modified to minimize potential enzyme 

degradation [22].   

There are a few criteria that need to be considered in choosing the targeting 

ligand. Key among these criteria is target specificity. It is beneficial if the targeting ligand 

can recognize a receptor which is specific to tumor cells, to avoid targeting healthy cells 

that are expressing another isoform of targeted receptor [114]. The binding affinity 

between the targeting ligand and the tumor receptor is of importance as well. There is an 

inverse correlation between binding affinity and the concentration of liposome needed to 

reach tumor receptor binding saturation. When the targeting ligand has a high affinity to 

bind to the tumor receptor, a lower concentration of the liposome is needed [115].  Using 

ligands with a strong affinity for the tumor receptor reduces the liposome interaction with 

healthy cells and thus diminish its off-target toxicity. However, if a ligand with low 

affinity can be at higher concentration or  a combination of various ligands can be used to 

compensate for not having a  ligand with a strong affinity for tumor receptor [111], [116].  
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The size of the targeting ligand affects the overall size of liposome and hence influences 

the drug delivery via different mechanisms. When a liposome gets bigger it is cleared 

faster from the bloodstream by RES or MPS while smaller liposomes have a greater 

retention time. Additionally, smaller liposomes can extravasate better into the tumor 

interstitium. The ideal liposome size for tumor uptake is less than 200nm [117].  

The point of ligand attachment impacts liposome drug delivery as well [107]. It is 

better to use functional groups such as amine, carboxylic acid, etc. that can be coupled to 

the liposome directly or indirect through as spacer group. However, it is possible that 

attaching the ligand to the liposome through these functional groups may compromise 

ligand’s ability to interact with the tumor expressed receptor [111]. To forestall an 

attenuation of ligand-receptor interaction, regions of the ligand that will not hinder its 

affinity for tumor receptor should be identified prior to considering liposome conjugation.  

Although active targeting is more efficient than free drug release in the blood 

circulation or even passive targeting, only a small fraction of the drug is uptaken by 

tumor cells. In active targeting, two factors are competing against each other: liposome 

clearance by RES and binding to the target site. One of the challenges in ligand-mediated 

liposomes is that for it to be recognized by the target tissue or cell, the liposome has to be 

in the locality of the target site [118]. To overcome this problem, the bloodstream 

circulation time must be extended [119]. As mentioned earlier, liposome uptake by RES 

can be avoided or delayed by using PEG grafted liposomes, elevating the drug 

concentration at the tumor site and consequently enhancing target binding of the 

liposome [120]. Presence of free PEG does not generally interfere with the liposome 

target binding.  

Thus far, no targeted liposome has received FDA approval and there are few in 

clinical trials. Several reasons are responsible for this clinical failure. First, when 

liposomes are introduced in bloodstream they experience a rapid formation of a protein 

corona around them which hampers surface functionality. Protein corona was first 
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described by Dawson et.al in 2007 as involving an adsorption layer or atmosphere formed 

around nanoparticles by the proteins that are interacting with nanoparticles [121, 122]. 

Secondly, tumors grow quickly around endothelial barriers. When liposomes with 

targeting moieties get to the tumor site, they bind to the first receptor they see and may 

not even penetrate into the rest of tumor to bind other receptors [123]. Additionally, once 

inside tumor vasculature, there may be other barriers the liposomes have to cross. Finally, 

the existence of targeting moieties on the surface of the liposome can influence their 

uptake by RES, lowering circulation time in bloodstream. These drawbacks make 

targeted liposomal delivery essentially equal in efficiency to non-targeted delivery in vivo 

studies [124]. Despite their shortcomings, several clinical trials on targeted liposomes are 

currently underway. Doxorubicin and oxaliplatin liposomal formulations are examples of 

targeted liposomal delivery in clinical trials under the names MM302 (I) and MBP-426 

(I), respectively. The former targets HER2 using an anti-ErbB2-scFv formulation for 

treating breast cancer [125] while the latter targets transferrin to treat gastroesophageal 

and esophageal adenocarcinoma [126].  

Ligands for targeted liposomal drug delivery applications are divided into two 

groups of small molecule and macromolecule targeting ligands. Each group itself is 

further divided into subgroups. Small molecule targeting moieties are ligands with low 

molecular weight and smaller size.  One example of small molecule targeting ligands is 

folic acid which shows affinity for folate receptor overexpressed on tumor cells. Unlike 

small molecule ligands, macromolecule targeting ligands such as proteins, antibodies and 

their fragments have larger size and higher molecular weight. In general, macromolecule 

targeting ligands have lower tumor cell permeability and are of limited applications 

compared to smaller sized ligands.  

 

 



 285 

A.4.2.1. Small molecules as targeting ligands 

Many anticancer drugs are known to be toxic toward healthy cells by restricting 

proliferation or inducing apoptosis. To minimize anticancer agent toxicities to healthy 

cells, several strategies have been developed to selectively target cancer cells through 

conjugation of anticancer agents to ligands selective for receptors overexpressed in 

tumors. The type of tumor targeting ligand has a significant impact on the efficiency of 

LTLs. Therefore, ligand selection should be done very carefully.  Among natural and 

synthetic ligands, folic acid, ACUPA (S,S-2-[3-[5-amino-1-carboxypentyl]-ureido]-

pentanedioic acid), and TPP (triphenylphosphonium) are common examples of small 

molecule ligands that have shown promise in liposomal active targeting [107].  

Carbohydrates like mannose, glucose, and galactose and their derivatives are other small 

molecule targeting ligands that have been widely used [116].    

A.4.2.1.1. Folic acid-drug conjugates 

Folic acid (folate) (Figure A.6) has been widely used as a small molecule ligand 

to selectively target folic receptors (FR) [127]. FR are membrane proteins with molecular 

weight of 38-40 kDa, with two distinct isoforms (α and β) in humans [128], [129]. 

Isoform β has been found on CD34+ cells [130] and does not show affinity for folic acid 

or any folate derivatives. On the other hand, Isoform α is frequently overexpressed on the 

surface of broad range of human tumor cells, such as brain, ovarian, breast, and lung 

cancer.  
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Figure A.6. Folic acid structure. High affinity for folate receptor is generally retained 

when folic acid is conjugated to folate receptor by the γ carboxylic acid [128]. 

Folic acid has several advantages that make it a better targeting moiety compared 

to many other targeting ligands. First, folic acid displays a high affinity (KD = ~ 10− 9 M) 

and selectivity for tumor surface expressed FR. Second, folate is very stable and does not 

succumb to denaturation. Third, folate is readily available and its conjugation chemistry 

to the surface of liposome has been worked out. Furthermore, FR overexpression in some 

cancer cells exceeds 106 per cell. However, folate affinity can be compromised after 

conjugation to a drug molecule. The solution to this obstacle is to load more drug per 

folate carrier in order to compensate for its low affinity, or to replace the payload with 

much more potent drugs.  Although conjugating more concentration of the same drug 

molecule to the targeting ligand seems appealing, it is simpler and more convenient to 

have one warhead that has a greater potency compared to installing many of the low 

potency drug on the same carrier. Additionally, in order for folate to be effective as a 

liposome tumor targeting ligand, it is coupled to the liposome surface via a PEG linker to 

overcome the steric hindrance at the interface of contact between the cell and the 

liposomes. Folate-conjugated liposomes designed in this way have shown a high affinity 

for tumors overexpressing FR [131].  

Folate-conjugated liposome drug release after endocytosis and drug delivery 

capacity depends on environmental pH. Studies have shown folates are internalized into 

tumors with a low pH endosomal environment. Therefore, utilizing pH sensitive lipids in 

making the liposomes enhances folate conjugated liposome efficiency. One example of 

folate-targeted pH-sensitive liposomes is folate-LPDII, which is synthesized by mixing 

dioleoylphosphatidylethanolamine (DOPE)/cholesteryl hemisuccinate (CHEMS)/folate-

PEG-DOPE (60:40:0.1, m/m) and the cationic DNA/poylysine (1:0.75, w/w) complexes. 

The first folate mediated targeted drugs that entered clinic, EC17, was designed to elevate 
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the immunogenicity of FR positive tumors (Figure A.6) [132]. And the first folate 

conjugated drug to be tested on humans was 111In-DTPA-folate, a chelator of 111In. 111In-

DTPA-folate binds to FR with 1 nM affinity [133] and mostly targets cancer cells but it is 

also found in kidney tissue [134]. Paclitaxel-liposome is another example of folate 

conjugated liposomes. Paclitaxel is an anticancer drug mainly used for treatment of breast 

and ovarian cancers. Paclitaxel and yttrium-90 conjugation with folic acid in liposomal 

active targeting has been shown to improve survival in a mouse xenograft model of 

ovarian cancer [135].   Additionally, recent studies have shown folic acid can be used to 

deliver imaging and therapeutic agents in both xenograft models as well as human cancer 

cells [136].  

 

Figure A.7. Structure of EC17, the first folate ligand mediated targeting liposome in 

clinical trial. 

 

Folate mediated cancer targeting does have its share of limitations. In addition to 

tumor cells, many healthy cells in different organs express FR on their surface. FR 

expression in normal cells mostly occurs in activated macrophages or monocytes, and 

tubules of the kidneys, lung, and thyroid [137], [138], [139]. This reduces folate 
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conjugated liposome selectivity toward cancer cells as well as increasing the chance of 

off-target toxicity. Activated macrophages often accumulate at the site of inflammation 

and have been most observed in inflammatory diseases such as, rheumatoid arthritis, 

osteoarthritis, and Crohn's disease or organ transplantation and infection [140].  

Furthermore, FR overexpression varies for different patients and depends on the type of 

cancer. Although FR is overexpressed in about 40% of cancer patients, this 

overexpression varies widely from as low as 17% in case of testicular cancer to as high as 

90% for breast, ovarian and uterus cancers [136].  

A.4.2.1.2. TPP- drug conjugates 

Many disorders in humans such as cancer, neurodegenerative diseases, Alzheimer 

disease, diabetes, or aging are characterized by mitochondria dysfunctions [141]. Some of 

the features associated with mitochondria diseases could be respiratory (respiratory 

failure, apnea), cardiac (heart failure), neurological or endocrinal [142].   The 

mitochondrion is an organelle located in the cytosol which functions to maintain energy 

producing oxidative metabolism as well as cellular mortality management. Unfortunately, 

there are currently no available treatments for mitochondrial related diseases other than 

treating symptoms.  In recent years, targeting mitochondria has emerged as a promising 

approach to control many types of mitochondria related diseases. One of the obstacles in 

treating mitochondrial related diseases is to find a way to get the therapeutic drug inside 

the mitochondria of cells with a reasonable bio-distribution. This is hard to accomplish 

due to the controlled impermeability of the mitochondrial inner membrane. Clinical trials 

on several mitochondria-acting drugs failed due to the lack of an effective drug delivery 

approach to the mitochondria [143]. Many drugs will eventually reach mitochondrial 

vicinity through interaction with subcellular compartments but the main challenge to 

enter mitochondria still remains. Triphenylphosphonium (TPP) and its derivatives (Figure 

A.7) are examples of small molecule targeting ligand that are being used in liposomal 
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delivery for targeting mitochondria [144]. TPP is a hydrophobic molecule that can easily 

penetrate the cell membrane and accumulate inside cells. Studies have shown that the 

positive charge on TPP is responsible for its high accumulation within mitochondria, an 

attribute that is vital to its in vitro performance. However, TPP positive charge adversely 

affects in vivo blood exposure [144], [145]. One of the mitochondria targeting liposomes 

conjugated to TPP is stearyl TPP (STPP) bromide (Figure A.8). It is synthesized by 

ultrasonication after film rehydration [146]. STPP targeting liposomes have been widely 

used to deliver various therapeutic agents inside mitochondria. Recently, DOX and PTX 

were loaded inside STPP-derived targeting liposomes for delivery inside mitochondria 

[146].  Loading DOX inside a STPP-derived liposome enhanced its targeted delivery to 

the site of tumor. Additionally the liposome was further modified by adding folic acid on 

the surface, to increase its efficiency and potency by transforming it to a dual targeting 

motif. Similarly, utilizing ligand targeted liposome to deliver PTX to tumor tissue 

resulted in PTX greater bio-distribution and thus lower IC50. To date, only a few 

liposomes are known to deliver mitochondrial-acting therapeutics, however none of them 

have been approved by FDA due to limited bioavailability and biocompatibility.    
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Figure A.8. A. Triphenylphosphonium (TPP) structure. Different groups can be added to 

the phosphonium ion to synthesize more potent targeting groups that have a higher 

affinity for entering mitochondria. B. Structure of stearyl TPP (STPP) bromide. STPP has 

been used widely as a small molecule targeting group in ligand-mediated liposomal 

delivery. 

A.4.2.1.3. ACUPA- drug conjugates 

Another very promising small molecule targeting ligands is S,S-2-[3-[5-amino-1-

carboxypentyl]-ureido]-pentanedioic acid (ACUPA). ACUPA mediates molecular 

interaction between prostate specific membrane antigen (PSMA) and liposomes [6]. 

PSMA is overexpressed in prostate cancer cells as well as in non-prostate solid tumor 

neovasculature [147] and was first used as prostate cancer imaging agent [148]. One of 

the ACUPA mediated liposomes that has entered phase II clinical trial is ACUPA 

docetaxel-loaded PEG-PLGA, a pH sensitive liposome that effectively delivers the 

payload drug to the site of tumor [149]. Mice xerograph studies revealed that it enhances 

tumor accumulation and promotes prolonged growth suppression in vivo [6]. 
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Furthermore, clinical studies in patients with advance solid tumor showed a lower dose 

tumor shrinkage compared to free docetaxel [150].  

A.4.2.2. Macromolecules as targeting ligands 

Utilizing macromolecule-derived targeting ligands, such as nucleic acid, peptides, 

proteins, and antibodies, in liposomal drug delivery has shown promising results in 

cancer therapy due largely to ligand related enhancements in efficacy, prolonged 

circulation time and targeted delivery to tumor sites. However, unlike small molecule 

ligand mediated targeting liposomes, macromolecule ligand use is limited by lower 

permeability through tumor vasculature due to the larger size [151]. Antibodies were the 

first macromolecule to be used as a targeting ligand and since then more macromolecules 

have been introduced [152]. This section focuses on a variety of macromolecules as 

targeting ligands and their properties such as size or molecular weight as well as their 

benefits and limitations in liposomal delivery systems.  

A.4.2.2.1. Nucleic acid based- drug conjugates: 

Nucleic acid aptamers are composed of oligonucleotides which fold by 

intramolecular interaction and form distinct three-dimensional conformations [153]. 

Nucleic acid aptamers have strong affinity and specificity for their substrate due to a 

distinctive structure that originated from Watson-Crick and non-Watson-Crick 

interactions. Because of their small size, ease of isolation and favorable immunogenicity 

profile, aptamer conjugated liposomes have emerged as promising drug delivery vehicles 

in targeted cancer therapy [154]. They are also being used in imaging and cell sorting 

applications. In addition to their strong affinity for cognate receptors, aptamers also 

benefit from ease and replicability of synthesis or chemical derivation. Additionally, 

aptamer conjugated liposomes have conformational flexibility and nuclease stability. 

Aptamer binding affinity depends on secondary and tertiary structures, which in turn 
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relies on target environment conditions such as pH and temperature. This can affect and 

reduce liposomal therapy efficiency in vivo experiments.  

Nucleic acid aptamers are usually 75-100 nucleotides. This length provides an 

opportunity for vast variation in sequence, resulting in different confirmations and 

different binding affinity. However, the negative charge associated with the 

phosphodiester backbone aptamers contributes to increase in liposome clearance rate by 

the spleen and kidney, thereby reducing circulation time in blood stream. The negative 

charge on liposomes also elevates non-specific interactions as well, leading to a reduction 

in substrate affinity. Additionally, long aptamers generate steric hindrance which leads to 

a barrier in conjugation to the liposome surface [155].  To overcome this obstacle, 

positively charged PEG linkers can be used to conjugate the aptamers to the liposome 

surface, this approach neutralizes both the liposome negative charge as well as decreases 

steric hindrance.  

The first in vitro aptamer conjugated nanoparticle to target PSMA was reported in 

2004. Following that research was conducted in vivo, which showed a reduction in tumor 

growth in comparison to  non-targeted nanoparticles [154]. Despite the promising results 

of aptamer conjugated liposomes in vitro, they show limitations in vivo. Nucleic acids are 

easily degraded, which makes them unstable in biological environment. To overcome this 

problem and avoid ligand degradation on the surface of liposome, nucleic acids can be 

modified with fluoro, amine, or methoxy groups. Besides in vivo limitations, the high 

manufacturing cost of aptamers is one of the major reasons hampering their development.     

A.4.2.2.2. Peptide- drug conjugates 

Peptides, composed of up to 50 amino acids, have simpler three dimensional 

structures relative to proteins. Therefore, their conjugation to liposomal surfaces is easier. 

To increase drug efficacy by enhancing cellular uptake and maintaining liposomes within 

tumor tissue, many cell penetrating peptides have been designed and synthesized [100].  
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RGD (arginine–glycine–aspartic acid), which targets αvβ3 integrin with a strong 

affinity, is the most commonly used peptide [156]. RGD with various linkers facilitating 

liposomal conjugation are commercially available. RGDs can be in both linear and cyclic 

forms, and studies have shown that cyclic RGD is more potent [157]. However, the use of 

RGD as a targeting ligand is being hampered by the fact that αvβ3 integrin expression 

can be found on healthy cells in addition to tumor cells. 

Another peptide targeting ligand that has been widely used for delivering 

anticancer drugs to the tumor site is NGR (asparagine-glycine-arginine). Like RGD, 

NGR has linear and cyclic forms, with the cyclic structure being more potent. NGR 

specifically binds to CD13/aminopeptidase N, which is overexpressed in tumor 

vasculature [158].  

A.4.2.2.3. Protein- drug conjugates 

Proteins have been widely used as targeting ligands due to their strong substrate 

binding and well defined three dimensional structures. Transferrin (Tf), a glycoprotein 

which binds to the transferrin receptor (Tf-R) with a high affinity and triggers 

endocytosis by taking advantage of clathrin-dependent pathway, is a commonly used 

targeting ligand. After internalization, Tf and TfR are recycled to the cellular surface 

through recycling pathway.  Transferrin function is transportation and regulation of 

intracellular iron concentration. The transferrin receptor has been extensively used for 

drug targeting to tumors. Tf-R is overexpressed on cancer cells because of the need of 

iron for energy production, cell proliferation and heme synthesis [159]. Luckily, 

transferrin does not induce any immune response in patients [160], therefore using 

liposomes that are conjugated with Tf can be beneficial to deliver encapsulated drugs to 

the tumor site.  Research has shown that transferrin can affect the efficacy of the 

encapsulated drug at cellular levels in addition to affecting targeting ability. In some 

studies, there was an increase in gene transfection and tumor size shrinkage [161]. MBP-
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426 is a Tf conjugated liposome in clinical trials that encapsulates oxaliplatin. It is 

currently under investigation in phase II clinical trial for treating colorectal cancer. 

In addition to naturally occurring proteins, there are variety of synthetic proteins 

such as affibodies and ankyrin repeat proteins which are being investigated for targeted 

delivery of anticancer therapeutic agents. Affibodies are polypeptide ligands of 

approximately 15kDa that are used for tissue-specific targeting and controlled release of 

encapsulated drugs in ligand conjugated nanoparticles. Their small size provides a high 

ratio of binding site to ligand size, which improves endocytosis by tumor cells. For 

instance, some affibodies selectively bind to extracellular domain of the human epidermal 

growth factor receptor 2 (HER-2) in tumors that overexpress HER-2 antigen [162], [163].  

In addition to affibodies’ selective targeting ability, their high stability in both in vitro 

and in vivo studies have made them a promising targeting ligand of choice in liposomal 

drug delivery [162].  

Designed ankyrin repeat proteins (DARPin) are non-immunoglubins binding 

proteins. The Ankyrin motif is composed of 33 amino acids which form a secondary 

structure consisting of 1 β turn and two antiparallel α-helices. Their small size, high 

stability, and high affinity against soluble or membrane bound antigens have made them 

excellent binders for tumor targeting. Winkler et al [164] designed DARPins that are 

specific for epithelial cell adhesion molecules (EpCAM) as a drug delivery vehicle for 

small interfering RNA (siRNA) complementary to the bcl-2 mRNA. DARPin dimers 

were utilized as fusionproteins to deliver siRNA into cells. EpCAM is transmembrane 

glycoprotein responsible for cell proliferation, differentiation and signaling [165].   

EpCAM is overexpressed in solid tumors, with a low expression in normal cells. Its 

overexpression is more common in breast, prostate, colon, and pancreas carcinomas. 

EpCAM is easily internalized by tumor cells and is suitable for the delivery of anticancer 

agents to tumor tissue [164].  
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Unfortunately, proteins suffer from several limitations. In some cases their size 

affects the efficiency of their installation on liposomal surfaces. The complexity of their 

amino acid residues makes conjugation chemistry difficult. Moreover, the chemistry used 

for protein conjugation to liposomal surfaces can significantly influence their 

secondary/tertiary structures which may affect antigen affinity.           

A.4.2.2.4. Antibody- drug conjugates  

Antibodies or immunoglobulin (Ig) are Y-shaped glycoproteins that [152] bind 

and interact with antigens through the binding site which is located at the tip of the 

antibody. The binding site, which is also called “hypervariable region (HVR)” or “F(ab′)2 

fragment”, can have various structures in order to interact with different antigens. The 

antibody protein recognition part “Fc fragment” is located at the bottom of Y-shaped 

antibody (Figure A.9). It helps mononuclear phagocyte system and immune system to 

recognize proteins. [107]. The first evidence for their specific binding to tumor cells 

antigen was seen in 1975 [166]. 
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Figure A.9. Antibody Y-shaped structure. Protein recognition part (Fc) is located at the 

base, while antigen binding site (Fab) is positioned at the tip of antibody structure.  

 

To date, several antibody targeted cancer treatment modalities have been 

approved by the US FDA [167]. Retoximab (Rituxan®) is anti-CD20 antibody being 

used for treating CD-20 positive B-call non-Hodgkin's lymphoma. It was approved in 

1997 and manufactured by IDEC pharmaceuticals. Ibritumomab tiuxetan (Zevalin®) is 

another anti-CD20 antibody manufactured by IDEC pharmaceuticals. It obtained FDA 

approval in 2002 and since then has been used for Rituximab-failed non-Hodgkins 

lymphoma [168].  Gemtuzumabozogamicin (Mylotarg®) is an anti-CD33 antibody 

manufactured by Wyeth Pharmaceuticals. It has been in the market since FDA approval 
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in 2000, for treating relapsed and refractory acute myelogenous leukemia [169]. These 

are only a few examples of antibody use for targeted cancer treatments. Studies have 

shown that using antibodies as targeting ligands is beneficial in delivery systems such as 

liposomes due to high affinity and selectivity for the target. Antibody conjugated 

liposomes can enhance the selective toxicity of therapeutic agents to cancer cells [170].  

Unfortunately, even though antibody conjugated liposomes showed favorable 

results in vitro, their use in in vivo studies have been hampered by several limiting 

factors. Antibodies are very sensitive to environmental changes such as temperature, 

enzyme or salt concentration changes and are not stable in the presence of organic 

solvents. These factors, along with large size (150 kDa), make conjugation of antibodies 

to liposome surfaces complex. Furthermore, antibodies’ large size increases the overall 

liposome size after conjugation and resulting antibody-conjugated liposomes have 

enhanced clearance rates by RES or MPS leading to low blood circulation time [171].  

The main function of antibodies is to recognize antigens and induce clearance by MPS 

and the immune system. Decorating liposomes with antibodies inadvertently leads to 

faster clearance from the bloodstream, although, removal of Fc fragment slightly 

improves circulation time [172]. Newer coupling methods, where an antibody or its 

fragment is attached to the terminal end of a PEG linker and engrafted to the liposome 

surface, have been developed to minimize blood clearance [7], [131].  

Despite all these limitations, several antibody conjugated liposomes have made 

their way to pre-clinical or clinical trials. For example, SGT-53 is a wildtype p53 

sequence encapsulating cationic liposome with anti-transferrin receptor antibody. It is 

under investigation in phase II clinical trials for treating glioblastoma, solid tumors and 

pancreatic cancer. SGT-94 is another anti-transferrin receptor antibody liposome 

incorporating RB94 plasmid DNA. It is in phase I clinical trials for treating solid tumors 

[173].  MM-302 is an anti-Her-2 antibody conjugated liposome that encapsulates 

doxorubicin. It is in clinical trials for the treatment HER-2 positive breast cancer. Upon 
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administration, MM-302 binds to HER-2 overexpressing tumor cells and doxorubicin 

gets released upon endocytosis of the conjugated liposome into the tumor cell. The 

released doxorubicin then impedes topoisomerase II activity, inhibition of RNA synthesis 

and DNA replication; leading to retardation of tumor growth [174]. MCC-465 is another 

example of antibody conjugated liposome that encapsulates doxorubicin. It is in clinical 

trials for treating gastric cancer. It is conjugated to F(ab')2 fragment of human 

monoclonal antibody GAH, which targets more than 90% of cancerous stomach tissue 

[175].        

A.5. Future perspective and conclusion   

With the FDA approval and success of several liposomes in recent years, 

liposomal drug delivery has become a promising targeted delivery system for cancer 

therapy. Liposomal drug delivery occurs through passive and active targeting. Active 

targeting can revolutionize cancer therapy and increase patient’s life quality and survival 

by delivering anticancer drugs specifically to tumor sites, consequently diminishing 

cytotoxicity and minimizing side effects. However, despite all the research and efforts 

dedicated in active targeting liposomes studies, progress in the clinic has been so slow. 

Although active targeting liposomes enhance drug efficiency and efficacy by improving 

delivery to the target site as well as increasing tissue distribution and cellular uptake by 

tumor cells, their use in in vivo studies has been hampered by low penetration through 

tumor tissues and their quick recognition by the immune and reticuloendothelial systems 

due to formation of protein corona around liposome surface.  

Additionally, some of the targeting ligands are not stable and soluble in organic 

solvents, a situation which makes their scale up synthesis very difficult.  

Therefore, there is an unmet need to improve the design and stability of active targeting 

liposomes as therapeutic delivery systems. Factors such as liposome size, charge, PEG 

coating, and ligand size, charge, length and density cause formation and composition of 
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protein corona [176]. These factors should be optimized to obtain ligand targeted 

liposomes with higher potency and efficacy for cancer therapy. 
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APPENDIX B 

AZITHROMYCIN FUNCTIONALIZED LIPOSOMES 

 

B.1. Introduction 

Despite intensive research towards development of new therapies for treating 

cancer, it is still among the leading causes of death worldwide [1], [2].   Every year over 

10 million people are diagnosed with cancer which results in thousands of death [3]. 

Cancer cells originate from normal healthy cells and because of their similarity to normal 

cell, it has proven very difficult to selectively target them [4]. The utility of most of the 

current cancer therapeutic agents is hampered by dose-limiting side effects and off-target 

toxicities [3]. One approach to solve this problem is the use of carriers, such as 

liposomes, to deliver anticancer drugs selectively to target tissues. Liposomal drug 

delivery method facilitates selective targeting of the cancerous tissues while reducing the 

off-target toxicities and increasing the drug’s blood circulation time. Additionally, 

liposomal drug delivery formulation could be used to deliver multiple drugs, which target 

pathways, to various cancer types [5], [6].      
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Liposomes are lipid bilayers vesicles, designed to enhance the drug bioavailability and 

accumulation at the target site [7]. In some cases in order to increase the liposome blood 

circulation, they are coated with Poly Ethylene Glycol (PEG). These are called “stealth” 

liposomes and prevents liposome’s rapid uptake by immune system [3], [7].  Once the 

liposome is made and decorated with PEG and other ligands the anticancer drug can be 

inserted inside or it can be attached outside to the lipid bilayer based on the drug 

lipophilicity (Figure B.1). If the anticancer drug is hydrophilic it will be encapsulated into 

the liposome, since the interior part is surrounded by hydrophilic head groups. On the 

other hand, if it is hydrophobic it will be inserted in or attached to hydrophobic bilayer 

There are more than ten FDA approved liposomal drug formulations [3].  
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Figure B.1. Liposomal drug delivery system. Various therapeutic drugs can be 

encapsulated inside the liposome, within its bilayers or conjugated to its surface 

depending on their hydrophobicity. Installing PEG on the surface of liposome delays its 

recognition by reticulum endothelial system (RES) and macrophages.  

B.2. Ligand functionalized liposome design 

Liposomes function as drug delivery vehicles by encapsulating the therapeutic 

drug in the interior, within their bilayers or attaching it on the bilayer membrane [8], [9], 

[10]. Liposomes can be made based on three models. In the first model the ligand is 

directly attached to phospholipid head group. But the problem with this model is the 

liposome will be uptaken by immune system easily and rapidly. Hence, the circulation 

time of such liposome is short [11]. The second model is similar to the first one except 

that PEGylated phospholipids are incorporated into the liposome to increase the liposome 

blood circulation time. However, steric occlusion could prevent the accessibility of the 

targeting ligand by the receptors expressed in the target tissue. In the third model, the 

ligand is attached to the distal end of PEG coating. This model is called “post insertion” 

model and it usually facilitates long blood circulation time and high selectivity (Figure 

B.2) [12]. 
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Figure B.2. Three different design of functionalized liposome. A) Ligands conjugated 

directly on phspholipid head group of non-PEGylated liposome. B) Ligands conjugated 

directly on phspholipid head group of PEGylated liposome. C) Ligands are conjugated on 

the free terminus of PEGylated chain [12]. 

In this project, I designed azithromycin decorated liposomes for lung tissue 

selective delivery of therapeutic agents (Figure B.3). Three phospholipid functionalized 

azithromycin analogues were synthesized to construct liposome in which targeting 

ligands are embedded in the PEG layer.  

A B C 
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Figure B.3. Three different designs of azithromycin functionalized phospholipid. 

 

Azithromycin is a 15 membered macrolide (Figure B.4). Which has been used 

widely for respiratory tract infection treatment, middle ear infection, sexually transmitted 

diseases and trachoma [13], [14], [15]. Compared to the 14 membered ring erythromycin, 

a macrolide originally isolated from Streptomyces Species [16], azithromycin is more 

chemically stable and better tolerated. Its high accumulation in cells and tissues 

specifically lung tissue results in 10-100 fold higher concentration compared to plasma.  

The high intracellular accumulation results in prolonged half-life, and more favorable 

regimen and shorter dosage schedule. Azithromycin, contains two basic amine groups, 

and relative to erythromycin, it has greater tissue penetration as well as higher potency 

against gram negative bacteria [17]. The anti-bacterial property of erythromycin class of 

macrolides is due to their reversible binding to the 50s subunit of the bacterial ribosome 

which results in inhibiting translocation and transpeptidation reaction [14], [18].   
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Figure B.4. Azithromycin structure, a FDA approved antibiotic for treating bacterial 

infection. 

Based on its lung tissue accumulation property, azithromycin could serve as 

ligand for lung targeted delivery of therapeutic agents.  It is therefore conceivable that 

liposomal formulations incorporating liposome-forming macrolides, derived from 

azithromycin (AZM) will generate a new class of nanocarriers that are selectively 

accumulated in the lung tissues [19].  

B.3. Chemistry and synthesis 

Toward obtaining liposomal formulation for lung tissue selective delivery of 

therapeutic agents, three different phospholipid functionalized azithromycins were 

synthesized. The short chain phospholipid functionalized azithromycin 5 was synthesized 

through conversion of amine group to azide by performing a diazotransfer reaction [13] 

followed by Cu (I) cycloaddition with N-ethynyl benzyl azithromycin 4 [14] (Scheme 

B.1).   
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Scheme B.1. (a) TEA, CuSO4, MeOH: H2O, rt, overnigh, 51%; (c) CuI, Hunig’s base, 

THF, rt, overnight, 39%.  

 

To synthesize the middle length liposome 7, a click reaction was performed 

between N-ehynyl benzyl azithromycin 4 and PEGylated phospholipid 6 (provided by 

Idris Raji) (Scheme B.2).  

 

 

Scheme B.2. CuI, Hunig’s base, THF, rt, overnight, 50%. 

 

To synthesize the long chain of azithromycin functionalized liposome, N-ehynyl 

benzyl azithromycin 4 was reacted with amine azide PEG 8 through CuI (I) cyclization 

reaction followed by nucleophilic reaction with commercially available NHS PEG 2000 

derivative 11 (Scheme B.3). 
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Scheme B.3. (a) CuI, Hunig’s base, THF, rt, Overnight, 30% ; (b) CH3Cl, rt, 24 h, 81%. 

B.4. Discussion and future studies  

The liposome-forming capability and macrophage uptake potential of these AZM 

–derived liposome-forming macrolides will be investigated in the future by another lab 

member. 

  

B.5. Material and Synthesis 

Azithromycin was purchased from Greenfield chemical. 4-ethynylbenzyl alcohol 

was purchased from Sigma-Aldrich. All commercially available starting materials were 

used without purification. Reaction solvents were high performance liquid 

chromatography (HPLC) grade or American Chemical Society (ACS) grade and used 

without purification. Analtech silica gel plates (60 F254) were used for analytical TLC, 
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and Analtech preparative TLC plates (UV 254, 2000 µm) were used for purification.  UV 

light and anisaldehyde/iodine stain were used to visualize the spots.  200-400 Mesh silica 

gel was used in column chromatography. Nuclear magnetic resonance (NMR) spectra 

were recorded on a Varian-Gemini 400 MHz or Bruker 500 MHz magnetic resonance 

spectrometer.  1H NMR Spectra were recorded in parts per million (ppm) relative to the 

residual peaks of CHCl3 (7.24 ppm) in CDCl3 or CHD2OD (4.78 ppm) in CD3OD or 

DMSO-d5 (2.49 ppm) in DMSO-d6. 
13C spectra were recorded relative to the central peak 

of the CDCl3 triplet (77.0 ppm) or CD3OD septet (49.3 ppm) or DMSO-d6 septet (39.7 

ppm) and were recorded with complete hetero-decoupling. Original ‘fid’ files were 

processed using MestReNova LITE (version 5.2.5-5780) program. High-resolution mass 

spectra were recorded at the Georgia Institute of Technology mass spectrometry facility 

in Atlanta.  

Compounds 4, and 8 were synthesized as described before [22], [23], [24], [25].  

B.5.1. 3-(((2-azidoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl distearate (3) 

Triethyl amine (2 mL, 14.2 mmol) and catalytic amount of CuSO4. 5H2O were 

added to a suspension of compound 1 (218 mg, 0.3 mmol) in MeOH: H2O (4:1 mL). 

Freshly made trifluoromethanesulfonyl azide 2 (152.2 mg, 0.9 mmol) was added. The 

reaction mixture was allowed to stir overnight. The reaction mixture was concentrated 

and dissolved in EtOAc (60 mL) and organic layer was washed with 5% KHSO4 (5 mL) 

and brine (2×5 mL) brine solution and dried over Na2SO4. Crude product was purified 

sing preparative TLC (Silica gel, 4:1:0.1 DCM: MeOH: NH4OH) to yield product 3 (114 

mg, 51%). 1H NMR (400 MHz, CDCl3) δ 3.99 (s, 2H), 3.66 (s, 1H), 3.47 (s, 2H), 2.31 (d, 

J = 7.6 Hz, 2H), 1.59 (s, 2H), 1.25 (s, 64H), 0.87 (t, J = 6.7 Hz, 6H). 31P NMR (162 

MHz, CDCl3) δ -4.47.  
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B.5.2. (Azithromycin-4-(methylamino)-N(methyl)(4-benzyltriazolyl))- 

ethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl distearate (5) 

Compound 4 (113.8 mg, 0.1 mmol) and phospholipid 3 (114 mg, 0.1 mmol) were 

dissolved in anhydrous THF (10 mL) and stirred under argon at room temperature. 

Copper (I) iodide (12.8 mg, 0.07 mmol) and Hunig’s base (0.05 mL, 0.3 mmol) were 

added to the mixture and stirring continued for overnight.  A solution of 4:1 saturated 

NH4Cl/NH4OH (10 mL) was added to the reaction mixture and extracted with 20% 

MeOH/ CH2Cl2 (3×10 mL). The organic layer was dried over Na2SO4 and concentrated 

in vacuo. The crude product was purified by preparative chromatography (Silica gel, 

12:2:0.5 CHCl3: MeOH: NH4OH) to give the product (84.4 mg, 39%) as white solid. 1H 

NMR (400 MHz, CDCl3) δ 8.55 (s, 1H), 7.91 – 7.68 (m, 2H), 7.30 – 7.08 (m, 2H), 4.45 – 

3.83 (m, 6H), 3.86 – 3.57 (m, 3H), 3.49 (dd, J = 27.0, 20.3 Hz, 2H), 2.88 (s, 3H), 2.44 – 

2.19 (m, 5H), 2.05 – 1.82 (m, 3H), 1.72 (d, J = 9.6 Hz, 3H), 1.63 – 1.50 (m, 5H), 1.48 – 

1.41 (m, 3H), 1.42 – 1.14 (m, 81H), 1.09 (d, J = 5.8 Hz, 6H), 1.06 – 0.95 (m, 5H), 0.97 – 

0.80 (m, 16H), 0.72 (dt, J = 15.0, 7.6 Hz, 3H). 31P NMR (162 MHz, CDCl3) δ -2.34. 

HRMS (MALDI) m/z Calcd. for C87 H156 O20 N5 P [M]: 12624.1.  

 

B.5.3. (Azithromycin-4-(methylamino)-N(methyl)(4-benzyltriazolyl))- octa ethylene 

glycol)(hydroxy)phosphoryl)oxy)propane-1,2-diyl distearate (7) 

Compound 4 (145.2 mg, 0.2 mmol) and phospholipid 6 (200 mg, 0.2 mmol) were 

dissolved in anhydrous THF (10 mL) and stirred under argon at room temperature. 

Copper (I) iodide (16 mg, 0.08 mmol) and Hunig’s base (0.06 mL, 0.3 mmol) were added 

to the mixture and stirring continued for overnight.  A solution of 4:1 saturated 

NH4Cl/NH4OH (10 mL) was added to the reaction mixture and extracted with 20% 

MeOH/ CH2Cl2 (3×10 mL). The organic layer was dried over Na2SO4 and concentrated 

in vacuo. The crude product was purified by preparative chromatography (Silica gel, 
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15:2:0.3 DCM: MeOH: NH4OH) to give the product (142 mg, 50%) as white solid. 1H 

NMR (400 MHz, CDCl3) δ 8.04 (s, 1H), 7.81 (d, J = 6.9 Hz, 2H), 7.36 (s, 2H), 5.20 (s, 

1H), 4.96 (s, 1H), 4.74 (d, J = 6.7 Hz, 1H), 4.59 (t, J = 4.7 Hz, 2H), 4.43 – 4.26 (m, 2H), 

4.23 – 4.04 (m, 4H), 4.03 – 3.83 (m, 7H), 3.76 (s, 1H), 3.69 – 3.48 (m, 29H), 3.44 (d, J = 

27.0 Hz, 4H), 3.03 (s, 2H), 2.90 (d, J = 30.4 Hz, 6H), 2.65 (s, 2H), 2.24 (ddd, J = 33.5, 

18.2, 9.2 Hz, 9H), 1.80 (t, J = 24.1 Hz, 3H), 1.55 (s, 5H), 1.49 – 1.35 (m, 5H), 1.36 – 

1.15 (m, 67H), 1.15 – 1.05 (m, 6H), 0.98 (dd, J = 20.3, 7.2 Hz, 8H), 0.91 – 0.76 (m, 9H). 

31P NMR (162 MHz, MeOH) δ 0.08.  

 

B.5.4. (Azithromycin-4-(methylamino)-N(methyl)(4-benzyltriazolyl))- octa ethylene 

glycol amine (9) 

 Compound 4 (183.945.2 mg, 0.01 mmol) and azido octa ethylene glycol amine 8 (39 mg, 

0.01 mmol) were dissolved in anhydrous THF (5 mL) and stirred under argon at room 

temperature. Copper (I) iodide (9.4 mg, 0.05 mmol) and Hunig’s base (0.03 mL, 0.2 

mmol) were added to the mixture and stirring continued for overnight.  A solution of 4:1 

saturated NH4Cl/NH4OH (10 mL) was added to the reaction mixture and extracted with 

20% MeOH/ CH2Cl2 (3×10 mL). The organic layer was dried over Na2SO4 and 

concentrated in vacuo. The crude product was purified by preparative chromatography 

(Silica gel, 20:2:0.5 EtOAc: MeOH: NH4OH) to give the product (37 mg, 30%) as white 

solid. 1H NMR (400 MHz, cd3od) δ 7.77 (t, J = 10.2 Hz, 1H), 7.47 (d, J = 6.3 Hz, 2H), 

7.39 (s, 2H), 5.03 (d, J = 4.7 Hz, 2H), 4.88 (s, 28H), 4.58 – 4.48 (m, 3H), 4.18 (ddd, J = 

21.5, 13.9, 4.3 Hz, 5H), 3.89 – 3.76 (m, 7H), 3.36 – 3.26 (m, 7H), 3.22 (d, J = 5.6 Hz, 

5H), 3.01 (t, J = 7.9 Hz, 3H), 2.87 – 2.67 (m, 7H), 2.55 (d, J = 11.5 Hz, 2H), 2.35 – 2.27 

(m, 8H), 2.28 – 2.21 (m, 8H), 2.09 – 1.89 (m, 14H), 1.89 – 1.70 (m, 19H), 1.70 – 1.46 

(m, 26H), 1.38 – 1.31 (m, 9H), 1.30 – 1.21 (m, 18H), 1.22 – 1.15 (m, 15H), 1.13 – 1.02 
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(m, 19H), 0.96 – 0.87 (m, 13H). HRMS (ESI) m/z Calcd. C62 H111 O19 N6 [M+H+]: 

1243.7899, found for 1243.7890. 

B.5.5. (Azithromycin-4-(methylamino)-N(methyl)(4-benzyltriazolyl)) PEG 2000 

phosphoryl)oxy)butane-1,2-diyl distearate (11) 

PEG 2000 10 (167.1 mg, 0.05 mmol) and compound 9 (76 mg, 0.06 mmol) were 

dissolved in chloroform (10 mL). The reaction was allowed to stir at rt for 24 h. The 

reaction mixture was then washed with brine (5 mL) and dried over Na2SO4. The crude 

product was purified on preparative TLC (10:1.2:0.5 DCM:MeOH:NH4OH) to yield the 

product as a white solid (185 mg, 81%). 1H NMR (400 MHz, MeOH) δ 8.42 (s, 1H), 7.83 

(d, J = 8.0 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 5.02 (d, J = 4.8 Hz, 1H), 4.64 (t, J = 4.9 Hz, 

2H), 4.54 (d, J = 7.1 Hz, 1H), 4.44 (dd, J = 11.9, 3.1 Hz, 1H), 4.20 – 4.08 (m, 4H), 3.96 

(dt, J = 7.8, 5.3 Hz, 4H), 3.87 (q, J = 5.4 Hz, 1H), 3.68 – 3.58 (m, 175H), 3.47 (ddd, J = 

20.6, 13.8, 8.6 Hz, 7H), 3.33 (ddd, J = 10.0, 6.5, 4.9 Hz, 7H), 3.23 (dd, J = 14.8, 7.9 Hz, 

2H), 3.19 (s, 3H), 3.03 (d, J = 9.4 Hz, 2H), 2.72 (s, 3H), 2.34 (dt, J = 15.1, 11.0 Hz, 7H), 

2.21 (dd, J = 14.5, 7.0 Hz, 4H), 1.86 (dt, J = 21.2, 10.8 Hz, 4H), 1.81 – 1.70 (m, 2H), 

1.57 (dd, J = 21.3, 6.4 Hz, 6H), 1.43 (s, 3H), 1.29 (s, 57H), 1.25 – 1.18 (m, 8H), 1.16 (d, 

J = 10.8 Hz, 6H), 1.08 (d, J = 7.4 Hz, 2H), 1.02 (d, J = 6.7 Hz, 3H), 0.90 (t, J = 6.8 Hz, 

8H). 
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3  31P NMR  
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5 1H NMR  
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5 31P NMR  
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7 1H NMR  
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7 31P NMR  
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9 1H NMR  
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9 31P NMR  
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11 1H NMR 
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