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SUMMARY 

 

 
 

Unmitigated chatter can result in poor part quality, accelerated tool wear, and 

possible damage to the spindle and machine. Several methods have been shown to 

effectively detect chatter in lab conditions.  The implementation of these methods in 

noisy environments, such as factory floors, has not been well studied, however. In order 

to achieve reliable performance in a real machining environment, chatter detection 

methods should be robust to a variety of noises. 

This study aims to understand the question of whether machine learning 

approaches are more robust to high levels of noise in assessing chatter in machining 

signals. The purpose of this study is to examine the performance of various chatter 

classification methods under varying background noises. To accomplish this, stable and 

unstable cuts were made on a milling machine and the audio signal was collected. The 

audio signal was then superimposed with levels of white Gaussian noise and periodic 

noise to simulate a noisy data collection environment. A statistical approach, along with 

several machine learning classifiers were trained and tested on this noisy data.  

The performance of these techniques was then compared with respect to the 

increasing levels of noise. It was found that machine learning approaches achieved 

satisfactory accuracies of up to 94.1% under noisy conditions. Conventional static 

threshold techniques, however, failed under most noise conditions. Support vector 

machines demonstrated an ability to classify noisy data despite limited training. These 

results indicate that machine learning methods have a significant ability to classify noisy 

data and may be a promising approach to practical chatter detection.  
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CHAPTER 1: INTRODUCTION  

 

 

 

In the fourth industrial revolution, manufacturers are increasingly pressured to 

meet the demands of higher part quality, lower downtime, and faster production. To meet 

these demands, manufacturers are leveraging the growing fields of Internet of Things 

(IoT) and machine learning (ML) to automate or assist in their manufacturing processes 

[1]. One of these processes is milling. Milling is a common material removal operation in 

manufacturing environments when working with non-axisymmetric parts. The forces 

generated when the cutting tool engages with the work piece produce significant 

deflection of the tool-workpiece system. An example tool-workpiece system is shown 

below in Figure 1.  

 

 

Figure 1: Example tool-workpiece system 
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Tool Holder 

Cutting Tool 

Workpiece 

Table 
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When this process becomes unstable, regenerative chatter occurs. Chatter is a 

self-excited unstable vibration that occurs during a metal cutting process, such as milling. 

Unmitigated chatter can result in poor part quality, accelerated tool wear, and possible 

damage to the spindle and machine [2]. Figure 2 shows the results of chatter on a milled 

surface. All these result in increased production time and costs. An article from Deloitte 

shows that unplanned downtime costs manufacturers an estimated $50 billion each year 

[3]. In addition to unplanned downtime, chatter can result in machine operators to use 

less than ideal cutting parameters. Typically, spindle speed and/or feed rate is reduced. 

This results in a material removal rate (MRR) that is significantly lower than the 

machines energy limitations. By choosing stable cutting parameters to avoid chatter, 

MRR can be increased dramatically [12].  This increase can be even more dramatic with 

newer high-speed milling machines and machining strategies. 

 

 

Figure 2:Chatter marks [4] 

   

When chatter occurs, the resulting vibration has a frequency that is different from 

that of the tooth passing frequency. For this reason, frequency-based techniques are 
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generally effective at detecting chatter. Several threshold-based methods of analyzing an 

audio signal in the frequency domain for chatter have been developed by researchers over 

the past few decades [21, 22, 42, 43]. Other methods involve analyzing the time-series 

and frequency domain, and extracting features to train ML classifiers such as support 

vector machines (SVM) or artificial neural networks (ANN) [25, 26, 27, 28, 41]. Several 

commercial products such as the MetalMax Harmonizer [46] and the Okuma Machining 

Navi [47] are also available to address the problem of chatter.   

 

1.1 Motivation 

Although audio signals have been proven to be an effective method of detecting 

chatter in research environments, their effectiveness under noisy conditions has been 

questioned [22]. The noisy shop floor can cause false alarms in a monitoring system that 

is not appropriately tuned [27]. In industrial environments, which have been found to 

have sound pressure levels of up to 90 dB, these false alarms could become a significant 

issue [50]. These factory sounds have a large range of frequencies they affect. Noise 

sources include but are not limited to motors, fans, machining centers, talking, air flow, 

and fluid flow. Very rarely do machining operations happen in complete isolation, so it is 

important to understand the veracity of such methods in the presence of background 

noises. Many methods for detecting chatter require setting a static noise threshold that 

once passed, raises an alarm for chatter [22, 23, 42, 43]. If the threshold is set high so that 

the system is less effected by noise, the chance for missed detection increases.  For 

practical implementation of these audio signal chatter classification systems in industrial 

environments, the influence of noise should be understood. Inaccurate classifications due 
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to noise can lead to non-optimal tooling operations, or, worst-case catastrophic failure 

with unmitigated chatter. Understanding background noise can increase the reliability of 

future systems. ML approaches such as SVM classification may have the ability to 

function accurately in the presence of heavy factory noise, unlike standard thresholding 

methods. SVMs have shown an ability to classify accurately with limited training and 

fairly noisy data in other applications such as tool wear [29, 30]. 

 

1.2 Problem Statement 

While the impact of noise levels on threshold-based chatter detection methods has 

been explored elsewhere [22, 27], the effect of noise on ML approaches is not well 

understood. ML-based approaches may provide significantly more enhanced performance 

in the presence of noise when compared to static threshold-based methods [26]. Thus, the 

present study seeks to address the question of whether ML-based approaches are more 

robust to high levels of noise in assessing chatter in machining signals. The purpose of 

this study is to examine the performance of various chatter classification methods under 

varying background noises. To accomplish this, stable and unstable cuts were made on a 

milling machine and the audio signal was collected. The audio signal was then 

superimposed with levels of white Gaussian noise and periodic noise to simulate a noisy 

data collection environment. The accuracy of these techniques was then compared with 

respect to the increasing levels of noise. The end goal is to understand the balance 

between sensitivity, speed of implementation, and performance of various classification 

systems under noisy conditions.  
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1.3 Structure 

In Chapter 2, the background of machine process monitoring will be discussed 

with a focus on chatter detection. Past work regarding signal processing, feature 

extraction, feature selection, and classification methods will be overviewed. The 

experimental set-up and data collection system will be shown in Chapter 3. The signal 

acquisition process and the sensor specifications will be described. The sampling rates 

and testing configurations will be detailed. Chapter 4 will present analysis of the 

experimental data and noise-augmented data, including feature extraction and 

classification methods. The effectiveness of these systems under varying background 

noises will be discussed. Chapter 5 will present conclusions and discuss future areas of 

research stemming from these experimental findings.  
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CHAPTER 2: BACKGROUND 

 

 

 

 Manufacturers are constantly balancing the demands of product quality, product 

variability, cost, and speed. As a result, manufacturers are increasingly turning to 

automation to meet these demands and remain competitive, globally. In recent decades, a 

vast amount of research has been focused on process monitoring to reduce the need for 

expert operators [1]. Process monitoring also allows machine tool users to step away 

from planned scheduled maintenance and move towards condition-based maintenance. 

Condition-based maintenance has advantages over tradition planned maintenance in that 

it more efficiently minimizes downtime and extends the life of machine tool systems, 

while reducing life cycle and maintenance costs [2]. Process monitoring in manufacturing 

is the estimation of process variables such as cutting forces, vibrations, acoustic emission 

(AE), noise, temperature, surface finish, that are influenced by the cutting tool and 

cutting parameters inputted [10]. These variables are measured by the appropriate 

physical sensors. Analog signals detected by these sensors are transformed into digital 

signals that are then processed. From these digital signals, features are extracted. These 

features potentially correlate with tool or process conditions of interest to the machine 

operator. These features are used by decision making systems, such as neural networks, 

to take an action. Actions may be limited to an alert or suggestion or may go so far as to 

take automated corrective steps. Figure 3 shows a typical method of monitoring for tool 

wear.  
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Figure 3: Example process monitoring method [11] 

 

 

 

2.1 Signal Measurement and Processing 

As shown in Figure 3, during the cutting process a variety of physical signals are 

generated. Some of these signals can be measured directly, and others may need to be 

estimated through measurable phenomena. A wide range of signals has been used for 

process monitoring including AE, tool temperature, cutting forces (static and dynamic), 

vibration (acceleration), and surface finish quality, and spindle motor current [2, 6, 10]. 

Along with measuring the appropriate signal, sensors for process monitoring should also 

meet the following requirements [13]: 

1. Measurement as close to the machining point as possible 

2. No reduction in the static and dynamic stiffness of the machine tool 

3. No restriction of working space and cutting parameters 

4. Wear and maintenance-free, easily changed, low costs 

5. Resistant to dirt, chips and mechanical, electromagnetic and thermal 

influences 
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6. Function independent of tool or workpiece 

7. Adequate metrological characteristics 

8. Reliable signal transmission 

 The processing of a raw signal follows the scheme shown in Figure 4. The sensor 

measures the physical signal from the process and transforms it into an analog signal. 

This analog signal is then converted to a digital signal using an Analog to Digital 

Converter (ADC). Depending on the sensor, pre-processing may be needed before 

conversion, such as filtering and amplifying [10]. During pre-processing, the continuous 

data are segmented into portions. The raw signal from a sensor is usually a time-domain 

signal. This signal can be transformed into the frequency domain, or the time-frequency 

domain through various means such as the Fast Fourier Transform (FFT), the Short Time 

Fourier Transform (STFT) or wavelet transform (WT). A wide range of features can be 

extracted from these domains.  

 

 

 

Figure 4: Signal processing logical scheme [10] 
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2.1.1 Time Domain 

Features from the time domain are extracted that can describe the signal and 

maintain as much information about the process as possible. Common features to extract 

include mean, magnitude, root mean square (RMS), variance, standard deviation, 

skewness, kurtosis, signal power, peak-to-peak value, range, peak-to-valley amplitude, 

crest factor (CF) and ratios of the signals [10]. In Binsaeid et al, the time domain features 

of mean, RMS, variance, skewness, kurtosis, signal power, peak-to-peak amplitude, and 

CF are extracted from force, acoustic emission, vibration, and power signals to detect end 

milling abnormalities such as flank wear, tool breakage, and tool chipping [14]. Average 

and peak forces collected from a dynamometer were used in [15] along with spindle 

speed, feed rate, and depth of cut to predict the surface roughness with a neural network. 

The standard deviation of the thrust force obtained from a dynamometer was used to 

detect chatter in a drilling operation in [16] along with chatter suppression by automatic 

spindle speed selection.  

 

2.1.2 Frequency domain 

 The extraction of features from the frequency domain is done by using a 

windowed Fourier transform. The Fourier transform breaks down a time-domain signal 

into a combination of sine waves. The sine waves are then represented in the frequency 

domain with amplitude, frequency, and phase. One of the most practical and common 

transforms is the FFT [10]. It is important to note one of the FFTs short comings: spectral 

leakage.  
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The FFT is a discrete transformation which will not have perfect whole periods. 

The waveforms may be truncated, and the endpoints are discontinuous. This leads to 

discontinuities that are shown in the frequency domain as high frequency components, 

known as spectral leakage [17]. Applying a window can minimize the effects of spectral 

leakage by closing the discontinuities and smoothing the signal before the FFT is applied. 

An example of windowing and its influence on the spectral leakage is shown in Figure 5.  

 

 

 
Figure 5: Windowing effect on FFT and spectral leakage in the (a) time domain 

(b) frequency domain [2] 

  

 

Numerous windows exist for different applications, but the most appropriate one 

for audio applications is the Hann/Hanning window [18]. The Hann window, shown in 
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Figure 6, is a raised cosine function with both endpoints at 0 with a zero slow. The side 

lobes roll off quickly, making it suitable for audio signal processing.  

  

 

Figure 6: Hann window [18] 

 

When the frequency of a signal is of interest, it must be digitized accurately. The 

signal must be sampled at least two times higher than the highest expected frequency 

component in the source signal. Half of the sampling frequency is known as the Nyquist 

frequency. If the sampling frequency is not at least double the highest component 

frequency, then aliasing will occur as shown in Figure 7.  
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Figure 7: Aliasing due to insufficient sampling [19] 

  

 

In the figure, the signal is a sine wave of frequency f0. If the signal was sampled 

at double the frequency, then the signal would produce a waveform of the same 

frequency as shown in (b). If the sampling rate is less than double as in (c), then the 

frequency recreated would be of frequency (1/3) f0. With a higher sampling rate, the 

digitized waveform would more closely represent the original signal. If the sampling rate 

were equal to the signal frequency, the digitized signal would be a constant [19].  

Understanding the frequency spectrum of an audio signal generated during a 

milling operation can give insight into the cutting process. The spectrum contains 

frequencies from the spindle run-out, the tooth-passing frequency, the possible chatter 

frequency, as well as any harmonics. The spindle run-out frequency is equal to the 

spindle speed, and the tooth-passing frequency is equal to the spindle speed multiplied by 
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the number of teeth. The harmonics are multiples of these frequencies. By taking the 

FFT, these frequencies can be separated from each other and analyzed.  

Features extracted from the FFT may include: amplitude of dominant spectral 

peaks, signal power in specific frequency ranges, energy in frequency bands, statistic 

features of the band power spectrum such as mean frequency, variance, skewness, and 

kurtosis and frequency of the spectrum’s highest peak [10]. In analyzing the frequency 

spectrum from an AE sensor, Guo et al, found that the existence of surface damage 

increased both the amplitude and frequency of the AE spectrum’s second peak [20]. Chip 

formation and chatter onset during turning were monitored using force from a 

dynamometer in [21]. They utilized threes ratios of cumulative power spectrum density 

within specified frequency ranges, obtained from three cutting force components. 

Chatter, continuous chip formation, and broken chip formation were all successfully 

classified regardless of cutting conditions.  

Delio et al [22] and Smith [23] describe method for chatter detection using 

frequency domain features. The method relies on the difference between the tooth 

frequency and the chatter frequency to separate them in the frequency domain. The user 

inputs several variables including the number of cutting edges, triggering threshold, and 

the sampling frequency. The triggering threshold level is chosen through 

experimentation. In their application, there was a pronounced increase in sound level 

from the machine when chattering so there were a wide range of acceptable thresholds. 

The system continuously monitors the audio signal during cutting operations. Once the 

system has been triggered by the sound level exceeding the threshold, the system acquires 

enough samples to perform an FFT. A peak search routine is performed to find the largest 
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peak in the spectrum. If the frequency of the peak in the signal does not correspond to the 

cutter frequencies or harmonics, then the algorithm detects chatter. Their system goes 

further by commanding the machine to stop and calculate a new spindle speed in order to 

move towards stability.  

The system was shown to detect chatter between 250 to 750 milliseconds and an 

addition 2-4 seconds to compute the spectrum. The system was shown to be effective in 

aluminum and cast-iron half immersion and slotting operations. Triggering of the system 

was noted to be a potential problem, as outside noises could inadvertently trigger the 

system. They highlight sound isolation and insulation to increase the quality of the signal 

and prevent false positives.  

 

2.1.3 Time-frequency domain 

 When using FFT, the frequency changes of the signal over time are lost. To 

combat this, a time-frequency analysis known as the short time Fourier transform (STFT) 

may be used. This analysis method is especially useful non-stationary signals and 

processes. The STFT uses a sliding window to calculate the Fourier transform at different 

times and combining the successive calculations. Thus, the frequency changes over time 

can be seen across the bandwidth. Marinescu demonstrated that the STFT with AE 

signals could identify the entrance/exit of each cutting insert into or out of the material 

[24]. Tilen et al used STFT on sound pressure signals to discriminate between chatter and 

chatter-free conditions when band sawing. Figure 8 shows an example of their work 

where chatter occurs distinctly at the beginning and end of the cut [25].  
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Figure 8: STFT with chatter regions on the edges [25] 

 

 

2.1.4 Wavelet transformation 

 In the Fourier transform, information about time is completely lost. With the 

STFT, time domain information is recovered, but the resolution is dependent on the size 

of the window. With a narrow window, the transform will have poor frequency 

resolution. With a wider window, the time resolution will be poor. The wavelet 

transformation (WT) provides a compromise on this time-resolution problem by applying 

windows of different sizes as needed. For low frequency information, a longer interval 

may be used. For high frequency information, short windows may be used. At high 

frequencies, good time resolution is achieved at the expense of frequency resolution. The 

opposite is true at low frequencies.  
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 Time-domain and frequency-domain features mentioned previously can be 

extracted from the STFT and WT, such as mean, RMS or variance. Yoon and Chin [26] 

used WT to successfully isolate chatter frequencies for real-time detection in end milling 

operations. 

 

2.2. Feature Selection 

 Many features can be generated from a signal, but many of them can be poor 

estimators of the process conditions. Certain features may be more relevant and sensitive 

to the process being monitored. The goal of feature selection is to remove redundant or 

irrelevant features while preserving as much information about the signal as possible 

[10]. Reduction of features allow for quicker training of ML algorithms and faster 

computation. If the number of features is too reduced, however, the system is more 

susceptible to disturbance. Several methods of feature selection and reduction have been 

used in literature.  

 Statistical measures can be used to determine which features best correlate with 

the process conditions of interest. Sheffer and Heyns demonstrated two methods of 

feature selection in [27] by calculating a correlation coefficient and a statistical overlap 

factor (SOF). A high correlation coefficient p indicates that there is a strong correlation 

between the feature q and the process variable V. This coefficient can be calculated with 

the following: 

Equation 1: 
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 The SOF can be calculated by using the same feature for two different conditions 

where x1 is the feature under condition 1and x2 is the feature under condition 2. The SOF 

determines the degree of separation of a feature between two conditions. A higher degree 

of separation indicates a more ideal feature. The SOF is calculated with the following: 

Equation 2: 

 

Sheffer and Heyns chose features that had high correlation and high SOF. They noted 

that some human judgement was required as automated feature selected often selected 

features that were too similar or dependent on one another.  

 Lamraoui et al used relative entropy to measure the separation “distance” of two 

distributions of a feature under chatter and non-chatter conditions. The further apart the 

two distributions, the higher the quality of feature [28]. In general, features that correlate 

well with the process variable of interest, are distinct from each other, and change more 

dramatically with the process variable are better suited for classification.   

 

2.3 Classification Methods 

 Once the appropriate features have been extracted from the raw signals, a decision 

must be made on what condition the machine is operating under. This decision can be 

made using statistical thresholds, such as the one described in [22, 23], where a threshold 

was set for the peak frequency amplitude. Statistical classification methods are quick to 

implement and generally simple to understand. An issue with these methods is that the 

threshold must be determined experimentally for classification to be meaningful.  
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 Support vector machines (SVM) have been shown to be suitable classifiers for 

machine process monitoring as well. In [29], SVMs were combined with WT to extract 

features in order to detect chatter in a boring process. Using the wavelet packet energy 

and standard deviation, appropriate features were generated. Accuracies of about 95% 

were achieved, and early onset chatter could be detected. Compared to other ML 

classifiers, SVMs can overcome problems of multiple local minima and over-fitting, 

while being able to be trained on minimal data to give a solution. A minimal number of 

features can be used with SVM as well to get appropriate solutions. In [29], only two 

features were used to obtain accurate results. Computation times are also relatively fast 

when compared to other techniques such as artificial neural networks [30]. 

 Artificial neural networks (ANN) are non-parametric machine learning algorithms 

inspired by the human nervous system [30]. They can accurately model non-linear 

relationships among features. ANNs were used in [28, 41] to monitor chatter. ANNs 

however are prone to overfitting and thus require large diversified training data [30].  

 

2.4 Chatter Detection  

 Process monitoring systems have been used to estimate a wide variety of 

applications including surface roughness, tool wear, tool breakage, dimensional accuracy, 

temperature, chip conditions, and chatter [1, 10]. The focus of this thesis will be the 

detection of chatter. Chatter has been researched for more than a century and still poses a 

major obstacle in optimizing machining processes such as turning, milling, drilling, 

boring, broaching, and grinding. Unmitigated chatter results in poor surface finish, 

dimensional inaccuracy, excessive noise, machine tool damage, reduced tool life and 
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reduced MRR material waste, energy waste, increased machining time, and increased 

costs [3, 31]. Thus, chatter detection, avoidance, and suppression are all major areas of 

interest for researchers and machine operators. To avoid chatter, a common practice is to 

use conservative cutting parameters. This suboptimal MRR may result in decreased 

productivity compared to a higher, stable MRR. In 2006, Renault S.A.S, an automobile 

manufacturer, estimated that the cost due to chatter on a cylinder block was around 0.35€ 

per piece. With 3 million engines per year, the costs of chatter could become very 

significant [32].  

 Chatter is classified in two groups: primary chatter, which is caused by the cutting 

process and secondary chatter which is caused by regeneration of waviness of the 

workpiece surface. Secondary or regenerative chatter is the most common form of chatter 

and will be referred to in this thesis as “chatter” [33]. This regeneration of waviness can 

be seen in Figure 9. The cutter vibrations leave a wavy surface and when the next cutting 

tooth removes material the waviness results in a varying force on the cutting tool. This 

varying force builds on itself and becomes regenerative chatter [33, 34, 35]. Chatter 

continues to build unmitigated until the tool jumps out of the cut or breaks.  
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Figure 9: Regeneration of waviness in a milling model with two degrees of 

freedom [33] 

  

 

Researchers have been able to detect chatter with a variety of instruments such as 

dynamometers [16, 36, 37], accelerometers [15, 38-41], and microphones [22-25, 42, 43]. 

Multi-sensor approaches have also been done [14, 44, 45]. Commercial products from 

Metalmax [46] and Okuma [47] are also available for chatter detection. These products 

use a microphone to monitor the cutting process. The use of microphones for monitoring 

the cutting process has been shown to be effective and inexpensive compared to other 

sensor approaches [22, 38, 43]. Accelerometers are acceptable as well, but the placement 

of them can cause change the apparent strength of different modes of vibration, leading to 

sensitivity and noise problems. Tlusty in [4] outlines a procedure to address these 

placement problems but prior knowledge of the system is needed which may not be 

achievable for all operations. The sensor must also be capable of detecting vibrations 
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from multiple sources on the machining center, as chatter can result from the workpiece, 

tool, spindle and machine structure vibrating [22].  

 Schmitz et al in [42] sampled the audio signal of a cutting operation once per 

revolution using a microphone. An infrared detector was used to synch the timing of the 

sample every revolution. A threshold was set on the variance of the microphone signal. 

Under unstable conditions, there is a high variance of the measured audio signal. Ismail 

and Ziaei [48, 49] used acoustic intensity to detect chatter in 5-axis machining. A 

threshold for acoustic intensity was set to detect stable, moderate chatter, and severe 

chatter conditions. The detection system was paired with a spindle speed ramping system 

that would move the operation into a stable cutting zone and suppress chatter. A similar 

approach is taken by Tsai et al in [43]. Two microphone signals are averaged and 

converted into an acoustic chatter signal index. Once this index goes above a set 

threshold, chatter is said to be detected. This index is taken after background noises such 

as fluid flow and AC power have been filtered out properly.  

 One of the major disadvantages of using microphones, however, is the prevalence 

of noise coming from the factory floor in practical implementation. The noisy factory 

floor can create false alarms in chatter detection systems [27]. False alarms have the 

potential to greatly slow down production, depending on the actions of the chatter 

detection system. If the system fails to operate properly in a real factory environment, the 

system is ineffective. Sound isolation and filtering may be used to decrease the effects of 

noise on audio signal collection systems [22]. Acoustic intensity can also be used to 

reduce the effects of background noise [22, 48, 49] 
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CHAPTER 3: EXPERIMENTAL METHODOLOGY 

 

 

  

Machining experiments were performed at the Georgia Institute of Technology on 

an EMCOMILL E350 with a Siemens Sinumerik 828d controller shown in Figure 10. 

The E350 is a three-axis computer numerical control (CNC) milling machine with a top 

spindle speed of 10,000 revolutions per minute (RPM). This machine was chosen because 

it has an enclosure and is in a room where other machines are not frequently used. 

Experiments were conducted when no other machines were operating in the area. With 

these conditions, the clearest audio signal could be obtained.  

 

Figure 10: EMCOMILL E350 

 

 

A 0.375in x 1.75in (diameter x tool overhang) solid carbide end mill with 2 flutes 

from Kennametal was used to cut slots in Aluminum 6061. 3 spindles speeds of 3000, 

5000, 6000, and 7000 RPM were chosen. From a starting depth of 0.10 inches, the depth 
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of cut (DOC) was increased until chatter was induced to a max of 0.60 inches. The feed 

per tooth was kept constant at 0.03 in/tooth. The cutting conditions are summarized in 

Table 1. Coolant was on for the slotting operations. Workpieces were first face-milled 

flat to control surface roughness effects.  

 

Table 1: Experiment cutting conditions 

Workpiece Al-6061-T6511 

Endmill Diameter = 0.375in 

 Helix angle = 45 degrees 

 2 flutes 

 Solid Carbide 

Feed per tooth 0.03in/tooth 

Radial depth of cut 0.375in 

Starting axial depth 

of cut 

0.1in 

Spindle Speed 3000, 5000, 6000, 7000 RPM 

Tool overhang 1.50in 

Tool holder SK30 

Collet  ER32 

 

 

A PCB 130F20 microphone was used to collect the audio signal during the 

experiments as shown in Figure 11. The microphone was placed inside the milling 

enclosure with 30 inches from the tip of the tool. Microphone specifications are shown in 

Table 2. The microphone was used with a PCB signal conditioner. Audio signals were 
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collected in LabVIEW at a sample rate of 48 kHz using a compactRIO-9014 with an NI-

9215 module. Processing was done separately in MATLAB. Collected signals were 

transformed from Volts to Pascals using the sensitivity specification listed in Table 2. 

48kHz was chosen to achieve a Nyquist frequency of 24kHz which is the upper range of 

human hearing and above the specified frequency range of the 130F20 microphone.  

 

 

Figure 11: Audio collection setup 

 

 

Table 2: Microphone specifications 

Model PCB 130F20  

Nominal diameter 1/4 in 

Frequency range 10 to 20000 Hz 

Sensitivity mV/Pa 
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CHAPTER 4: ANALYSIS AND RESULTS 

 

 

 

 Audio signals were collected at 3000, 5000, 6000, and 7000 RPM. The DOC at 

these speeds is recorded in Table 3 along with their stability. Chatter was induced at 3000 

RPM and 6000 RPM at 0.25 and 0.6 inches, respectively. Past experiments on the EMCO 

E350 with DOCs above 0.6 inches experienced work holding failures and tool breakage.  

 

Table 3: Experimental results 

Spindle Speed (RPM) DOC (in.) Stability 

3000 0.15, 0.20, 0.25 Severely unstable at 0.25 in. 

5000 0.30, 0.35, 0.40, 0.45  Stable 

6000 0.50, 0.60 Marginally unstable at 0.6 in. 

7000 0.60 Stable 

 

 

4.1 Signal Pre-Processing  

 A full audio signal can be seen in Figure 12, with an example of a stable cut and 

an unstable cut. In the unstable cut, the amplitude or volume of the cut grows in strength 

as the cut progresses due to the regenerative nature of chatter. In a stable cut, the 

amplitude of the cut remains relatively stable and does not grow. When the tool enters or 

exiting the workpiece, there is a sharp increase in volume that quickly fades away. These 

transient behaviors from in the audio signal were truncated so that the signal would be 

taken at a time when the tool was fully immersed. This time is calculated by equation 3, 

where tool diameter is in inches and feed rate is in inches per minute. Each tool path 
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takes approximately 7 seconds from entrance to exit. After truncation, 5 seconds of audio 

data is gathered.  

 

Equation 3: 

𝑡
𝑖𝑚𝑚𝑒𝑟𝑠𝑒 = 

(𝑡𝑜𝑜𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑥 60) 
2 𝑥 𝑓𝑒𝑒𝑑𝑟𝑎𝑡𝑒

 

 

 

Figure 12: (a) A stable cut at 3000 RPM and 0.20in DOC compared with (b) an 

unstable cut done at 3000 RPM and 0.25in DOC 

 

 

From the full audio signal, the data are segmented into 0.1-second segments with 

a 50% overlap to increase the dataset size. An example of 0.1s segment of data is shown 

in Figure 13. The waveform can be more clearly distinguished as well as erratic 

frequencies resulting from chatter. In Figure 13(b), jagged edges from the chatter 
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frequencies stand out from the overall behavior of the audio signal. These edges oscillate 

at a much higher frequency than the main tooth passing frequency of the signal. In Figure 

13(a) the jagged edges can also be observed but at much lesser degree. The dominant 

signal is the tooth passing frequency occurring at 100 Hz. When the segmented signal is 

transformed to the frequency domain with the FFT and a Hanning window, the tooth-

passing and chatter signals become more apparent as seen in Figure 14. The tooth passing 

frequency is occurring at 100 Hz with its first two harmonics being represented at 200 

and 300 Hz. There are also frequencies from the spindle runout and harmonics at 50 Hz 

and 150 Hz. Chatter and the chatter harmonics are found in Figure 14(b) centered at 1510 

Hz. Its harmonics are spaced apart by the tooth passing frequency. The dominant 

harmonics are shown at 1410 Hz and 1310 Hz. These chatter frequencies and harmonics 

are not apparent in Figure 14(a) but the tooth passing frequency and harmonics have the 

same mode of excitation.  
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Figure 13: (a) A stable cut at 3000 RPM and 0.20in DOC compared with (b) an unstable 

cut done at 3000 RPM and 0.25in DOC 

 

 

 

Figure 14: (a) FFT of a stable cut at 3000 RPM and 0.20in DOC compared with (b) an 

unstable cut done at 3000 RPM and 0.25in DOC 

 

4.2 Data Augmentation 

 After segmentation, artificial noise is superimposed on the data by adding the 

artificial noise signal directly to the original signal. This superposition of noise on the 
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original audio signal represents the realistic superposition of two audio signals. The 

artificial noise has two components, a white Gaussian noise component, and a periodic 

component, which is modeled by a sine wave and its first 2 harmonics. 3 levels of white 

Gaussian noise were chosen to overlay to create signal to noise ratios of 20, 15, and 10 

dBW. The periodic noise has a base frequency at 310 Hz and harmonics at 620 and 930 

Hz. The base frequency of 310 Hz was chosen to stand out from the tooth passing 

frequencies and harmonics of the experimental cutting conditions. The periodic noise 

frequencies are limited to below 1000 Hz because of the attenuation of sound through air 

is larger at high frequencies [50]. Doing so allows the noise to pass through the filter with 

some attenuation. The base frequencies have the highest amplitude 2, 1 and 0.5 Pa. The 

first and second harmonics have amplitudes that are 30% and 20% of the base frequency 

amplitude. It is assumed that past the second harmonic, the amplitudes will decrease 

rapidly and thus have little effect on the original signal. Tables 4 summarizes the periodic 

and white Gaussian noise signals composition used for data augmentation into 3 noise 

levels. 
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Table 4: Noise signal composition at 3 levels 

White Gaussian Noise Level   SNR (dBW) 

1   20 

2  15 

3   10 

   

Periodic Noise Level Frequency (Hz) Amplitude (Pa) 

1 310 0.5 

  620 0.15 

  930 0.1 

2 310 1 

 620 0.3 

 930 0.2 

3 310 2 

  620 0.6 

  930 0.4 

 

 

The time-series and spectra of these noise signals and the resulting superimposed 

signals are shown in Figure 15 and Figure 16. The levels for the periodic and white noise 

components were chosen to demonstrate the strengths and weaknesses of the methods to 

be compared. 16 different overlays were created using 3 levels of each noise component 

and the unadulterated signal.  
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Figure 15: Time-series samples of increasing noise levels with (a) no noise (b) low 

periodic noise (c) medium periodic noise (d) high periodic noise (e) low Gaussian noise 

(f) low Gaussian and periodic noise (g) low Gaussian and medium periodic noise (h) low 

Gaussian and high periodic noise (i) medium Gaussian noise (j) medium Gaussian and 

low periodic noise (k) medium Gaussian and medium periodic noise (l) medium 

Gaussian and high periodic noise (m) high Gaussian noise (n) high Gaussian and low 

periodic noise (o) high Gaussian and medium periodic noise (p) high Gaussian and high 

periodic noise 
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Figure 16: FFT samples of increasing noise levels with (a) no noise (b) low periodic 

noise (c) medium periodic noise (d) high periodic noise (e) low Gaussian noise (f) low 

Gaussian and periodic noise (g) low Gaussian and medium periodic noise (h) low 

Gaussian and high periodic noise (i) medium Gaussian noise (j) medium Gaussian and 

low periodic noise (k) medium Gaussian and medium periodic noise (l) medium 

Gaussian and high periodic noise (m) high Gaussian noise (n) high Gaussian and low 

periodic noise (o) high Gaussian and medium periodic noise (p) high Gaussian and high 

periodic noise 
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4.3 Thresholding Method and Results 

The threshold method was tested on the original signals and the augmented 

signals at threshold values of 0.05, 0.1, and 0.15. First, a comb filter is created that filters 

out the tooth passing frequency, spindle runout frequency, and subsequent harmonics. 

This comb filter attenuates all chosen frequencies to 0. An example of the comb filter 

used is shown in Figure 17. This example is generated using a 100 Hz tooth passing 

frequency. To account for spindle runout, a similar comb filter is used. The FFT is 

filtered and then any remaining frequencies that have amplitudes above the set threshold 

are considered chatter. Figure 18 shows an example of the thresholding technique 

detecting chatter. The main tooth-passing and spindle runout frequency and harmonics 

were seen at 100, 150 and 200Hz. These are filtered out by the comb. The chatter is 

occurring in the 1000-1500Hz range, with a max amplitude of 0.6 Pa. 

 

Figure 17: Sample comb filter with tooth passing frequency at 100 Hz 
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The results of the thresholding method on the original data are shown in Table 5. 

By lowering the threshold, false positives are more likely to occur because noise and 

frequencies not filtered out by the comb filter have a smaller barrier to overcome. 115 

false positives were registered using a 0.05 Pa threshold as opposed to 0 when using a 0.1 

Pa threshold. Conversely, choosing a higher threshold can result in missed detections, as 

shown in the table. Chatter frequencies that may not have fully developed will not be 

registered because the threshold is higher than their amplitude. A higher threshold makes 

a system more robust to noise but can lead to many missed detections which can be 

critical.  

 

Figure 18: Thresholding method detecting chatter while cutting at 3000 RPM with 0.25 

DOC. The threshold is set at 0.2 Pa.  
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Table 5: Evaluation of threshold method at 3 thresholds while classifying original audio 

samples 

Threshold TP TN FP FN Precision Recall F1 Accuracy (%) 
0.05 Pa 109 224 115 0 0.49 1.00 0.65 74.3 
0.10 Pa 224 224 0 0 1.00 1.00 1.00 100 
0.15 Pa 224 153 0 71 1 0.76 0.86 84.1 
 

 The thresholding method was done again with the augmented data set and its 

accuracies for each tier of noise from Table 3 is shown in Figure 19. When the threshold 

is 0.1Pa, an accuracy of 100% is obtained on the original signal set. When the threshold 

is 0.15Pa, the overall performance is better on the augmented data set. As shown, the 

higher threshold maintains accuracy at higher noise levels. This is because the threshold 

has been set above the noise floor. All threshold levels fail to classify chatter 

meaningfully at the highest noise levels. A 50% accuracy is due to the methods 

classifying every sample as chatter. Since the data are evenly distributed between chatter 

and no chatter, the methods have a 50% accuracy and a high false positive count.  
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Figure 19: Accuracy of threshold method at 3 thresholds while classifying artificially 

noisy samples 

 

 

4.4 Feature Extraction 

Features must be extracted to train the ML classification models. 16 features are 

extracted from 0.1s segments of audio data from both the time and frequency domains. In 

the time domain 9 features are extracted: root mean square (RMS), variance (V), 

skewness (Sk), kurtosis (Ku), peak value (Pk), crest factor (CF), shape factor (SF), 

impulse factor (IF), and clearance factor (ClF). The time series signals are transformed 

into the frequency domain with an FFT. A Hanning window is used on the time series 

data before the FFT is taken to prevent spectral leakage. 7 features are extracted from the 
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frequency domain: mean amplitude (Mf), variance (Vf), skewness (Skf), kurtosis (Kuf), 

peak amplitude (Pkf), relative peak (RPk), and total harmonic bandpower (HBP). The 

equations for these features are shown in Table 6 where xi is the amplitude of a time 

signal at data point i and si is the amplitude of a frequency at i. The calculation of the 

HBP requires the tooth passing frequency, ft. 

 

4.5 Training and Validation for ML Approaches 

 A total of 7,168 samples were used for training and validation of ML classifiers. 

The number of samples were equally distributed between chatter and stable conditions. 

The samples were also evenly distributed between the 16 variants of noise, shown in 

Figure 15-16. Each sample had 16 features to be used for classification. The samples 

were split into a training set of 5,974 samples and a testing set of the remaining 1,194 

samples. Both sets contained even distributions across chatter conditions, and noise 

variations. When training the models, a cross-validation was done with 5 folds validation 

to tune the parameters. Decision tree, SVM, kNN, and bagged tree models were trained, 

each with 4 different training sets. These training sets differed in their size and the noise 

levels they contained. A breakdown of the 4 training sets is shown in Table 7, with noise 

levels from Table 3. After the models were fully trained, the common testing set was 

used to measure their performance. An outline of the training and validation procedure is 

shown in Figure 20.   
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Table 6: Equations for feature extraction 

Time domain Frequency Domain 
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Table 7: Training set noise level composition 

Training Set White Noise Levels Periodic Noise Levels 

1 0 0 

2 0, 1 0,1 

3 0,1,2 0,1,2 

4 0,1,2,3 0,1,2,3 

 

 

 

 

 

Figure 20: Cross-validation with 5 folds and withheld testing set 

 

 

 Models were first trained with 50%, 60%, 70%, 80%, 90%, and 100% of the total 

training set (training set 4 from Table 7). These training sets had even distributions of 

noise levels and chatter conditions. The trained models were then validated on the 

withheld testing set. The results of this testing are shown in Figure 22. The k-Nearest 

Neighbors (kNN) approach had the highest accuracy of the 4 models regardless of 

training set size. The performance of the kNN increased as the training set size increased 

from 91.8% to 94.1%. The performance of the Bagged Trees and the SVM remained 

Chatter 

Training Set Testing Set 

Validation 

No Chatter 

Fold 1 

Fold 2 

Fold 3 

Fold 4 

Fold 5 
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consistent at all training set sizes. kNN, SVM, and Bagged Tree models show capabilities 

of acceptable accuracy even with limited training. The decision tree model had the worst 

overall accuracy at all training set sizes. The decision tree’s performance declined as it 

was exposed to more training data. This is an indicator that the decision tree model is 

overfitting on the training data, resulting in poor generalization. 

 The performance of the models when trained on 100% data is shown in Table 8. 

The performance was evaluated on subsets of the testing data where the subsets contained 

noise at certain levels, as well as the whole testing set. The kNN model once again had 

the highest accuracy through all the noise level subsets, as well as the lowest occurrence 

of false positives. The Bagged Tree model has the lowest occurrence of false negatives. 

The SVM has the highest rate of false positives, and the decision tree had the highest rate 

of false negatives. As noise increased, all models suffered from decreased precision, but 

the recall rates remained consistent. Going from noise level 1 to noise level 3, the F1 

scores are not changing, indicating a balanced performance between false positives and 

negatives. 
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Figure 21: Accuracy of classifiers against the testing set while increasing the number of 

training data samples from 50% to 100% of all training data 

 

 

 The SVM model was trained on withheld subsets of the training data (training sets 

1-4). 4 models were trained with data containing only certain noise levels to evaluate its 

performance in unknown conditions. The results are shown in Figure 22. The accuracy of 

the various models extends beyond the data they have been trained on. In Figure 22(a), 

the SVM has improved accuracy at periodic noise levels 1, 2 and 3 despite not having 

encountered these sets in training. Similar results are shown in Figure 22(b) at levels 2 

and 3. The SVM does not handle white Gaussian noise well, without training. In Figure 

22(a-c), the levels of white Gaussian noise that the model was not exposed to were not 

classified accurately. At white noise level 3, all models except for the fully trained model 

Figure 22(d) exhibit poor performance. Performance generally improved with the 
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addition of noisier training data, with some drops in performance that can be seen in 

Figure 22(d). In Figure 22(d) at lower noise levels, the accuracy is lower than models 

shown in Figure 22(b) and Figure 22(c), but the performance is still acceptable. As the 

training data becomes noisier and broader, specific accuracy dropped in places, but 

overall performance improved.  
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Table 8: Evaluation of fully trained ML models compared to threshold technique against 

subsets of the testing data and the complete testing set. (*Denotes p<0.05 when 

compared to the threshold method using McNemar’s test) 

Original Signal         

Model TP TN FP FN Precision Recall F1 Accuracy 

Threshold = 0.15 24 37 0 13 1.00 0.65 0.79 82.4% 

Tree 19 37 0 18 1.00 0.51 0.68 75.7% 

SVM 37 37 0 0 1.00 1.00 1.00 100.0% 

kNN 37 37 0 0 1.00 1.00 1.00 100.0% 

Bagged Trees 36 37 0 1 1.00 0.97 0.99 98.6% 

         

Noise Level 1          

Model TP TN FP FN Precision Recall F1 Accuracy 

Threshold = 0.15 28 20 17 10 0.62 0.74 0.67 64.0% 

Tree 27 37 0 11 1.00 0.71 0.83 85.3% 

SVM 36 34 3 2 0.92 0.95 0.94 93.3% 

kNN 36 35 2 2 0.95 0.95 0.95 94.7% 

Bagged Trees 37 36 1 1 0.97 0.97 0.97 97.3% 

         

Noise Level 2         

Model TP TN FP FN Precision Recall F1 Accuracy 

Threshold = 0.15 37 0 38 0 0.49 1.00 0.66 49.3% 

Tree 34 29 9 3 0.79 0.92 0.85 84.0% 

SVM 32 30 8 5 0.80 0.86 0.83 82.7% 

kNN 32 32 6 5 0.84 0.86 0.85 85.3% 

Bagged Trees 32 30 8 5 0.80 0.86 0.83 82.7% 

         

Noise Level 3         

Model TP TN FP FN Precision Recall F1 Accuracy 

Threshold = 0.15 37 0 37 0 0.50 1.00 0.67 50.0% 

Tree 36 28 9 1 0.80 0.97 0.88 86.5% 

SVM 36 31 6 1 0.86 0.97 0.91 90.5% 

kNN 33 36 4 1 0.89 0.97 0.93 93.2% 

Bagged Trees 36 29 8 1 0.82 0.97 0.89 87.8% 

         

All Data         

Model TP TN FP FN Precision Recall F1 Accuracy 

Threshold = 0.15 554 142 455 43 0.55 0.93 0.69 58.3% 

Tree* 495 515 82 102 0.86 0.83 0.84 84.6% 

SVM* 567 511 86 30 0.87 0.95 0.91 90.3% 

kNN* 570 553 44 27 0.93 0.95 0.94 94.1% 

Bagged Trees* 575 515 82 22 0.88 0.96 0.92 91.3% 
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Figure 22: Accuracy of the SVM (a-d) compared to threshold technique (e) at the subset 

level when trained on withheld training sets. (a) was trained with training set 1. (b) was 

trained with training set 2. (c) was trained with training set 3. (d) was trained with 

training set 4. (e) is the threshold technique with a threshold of 0.15 Pa.  
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CHAPTER 5: DISCUSSION 

 

 

 

5.1 Comparing Threshold and ML Methods 

 When compared to the models that have been fully trained or partially trained on 

noisy data, the threshold method shows considerable weakness at higher periodic and 

white noise levels. In Figure 22(e), the threshold method begins to deteriorate at periodic 

noise level 1 and white noise level 2. This drop in accuracy is the result of an increased 

number of false positives. The SVMs in Figure 22(a) and Figure 22(b) show higher 

accuracies when classifying signals with periodic noise level 1,2 and 3 despite no 

exposure to these noise levels in training. The threshold method does show better 

performance when compared to the SVM in Figure 22(a) with no exposure to noisy data 

when increasing white noise level. As noise increases past noise level 1, the threshold 

method starts classifying a much higher level of false positives compared to the ML 

approaches. The F1 score and the precision of the threshold method decrease consistently 

with increased noise, unlike the ML approaches. Overall, the threshold method shows 

acceptable performance at low noise levels, but setting the appropriate threshold based on 

the expected noise level will improve performance. The ML approaches, when exposed 

to a varied dataset show robustness to noisy data. All methods show deterioration in 

performance at the highest noise levels, and an increased occurrence of false positives. 

The occurrence of false negatives was lower for all models except the decision tree 

classifier.   

 Overall, all ML methods showed significant performance improvements 

compared to the threshold method, shown in Table 8. ML models have the capability to 
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handle a noisier data set when adequately trained. Calculations of significance are shown 

in Appendix A.  

 

5.2 Misclassifications 

 When comparing all the approaches, there were several samples that failed to be 

classified accurately by any method. Two examples of these samples are shown in Figure 

24. One case is marginal chatter in Figure 23(a) which is exhibited at 6000 RPM at a 

DOC of 0.6in. The contributions of the marginal chatter frequency are very weak, and 

when increasing noise is added, the contributions of the chatter frequency to the extracted 

features becomes less valuable. This results in a missed detection. The other example is a 

frequently false positive that occurs at 3000 RPM and DOC of 0.2in. This is likely 

because of its similarity to the unstable condition of 3000RPM and DOC of 0.25in. When 

noise begins to increase the amplitude of the higher frequencies where chatter would 

occur, the spectrum becomes like the chatter condition. 
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Figure 23: (a) Frequently false negative (missed detection). Occurs when spindle speed 

is 6000 RPM and DOC is 0.6in and signal is sufficiently noisy. (b) Frequently false 

positive. Occurs when spindle speed is 3000 RPM and DOC is 0.2in and signal is 

sufficiently noisy 

 

 

5.3 Assumptions and Limitations 

 It was assumed that the spindle RPM commanded was equivalent to the actual spindle 

speed. This was checked by visual inspection during each cutting operation by observing the 
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CNC controller’s outputted spindle speed, and further verified by taking FFTs with long 

windows. The tooth cutting frequency aligned with eh commanded spindle RPM. If the real 

spindle RPM and the assumed spindle RPM were different, this would have a negative effect on 

the filtering techniques used for the thresholding method, leading to a larger number of false 

positives. 

 It was assumed that the cutting tool was in a steady condition throughout the experiment. 

Changes in the wear and geometry of the cutting tool were assumed to be negligible. These 

changes would potentially affect the raw audio signal generated by the cutting process, as 

observed in several tool condition monitoring studies [1, 2, 10, 11] The tool condition was 

checked by visual inspection before each cutting operation.  

 The findings of this study are currently limited to this machine and these cutting 

parameters. It is unknown if the same models could be applied to other machines without new 

training data. It is also uncertain whether the models trained could detect chatter at frequencies 

other than the ones it was trained on, although past work indicates this should not be a major 

issue because of the general consistency of features for detecting chatter [7, 22, 23, 28].  
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CHAPTER 6: CONCLUSION 

 

 

 

 The purpose of this thesis was to understand the balance between sensitivity, 

speed of implementation, and performance of various classification systems under noisy 

conditions. 4 different classifiers were trained with 9 different noisy training sets. Their 

performance was compared to each other and to a common thresholding technique [22, 

23]. The threshold technique’s performance suffered under heavier noise. With the 

original clean signals, the threshold method showed accurate results depending on the set 

threshold. The 4 classifiers chosen performed accurately when trained on the noisy data, 

with accuracies ranging from 84.6% to 94.1%. This performance is in line with other ML 

chatter classifiers [28, 29] The SVM demonstrated an ability to classify noise in the 

testing set that it was not exposed to during the training phase. The SVM was also able to 

retain accuracy on a limited training set. Both capabilities demonstrate that ML 

approaches, and specifically SVMs have a robustness to unexpected noise. The 

performance of the SVM on a noisy factory floor may remain high even when trained on 

less noisy data.  

 

6.1 Contributions 

 The effects of periodic and white noise on audio signals used for classifying 

chatter had not been previously studied. An established technique used for classifying 

chatter [22, 23] with a set threshold was examined under increasingly noisy conditions. 

The study showed that thresholding techniques had an increased false positive rate with 

the addition of periodic and white noise. Comparatively, ML approaches showed some 
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levels of robustness by maintaining their performance even in the presence of excessive 

noise.  

 Data augmentation was used to add diversity to training sets. This added diversity 

led to improved performance under noisy conditions. Artificial noise has the possibility 

of increasing the size of data sets and improving the robustness of ML systems that may 

experience noisy data during operation. This could reduce the need for real and 

diversified data collection and reduce the dataset size needed for implementation of ML 

models.  

 

6.2 Future Work     

 One major benefit of using threshold techniques is that the system is easily 

transferable to another machining system. The same cannot always be said of ML models 

like the ones studied in this thesis. One major area of work is the study of transferable 

knowledge for these ML models. This would involve gathering data from multiple 

machines, multiple set ups, and multiple cutting operations. This could be done more 

easily with a well-curated open-source database with cutting signals from many different 

set ups. This database could potentially accelerate the development of ML models in this 

area for many different applications such as tool wear, dimensional conformance, surface 

roughness, and tool breakage.  

 Improved feature selection is another area of future work. Features in this thesis 

were selected based on past literature. However, it would be worthwhile to extract many 

more features from the audio data as well as other sources and methodically sort out 

which features have a meaningful effect on the performance of the classifiers. This could 
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be done either by looking at the end performance of the classifier or by using statistical 

approaches like the SOF or correlation coefficient.  

 As manufacturing operations become increasingly digitized, the development of 

algorithms on edge devices for machine monitoring has gained interest. There is potential 

to transfer any classifier method to an edge computing device such as the Beaglebone 

Black, the more powerful Beaglebone AI, or even a cellphone. Newer devices have 

lowered the barrier to entry to these machine monitoring systems by allowing more 

computing power. For this to happen, however, these classifiers must be quick and easy 

to implement with little necessary training. Mobile applications would have to be able to 

perform well in many non-ideal situations as placement, environment, and operational 

variables would be different in most cases.  
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APPENDIX A 

 

 

 

Calculations of significance were done with McNemar’s test with an α = 0.05.  

Example calculation of chi-square value: 

 

Table 9: Example contingency table 

 Correct Incorrect 

Correct A B 

Incorrect C D 

 

𝑋2 =
(𝐵 − 𝐶)2

(𝐶 + 𝐵)
 

 

 

Table 10: Contingency table of Decision Tree model compared to threshold method 

  Threshold = 0.15 Pa 

  Correct Incorrect 

Tree Correct 624 386 

 Incorrect 72 112 

 

 

X2 = 215.28, p < 0.00001 

 

 

Table 11: Contingency table of SVM model compared to threshold method 

  Threshold = 0.15 Pa 

  Correct Incorrect 

SVM Correct 
664 414 

 Incorrect 
32 84 
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X2 = 327.18, p < 0.00001 

 

 

 

Table 12: Contingency table of kNN model compared to threshold method 

  Threshold =  0.15 Pa 

  Correct Incorrect 

kNN Correct 
668 455 

 Incorrect 
28 43 

 

 

X2 = 377.49, p < 0.00001 

 

 

 

Table 13: Contingency table of Bagged Tree model compared to threshold method 

  Threshold = 0.15 Pa 

  Correct Incorrect 

Bagged Tree Correct 
675 417 

 Incorrect 
21 81 

 

X2 = 358.03, p < 0.00001 
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