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SUMMARY

This thesis focuses on (1) the statistical methodologies for the estimation of spatial

data with outliers and (2) classification accuracy of disease diagnosis.

Chapter I, Robust Estimation for Spatial Markov Random Field Models:

Markov Random Field (MRF) models are useful in analyzing spatial lattice data

collected from semiconductor device fabrication and printed circuit board manufac-

turing processes or agricultural field trials. When outliers are present in the data,

classical parameter estimation techniques (e.g., least squares) can be inefficient and

potentially mislead the analyst. This chapter extends the MRF model to accommo-

date outliers and proposes robust parameter estimation methods such as the robust

M- and RA-estimates. Asymptotic distributions of the estimates with differentiable

and non-differentiable robustifying function are derived. Extensive simulation stud-

ies explore robustness properties of the proposed methods in situations with various

amounts of outliers in different patterns. Also provided are studies of analysis of grid

data with and without the edge information. Three data sets taken from the litera-

ture illustrate advantages of the methods. The key contributions include proposing

robust estimation methodology under the MRF models. Asymptotic properties of

the robust estimators are carefully studied under different robustifying functions. We

compare the efficiency of the robust estimators under different simulated situations.

We analyze the examples by using robust estimators.

Chapter II, Extending the Skill Test for Disease Diagnosis:

For diagnostic tests, we present an extension to the skill plot introduced by Mozer

and Briggs (2003). The method is motivated by diagnostic measures for osteoporosis

xiii



in a study. By restricting the area under the ROC curve (AUC) according to the skill

statistic, we have an improved diagnostic test for practical applications by considering

the misclassification costs. We also construct relationships, using the Koziol-Green

model and mean-shift model, between the diseased group and the healthy group for

improving the skill statistic. Asymptotic properties of the skill statistic are provided.

Simulation studies compare the theoretical results and the estimates under various

disease rates and misclassification costs. We apply the proposed method in classifica-

tion of osteoporosis data. The key contributions include proposing the idea using the

skillful region for the partial AUC (PAUC). We construct the empirical analog to the

skill score and the skill score asymptotic properties. We give reasonable explanation

for how to choose the skillful region of false positive rate for the PAUC given the

disease rates and loss function. We analyze the osteoporosis example by applying our

proposed methods.
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CHAPTER I

ROBUST ESTIMATIONS FOR SPATIAL MARKOV

RANDOM FIELD MODELS

1.1 Introduction

Modeling spatially correlated lattice data has many practical applications. For ex-

ample, when analyzing data from industrial semiconductor die grids and electronic

circuit layouts, medical and other image processing, epidemiology, astronomy, Earth

science, or agricultural field trials, crop science, forestry and soil science, data are

often collected in two-dimensional (2D) lattices or grids. Examples of spatial lattice

data studies include Papadakis (1937), Atkinson (1969), Beaton and Tukey (1974),

Besage (1974), Bartlett (1978), Martin (1979), Kempton and Howes (1981), Mar-

tin (1982), Besag and Kempton (1986), Gleeson and Cullis (1987), Zimmerman and

Harville (1989, 1991), Chellappa and Jain (1993), Cressie (1993), Basu and Reinsel

(1993, 1994), Mesenbrink et al. (1994), Hughes-Oliver et al. (1998), Besag and Hig-

don (1999), Grau (2000), Ojeda et al. (2002), Grau and Lu (2004), and Rue and Held

(2005, Chapter 1) etc.

Two-dimensional time series models are commonly used to fit spatial lattice data.

For examples, Bustos et al. (1984), and Basu and Reinsel (1993) explored properties

of the spatial unilateral first-order autoregressive moving average (ARMA) models.

Martin (1990, 1996) and Cullis and Gleeson (1991) used the separable ARMA models,

mainly of first order, for modeling 2D lattice field trial data. Because the 2D time

series models, for example AR(1)×AR(1) model, are more restricted (Grau 2000 and

Ojeda et al. 2002) and the Markov Random Field (MRF) models describe the spatial

data more naturally by neighboring structures (see Eq.(2) for details), this chapter

1



focuses on MRF models. Rue and Held (2005 Chapter 1) pointed out that MRF is

probably known only to researchers in spatial statistics and image analysis. However,

there exist other applications far beyond these two areas, e.g., time series analysis,

analysis of longitudinal and survival data, semi-parametric statistics etc.

Besag (1974) introduced the MRF models for ecological applications. Usually

the sites will be represented by points or regions in the Euclidean plane and will

often be subject to a rigid lattice structure. MRF models have been widely used

in spatial statistics (Besag and Kooperberg 1995) and Bayesian image analysis (Li

1995), where they are intended to describe interactions between random variables at

fixed sites in Euclidean space. One of the common features in spatial experiments is

the presence of systematic heterogeneity among the experimental units (Zimmerman

and Harville 1991). Typically, the heterogeneity arises because there is correlation

among neighboring units.

Spatial models usually require that the observations homogeneously follow a nor-

mal distribution (see Eq.(1)). This assumption is often violated in practice either

due to a few observations that contaminate the normal distribution, or the generat-

ing process is not normal at all, e.g., a t-distribution (Little and Robin 2002). The

inconsistent observations are usually referred to as outliers, which are caused either

by measurement errors, recording mistakes, or by some events which make an obser-

vation or set of observations unusual. Outliers can occur randomly or in clusters. For

example, in semiconductor manufacturing, procedures often contaminate randomly

dispersed outliers; also, the problems in soldering process of printed circuit boards

might cause a cluster of discordant observations (Grau and Lu 2004). Both ran-

domly distributed or clustered outliers may or may not influence surrounding lattice

observations depending on the physical process generating those outliers.

The possible physical outlier process has been described by two models: the heavy-

tailed distribution model and the mixture distributions model. A main pattern of the
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spatial stucture with the heavy-tailed distribution error term means there is a greater

chance of outliers (Lange et al. 1989). Those outliers occur randomly. For the

mixture distributions model, usually there are two distributions (For example, Fox

1972, Ojeda et al. 2002, Grau and Lu 2004). The two distributions come from two

sources: the main pattern of the spatial structure with distribution error term and

an additional outliers distribution. The mixture distributions model is practical for

real life examples, such as the effect of dust on wafer thickness in semiconductor

manufacturing.

Figure 1 shows the impact of those outliers with simulated 2D grid data. They are

mock examples from electronics manufacturing processes, where presence of outliers

made experimental study of treatment effects very difficult in developing new products

(Mesenbrink et al. 1994, Davis et al. 1996, and Hughes-Oliver et al. 1998). Note that

the mean effect was removed to clearly see the impact of outliers. Figure 2 presents

additional grid data from Lee and Rawlings (1982). This 2D spatial data used five

soybean plants growth after twenty days in growth chambers of various sizes, under

various temperature conditions. Zij is the total leaf area of each plant, where i and j

represent the position of the plant within the growth chamber. When modeling the

spatial correlation with the first-order MRF model, two potential outliers at positions

(3,10) and (6,3) could cause problems with estimating the mean function and neighbor

parameters.

To overcome this, we need statistical methods that can deal with outlier situa-

tions. Lange et al. (1989) proposed the multivariate t maximum likelihood estimation

(t−MLE) to solve a problem that had longer-than-normal tails. However, t−MLE

has two unfavorable properties: the many ways to estimate the degrees of freedom

of t − MLE, and the requirement of complete neighborhood information. There-

fore, the edge data from the grid data is not being used completely. The robust

estimators are well known for dealing with outliers. Robust estimators have three
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Figure 1: Plots of (a) Clustered and (b) Randomized Outliers in 7×7 Grids.

main advantages over t −MLE. First, the robust estimators do not require com-

plete neighborhood information. Therefore, the robust estimations use all the data.

Second, the robust estimators do not have the distribution assumption, unlike like-

lihood estimation. Third, the robust estimators do not require the assumption of a

symmetric distribution. We also establish robust methods for estimating neighbor

parameters with mixture outlier distribution models. They are easy to implement

and use full information from edge data. Further discussion of the efficiency of robust

estimators is in the simulation analysis of Section 1.6.3.

The objective of this chapter is to develop robust methods for estimating pa-

rameters in the first-order MRF model with various outlier structures. Section 1.2

presents the underlying model and the techniques for parameter estimation. Section

1.3 develops robust estimation methods. Section 1.4 explores properties of the pro-

posed methods. Section 1.5 presents simulations under four scenarios. Section 1.6

uses three data sets taken from the literature to illustrate the methods. Section 1.7

concludes this chapter and outlines future research.

4



 0  2  4  6  8 10

  0
 5

0
10

0
15

0
20

0

1

2

3

4

5

6

j

i

z(
i,j

)

 0  2  4  6  8 10

  0
 5

0
10

0
15

0
20

0

1

2

3

4

5

6

 0  2  4  6  8 10

  0
 5

0
10

0
15

0
20

0

1

2

3

4

5

6

Figure 2: Plot of Lee and Rawlings Data (1982): x represents a potential outlier.

1.2 Modeling Spatially Correlated Grid Data

In this section, we present the spatially correlated data model in Section 1.2.1. Two

possible outlier models in Section 1.2.2.

1.2.1 Spatial Lattice Data Model

For an m × n rectangular grid representing a spatial lattice the random variable X

measured at site (i, j) is labelled as Xi,j . Let r represent the index for each of the

mn sites. Note that the reasonable grid size will be m,n ≥ 3. Then, Xr can be

decomposed into the following components

Xr = µr + εr, r = 1, · · · , mn, (1)

where µr represents the mean function, which could be a function of treatment effects

or controllable variables, and εr represents the stochastic variation in the data. If data

points on the grid are independent, then a common assumption is that εr ∼ i.i.d.
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(0, σ2), where i.i.d. stands for independent and identically distributed. However, if

spatial dependence exists in the data, it can be represented by spatial models. Various

autoregressive models have been developed for lattice data, including simultaneous

autoregressive models (Whittle 1954) and conditional autoregressive models (Bartlett

1955, 1967, 1968; Besag 1974). This chapter focuses on a conditional autoregressive

MRF models (Besag 1974). The first-order MRF model without mean function is

given as:

Xi,j = α1Xi−1,j +α2Xi+1,j +α3Xi,j−1 +α4Xi,j+1 + εij, i = 1, . . . , m, j = 1, . . . , n, (2)

where εij are i.i.d. with a common variance σ2. The second-order MRF model con-

siders both the neighbors and the corner data:

Xi,j = α1Xi−1,j + α2Xi+1,j + α3Xi,j−1 + α4Xi,j+1

+β1Xi−1,j−1 + β2Xi+1,j+1 + β3Xi−1,j+1 + β4Xi+1,j−1 + εij.

Since most of the insights for understanding the impact of outliers can be learned

from the first-order model, this article studies the simpler first-order MRF model.

Note that regardless of the possible different models generating the outlier(s) as dis-

cussed below, Eq.(2) is assumed in fitting the data. Least Squares (LS) and robust

M− and RA−methods are three different techniques studied for estimating param-

eters in Eq.(2). Note that our estimation methods developed in Section 3 do not

require any distribution assumption on the errors. However, in simulation studies a

distribution such as normal or t-distribution etc. is needed to generate data.
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1.2.2 MRF Outlier Models

There are many ways for setting up the outlier generation models. In Eq.(2) is from a

t-distribution with small degree of freedom such as one. See Lange et al. (1989) for an

example of replacing the normal error distribution assumption with a t-distribution

for making the maximum likelihood estimation more robust. However, this method

does not have the control of outlier locations.

In order to study the efficiency of our proposed robust method, we need to set

up/control the outlier location. We present the MRF additive outlier model. An ex-

ample of outlier modeling is the following additive outliers (AOs) model as suggested

in Fox (1972), Grau (2000) and Ojeda et al. (2002), and Grau and Lu (2004), which

studied robust estimation issues in the spatial AR(1)×AR(1) model. Denote by Zij

the random variables representing the data which might exhibit outlier(s). Here we

construct the first-order MRF additive outlier model:

Zij = Xij + ηijVij = α1Xi−1,j + α2Xi+1,j + α3Xi,j−1 + α4Xi,j+1 + εij + ηijVij

= α1Xi−1,j + α2Xi+1,j + α3Xi,j−1 + α4Xi,j+1 + ε∗ij, (3)

where Xij can follow any spatial lattice model such as the separable MRF model in

Eq.(2). The random variables Vij are independent of Xij, and are i.i.d. with mean

zero and variance τ 2. The constant ηij is equal to one when an outlier occurs at site

(i, j); it is equal to zero otherwise. ε∗ij = εij + ηijVij. The main focus of this chapter

is the robust estimation methods for dependence parameters θ
T = (α1, α2, α3, α4).

Four cases are studied in simulations: (1.) every ηij is zero, i.e., no outlier exists, (2.)

one outlier occurs in the middle of the lattice, (3.) outliers exist in 10% of the sites

and these sites are all near the center with a cluster outlier pattern, and (4.) same as

(3.), but the outliers are uniformly distributed in the lattice.

Since Eq.(3) is only used for generating data to test our robust estimation methods
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and the underlying model for modelling the spatial lattice data is Eq.(2), treating

ηij as a known constant gives us better control in generating outliers with specific

locations and patterns. Extension of the single outlier-location detection procedure

given by Chang et al. (1988) from time series to spatial lattices and Neter et al.

(1996) outlier diagnostics for regression model are possible. But these require much

more work compared to our robust estimation methods due to the possibility of a

large number of outliers, of many potential outlier locations, or of differences in the

magnitudes of outliers. Thus, an outlier location detection study is beyond the scope

of this chapter.
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1.3 Robust Estimation

The LSE is commonly used in model parameter estimations in many statistical appli-

cations. It is well known that LSE is not resistant to outliers. This section proposes

two new outlier resistant methods, robust M− and RA−estimators, and compares

their performance against the LS method under a spatially correlated model, the

MRF model.

All LSE, robust M−, and RA−estimators could estimate the neighbors parame-

ters under the MRF models. In this section, we construct the general form to estimate

the robust estimations. The outlier locations will effect the estimator’s efficiency. We

present an efficiency comparison for the simulation results of various situations of

outliers in Section 1.5. In Section 1.3.3, we show the advantage of using LSE, ro-

bust M−, and RA−estimators by using the full information of data in contrast to

maximum likelihood methods.

The first-order MRF model, Eq.(2), can be rewritten in the following matrix

format:

X = AX + ε, (4)

where X
T = [x11, x12, . . . , x1n, x21, . . . , xmn], I is a mn ×mn identity matrix and A

is a mn×mn coefficient matrix for neighboring data.
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





















ε = (I − A)X.

Let wi,j
T = (xi−1,j , xi+1,j , xi,j−1, xi,j+1) be the observation vector and θ

T = (α1, α2, α3, α4)

the parameter vector. Therefore, the residual of the first-order MRF outlier model is:

εij = Xij − wi,j
T
θ.

The classical Least Squared estimator LSE is determined in the usual way by
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minimizing the sum of the squared errors:

minθ

m
∑

i=1

n
∑

j=1

(εi,j)
2. (5)

We differentiate the sum of squared of residuals given in Eq.(5) with respect to

the parameters. The LSEs, θ̂LS, are determined as the solutions to the following

equations:
m

∑

i=1

n
∑

j=1

xi−1,j ε̂i,jLS
= 0,

m
∑

i=1

n
∑

j=1

xi+1,j ε̂i,jLS
= 0,

m
∑

i=1

n
∑

j=1

xi,j−1ε̂i,jLS
= 0,

m
∑

i=1

n
∑

j=1

xi,j+1ε̂i,jLS
= 0, (6)

where the residual in these equations is:

ε̂i,jLS
= xij − wi,j

T
θ̂LS.

1.3.1 Robust M-Estimator

The robust M−estimator θM is found by:

minθ

m
∑

i=1

n
∑

j=1

ρ(εi,j), (7)

where ρ(·) is a symmetric robustifying loss function. Take the first derivatives of this

function with respect to the parameters θ. The robust M−estimator θ̂M is a solution

of the following estimating equations:

m
∑

i=1

n
∑

j=1

xi−1,jψ(ε̂i,jM ) = 0,

m
∑

i=1

n
∑

j=1

xi+1,jψ(ε̂i,jM ) = 0,

m
∑

i=1

n
∑

j=1

xi,j−1ψ(ε̂i,jM ) = 0,
m

∑

i=1

n
∑

j=1

xi,j+1ψ(ε̂i,jM ) = 0, (8)

where the residual is
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ε̂i,jM = xij − wi,j
Tθ̂M.

ψ(·) = ρ′(·) is a bounded function with tψ(t) ≥ 0 and usually ψ′(0) = 1. The

ψ−function commonly used in the literature (e.g., Bustos and Yohai 1986) is from

the Huber family given by:

ψH,c(r) = sign(r) min(
|r|
ξ̂
, c) ∗ ξ̂, (9)

where the value of the tuning constant c depends on how one defines “outliers”. A

smaller value of c neglects the effect of borderline outliers, and a larger value negates

the effect of only the most serious outliers. Experience indicates that appropriate

values of c will be between 1.0 and 1.5. The standard deviation (s.d.), ξ̂, can be

computed using a robust estimate of the scale parameter. For example, the following

estimator is commonly used in the one-dimensional time series robust estimation

literature, e.g., Denby and Martin (1979) and Bustos and Yohai (1986):

ξ̂ = med(|ε̂i,jM |)/0.6745, i = 1, . . . , m, j = 1, . . . , n. (10)

1.3.2 Robust RA-Estimator

The robust Residual Autocovariance estimator (robust RA-estimator) is formed by

replacing the above equation content by their robustifing functions:

m
∑

i=1

n
∑

j=1

φ(xi−1,j , ε̂i,jRA
) = 0,

m
∑

i=1

n
∑

j=1

φ(xi+1,j , ε̂i,jRA
) = 0,

m
∑

i=1

n
∑

j=1

φ(xi,j−1, ε̂i,jRA
) = 0,

m
∑

i=1

n
∑

j=1

φ(xi,j+1, ε̂i,jRA
) = 0, (11)

where one commonly used example of a robustifying function φ : R2 → R is the

Mallows function, φ(µ, ν) = ψ(µ)ψ(ν). Here, ψ : R → R is the Huber function
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defined in Eq.(9). The residual is:

ε̂i,jRA
= xij − wi,j

T
θ̂RA. (12)

Focusing on the Mallows function, computation of the robust RA-estimator, θ̂RA,

can be done using the least squares procedure iteratively. Since the LSE and robust

M-estimator are obtained from solving similar equations like Eq.(12), where φ(µ, ν) =

µν in the LSE, and φ(µ, ν) = µψ(ν) in the M-estimator, only the more general RA-

estimator is needed for studying the large sample properties of the three procedures.

Notice that the Huber ψ-family in Eq.(9) contains an absolute value function, which is

non-differentiable. Thus, deriving the asymptotic properties require careful treatment

as discussed in Section 1.4.

1.3.3 Maximum Likelihood Methods

Under the assumption of the distribution, the maximum likelihood (ML) methods

are other commonly used methods in model parameter estimations in many statistical

applications. It is well known that ML estimators (and LSE) are not resistant to

outliers.

Lange et al. (1989) proposed the t−ML estimators which are flexible in situations

with outliers because of the heavy-tailed property of t-distribution. However, the

ML methods need full information of the neighborhood data. Thus, this case is more

conservative because it utilizes only part of the data. The edge part of Eq.(2) (Xij

with i = 1, and m, j = 1 and n) is not included in the estimation procedure, because

it misses some of the first-order neighbors:

Xi,j = α1Xi−1,j+α2Xi+1,j+α3Xi,j−1+α4Xi,j+1+εij , i = 2, . . . , m−1, j = 2, . . . , n−1,

In the small grid size will lose more information than in a larger grid size. See Fig-

ure 3 for details. In a 7×7 grid, it loses about 49% information, (7×7-5×5)/(7×7)×100%.
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When the grid-size is large (e.g., 40×40 ), it loss about 10 % information and the im-

pact of discarding edge-data is limited. We compare robust M− and RA−estimators

with the LS method, NML method and t−ML method when the model is a spatial

MRF model with additive outliers and the randomly occurring outlier situation with

complete neighborhood simulation study, Section 1.5.3.

Both normal distribution and t− distribution are symmetric. The performance

of NML method and t −ML will be better under the condition of the symmetric

distribution. LSE, robust M−estimators, and robust RA−estimators did not assume

the symmetric distribution. This is another advantage of using the statistics: LSE,

robust M−estimators, robust RA−estimators than NMLE and t−MLE. Therefore,

a skew distribution, for example Lognormal distribution , simulations are studied in

Section 1.5.2.3 and 1.5.3.3.

14



1.4 Asymptotic Properties of the Robust RA-Estimator

Because the first-order MRF model has 4 nearest neighbors, they have some correl-

ative structure. Therefore, the asymptotic properties of the nearest neighbors will

be multi-dimensional. Asymptotic properties of the robust RA-estimators can be

derived in a manner similar to a one-dimensional robust M-estimator (Serfling 1980)

and extended to a multivariate central limit theorem (Eicker 1966). The general

form of the asymptotic properties of the robust RA-estimator is in Section 1.4.1, if

the robust function is (1) continuously differentiable or (2) monotone, bounded and

continuous.

When the robust ψ-function is (1) not continuously differentiable and (2) not

monotone, bounded and continuous, then the theorem in Section 1.4.1 can not be

directly used. We give a solution for this situation in Section 1.4.2.

In Section 1.4.3, we discuss the identical assumption of the first-order MRF model.

1.4.1 General Asymptotic Properties of the Robust RA-Estimator

Let θ be the true vector parameter. When φ and ψ are bounded and contin-

uously differentiable functions such as Mallow’s φ function and Tukey’s bisquare

(ψB,c2(x) = x(1 − x2/c22)
2), the regular asymptotic theory such as Jureckova and

Sen (1996; Chapter 5: Asymptotic Representations for M-estimators) is applicable

and the following theorem gives a general statement of the asymptotic distribution

of the robust RA-estimate.

Theorem 1 In the first-order MRF model, the error terms (εi,j, i = 1, . . . , m, j =

1, . . . , n,m > 3, n > 3) are independent and identically distributed (i.i.d.) random

variables from a continuous distribution F . The robust RA-estimator uses the Mal-

lows function: φ(u, v) = ψ(u)ψ(v). The φ function is differentiable. N = mn. As m

and n go to infinity (N goes to infinity)

√
N(θ̂RA − θ) ∼ N 4[0,ΣθRA

],
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where covariance matrix ΣθRA
is in the following proof. The robust RA-estimator,

θ̂RA, is a consistent estimator of θ.

In order to prove this Theorem, one lemma will be proved on the asymptotic

properties of a robust RA-estimator. Then, we will extend Lemma 1 to asymptotic

properties of multivariate robust RA-estimators.

Lemma 1: In the first-order MRF model, the error terms (εi,j, i = 1, . . . , m, j =

1, . . . , n,m > 3, n > 3) are independent and identical distribution (i.i.d.) (F ). F

is a continuous distribution. The robust RA-estimator with the Mallows function:

φ(u, v) = ψ(u)ψ(v). The φ function is differentiable. N = mn. As m and n go

to infinity, the asymptotic normality of the robust RA−estimator, α̂1RA , for the

parameter α1, is:

α̂1RA ∼ N(α1, N
−1V arRA(α1)),

where

V arRA(α1) = −
∫ ∞

−∞
φ2

1RA(x, ε)dF (ε)
[

d
R
∞

−∞
φ1RA(x,ε)dF (ε)

dα1

]2 .

where φ1RA(x, ε) = ψ(x)ψ(εRA).

Proof of Lemma 1: To prove this lemma, we use the results from Huber (1964)

or Serfling (1980, page 249) of the asymptotic normality of the robust M-estimator.

Then we apply the results to the robust RA−estimator.

We have a sample Y1, Y2, . . . , Yn from a distribution F . The domain of distribution

F is (−∞,∞). The parameter of interest is θ.

min
θ

n
∑

i=1

ρ(Yi),

where ρ(·) is a symmetric robustifying loss function. Take the first derivative of this

function with respect to the parameter θ. ψ(·) = ρ′(·) is a bounded function with
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yψ(y) ≥ 0 and usually ψ′(0) = 1.

θ may be estimated by the robust M−estimator, θM , by:
∑n

i=1 ψ(Yi) = 0.

Huber (1964) and Serfling (1980) proved, under suitable regularity conditions, and

for ψ function is differentiable, the asymptotic normality of the robust M−estimator.

θ̂M ∼ N(θ, n−1V arM(θ)),

where typically

V arM(θ) = −
∫ ∞

−∞
ψ2
M (y)dF (y)

[

d
R
∞

−∞
ψM (y)dF (y)

dθ

]2

where d is the first derivative.

Apply the asymptotic normality of Huber (1964) or Serfling (1980) to the first-

order MRF model. εij are independent and identical distribution (i.i.d.) from a dis-

tribution F , where i = 1, . . . , m, j = 1, . . . , n. θ
T = (α1, α2, α3, α4). For a univariate

parameter α1, the robust M−estimate, α̂1M , is a solution of the following estimating

equation:

m
∑

i=1

n
∑

j=1

xi−1,jψ(ε̂i,jM ) =

m
∑

i=1

n
∑

j=1

ψ1M (ε̂ij) = 0,

where, ψ1M (ε̂ij) = xi−1,jψ(ε̂i,jM ).

If ψ function is differentiable, we prove the asymptotic normality of the Huber

robust M−estimator for α1:

α̂1M ∼ N(α1, N
−1V arM(α1)).

where

V arM(α1) = −
∫ ∞

−∞
ψ2

1M (ε)dF (ε)
[

∂
R
∞

−∞
ψ1M (ε)dF (ε)

∂α1

]2

and ∂ is the first partial derivative.
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The robust RA-estimator with the Mallows function φ(u, v) = ψ(u)ψ(v) is a

special case for the robust M−estimator. Assume that the φ function is differen-

tiable. N = mn. As m and n go to infinity, the asymptotic normality of the robust

RA−estimator, α̂1RA , for the parameter α1 is:

α̂1RA ∼ N(α1, N
−1V arRA(α1)).

where

V arRA(α1) = −
∫ ∞

−∞
φ2

1RA(x, ε)dF (ε)
[

∂
R
∞

−∞
φ1RA(x,ε)dF (ε)

∂α1

]2 .

where φ1RA(x, ε) = ψ(x)ψ(εRA). Lemma 1 is proved.

Proof of Theorem 1: From Lemma 1, we have the asymptotic normality of a

univariate robust RA-estimator. Here we will extend the results of the Lemma 1 to

a multivariate central limit theorem (CLT) (Eicker 1966).

Eicker (1966) proved the multivariate CLT for q-dimensional linear forms of q-

vectors with covariance structure. Let F be a distribution function of a random

variable with zero mean and positive, finite variance. Assume the sample size is n.

The x = (x1, . . . , xq)
T is the random variables. If the following three conditions are

simultaneously satisfied:

(I) maxj a
T
j (n)(AnA

−1
n )aj(n) −→ 0, where j = 1, . . . , q, and T denotes the transpose.

An = (a1(n), a2(n), . . . , aq(n)). An is a q × n matrix. Minnrank(An) = q.

(II) supx

∫

|xi|>c
x2
i dF (xi) −→ 0 as c −→ ∞.

(III) infx

∫

x2
i dF (xi) > 0.

The covariance matrix of the vector An is B2
n = ATnΣAn, and Σ is the diag(σ2

1, . . . , σ
2
q ).

Then x = Anζ (or ζ = B−1
n x, and B−1

n is the well-defined inverse), ζ converges in

distribution to Nq(0,Σ).
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There are 4 nearest neighbor parameters, θ
T = (α1, α2, α3, α4), in the first-order

MRF model. Use Lemma 1 and the multivariate CLT. As m and n go to infinity (N

goes to infinity)
√
N(θ̂RA − θ) ∼ N 4[0,ΣθRA

],

where ΣθRA
=



















σ11 σ12 σ13 σ14

σ21 σ22 σ23 σ24

σ31 σ32 σ33 σ34

σ41 σ42 σ43 σ44



















σ11 = V arRA(α1) = −
∫ ∞

−∞
φ2

1RA(x, ε)dF (ε)
[

∂
R
∞

−∞
φ1RA(x,ε)dF (ε)

∂α1

]2 .

where φ1RA(x, ε) = ψ1(x)ψ(εRA), ψ1(xi,j) = ψ(xi−1,j), and φ1RA(xij , ε̂ij) =

ψ1(xi,j)ψ(ε̂i,jRA
) = ψ(xi−1,j)ψ(ε̂i,jRA

).

σ12 = σ21 = COVRA(α1, α2) = −
∫ ∞

−∞
φ1RA(x, ε)φ2RA(x, ε)dF (ε)

∂
R
∞

−∞
φ1RA(x,ε)dF (ε)

∂α1

∂
R
∞

−∞
φ2RA(x,ε)dF (ε)

∂α2

.

where φ2RA(x, ε) = ψ2(x)ψ(εRA), ψ2(xi,j) = ψ(xi+1,j), and φ2RA(xij , ε̂ij) =

ψ2(xi,j)ψ(ε̂i,jRA
) = ψ(xi+1,j)ψ(ε̂i,jRA

).

σ13 = σ31 = COVRA(α1, α3) = −
∫ ∞

−∞
φ1RA(x, ε)φ3RA(x, ε)dF (ε)

∂
R
∞

−∞
φ1RA(x,ε)dF (ε)

∂α1

∂
R
∞

−∞
φ3RA(x,ε)dF (ε)

∂α3

.

where φ3RA(x, ε) = ψ3(x)ψ(εRA), ψ3(xi,j) = ψ(xi,j−1), and φ3RA(xij , ε̂ij) =

ψ3(xi,j)ψ(ε̂i,jRA
) = ψ(xi,j−1)ψ(ε̂i,jRA

).

σ14 = σ41 = COVRA(α1, α4) = −
∫ ∞

−∞
φ1RA(x, ε)φ4RA(x, ε)dF (ε)

∂
R
∞

−∞
φ1RA(x,ε)dF (ε)

∂α1

∂
R
∞

−∞
φ4RA(x,ε)dF (ε)

∂α4

.

where φ4RA(x, ε) = ψ4(x)ψ(εRA), ψ4(xi,j) = ψ(xi,j+1), and φ4RA(xij , ε̂ij) =

ψ4(xi,j)ψ(ε̂i,jRA
) = ψ(xi,j+1)ψ(ε̂i,jRA

).
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σ22 = V arRA(α2) = −
∫ ∞

−∞
φ2

2RA(x, ε)dF (ε)
[

∂
R
∞

−∞
φ2RA(x,ε)dF (ε)

∂α2

]2 .

σ23 = σ32 = COVRA(α2, α3) = −
∫ ∞

−∞
φ2RA(x, ε)φ3RA(x, ε)dF (ε)

∂
R
∞

−∞
φ2RA(x,ε)dF (ε)

∂α2

∂
R
∞

−∞
φ3RA(x,ε)dF (ε)

∂α3

.

σ24 = σ42 = COVRA(α2, α4) = −
∫ ∞

−∞
φ2RA(x, ε)φ4RA(x, ε)dF (ε)

∂
R
∞

−∞
φ2RA(x,ε)dF (ε)

∂α2

∂
R
∞

−∞
φ4RA(x,ε)dF (ε)

∂α4

.

σ33 = V arRA(α3) = −
∫ ∞

−∞
φ2

3RA(x, ε)dF (ε)
[

∂
R
∞

−∞
φ3RA(x,ε)dF (ε)

∂α3

]2 .

σ34 = σ43 = COVRA(α2, α4) = −
∫ ∞

−∞
φ3RA(x, ε)φ4RA(x, ε)dF (ε)

∂
R
∞

−∞
φ3RA(x,ε)dF (ε)

∂α3

∂
R
∞

−∞
φ4RA(x,ε)dF (ε)

∂α4

.

σ44 = V arRA(α4) = −
∫ ∞

−∞
φ2

4RA(x, ε)dF (ε)
[

∂
R
∞

−∞
φ4RA(x,ε)dF (ε)

∂α4

]2 .

When N goes to infinity, every element of ΣθRA
/N goes to zero. This proves θ̂RA

are consistent estimators of θ. Theorem 1 is proved.

1.4.2 A Special Case of the Asymptotic Properties of the Robust RA-
Estimator

When the robust ψ-function is not continuously differentiable—as is the case for

a Huber ψ-function, where there exist three non-differentiable points (see Eq.(9) for

details)—the limiting matrix does not exist. Since the error distribution is continuous

and the number of points where the ψ-function is not continuously differentiable is

finite, the limiting matrix is still definable. As suggested in the derivation of the

asymptotic normality of the ψ-function in Serfling (1980, page 253), one can separate

the expectation operation into three parts to satisfy the monotone property for the

differentiable components. Therefore, the asymptotic normal distribution given below

still holds in Huber’s case.
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Theorem 2 In the first-order MRF model, the error terms (εi,j, i = 1, . . . , m, j =

1, . . . , n,m > 3, n > 3) are i.i.d. random variables from a continuous distribution F .

The robust RA-estimator with the Mallows function: φ(u, v) = ψ(u)ψ(v). The φ

function is monotone or is bounded and continuous. N = mn. As m and n go to

infinity (N goes to infinity)

√
N(θ̂RA − θ) ∼ N 4[0,Σ

∗
θRA

],

where covariance matrix Σ∗
θRA

has similar structure of the covariance matrix in The-

orem 1. The robust RA-estimator, θ̂RA, is a consistent estimator of θ.

Proof of Theorem 2: We start from the asymptotic normal distribution of the

univariate robust M-estimator, the univariate robust RA-estimator, and then extend

to multivariate robust M-estimators.

Recall from Section 1.3.2, our ψ function is a Huber function (Eq.(9)), ψ function

is bounded and continuous and monotone. There exist two non-differentiable points.

The Huber ψ function is differentiable by separating into three parts: (−∞,−c1), (−c1, c1),

and (c1,∞), where c1 = c ∗ ξ, c is the tuning constant of a Huber function and

ξ = med(|εi,jRA
|)/0.6745, i = 1, . . . , m, j = 1, . . . , n.

εij are i.i.d. random variables from a distribution F , where i = 1, . . . , m, j =

1, . . . , n. θ
T = (α1, α2, α3, α4). For α1, the robust M−estimate, α̂1M , is a solution of

the following estimating equation:

m
∑

i=1

n
∑

j=1

xi−1,jψ(ε̂i,jM ) =

m
∑

i=1

n
∑

j=1

ψ1M (ε̂ij) = 0,

where, ψ1M (ε̂ij) = xi−1,jψ(ε̂i,jM ). Therefore, we prove that the asymptotic normality

of the Huber robust M−estimator for α1 is:

α̂1M ∼ N(α1, N
−1V arM(α1)).
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where

V arM(α1) = −
∫ c1
−c1

ψ2
1M (ε)dF (ε) + c21x

2
∫ −c1
−∞

dF (ε) + c21x
2
∫ ∞

c1
dF (ε)

[
∂
R c1
−c1

ψ1M (ε)dF (ε)

∂α1
]2

.

Compare Eq.(9) and Eq.(12) and conclude that the robustM-estimator is a special

case of the robust RA-estimator with the Mallows function φ(u, v) = ψ(u)ψ(v), where

ψ(·) is a Huber function.

For α1, the robust RA−estimate, α̂1RA, is a solution of the following estimating

equation:

m
∑

i=1

n
∑

j=1

ψ(xi−1,j)ψ(ε̂i,jRA
) =

m
∑

i=1

n
∑

j=1

φ1RA(ε̂ij) = 0,

where, φ1RA(ε̂ij) = ψ(xi−1,j)ψ(xi,j , ε̂i,jRA
). There exists six non-differentiable points:

−c1c2,−c2ε,−c1x, c1x, c2ε, c1c2,

where c1 = c∗ξ1, c is the tuning constant of a Huber function, ξ1 = med(|εi,jRA
|)/0.6745,

c2 = c ∗ ξ2, ξ2 = med(|xi−1,j |)/0.6745, i = 1, . . . , m, j = 1, . . . , n, and assume c2ε ≥

c1x. The φ function is differentiable by separating into seven parts: (−∞,−c1c2),

(−c1c2,−c2ε), (−c2ε,−c1x), (−c1x, c1x), (c1x, c2ε), (c2ε, c1c2), and (c1c2,∞).

The asymptotic normality of the Huber robust RA−estimator for α1 is:

α̂1RA ∼ N(α1, N
−1V arRA(α1)).

where

V arRA(α1) = − BRA(α1)

[∂ARA(α1)
∂α1

]2
(13)

where

BRA(α1) =

∫ −c2ε

−c1c2

φ2
1RA(x, ε)dF (ε)+

∫ −c1x

−c2ε

φ2
1RA(x, ε)dF (ε) +

∫ c1x

−c1x

φ2
1RA(x, ε)dF (ε)+
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∫ c2ε

c1x

φ2
1RA(x, ε)dF (ε) +

∫ c1c2

c2ε

φ2
1RA(x, ε)dF (ε) + c21c

2
2

∫ −c1c2

−∞

dF (ε) + c21c
2
2

∫ ∞

c1c2

dF (ε)

and

ARA(α1) =

∫ −c2ε

−c1c2

φ1RA(x, ε)dF (ε) +

∫ −c1x

−c2ε

φ1RA(x, ε)dF (ε)+

∫ c1x

−c1x

φ1RA(x, ε)dF (ε) +

∫ c2ε

c1x

φ1RA(x, ε)dF (ε) +

∫ c1c2

c2ε

φ1RA(x, ε)dF (ε).

To extend the univariate robust RA-estimator to the multivariate robust M-

estimators, we use the same procedure as in the proof of Theorem 1. However this

case will be more complicated because of the technique needed to separate the non-

differtiable points.

There are 4 nearest neighbor parameters, θ
T = (α1, α2, α3, α4), in the first-order

MRF model. Use Lemma 1 and the multivariate CLT. As m and n go to infinity (N

goes to infinity)
√
N(θ̂RA − θ) ∼ N 4[0,Σ

∗
θRA

],

where Σ∗
θRA

=



















σ∗
11 σ∗

12 σ∗
13 σ∗

14

σ∗
21 σ∗

22 σ∗
23 σ∗

24

σ∗
31 σ∗

32 σ∗
33 σ∗

34

σ∗
41 σ∗

42 σ∗
43 σ∗

44



















Here we show two examples:

σ∗
11 = V arRA(α1) = − BRA(α1)

[∂ARA(α1)
∂α1

]2
.

where ARA(α1) and BRA(α1) are defined in Eq.(13).

σ∗
12 = σ∗

21 = COVRA(α1, α2) = − BRA(α1, α2)
∂ARA(α1)

∂α1

∂ARA(α2)
∂α2

,

where
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BRA(α1, α2) =

∫ −c2ε

−c1c2

φ1RA(x, ε)[

∫

φ2RA(x, ε)dF (ε)]dF (ε)+

∫ −c1x

−c2ε

φ1RA(x, ε)[

∫

φ2RA(x, ε)dF (ε)]dF (ε)+

∫ c1x

−c1x

φ1RA(x, ε)[

∫

φ2RA(x, ε)dF (ε)]dF (ε)+

∫ c2ε

c1x

φ1RA(x, ε)[

∫

φ2RA(x, ε)dF (ε)]dF (ε)+

∫ c1c2

c2ε

φ1RA(x, ε)[

∫

φ2RA(x, ε)dF (ε)]dF (ε)+

c1c2

∫ −c1c2

−∞

[

∫

φ2RA(x, ε)dF (ε)]dF (ε) + c1c2

∫ ∞

c1c2

[

∫

φ2RA(x, ε)dF (ε)]dF (ε)

where

∫

φ2RA(ε)dF (ε) =

∫ −c4ε

−c3c4

φ2RA(x, ε)dF (ε)+

∫ −c3x

−c4ε

φ2RA(x, ε)dF (ε)+

∫ c3x

−c3x

φ2RA(x, ε)dF (ε)+

∫ c4ε

c3x

φ2RA(x, ε)dF (ε) +

∫ c3c4

c4ε

φ2RA(x, ε)dF (ε) + c3c4

∫ −c3c4

−∞

dF (ε) + c3c4

∫ ∞

c3c4

dF (ε)

where c3 = c∗ξ3, c is the tuning constant of a Huber function, ξ3 = med(|εi,jRA
|)/0.6745,

c4 = c ∗ ξ4, ξ4 = med(|xi+1,j |)/0.6745, i = 1, . . . , m, j = 1, . . . , n, and assume

c4ε ≥ c3x.

ARA(α1) is defined in Eq.(13). ARA(α2) and the other elements of Σ∗
θRA

could be

found by the same trick. Theorem 2 is proved.

1.4.3 Discussion of the Identical Assumption

Huber (1964) and Serfling (1980) derived asymptotic normality under the i.i.d. ran-

dom variables situation. If the outlier model is from a heavy-tailed t-distribution,
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the i.i.d. assumption holds. However, if the outlier model is from mixture distribu-

tions, the identical distribution assumption in Eq.(2) does not hold. Note that the

independent assumption still holds. This section discusses procedures to handle the

non-identical distribution problem.

Eicker (1963) introduced the central limit theorems for samples that are not from

identical distributions. Let the sample x1, . . . , xn be independent but not identically

distributed, for example, with different variance σ2
1, . . . , σ

2
n. If the following three

conditions are simultaneously satisfied:

(I) maxi=1,...,n x
2
i /

∑n
i=1 x

2
i −→ 0,

(II) supx

∫

|xi|>c
x2
i dF (xi) −→ 0 as c −→ ∞.

(III) infx

∫

x2
i dF (xi) > 0.

Let

ζ =

∑n
i=1 xi

∑n
i=1 x

2
iσ

2
i

.

ζ will converge uniformly in x to a Normal distribution as n goes to infinity.

The first-order MRF additive outlier model in Eq.(3) satisfies the three conditions

above. The robust estimators are the solutions of the estimating equations in Eq.(8)

and Eq.(11). The robust estimators are in the form (family) of a weighted sum over

the entire grid, like ζ above. Therefore, Theorem 1 and Theorem 2 hold even though

the identical distribution assumption does not hold. The theorems apply in the case

of additive outliers (mixture distributions: main structure and the outliers effect).
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1.5 Simulation Studies

In the simulation studies, we constructed the first order MRF models with different

structure of outliers from three distributions: a heavy-tailed distribution, a normal

distribution, and a skew distribution. We compared the estimation quality of the pro-

posed two robust estimators, robustM-estimator and RA-estimator, against the LSE

of neighbor parameters α1, α2, α3, and α4 using the complete edge data information

(Section 1.5.2).

Section 1.3.3 compare our robust estimators with two alternative, such as ML

estimators, multivariate N − MLE and multivariate t − MLE, we estimated the

neighbor parameters only in the complete neighborhood data. The edge terms are

not used (Section 1.5.3). We compared estimators’ performance in the simulation

results by using the edge data and without the edge data in Section 1.5.4.

1.5.1 Study Setup for Analysis

Monte Carlo simulation studies with 100 replications in each case were conducted for

comparing the estimation quality of the proposed two robust estimators, the robust

M-estimator and the robust RA-estimator, against the LSE of neighbor parame-

ters α1, α2, α3, and α4. Zero overall mean is considered to simplify the simulation

comparisons.

Simulations include various data sizes in square lattices of 7, 10, 15, 25, and

40 nodes to a side. The neighbor parameters’ values were fixed as α1 = 0.7, α2 =

0.7, α3 = 0.4, and α4 = 0.4. The procedure to generate a grid of data xi,j follows

Eq.(2) from residuals in Eq.(4). The distribution of residuals is not restricted to the

normal distribution. Any distributions such as the t-distribution or other heavy tail

distributions can be used. Section 1.5.2.1 and 1.5.3.1 present the cases for εi,j from,

t(1)·τ , t−distribution with degree of freedom 1 and τ 2 fixed at 36. A t−distribution has
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heavier tails than a normal distribution and the outliers occur randomly. Therefore,

we don’t know how many and where outliers occurred.

In Section 1.5.2.2 and 1.5.3.2, we setup outlier patterns to see the estimators’

performance. Our studies consider four scenarios with different outlier patterns: (1.)

no outliers present; (2.) a single AO, at a fixed point near the center; (3.) 10% of the

observations are AO’s in a cluster near the center; and (4.) 10% of the observations are

AO’s, randomly dispersed throughout the grid. These four scenarios are referred to as

Case 1 to 4, respectively. For the no outliers case, εi,j are from the standard normal

distribution. In the case of randomly dispersed AO outliers, the uncontaminated data

xij are generated from the MRF model in Eq.(2). Then, we generate outlier locations

randomly from the uniform(0,1) distribution. Then vij are generated from N(0, τ 2)

with τ 2 fixed at 36. Finally, if a location does not include an outlier: zij = xij ;

otherwise, zij = xij + vij (Eq.(3)). In both robust estimation procedures Huber’s

robustifying function in Eq.(9) with a tuning constant c =1.5 is used. The Mallows

function φ(µ, ν) = ψ(µ)ψ(ν) is used for the robust RA-estimates.

Because the t−distribution and normal distribution are symmetric, we set up a

skew distribution to see the effect of estimators in Section 1.5.2.3 and 1.5.3.3. We

only consider Case 4, the worst situation with 10% of the observations are AO’s,

randomly dispersed throughout the grid. Then vij are generated from a log-normal

distribution, LN(4, 1).

1.5.2 Results from Analysis with Edge Data

LSE, M− and RA-estimates do not require full neighborhood information for neigh-

borhood parameters estimation. Therefore, one of the advantages of those three

estimators is using more information from the edge of the grid.
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1.5.2.1 Evaluation of Results of a t−distribution from Edge Data

Tables 1-3 summarize the simulation results of mean and mean squared error (MSE)

of LSE, robust M− and RA−estimates from 7×7, 10×10 , and 25×25 grids under

the situation that error terms came from a t−distribution with one degree of freedom.

The tables also present the proportion of bias (Bias). The Bias is defined as, (αi −

α̂i)/αi, i = 1, 2, 3, 4.

In the smaller grid size, 7×7 grid, when the outliers are present randomly from

a t−distribution with one degree of freedom, robust estimates have smaller bias and

MSE than LSE (see Table 1). The proportion of bias of LSE is about 0.0006 to

0.08. The proportion of bias of robust M-estimate and RA-estimates are about 0.001

to 0.02. The bias of the three estimates are small. However, robust estimates have

smaller MSE compare to LSE. The estimates of α3 and α4 have larger bias and MSE

than the estimates of α1 and α2 . This could be due to the smaller parameter values

of α3 and α4 making them more difficult to estimate. Tables 2-3 indicate robust es-

timators are better than LSE with much smaller MSE and bias. In 10×10 grid, the

proportion of bias of LSE is about 0.02 to 0.045. The proportion of bias of robust

M-estimate and RA-estimates are about 0.002 to 0.009. The robust estimates have

smaller MSE than LSE’s. For a 25×25 grid, the robust estimates have almost 0 bias,

and the robust estimates have smaller MSE compare to LSE.

1.5.2.2 Evaluation of Results of Normal Distribution from the Edge Data

Tables 4-7 and 8-11 summarize the results from 7×7 and 40×40 grids and four outlier

configurations discussed in Section 1.5.1. In the situation with smaller grid size, e.g.,

7×7 grid, when there is no outlier present, robust estimates have similar bias and

MSE compared with LSE (see Table 4). The three methods are compatible for the

other three cases. Tables 5-7 indicate robust estimators are better than LSE with
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Table 1: Estimates of α1 = 0.7, α2 = 0.7, α3 = 0.4, α4 = 0.4, under a t−Distribution
(7×7 Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
LSE 0.6986 0.00200 0.00024 0.6996 0.00057 0.00037
M-est. 0.7008 -0.00114 0.00004 0.6987 0.00186 0.00008
RA-est. 0.7012 -0.00171 0.00006 0.6986 0.00200 0.00009

Estimate α̂3 Bias MSE α̂4 Bias MSE
LSE 0.3672 0.08200 0.00237 0.367 0.08250 0.00217
M-est. 0.3925 0.01875 0.00035 0.3926 0.01850 0.00030
RA-est. 0.3927 0.01825 0.00044 0.3929 0.01775 0.00037

Table 2: Parameter Estimates under a t−Distribution (10×10 Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
LSE 0.6856 0.02057 0.00054 0.6852 0.02114 0.00047
M-est. 0.6980 0.00286 0.00003 0.6973 0.00386 0.00004
RA-est. 0.6981 0.00271 0.00003 0.6973 0.00386 0.00004

Estimate α̂3 Bias MSE α̂4 Bias MSE
LSE 0.3819 0.04525 0.00148 0.3861 0.03475 0.00133
M-est. 0.3966 0.00850 0.00012 0.3974 0.00650 0.00009
RA-est. 0.3965 0.00875 0.00011 0.3975 0.00625 0.00008

Table 3: Parameter Estimates under a t−Distribution (25×25 Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
LSE 0.6954 0.00657 5.68e−5 0.6956 0.00629 5.42e−5

M-est. 0.6999 0.00014 2.46e−7 0.6999 0.00014 2.32e−7

RA-est. 0.6999 0.00014 2.77e−7 0.6999 0.00014 2.42e−7

Estimate α̂3 Bias MSE α̂4 Bias MSE
LSE 0.3924 0.01900 1.71e−4 0.3922 0.01950 1.82e−4

M-est. 0.3999 0.00025 2.57e−7 0.3998 0.00050 5.27e−7

RA-est. 0.3999 0.00025 3.26e−7 0.3998 0.00050 5.23e−7
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Table 4: Estimates of α1 = 0.7, α2 = 0.7, α3 = 0.4, α4 = 0.4, in Case 1 (7×7 Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
LSE 0.6994 0.00086 0.00035 0.7002 -0.00029 0.00031
M-est. 0.6995 0.00071 0.00032 0.7005 -0.00071 0.00029
RA-est. 0.6997 0.00043 0.00028 0.7013 -0.00186 0.00030

Estimate α̂3 Bias MSE α̂4 Bias MSE
LSE 0.3705 0.07375 0.00208 0.3685 0.07875 0.00229
M-est. 0.3715 0.07125 0.00209 0.3693 0.07675 0.00229
RA-est. 0.3717 0.07075 0.00205 0.3692 0.07700 0.00236

Table 5: Parameter Estimates in Case 2 (7×7 Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
LSE 0.6792 0.02971 0.00231 0.6812 0.02686 0.00247
M-est. 0.6898 0.01457 0.00070 0.6908 0.01314 0.00091
RA-est. 0.6904 0.01371 0.00066 0.6917 0.01186 0.00077

Estimate α̂3 Bias MSE α̂4 Bias MSE
LSE 0.3296 0.17600 0.00957 0.3266 0.18350 0.01001
M-est. 0.3423 0.14425 0.00623 0.3399 0.15025 0.00640
RA-est. 0.3377 0.15575 0.00683 0.3352 0.16200 0.00706

much smaller MSE and bias. When there are more outliers (see Tables 6 and 7), the

robust RA-estimate is better than robust M-estimator in both bias and MSE.

When the grid size is as large as 40×40, the bias is close to zero unless there

are many outliers uniformly distributed throughout the grid (see Table 11 with 10%

outliers). In this case, the robust RA method leads to the smallest bias and MSE.

The next two tables report performance of three estimates for two representative

parameters α1 = 0.7 and α3 = 0.4 under various grid sizes under the most difficult

case, Case 4 with possible outliers in 10% of all observations. Naturally, with in-

creasing grid sizes, both bias and MSE become smaller. The two robust estimation

methods perform better than the LSE, and the robust RA-estimate has a slightly

smaller bias and MSE than the robust M-estimate does. This seems to be the general
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Table 6: Parameter Estimates in Case 3 (7×7 Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
LSE 0.6570 0.06143 0.00580 0.6598 0.05743 0.00563
M-est. 0.6743 0.03671 0.00349 0.6793 0.02957 0.00288
RA-est. 0.6817 0.02614 0.00143 0.6855 0.02071 0.00106

Estimate α̂3 Bias MSE α̂4 Bias MSE
LSE 0.2723 0.31925 0.03193 0.2693 0.32675 0.03252
M-est. 0.3152 0.21200 0.01369 0.3119 0.22025 0.01385
RA-est. 0.3159 0.21025 0.01288 0.3124 0.21900 0.01313

Table 7: Parameter Estimates in Case 4 (7×7 Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
LSE 0.6555 0.06357 0.00768 0.6566 0.06200 0.00777
M-est. 0.6887 0.01614 0.00341 0.6713 0.04100 0.00345
RA-est. 0.6731 0.03843 0.00257 0.6754 0.03514 0.00263

Estimate α̂3 Bias MSE α̂4 Bias MSE
LSE 0.2670 0.33250 0.02863 0.2636 0.34100 0.02923
M-est. 0.2853 0.28675 0.02129 0.2818 0.29550 0.02210
RA-est. 0.2938 0.26550 0.01892 0.2902 0.27450 0.01979

Table 8: Estimates of α1 = 0.7, α2 = 0.7, α3 = 0.4, α4 = 0.4, in Case 1 (40×40
Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
LSE 0.6991 0.00129 2.25e−6 0.6991 0.00129 3.02e−6

M-est. 0.6991 0.00129 2.40e−6 0.6991 0.00129 2.98e−6

RA-est. 0.6991 0.00129 2.35e−6 0.6991 0.00129 3.11e−6

Estimate α̂3 Bias MSE α̂4 Bias MSE
LSE 0.3968 0.00800 1.60e−5 0.3968 0.00800 1.69e−5

M-est. 0.3968 0.00800 1.61e−5 0.3967 0.00825 1.68e−5

RA-est. 0.3969 0.00775 1.51e−5 0.3968 0.00800 1.59e−5
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Table 9: Parameter Estimates in Case 2 (40×40 Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
LSE 0.6991 0.00129 2.27e−6 0.6991 0.00129 3.05e−6

M-est. 0.6991 0.00129 2.40e−6 0.6991 0.00129 3.00e−6

RA-est. 0.6991 0.00129 2.36e−6 0.6991 0.00129 3.16e−6

Estimate α̂3 Bias MSE α̂4 Bias MSE
LSE 0.3968 0.00800 1.61e−5 0.3968 0.00800 1.69e−5

M-est. 0.3968 0.00800 1.61e−5 0.3967 0.00825 1.68e−5

RA-est. 0.3969 0.00775 1.52e−5 0.3968 0.00800 1.60e−5

Table 10: Parameter Estimates in Case 3 (40×40 Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
LSE 0.6991 0.00129 2.19e−6 0.6991 0.00129 2.94e−6

M-est. 0.6991 0.00129 2.36e−6 0.6991 0.00129 2.90e−6

RA-est. 0.6991 0.00129 2.31e−6 0.6991 0.00129 3.23e−6

Estimate α̂3 Bias MSE α̂4 Bias MSE
LSE 0.3968 0.00800 1.61e−5 0.3968 0.00800 1.69e−5

M-est. 0.3968 0.00800 1.63e−5 0.3967 0.00825 1.69e−5

RA-est. 0.3969 0.00775 1.54e−5 0.3968 0.00800 1.62e−5

Table 11: Parameter Estimates in Case 4 (40×40 Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
LSE 0.6931 0.00986 0.00008 0.6930 0.01000 0.00008
M-est. 0.6961 0.00557 0.00003 0.6961 0.00557 0.00003
RA-est. 0.6962 0.00543 0.00003 0.6962 0.00543 0.00003

Estimate α̂3 Bias MSE α̂4 Bias MSE
LSE 0.3858 0.03550 0.00029 0.3858 0.03550 0.00029
M-est. 0.3894 0.02650 0.00016 0.3894 0.02650 0.00016
RA-est. 0.3898 0.02550 0.00014 0.3894 0.02650 0.00015
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Table 12: Estimates of α1 = 0.7 in Case 4.

Estimate Grid size
10×10 15×15

α̂1 Bias MSE α̂1 Bias MSE
LSE 0.6099 0.12871 0.01337 0.6723 0.03957 0.00127
M-est. 0.6313 0.09814 0.00847 0.6843 0.02243 0.00049
RA-est. 0.6416 0.08343 0.00595 0.6857 0.02043 0.00041

Estimate Grid size
25×25 40×40

α̂1 Bias MSE α̂1 Bias MSE
LSE 0.6482 0.07400 0.00315 0.6931 0.00986 0.00008
M-est. 0.6717 0.04043 0.00102 0.6961 0.00557 0.00003
RA-est. 0.6743 0.03671 0.00083 0.6962 0.00543 0.00003

comment for all case studies.

1.5.2.3 Evaluation of Results of Skew Distribution from Edge Data

LSE, robust M− and RA-estimates are free form symmetric assumption. Tables 14

shows the results from 10×10 grids in Case 4 outlier configurations in skew distribu-

tion. We saw LSE and robust M−estimates are about the same from the bias and

MSE. The robust RA−estimates has better performance in in both bias and MSE

than LSE and robust M−estimates.

1.5.2.4 Summary for Simulations with Edge Data

Simulation studies with different distributions, we concluded that in the outliers sit-

uation robust estimates are better than LSE in less bias and MSE.

The outliers were randomly generated from a t−distribution; we didn’t know

where and how many outliers occurred in the grid. t−distribution is also a heavy-

tailed distribution. From the simulations studies, in the smaller grid size, robust

estimates have smaller bias and MSE than LSE. In the large grid size, the robust
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Table 13: Estimates of α3 = 0.4 in Case 4.

Estimate Grid size
10×10 15×15

α̂3 Bias MSE α̂3 Bias MSE
LSE 0.2810 0.29750 0.02721 0.3460 0.13500 0.00571
M-est. 0.2993 0.25175 0.01934 0.3562 0.10950 0.00412
RA-est. 0.3099 0.22525 0.01601 0.3586 0.10350 0.00372

Estimate Grid size
25×25 40×40

α̂3 Bias MSE α̂3 Bias MSE
LSE 0.3679 0.08025 0.00228 0.3858 0.03550 0.00029
M-est. 0.3749 0.06275 0.00143 0.3894 0.02650 0.00016
RA-est. 0.3771 0.05725 0.00121 0.3898 0.02550 0.00014

Table 14: Estimates of α1 = 0.7, α2 = 0.7, α3 = 0.4, α4 = 0.4, in Case 4 under a
Skew Distribution (10×10 Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
LSE 0.1147 0.83614 0.35594 0.1138 0.83743 0.35690
M-est. 0.1121 0.83986 0.36715 0.1192 0.82971 0.35708
RA-est. 0.4547 0.35043 0.07451 0.4585 0.34500 0.07318

Estimate α̂3 Bias MSE α̂4 Bias MSE
LSE 0.0257 0.93575 0.14438 0.0255 0.93625 0.14490
M-est. 0.0003 0.99925 0.16083 0.0027 0.99325 0.15921
RA-est. 0.0641 0.83975 0.12138 0.0673 0.83175 0.11978
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estimates have almost 0 bias, and the robust estimates have very small MSE compare

to LSE.

When there are no outliers present, robust estimates have similar bias and MSE

compared with LSE. In additive outliers MRF models, when there are more outliers,

the robust RA-estimate is better than the robust M-estimator in both bias and MSE.

In the simulation setting for many outliers uniformly distributed throughout the grid

has higher bias and MSE compare to other three cases. In this case, the robust RA

method leads to the smallest bias and MSE. Naturally, with increasing grid sizes,

both bias and MSE become smaller. The two robust estimation methods perform

better than the LSE, and the robust RA-estimate has a slightly smaller bias and

MSE than the robust M-estimate does. Again, this seems to be the general comment

for all case studies.

LSE, robust M− and RA-estimates didn’t require symmetric assumption in esti-

mation. Under the most difficult case with possible outliers in 10% of all observations,

LSE and robust M−estimates are about the same from the bias and MSE. The ro-

bust RA−estimates have better performance in both bias and MSE than LSE and

robust M−estimates.

1.5.3 Results from Analysis without Edge Data

Multivariate t−MLE is flexible in the situations with outliers because of its heavy-

tailed property. However, ML methods need the full information of the neighborhood

data. In order to compare LSE, robust M− and RA-estimates in the same situa-

tion, we restrict to use partial data: only use the full neighborhood information to

estimate neighbor parameters. The first-order MRF with the full information from

neighborhood data is defined as:
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Xi,j = α1Xi−1,j+α2Xi+1,j+α3Xi,j−1+α4Xi,j+1+εij , i = 2, . . . , m−1, j = 2, . . . , n−1,

Here we use t(1)MLE with one degree of freedom, and NMLE to estimate neigh-

borhood parameters.

1.5.3.1 Evaluation of Results of t−distribution without Edge Data

Tables 15-16 summarize the simulation results of mean and mean square error (MSE)

of LSE, robust M−, robust RA−estimates, t(1)MLE, and NMLE only use the full

neighborhood information from 7×7, and 25×25 grids under the situation that error

terms came from a t−distribution setting in Section 1.5.1.

In the smaller grid size, 7×7 grid (Tables 15), when the outliers present randomly

from t−distribution, robust RA−estimates have a little smaller bias and MSE than

even the true model t(1)MLE. In decreasing order of estimates of bias and MSE, we

have: NMLE, LSE, t(1)MLE, robust M−estimates and RA−estimates. For large

grid size (Tables 16), t(1)MLE, robust M− and RA−estimates have similar bias and

MSE. Three estimates have almost 0 bias, and the robust estimates have very small

MSE compare to LSE.

1.5.3.2 Evaluation of Results of Normal Distribution without Edge Data

Tables 17-20 summarize the simulation results of mean and MSE of LSE, robust

M−, robust RA−estimates, t(1)MLE, and NMLE only use the full neighborhood

information from 7×7, 10×10, 25×25, and 40×40 under the most difficult situation,

case 4, with possible outliers in 10% randomly throughout of all observations.

In the smaller grid size, 7×7 grid (Tables 17), robust M− and RA−estimates

have a little smaller bias and MSE than t(1)MLE. In decreasing order of esti-

mates of bias and MSE, we have: NMLE, LSE, t(1)MLE, robust M−estimates
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Table 15: Estimates of α1 = 0.7, α2 = 0.7, α3 = 0.4, α4 = 0.4, under a
t−Distribution without Edge Data (10×10 Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
LSE 0.6852 0.02114 0.00084 0.6852 0.02114 0.00073
M-est. 0.6982 0.00257 0.00004 0.6968 0.00457 0.00006
RA-est. 0.6983 0.00243 0.00003 0.6969 0.00443 0.00006
NMLE 0.6935 0.00929 0.00041 0.6892 0.01543 0.00068
t(1)MLE 0.6993 0.00100 0.00004 0.6978 0.00314 0.00005

Estimate α̂3 Bias MSE α̂4 Bias MSE
LSE 0.3780 0.05500 0.00217 0.3817 0.04575 0.00201
M-est. 0.3965 0.00875 0.00009 0.3975 0.00625 0.00006
RA-est. 0.3965 0.00875 0.00009 0.3975 0.00625 0.00006
NMLE 0.3841 0.03975 0.00068 0.3889 0.02775 0.00112
t(1)MLE 0.3972 0.00700 0.00005 0.3982 0.00450 0.00010

Table 16: Estimates of α1 = 0.7, α2 = 0.7, α3 = 0.4, α4 = 0.4, under a
t−Distribution without Edge Data (25×25 Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
LSE 0.6951 0.00700 7.61e−5 0.6950 0.00714 7.09e−5

M-est. 0.6999 0.00014 3.20e−7 0.6998 0.00029 3.50e−7

RA-est. 0.6999 0.00014 3.55e−7 0.6998 0.00029 3.52e−7

NMLE 0.6959 0.00586 1.28e−4 0.6981 0.00271 5.94e−5

t(1)MLE 0.7001 -0.00014 1.57e−7 0.6999 0.00014 2.08e−7

Estimate α̂3 Bias MSE α̂4 Bias MSE
LSE 0.3912 0.02200 2.37e−4 0.3911 0.02225 2.48e−4

M-est. 0.3999 0.00025 4.71e−7 0.3997 0.00075 7.02e−7

RA-est. 0.3999 0.00025 5.59e−7 0.3997 0.00075 7.50e−7

NMLE 0.3955 0.01125 1.21e−4 0.3964 0.00900 1.08e−4

t(1)MLE 0.3999 0.00025 1.39e−7 0.3999 0.00025 3.20e−7
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Table 17: Estimates of α1 = 0.7, α2 = 0.7, α3 = 0.4, α4 = 0.4, in Case 4 without
Edge Data (7×7 Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
LSE 0.6525 0.06786 0.00895 0.6539 0.06586 0.00997
M-est. 0.6620 0.05429 0.00628 0.6657 0.04900 0.00715
RA-est. 0.6656 0.04914 0.00531 0.6683 0.04529 0.00579
NMLE 0.6536 0.06629 0.01613 0.6188 0.11600 0.02489
t(1)MLE 0.6698 0.04314 0.00744 0.6645 0.05071 0.00783

Estimate α̂3 Bias MSE α̂4 Bias MSE
LSE 0.2598 0.35050 0.03756 0.2536 0.36600 0.03958
M-est. 0.2773 0.30675 0.02966 0.2705 0.32375 0.03197
RA-est. 0.2894 0.27650 0.02623 0.2825 0.29375 0.02844
NMLE 0.1889 0.52775 0.08137 0.1867 0.53325 0.08684
t(1)MLE 0.2368 0.40800 0.04946 0.2380 0.40500 0.05066

and RA−estimates. For larger grid size (Tables 18-20), t(1)MLE, has similar bias

and MSE. In decreasing order of estimates of bias and MSE, we have: NMLE, LSE,

robust M−estimates, robust RA−estimates, and t(1)MLE. Therefore, robust esti-

mates have an advantage in the small grid sizes compare to t(1)MLE. Naturally, with

increasing grid sizes, both bias and MSE of all estimators become smaller.

1.5.3.3 Evaluation of Results of Skew Distribution without Edge Data

Tables 21 shows the simulation results from 10×10 grids in case 4 outlier configuration

in skew distribution by using the full neighborhood information. NMLE, LSE and

M−estimates have the similar bias and MSE. The robust RA−estimates have better

performance in both bias and MSE than the other estimates. The decreasing order of

estimates of bias and MSE: NMLE, robust M−estimates, LSE, t(1)MLE, and ro-

bust RA−estimates. Therefore, under a very skew distribution, robust RA−estimates

have the best performance.
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Table 18: Parameter Estimates in Case 4 without Edge Data (10×10 Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
LSE 0.5997 0.14329 0.01823 0.5954 0.14943 0.01804
M-est. 0.6222 0.11114 0.01154 0.6226 0.11057 0.00981
RA-est. 0.6345 0.09357 0.00826 0.6304 0.09943 0.00828
NMLE 0.5830 0.16714 0.02739 0.5643 0.19386 0.03370
t(1)MLE 0.6530 0.06714 0.00630 0.6492 0.07257 0.00546

Estimate α̂3 Bias MSE α̂4 Bias MSE
LSE 0.2692 0.32700 0.03219 0.2680 0.33000 0.03401
M-est. 0.2893 0.27675 0.02273 0.2891 0.27725 0.02414
RA-est. 0.2978 0.25550 0.02016 0.2975 0.25625 0.02153
NMLE 0.2650 0.33750 0.04297 0.2578 0.35550 0.04594
t(1)MLE 0.3222 0.19450 0.01432 0.3203 0.19925 0.01642

Table 19: Parameter Estimates in Case 4 without Edge Data (25×25 Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
LSE 0.6456 0.07771 0.00351 0.6457 0.07757 0.00349
M-est. 0.6692 0.04400 0.00123 0.6685 0.04500 0.00128
RA-est. 0.6715 0.04071 0.00103 0.6711 0.04129 0.00106
NMLE 0.6454 0.07800 0.00357 0.6454 0.07800 0.00356
t(1)MLE 0.6880 0.01714 0.00029 0.6880 0.01714 0.00028

Estimate α̂3 Bias MSE α̂4 Bias MSE
LSE 0.3643 0.08925 0.00270 0.3639 0.09025 0.00262
M-est. 0.3716 0.07100 0.00176 0.3703 0.07425 0.00171
RA-est. 0.3738 0.06550 0.00152 0.3724 0.06900 0.00149
NMLE 0.3645 0.08875 0.00268 0.3643 0.08925 0.00258
t(1)MLE 0.3834 0.04150 0.00075 0.3824 0.04400 0.00070
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Table 20: Parameter Estimates in Case 4 without Edge Data (40×40 Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
LSE 0.6925 0.01071 0.00009 0.6928 0.01029 0.00009
M-est. 0.6958 0.00600 0.00003 0.6959 0.00586 0.00003
RA-est. 0.6958 0.00600 0.00003 0.6960 0.00571 0.00003
NMLE 0.6924 0.01086 0.00010 0.6927 0.01043 0.00010
t(1)MLE 0.6980 0.00286 0.00001 0.6980 0.00286 0.00001

Estimate α̂3 Bias MSE α̂4 Bias MSE
LSE 0.3854 0.03650 0.00031 0.3854 0.03650 0.00031
M-est. 0.3891 0.02725 0.00017 0.3891 0.02725 0.00017
RA-est. 0.3894 0.02650 0.00016 0.3894 0.02650 0.00016
NMLE 0.3845 0.03875 0.00036 0.3845 0.03875 0.00036
t(1)MLE 0.3928 0.01800 0.00008 0.3928 0.01800 0.00008

Table 21: Estimates of α1 = 0.7, α2 = 0.7, α3 = 0.4, α4 = 0.4, in Case 4 under a
Skew Distribution without Edge Data (10×10 Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
LSE 0.1228 0.82457 0.35941 0.1097 0.84329 0.35889
M-est. 0.1152 0.83543 0.36694 0.1204 0.82800 0.35702
RA-est. 0.4146 0.40771 0.10615 0.4109 0.41300 0.10931
NMLE 0.0624 0.91086 0.41254 0.0594 0.91514 0.41832
t(1)MLE 0.2830 0.59571 0.26397 0.2684 0.61657 0.27686

Estimate α̂3 Bias MSE α̂4 Bias MSE
LSE 0.0273 0.93175 0.14777 0.0241 0.93975 0.15168
M-est. -0.0036 1.00900 0.16629 0.0038 0.99050 0.15976
RA-est. 0.0433 0.89175 0.13843 0.0496 0.87600 0.13427
NMLE -0.0083 1.02075 0.17831 -0.0017 1.00425 0.17199
t(1)MLE 0.0255 0.93625 0.14989 0.0374 0.90650 0.14203

40



1.5.3.4 Summary for Simulations without Edge Data

Multivariate t − MLE is flexible with the outliers situations because of its heavy-

tailed property. In order to compare robust estimators with t−MLE, the estimation

procedure used the full information of the neighborhood data. Note that robust

estimators and LSE did not have this restriction. Simulation studies with different

distributions, we conclude that robust estimates are better than LSE, NMLE in

less bias and MSE. In the small sample grid size, robust RA−estimators are better

than t −MLE in less bias and MSE. In the large sample grid size, the relationship

between robust estimators and t−MLE varies.

When simulate the outliers present randomly from a t−distribution, in the smaller

grid size, robust RA−estimates have a little smaller bias and MSE than even t(1)MLE.

The decreasing order of estimates of bias and MSE: NMLE, LSE, t(1)MLE, robust

M−estimates and RA−estimates. In the large grid size, t(1)MLE, robust M− and

RA−estimates have similar bias and MSE. Three estimates have almost 0 bias, and

the robust estimates have very small MSE compare to LSE.

In additive outliers MRF models, under the most difficult situation with possible

outliers in 10% of all observations, robust M− and RA−estimates have a little smaller

bias and MSE than t(1)MLE. In decreasing order of estimates of bias and MSE, we

have: NMLE, LSE, t(1)MLE, robust M−estimates and RA−estimates. For large

grid size, t(1)MLE, has similar bias and MSE. The decreasing order of estimates

of bias and MSE: NMLE, LSE, robust M−estimates, robust RA−estimates, and

t(1)MLE. Therefore, robust estimates have an advantage in the small grid sizes

compared to t(1)MLE. Naturally, with increasing grid sizes, both the bias and MSE

of all estimators become smaller.

LSE, robust M− and RA-estimates did not require symmetric assumption in
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estimation. Under the most difficult case with possible outliers in 10% of all obser-

vations, NMLE, LSE and robust M−estimates have similar bias and MSE. The

robust RA−estimates have better performance in both bias and MSE than the other

estimates. In decreasing order of estimates of bias and MSE, we have: NMLE, ro-

bust M−estimates, LSE, t(1)MLE, and robust RA−estimates. Under a very skew

distribution, robust RA−estimates have the best performance.

1.5.4 Comparison of Simulation Results from 1.5.2 and 1.5.3

Here we study the edge effect in LSE, robust M− and RA-estimates. In the small

grid size will loss more information than larger grid size. The robust RA− estimates

suffer more from using only neighborhood data compared to LSE and robust M−

estimates in Section 1.5.4.1.

The ML methods need the full information of the neighborhood data. In the other

hand, LSE, and robust estimates do not have the restriction for the full information

of the neighborhood data. We show the advantage of the estimation bias and MSE

are smaller than the ML methods in Section 1.5.4.2.

1.5.4.1 Comparison of Simulation Results for LSE, and robust estimates under
using partial data and full data

Table 22 shows the simulation results from a 25×25 grid in Case 4 outlier configuration

in a heavy-tailed distribution to compare the edge effect. Proportion of Bias increased

(BiasIn) is defined as estimation proportion of bias by using full neighborhood data

minus estimation proportion of bias by using edge data. Ratio of MSEs (RMSE)

is estimator of MSE of using full neighborhood data divided by estimator of MSE

of using edge data. Proportion of Bias increased are small. LSE’s proportion bias

increased about 0.003 to 0.00275. Robust M− and RA− estimates’ proportion bias

42



Table 22: Edge Effect Study of Estimates of α1 = 0.7, α2 = 0.7, α3 = 0.4, α4 = 0.4,
under a t−Distribution (25×25 Grid).

α̂1 α̂2 α̂3 α̂4

Estimate BiasIn RMSE BiasIn RMSE BiasIn RMSE BiasIn RMSE
LSE 0.00043 1.34 0.00086 1.31 0.00030 1.39 0.00275 1.36
M-est. 0 1.30 0.00014 1.51 0 1.83 0.00025 1.33
RA-est. 0 1.28 0.00014 1.45 0 1.71 0.00025 1.43

increased about 0 to 0.00025. MSE of LSE by using full neighborhood data increase

about 30 % to 40 % compare to MSE of LSE by using edge data. MSE of robust

estimates by using full neighborhood data increase about 30 % to 80 % compared to

MSE of robust estimates by using edge data.

In additive outliers MRF models, under the most difficult situation with possible

outliers in 10% of all observations, robust M− and RA−estimates have loss more in-

formation than LSE. In the smaller grid size (Table 23), proportions of bias increased

are small. LSE’s proportions of bias increased range from 0.004 to 0.025. The robust

M− estimates’ proportions of bias increased range from 0.08 to 0.038. Robust RA−

estimates’ proportions of bias increased range from 0.01 to 0.02. The MSE of LSE by

using full neighborhood data increased about 17 % to 35 % compared to the MSE of

LSE by using edge data.The MSE of robust estimates by using full neighborhood data

increased about 40 % to 120 % compared to MSE of robust estimates by using edge

data. For large grid size (Table 24), LSE’s proportions of bias increased range from

0.00029 to 0.001. The robust M− and RA− estimates’ proportions of bias increased

range from 0 to 0.001. The MSE of LSE by using full neighborhood data increased

range from 7 % to 13 % compared to the MSE of LSE by using edge data. The MSEs

of robust estimates were not affected by using the edge data or full neighborhood data.
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Table 23: Edge Effect Study of Estimates of α1 = 0.7, α2 = 0.7, α3 = 0.4, α4 = 0.4,
under Case 4 (7×7 Grid).

α̂1 α̂2 α̂3 α̂4

Estimate BiasIn RMSE BiasIn RMSE BiasIn RMSE BiasIn RMSE
LSE 0.00429 1.17 0.00386 1.28 0.01800 1.31 0.02500 1.35
M-est. 0.03814 1.84 0.00800 2.07 0.02000 1.39 0.02825 1.45
RA-est. 0.01071 2.07 0.01014 2.20 0.01100 1.39 0.01925 1.44

Table 24: Edge Effect Study of Parameter Estimates under Case 4 (40×40 Grid).

α̂1 α̂2 α̂3 α̂4

Estimate BiasIn RMSE BiasIn RMSE BiasIn RMSE BiasIn RMSE
LSE 0.00086 1.13 0.00029 1.13 0.00100 1.07 0.00100 1.07
M-est. 0.00043 1.00 0.00029 1.00 0.00075 1.06 0.00075 1.06
RA-est. 0.00057 1.00 0.00029 1.00 0.00100 1.14 0 1.07

Tables 25 shows the simulation results from 10×10 grids in case 4 outlier con-

figurations in skew distribution to compare the edge effect. LSE’s proportion bias

increased about -0.01 to 0.006. The robust M− estimates’ proportions of bias in-

creased range from -0.004 to 0.01. The MSEs of LSE and robust M− estimates were

not affected by using the edge data or only full neighborhood data. The MSE of

robust RA− estimates by using full neighborhood data increased about 10 % to 50

% compared to the MSE of robust estimates by using edge data.

1.5.4.2 Comparison of Simulation Results for the robust RA−estimates using
full data versus t−MLE using partial data

From the simulation studies, the robust RA−estimator and t−MLE both handle the

outliers situation very well. t−MLE worked better when the underlying distribution

was a t−distribution and also when the grid size was large. In the other cases, the

robust RA−estimator was superior.
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Table 25: Edge Effect Study of Estimates of α1 = 0.7, α2 = 0.7, α3 = 0.4, α4 = 0.4,
under a Skew Distribution (10×10 Grid).

α̂1 α̂2 α̂3 α̂4

Estimate BiasIn RMSE BiasIn RMSE BiasIn RMSE BiasIn RMSE
LSE -0.01157 1.01 0.00586 1.01 -0.00400 1.02 0.00350 1.05
M-est. -0.00443 1.00 -0.00171 1.00 0.00975 1.03 -0.00275 1.00
RA-est. 0.05729 1.42 0.06800 1.49 0.05200 1.14 0.04425 1.12

Table 26: Comparison of the Robust RA−Estimates under Full Data and t−MLE
under Partial Data for a t−Distribution (10×10 Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
RA-est.f 0.6981 0.00271 0.00003 0.6973 0.00386 0.00004
t(1)MLEp 0.6993 0.00100 0.00004 0.6978 0.00314 0.00005

Estimate α̂3 Bias MSE α̂4 Bias MSE
RA-est.f 0.3965 0.00875 0.00011 0.3975 0.00625 0.00008
t(1)MLEp 0.3972 0.00700 0.00005 0.3982 0.00450 0.00010

Therefore, we compare the robust RA−estimates under full data versus t−MLE

under partial data in different situations. Notation for Table 26–30 is as follows:

subscript “f” means using full data and subscript “p” means using partial data (only

the full neighborhood data).

In Table 26 and 27 are 10×10 and 25×25 grids under the situation that error

terms came from a t−distribution with one degree of freedom. In this situation, we

do not know where the outliers are. The MSE of the robust RA−estimates are a little

smaller than t(1)MLE for small grid size 10×10.

For a larger grid size, t(1)MLE is slightly better than robust RA−estimates. When

the grid size is larger, the loss of edge data is less significant for t(1)MLE.

In Table 28 and 29 are 7×7 and 40×40 grids under the situation that error terms

came from a Normal distribution and Case 4 with possible outliers in 10% of all

observations. The bias and MSE of the robust M− and RA−estimates are smaller
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Table 27: Comparison of the Robust RA−Estimates under Full Data and t−MLE
under Partial Data for a t−Distribution (25×25 Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
RA-est.f 0.6999 0.00014 2.77e−7 0.6999 0.00014 2.42e−7

t(1)MLEp 0.7001 -0.00014 1.57e−7 0.6999 0.00014 2.08e−7

Estimate α̂3 Bias MSE α̂4 Bias MSE
RA-est.f 0.3999 0.00025 3.26e−7 0.3998 0.00050 5.23e−7

t(1)MLEp 0.3999 0.00025 1.39e−7 0.3999 0.00025 3.20e−7

Table 28: Comparison of the Robust RA−Estimates under Full Data and t−MLE
under Partial Data for Case 4 (7×7 Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
RA-est.f 0.6731 0.03843 0.00257 0.6754 0.03514 0.00263
t(1)MLEp 0.6698 0.04314 0.00744 0.6645 0.05071 0.00783

Estimate α̂3 Bias MSE α̂4 Bias MSE
RA-est.f 0.2938 0.26550 0.01892 0.2902 0.27450 0.01979
t(1)MLEp 0.2368 0.40800 0.04946 0.2380 0.40500 0.05066

than t(1)MLE for small grid size 7×7.

For larger grid size, t(1)MLE is slightly better than robust RA−estimates. When

the grid size is larger, the loss information of the edge-data is no longer effective.

Table 30 is 10×10 grid under the situation that mixture error terms came from a

skew distributions for Case 4 with possible outliers in 10% of all observations. The

bias and MSE of the robust RA−estimates are smaller than t(1)MLE.

We summarized that when the grid size is small, the loss information of using only

partial data is a lot. The robust RA− estimators are better than t(1)MLE when grid

size is small or under very un-symmetric condition. Otherwise, when the grid size is

large, the t(1)MLE is a flexible estimator under a true t−distribution and mixture

normal distributions.
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Table 29: Comparison of the Robust RA−Estimates under Full Data and t−MLE
under Partial Data for Case 4 (40×40 Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
RA-est.f 0.6962 0.00543 0.00003 0.6962 0.00543 0.00003
t(1)MLEp 0.6980 0.00286 0.00001 0.6980 0.00286 0.00001

Estimate α̂3 Bias MSE α̂4 Bias MSE
RA-est.f 0.3898 0.02550 0.00014 0.3894 0.02650 0.00015
t(1)MLEp 0.3928 0.01800 0.00008 0.3928 0.01800 0.00008

Table 30: Comparison of the Robust RA−Estimates under Full Data and t−MLE
under Partial Data for Case 4 under a Skew Distribution (10×10 Grid).

Estimate α̂1 Bias MSE α̂2 Bias MSE
RA-est.f 0.4547 0.35043 0.07451 0.4585 0.34500 0.07318
t(1)MLEp 0.2830 0.59571 0.26397 0.2684 0.61657 0.27686

Estimate α̂3 Bias MSE α̂4 Bias MSE
RA-est.f 0.0641 0.83975 0.12138 0.0673 0.83175 0.11978
t(1)MLEp 0.0255 0.93625 0.14989 0.0374 0.90650 0.14203

1.5.5 Summary for Simulation Studies

We summarize the simulation studies with different distributions:

(1.) Results of analysis with edge data:

(1.1) When residuals present randomly from t−distribution, we didn’t know

where and how much outliers occurred in the grid. t−distribution is a

heavy-tailed distribution.

(1.1.1) In the smaller grid size, robust estimates have smaller bias and

MSE than LSE.

(1.1.2) In the large grid size, the robust estimates have almost 0 bias, and

the robust estimates have very small MSE compared to LSE.

(1.2) In additive outliers MRF models, we presented the cases for εi,j and vij
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from the standard normal distribution and normal distribution, respec-

tively.

(1.2.1) When there is no outlier present, robust estimates have similar

bias and MSE compared with LSE.

(1.2.2) When there are more outliers, the robust RA-estimate is better

than robust M-estimator in both bias and MSE.

(1.2.3) In the simulation setting for many outliers uniformly distributed

throughout the grid has higher bias and MSE compare to other three

cases. In this case, the robust RA method leads to the smallest bias

and MSE.

(1.2.4) Naturally, with increasing grid sizes, both bias and MSE become

smaller.

(1.3) LSE, robust M− and RA-estimates did not require symmetric assump-

tion in estimation. Therefore, we try to see the effect of estimations under

skew distribution outliers setting under the most difficult case with possi-

ble outliers in 10% of all observations. For additive outliers MRF models,

we presented the cases for εi,j from the standard normal distribution and

vij from a log-normal distribution.

(1.3.1) LSE and M−estimates are about the same from the bias and

MSE.

(1.3.2) RA−estimates has better performance in in both bias and MSE

than LSE and M−estimates.

(2.) Multivariate t −MLE is flexible in the situations with outliers because of its

heavy-tailed property. In order to compare robust estimators with t−MLE, the

estimation procedure were used the full information of the neighborhood data.
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Note that robust estimators and LSE didn’t need this restriction. Results of

analysis without edge data:

(2.1) When we simulated the outliers present randomly from a t−distribution:

(2.1.1) In the smaller grid size, robust RA−estimates have a little smaller

bias and MSE than even true t(1)MLE. The decreasing order of esti-

mates of bias and MSE: NMLE, LSE, t(1)MLE, robustM−estimates

and RA−estimates.

(2.1.2) In the large grid size, t(1)MLE, robust M− and RA−estimates

have similar bias and MSE. Three estimates have almost 0 bias, and

the robust estimates have very small MSE compare to LSE.

(2.2) In additive outliers MRF models, we presented the cases for εi,j and vij

from the standard normal distribution and a normal distribution, under

the most difficult situation with possible outliers in 10% of all observations:

(2.2.1) In the smaller grid size, the robust M− and RA−estimates have

a little smaller bias and MSE than t(1)MLE. In decreasing order of

estimates of bias and MSE, we have: NMLE, LSE, t(1)MLE, robust

M−estimates and RA−estimates.

(2.2.2) For large grid size, t(1)MLE has similar bias and MSE. In de-

creasing order of estimates of bias and MSE, we have: NMLE, LSE,

robust M−estimates, robust RA−estimates, and t(1)MLE. Therefore,

robust estimates have an advantage in the small grid sizes compared

to t(1)MLE.

(2.2.3) Naturally, with increasing grid sizes, both bias and MSE of all

estimates become smaller.

(2.3) For additive outliers MRF models, we presented the cases for εi,j from
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the standard normal distribution and vij from a skew distribution, a log-

normal distribution, and the most difficult case with possible outliers in

10% of all observations:

(2.3.1) NMLE, LSE, and robust M−estimates have similar bias and

MSE. The robust RA−estimates have better performance in both bias

and MSE than the other estimates. In decreasing order of estimates

of bias and MSE: NMLE, robust M−estimates, LSE, t(1)MLE, and

robust RA−estimates.

(2.3.2) Under a very skew distribution, the robust RA−estimates have

the best performance.

(3.) Here we study the edge effect in LSE, robust M− and RA-estimates.

(3.1) Estimators will lose more information in a small grid size than in a larger

grid size.

(3.2) The robust RA− estimates suffer more from using only neighborhood

data instead compared to LSE and robust M− estimates.

(4.) Here we compare robust RA-estimates using full data and t−MLE using partial

data.

(4.1) The robust RA−estimators had an advantage over t −MLE (1) when

the grid size was small and data came from a mixture of normal distribu-

tions, (2) when the grid size was small and data came from a mixture of

normal and skew distributions, and (3) when the grid size was large and

data came from a mixture of normal and skew distributions. The robust

RA−estimators performed comparably to t−MLE when the grid size was

large and data came from a mixture of normal distributions.
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(4.2) t − MLE performed better than the robust RA−estimator when the

true error term of the first-order MRF model came from a t-distribution.

t−MLE had smaller bias and MSE than the robust RA−estimator when

the grid size was large; the effect of the loss of information due to using

partial data decreased when the grid size became large.
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Figure 4: Plot of Kempton and Hower Data (1981).

1.6 Examples

Three data sets taken from the literature, including the Lee-Rawlings data were pre-

sented in the introduction. These three data sets are not large sample sizes. From

the simulation experience, we know the performance of robust estimation are better

than NMLE, LSE, and t −MLE. In order to avoid losing information from the

grid data, here we applied the proposed robust estimators in the three data sets and

compared the results to LSE. The three estimators eliminate large scale variation

(the mean function of the first order MRF model).

1.6.1 Data from Kempton and Howes (1981)

This data set consists of uniformity trials on a 28×7 grid of spring barley plot yields

(Kempton and Howes 1981). The plot in showed in Figure 4. No obvious outliers (or

trends) are visually apparent in a plot of the data in Figure 4.
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Table 31: Parameter Estimates for Kempton and Howes Data.

Estimate α̂1 α̂2 α̂3 α̂4

LSE 0.4470 0.4818 0.0840 0.0668
M-est. 0.4291 0.4886 0.1015 0.0620
RA-est. 0.4420 0.4769 0.1298 0.0649

Because there are no obvious outliers, the robust estimator’s tuning constant is

set at a small value c = 1. Table 31 shows that the three estimates lead to similar

results. The left- and right-dependence parameters α1 and α2 are larger than the

other two dependence parameters.

1.6.2 Data from Cullis, Lill, Fisher, Read, and Gleeson (1989)

Cullis et al. (1989) analyzed data from an experiment assessing the yield potential of

test lines from the southern New South Wales wheat breeding programs on a 67×10

grid. Originally, there are two missing values at (7, 1) and (13, 9). This section

presents results from two alternative ways of handling the missing data. First, missing

values were interpolated using the means of nearest neighbor data shown in Figure 5.

Second, two missing values were artificially interpolated as outliers using value “−5”

in Figure 6. For both experiments, robust estimator’s tuning constant is set at c =

1.5.

Table 32 shows that the three methods provide similar estimates in the first ex-

periment. Note that the parameter values in this example range between 0.20 and

0.25. They are smaller than the values of the first two parameters in Section 5.1, but

larger than the other two parameter values. The corresponding results for the second

experiments are given in Figure 6 and Table 33.

Since there are only two potential outliers in a data set with 670 observations, the

impact of these outliers to the estimation results might be limited. Comparison of
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Figure 5: Plot of Cullis et al. Data (1989): neighbor mean for missing values.

Table 32: Parameter Estimates for Cullis et al. Data, Neighbor Mean for Missing
Values.

Estimate α̂1 α̂2 α̂3 α̂4

LSE 0.2446 0.2375 0.2195 0.2113
M-est. 0.2473 0.2273 0.2220 0.2283
RA-est. 0.2351 0.2334 0.2468 0.2308

Tables 32 and 33 by the percentage of change is shown in Table 34 (calculated as (Ta-

ble 32 estimate - Table 33 estimate)/ (Table 32 estimate) ×100% ). Note that there

is some difference of estimates even in the robust methods. However, the robust esti-

mates are less sensitive to the outliers compared to LSE. The robust RA-estimates

are less sensitive to the outliers than the robust M-estimates.
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Figure 6: Plot of Cullis et al. Data (1989): “−5” for missing values.

Table 33: Parameter Estimates for Cullis et al. Data, “−5” for Missing Values.

Estimate α̂1 α̂2 α̂3 α̂4

LSE 0.2057 0.2008 0.2310 0.2397
M-est. 0.2225 0.2104 0.2254 0.2293
RA-est. 0.2280 0.2208 0.2450 0.2316

Table 34: Parameter Estimates Percentage of Change Comparison in Tables 32 and
33.

Difference(%) α̂1 α̂2 α̂3 α̂4

LSE 15.9 15.5 -5.2 13.4
M-est. 10.0 7.4 -1.5 -0.4
RA-est. 3.0 5.4 0.7 -0.3
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Table 35: Parameter Estimates for Lee and Rawlings Data.

Estimate α̂1 α̂2 α̂3 α̂4

LSE 0.2353 0.1510 0.4519 0.2872
M-est. 0.2322 0.1079 0.4316 0.3188
RA-est. 0.1919 0.1181 0.4613 0.3594

1.6.3 Data from Lee and Rawlings (1982)

Lee and Rawlings (1982) data is from a 6×10 soybean-plant growth chamber, there

are two potential outliers in grid (3, 10) and (6, 3) (see Figure 2). Use c = 1.5, as

the tuning constant. Table 35 shows that the estimates obtained from the two robust

methods are much different to the LSE in this example. The third dependence

parameter has the largest estimate.
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1.7 Concluding Remarks and Future Work

We showed the general asymptotic properties of the robust estimators under different

robustifying functions for the first-order MRF model. We also relaxed the assumption

of the identical distribution of the error term.

The simulation experiments and real-life examples show that when there are no

outliers, the robust estimation methods perform comparably against the least squares

method in estimating dependence parameters in the first-order MRF model. When

there are additive outliers from the normal distribution, studies in three scenarios for

single and multiple outliers located in various patterns indicate that the two robust

methods lead to smaller bias and variance. In particular, the robust RA method gives

consistently slightly better performance than the robust M method. Naturally, when

the grid size is smaller, the improvement from using the robust methods over the LS

method is larger.

The distribution of residuals is not restricted to the normal distribution. Any

distributions such as t-distribution or other heavy tail distributions can be used. The

robust estimates have smaller bias and MSE than LSE. In the large grid size, the

robust estimates have almost 0 bias, and the robust estimates have very small MSE

compared to LSE.

The ML method is commonly used for parameter estimation in many statistical

applications. It is the best estimator when we know the true model distribution.

However, it is also well known that multivariate normal MLE is not resistant to

outliers, and in this respect it is even worse than LSE.

LSE, robust M− and RA-estimates do not require a symmetric distribution as-

sumption for estimation. Therefore, we tried to see the effect on estimations of a skew

distribution of outliers under Case 4. The robust RA−estimates had better perfor-

mance in both bias and MSE than LSE, the robust M−estimates, normal MLE,
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and t−MLE.

Multivariate t−MLE is flexible in situations with outliers because of its heavy-

tailed property. The performance of t(1)MLE is better than robust RA−estimators

hen the first-order MRF model with true error term comes from t-distribution.

Multivariate normal MLE and t −MLE require full neighborhood information.

However, LSE, robust M−, and RA-estimates did not require this. Edge data is

not fully exploited by multivariate normal MLE and t−MLE. t−MLE performed

better than the robust RA−estimator when the true error term of the first-order MRF

model came from a t-distribution. t−MLE had smaller bias and MSE than the robust

RA−estimator when the grid size was large; the effect of the loss of information due

to using partial data decreased when the grid size became large.

The robust RA−estimators had an advantage over t −MLE (1) when the grid

size was small and data came from a mixture of normal distributions, (2) when the

grid size was small and data came from a mixture of normal and skew distributions,

and (3) when the grid size was large and data came from a mixture of normal and

skew distributions. The robust RA−estimators performed comparably to t −MLE

when the grid size was large and data came from a mixture of normal distributions.

Future work for the robust estimations for the spatial MRF models:

(1.) If removing outlier(s) or understanding the causes of outliers is important, future

work will develop an outlier detection procedure to locate potential outlier(s)

(Neter et al. 1996 and Rousseeuw and Leroy 1987).

(2.) For simplicity, we naturally assume the overall mean of the first order MRF

model is zero. Intuitively, using the overall mean will make the model more

stable. Therefore, we could use an iteration algorithm to find the estimate of

the overall mean and neighbor parameters.
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(3.) For the edge data, we can develop an iteration algorithm to find estimates of

the neighborhood parameters. Then these could be used to predict the miss-

ing neighborhood data for edge values. Therefore, we have more information

about the edge data and complete neighborhood information for all grid points.

We could iterate the estimation procedure again to get better neighborhood

parameter estimates.

(4.) Extension to the second-order MRF model.
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CHAPTER II

EXTENDING THE SKILL PLOT FOR DISEASE

DIAGNOSIS

2.1 Introduction

Classification and prediction are both important in many areas: meteorology, eco-

nomics, computer science, etc. They have been part of discovery by statistical re-

search for a long time. Because of biotechnological innovation, there is even more

attention in the relative fields. Sing et al. (2005) pointed out that pattern classifi-

cation, scoring or ranking predictors are vital in a wide range of biological problems.

Examples include predicting phenotypic properties of HIV-1 from genotypic informa-

tion, microarray analysis for prediction of tissue condition based on gene expression,

predicting bio-availability or toxicity of drug compounds, and gauging treatment ef-

fect in clinical trials (Brumback et al. 2006). In many cases, robustness and efficiency

of the markers of a diagnostic test are critical and the cost of misclassification is a

primary factor for classification and prediction.

Diagnostic tests that use markers to determine whether a patient is diseased or

healthy are standard tools in medical screening. Early detection is considered essen-

tial to effective treatment. Finding new markers that are less invasive, less expensive,

and more accurate than existing measures are important in disease prevention (Dodd

and Pepe 2003). For the diagnosis of many modern diseases, the difference in marker

measurements used to screen healthy patients from diseased patients can be subtle,

and statistical researchers work to develop the most effective tool to discern this differ-

ence. Misclassification costs are often asymmetric; that is, the cost of misclassifying

a healthy patient into the diseased group (a false positive result) is often less than
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the cost of misclassifying a diseased patient into the healthy group. One tool that

has been especially useful in recent decades is the receiver operating characteristic

(ROC) curve.

2.1.1 ROC Curve

The receiver operating characteristic (ROC) curve (see Eq.(24) for details) was orig-

inally developed for signal detection theory and then was successfully adapted to

radiology (Green and Swets 1966, Swets and Pickett 1982, Hanley et al. 1982). In

modern medical research, the ROC curve is a widely used technique for quantifying

the discriminative ability of screening tests (Pepe 2000, and Chambless and Diao

2006). Those screening tests are applied in detecting a variety of diseases, including

cancers (Zou et al. 1997, McIntosh and Pepe 2002, Dodd and Pepe 2003, Briggs

and Ruppert 2005), dental disease (Pretty and Maupome 2004), hearing impairment

(Pepe and Longton 2005), cardiovascular disease (Cai et al. 2006), and appendicitis

(Briggs and Zaretzki 2008).

To describe the ROC, for any case that is subjected to a dichotomous test, there

are four possible outcomes. Classically, a 2×2 table illustrates these categories (Table

31). Let Y equal one if the patient actually has the disease, and Y is zero otherwise.

Let p = p1+ = P (Y = 1) represent the proportion of diseased patients in the total

population. Suppose each patient has diagnostic marker response X. If the patient

is a member of the healthy population then X has cumulative distribution function

(CDF) F , and if the patient is from the diseased group then X has CDF G. Without

loss of generality, we will assume the patient is diagnosed as diseased if X ≥ c for

some fixed threshold c. In many cases, it might be assumed that F (x) ≥ G(x) for all

values of x.

The sensitivity of a test refers to its ability to correctly identify cases of disease.

Note that it depends on the choice of c.
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Table 36: Sample of a 2×2 Table.

Disease Present (Y = 1) Disease absent (Y = 0)
Positive test (X ≥ c) True-positive False-positive
Negative test (X < c) False-negative True-negative

Sensitivity = true-positive rate= True−positive
True−positive+False−negative

,

and the specificity of a test refers to its ability to correctly identify cases of non-

disease. It also depends on the choice of c.

Specificity = 1 - false-positive rate = True−negative
False−positive+True−negative

.

The ROC curve is a plot of the true-positive rate (TPR = sensitivity) versus

the false-positive rate (FPR = 1 − specificity), for a classification rule based on a

continuously increasing sequence of threshold values. The graph of TPR (P (X ≥

c|Y = 1)) vs. FPR (P (X ≥ c|Y = 0)) defines the ROC curve:

R(t) = 1 −G
(

F−1(1 − t)
)

(14)

where 0 < t < 1. The curve shows the inherent trade-off between FPR and TPR. A

test can be judged according to how its corresponding ROC curve arches over the 45◦

line—the more concave, the better.

A typical diagnostic test classifies patients according to a single marker, and the

misclassification rates depend on the threshold value that distinguishes the two screen-

ing outcomes. However, it is not always certain how to determine the optimal cutoff

point (Jager 2001). Pepe (2003, Chapter 4) suggests that factors such as health care
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resources, invasive examination etc., can influence the choice of threshold. In general,

the choice of the cutoff point depends on:

(1.) The fixed cost k10 for classifying a diseased person as a healthy one.

(2.) The fixed cost k01 for classifying a healthy person as a diseased patient.

(3.) The overall misclassification probability, p(1 − TPR) + (1 − p)FPR. By mini-

mizing the overall misclassification probability, the slope of the ROC curve at

the optimal cutoff point is (1 − p)/p.

(4.) The expected cost of misclassification, k10p(1 − TPR) + k01(1 − p)FPR. By

minimizing the expected cost of misclassification, the slope of the ROC curve

at the optimal cutoff point is (k01(1 − p)) / (k10p).

Theoretical results for ROC curves are well-established. Pepe (2000) developed a

semiparametric estimator for ROC curves within the generalized linear model frame-

work for binary regression. Hsieh and Turnbull (1996) considered nonparametric

estimators based on empirical distribution functions and derived asymptotic proper-

ties. Lloyd and Yong (1999) showed smooth kernel-based estimators outperform this

strictly empirical estimator. Claeskens et al. (2003), Dodd and Pepe (2003) and Hall

et al. (2004) studied nonparametric methods, e.g. empirical likelihood method or

bootstrap, for constructing confidence intervals and confidence bands for estimators

of ROC curves.

Briggs and Zaretzki (2006) pointed out advantages of the ROC curve:

(1.) From Eq.(24), an invariance to monotonic transformations of X.

(2.) ROC curves do not depend on the scale of the original test, making it possible

to compare multiple curves on the same axis.
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(3.) The ability to consider the diagnostic strength of the variable without regard

to a cutoff point which must be estimated or chosen arbitrarily.

However, the ROC curve does have a disadvantage: The optimal threshold cutoff

point is not easily apparent directly from the plot (Jager 2001) or there might be

more than one optimal threshold cutoff point (see our motivating example).

The major statistical challenges for evaluating diagnostic tests in general and for

applying ROC methodology are (from Briggs and Zaretzki, 2008):

(1.) If a definitive gold standard assessment of disease status is not available, how can

inference for an ROC curve be accomplished? There must be some simple, basic

(or relatively not that good) markers from expertise experience that we could

use. On the other hand, there may be more than one gold standard marker;

Pepe and Longton (2005) try to utilize this information for better performance.

(2.) The test results may be much more complicated, involving several components.

Do ROC curves have a role to play in determining how to combine different

sources of information to optimize diagnostic accuracy? Many papers used

(logistic) regression for combining predictors of classification (Dodd and Pepe

2003, Pepe et al. 2006). When there were more than two diagnostic alternatives,

Mossman (1999) and Heckerling (2001) handled this situation by extension to

three-way ROCs (three-dimensional view of ROC surface).

(3.) Disease status is often not fixed, but rather can evolve over time. How can

the time aspect be incorporated sensibly into ROC analysis? Cai et al. (2006)

take the time lag into marker that is measured closer to the time of disease

occurrence. Then consider inference for sensitivity and specificity functions

that are defined as functions of time. Muijtjens et al. (2006) consider the ROC

and loss function analysis in sequential testing.
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(4.) Are there alternatives to the ROC curve for describing test accuracy?

2.1.2 ROC for Diagnostic Tests

There are numerous ways of summarizing the ROC curve into an objective test statis-

tic. The area under the ROC curve (AUC), defined as
∫ 1

0
R(t)dt was one of the first

commonly used measures of test quality. The concept of AUC came from the calculus

integral. A no-information diagnostic test can be considered to have 0.5 as its AUC.

It can be easily shown that if Z0 ∼ F and Z1 ∼ G are independent, then

∫ 1

0

R(t)dt = P (Z0 ≤ Z1). (15)

For continuous data, AUC is equivalent to the probability that a random observation

coming from the diseased population (Z1) is larger than that from the non-diseased

population (Z0).

The AUC is the most commonly used method of summarizing a diagnostic test’s

overall accuracy (Pretty and Maupome 2004). However, the AUC summarizes test

performance over regions of the ROC space that are of no practical interest. The

partial area under the curve (PAUC) restricts the AUC-integration to an area of

interest, based on FPRs that are considered clinically relevant:

A(t0, t1) =

∫ t1

t0

ROC(t)dt, (16)

where the interval (t0, t1) denotes the false-positive rates of interest. If a diagnostics

test has an A(t0, t1) which equals (t21−t20)/2, it has no information/no ability to classify

individuals correctly. Dodd and Pepe (2003) emphasized that although the partial

AUC estimator is a more clinically relevant summary measure of accuracy, the choice

of the appropriate restricted region may be controversial. In their simulation studies,

they use (t0, t1) = {(0, 0.1), (0, 0.2), (0.1, 0.2), (0.1, 0.3)} as illustrations. However,
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reasonable choices depend on information about the cost associated with true- and

false-positive diagnoses. For example, if a diagnostic test is not particularly efficient

at screening a disease that has affected most of the at-risk set, the naive guess that

every patient has the disease might actually be cost effective.

Dodd and Pepe (2003) describe the significance of the PAUC through the odds,

Λ(t0, t1) =
A(t0, t1)

(t1 − t0) − A(t0, t1)
. (17)

This is the odds of the probability of a correct classification to the probability of an

mistaken classification, given the test result is from the healthy population in the

region (t0, t1). Note if the test has an odds of (t0 + t1)/(2 − (t0 + t1)), then the test

conveys no information. If the test is perfect, the odds will increase to infinity.

The Skill score and Climate Skill test (Skill test) were recently studied by Mozer

and Briggs (2003), Briggs and Ruppert (2005), Briggs and Zaretzki (2008) as a method

to evaluate simple yes/no or probabilistic forecasts of binary events by their accuracy.

The Skill score and test are unique in that they can take into account both cost

of the forecast and the loss of making incorrect forecasts. The Skill plot is a novel

alternative to the ROC curve for describing test accuracy used in the above literature.

We investigate the skill statistic as an alternative to the AUC, and consider tests at

FPRs that produce skillful tests. The Skill score, test and plot are discussed in Section

2.2. Cutoff points in a ROC curve that pass the Skill test are said to have skill. It’s

very intuitive that only skillful cutoff points should be used. Therefore, with the idea

of Skill score, we propose examination of the choice of setting the interval (t0, t1) in

Eq.(16). We establish properties of the Skill statistics in Section 2.3. Section 2.4

studies the relationship between healthy group and diseased group. Section 2.5 is the

simulation studies of PAUC methods. Section 2.6 investigates a motivating example

for this research, featuring data for 5, 662 women being diagnosed for osteoporosis.

We apply the ideas of the Skill plot, PAUC, odds of PAUC, and the relationship
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between non-diseased and diseased groups. We compare two biomarkers to see their

abilities for disease diagnosis. Section 2.7 presents concluding remarks and topics for

future research.
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2.2 The Skill Score

Mozer and Briggs (2003) developed a skill score as a method to evaluate probabilistic

forecasts of binary events as “skilled” or “not skilled” by integrating the loss from

misclassification. They define a diagnostic test as skillful if it is more effective in

screening disease than the optimal naive guess. It makes sense to use only threshold

values that correspond to skillful tests, and the skill score is useful because it considers

both the cost of the forecast and the loss of making incorrect forecasts. The skill plot

(Briggs and Zaretzki, 2008) summarized the diagnostic skill over a range of threshold

values and offers a novel alternative to the ROC curve for describing disease diagnosis.

The skill score is based on a simple loss function. If we define

θ =
k01

k01 + k10
,

then θ is the (relative) loss when Y = 0 and X ≥ c, and 1− θ is the loss when Y = 1

and X < c. Without loss of generality, we will assume the misclassification cost of

k01 is less than k10, so that θ ≤ 1/2.

Recall p = p1+ = P (Y = 1) is the proportion of diseased patients in the total

population. Let p+1 = P (X ≥ c) = pḠ(c) + (1 − p)F̄ (c) = proportion of people

classified as diseased, where Ḡ(c) = P(correctly classify given a diseased person),

and F̄ (c) = P(classify as diseased person given a healthy person). Probabilities of

individual outcomes are summarized in Table 37.

Table 37: Contingency Table.

Y = 1 Y = 0
X ≥ c p11 p01 p+1

X < c p10 p00 p+0

p = p1+ 1 − p = p0+

Without information from X, the optimal naive classification rule is based solely
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on comparing p and θ. There are two possible actions: classify all subjects as healthy

people if p < θ or classify all subjects as diseased patients if p ≥ θ. The expected loss

for this rule is EN = p(1− θ)I(p < θ) + (1− p)θI(p ≥ θ). With the information from

X, the expert classification rule is based on a critical cutoff point c. Subjects with

X ≥ c are classified as diseased, and the others as healthy. A “skill score” can be

constructed based upon the relative difference in expected loss between the optimal

naive and the expert classification:

Kp,θ(c) =
EN −EE(c)

EN − EP
, (18)

where EE(c) is the expected loss from the expert guess based on a cutoff point c, and

EP is the expected loss from a perfect classification (we will assume EP = 0). If EE is

based on a diagnostic classification with threshold c, then EE(c) = p01θ + p10(1 − θ),

and the skill score simplifies to

Kp,θ(c) =
p11 − p+1θ

p(1 − θ)
I(p < θ) +

p+0θ − p10

(1 − p)θ
I(p ≥ θ). (19)

The skill plot simply plots Kp,θ(c) versus threshold value of c.

The skill score helps point to an optimal threshold value by finding the value of

c that maximizes K̂(c). In a similar vein, Baker (2000) considered a simple linear

utility function of FPR and TPR in order to create an optimal test.

2.2.1 Skillful Diagnostic Tests

Because the skill score provides an effective loss-based metric for diagnostic test per-

formance, it seems intuitive that the PAUC should be based only on skillful tests.

Instead of integrating the ROC over an arbitrarily chosen range of threshold values,

we use only the set of values c for which Kp,θ(c) ≥ 0. Remark that in general, the

definition of the Skill score is greater than zero. We can define a fix value, ω, to minor
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adjust the skillful. In the rest of this chapter, we use the original idea of the Skill

score is greater than zero. That is Kp,θ(c) ≥ ω, where ω ∈ (−Inf, 1).

Note that, if p < θ, a positive skill score occurs if TPR ≥ θp+1/p1+, or FPR

≤ (1 − θ)p+1/p0+. In terms of Y , Kp,θ(c) ≥ 0 if

P (Y = 1|X ≥ c) =
p11

p+1
≥ θ. (20)

For the case p < θ, the PAUC in (16) becomes

∫

Kp,θ(t)≥0

R(t)dt.

In the less common scenario when p ≥ θ, a positive skill score occurs if TPR

≥ 1 − θp+0/p1+, or equivalently, if P (Y = 1|X < c) = p10/p+0 < θ. Figure 7 shows

a skill score based on F (t) = Φ(t), G(t) = Φ((t − 1.5)/1.2), where Φ represents the

standard normal CDF. The relative loss associated with the costs of misclassification

determine the range of FPR values (t0, t1), which in turn determine the PAUC statis-

tic.
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Figure 7: Skill Scores Based on F (t) = Φ(t), G(t) = Φ((t − 1.5)/1.2), and θ = 0.5.
From left to right, K(c) corresponds to p = 0.5, 0.2, 0.05.

2.3 Diagnostic Statistics

Suppose we observe {(X1, Y1), · · · , (Xn, Yn)} as a training sample consisting of n

paired observations where Yi equals one if the ith person has the disease and equals

zero otherwise. The empirical distribution function (EDF) for G, denoted by Gn1
(t),

is based on n1 =
∑n

i=1 Yi < n, and the EDF for F , denoted by Fn0
(t), is based on a

sample of n0 =
∑n

i=1(1− Yi). Note that p̂+1 = n−1
∑n

i=1 I(Xi ≥ c). In this paper, we

will assume that the sample sizes are such that n1/n→ p > 0 as n→ ∞.

The plug-in estimator for the ROC, R̂(t) = 1 −Gn1
(F−1

n0
(1 − t)) simplifies to the

proportion of the sample designated as diseased that have marker scores larger than

n0p out of n0 sample observations that were classified as healthy (i.e., the pth percentile

of Fn0
). The nonparametric plug-in estimator R(t;Fn0

, Gn1
) creates a jagged ROC

curve (see Figure 15) due to the discrete jumps of Fn0
and Gn1

at the observations.

From Eq.(15), the AUC’s empirical analog is the Mann-Whitney U-statistic (Bamber

1975, Hanley and McNeil, 1982, Hsieh and Turnbull 1996). We construct the empirical

analog to the skill score, K, in a similar manner. In terms of F and G, we can write
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Eq.(19) as

Kp,θ(c) =

(

Ḡ(c) − (1 − p)θ

p(1 − θ)
F̄ (c)

)

I(p < θ) +

(

F (c) − p(1 − θ)

(1 − p)θ
G(c)

)

I(p ≥ θ). (21)

Because we are assuming the healthy population has lower marker scores, if F (c) ≥

G(c) and θ = p, then Kp,θ(c) = F (c) − G(c) ≥ 0. Let Hn be the EDF of the full

sample (ignoring group membership) so that

H̄n(c) = p̂+1 =
1

n

n
∑

i=1

I(Xi ≥ c) =
1

n

(

n1Ḡn1
(c) + n0F̄n0

(c)
)

.

Then the plug-in estimator to Eq.(21) is simply

K̂p̂,θ(c) =

(

Ḡn1
(c) − (1 − p̂)θ

p̂(1 − θ)
F̄n0

(c)

)

I(p̂ < θ) +

(

Fn0
(c) − p̂(1 − θ)

(1 − p̂)θ
Gn1

(c)

)

I(p̂ ≥ θ),

=
Ḡn1

(c)p̂− H̄n(c)θ

p̂(1 − θ)
I(p̂ < θ) +

Hn(c)θ −Gn1
(c)p̂

(1 − p̂)θ
I(p̂ ≥ θ), (22)

where p̂ = n1/n.

2.3.1 Properties of the Skill Statistic

Confidence intervals for the skill score can be constructed using normal approxi-

mations, and examples in the next section show these intervals to be effective with

sufficiently large samples. In the following theorems, we describe the asymptotic prop-

erties of K̂p̂,θ(c) along with estimators for P (Y = 1|X ≥ c) and P (Y = 0|X < c).

Theorem 3 Assume F and G are continuous distributions and twice differentiable,

have finite mean and variance, and for some ǫ > 0, ǫ ≤ θ < 1/2. Then
√
n(K̂p̂,θ(c) −

E[K̂p,θ(c)]) → N(0, σ2), where

E[K̂p̂,θ(c)] ≈
Ḡ(c)p− H̄(c)θ

p(1 − θ)
I(p < θ) +

H(c)θ −G(c)p

(1 − p)θ
I(p ≥ θ),
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and

σ2 ≈ 1

p(1 − θ)2

(

(1 − 2θ)Ḡ(c)G(c) +
θ2

p
H̄(c)H(c) +

1 − p

p2
H̄2(c)θ2

)

I(p < θ)

+
1

(1 − p)2

(

p− 2pθ

θ2
Ḡ(c)G(c) + H̄(c)H(c) +

p

(1 − p)θ2
(H(c)θ −G(c))2

)

I(p ≥ θ).

Proof of Theorem 3: By Central Limit Theorem,

√
n[Fn(x) − F (x)] → N [0, F (x)(1 − F (x))],

Therefore, E(H̄n(c)) = H̄(c), V ar(H̄n(c)) = 1
n
H̄(c)(1 − H̄(c)).

Same applied on E(Ḡm(c)) = Ḡ(c), V ar(Ḡm(c)) = 1
m
Ḡ(c)(1 − Ḡ(c)).

Cov(Ḡm(c), H̄n(c)) = Cov{Ḡm(c), [
1

n
[mḠm(c) + (n−m)F̄n−m(c)]]}(independent)

=
m

n
V ar(Ḡm(c)) =

1

n
Ḡ(c)(1 − Ḡ(c)).

Let p̂ = m/n ∼binomial(p), E(p̂) = p, V ar(p̂) = p(1−p)
n

,

Cov(p̂, H̄n(c)) = 0, and Cov(p̂, Ḡm(c)) = 0.

Let W ∗T
n = [H̄n, Ḡm, p̂(1 − θ)], therefore,

√
n(W ∗T

n − E[W ∗T
n ]) → N [0,Σ],

where E[W ∗T
n ] = [H̄(c), Ḡ(c), p(1 − θ)], and,

Σ =













σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33













,

σ11 = H̄(c)(1 − H̄(c)), σ22 = ιḠ(c)(1 − Ḡ(c)), where ι is a constant.
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σ12 = Ḡ(c)(1 − Ḡ(c)), σ33 = p(1 − p)(1 − θ)2, σ13 = 0, and σ23 = 0.

Use a Taylor expansion: E[f(X, Y, Z)] ≈ f(X0, Y0, Z0)

V ar[f(X, Y, Z)] ≈
(

∂f
∂X

∂f
∂Y

∂f
∂Z

)

Σ













∂f
∂X

∂f
∂Y

∂f
∂Z













,

given X = X0, Y = Y0, Z = Z0.

Thus,
√
n(K̂θ(c) − E[K̂θ(c)]) → N(0, σ2),

where,

E[K̂θ(c)] ≈
H̄(c)

(

Ḡ(c) − θ
)

p(1 − θ)
,

and

σ2 ≈ 1

p2(1 − θ)2
{1 − p

p
H̄2(c)[Ḡ(c) − θ]2 + H̄(c)(1 − H̄(c))(Ḡ(c) − θ)2

+2H̄(c)Ḡ(c)(1 − Ḡ(c))(Ḡ(c) − θ) + ιH̄(c)2Ḡ(c)(1 − Ḡ(c))}.#

Note that appropriate sample sizes for determining the significance of a marker

could be defined in Theorem 3, given θ, the diseased rate, the optimal cutoff point

of the marker, the proportion of people classified as diseased corresponding to the

optimal cutoff point of the marker, and the proportion of diseased persons correctly

classified corresponding to the optimal cutoff point of the marker.

The conditional probability from Eq.(20) provides an alternative way to char-

acterize a skillful diagnostic test. The probability of observing a diseased patient

conditional on positive diagnosis results η
1
(c) = P (Y = 1|X ≥ c) is expressed in

terms of F and G as

η
1
(c) =

Ḡ(c)p

Ḡ(c)p+ F̄ (c)(1 − p)
. (23)
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Theorem 4 Under the regularity conditions of Theorem 3, for the plug-in estimator

of η
1
(c) in Eq.(23)

η̂
1
(c) =

Ḡn1
(c)p̂

Ḡn1
(c)p̂+ F̄n0

(c)(1 − p̂)
, (24)

we have
√
n (η̂

1
(c) − E(η̂

1
(c))) → N(0, σ2

η
1

(c)), where E(η̂
1
(c)) ≈ η

1
(c) and

σ2
η̂
1
(c) ≈

Ḡ(c)F̄ (c)p(1 − p)

(Ḡ(c)p+ F̄ (c)(1 − p))4

(

G(c)F̄ (c)(1 − p) + Ḡ(c)F (c)p+ Ḡ(c)F̄ (c)
)

.

When p < θ, recall that K̂ ≥ 0 occurs if η̂
1
(c) ≥ θ. Similarly, when p ≥ θ, the

probability of observing a healthy subject conditional on negative diagnosis results is

expressed in terms of F and G as

η
0
(c) = P (Y = 0|X < c) =

F (c)(1 − p)

G(c)p+ F (c)(1 − p)
. (25)

Theorem 5 Under the regularity conditions of Theorem 3, for the plug-in estimator

of η
0
(c) in Eq.(25)

η̂
0
(c) =

Fn0
(c)(1 − p̂)

Gn1
(c)p̂+ Fn0

(c)(1 − p̂)
, (26)

we have
√
n(η̂

0
(c) −E(η̂

0
(c))) → N(0, σ2

η
0

(c)), where E(η̂
0
(c)) ≈ η

0
(c) and

σ2
η̂
0
(c) ≈

G(c)F (c)p(1 − p)

(G(c)p+ F (c)(1 − p))4

(

Ḡ(c)F (c)(1 − p) +G(c)F̄ (c)p+G(c)F (c)
)

.

In this case, we assess the skill of a diagnostic test based on whether η̂
0
(c) > 1 − θ.

The Skill score from Eq.(18) has a more general form called the Total Expected

Misclassification Cost (TEMC). For example, TE , the TEMC from the expert forecast,

is np01k01 + np10k10. Under p < θ, the naive guess is that all subjects are healthy,

and TEMC based on the naive guess, TN = npk10. The skill score is alternatively

expressed as
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K̂T,p̂,θ(c) =
np11k10 − np01k01

npk10
=
p11k10 − p01k01

pk10
(27)

= Ḡn1
(c) − (1 − p̂)k01

pk10
F̄n0

(c).

Note that Eq.(27) is the skill score defined by Expected Misclassification Cost Per

Person (EMCPP), which does not depend on the total sample size. These skill score

outcomes are summarized in Table 38. The estimates of σ2
T0

and σ2
T1

in Table 38 are

σ̂2
T0

≈ 1

np

(

Ḡ(c)G(c) +
1 − p

p

k2
01

k2
10

F̄ (c)F (c) +
1 − p

p2

k2
01

k2
10

F̄ 2(c)

)

,

and

σ̂2
T1

≈ 1

n(1 − p)

(

1 − p

p

k2
01

k2
10

Ḡ(c)G(c) + F̄ (c)F (c) + p(1 − 2p)2k
2
01

k2
10

Ḡ2(c)

)

.

Table 38: The Skill Score Defined by TEMC and EMCPP.

Expert Forecast
Expected loss p10(1 − θ) + p01θ
TEMC np01k01 + np10k10

EMCPP p01k01 + p10k10

Situation p < θ p ≥ θ

Naive guess all healthy all diseased
Expected loss p(1 − θ) (1 − p)θ
TEMC npk10 n(1 − p)k01

EMCPP pk10 (1 − p)k01

Skill score by TEMC p11k10−p01k01
pk10

p00k01−p10k10
(1−p)k01

Estimator Ḡm(c) − F̄n0
(c)1−p

p
k01
k10

Fn0
(c) −Gn1

(c) p
1−p

k10
k01

Variance σ̂2
T0

σ̂2
T1

Skillful p11
p01

≥ k01
k10

p00
p10

≥ k10
k01
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2.3.2 Estimating PAUC

We know from Eq.(16) that PAUC is estimated based on a subjectively chosen set

of FPR. Dodd and Pepe (2003) admit that controversy is unavoidable with such a

subjective choice; FPRs could be unscrupulously chosen in such a way as to maximize

the significance of the PAUC statistic, for example. Choices for acceptable FPRs are

implicitly a function of the relative loss associated with the type I and type II errors.

With this in mind, the skill score K(c) offers a more objective and coherent way of

selecting the subset of FPR according to these fixed loss functions. To eliminate the

inherent subjectivity in the PAUC, we consider the set of FPR such that K(c) ≥ 0,

which corresponds to FPR ≤ (1−θ)p+1/p0+. The corresponding empirical estimator

of PAUC,

ÂK =

∫

K̂p,θ(t)≥0

R(t)dt, (28)

is based on the estimated skill score in Eq.(16).

To show how the estimator is constructed, we introduce a practical application in

the following section. The results show that the skill score can vary greatly depending

on the loss function, so costs for misclassification should not be chosen arbitrarily by

the practitioner.

With this infusion of extra empirical information on the skill score comes added

uncertainty. In turn, this new estimator would be an inferior choice to the regular

PAUC estimator based on expert opinion, as long as the expert opinion is accurate.

While this is not the norm, Pepe (2003) includes actual case studies in which past

data can aid in deciding valid FPR values.
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2.4 Relationship between Diseased and Healthy Groups

In our motivating example, the graphs in Figure 14 indicate, there is a noticeable dif-

ference between markers for the patients who experienced hip fractures (G) and those

who do not (F ). What is more interesting is that the distributions do have a related

shape that can be characterized with related relationships through the distributions

F and G. For example, F and G might differ only by a location shift, a scale change,

or some other simple transformation. Here we try to study the relationship between

diseased and healthy groups and the estimators for the disease diagnosis under this

relationship.

2.4.1 KG Model

One particular model, introduced by Koziol and Green (1976) has garnered particular

interest from researchers in life testing. The Koziol-Green (KG) model stipulates that

G(t) = F (t)β for some β > 0.

This model naturally induces an ordering between F and G, depending on the

value of β; one can show that β > 1 if and only if G is smaller than F in likelihood

ratio ordering. That is, if Z0 ∼ F and Z1 ∼ G, Z0 is less than Z1 in likelihood ratio

if and only if G(F−1) is convex. The order between F and G is simply reversed in

the case β ≤ 1. The refined KG model offers great potential efficiency in survival

and censoring data but the model has been shown to be inconveniently restrictive.

Csörgő (1981) showed that this assumption is insupportable in typical sets of lifetime

data where the relationship between F and G cannot be characterized this simply.

However, it will have particular relevance in the motivating data set considered in

Section 2.6.2.1.

Originally, the KG model was used to describe the relationship between the life-

time and censoring distribution of the survival function. If it holds that G(t) = F (t)β,
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then ROC(t) = 1 − (1 − t)β, and AUC = 1 − 1/(1 + β). In this case, the skill score

simplifies to

Kp,θ(c) =
(

1 − F β(c) − (1−p)θ
p(1−θ)

F̄ (c)
)

I(p < θ)+

(

F (c) − p(1 − θ)

(1 − p)θ
F (c)β)

)

I(p ≥ θ).

And

PAUC(t0, t1) = t1 − t0 −
1

1 + β

(

(1 − t0)
1+β − (1 − t1)

1+β
)

.

The odds of PAUC(t0, t1),

Λ(t0, t1) =
(t1 − t0)(1 + β) − (1 − t0)

1+β + (1 − t1)
1+β

(1 − t0)1+β − (1 − t1)1+β
.

2.4.2 Mean-Shift Model

The case where F and G differ by a location shift does not fit into the KG model

framework, but it has been considered as a special case of interest. If G(c) = F (c−δ),

with δ > 0, we have ROC(t) = 1− F (F−1(1− t)− δ) and AUC =
∫ 1

0
1−F (F−1(1−

t) − δ)dt. The skill score is

Kp,θ(c) =

[

F̄ (c− δ) − (1 − p)θ

p(1 − θ)
F̄ (c)

]

I(p < θ) +

[

F (c) − p(1 − θ)

(1 − p)θ
F (c− δ)

]

I(p ≥ θ).(29)

And

PAUC(t0, t1) =

∫ t1

t0

1 − F (F−1(1 − t) − δ)dt.

The PAUC odds,

Λ(t0, t1) =

∫ t1
t0

1 − F (F−1(1 − t) − δ)dt

t1 − t0 −
∫ t1
t0

1 − F (F−1(1 − t) − δ)dt
.

2.4.3 Equality Relationship

In the case of equality G(c) = F (c), we have ROC(t) = t, AUC = 1/2 and the skill

score further simplifies to

Kp,θ(c) =

[(

1 − (1 − p)θ

p(1 − θ)

)

F̄ (c)

]

I(p < θ) +

[(

1 − p(1 − θ)

(1 − p)θ

)

F (c))

]

I(p ≥ θ).
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We know p ≤ θ implies (1 − p)θ ≥ p(1 − θ), and vice versa. In this case, it is easy

to show that Kp,θ(c) ≤ 0 for all values of (p, θ), so the test can be nowhere skillful.

Because of this, the skillful range is 0. Thus, the PAUC and its odds are 0.
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2.5 Simulation Studies of PAUC

In Section 2.3, we examined properties of the skill score, which depend strongly on

the underlying provided loss function as well as the true underlying FPR. In this sec-

tion, we provide a simulation study that will more practically illustrate the viability

of using the Skill score in disease diagnosis.

2.5.1 Study Setup

For comparative purposes, we use the same simulation settings as Dodd and Pepe

(2003). A marker score of a patient in the diseased group is generated from a normal

distribution with mean 1.5 and variance 1.44. A marker score of a subject from the

non-diseased group is distributed as the standard normal distribution. We set up

simulations with different sample sizes for four disease rates (p): 0.091, 0.167, 0.333,

and 0.5. In order to study the effect of sample size, we set up a doubled sample

size and a tenfold sample size in each of the four disease rates. When p = 0.091,

n1 = 10 and n0 = 100; the doubled sample size has n1 = 20 and n0 = 200; and

the tenfold sample size has n1 = 100 and n0 = 1000. For p = 0.167, n1 = 10 and

n0 = 50; the doubled sample size has n1 = 20 and n0 = 100; and the tenfold sample

size has n1 = 100 and n0 = 500. For p = 0.333, n1 = 50 and n0 = 100; the doubled

sample size has n1 = 100 and n0 = 200; and the tenfold sample size has n1 = 500 and

n0 = 1000. For p = 0.5, n1 = 50 and n0 = 50; the doubled sample size has n1 = 100

and n0 = 100; and the tenfold sample size has n1 = 500 and n0 = 500.

We take the theoretical quantiles under a uniform partition of the sample size for

diseased group from the N(1.5, 1.44) and non-disease group from the standard normal

distribution. By transforming back to theoretical values of markers, we calculate the

the Skill score by different loss function values (θ) ranging from 0.01 to 0.6. The

skillful region of FPR is defined under the Skill score. 1000 simulation results for
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mean-result of skillful region of FPR. Note that mean of t0 and t1 in simulations did

not include the nonskilled part. Based on a skillful region, (t0 and t1), we calculate

the theoretical PAUC (T. PAUC) and the plug-in PAUC estimate under various θ.

The results of the comparison is in Section 2.5.2.

2.5.2 Evaluation of Results of the Skillful Regions and PAUCs

Under p = 0.091, Tables 39–41 compare the theoretical skillful region of FPR and the

mean skillful region of FPR from 1000 simulations. In Table 39, when θ is higher (0.6)

the nonskilled frequency increased to about 30%. The reason is the skillful region of

FPR is low (0, 0.01) for θ = 0.6. Therefore, in some cases, although the theoretical

skillful region is not zero, the results from simulation might not be skillful at all.

When we double the sample size (Table 40), the nonskilled frequency decreased to

about 11%. With a tenfold increase in the sample size (Table 41), the nonskilled

frequency decreased to about zero. The nonskilled rate decreased when we increased

the sample size in our studies.

The theoretical skillful region of FPR and simulations mean skillful region of FPR

are about the same. This result is true for all case studies. Later in the simulation

studies, we use the simulation skillful region as the comparison of theoretical PAUC

and plug-in PAUC estimates. The mean squared errors (MSEs) are provided. In

Table 41, the MSEs of PAUC estimates are very small. In the left top of Figure 8,

the MSEs decreased to almost zero when we increased the sample sizes. The largest

MSE happened for p = θ.

Increasing the disease rate to 0.167, Tables 42–44 compare the theoretical skillful

region of FPR and the mean skillful region of FPR from 1000 simulations. When θ

is higher (0.5 or 0.6) the nonskilled frequency increased to more than 10%. However,

the nonskilled rate decreased when we increased the sample size in our studies. In
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Table 39: Comparison of the Theoretical Skillful Region and 1000 Simulation Stud-
ies, n1=10, n0=100, and p=0.091.

Theo. 1000 simulations
θ t0 t1 t0 t1 Nonskilled T. PAUC Esti. PAUC (MSE)
0.01 0.68 0.99 0.605 0.990 2.3% 0.3571 0.3758 (0.00087)
0.05 0.09 0.99 0.117 0.985 0.1% 0.7513 0.7674 (0.00330)
0.091 0 0.99 0.002 0.987 0.0% 0.8183 0.8162 (0.00547)
0.1 0 0.89 0.002 0.874 0.0% 0.7061 0.7057 (0.00502)
0.2 0 0.31 0.002 0.306 0.3% 0.1880 0.1971 (0.00139)
0.3 0 0.16 0.002 0.144 1.3% 0.0698 0.0786 (0.00050)
0.5 0 0.04 0.001 0.039 7.0% 0.0114 0.0154 (0.00007)
0.6 0 0.01 0.002 0.022 27.6% 0.0391 0.0067 (0.00003)

Table 40: Comparison of the Theoretical Skillful Region and 1000 Simulation Stud-
ies, n1=20, n0=200, and p=0.091.

Theo. 1000 simulations
θ t0 t1 t0 t1 Nonskilled T. PAUC Esti. PAUC (MSE)
0.01 0.805 0.995 0.659 0.992 1.0% 0.3149 0.3259 (0.00033)
0.05 0.075 0.995 0.096 0.993 0.0% 0.7785 0.7848 (0.00172)
0.091 0 0.995 0 0.994 0.0% 0.8256 0.8230 (0.00263)
0.1 0 0.895 0 0.883 0.0% 0.7152 0.7133 (0.00251)
0.2 0 0.315 0.001 0.314 0.0% 0.1940 0.1974 (0.00074)
0.3 0 0.150 0.001 0.147 0.2% 0.0716 0.0757 (0.00022)
0.5 0 0.040 0 0.039 1.8% 0.0118 0.0141 (0.00003)
0.6 0 0.015 0.001 0.021 11.1% 0.0045 0.0062 (0.00001)

Table 43, the nonskilled rate decreased to under 5%. In Table 44, the MSEs of PAUC

estimates are very small. In the right top of Figure 8, the MSEs decreased to almost

zero when we increased the sample sizes. The largest MSE happened for p = θ.

When the disease rate was increased to 0.333, Tables 45–47 show that lower θ

(0.01) had nonskilled frequency of about 8%. However, the nonskilled rate decreased

only 1% for larger sample sizes (Tables 46 and 47). The MSEs of PAUC estimates are

very small. In fact, the MSEs of PAUC estimates decreased to almost zero when we

increased the sample sizes, and the largest MSE of PAUC estimates happened when
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Table 41: Comparison of the Theoretical Skillful Region and 1000 Simulation Stud-
ies, n1=100, n0=1000, and p=0.091.

Theo. 1000 simulations
θ t0 t1 t0 t1 Nonskilled T. PAUC Esti. PAUC (MSE)
0.01 0.865 0.999 0.768 0.998 1.5% 0.2215 0.2241 (0.00002)
0.05 0.073 0.999 0.075 0.998 0.0% 0.8002 0.8023 (0.00042)
0.091 0 0.998 0 0.998 0.0% 0.8292 0.8300 (0.00052)
0.1 0.058 0.890 0 0.888 0.0% 0.7205 0.7213 (0.00051)
0.2 0 0.323 0 0.322 0.0% 0.2002 0.2013 (0.00017)
0.3 0 0.151 0 0.152 0.0% 0.0745 0.0754 (0.00005)
0.5 0 0.041 0 0.042 0.0% 0.0129 0.0134 (0.00000)
0.6 0 0.021 0 0.022 0.0% 0.0053 0.0057 (0.00000)

Table 42: Comparison of the Theoretical Skillful Region and 1000 Simulation Stud-
ies, n1=10, n0=50, and p=0.167.

Theo. 1000 simulations
θ t0 t1 t0 t1 Nonskilled T. PAUC Esti. PAUC (MSE)
0.01 0.68 0.98 0.598 0.980 4.0% 0.3473 0.3664 (0.00094)
0.05 0.40 0.98 0.342 0.971 1.6% 0.5593 0.5871 (0.00210)
0.1 0 0.98 0.098 0.971 0.1% 0.7488 0.7335 (0.00363)
0.167 0 0.98 0.003 0.975 0.0% 0.8060 0.8034 (0.00582)
0.2 0 0.78 0.003 0.745 0.0% 0.5804 0.5822 (0.00457)
0.3 0 0.36 0.003 0.372 0.2% 0.2415 0.2511 (0.00193)
0.5 0 0.10 0.006 0.100 11.9% 0.0372 0.0471 (0.00033)
0.6 0 0.06 0.004 0.056 15.4% 0.0165 0.0233 (0.00015)

the disease rate was equal to the loss function.

When disease rate was increased to 0.5, Tables 48–50 show that lower θ ranging

from 0.01 to 0.1 had very high nonskilled frequency (more than 10%). However, the

nonskilled rate did not decrease for larger sample sizes (Table 49 and Table 50). The

MSEs of PAUC estimates were very small. The MSEs decreased to almost zero when

we increased the sample sizes, and the largest MSE happened when the disease rate

was equal to the loss function.
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Table 43: Comparison of the Theoretical Skillful Region and 1000 Simulation Stud-
ies, n1=20, n0=100, and p=0.167.

Theo. 1000 simulations
θ t0 t1 t0 t1 Nonskilled T. PAUC Esti. PAUC (MSE)
0.01 0.80 0.99 0.728 0.990 3.5% 0.2452 0.2528 (0.00018)
0.05 0.35 0.99 0.358 0.985 1.3% 0.5669 0.5824 (0.00088)
0.1 0.06 0.99 0.079 0.986 0.0% 0.7814 0.7874 (0.00193)
0.167 0 0.996 0.001 0.988 0.0% 0.8194 0.8177 (0.00280)
0.2 0 0.75 0.001 0.762 0.0% 0.5804 0.5966 (0.00242)
0.3 0 0.39 0.001 0.384 0.0% 0.2517 0.2562 (0.00105)
0.5 0 0.11 0.002 0.110 1.7% 0.0477 0.0529 (0.00015)
0.6 0 0.05 0.002 0.059 3.3% 0.0205 0.0244 (0.00006)

Table 44: Comparison of the Theoretical Skillful Region and 1000 Simulation Stud-
ies, n1=100, n0=500, and p=0.167.

Theo. 1000 simulations
θ t0 t1 t0 t1 Nonskilled T. PAUC Esti. PAUC (MSE)
0.01 0.944 0.998 0.876 0.998 3.3% 0.1164 0.1177 (0.00001)
0.05 0.370 0.998 0.368 0.995 0.1% 0.5848 0.5897 (0.00014)
0.1 0.058 0.998 0.063 0.997 0.0% 0.8055 0.8073 (0.00046)
0.167 0 0.996 0 0.995 0.0% 0.8270 0.8275 (0.00055)
0.2 0 0.774 0 0.774 0.0% 0.6087 0.6094 (0.00050)
0.3 0 0.396 0 0.394 0.0% 0.2600 0.2611 (0.00024)
0.5 0 0.120 0 0.119 0.0% 0.0536 0.0547 (0.00003)
0.6 0 0.066 0 0.065 0.0% 0.0236 0.0244 (0.00001)

To summarize the four disease rates’ simulation studies, Figure 8 shows the MSEs

of PAUC estimates decreased to zero in all disease rates when we increased (twofold

and tenfold) the sample sizes.

2.5.2.1 Reasonable Regions of FPR

The choice of the region of FPR is controversial (Dodd and Pepe 2003). A reasonable

region of FPR should be based on a clinically relevant summary measure of accuracy.
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Figure 8: The MSE of PAUC by using the Skill Region. The dotted lines correspond
to: n1 = 10, n0 = 100 (top left); n1 = 10, n0 = 50 (top right); n1 = 50, n0 = 100
(bottom left); n1 = 50, n0 = 50 (bottom right). In each case, the dashed line
corresponds to a doubled sample size, and the wide solid line to a tenfold increase.
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Table 45: Comparison of the Theoretical Skillful Region and 1000 Simulation Stud-
ies, n1=50, n0=100, and p=0.333.

Theo. 1000 simulations
θ t0 t1 t0 t1 Nonskilled T. PAUC Esti. PAUC (MSE)
0.01 0.90 0.99 0.840 0.990 8.2% 0.1352 0.1373 (0.00001)
0.05 0.78 0.99 0.704 0.984 5.6% 0.2561 0.2613 (0.00009)
0.1 0.44 0.99 0.452 0.979 1.0% 0.4891 0.4980 (0.00027)
0.2 0.09 0.99 0.093 0.986 0.0% 0.7752 0.7805 (0.00086)
0.3 0 0.99 0.004 0.988 0.0% 0.8187 0.8204 (0.00119)
0.333 0 0.99 0 0.988 0.0% 0.8197 0.8208 (0.00193)
0.5 0 0.32 0 0.419 0.0% 0.2807 0.2839 (0.00058)
0.6 0 0.25 0 0.243 0.0% 0.1386 0.1422 (0.00028)

Table 46: Comparison of the Theoretical Skillful Region and 1000 Simulation Stud-
ies, n1=100, n0=200, and p=0.333.

Theo. 1000 simulations
θ t0 t1 t0 t1 Nonskilled T. PAUC Esti. PAUC (MSE)
0.01 0.945 0.995 0.904 0.995 7.5% 0.0830 0.0837 (0.00000)
0.05 0.865 0.995 0.752 0.991 4.4% 0.2222 0.2252 (0.00003)
0.1 0.450 0.995 0.458 0.989 0.5% 0.4988 0.5042 (0.00012)
0.2 0.085 0.995 0.091 0.993 0.0% 0.7855 0.7884 (0.00048)
0.3 0.005 0.995 0.004 0.994 0.0% 0.8250 0.8258 (0.00065)
0.333 0 0.995 0 0.994 0.0% 0.8256 0.8262 (0.00065)
0.5 0 0.425 0 0.427 0.0% 0.2875 0.2887 (0.00034)
0.6 0 0.245 0 0.247 0.0% 0.1415 0.1429 (0.00016)

It might also depend on information about the cost associated with true- and false-

positive diagnoses. In the Dodd and Pepe (2003) simulation studies, fixed regions

were used: (t0, t1) = {(0, 0.1), (0, 0.2), (0.1, 0.2), (0.1, 0.3)} as illustrations. Figure 9

shows the region of FPR in the setting of Dodd and Pepe (2003).

Figures 10–13 (large sample sizes) show the different skillful regions of FPR from

simulation studies, based on the consideration of disease rates and loss function val-

ues. Note that when the disease rate is equal to the loss function, the skillful region of

FPR is the whole region of FPR from 0 to 1 (simulation setting in Section 2.5.1, i.e.
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Figure 9: ROC Curve (the dotted line) and Fixed Regions (the wide solid line) of
FPR for (0,0.1),(0,0.2),(0.1,0.2), and (0.1,0.3) from Dodd and Pepe (2003).
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Table 47: Comparison of the Theoretical Skillful Region and 1000 Simulation Stud-
ies, n1=500, n1=1000, and p=0.333.

Theo. 1000 simulations
θ t0 t1 t0 t1 Nonskilled T. PAUC Esti. PAUC (MSE)
0.01 0.986 0.999 0.974 0.999 7.3% 0.0228 0.0229 (0.00000)
0.05 0.865 0.999 0.833 0.996 1.7% 0.1584 0.1590 (0.00000)
0.1 0.467 0.999 0.467 0.998 0.1% 0.5061 0.5073 (0.00002)
0.2 0.085 0.999 0.086 0.999 0.0% 0.7954 0.7962 (0.00009)
0.3 0.003 0.999 0.003 0.999 0.0% 0.8300 0.8305 (0.00012)
0.333 0 0.999 0 0.999 0.0% 0.8304 0.8308 (0.00012)
0.5 0 0.432 0 0.432 0.0% 0.2923 0.2927 (0.00007)
0.6 0 0.251 0 0.251 0.0% 0.1445 0.1449 (0.00003)

Table 48: Comparison of the Theoretical Skillful Region and 1000 Simulation Stud-
ies, n1=50, n0=50, and p=0.5.

Theo. 1000 simulations
θ t0 t1 t0 t1 Nonskilled T. PAUC Esti. PAUC (MSE)
0.01 0.90 0.98 0.829 0.980 15.4% 0.1256 0.1278 (0.00002)
0.05 0.90 0.98 0.803 0.978 14.9% 0.1452 0.1483 (0.00004)
0.1 0.78 0.98 0.682 0.968 10.5% 0.2466 0.2525 (0.00011)
0.2 0.40 0.98 0.395 0.963 2.4% 0.5124 0.5229 (0.00039)
0.3 0.14 0.98 0.155 0.970 0.0% 0.7190 0.7269 (0.00082)
0.5 0 0.98 0 0.976 0.0% 0.8078 0.8086 (0.00144)
0.6 0 0.62 0 0.606 0.0% 0.4490 0.4516 (0.00105)

F (x) ≥ G(x) for all values of x). Thus, the PAUC estimator has the skillful region of

FPR (0,1) which is AUC. Therefore, we conclude that the Skill score is very helpful

in determining the skillful region of FPR for the PAUC.

2.5.3 Summary for Simulation Studies

The simulation experiments show the mean skillful region of FPR is about the same

as the theoretical skillful region. When the sample size increased, the mean skillful

region of FPR converged to the theoretical skillful region of FPR. The MSEs of
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Figure 10: ROC Curve (the dotted line) and the Skillful Regions (the wide solid
line) for θ=0.091, 0.01, 0.25, 0.35. n1=100, n0=1000, and p=0.091.
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Figure 11: ROC Curve (the dotted line) and the Skillful Regions (the wide solid
line) for θ=0.167, 0.01, 0.2, 0.5. n1=100, n0=500, and p=0.167.
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Figure 12: ROC Curve (the dotted line) and the Skillful Regions (the wide solid
line) for θ=0.333, 0.1, 0.45, 0.5. n1=500, n0=1000, and p=0.333.
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Figure 13: ROC Curve (the dotted line) and the Skill Region (the wide solid line)
for θ=0.5, 0.1, 0.3, 0.6. n1=500, n0=500, and p=0.5.
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Table 49: Comparison of the Theoretical Skillful Region and 1000 Simulation Stud-
ies, n1=100, n0=100, and p=0.5.

Theo. 1000 simulations
θ t0 t1 t0 t1 Nonskilled T. PAUC Esti. PAUC (MSE)
0.01 0.94 0.99 0.897 0.990 15.6% 0.0776 0.0783 (0.00000)
0.05 0.94 0.99 0.858 0.988 14.6% 0.1087 0.1101 (0.00001)
0.1 0.80 0.99 0.732 0.979 7.6% 0.2220 0.2254 (0.00004)
0.2 0.41 0.99 0.399 0.979 0.5% 0.5381 0.5445 (0.00019)
0.3 0.14 0.99 0.147 0.985 0.0% 0.7419 0.7464 (0.00047)
0.5 0 0.99 0 0.988 0.0% 0.8196 0.8198 (0.00083)
0.6 0 0.61 0 0.616 0.0% 0.4585 0.4596 (0.00064)

Table 50: Comparison of the Theoretical Skillful Region and 1000 Simulation Stud-
ies, n1=500, n0=500, and p=0.5.

Theo. 1000 simulations
θ t0 t1 t0 t1 Nonskilled T. PAUC Esti. PAUC (MSE)
0.01 0.944 0.998 0.975 0.998 13.2% 0.0203 0.0204 (0.00000)
0.05 0.370 0.998 0.941 0.996 10.4% 0.0491 0.0493 (0.00000)
0.1 0.058 0.998 0.814 0.993 2.4% 0.1724 0.1730 (0.00000)
0.2 0 0.774 0.397 0.996 0.0% 0.5642 0.5656 (0.00003)
0.3 0 0.396 0.137 0.997 0.0% 0.7632 0.7642 (0.00009)
0.5 0 0.120 0 0.998 0.0% 0.8292 0.8295 (0.00015)
0.6 0 0.066 0 0.622 0.0% 0.4634 0.4638 (0.00012)

PAUC estimates were very small. In fact, the MSEs decreased to almost zero when

we increased the sample sizes. The largest MSE happened when the disease rate was

equal to the loss function.

The purpose for the optimal cutoff points is to maximize the TPR and minimize

the FPR. However, we cannot achieve those two goals when the diseased group distri-

bution and the healthy group distribution partially overlap. There will be a trade-off

between larger TPR and larger FPR versus smaller TPR and smaller FPR.

The skill score combines the disease rate and cost of misclassification. Based on

the Skill score, the skillful region of FPR varies according to the disease rates and
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loss function values. Simulation studies showed that, when the disease rate is equal

to the loss function, the whole region of the FPR is skillful. This will imply that

PAUC over the skillful region equals the AUC. If the loss function is larger than the

disease rate, the skillful region of FPR will have larger FPR and larger TPR. On the

other hand, the loss function is smaller than the disease rate, the skillful region of

FPR will have smaller FPR and smaller TPR.

Dodd and Pepe (2003) suggested the PAUC estimator is a more clinically relevant

summary measure of accuracy, but the choice of the appropriate restricted region of

the FPR may be controversial. Based on our simulations, we gave a reasonable ex-

planation for how to choose the skillful region of FPR for the PAUC given the disease

rates and loss function values.
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2.6 Osteoporosis Study

Our motivating example involved DPXA osteoporosis data from 5,662 elderly women

(Hans et al. 1996). Bone mineral density (BMD) is the “gold standard” in detecting

osteoporosis, obtained by dual photon X-ray absorptiometry (DPXA) technology.

This device takes a measurement directly at the femoral bone. A new ultrasonic device

has been designed to measure broad and ultrasound attenuation (BUA) through the

bone. Using the BUA measure, scientists can garner information not only on the

bone density but also on its architecture and elasticity. Therefore, this ultrasound

device can help detect osteoporosis in elderly women and hence can help prevent

hip fractures, a major adverse outcome frequently resulting from osteoporosis. The

particular device under investigation takes measurements at the heel of a patient.

The new measurement is easier and more economical for patient.

Expert analysis can model osteoporosis as a function of multiple factors via statis-

tical learning techniques (e.g., discriminant analysis, tree classifiers, neural networks).

However, diagnostic tests must sometimes rely on single markers to present a sim-

ple and effective diagnostic tool for practitioners. Given this approach, we compare

markers BMD and BUA for this task. We first compare the performance of markers

BMD and BUA by the Skill score from Section 2.3. Then we study the relationship

between diseased and healthy groups to construct the Skill scores for markers BMD

and BUA. We use the KG model and mean-shift cases as examples.

2.6.1 Hip Fracture Data

The EPIDOS study group was recruited for a 2-year follow-up study between January

1992 and January 1994. There were 115 fractures recorded during two years (a 2.07%

rate), and Figure 14 shows density plots for BMD, and BUA scores grouped by

whether fractures occurred or not. We used the R function density to generate
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kernel density estimates with a Gaussian smoothing kernel and the default (rule-of-

thumb) bandwidth selection.

2.6.1.1 Fracture or No-Fracture Sample Test

From Table 51, both tests suggest that the two populations vary similarly and have

significantly different mean values. Fractures, in these cases, occurred at lower values

of the markers.

0.4 0.6 0.8 1.0

0
1

2
3

4
5

0.4 0.6 0.8 1.0

0
1

2
3

4
5

BMD

70 90 110 130

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

70 90 110 130

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

BUA

Figure 14: Density Plots. The solid line represents the hip fractures group and the
dashed line is the non-hip-fracture group.

2.6.1.2 ROC curves

Figure 15 shows the ROC curves for the fracture data for two index of BMD and BUA.

Two ROC curves are intersect at FPR about 0.2. When FPR less than 0.2, the ROC

curve of the marker BUA is more concave than the ROC curve of the marker BMD,
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Table 51: Two-Sample Test Results for Two Different Measures (BMD, and BUA)
for Fracture Occurred or not.

Equal Variance Test Two Samples’ Mean Test
Hypothesis H0 : σ2

0/σ
2
1 = 1 H0 : µ0 − µ1 = 0

BMD 95% CI (1.02, 1.67) (0.0507, 0.0835)
BUA 95% CI (0.76, 1.25) (4.4191, 7.9886)

otherwise the ROC curve of the marker BMD is more concave than the ROC curve of

the marker BUA. The AUC statistic from marker BMD is 0.6963, and for testing the

hypothesis of equal distributions (i.e., a 45◦ curve), the p-value corresponding to the

Mann-Whitney test is 444141.5 (5.38e−13). From DeLong et al. (1988), a variance

estimator is:

V ar(AUC)
.
= V ar(P (Z0 ≥ Z1))/n1 + V ar(P (Z1 ≥ Z0))/n0.

This method is intuitive and has reasonable results for variance. The 95% CI for the

AUC is calculated to be (0.6113, 0.7812); the p-value is 2.95e−6. The AUC statistic

from marker BUA is 0.6751 (0.5886, 0.7615); the p-value is 3.64e−5. While both AUC

statistics are highly significant (in terms of p-value) for detecting differences in the

populations, they are not significantly different from each other.

2.6.1.3 The Skill Score and Other Statistics

Because BMD represents the standard, we use it as our benchmark for the diagnosis

of hip fracture probability and consider the corresponding skill plots. We consider

three distinct values for θ: 0.01, 0.02 and 0.1. The results are plotted in Figure

16. Figure 17 shows only the skill plot and its confidence interval bounds under loss

function θ = 0.01, along with the density estimates of the two groups. The Skill

plot has random movement (some variations) because the relationship between TPR

and FPR changed over the cutoff points and we used empirical density functions to
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Figure 15: ROC Curves for BMD, and BUA for Hip Fractures. The solid line
represents BMD and the dashed line is BUA.
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estimate the Skill Score. It could be adjusted by using a local Kernel Smoother. From

the Skill plot, we see that the test is skillful corresponding to values of c ≥ 0.688.

The skillful region (K̂(c) ≥ 0) corresponds to the set FPRs ∈ (0.4278, 1). The skillful

region of FPR corresponding to PAUC is:

A(0.4278, 1) =

∫ 1

0.4278

ROC(t)dt = 0.5136.

To estimate the variance of PAUC based on DeLong et al. (1988),

V ar(A(t0, t1)) = V ar(P (Z0 ≥ Z1, Z0 ∈ (u0, u1)))/n1 + V ar(P (Z1 ≥ Z0, Z0 ∈ (u0, u1)))/n0

≈ A(t0, t1)(1 −A(t0, t1))/n1 + A(t0, t1)(1 −A(t0, t1))/n0,

where t0 = P (X ≥ u1|Y = 0), t1 = P (X ≥ u0|Y = 0). The corresponding 95%

confidence interval of the PAUC is (0.4213, 0.6059); the p-value is 0.0128. The statistic

of no information of diagnosis test under FPR ∈ (0.4278, 1) is 0.4085, which is not

included in the 95% confidence interval. Therefore, the PAUC of BMD rejects the no

information hypothesis under θ = 0.01 and significance level 0.05.

The odds of the PAUC (Λ) defined in Eq.(27) equals 8.7675. The odds of no

information of diagnosis test under FPR ∈ (0.4278, 1) is 2.4953. Transforming the

interval estimation method for the PAUC described earlier, a 95% confidence interval

for the odds of PAUC is (2.7925,∞). Therefore, the odds of PAUC of BMD reject

the no information assumption.

Although the BUA provides information about the bone micro-architecture and

elasticity that are not provided by the BMD, the PAUC is not significant. The BUA

skill plots are plotted in Figure 18, and Figure 19 shows only the skill plot for θ =

0.01, From the Skill plot, we see that the test is skillful corresponding to values of

c ≥ 103.4. The skillful region corresponds to the set FPRs ∈ (0.5819, 1). The skillful

region of FPR corresponding to PAUC is:
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A(0.5819, 1) =

∫ 1

0.5819

ROC(t)dt = 0.3799.

The corresponding 95% confidence interval of the PAUC is (0.2902, 0.4695); the

p-value is 0.1410. The statistic of no information of diagnosis test under FPR ∈

(0.5819, 1) is 0.3308, which is included in the 95% confidence interval. Therefore,

the PAUC of BUA did not reject the no information hypothesis under θ = 0.01 and

significance level 0.05.

The odds of the PAUC (Λ) defined in Eq.(27) equals 9.9459. The odds of no

information of diagnosis test under FPR ∈ (0.5819, 1) is 3.7840. Transforming the

interval estimation method for the PAUC described earlier, a 95% confidence interval

for the odds of PAUC is (2.708,∞). Therefore, the odds of PAUC of BUA did not

reject the no information assumption. Figure 16 shows the skillful region of FPR

under θ = 0.01.

When we use the fixed region of FPR from Dodd and Pepe (2003), for example

(t0, t1) = (0, 0.2). Figure 21 shows the fixed region of FPR, (0,0.2). From the ROC

curves in Figure 21, the PAUC of BUA (0.0591) is a little higher than the PAUC of

BMD (0.0487).

2.6.1.4 Optimal Cutoff Point

In Section 1.1, we describe the choice of the cutoff points in general. By applying

the Skill score, the maximum Skill score will be another good choice for the optimal

cutoff point. Here we compare two rules to find the optimal cutoff point with the

maximum Skill score: the overall misclassification probability, and the expected cost

of misclassification.

From the rule of the overall misclassification probability, setting the slope of the

ROC curve equal to (1 − p)/p leads us to find the optimal cutoff point. Since the
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Figure 16: The Skill Plot of BMD for Hip Fractures under θ= 0.01, 0.02 and 0.1.
The wide solid line represents θ= 0.01, the dashed line is θ= 0.02 and the dotted line
is θ= 0.1.
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under θ= 0.01. The wide solid line is the Skill score and the solid lines are the
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Figure 18: The Skill Plot of BUA for Hip Fractures under θ= 0.01, 0.02 and 0.1.
The wide solid line represents θ= 0.01, the dashed line is θ= 0.02 and the dotted line
is θ= 0.1.

fracture rate is 0.0207, (1− p̂)/p̂ = 48.235. Table 52 shows five possible optimal cutoff

points that corresponding slope of BMD’s ROC curve to 48.235. Observe that there

is more than one optimal cutoff point.

Table 52: The Optimal Cutoff Points of BMD under the Rule of the Overall Mis-
classification Probability.

Cutoff Point FPR TPR
0.455 0.0022 0.0087
0.503 0.0119 0.0261
0.507 0.0139 0.0348
0.516 0.0184 0.0522
0.537 0.0324 0.0870

Table 53 shows five possible optimal cutoff points that corresponding slope of

BUA’s ROC curve to 48.235. As with BMD, here there is more than one optimal

cutoff point.

104



80 90 100 110 120 130

−
0.

4
0.

0

BUA

K̂

80 90 100 110 120 130

−
0.

4
0.

0

BUA

K̂

80 90 100 110 120 130

−
0.

4
0.

0

BUA

K̂

80 90 100 110 120 130

0.
00

0.
03

80 90 100 110 120 130

0.
00

0.
03

BUA

Figure 19: The Skill Plot and 95% CI and Density Plots of BUA for Hip Fractures
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confidence intervals in the upper plot. The solid line represents the hip fracture
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Figure 20: ROC Curve of the BMD (the solid line) and its Skillful Region (the wide
solid line) and ROC Curve of the BUA (the dotted line) and its Skillful Region (the
wide dotted line) for θ=0.01.
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Figure 21: ROC Curve of the BMD (the solid line) and BUA (the dotted line) and
Fix Region of the FPR (BMD is the wide solid line, and BUA isthe dotted line).
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Table 53: The Optimal Cutoff Points of BUA under the Rule of the Overall Mis-
classification Probability.

Cutoff Point FPR TPR
78.0 0.0032 0.0174
79.4 0.0047 0.0261
82.1 0.0124 0.0870
85.3 0.0323 0.1478
124.5 0.9870 0.9913

From the rule of the expected cost of misclassification, setting the slope of the

ROC curve equal to θ(1 − p)/p/(1 − θ) leads us to find the optimal cutoff point.

Therefore θ(1 − p̂)/p̂/(1 − θ) = 0.48, under θ = 0.01. Both BMD and BUA cannot

find the corresponding slope of its ROC curve to 0.48. There is no solution under the

rule of the expected cost of misclassification.

Two general rules of deciding the optimal cutoff point gave us either more than

one optimal cutoff points or no solution. Here we try to use the Skill score to help

find the optimal cutoff point. The BMD also achieves a greater maximum Skill

score than the BUA. At c0 = 0.73, the skill score for the BMD is maximized with

K̂p̂=0.02,θ=0.01(c0) = 0.1397. A 95% confidence interval for Kp=0.02,θ=0.01(c0), based on

the asymptotic results from Section 3.1, is (-0.0006, 0.2800). The maximum skill

score of BMD is not very significant. Note that the FPR and TPR corresponding to

this cutoff point (c0 = 0.728) are 0.5747 and 0.8609, respectively.

For the BUA, the skill score is maximized at c1 = 112.1, where K̂p̂=0.02,θ=0.01(c1) =

0.0907 with a narrower 95% confidence interval of (0.0294, 0.1519). The maximum

skill score of BUA is statistically significant. For the BUA, both the FPR (0.8558) and

TPR (0.9739) are higher than the corresponding BMD rates. Searching the skillful

region of FPR, 124.5 is one of the optimal cutoff points under the rule of the expected

cost of misclassification and also inside the skillful region of BUA. Therefore, we can
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distinguish 124.5 as better than other possible optimal cutoff points under the rule

of the expected cost of misclassification.

2.6.2 Relationship between Hip Fracture and Non-Fracture Groups

While both the BMD and BUA exploit noticeable differences between patients who

experienced hip fractures and those who do not, they are dissimilar in the way they

communicate this result. Besides the differences between FPR and TPR, there is

another important difference between how the two measures relate the two popu-

lations. As it turns out, a more interesting structure can be identified using the

BUA measurements. This structure is revealed with the KG model, which fits the

BUA measurements but not those for the BMD. We showed the results in Section

2.6.2.1. Another special case is the mean-shift model between hip fracture and non-

hip-fracture groups in Section 2.6.2.2.

2.6.2.1 KG model

With F (c) ≤ G(c), the KG model stipulates that F (c) = Gβ(c) for some β ≥ 1. The

measure of KG model fit can be based on first estimating β at different marker values

(c) in Gn1
(c) = Fn0

(c)1/β̂(c), where

β̂(c) =
log (Fn0

(c))

log (Gn1
(c))

.

A (1-α)% CI for β(c), derived by Hollander et al. (2003), is constructed as

β̂(c) ± Zα/2√
n1

√

(−log(Fn0
(c)))2 · σ̂2

G(c)

(−log(Gn1
(c)))4

+
σ̂2
F (c)

(−log(Gn1
(c)))2 ,

where

σ̂2
G(c) =

∑

ci<c

I(Z1(ci) > 0)

Z2
1(ci)

and Z1(ci) =

n1
∑

i=1

I(Z1i ≥ ci)
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are the number of subjects at risk before ci. Also,

σ̂2
F (c) =

∑

ci<c

I(Z0(ci) > 0)

Z2
0 (ci)

, and Z0(ci) =

n0
∑

i=1

I(Z0i ≥ ci).

If we plug in the BMD data, for example, we estimate β as

β̂ =
Σn1

i β̂(ci)

n1

= 2.398,

with a 95% CI for β of (2.263, 2.533). The left side of Figure 22 shows the EDFs

for BMD measurements associated with hip fractures Gn1
as well as the non-fracture

set Fn0
. In this case, Ĝ(c) is the KG model estimator based on F

1/2.398
n0

(c). On the

right side of Figure 22, the same plots are shown for the BUA measurements, where

β̂ = 2.224 and a 95% CI for β is (2.094, 2.354).

What the graph implies is that the shape of Gn1
and Ĝ are similar for the BUA

measurements, but not for the BMD measurements. This, of course, supports the

application of the KG model for the BUA. The Q-Q plots in Figure 23 lend further

support to this claim. While the underlying EDFs look dissimilar on the left-hand Q-

Q plot, the plot on the right suggests a better fit between Gn1
(c) and Ĝ(c) = F β̂−1

n0
(c).

Using the KG model information with β̂ = 2.224, the marker BUA test’s AUC is

0.6898, a skillful region is (0.7408, 1), and PAUC(0.7408, 1)= 0.2453. The correspond-

ing 95% confidence interval of the PAUC is (0.1658, 0.3248); the p-value is 0.3136.

The odds of PAUC equals 17.6475 for the BUA. The corresponding 95% confidence

interval of the odds of the PAUC is (1.7766,∞). There is no information for clas-

sifying correct groups under the BUA skillful region (0.7408, 1) if PAUC and odds

of PAUC are 0.2256 and 6.7161, respectively. Therefore, both the PAUC of BUA

and the odds of PAUC of BUA did not reject the no information assumption. One

advantage for using KG model is it smooths the Skill plot, showed in Figure 24.

In summary, both markers (BMD and BUA) comparing hip fracture and non-

fracture groups are significantly different. However, the BMD marker did not fit
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Figure 22: The EDFs of BMD and BUA for Fracture Occurred or not. The dotted
line presents the EDF of hip fractures occurred, the dashed line is no hip fractures
occurred, and the solid line is using KG model to estimate EDF of hip fractures
occurred group. For BMD, Ĝ(c) = F

1/2.398
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(c). For BUA, Ĝ(c) = F
1/2.224
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(c).
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well by using the KG model to describe hip fracture distribution from non-fracture

groups. BUA is from new ultrasonic device fit well by using the KG model to describe

hip fracture distribution from non-fracture groups. By using BUA marker, we have a

better model to simply the relationship of hip fracture and non-fracture distributions.

2.6.2.2 The Mean-Shift Case

Figure 14 shows that F (c) and G(c) might have differ by a location shift, G(c) =

F (c+η), where η̂ is the difference of the mean of non-disease group and disease group.

In the BMD data, we estimate η̂ as 0.0671. The left side of Figure 25 shows the EDFs

for BMD measurements associated with hip fractures Gn1
as well as the non-fracture

set Fn0
. In this case, Ĝ(c) is the mean-shift estimator based on Fn0

(c + 0.0671). On

the right side of Figure 23, the same plots are shown for the BUA measurements,

where η̂ = 6.2038.

What the graph implies is that the shape of Gn1
and Ĝ are similar for the BUA

measurements. It is acceptable for the BMD measurements; there is a difference

around the tail part. The Q-Q plots in Figure 25 show the underlying EDFs look

dissimilar on the left-hand Q-Q plot, the plot on the right suggests a better fit between

Gn1
(c) and Ĝ(c) = Fn0

(c+ 6.2038).

Using the mean-shift information with η̂ = 0.0671, the marker BMD has the skill-

ful region of FPR (0.5670, 1) and PAUC(0.5670, 1)= 0.3997. The corresponding 95%

confidence interval of the PAUC is (0.3092, 0.4902); the p-value is 0.0951. The odds of

PAUC(Λ) equals 12.003 for the BMD. There is no information for classifying correct

groups under the region (0.5670, 1). The corresponding 95% confidence interval of

the odds of the PAUC is (2.499,∞). There is no information for classifying correct

groups under the BUA skillful region (0.5670, 1) if PAUC and odds of PAUC are

0.3387 and 3.6189, respectively. Therefore, both the PAUC of BMD and the odds of
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Figure 25: The EDFs of BMD and BUA for Fracture Occurred or not. The dotted
line presents the EDF of hip fractures occurred, the dashed line is no hip fractures
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PAUC of BMD did not reject the no information assumption.

For marker BUA with an estimate η̂ = 6.2038, the skillful PAUC region is

(0.5819, 1) and PAUC(0.5819, 1)= 0.3772. The corresponding 95% confidence in-

terval of the PAUC is (0.2877, 0.4667); the p-value is 0.1542. The odds of PAUC

equals 9.222. The corresponding 95% confidence interval of the odds of the PAUC is

(2.2063,∞). There is no information for classifying correct groups under the region

(0.5819, 1) if PAUC and the odds of PAUC are 0.3307 and 3.7835, respectively.

The left side of Figure 26 shows the Skill plot for BMD estimated by the original

EDFs and mean-shift model. Although the Q-Q plot of the original EDF and a mean-

shift model look similar, the Skill plot for BMD estimated by the original EDFs and

a mean-shift model are not a very close match when BMD is larger than 0.65. The

right side of Figure 26 shows the Skill plot for BUA estimated by the original and the

mean-shift model is a good fit. Compared to Figure 23, the mean-shift model fitting

are very similar under using KG model for marker BUA.

In summary, both markers (BMD, and BUA) comparing hip fracture and non-

fracture groups are useful measures for the osteopetrosis diagnostics. However, the

BUA has the added advantage of fitting a more refined model that relates the disease

and non-disease groups.

2.6.3 Summary of Example

We demonstrated how to apply the skill test for the hip fracture or diagnosis. Our

intuition and simulation studies suggest that the ROC curve will make more sense

if the test is skillful. Similarly, by integrating the ROC curve only where the test is

skillful, the AUC statistic might be more sensible than AUC measurements based on

arbitrary cutoff points. So there are several conclusions based on our analysis of the

osteopetrosis data, as follows.
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Figure 28: The Skill Plot for BMD Estimated by the Original, KG model and
Mean-Shift Model. The solid line presents the original EDFs, the dashed line is the
KG model, and the dotted line is the mean-shift model.

The density plots for fracture or no-fracture were overlapped. From the fracture

or no-fracture two sample test, it showed the means of both markers, BMD and BUA,

are significantly different under significance level α = 0.05.

The AUC statistic from the marker BMD is 0.6963 and the 95% CI of AUC of

the marker BMD is (0.6113, 0.7812). The AUC statistic from the marker BUA is

0.6751 which is slightly lower than that from the marker BMD. However, it is not

significantly different. The 95% CI of AUC of the marker BUA is (0.5886, 0.7615).

Note that both AUC statistics are significantly higher than 0.5, which is the the

benchmark index of the AUC statistic corresponding to a case for which the FPR is

equal to the TPR for any cutoff.

When the FPR is less than 0.2, the ROC curve of BUA is more concave than the

ROC curve of BMD; otherwise, the ROC curve of the marker BMD is more concave

than the ROC curve of the marker BUA. This means that if we used FPR regions
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(0,0.1) or (0,0.2)—these are two suggestions in Dodd and Pepe (2003)—the PAUC

of the marker BUA would be higher than the PAUC of the gold standard marker

BMD. We recommend using the Skill score to decide the FPR region by considering

the misclassification cost (loss).

For the marker BMD, the Skill plot by using the loss function θ = 0.01 showed that

the skillful value of BMD is larger than 0.688. The skillful region corresponds to the

set FPRs ∈ (0.4278, 1). The skillful region of FPR corresponding to PAUC is 0.5136.

The corresponding 95% confidence interval of the PAUC is (0.4213, 0.6059); the p-

value is 0.0128. Therefore, the PAUC of BMD rejects the no information hypothesis

under θ = 0.01 and significance level 0.05. The odds of the PAUC of BMD is 8.7675,

and a 95% CI for the odds of PAUC is (2.7925,∞). The odds of PAUC of BMD

rejects the no information assumption.

Although the BUA provides information about the bone micro-architecture and

elasticity that are not provided by the BMD, the PAUC is not significant. The skillful

value of BUA larger than 103.4. The skillful region corresponds to the set FPRs

∈ (0.5819, 1). The skillful region of FPR corresponding to PAUC is 0.3799. The

corresponding 95% confidence interval of the PAUC is (0.2902, 0.4695); the p-value

is 0.1410. The PAUC of BUA did not reject the no information hypothesis under

θ = 0.01 and significance level 0.05. The odds of the PAUC of BUA is 9.9459, and

a 95% confidence interval for the odds of PAUC of BUA is (2.708,∞) including the

odds of no information of diagnosis test under FPR ∈ (0.5819, 1) is 3.7840. Therefore,

the odds of PAUC of BUA did not reject the no information assumption.

There have been several methods to find the optimal cutoff points in the past

(Section 2.1.1.). We applied two rules: (1) minimizing the overall misclassification

probability, and (2) minimizing the expect cost of misclassification. For rule (1), we

found there are not unique solutions for the optimal cutoff points for the marker

BMD and BUA. There are five optimal cutoff points for each of the markers BMD
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and BUA. For rule (2), we found there is no solution for the optimal cutoff points

for the marker BMD and BUA. By using the skillful region of the FPR, we might

narrow down the optimal cutoff points in the situations that have more than one

optimal cutoff point. For example, 124.5 of the marker BUA is one of the optimal

cutoff points under rule (1), and it also is in the skillful region of BUA. Therefore, we

can distinguish 124.5 as better than other possible optimal cutoff points under the

rule (1). However, we failed to combine rule (1) and the skillful region of BMD to

identify the better optimal cutoff points; no optimal value of the BMD is larger than

0.688.

Therefore, the maximum Skill score is a very good choice for deciding the optimal

cutoff point. Under θ = 0.01, the marker BMD (0.73) maximized the skill score for

the BMD with a value of 0.1397, a 95% CI for the maximized skill score of BMD

is (-0.0006, 0.2800). The maximum skill score of BMD is not significantly different

from “not skillful,” though it is nearly significant. Note that the FPR and TPR

corresponding to this cutoff point 0.728 are 0.5747 and 0.8609, respectively.

Under θ = 0.01, the skill score is maximized at 112.1 for the marker BUA, where

K̂p̂=0.02,θ=0.01(c1) = 0.0907 with a narrower 95% CI of (0.0294, 0.1519). The maximum

skill score of BUA is significantly different from “not skillful.” For the BUA, the FPR

and TPR corresponding to this cutoff point 112.1 are 0.8558 and 0.9739, respectively.

While both the BMD and BUA exploit noticeable differences between patients

who experienced hip fractures and those who do not, they are dissimilar in the way

they communicate this result. Besides the differences between FPR and TPR, there

is another important difference between how the two measures relate the two popu-

lations. As it turns out, a more interesting structure can be identified using the BUA

measurements. This structure is revealed with the KG model, which fits the BUA

measurements but not those for the BMD. The structure of mean-shift model between

hip fracture and non-hip-fracture groups fits well on both markers BMD and BUA.
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Applying the relation between hip fracture and non-hip-fracture groups might allow

us the advantage of fitting refined or simplified estimations of the density functions,

the ROC curves, the AUC, the skill scores, the PAUC, and the odds of PAUC.
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2.7 Concluding Remarks and Future Work

Accurate diagnosis of disease, i.e. correctly determining whether a patient has a dis-

ease or not, is a critical technical aspect of health care. Screening and diagnostic tests

are familiar and ever-evolving tools of modern medicine. Accurate early detection by

screening is essential for early disease treatment.

Here we summarize our theoretical results on ROC curves, AUC, PAUC, and the

odds of PAUC. We tried to understand more about accurate diagnosis in this work.

We applied the Skill score to evaluate binary events by giving skill/accuracy or value.

It is very intuitive that only skillful cutoff points should be used. The Skill plot

provided the concept of PAUC, which is a very good idea for how to set the partial

region by considering the loss and cost. Asymptotic properties of the Skill score have

been provided. Simulation studies of PAUC indicate the advantage of using the Skill

score and its unbiasedness and consistency properties. A motivating example from

osteoporosis shows the importance of the Skill score in disease diagnosis. We also

studied the relationship between diseased and non-diseased groups and how to find

the optimal cutoff points for disease diagnosis.

The diagnosis technique used will affect people’s decisions greatly by the associated

factors and accuracy of the method. There are still very broad areas for further

studies:

Diagnostic test results may be much more complicated, involving several compo-

nents. Do Skill scores have a role to play in determining how to combine different

sources of information to optimize diagnostic accuracy? Many papers used (logistic)

regression of ROC curves for combining covariate variables of classification (Dodd and

Pepe 2003, and Pepe et al. 2006). It will be very useful to consider other covariate

variables in the Skill plot for more accurate diagnosis.
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Inspired by the second author in Arcones, et al. (2002), we will study the effect

of stochastic precedence on the Skill plot. Typically, diagnostic tests assume F (x) ≥

G(x), which defines stochastic dominance. This happens to be the stronger stochastic

ordering between distributions. Stochastic precedence is a weaker and more realistic

order restriction. The interesting topics would be: what if the stochastic inequality

is not so strong? Moreover, is the ROC ineffective under this condition?

A new idea for the Skill score of Eq.(18): compare a random guess with an expert

forecast, instead of comparing a naive guess with an expert forecast.
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