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1 Project Summary 

Under a prior FAA grant, we developed a dynamic network flow model for central flow (ATCSCC). 

This is a robust model that uses uncertain future capacity scenarios to generate optimal flow 

management solutions. We used a simulation to compare the performance of this model versus 

other central flow models. This simulation showed that our dynamic network flow model has 

potential to reduce expected delay costs by several percent. 

Because the model incorporates multiple capacity scenarios, a real-world problem can be very 

large. The purpose of this project is to develop fast algorithms for generating a flow management 

solution from the dynamic network flow model. We use a software prototype to test the effectiveness 

of these algorithms. 
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2 Progress Summary 

The model development and testing was completed under prior FAA support. These results are 

published in [1]. 

In this project, we apply linear programming decomposition schemes for the dynamic net

work flow model. The research for this project may be divided into four sections: decomposition 

structure, subproblem algorithms, master problem algorithms, and computational testing. Decom

position structure covers the special structure in the dynamic network flow problem. We then give 

algorithms for solving the subproblems that result from compath decomposition. To improve the 

convergence of the master problem, we also consider .several master problem algorithms. Finally, 

we test the effectiveness of our decomposition scheme versus general-purpose optimization software. 

The research on the decomposition structure and subproblem algorithms is complete. These 

results are described in [3]. The research on master problem algorithms and computational testing 

is not finished. 

3 Summary of Results 

The model is described in [1]. 

For a complete description of the decomposition structure and subproblem algorithms, see [3]. 

· We summarize these results here. 

3.1 Formulation and Decomposition Structure 

We represent a flow management model with a time-space network. Let g = (N, A) be the directed 

graph where each node i E N represents a location at a particular point in time t( i). The time t( a) 

of an arc a = ( i, j) equals t( i), the time of the initial node i. The flow represents the flights, and 

the arc capacities represent the capacity restrictions on runways or airspace. We define a scenario 

as one set of arc capacities, and we let k E n = {1, ... , K} be the indices of the scenarios. Let 

pk be the probability weight for scenario k, and let N be the network flow matrix. Let uk be the 

vector of capacities for scenario k, and let xk be the vector of flows for scenario k. We formulate 
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the dynamic network flow problem as 

z* min LPk(cxk) 
k 

Nxk b Vk ( 1.1) (1) 
0 < xk < uk Vk (1.2) 

xk- xk' 
a a 0 Va E A;Vk,k': t(a) :S r(k,k'). (1.3) 

There are three groups of constraints in (1): (1.1) are the flow balance constraints, (1.2) are 

the capacity and nonnegativity constraints, and ( 1.3) are the indistinguishability constraints. The 

indistinguishability constraints ensure that two decisions must be identical when the associated 

scenarios are indistinguishable. Specifically, if t( a) :S r( k, k') for some arc a, then scenarios k and 

k' are identical up to time t( a), and so the flow on a under scenarios k and k' must be identical. 

The indistinguishability constraints are also known as nonanticipativity constraints, indicating that 

a decision cannot anticipate which scenario may occur when two or more scenarios are indistin

guishable. The size of ( 1) can be reduced by eliminating redundant capacity constraints ( 1.2b). 

Also, the number of indistinguishability constraints can be reduced from O(J(2 IAI) to O(J(IAI) by 

sorting the scenarios according to [8). 

From [3), the most promising decomposition scheme places the capacity constraints ( 1.2b) in the 

master problem and all other constraints in the subproblem. This gives the Lagrangian function 

L( 7r\ ... ' 7rK) = L7rkUk + 
k 

min L(PkC - 1rk)xk 
k 

Nxk 

xk 

xk- xk' 
a a 

and Lagrangian dual 

z* 

b 

> 0 

0 

Vk 

Vk 

Va E A; Vk, k': 

(2.1) 

(2.2) 

t(a) :S r(k,k') (2.3) 

(2) 

(3) 

To evaluate the Lagrangian function, we must solve an optimization subproblem. The solutions 

to this optimization subproblem are very special. To motivate the concept, consider a single scenario 

acyclic network flow problem with a single source and a single sink. If we relax the arc capacities, 

the optimum solution puts all flow on the cheapest source-sink path. We generalized this result to 

the multiple scenario dynamic network flow problem. We define a collection as a set of paths, one 
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per scenario. We say that two paths p and p' are compatible for scenarios k and k' if p and p' are 

identical for the arcs that occur while k and k' are indistinguishable (i.e. before T( k, k') ). Then 

we define a compath as a collection of paths where each pair is compatible for the corresponding 

scenarios. We proved in [3) that the solutions to the subproblems (2) are flows that correspond to 

com paths. 

3.2 Subproblem Algorithms 

The compath theorem alone is not helpful in solving traffic flow management problems. We also 

developed an algorithm for finding a cheapest compath. Thus, we can evaluate the Lagrangian 

subproblem by finding a cheapest com path with respect to the costs (p1c - 1r1 , ... , pK c- 1rk) and 

placing all source-sink flow along the arcs in the compath. In traffic flow management, we may 

think of a compath as a particular flight plan that is contingent on uncertain weather. 

Our best algorithm for finding a cheapest com path is based on dynamic programming. First, 

we define a partition of the scenarios similar to the approach in [9). For each time t, let f!t be the 

coarsest partition of the scenarios n such that if B E f!t and k, k' E B, then t ~ T( k, k'). In other 

words, each B is a maximal subset off! such that all scenarios in B are indistinguishable at timet. 

The sets B E f!t are known as scenario bundles [10) and can be represented as nodes in a scenario 

tree. Likewise, each scenario bundle B E f!t can be partitioned at time t' > t. The collection of 

scenario bundles that result from partitioning B at time t' are denoted by Bt'. 

Define f( i, B) to be the cost of a cheapest com path from node i to the sink n over the scenario 

bundle B E flt(i). If no path exists from i to the sink n, then we say that f( i, B) = oo for all 

B E nt( i). Since the scenarios in B are indistinguishable at time t( i), we must select a single arc 

( i, j) from node i. This gives the recursion 

(4) 

with boundary conditions f( n, B) = 0 for all B E flt(n). Thus, the cost of a cheapest com path from 

1 to n over the scenarios f! is f(1, f!) = Zc. For each pair ( i, B), the cheapest compath recursion 

finds an optimum arc ( i, j) to traverse. 

By ordering all nodes such that t(j) 2: t( i) for all j > i, we can solve the recursion sequentially 

from n down to the source, i = 1. This recursion only needs to scan each arc a = ( i, j) when 

its starting node i is reached. Thus, each arc is scanned exactly once for each scenario bundle 
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B E Dt(i)· Hence, this algorithm finds the cheapest compath in time O(J(IAI). The running time 

of this algorithm is polynomial in terms of the length of the input data, which consists of the graph 

g = (N, A) and the capacity scenarios { u1 , u2 , ... , uK}. In [3], we argue that this is the fastest 

possible algorithm for finding a cheapest compath. 

4 Remaining Research 

4.1 Master Problem Techniques 

To solve the master problem, we solve the Lagrangian dual problem (3). The Lagrangian function is 

piecewise linear and concave. If x( 1r) is the optimum solution obtained in evaluating the Lagrangian 

L(1r), then g = u- x(1r) E 8L(1r) is a supergradient of L(1r). 

We use nonsmooth optimization techniques to optimize the Lagrangian dual. Several nons

mooth optimization algorithms are described in [6). Supergradient (subgradient) methods are the 

most basic methods, where we use d = g as a search direction for L(1r). We also are working 

to develop search directions based on bundle methods. One method we are studying uses a set 

G = {g1 , ... , gh} ~ al( 1r) of supergradients to construct the search direction 

2:= g/II9H2 

d= _gE_G __ _ 

2:= 1/llgll2 
(5) 

gEG 

as an approximation to the bundle direction. 

Given a search direction, we must also generate an appropriate step size a and ensure that 

the new iterate 71"
1 = 1r + ad is feasible. We use the rule developed in [5) and described in [6, 7]. 

Specifically, let 

(6) 

where {3 E (0, 2) is a constant and z is the unknown optimum value. To ensure that 1r 1 is feasible, 

we must require that 71"
1 s; 0. We are developing projective methods that project the direction d 

and/ or the iterate 71"
1 to ensure that 1r 1 s; 0. 

Once we determine optima] dual multipliers 1r*, we still need to determine a primal feasible 

solution x that is optimal or near-optimal. We are considering column generation techniques and 

several primal heuristics. The most promising heuristic borrows from a flow augmentation algorithm 

for (single scenario) network flow problems. Preliminary tests show that that the primal heuristic 

generates solutions that are within a few percent of the optimum solution. 
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4.2 Computational Testing 

A real-world flow management problem can be very large. To be practical, we need to be able to 

solve an instance of this problem quickly. In this part of the project, we test the running time of 

our algorithms against general-purpose optimization software. 

We are developing a software prototype called COMET, which stands for COMpath nETwork 

decomposition. We are currently evaluating COMET, OSL, and CPLEX using a set of flow man

agement test problems. 

4.3 Future Publications 

The work described in §4 will appear as a technical report [4], and all the material described here 

will appear in greater detail in Gregory Glockner's doctoral thesis [2]. 
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I 

1 Project Summary 

Under a prior FAA grant, we developed a dynamic network flow model for central flow (ATCSCC). 

This is a robust model that uses uncertain future capacity scenarios to generate optimal flow 

management solutions. We used a simulation to compare the performance of this model versus 

other central flow models. This simulation showed that our dynamic network flow model has 

potential to reduce expected delay costs by . several percent. 

Because the model incorporates multiple capacity scenarios, a real-world problem can be very 

large. The purpose of this project is to develop fast algorithms for generating a flow management 

solution from the dynamic network flow model. We use a software prototype to test the effectiveness 

of these algorithms. 
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2 'Work Summary 

The model development and testing was completed under prior FAA support. We describe these 

results in [2]. In this project, we apply linear programming decomposition schemes for the dynamic 

network flow model. The research for this project may be divided into four sections: decomposition 

structure, subproblem algorithm, master problem algorithm, and computational testing. Decom

position structure covers the special structure in the dynamic network flow problem. We then give 

an algorithm for solving the subproblems that result from compa.th decomposition. To obtain a 

complete solution, we use a master problem algorithm. Finally, we test the effectiveness of our 

decomposition scheme versus general-purpose optimization software. 

In this project, we completed the research for these four sections. 

3 Summary of Results 

The model is described in [2]. For a complete description of the decomposition structure and 

subproblem algorithms, see [4]. We summarize these results here. 

3.1 Formulation and Decomposition Structure 

We represent a flow management model with a time-space network. Let g = (N, A) be the directed 

graph where each node i EN represents a location at a particular point in time t( i). The time t( a) 

of an arc a = ( i, j) equals t( i), the time of the initial node i. The flow represents the flights, and 

the arc capacities represent the capacity restrictions on runways or airspace. vVe define a scenario 

as one set of arc capacities, and we let k E n = {1, ... , J(} be the indices of the scenarios. Let 

pk be the probability weight for scenario k, and let N be the network flow matrix. Let uk be the 

vector of capacities f~r scenario k, and let xk be the vector of flows for scenario k. Let r(k: k') 

be the latest time that scenarios k and k' are identical. We formulate the dynamic network flow 

problem as 

z* = min l:Pk(cxk) 
k 

Nxk = b Vk ( 1.1) 

xk < uk Vk ( 1.2) (1) 

xk- xk' = 0 V a E A; V k, k' : t (a) ~ r ( k, k') ( 1.3) a. a 

xk > 0 Vk. ( 1.4) 

2 



In (1), (1.1) are the flow balance constraints, (1.2) are the capacity constraints, (1.3) are the 

nonanticipativity constraints, and (1.4) are the nonnegativity constraints. The nonanticipativity 

constraints ensure that a decision cannot anticipate which scenario may occur when some scenarios 

are indistinguishable. Specifically, if t( a) :::; r( k, k') for some arc a, then scenarios k and k' are 

identical up to time t( a), and so the flow on a under scenarios k and k' must be identical. The 

size of (1) can be reduced by eliminating redundant capacity constraints (1.2). Also, the number of 

nonanticipativity constraints can be reduced from O(J(2 IAI) to O(KIAI) by sorting the scenarios 

according to [10]. 

Our decomposition scheme places the capacity constraints (1.2) in the master problem and all 

other constraints in the subproblem. This gives the Lagrangian function 

L(rr) = L 1rkUk 

k 

and Lagrangian dual 

+min L(PkC - 1rk)xk 
k 

Nxk = b 'Vk 

xk- xkl 
a a = 0 'Va E A;'Vk, k': t(a) ~ r(k, k') 

xk > 0 'Vk 

z* = max L( 1r1 , ... , 1rK). 
11"~0 

(2) 

(3) 

To evaluate the Lagrangian function, we must solve an optimization subproblem. The solutions 

to this optimization subproblem are very special. To motivate the concept, consider a single scenario 

acyclic network flow problem with a single source and a single sink. If we relax the arc capacities, 

the optimum solution allocates all flow to the cheapest source-sink path. We generalized' this result 

to the multiple scenario dynamic network flow problem. vVe say that the source-sink paths q, q' 

are compatible for scenarios k, k' if the paths are identical up to time r(k, k'). Thus, a set of paths 

{ q1 , ... , qK} is a com path if each pair qk1 , qk2 is compatible for the corresponding scenarios k1 , k2. 

We proved in (4] that the solutions to the subproblems in (2) are flows that correspond to compaths. 

3.2 Subproblem Algorithm 

By itself, this compath theorem is not helpful in solving traffic flow management problems. We 

also developed an algorithm for finding a cheapest compath. Thus, we can solve the subproblem 

in the Lagrangian function (2) by finding a cheapest compath with respect to the costs (p1c -

1r1 , ... , pK c - 1rk) and placing all source-sink flow along the arcs in the com path. In traffic flow 

management, we may think of a compath as a particular flight plan that is contingent on uncertain 

weather. 
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Our algorithm for finding a cheapest compath is based on dynamic programming. First, we 

define a partition of the scenarios similar to the approach in [11]. For each time t, let nt be the 

coarsest partition of the scenarios f2 such that if B E nt and k, k' E B, then t ~ r( k, k'). In other 

words, each B is a maximal subset of n such that all scenarios in B are indistinguishable at time t. 

The sets B E nt are known as scenario bundles [12] and can be represented as nodes in a scenario 

tree. Likewise, each scenario bundle B E nt can be partitioned at time t' > t. The collection of 

scenario bundles that result from partitioning B at time t' are denoted by Bt'. 

Define f( i, B) to be the cost of a cheapest com path from node i to the sink n over the scenario 

bundle B E nt(i)· If no path exists from i to the sink n, then we say that J( i, B) = co for all 

B E nt(i)· Since the scenarios in B are indistinguishable at time t( i), we must select a single arc 

( i, j) from node i. This gives the recursion 

f( i, B) = mjn { L pkCij - 1rt + 2: f(j, B')} 
kEB B'EBt(i) 

(4) 

with boundary conditions f( n, B) = 0 for all B E nt(n)· Thus, the cost of a cheapest com path from 

1 to n over the scenarios n is !(1, !l) = zc. For each pair ( i, B), the cheapest com path recursion 

finds an optimum arc ( i, j) to traverse. 

By ordering all nodes such that t(j) ~ t( i) for all j > i, we can solve the recursion sequentially 

from n down to the source, i = 1. This recursion only needs to scan each arc a = ( i, j) when 

its starting node i is reached. Thus, each arc is scanned exactly once for each scenario bundle 

B E nt(i)· Hence, this algorithm finds the cheapest compath in time O(KJAI). The running time 

of this algorithm is polynomial in terms of the length of the input data, which consists of the graph 

q = (N, A) and the capacity scenarios {u1 , u2 , .•. , -uK}. In [4), we argue that this is the fastest 

possible algorithm for finding a cheapest compath. 

3.3 Master Problem Algorithm 

The master problem algorithm uses a primal heuristic and Lagrangian optimization to generate a 

nearly optimal primal integral solution and an optimum dual solution. Marginal values from the 

primal heuristic give an initial dual solution. Then, the primal and dual solutions are updated 

alternately. Better dual solutions improve the cost vector used to generate a primal solution, and 

better primal bounds improve the step size used by the dual optimization. 

From the com path decomposition theorem, any solution x to ( 1) can be decomposed by com

paths. Reversing this process, we can build a solution by assigning flows along compaths. The 
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primal heuristic greedily constructs a solution by augmenting the existing flow as much a.s possible 

along the cheapest feasible compath. There can be at most O(K].A.] + 1) augmentations to this 

heuristic. Since we can find a cheapest compath in time O(KI.A.]), it follows that the heuristic takes 

O(K2J.A.] 2
) time. 

The Lagrangian function (2) is piecewise linear and concave. Thus, we use nonsmooth optimiza

tion techniques to optimize the Lagrangian dual (3). Several nonsmooth optimization algorithms 

are described in (7]. In this project, we developed a new direction that approximates the direc

tion generated by bundle methods. Glven a set G = {g1, ... ,gh} ~ 8l(rr) of supergradients, we 

construct the search direction 
L: g/]1911 2 

d = gEG . 

L: 1/11911 2 
(5) 

gEG 

The direction (5) is successful with the compath master problem, though we have not tested its 

effectiveness with arbitrary nonsmooth optimization problems. 

Given a search direction, we must also generate an appropriate step size a and ensure that 

the new iterate rr' = 1r + ad is feasible. We use the rule developed in [6] and described in [7, 8]. 

Specifically, let 

(6) 

where /3 E (0, 2) is a constant and i is the unknown optimum value. To ensure that rr' is feasible, 

we must require that rr' ~ 0. vVe use a projection method based on Rosen's gradient projection 

method [9]. We obtain a feasible dual solution rr' by projecting the direction and the iterate. The 

combination of these two projections reduces the bad effects of being near the boundary of 1r ~ 0. 

3.4 Computational Testing 

A real-world flow management problem can be very large. To be practical, we need to be able to 

solve an instance of this problem quickly! In this part of the project, we test the running time of 

our algorithms against general-purpose optimization software. 

In [5], we describe an implementation of compath decomposition called COMET and present 

computational results for multicommodity and single commodity problems. COMET generates a 

nearly optimal solution to the Lagrangian dual resulting from compath decomposition. A heuristic 

generates primal solutions, and marginal values from the heuristic are used to obtain an initial dual 

solution. In solving the linear program (1), COMET significantly reduces CPU time and memory 

5 



use when compared with a commercial LP solver. More importantly, COMET finds good solutions 

to problems that are too large to be solved by commercial LP software. 

Seven flow management test problems are described in Table 1. Complete results may be found 

m [5]. In the table, Seen represents the number of scenarios, Comm represents the number of 

Problem Nodes Arcs Seen Comm Row Col Non-0 
at16 565 1078 6 76 353002 491568 1189400 
den3 878 1640 3 110 356987 541200 251790 
meo6 707 1304 6 66 352788 516384 1196448 
sea4 859 1605 4 73 291600 468660 1031928 
(20,50) 80 139 50 45 255000 312750 807750 
(20,65) 80 139 65 45 334335 406575 1055745 
(30,30) 130 229 30 75 355800 515250 1211850 

Table 1: Test Problems 

commodities, and Nodes and Arcs represent the number of nodes and arcs in the graph g. Row, 

Col, and Non-0 specify the rows, columns, and nonzeros in the LP matrix. 

Each problem was tested with CPLEX's dual simplex method [1] and COMET: Table 2 sum

marizes both the CPU times and the memory use~ The programs were tested on an RS/6000 model 

590. Table 2 contains a lower bound for CPLEX's memory use and an upper bound for COMET's 

memory use. COtv'IET saves about an order of magnitude in CPU time and about two orders of 

magnitude in memory use. The lower memory requirements result in a better "wall-clock" time for 

CO.NfET since the operating system does less paging of virtual memory. They also suggest that 

only COMET can solve these problems within the standard memory configurations of a desktop 

PC. 

The solution accuracy for COMET is found in Table 3. CO:NfET's primal solutions are generated 

by the primal heuristic, which causes the primal gap. Since the dual optimization is an iterative 

procedure, we could improve the dual solutions by increasing the number of iterations. However, 

this demonstrates that compath decomposition finds nearly optimal primal and dual solutions using 

far less memory and time than CPLEX takes to find an optimal LP .solution. 
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I Time Memory 
Problem CPLEX COMET Ratio CPLEX COMET Ratio 
atl6 0:04:28 0:00:37 7.2 225MB 1 MIB 225.0 
den3 1 o:o3:29 0:00:21 10.0 210MB 1MB 210.0 
mco6 0:03:35 0:00:26 8.3 240MB 1MB 240.0 
sea4 0:03:14 0:00:37 5.2 . 200MB 1MB 200.0 
(20,50) 0:07:51 0:00:36 13.1 

! 

155MB 3MB 51.6 
(20,65) 0:12:49 0:00:45 17.1 125MB 3MB 41.6 
(30,30) 0:13:24 0:01:08 11.8 I 235MB 3MB 78.3 
total 0:48:50 0:04:30 10.9 11390 MB 13MB 106.9 

Table 2: CPU Times and Memory Requirements 

LP I COMET 
Problem optimum 1 Primal Diff % Diff Dual Diff % Diff 
atl6 29674.3 29865.6 191.3 o.64% 1 29534.o 140.3 0.47% 
den3 5901.5 5901.5 0.0 0.00% 5899.0 2.5 0.04% 
mco6 1284.8 1284.8 0.0 0.00% 1284.7 0.0 0.00% 
sea4 47033.4 49642.7 2609.3 5.55% 46229.9 803.5 1.71% 
(20,50) 433.7 461.5 27.8 6.40% 423.7 10.0 2.32% 
(20,65) 432.8 462.1 29.4 6.79% 424.6 8.1 1.88% 
(30,30) 1168.2 1197.3 29.1 2.49% 1145.0 23.2 1.99% 
average 3.12% 1.20% 

Table 3: Solution Accuracy for COMET 

3.5 Publications from This Research 

The work under this grant appeared as a technical report (5]. Gregory Glockner's doctoral thesis 

(3] contains all details for the entire project, including results from prior FAA grants. 
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1 Project Summary 

Under a prior FAA grant, we developed a dynamic network flow model for central flow (ATCSCC). 

This is a robust model that uses uncertain future capacity scenarios to generate optimal flow 

management solutions. We used a simulation to compare the performance of this model versus 

other central flow models. This simulation showed that our dynamic network flow model has 

potential to reduce expected delay costs by several percent. 

Because the model incorporates multiple capacity scenarios, a real-world problem can be very 

large. The purpose of this project is to develop fast algorithms for generating a flow management 

solution from the dynamic network flow model. We use a software prototype to test the effectiveness 

of these algorithms. 
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2 Work Summary 

The model development and testing was completed under prior FAA support. We describe these 

results in [2). In this project, we apply linear programming decomposition schemes for the dynamic 

network flow model. The research for this project may be divided into four sections: decomposition 

structure, subproblem algorithm, master problem algorithm, and computational testing. Decom

position structure covers the special structure in the dynamic network flow problem. We then give 

an algorithm for solving the subproblems that result from compath decomposition. To obtain a 

complete solution, we use a master problem algorithm. Finally, we test the effectiveness of our 

decomposition scheme versus general-purpose optimization software. 

In this project, we completed the research for these four sections. 

3 Summary of Results 

The model is described in [2). For a complete description of the decomposition structure and 

subproblem algorithms, see [4]. We summarize these results here. 

3.1 Formulation and Decomposition Structure 

We represent a flow management model with a time-space network. Let 9 = (N, A) be the directed 

graph where each node i E N represents a location at a particular point in timet( i). The time t( a) 

of an arc a = ( i, j) equals t( i), the time of the initial node i. The flow represents the flights~ and 

the arc capacities represent the capacity restrictions on runways or airspace. We define a scenario 

as one set of arc capacities, and we let k E n = { 1, ... , K} be the indices of the scenarios. Let 

pk be the probability weight for scenario k, and let N be the network flow matrix. Let uk be the 

vector of capacities for scenario k, and let xk be the vector of flows for scenario k. Let r( k: k') 

be the latest time that scenarios k and k' are identical. We formulate the dynamic network flow 

problem as 

z* = mm LPk(cxk) 
k 

Nxk = b 'ik ( 1.1) 

xk < uk 'ik ( 1.2) (1) 

xk- xk' 
a a = 0 'ia E A; 'ik, k': t(a) :::; r(k, k') ( 1.3) 

xk > 0 'ik. ( 1.4) 
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In (1), (1.1) are the flow balance constraints, (1.2) are the capacity constraints, (1.3) are the 

nonanticipativity constraints, and (1.4) are the nonnegativity constraints. The nonanticipativity 

constraints ensure that a decision cannot anticipate which scenario may occur when some scenarios 

are indistinguishable. Specifically, if t( a) ~ r( k, k') for some arc a, then scenarios k and k' are 

identical up to time t( a), and so the flow on a under scenarios k and k' must be identical. The 

size of ( 1) can be reduced by eliminating redundant capacity constraints ( 1.2). Also, the number of 

nonanticipativity constraints can be reduced from O(J(21Al) to O(KIAI) by sorting the scenarios 

according to [10]. 

Our decomposition scheme places the capacity constraints (1.2) in the master problem and all 

other constraints in the subproblem. This gives the Lagrangian function 

L( 7r) = :2: 1rkUk +min 
k 

and Lagrangian dual 

z* 

l:(PkC - 1rk)xk 

k 

Nxk = b Vk 

xk- xk' = 0 Va E A;Vk,k': t(a) ~ r(k,k') a a 

xk > 0 Vk 

max L( 1r 1 , ... , 1rK). 
1!"~0 

(2) 

(3) 

To evaluate the Lagrangian function, we must solve an optimization subproblem. The solutions 

to this optimization subproblem are very special. To motivate the concept, consider a single scenario 

acyclic network flow problem with a single source and a single sink. If we relax the arc capacities, 

the optimum solution allocates all flow to the cheapest source-sink path. We generalized this result 

to the multiple scenario dynamic network flow problem. We say that the source-sink paths q, q' 

are compatible for scenarios k, k' if the paths are identical up to time r(k, k'). Thus, a set of paths 

{ q1, ... , qK} is a com path if each pair qk1 , qk2 is compatible for the corresponding scenarios k1, k2. 

We proved in [4) that the solutions to the subproblems in (2) are flows that correspond to com paths. 

3.2 Subproblem Algorithm 

By itself, this compath theorem is not helpful in solving traffic flow management problems. We 

also developed an algorithm for finding a cheapest compath. Thus, we can solve the subproblem 

in the Lagrangian function (2) by finding a cheapest com path with respect to the costs (p 1 c -

1r 1 , ... , pK c - 1rk) and placing all source-sink flow along the arcs in the com path. In traffic flow 

management, we may think of a com path as a particular flight plan that is contingent on uncertain 

weather. 
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Our algorithm for finding a cheapest compath is based on dynamic programming. First, we 

define a partition of the scenarios similar to the approach in (11]. For each time t, let flt be the 

coarsest partition of the scenarios n such that if B E flt and k, k' E B, then t :5 r( k, k'). In other 

words, each B is a maximal subset of n such that all scenarios in B are indistinguishable at timet. 

The sets B E flt are known as scenario bundles (12] and can be represented as nodes in a scenario 

tree. Likewise, each scenario bundle B E flt can be partitioned at time t' > t. The collection of 

scenario bundles that result from partitioning B at time t' are denoted by Bt'. 

Define f( i, B) to be the cost of a cheapest com path from node i to the sink n over the scenario 

bundle B E flt(i)· If no path exists from i to the sink n, then we say that f( i, B) = oo for all 

B E nt(i)· Since the scenarios in B are indistinguishable at time t( i), we must select a single arc 

( i, j) from node i. This gives the recursion 

f( i, B) = mjn { L pkCij - 1rt + L f(j, B')} 
kEB B'EBt(j) 

(4) 

with boundary conditions f( n, B) = 0 for all B E nt(n)· Thus, the cost of a cheapest com path from 

1 to n over the scenarios n is /(1, f!) = Zc. For each pair ( i, B), the cheapest com path recursion 

finds an optimum arc ( i, j) to traverse. 

By ordering all nodes such that t(j) ~ t( i) for all j > i, we can solve the recursion sequentially 

from n down to the source, i = 1. This recursion only needs to scan each arc a = ( i, j) when 

its starting node i is reached. Thus, each arc is scanned exactly once for each scenario bundle 

B E nt(i)· Hence, this algorithm finds the cheapest compath in time O(KIAI). The running time 

of this algorithm is polynomial in terms of the length of the input data, which consists of the graph 

9 = (N, A) and the capacity scenarios { u 1, u2 , ..• , uK}. In [4], we argue that this is the fastest 

possible algorithm for finding a cheapest compath. 

3.3 Master Problem Algorithm 

The master problem algorithm uses a primal heuristic and Lagrangian optimization to generate a 

nearly optimal primal integral solution and an optimum dual solution. Marginal values from the 

primal heuristic give an initial dual solution. Then, the primal and dual solutions are updated 

alternately. Better dual solutions improve the cost vector used to generate a primal solution, and 

better primal bounds improve the step size used by the dual optimization. 

From the compath decomposition theorem, any solution x to (1) can be decomposed by com

paths. Reversing this process, we can build a solution by assigning flows along compaths. The 

4 



primal heuristic greedily constructs a solution by augmenting the existing :flow as much as possible 

along the cheapest feasible compath. There can be at most O(KIAI + 1) augmentations to this 

heuristic. Since we can find a cheapest compath in time O(KIAI), it follows that the heuristic takes 

O(K2 IAI 2
) time. 

The Lagrangian function (2) is piecewise linear and concave. Thus, we use nonsmooth optimiza

tion techniques to optimize the Lagrangian dual (3). Several nonsmooth optimization algorithms 

are described in [7]. In this project, we developed a new direction that approximates the direc

tion generated by bundle methods. Given a set G = {g1 , ... , gh} ~ ol( 1r) of supergradients, we 

construct the search direction 
LYIIIYII2 

d = ~ 1/11911 2 • (S) 
gEG 

The direction (5) is successful with the compath master problem, though we have not tested its 

effectiveness with arbitrary nonsmooth optimization problems. 

Given a search direction, we must also generate an appropriate step size a and ensure that 

the new iterate 1r' = 1r + ad is feasible. We use the rule developed in [6] and described in [7, 8]. 

Specifically, let 

(6) 

where {3 E (0, 2) is a constant and i is the unknown optimum value. To ensure that 1r
1 is feasible, 

we must require that 1r
1 s; 0. We use a projection method based on Rosen's gradient projection 

method [9]. We obtain a feasible dual solution 1r' by projecting the direction and the iterate. The 

combination of these two projections reduces the bad effects of being near the boundary of 1r s; 0. 

3.4 Computational Testing 

A real-world flow management problem can be very large. To be practical, we need to be able to 

solve an instance of this problem quickly. In this part of the project, we test the running time of 

our algorithms against general-purpose optimization software. 

In [5], we describe an implementation of compath decomposition called COMET and present 

computational results for multicommodity and single commodity problems. COMET generates a 

nearly optimal solution to the Lagrangian dual resulting from compath decomposition. A heuristic 

generates primal solutions, and marginal values from the heuristic are used to obtain an initial dual 

solution. In solving the linear program (1), COMET significantly reduces CPU time and memory 
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use when compared with a commercial LP solver. More importantly, COMET finds good solutions 

to problems that are too large to be solved by commercial LP software. 

Seven :flow management test problems are described in Table 1. Complete results may be found 

m [5]. In the table, Seen represents the number of scenarios, Comm represents the number of 

Problem Nodes Arcs Seen Comm 1 
Row Col Non-0 

atl6 565 1078 6 76 353002 491568 1189400 
den3 878 1640 3 110 356987 541200 251790 
mco6 707 1304 6 66 352788 516384 1196448 
sea4 859 1605 4 73 291600 468660 1031928 
(20,50) 80 139 50 45 255000 312750 807750 
(20,65) 80 139 65 45 334335 406575 1055745 
(30,30) 130 229 30 75 355800 515250 1211850 

Table 1: Test Problems 

commodities, and Nodes and Arcs represent the number of nodes and arcs in the graph 9. Row, 

Col, and Non-0 specify the rows, columns, and nonzeros in the LP matrix. 

Each problem was tested with CPLEX's dual simplex method [1] and COMET. Table 2 sum

marizes both the CPU times and the memory use. The programs were tested on an RS/6000 model 

590. Table 2 contains a lower bound for CPLEX's memory use and an upper bound for COMET's 

memory use. COMET saves about an order of magnitude in CPU time and about two orders of 

magnitude in memory use. The lower memory requirements result in a better "wall-clock" time for 

COMET since the operating system does less paging of virtual memory. They also suggest that 

only CO MET can solve these problems within the standard memory configurations of a desktop 

PC. 

The solution accuracy for COMET is found in Table 3. COMET's primal solutions are generated 

by the primal heuristic, which causes the primal gap. Since the dual optimization is an iterative 

procedure, we could improve the dual solutions by increasing the number of iterations. However, 

this demonstrates that compath decomposition finds nearly optimal primal and dual solutions using 

far less memory and time than CPLEX takes to find an optimal LP solution. 
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Time Memory 
Problem CPLEX COMET Ratio I CPLEX COMET Ratio 
atl6 0:04:28 0:00:37 7.2 225MB 1MB 225.0 
den3 0:03:29 0:00:21 10.0 210MB 1MB 210.0 
mco6 0:03:35 0:00:26 8.3 240MB 1MB 240.0 
sea4 1 0:03:14 0:00:37 5.2 

1 
200MB 1MB 200.0 

(20,50) 0:07:51 0:00:36 13.1 155MB 3MB 51.6 
(20,65) 0:12:49 0:00:45 17.1 125MB 3MB 41.6 
(30,30) 0:13:24 0:01:08 11.8 235MB 3MB 78.3 
total 0:48:50 0:04:30 10.9 1390MB 13MB 106.9 

Table 2: CPU Times and Memory Requirements 

LP I COMET 
Problem optimum Primal Diff % Diff Dual Diff % Diff 
atl6 29674.3 29865.6 191.3 0.64% 29534.0 140.3 0.47% 
den3 5901.5 5901.5 0.0 0.00% ' 5899.0 2.5 0.04% 
mco6 

I 
1284.8 1284.8 0.0 0.00% 1284.7 0.0 0.00% 

sea4 47033.4 49642.7 2609 .3 5.55% 46229.9 803.5 1.71% 
(20,50) 433.7 461.5 27.8 6.40% 423.7 10.0 2.32% 
(20,65) 432.8 462.1 29.4 6.79% 424.6 8.1 1.88% 
(30,30) 1168.2 1197.3 29.1 2.49% I 1145.0 23.2 1.99% 
average I 3.12% 1 1.20% 

Table 3: Solution Accuracy for COMET 

3.5 Publications from This Research 

The work under this grant appeared as a technical report [5]. Gregory Glockner's doctoral thesis 

[3] contains all details for the entire project, including results from prior FAA grants. 
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Summary 

A directed graph is dynamic if each node i has a time t( i) and each arc ( i, j) has t( i) < t(j). 

A dynamic network flow problem is a network flow problem where the associated directed 

graph is dynamic. Dynamic network flows are closely related to inventory systems, so they 

have many modeling applications. 

In many real-world problems, current decisions are based on an uncertain future. We 

consider a dynamic network flow problem with a set of arc capacity scenarios, which rep

resent a discrete random capacity distribution. We formulate a problem to find a flow that 

minimizes the expected co~t over these capacity scenarios. The problem consists of a set 

of dynamic network flow problems, one per scenario, plus a set of nonanticipativity con

straints. These nonanticipativity constraints ensure that a decision cannot anticipate which 

scenario may occur when two or more scenarios are indistinguishable. 

Solving this large scale linear program with commercial software can be extremely time 

consuming or even impossible due to memory limitations. In addition, adding integer 

restrictions on the variables makes the problem NP-hard. We develop a new decomposition 

technique called compath decomposition that treats the capacity constraints as complicating 

constraints. The resulting subproblems can be solved in linear time, and the master problem 
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is reasonably small. 

To solve the master problem, we develop a Lagrangian decomposition method based on 

the compath structure. This algorithm produces a near-optimal primal integral solution 

and an optimum solution to the Lagrangian dual. The dual is injtialized using marginal 

values from a primal heuristic. Then, primal and dual solutions are improved in alternation. 

As an important case study, we consider a model for air traffic flow management. Es

sentially, we want to balance inexpensive ground delays versus expensive and uncertain 

airborne delays. By incorporating uncertainty in modeling airport capacities, we can re

.duce air traffic delay costs by nearly 10%. We also demonstrate that com path decomposition 

can solve this real-world problem using far less memory and time than commercial linear 

programming software. 
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