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PREFACE

The project was undertaken help families who lack access to electric power. Many

use open wood-fuelled fires surrounded by 3 stones to cook. The smoky kitchen fire

is often the only light for children to study - at the risk of lung and eye disease. Fuel

efficiency can mean less need to go out and collect firewood, a risky undertaking in

war-torn regions.
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SUMMARY

This thesis describes an integrated system to lower air pollution from fires,

provide LED flood lighting, and UV water purification. The need for such systems

is strong where families lack access to electric power. The system is conceived as

an add-on rather than replacement to existing kitchen burners, in order to minimize

cost and intrusion into established practices. The system is based on the aerospace

technology of thermoelectric converters, used for long-term missions in deep space.

As implemented in design, a thermoelectric module is integrated with thermal pro-

tection, and an air-cooled heat sink. Fresh air is induced into the heat sink, which is a

chip cooler and direct current electric fan taken from a discarded personal computer.

The exhaust air is driven into the wood fire to increase combustion efficiency, reduc-

ing pollutant formation and use of fuel. The thermoelectric module generates electric

power, which is used through a bank of DC-DC voltage boosters to charge a battery.

A lamp powered by light emitting diodes provides steady lighting. In a future im-

plementation, another light emitting diode operating in the 254-264 nanometer range

will eliminate bacteria from drinking water. In this thesis the aim is to show that the

design of such a system will close, given the power budgets for each of the devices.

This is pursued through conceptual analysis, analysis and component testing. It is

shown that the design will close with currently available thermoelectric modules. The

resulting testbed provides ongoing research opportunities.

xi



CHAPTER I

INTRODUCTION

Many families around the world must do their cooking using rudimentary wood-

burning stoves made of three stones or bricks, burning whatever wood scraps they

can gather (commonly known as a 3-stone fire). These stoves are inefficient and

with no more than natural convection for exhaust removal, generate high levels of

pollution, leading to a high incidence of health problems. With mothers having to

attend to cooking, their children must do their homework sitting in the same kitchen,

with poor lighting and air quality. A high possibility of bacterial infection from

drinking water is also a reality. The Edukitchen system described in this thesis uses

a thermoelectric module from spacecraft technology as the centerpiece of a low-cost

electric power generation to bring ventilation, pollution control, fuel efficiency, clean

water and lighting to kitchens. This design defines the requirements for the system,

and presents an initial version of a solution, as a testbed for research and development

towards a mass-producible system.

1.1 Known Health Complications

Indoor air pollution is a major public health issue on a global scale. It is estimated

that around 50% of the world population rely on combustable mass (generally biofu-

els) for light and heat; this method exposes the populace to indoor pollution, which

has been observed to increase the risk of chronic pulmonary diseases[20]. This fig-

ure translates to roughly 3 billion people[101]. The combustion of these biofuels can

create harmful substances such as polycyclic hydrocarbons [32]. Exposure to this

pollution has also been strongly correlated with chronic bronchitis[18]. Wood fuels in

particular have become a common replacement to the conventional gas stove, but the
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obvious renewability of this fuel is offset by the amount of pollution produced[71].

Demand for these fuels also places considerable pressures on the forest and other

sources of these fuels, which can be linked to deforestation as well as other adverse

environmental effects[116].

For example, in India, the principal biomass fuels are wood, crop residues and dung

cakes, which are used in poorly ventilated households, increasing the air pollution and

the effects of the pollution on the household[80]. It has also been suggested that the

effects of fuels that produces more relative pollution tend to increase the risk of

tuberculosis in Indian households[81].

1.2 Purpose

Besides the health issues that may arise from burning biofuel for warmth and light

and cooking, water sanitation and efficient lighting are also issues that poor homes

face. Most of these homes don’t have enough money to afford new infrastructure.

This integrated system tackles all three of these problems in an efficient manner. By

adding on to the 3-stone fire, there isn’t any new infrastructure that needs to be

implemented. Instead, by taking advantage of existing infrastructure, This device is

more readily accessible by the largest subset of homes.

2



CHAPTER II

THERMOELECTRIC POWER GENERATION

2.1 Theory

The thermoelectric effect occurs when one side of a material is heated and the opposite

side is cooled. This creates a voltage difference due to the diffusion of charged carriers

in the material. Conversely, should a voltage be applied to the material, a temperature

gradient is created in the material. This phenomenon is also known as the Seebeck

Effect due to its discoverer, Thomas Johann Seebeck. Seebeck realized that the

voltage could be derived from the equation expressed here as Eq. 1. SA and SB are

known as Seebeck coefficients, and are usually a nonlinear function of temperature.

If they can be assumed constant over a range of temperatures, however, then Eq. 1

simplifies to Eq. 2. This effect is the driving principle for the thermoelectric modules

and in simple circuits allows them to be treated like batteries .

V =

∫ T2

T1

(SB(T )− SA(T ))dT (1)

V = (SB − SA) · (T2 − T1) (2)

Other considerations include pressure exerted on the thermoelectric module. Pres-

sure is needed to increase the thermal conductivity between the hot side of the panel

and the aluminum plate that serves as thermal protection.This effect is due to the

minimization of air between the hot side of the panel and the plate. Thus, less

heat is lost to convection and radiation and heat transfer is purely a function of

conduction[117].
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Given the structural components needed to clamp the module under pressure,

insulation is also required to minimize heat transfer through this structure to the

cold side of the module and the heat sink. The outside of the device also requires

insulation to make sure that it survives the temperatures that are reached in the fire.

2.1.1 Load Matching

In order to maximize the external power from a source, the resistance of the load

must match the internal resistance of the source as seen from the output terminals

[97]. Figure 1 shows the electric al schematic for a simple circuit.

Figure 1: Schematic of Simple Resistive Circuit

By Ohm’s Law, the current in Figure 1 must be:

I =
Vs

Zs + Zl

(3)

The power dissipated in the load would then be:

Pl = I2Zl

Pl = Zl(
Vs

Zs + Zl

)2

Pl =
V 2

Z2
s

Zl
+ 2Zs + Zl

(4)
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We can now differentiate Equation 4 to maximize the power.

∂Pl

∂Zl

=
V 2(Zs − Zl)

(Zs + Zl)3
(5)

To get the possible maxima and minima, we set Equation 5 equal to 0 and solve.

V 2(Zs − Zl)

(Zs + Zl)3
= 0

Zs − Zl = 0 (6)

Equation 6 implies that when the resistance of the source equals the resistance of

the load, the power is either maximized or minimized. To figure out which one, we

take the second derivative of Equation 4.

∂2Pl

∂Z2
l

=
2V 2(Zl − 2Zs)

(Zs + Zl)4
(7)

Realizing that any real resistance must be positive, if Zl = Zs, then the term on

the left hand side of Equation 7 will be negative, proving that the power is maximized

when Zl = Zs. This is known as Jacobi’s Law [97].
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CHAPTER III

PREVIOUS WORK

Thermoelectric modules are currently used mainly to create a temperature difference.

By applying a voltage difference to the leads of the module, one can use it to create

a temperature gradient through the module and therefore, pump heat out of a sys-

tem. This is a valid and popular method of refrigeration for portable coolers. [54] as

augmentors for power generation using a temperature gradient. Modules have been

integrated into stove, designed for 100 Watts of power as a minimum for domestic

use [85]. On the other hand, thermoelectric modules can be optimized and fabricated

to produce as little as 60 µW of power.Theoretically, the thermoelectric module can

go as low as 20 µW of power, which allows it to be used in a range of micro-systems

[119]. Designing the modules can be assisted by ever-improving design tools and

computational models. Models are sophisticated enough now to be able to calcu-

late performance and power from boundary conditions and thermoelectric material

parameters. [102]

Many novel ideas have been used to create other eco-friendly stoves for troubled

regions such as Nicaragua, El Salvador, and Guatemala [118]. While some of these

stoves can indeed lower fuel pollution and increase fuel efficiency [61], due to the

basic design, the stoves create infrastructure instead of using existing infrastructure.

Though they may be manufactured using small components, they are systems in and

of themselves, and do not try to augment the canonical 3-stone fire. Given the life

realities of the intended users, it is usually not feasible for them to buy these stoves. If

they are provided with these stoves, they may often feel compelled to sell and replace

them with three stones.
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CHAPTER IV

DEVICE DESIGN

4.1 Conceptual Design

Instead of a stand-alone stove, we set out to design add-on devices that could be

conveniently integrated into the present kitchens of the intended users, and improve

their lives.The system consists of a thermoelectric module enclosed in a flattened

conical insert suitable to placing among firewood pieces in a stone burner. A separate

thermocouple sensor monitors the temperature, while the thermoelectric power is

used to charge a battery. The output from the battery, and the temperature signal,

go through a micro-controller, which controls power to a small computer fan that

drives air through the conical insert, optimizing the stoichiometry of the combustion,

and powering the exhaust out of the kitchen. A separate power stream from the

battery goes to an LED lighting system, providing steady, efficient lighting for a child

to read by. Another power stream goes to a small ultraviolet LED mounted in the

lid of a drinking water container. Figure 2 shows the concept graphically. The 254

nm UV wavelength is optimized to destroy bacteria, following guidance from the UV

Waterworks system developed by Drs. Ashok Gadgil and Vikas Garud at Lawrence

Livermore national labs.

The conceptual study shows that the advent of LEDs has made it feasible to obtain

enough power for these functions using a thermoelectric module from such a burner.

At this writing, we anticipate that results from the testbed and a prototype of the

EduKitchen system will be presented at a conference. An extension of the testbed is

also described, where a pyro photovoltaic generator from space technology is adapted

to generate power from a larger household incinerator sized for a middle-class home

7



Figure 2: Concept Map

in developing nations.

4.1.1 Parts

A list of parts needed and costs is shown in Table 1. Per unit prices in mass produc-

tion are expected to be 1 to 2 orders of magnitude below those given in the table;

however we cannot project those at present, and must quote from what we can find in

retail price lists, or estimate those. We do not project that people who must do their

cooking and children’s education by a kitchen wood fire will be able to afford even the

mass production price. Instead, the argument for governments and non-governmental

organizations to help people acquire these must be based on the long-term payoff in

reduced eye disease, lung disease, and in the enhanced opportunities for education

provided to a whole new generation of citizens.

The parts themselves are shown in Appendix A. The thermoelectric module (Fig-

ure 17) can produce up to theoretical 19.1 watts (Figure 3). However, based on the

likely temperatures of the fire and cooling, the temperature difference will not be

8



sufficient to produce 20 watts. The goal of the device is to be self sufficient with 8

watts. It could then charge a rechargeable 30-volt battery, which would be able to

run all the various devices attached to it, namely: the fan, water purification system,

and lighting apparatus.

Figure 3: Wattage Output at Selected Cold Temperatures. Data and plot kindly
provided by Custom Thermelectric Incorporated.[56]

Component Price Expected Mass Production Price
Thermoelectric Module $80 $ 25-$50

Computer Fan $8 $2-$10
LED Light $25 $10-$20

270nm LED, single unit $200 $2-$10

Table 1: Price per Part

4.1.2 Setting Up The ThermoElectric Module

Within the documentation, there is an ideal set up for the thermoelectric module

beyond the load matching requirements. The setup is shown as Fig. 4. Based on

the documentation, a more detailed setup configuration was formulated, shown here

as Fig. 5. Fig. 6 shows the connections to the thermoelectric module to attain load

matched configurations. Fig. 7 shows the set up with a halogen lamp at the ready to

heat up the module’s hot side. Figure 8 shows the lamp placement onto the set up

to maximize the heat transfer.

9



Figure 4: Ideal ThermoElectric Module Setup. Provided courtesy of Custom Ther-
moelectric Inc. [56]

Figure 5: Modified ThermoElectric Module Setup

10



Figure 6: Connections to Load-Match the Thermoelectric Module

Figure 7: ThermoElectric Module Experiment Setup

Figure 8: ThermoElectric Module Experiment Running

11



4.1.2.1 Pressure Considerations

It has been observed that when using the thermoelectric modules, an applied com-

pression load is necessary for adequate power generation. However, simply bolting a

plate to the hot and cold surfaces of the module is inadequate, as the plate may end

up warping and creating space between the surface of the plate and the surface of

module, as shown in Fig. 9.

To avoid this, many methods were attempted. The first method was prestressing

the plate so that the plate is not flush with the module surface before being bolted

down as shown in Fig. 10. This method however, was unreliable, since too much

torque on the bolts would then again start creating that space between the two

surfaces.

The current design uses the heat sink to bolt directly to the aluminum case of the

nozzle, with lips to hold the module in place and apply pressure to the hot side. This

method has yielded the best results so far.

Figure 9: ThermoElectric Module Flush Clamp Effect
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Figure 10: ThermoElectric Module PreBent Clamp Effect

13



4.2 Voltage Boost and Charging

In order to store the electricity generated by the thermoelectric module, a series of

DC-DC converters can be used to boost the voltage. Current experiments have used

the ELC-W0422-LED UnipolarBoost Converter Circuit by Custom Thermoelectric

to power an LED with a constant voltage source of 2.5 Volts. In order to charge

a 12-volt battery, five or six DC-DC converters can be placed in parallel with the

Thermoelectric module and in series with each other to achieve the desired voltage

needed to charge the battery. This schematic is shown in Figure 11. At this writing,

delivery of these components is awaited.

Figure 11: Battery Charging Schematic

4.3 Sample Wood Fuel Calculations for Thermochemical
Equilibrium

In order to be able to control the combustion of a wood-fueled fire, the type of

wood must be known. Using the ideal chemical combustion equation (Equation 8), it

becomes possible to estimate the amount of air needed to achieve perfect combustion.

At this point, there are little to no wood particulates that are left to form soot or

smoke; the air is less polluted and vision is no longer obscured. Different wood species

14



and the equivalent air needed to achieve perfect combustion are detailed. The wood

species detailed here are used simply due to the availability of composition and heating

values for the species. Other common species have less complete records. [111]

ηWood(HydroCarbon) + δOxygen → νCarbonDioxide + ζWater + ωOtherProducts (8)

4.3.1 Calculations with Black Spruce

Black Spruce wood, while not a common fuel found in rural areas, was chosen due to

the availability of information on the chemical makeup and properties of the wood.

The calculations shown below demonstrate the procedure used to find the amount of

air needed to figure out how much air needs to be sent to a fire burning the wood to

completely burn the wood. The assumptions are also stated.

Black Spruce contains 27.3% lignin, 45.8% cellulose, and 12.5% pentosan.[104]

One cord (85 cubic feet) of black spruce wood with approximately 20% moisture

content produces 15.9 million BTU’s of usable heat.2 Assuming a perfect combustion

reaction (Eq. 9) and accounting for air, all the reactants will only create H2O,CO2,

and SO2 and N2. Eq. 14 shows the final equation, while Eqs. 10 to 13 show the atom

balances.

[
α

100
C10H12O3 +

β

100
C6H10O5 +

γ

100
C14H26O21S4] + A (O2 +

79

21
N2)

→ B CO2 + C H2O + D SO2 + A
79

21
N2 (9)

D =
4γ

100

D = 0.5 (10)

B =
10α

100
+

6β

100
+

14γ

100

B = 7.228 (11)

15



2C =
12α

100
+

10β

100
+

26γ

100

C = 5.553 (12)

2B + C +D4 =
3α

100
+

5β

100
+

21γ

100
+ A

A = 16.275 (13)

[.273 C10H12O3 + .458 C6H10O5 + .125 C14H26O21S4] + 16.275 (O2 +
79

21
N2)

→ 7.228 CO2 + 5.553 H2O + 0.5 SO2 + 16.275
79

21
N2 (14)

Using this stoichiometric equation (Eq. 14), and realizing that a cord of wood

actually occupies 124 ft3, it can be shown (as in Eqs. 15 through 18) that one

kilogram of black spruce can actually produce 9894.83 kiloJoules of energy.

Wood V olume

Total Cord V olume
=

85 ft3

128 ft3
= 0.66 Cord (15)

(
0.66 Cord

1
)(

15.9× 106 BTU

1 Cord
)(

1055.06 J

1 BTU
)(

1 kJ

1000 J
) = 11139949.92 kJ (16)

(
85 ft3

1
)(

29.2 lb

1 ft3
)(

0.4536 kg

1 lb
) = 1125.84 kg (17)

11139949.92 kJ

1125.84 kg
= 9894.83

kJ

kg
(18)
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4.3.2 Calculations with Hybrid Poplar

Hybrid Poplar encompasses many species of Poplar woods. Abundant throughout

the United States and Canada, this wood is considered a woody crop with a short

rotation. It is composed of 48.45% Carbon, 5.85% Hydrogen, 43.69% Oxygen, and

negligible amounts of Nitrogen and Sulfur [105]. Equation 26 shows the unbalanced

equation, while the following equations are the atom balances required for an ideal

combustion reaction as shown in Equation 8.

[
α

100
C +

β

100
H + λ O] + γ (O2 +

79

21
N2)

→ A CO2 + B H2O + γ
79

21
N2 (19)

A =
α

100

A = 0.4845 (20)

2B =
β

100

B = 0.02925 (21)

α = 48.45

β = 5.85

λ = 0.4369

(22)

γ =
(2A+B − λ)

2

γ = 0.1646 (23)

17



[0.4845 C + 0.0585 H + .4369 O] + 0.1646 (O2 +
79

21
N2)

→ 0.4845 CO2 + 0.02925 H2O + 0.1646
79

21
N2 (24)

Using a known heating value, the heat released under an ideal combustion reaction

would be ≈ 235 BTUs of heat. The calculation is shown in Equation 25 [105].

(0.0128kg)(19.38
MJ

kg
)(947.817120313

BTU

MJ
) = 235.9324BTU (25)

4.3.3 Calculation with Ponderosa Pine

Ponderosa Pine wood is plentiful in the Northwest regions of the United States and

the western regions of Canada. It contains 49.25% Carbon, 6% Hydrogen, 44.36%

Oxygen, and negligible amounts of Nitrogen and Sulfur [105]. Equation 26 shows the

unbalanced equation, while the following equations are the atom balances required

for an ideal combustion reaction as shown in Equation 8.

[
α

100
C +

β

100
H + λ O] + γ (O2 +

79

21
N2)

→ A CO2 + B H2O + γ
79

21
N2 (26)

A =
α

100

A = 0.4925 (27)

2B =
β

100

B = 0.02995 (28)

18



α = 49.25

β = 5.99

λ = 0.4436

(29)

γ =
(2A+B − λ)

2

γ = 0.3306 (30)

[0.4925 C + 0.0599 H + .4436 O] + 0.3306 (O2 +
79

21
N2)

→ 0.4925 CO2 + 0.02995 H2O + 0.3306
79

21
N2 (31)

Using a known heating value, the heat released under an ideal combustion reaction

would be ≈ 250 BTUs of heat. The calculation is shown in Equation 32 [105].

(0.0131kg)(20.02
MJ

kg
)(947.817120313

BTU

MJ
) = 248.0637BTU (32)

19



4.3.4 Summary

By calculating the amount of heat produced by a perfect combustion, we can see how

efficient an actual fire is. We can also gauge how much of a difference the type of wood

makes on the heat realized by the fire. This knowledge is crucial to understanding

the efficiency of the device and is summed up here as Table 2. It is realized that

slum dwellers in most parts of the world will not have access to wood chips from the

Ponderosa Pine, Poplar or Black Spruce. Similar methods must be used to empirically

obtain the properties of typical mixtures of scrap wood that people would be able to

collect. This illustrates one of the many difficulties in this field: obtaining the data

for such applications is much more difficult than obtaining thermochemical data for

rocket engines or weapons.

Table 2: Summary of Different of Types of Wood Fuels

Type of Wood Stoichiometric Moles of Air Heat Released BTU
Black Spruce 16.275 9377
Hybrid Poplar 0.1646 236
Ponderosa Pine 0.3306 248

4.4 Feedback Loop

While the prototype will contain only a dial to turn the airflow up and down, the

ultimate goal for the device is to be self-powered and self-monitored. A feedback

loop should be able to sense the ideal temperature and adjust the airflow accordingly

to achieve ideal combustion. The key to the loop will be coding chemical equations

into MATLAB or other similar languages in such a way that reduce the inputs re-

quired from the user. An ideal device would need only to be plugged in, and sensors

should be able to ascertain the wood type and ideal combustion conditions. The two

main measurements needed are measurements of temperature and of airflow, as these
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two measurements at any given point in time give you the state of the device. A

preliminary feedback loop is shown here as Figure 12.

Figure 12: Preliminary Feedback Control

4.4.1 Sensor Considerations

In order for the device to contain a feedback loop, sensors are needed to take airspeed

and temperature measurements, as well as a small, programmable microprocessor to

handle any changes as needed. Ideally, there would also be a method to input what

the fuel type is. While this may add complexity and cost to the device, the feedback

loop will also enable the device to be completely self sufficient. It will also drive up

the power requirements that needs to be produced by the device to charge the battery.

4.4.1.1 Temperature Sensors

The best way to measure these temperatures would be to use a surface resistance

temperature detectors (RTDs). These sensors are small and use more circuitry; how-

ever they offer the most accurate and stable measurement of temperature over time.

[9] This accuracy would offer the most control over the device through the feedback

loop, though other options such as thermocouples and thermistors exist.
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4.4.1.2 Airflow Sensors

For this device, a TSI VelociCalc velocimeter was used to measure airspeed at the

exit of the nozzle. This method is described more in detail in Section . Another

common alternative is hot film anemometers, but these may be too brittle to use in

a device that needs to be robust. There are other methods and sensors that have

been patented and may be of more use for this device. The one that seems to be

the most promising was created by Shaun L. McCarthy[77]. Future tests will try to

incorporate this sensor into the device and experiments.

4.5 Flow Rate Measurement

A setup, shown in Fig. 13 was used to measure the flow rate. The flow is measured at

5 points at the exit: the center, the left side, the right side, the top, and the bottom.

Fig 14 shows the variation of speed with respect to voltage for the different positions.

Figure 13: Setup to Measure Airflow

Based on these measurements, we can take an average of the flow to find the
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Figure 14: Results of Airflow Measurements

average flow rate needed to achieve a certain power setting (shown in Fig. 15).

Comparing these values with the values of power we expect to supply to the fan via

the thermoelectric module, we can see that complete combustion is within the realm

of the fan’s capabilities; in essence, we have complete control of the airflow to the

fire. With the same data, how much voltage is needed by the fan to achieve a specific

airflow is show here as Fig. 16.
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Figure 15: Power to Mass Flow Rate of the Fan

Figure 16: Voltage to Mass Flow Rate of the Fan
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4.5.1 Lighting

LED lighting consumes very minimum wattage per LED. While different LED lights

have different power consumption, they generally need only 2.5 volts to run with

nominal brightness. Thus, with a constant voltage source, placing multiple LED’s in

parallel with the battery or the thermoelectric module can power an array of LED’s

for flood lighting.

4.6 Water Filtration

Many people purify water by boiling it. While this is an effective way to disinfect

water, if done over a traditional 3-stone fire or other biomass cookstove, pollutants

are released into the atmosphere, and much of the heat is lost to external effects

(heating air and the like) [46]. A portable water filtration device will be used to filter

water by irradiating the water with a low energy ultraviolet (UV) light [45], [47].

The first demonstrated use of ultraviolet light to disinfect water (also known as

ultraviolet germicidal irradiation or UVGI) was seen in 1877 [103]. Since then, UV

radiation has been used to treat smallpox, lupus, and other diseases [84]. UVGI

attacks vegetative bacteria first and then moves on to mycobacteria, bacterial spores,

and then finally fungal spores. Attacking these classifications of bacteria and spores

can give a purification of about 99.999% [76].

4.6.1 Power Requirements

While UV lighting can seem to be intuitively power intensive, this is not the case.

UV light can be produced via LED’s and as such, the power considerations shown in

Section 4.5.1 apply. Thus, only 2.5 volts are nominally needed to run a water-depth

purification system.
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CHAPTER V

CONCLUSIONS

Thermoelectric power generation can be used in conjunction with DC-DC voltage

converters to theoretically create a self-charging, self-sustaining system. This system

would consist of a thermoelectric module to create electric power that would then

go to be stored in a battery. The battery would then be used to power a small

computer fan with a nozzle, which will blow air into a fire. The airflow would serve a

dual purpose: to cool the cold side of the thermoelectric module and to add oxygen

to the flame, thereby increasing combustion and reducing smoke and other harmful

particulates. With any extra power generated by the thermoelectric module, an array

of LED lights can be lit to provide indoor lighting. Another use of the extra power is

for a UV water purification system to obtain clean water. It has been demonstrated

that within operating limits, this device can maintain sufficient temperature difference

to be used in conjunction with DC-DC converters. The power budget for this system

will only close with the use of DC-DC converters at the time of writing, as sufficient

power cannot be generated by one thermoelectric module alone. Care must also be

taken to protect all the components from damage. Suitable test loads are also being

investigated. However, surmounting these hurdles will potentially provide lighting,

clean water and clean air for lower-income families whose livelihood and cooking

methods rely on conventional 3-stone fires.
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5.1 Suggestions for Future Work

1. Light Bulb Tests: Testing should be done to confirm the power requirements

and operability of DC-DC converters with a flashlight bulb. They should also

be put in series to power a normal energy saver bulb, to confirm the use of

DC-DC converters in series.

2. Close System with Battery-in-the-Loop: The system should be created

such that the fan is no longer operating on an external power supply and instead

is powered by the batter that is being charged by the DC-DC converter array.

3. Integrate LED Floodlighting and UV Purification System: Once the

system design closes, the device is feasible and marketing plans can be developed

for this device. By adding DC-DC converters to the array for more expedient

charging, alternate small-power consumption devices such as an LED array for

floodlighting and UV water purifications systems can be added.

4. Controller Design: The feedback controller must now be designed. Perhaps

more importantly, feedback sensors must be selected and strategically placed

for optimal performance and control.
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APPENDIX A

PARTS

Figure 17: 1261G-7L31-10CX1 Power Generation Module from Custom Thermoelec-
tric
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Figure 18: Boxer Computer Fan

Figure 19: Rechargeable Battery
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Figure 20: LED Floodlight

Figure 21: Purifying UV LED
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The driving force behind this project is to aid the people who live in ru-

ral areas of the world and have difficulties in accessing basic electricity and kitchen

efficiencies. The most basic kitchen is a pot over a fire. However, this setup will

pollute the environment drastically. This project proposes to reduce the pollution by

powering a fan to help regulate air intake and make the flames burn more efficiently.

The question posed then is how to power the fan. The solution provided by this

project is to use a thermoelectric panel, similar to those used in space missions, but

of a lower cost and power. This thermoelectric component will utilize the Seebeck

effect to charge a battery that will then serve to run the fan. The battery can also

power an LED light to provide light while cooking. Additionally, the battery could

also be connected to an ultraviolet LED, an integral part to a recently developed

water purification system.


