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SUMMARY

This thesis provides a real-time algorithmic optimal control framework for au-

tonomous switched systems. Traditional optimal control approaches for autonomous

switched systems are open-loop in nature. Therefore, the switching times of the sys-

tem can not be adjusted or adapted when the system parameters or the operational

environments change. This thesis aims to close this loop, and apply adaptations

to the optimal switching strategy based on new information that can only be cap-

tured on-line. One important contribution of this work is to provide the means to

allow feedback (in a general sense) to the control laws (i.e. the switching times) of

the switched system so that the control laws can be updated to maintain optimal-

ity of the switching-time control inputs. Furthermore, convergence analyses for the

proposed algorithms are presented. The effectiveness of the real-time algorithms is

demonstrated by an application in optimal formation and coverage control of a net-

worked system. This application is implemented on a realistic simulation framework

consisting of a number of Unmanned Aerial Vehicles (UAVs) that interact in a virtual

3D world.

xi



CHAPTER I

INTRODUCTION

1.1 Introduction to Hybrid and Switched Systems

As control systems grow more complex, general system theories become less adequate

to study and regulate the behaviors of these systems. In the last few decades, there

has been a huge amount of research on a special class of systems, which are called

hybrid systems. Hybrid systems can be described as systems that are controlled by

discrete events in the higher level, while their dynamical behaviors are governed by

continuous dynamical laws in the lower level. A hybrid system is hybrid in nature

because they obey a set of possible dynamical laws. For such a hybrid system, discrete

events in the higher level dictate the continuous dynamical behavior of the system in

the lower level.

Hybrid systems appear in many applications and technologies, since there are

a huge number of systems that permit a number of modes of operations in their

behavior. These systems can be naturally modelled as hybrid systems. Furthermore,

it is easier to control many systems by dividing their control laws into distinct modes

than traditional control strategies. As a result, hybrid system control problems arise

in a variety of applications, including situations where a control module has to switch

its attention among a number of subsystems [49, 59, 67], collect data sequentially from

a number of sensory sources [22, 45], and achieve formation and coverage control of

networked systems [10, 12]. Relevant domains that require hybrid system control

theories include the field of behavior-based robotics [5, 9, 38], manufacturing systems

[53], power electronics [24, 29, 40], multi-agent network control [56] and air traffic

control [66]. By no means is the above list complete or exhaustive, since hybrid
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systems by now are widely used in many fields and applications. See [41] and reference

therein for a recent survey on hybrid systems.

General nonlinear control theories without modification usually do not work well

with hybrid systems since they do not capture the salient structures of distinct modes

of operation. This is due to the fact of hybrid systems being controlled by switching

strategies in addition to continuous control signals. A switching strategy for a hybrid

system provides the appropriate continuous dynamical law for the system, as well as

conditions to change from one dynamical law to another (discrete events). Effective

control of a hybrid system requires an adequate switching strategy as well as a suitable

control input signal.

We preface the discussion of hybrid and switched systems with a brief historical

perspective. The interest in hybrid automata and hybrid systems boomed in the

1980s due to increasingly accessible methods to analyze these systems. In early 1990s,

embedded systems that utilize event driven dynamics in the upper level, and digitized

controllers that control continuous systems in the lower level, became more common.

ATM machines and common house appliances are instances of such systems. All

of these systems are examples of hybrid systems, and the effective control of these

systems became very important. Many studies then surfaced to model and analyze

these hybrid systems.

In [21] several models of hybrid systems were proposed and a framework was

provided to study these hybrid systems. Reference [20] provided a unified frame-

work to model and control hybrid systems, by proposing two different methodologies

(or strategies) for controlling hybrid systems: autonomous switching and controlled

switching. Stability analysis of hybrid systems was investigated through different ap-

proaches, for example [19, 46, 70]. Recently, many research groups started to focus on

optimal control of hybrid systems, and these studies led to real-time optimal control

of switched systems, which is the content of this thesis. We withhold a more detailed
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discussion on optimal control of hybrid systems until Chapter 2.

1.1.1 Behavior and Control of Hybrid Systems

To understand the behavior and control of hybrid systems, we first introduce the

notion of modes. Each mode of a hybrid system corresponds to a dynamical law. A

mode sequence is defined as a sequence of modes. Mode switching (or mode transition)

refers to switching the mode of operation of the system from the current mode to the

next mode according to the mode sequence. Using the framework proposed in [20],

a hybrid system can be modelled as a system that allows itself to be controlled by

either autonomous or controlled switching strategies, or both.

Autonomous switching is a switching strategy that is characterized by switching

manifolds (or more generally, regions of state space), which trigger mode transitions.

The switching manifolds are previously given and fixed, and a mode transition from

one vector field to another is defined for each manifold. In the literature, this class

of hybrid systems is commonly referred to as autonomous switching hybrid systems

(ASHS). The switching times associated with an ASHS are called autonomous switch-

ing times.

Figure 1: Block diagram model of an autonomous switching hybrid system.
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The model of an ASHS, demonstrated using block diagrams, is shown in Figure

1. As seen from Figure 1, it is useful to separate the interface between the discrete

and the continuous component of a hybrid system. In the lower level, the continuous

dynamics is controlled by an external input and a switch signal commanded by a

switch signal generator. In the higher level, the discrete dynamics is controlled by

the predefined switching manifold (or switching regions). If the state of the system

is within the switching manifold, the discrete dynamics (controlled according to a

suitable mode sequence) triggers a mode transition by generating a switch signal.

The switch signal then enforces the system to change its dynamical law to the desired

one encoded in the mode sequence. It should be noted that, since the switching

manifolds (or regions) are fixed a priori, an ASHS is only controlled by the external

input.

Figure 2: Block diagram model of a controlled switching hybrid system.

Controlled switching is a switching strategy that is characterized by a sequence of

switching time instants. Hence, it is assumed that there is an accurate system clock

embedded within the hybrid system that checks its time with the desired switching

times. This class of hybrid system is referred to as controlled switching hybrid systems

(CSHS). The switching times associated with a CSHS are called controlled switching
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times. A model of a CSHS, demonstrated using block diagrams, is shown in Figure 2.

Similar to an ADHS, switch transitions are triggered by switch signals generated by

the discrete dynamics, which enforce the system to switch its dynamical law according

to a fixed mode sequence.

Combining both autonomous and controlled switching strategies, a general hybrid

system can be modelled using block diagrams as shown in Figure 3.

Figure 3: Block diagram model of a general hybrid system.

Furthermore, a hybrid system may undergo a discrete state jump at each mode

transition. State jumps are modelled by a (possibly nonlinear) function defined on

the state of the system for each mode. When the hybrid system triggers a mode

switching to the next mode, the state at that time instant is reset using the state

jump function corresponding to the new mode.

Finally, if a hybrid system does not allow an external control input, then it is

called an autonomous hybrid system. Note that, if an ASHS is autonomous, then

it is fully autonomous in the sense that there is no external control influence on the

system. However, if a CSHS is autonomous, then the system is controlled by the

sequence of switching times, and this sequence composes the sole control influence.
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1.1.2 Switched Systems

Switched system is a term used in many hybrid system literature as a short name for

controlled switching hybrid systems. Autonomous switched systems are autonomous

CSHS, hence they do not allow an external control input. We also use this definition

in this thesis, and this thesis focuses on autonomous switched systems.

It should be noted that incorporating ASHS into the general control theory of

switched systems typically requires a straight-forward extension, since switching man-

ifolds are fixed a priori and they are not part of the control variables of the system.

For optimal control problems, this extension causes the costate Lagrange Multiplier

trajectories to contain discrete jumps at switching times instead of being continuous

(see [63]).

1.2 Mathematical Model of Autonomous Switched Systems

We now establish a mathematical description of autonomous switched systems and

introduce a set of basic notations and terminologies which will be used throughout

this thesis.

We denote x(t) ∈ R
n as the state of the system at time t. Using the models

established in the previous section, we can describe the evolution of an autonomous

switched system using the differential inclusion form

ẋ ∈ {fq(x), q ∈ A}, t ∈ [0, T ], (1)

with a time horizon T and initial condition x0. A is a finite index set enumerating the

possible modes of the system, and {fq : R
n → R

n}{q∈A} is a collection of (generally

nonlinear) sufficiently smooth functions. In this thesis, we usually assume that the

modal functions are continuously differentiable, and we will note their smoothness

requirements in the proposed results. The functions fq, q ∈ A are henceforth referred

to as modal functions.
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The mode sequence of the system is denoted as q̄ = {q1, q2, ..., qN+1}, where N +1

is the total number of modes. Note that the mode sequence q̄ and hence N are not

required to be fixed. The switching time instant between mode i and mode i + 1

is denoted by τi. Given the mode sequence of the system, we call the vector τ̄ =

[τ1, τ2, ..., τN ]T the switching time vector, and as such M = {q̄, τ̄} forms a switching

schedule for the system. Note that the switching schedule M composes the entire

control influence on an autonomous switched system.

For all switching time vectors in R
N , a feasible switching time vector must follow

the piecewise linear inequality constraint

0 = τ0 ≤ τ1 ≤ ... ≤ τN ≤ τN+1 = T. (2)

We define feasible set Λ as the set of all switching time vectors that satisfy (2), hence,

Λ := {τ̄ = [τ1, τ2, ..., τN ]T : 0 = τ0 ≤ τ1 ≤ ... ≤ τN ≤ τN+1 = T}. A switching time

vector τ̄ is a feasible control input for an autonomous switched system if and only if

τ̄ ∈ Λ.

To incorporate possible state jumps at mode transitions, we may define Ψi : R
n →

R
n, i = 1, 2, ..., N+1 as a collection of state jump functions, corresponding to a mode

sequence q̄. For the i-th mode switching of the system, the state of the system after

mode transition is reset by the state jump function as

x(τ+
i ) = Ψi+1

(

x(τ−i )
)

, i = 1, 2, ..., N, (3)

where x(τ+
i ) denotes the state of the system immediately after the jump and x(τ−i )

immediately before the jump. To simplify the control problem and notations, we do

not consider state jumps in this thesis. Therefore, the state of the system is always

continuous across switching times.

For simplicity of notation, we define τ0 = 0 and τN+1 = T and denote fi(x) =

fqi(x). Then, given a switching schedule M, we can describe the evolution of an

7



autonomous switched system in the following form.

ẋ = fi(x), t ∈ [τi−1, τi), i = 1, 2, ..., N + 1. (4)

Equation (4) describes the mathematical model of autonomous switched systems we

use throughout this thesis. Figure 4 illustrates an example trajectory of a scalar

valued autonomous switched system.

ẋ = f2(x)

τ2 τNτ0 = 0 τ1 τN+1 = T

· · ·

· · ·

ẋ = f3(x)

ẋ = fN (x)
ẋ = fN+1(x)

ẋ = f1(x)

x

t

x0

Figure 4: Example of a scalar switched system (x(t) ∈ R). The system switches
from the mode i to mode i+ 1 at time τi.

1.3 Optimal Control of Autonomous Switched Systems

Optimal control is deep-rooted in general control theory, and it is particularly useful

for complex and nonlinear systems, such as hybrid systems. Thus, much research

attention has been focused on establishing an optimal control framework for hybrid

systems. Optimal control allows one to quantify the performance of a system using a

cost defined on the state trajectory of the system, and the control problem becomes

finding the control input that optimizes this performance (or equivalently, minimizes

the cost). To this end, let Li : R
n → R and φi : R

n → R, i = 1, 2, ..., N + 1, to be a

collection of (generally nonlinear) sufficiently smooth functions, and then we define

8



the cost functional J as the following

J =
N+1
∑

i=1

(∫ τi

τi−1

Li(x(t))dt+ φi (x(τi))

)

. (5)

The function Li is called a trajectory cost function and φi is called a switching cost

function. They are usually assumed to be continuously differentiable, and again we

will note their smoothness requirements in the proposed results.

Optimal control of autonomous switched systems involves minimizing the cost

functional J over switching schedules M = {q̄, τ̄}. This problem is called optimal

timing control problem. The switching schedule M consists of two variables: the

sequence variable q̄ and the timing variable τ̄ . Hence, this problem can be further

divided into two sub-problems. The problem of finding optimal placement of switch-

ing times given a fixed switching sequence is referred in the literature as the time

optimization problem. This is the easier problem of the two, since it can be viewed

as a nonlinear finite dimensional optimization problem. The problem of finding an

optimal switching sequence of a switched system is a more challenging problem, due

to the variable dimension of the control variable. This optimization problem involves

optimizing the cost functional J over the space of variable-length sequences, which is

generally a hard problem. This is called optimal mode scheduling problem.

Note that the switching cost function φi is optional for an optimal control problem,

and they are sometimes omitted in the problems considered in this thesis. Extension

of the results to include switching costs is generally possible, and an example can be

seen in [29].

It should be stressed that, the optimization problem at hand is generally non-

convex, since J(τ̄ ), given q̄, is not a convex function in general. Hence, the goal of

the optimization problem is to find a local minimum that satisfies certain necessary

optimality conditions. Thus, all algorithms presented in this thesis are limited to

finding local optimal solutions.
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1.4 Motivations and Contributions

An abundant amount of work has been done for the optimal control problem of

autonomous switched systems. A number of approaches that pertain to this problem

can be found in [7, 8, 14, 15, 18, 39, 43, 44, 48, 49, 58, 62, 63, 64, 70, 71, 72] and

references therein (these approaches form the necessary foundation for this thesis,

and they will be discussed more in detail in Chapter 2). However, it should be made

clear that an optimal control problem formulated in the last section aims to find a

feed-forward control, which is the switching times that minimize the cost functional

J . This is not surprising, because optimal control approaches for nonlinear systems

generally generate open-loop control input. In this sense, all of these approaches

address the problem in the off-line setting, since the optimal solution is computed

off-line, and then it is applied to the plant without modification during run-time of the

system. Furthermore, the optimal solution computed with these approaches requires

and depends on the initial condition of the system.

There are a number of issues with this open-loop approach of controlling switched

systems. Some applications simply can not stay idle and wait for off-line computa-

tions. The performance of the system in run-time may be degraded by noise and

disturbances, and initial condition of the system may be unknown. These problems

are currently rarely addressed in the literature. This thesis aims to address these

problems that emerge during real-time operation of the plant, and the goal of this

thesis is to provide a novel and original framework for optimal control of autonomous

switched systems in real-time. One important contribution of this thesis is to provide

the means to allow feedback (in a general sense) to the control laws of the switched

system so that the control law (switching times) can be updated to maintain opti-

mality.

An example of this feedback-based control framework is in the form of using up-

dated state estimates obtained through observer feedback of the switched system.
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Assume that there is a state observer that provides increasingly accurate state in-

formation and the optimal control laws of the system must be updated so that they

remain optimal with respect to improving state estimates. Using this method, the

initial state of the switched system is not required to be known before the system

starts running, which is important for most realistic applications. Another example

is when a switched system is used to track a moving target that can only be measured

in real time. In this case, the cost functional needs to be constantly updated.

In addition, this thesis addresses the problem when the switched system operates

under a noisy environment. Hence, this thesis provides an optimal controller which is

robust under disturbances. This controller is capable of adjusting according to state

measurements and compensating the system for low amplitude and high frequency

deviations from the optimal trajectory. This state-feedback controller utilizes optimal

switching planes, and compensation of small deviation from an optimal trajectory is

achieved by intersecting this plane. This intersection require little computation to

check, and thus this approach is highly suitable for disturbances. As an important

contribution of this thesis, we show that the optimal switching plane exists and this

approach is applicable only if the control problem considered allows the final time T

to be part of the control variables.

Finally, optimal control of switched system requires frequent computation of the

state trajectory as a function of the control variables. However, when the switched

system is required to operate for a long time, it may be no longer feasible to compute

the optimal solution due to the length of the simulated state trajectory. In this case,

this thesis provides a receding horizon technique to provide sub-optimal control laws

for the switched system by using a much smaller time horizon.

An important remark should be made on on-line update of the optimal control

input for autonomous switched systems. Due to Bellman’s Principle of Optimality,

the overall cost will not be affected by using non-optimal control for a period of time, if
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the optimal switching time is obtained fast enough. This is because the control inputs

are in terms of time and they are not applied (by triggering mode transitions) until the

operation time of the system reaches the switching time stored in τ̄ . This is the reason

why on-line optimal control of autonomous switched system is attractive and real-

time algorithms proposed in this thesis exploit the special structures of autonomous

switched systems. This property is generally not true for non-autonomous switched

systems or other nonlinear real-time optimal control problems.

The objective of this thesis is to provide a set of real-time algorithms that generate

on-line optimal controllers for autonomous switched systems. The algorithms are

required to be feasible to be implemented in real-time. Certainly, this feasibility

depends on the computation hardware on-board the system. Hence it is important to

first define what constitutes a “real-time” algorithm in this thesis, and this definition

needs to be independent of the computation hardware. We consider an algorithm to

be real-time if it is executed during the operation of the system, and at each time

iteration of the algorithm, the number of forward simulations of the state trajectory

must be low enough. We regard this number to be low enough if it is a polynomial

function of N (number of switches).

Let us give an example of an algorithm which is not considered real-time in this

thesis. One can design a trivial algorithm that recomputes the optimal solution using

the current state measurement at each time iteration of the system by formulating a

new optimal control problem and solving it using any optimization approaches (say,

gradient descent method). This algorithm solves the problems posed by this thesis,

but it requires a non-polynomial function of N number of forward simulations to

achieve convergence at each time iteration. This is because the optimization problem

is highly nonlinear and convergence may take very long amount of time. Worst of all,

the performance of this algorithm can not be evaluated because there is no way to

know how many forward simulations are required for each iteration.
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The algorithms proposed in this thesis execute one step of either gradient descent

(first order) or Newton (second order) method at each time iteration. The computa-

tion of the gradient requires one forward simulation of the state trajectory, and the

computation of the Hessian matrix (using finite difference approximation) requires

N2

2
number of simulations. Hence, they can be considered real-time algorithms, and

throughout this thesis, we assume that the computation hardware is fast enough to

finish these computations in each iteration.

It should be noted that, due to the real-time requirement of the proposed algo-

rithms, this thesis mainly focuses on the time optimization problem (the problem

of minimizing J over τ̄ ∈ Λ, given a mode sequence q̄). Optimal mode scheduling

problems are generally much harder to solve, and the algorithms that address these

problems are usually highly computationally expensive even in the off-line case. In

this thesis, we usually assume that a mode sequence is fixed and given a priori, which

is the case for many applications. We propose an algorithm that improves the current

mode sequence, but we never regard the final mode sequence as being optimal.

Figure 5: Real-time control of an autonomous switched system. The switching times
of the system are modified by the on-line optimal controller based on state feedback.
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In summary, this thesis provides a closed-loop optimal control framework for au-

tonomous switched systems, i.e. using state feedback to control the switched system

in real time. This idea is illustrated in Figure 5 using the block diagram represen-

tation of switched systems. This thesis also supplies convergence analysis for the

proposed algorithms.

1.5 Organization of the Thesis

The organization of this thesis is as follows: This chapter provides a background

introduction to optimal control of autonomous switched systems. In Chapter 2, some

previous work on open-loop optimal control of switched systems is presented. These

work establishes the groundwork, on which this research is based on. Chapter 3

introduces observer-based optimal timing control of autonomous switched systems

[35, 68]. Chapter 4 focuses on a special class of optimal control problems, where an

explicit state-feedback optimal switching controller can be obtained [32, 61]. Chapter

5 studies the problem of optimal timing control of autonomous switched systems when

the cost function is not known before run-time [33, 34]. Chapter 6 studies optimal

timing control of autonomous switched systems using a receding horizon approach

[30]. Chapter 7 provides an application for the real-time control approaches examined

in this thesis. The application produces a pilot decision framework where a network

team of Unmanned Aerial Vehicles (UAVs) can be controlled and navigated by a

single pilot. Within this application, the real-time algorithms studied in this chapter

are used to provide on-line pilot decision support to aid the human pilot [30, 31].

The content of this thesis has resulted in a number of publications authored or co-

authored by the author of this thesis. The references given here are the publications

associated with each chapter.
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CHAPTER II

OPEN-LOOP OPTIMAL TIMING CONTROL OF

AUTONOMOUS SWITCHED SYSTEMS

In this chapter, we briefly overview previous work on optimal timing control of au-

tonomous switched systems. Various approaches to solve this problem by different

research groups are examined. Open-loop optimal control lays the foundation for the

real-time closed-loop approaches presented in this thesis.

There are a number of approaches pertaining only to switched systems with linear

sub-systems [14, 15, 25, 43, 49]. These results are difficult to be applied to this work,

since we are interested in optimal control theory for general switched systems. In

this chapter, we focus on results and algorithms [8, 39, 62, 63, 64, 71, 72] which are

applicable to switched systems with linear or nonlinear sub-systems.

2.1 Switching-time Optimal Control

First, we formulate a timing optimization problem for autonomous switched systems,

using the mathematical model introduced in the previous chapter.

Given an autonomous switched system

ẋ = fi(x), t ∈ [τi−1, τi), i = 1, 2, ..., N + 1, (6)

where x(t) ∈ R
n is the state variable. Initial condition x(0) = x0 and final time T

are given. Continuously differentiable functions fi : R
n → R

n are modal functions

correspond to a fixed mode sequence q̄ = {1, 2, ..., N + 1}. The notations τ0 = 0 and

τN+1 = T are used. The control input of this system is the switching time vector

τ̄ = [τ1, τ2, ..., τN ]T , where it must satisfy the constraint τ̄ ∈ Λ and

Λ := {τ̄ = [τ1, τ2, ..., τN ]T : 0 = τ0 ≤ τ1 ≤ ... ≤ τN ≤ τN+1 = T}. (7)
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We can then formulate a timing optimization problem

min
τ̄∈Λ

J =

∫ T

0

L(x(t))dt, (8)

with a given continuously differentiable trajectory cost function L : R
n → R. This

optimization problem is nonlinear, finite dimensional and non-convex. Therefore, the

solution that one hope to obtain for this problem is only locally optimal.

A major tool in the field of optimal control is the Pontryagin Maximum Principle.

Sussmann [64] first derived a variation of the maximum principle for hybrid systems.

The hybrid maximum principle leads to necessary optimality conditions, which are

essential for solving optimal control problems.

Before we describe the necessary optimality conditions for this problem, we first

need to introduce a set of auxiliary mathematical objects. Given a state trajectory

{x(·)}Tt=0, x(t) ∈ R
n, we define a trajectory {p(·)}Tt=0, p(t) ∈ R

n by the differential

equation

ṗ(t) = −
∂fi

∂x

T

(x(t))p(t) −
∂L

∂x

T

(x(t)), t ∈ [τi−1, τi], i = N + 1, N, . . . , 1, (9)

with the boundary condition p(T ) = 0. This trajectory is commonly called the

costate in the optimal control literature. The costate trajectory is computed in a

backwards fashion, starts at time t = T and ends at time t = 0, given that the

entire state trajectory x(t) is available. The costate trajectory is continuous across

switching times. The state and costate pair are usually obtained at each iteration of

an optimization algorithm. Given an initial condition x0 and a switching time vector

τ̄ , the state is first simulated forward, then the costate can be computed backward.

Figure 6 shows an examples of the costate trajectory, and visually displays how the

state and costate trajectories are computed.

Finally, we define the Hamiltonian (required for the maximum principle) by

H(x(t), p(t)) = pT (t)fi(x(t)) + L(x(t)), t ∈ [τi−1, τi], i = 1, 2, . . .N + 1. (10)
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τ2 τNτ0 = 0 τ1 τN+1 = T

· · ·

· · ·

ṗ = −

∂fi

∂x

T
(x)p −

∂L
∂x

T
(x)

p

tp(T ) = 0

ẋ = f2(x)

τ2 τNτ0 = 0 τ1 τN+1 = T

· · ·

· · ·

ẋ = f3(x)

ẋ = fN (x)
ẋ = fN+1(x)

ẋ = f1(x)

x

t

x0

Figure 6: Example of a state and costate pair for a scalar-valued switched system
(x(t) ∈ R). The state trajectory x(t) is computed forward with an initial condition
x(0) = x0. Then the costate trajectory p(t) is computed backwards with an initial
condition p(T ) = 0.

The hybrid maximum principle proposed by [64] states that the optimal switching

schedule minimizes the Hamiltonian.

2.1.1 First-order Necessary Optimality Conditions and Gradient Formula

Using the hybrid maximum principle as a framework, Shaikh and Caines ([62, 63])

proposed necessary optimality conditions for optimal timing control of switched sys-

tems. The necessary optimality conditions state that the solution point for an optimal

switching schedule satisfies a set of properties. First, the Hamiltonian is minimized

over the space of switching schedules. Second, for a given switching sequence q̄,

the Hamiltonian is continuous at switching times. In the case of timing optimization

problem where a switching sequence q̄ is fixed, only the second optimality condition is

relevant. Nevertheless, the first optimality condition is useful if one wishes to address

the optimal mode scheduling problem.

Using these necessary optimality conditions, multiple algorithms were established

by several groups of researchers to solve the timing optimization problem (8). Shaikh
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and Caines [63] proposed an algorithm that iterates the switching times so that they

converge to a solution point where the Hamiltonian is continuous across all switching

times, in which case the the optimality condition is fulfilled. This algorithm is similar

to the gradient descent algorithm developed by Axelsson, Egerstedt and Wardi in

[39]. Namely, both algorithms update the switching times so that the gradient ∂J
∂τ̄

converges to zero. A number of similar algorithms were proposed by Xu and Antsaklis

(see [71, 72]), that use the second derivative of the cost as a function of switching

times for the descent direction instead of just the gradient (hence, this approach is

using the second order Newton-Raphson method).

In [39], an equivalent necessary optimality condition was derived in the form of

∂J

∂τ̄
= 0, and

∂2J

∂τ̄ 2
≻ 0, (11)

where the vector

∂J

∂τ̄
=

[

∂J

∂τ1
,
∂J

∂τ2
, ...,

∂J

∂τN

]T

(12)

is called the gradient and the matrix ∂2J
∂τ̄2 is called the Hessian.

The equation to compute the gradient for the timing-optimization problem was

derived as

∂J

∂τi
= pT (τi)

(

fi(x(τi)) − fi+1(x(τi))

)

, i = 1, ..., N. (13)

These equations provided a simple method to check for Kuhn-Tucker points of the

optimal control problem (they are Kuhn-Tucker points due to the constraint τ̄ ∈ Λ).

Therefore a gradient descent algorithm can be constructed.

2.1.2 Gradient Descent Algorithm

Before we present a gradient descent algorithm to solve the time optimization problem

(8), we should first address the constraint τ̄ ∈ Λ. Instead of using the usual approach

with Lagrange Multipliers, one should observe that this constraint is linear, and the

gradient projection method can be applied. Using this method, we can ignore the
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constraint, unless the constraint is active and the iteration point is on the boundary

of the constraint, in which case the projection of the gradient onto the feasible set Λ

should be used as the descent direction. This projection is easy and fast to obtain

due to the linearity and simplicity of the constraint, and one can refer to [8], page 26

for an algorithm that projects the gradient vector with any number of N .

We are now ready to present a gradient descent algorithm.

Algorithm 2.1 Step 0: Choose an initial point τ̄ ∈ Λ and ǫ.

Step 1: Compute the state trajectory x(t) forward with τ̄ and initial condition x0,

using the dynamical equation (6).

Step 2: Compute the costate trajectory p(t) backward with the terminal condition

p(T ) = 0 and state trajectory x(t), using the differential equation (9).

Step 3: Compute the gradient vector ∂J
∂τ̄

by equation (13).

Step 4: If τ̄ lies in the interior of Λ, set h̄(τ̄ ) = −∂J
∂τ̄

. Else, set h(τ̄ ) as the projection

of the vector −∂J
∂τ̄

onto the feasible set Λ.

Step 5: Compute the Armijo [6] step-size γ.

Step 6: Set τ̄ = τ̄ + γh̄(τ̄).

Step 7: If ||h̄(τ̄)|| < ǫ, then quit, otherwise, go back to Step 1.

We now give an example of solving a timing optimization problem by the gradient

descent algorithm for an autonomous switched system. Consider a simple current

regulator switch circuit as shown in Figure 7. This system can be modelled as a

switched system switching between two modes. The state of the system is the current

through the inductor.

The goal of this optimal control problem is to optimize the switching times of the

circuit so that the current of the circuit tracks a reference current Iref , given a fixed

number of switchings. In this example, we fix the number of switchings to 6, and

we run Algorithm 2.1 with a random initial value of τ̄ . The output optimal solution

after the convergence of the gradient descent algorithm is shown in Figure 8.
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Figure 7: Example of optimal control of a switched system. The system switches
from the closed-switch circuit, where the current in the inductor is charged by a power
source, to the open-switch circuit, where the current in the inductor is discharged to
provide power for a resistive load.
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Figure 8: Example of the output of the gradient decent algorithm. x is the trajectory
of the current through the inductor. Iref is the current level that the current regulator
circuit aims to track. In this example, the current is initially saturated at around
29A, and the Iref is fixed at around 14.5A. The number of switchings is set to 6.
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2.2 Mode Scheduling

Now we turn our attention briefly to the problem of mode scheduling, namely the

problem of optimizing J as defined in (8) over the space of switching schedules M =

{q̄, τ̄}. For this problem, the switching sequence q̄ is also part of the control variables,

and the number of switchings N is no longer fixed. This problem is much harder, due

to the much larger control space consisting of the space of variable-length switching

sequences.

As one approach to solve this problem, Shaikh and Caines proposed the con-

cept of an optimality zone (for a detail description, see [62]). The optimality zone

is an establishment of a grid that is the Cartesian product of state space coupled

with time, times itself ((Rn+1)2). First,the optimal state trajectory using the opti-

mal modal function fq, q ∈ A is computed between every point in this grid. Then

the algorithm updates the switching times so that the Hamiltonian is continuous

at switching transitions, and the optimal state trajectory is obtained from the corre-

sponding points (state coupled with time) on the optimality zone. For this algorithm,

both the storage and computational complexity of this method is large, especially for

the pre-computation of the optimality zone. Therefore it may not be feasible for a

wide range of applications, particularly in a real-time setting.

For the purpose of this thesis, we do not aim to solve the optimal mode scheduling

problem in real-time due to high computational complexity of the problem at hand.

Instead, we will use the mode insertion idea proposed by Egerstedt, Wardi and Ax-

elsson ([8, 39]) to improve the current switching schedule. This approach is based on

needle point variations, and we describe its principle in the next sub-section. This

approach will be extended to a real-time setting as explained in the next chapter.
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2.2.1 Mode Insertion

Assume that an optimal switching time vector τ̄ ∗ for the current switching sequence

q̄ is obtained using Algorithm 2.1. Then one can attempt to add a mode into the

current mode sequence and observe the effect of this action on the cost functional

J . This process is named mode insertion, in which a mode q ∈ A is inserted into

a different mode (for example mode i) at some time point τ . After each insertion

operation, two switching transitions at τ are added to the switching time vector τ̄ ,

and the the mode q is added to the switching sequence q̄. This insertion process is

illustrated in Figure 9.

τNτ0 = 0 τ1 τN+1 = T· · ·

t

· · ·τi−1 τi

f1 fN+1fi

τ

τNτ0 = 0 τ1 τN+1 = T· · ·

t

· · ·τi−1 τi

f1 fN+1fi fi

τ +
σ

2
τ −

σ

2

σ
f

Figure 9: The insertion operation. The mode q is inserted to the i-th mode
at time τ for a length of σ. When σ = 0, τ̄ = [τ1, ..., τi, τi+1, ..., τN ] becomes
[τ1, ..., τi, τ, τ, τi+1, ..., τN ], and q̄ = {1, ..., i, i+1, ..., N +1} changes into {1, ..., i, q, i+
1, ..., N + 1}.

For the cost functional (8), the inserted switching times incur zero cost right

after a mode insertion since the state trajectory x(t) is not changed. For this cost

functional, reference [8, 39] proposed a method to evaluate the one-sided derivative of

the cost J as a function of the insertion length σ for a non-negative σ. This derivative

depends on the time of insertion τ , as well as the modal function inserted (denoted by

fq, q ∈ A). The evaluation of this derivative for σ = 0 is called the insertion gradient,

and it can be computed as

∂J

∂σ+
(0, τ) = pT (τ)(fi(x(τ)) − fq(x(τ)), (14)

where mode q was inserted in mode i. The insertion gradient evaluates the benefit (or
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lack thereof) of a particular insertion operation. If this insertion gradient is negative,

then in a neighborhood of τ , the cost goes down as the insertion length increases (the

two inserted points move away from each other). If the gradient descent algorithm is

executed for the modified switching schedule, then the cost can be further reduced.

The evaluation of the insertion gradient allows one to find the best time and

mode to modify the current switching sequence. Therefore, one can repeatedly solve

the timing optimization problem after inserting modes to obtain a better and better

switching schedule M. In [8], it was proved that M is locally optimal if the minimum

of insertion gradient is 0 over the time interval t ∈ [0, T ] and the index set A, To

make the algorithm practical, the mode insertion stops when the lowest insertion

gradient over the entire time horizon [0, T ] is within a predefined bound. It should be

noted that, solving the optimal mode scheduling problem through this approach still

requires many repetitions of Algorithm 2.1. Thus, in the real-time extension of this

algorithm, we do not expect the minimum insertion gradient to be below this bound.

It should be noted that, if there are costs associated with individual switchings, i.e.

the cost functional contain trajectory cost and switching cost as shown in equation

(5) in Chapter 1, then the insertion algorithm has to be modified to account for

discontinuous increases in the cost functional associated with mode insertions (see

[29]).

An example of the insertion algorithm in action is shown in Figure 10 in order to be

compared to Figure 8 because both figures show the solution to optimization problems

of the same cost functional (one with fixed number of switchings, one without). Figure

10 shows the resultant switching schedule obtained with the mode insertion technique.

Figure 11 shows the cost functional J as a function of the iteration count, which counts

the total number of iterations of Algorithm 2.1 (it is executed many times). Mode

insertion is done every time when Algorithm 2.1 is completed. It is readily seen that

during a run of Algorithm 2.1 for a fixed number of switching times, the cost goes
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down until it flattens out. Then an insertion is made, which results in a decline in the

cost. However, the cost can not be reduced much further when the insertion gradient

is close to 0.
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Figure 10: Example of mode scheduling using mode insertion technique. In this
example, the optimal control problem is posed to regulate the current of using the
circuits shown in Figure 7. In this case, we do not fix the total number of switchings.
In this graph, x is the trajectory of the current of the circuit. Iref is the current level
that the current regulator circuit aims to track. In this example, the current regulator
circuit is initially saturated at around 29A, and the Iref is fixed at around 14.5A. The
mode insertion stops after the insertion gradient (14) is below a prescribed bound.
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Figure 11: Cost vs. iterations for the off-line mode insertion algorithm executed to
get the final trajectory shown in Figure 10. The number of switchings is initially 3,
and eventually it grows to 150. This number is shown at the bottom of the figure.
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CHAPTER III

OBSERVER-BASED OPTIMAL TIMING CONTROL

In previous chapters, we have discussed several reasons for developing algorithms for

real-time optimal control of autonomous switched systems. One important problem

is that, for many switched systems in practice, the state of the system can not be

measured exactly, or the initial state is unknown, and their states can only be mea-

sured via a suitable observer. In this case, a suitable observer has to be constructed

for each sub-system, such as the Luenberger observer for linear sub-systems, or the

Morall-Grizzle observer [54] for nonlinear sub-systems. Since the open-loop optimal

control approaches introduced in the last chapter require the knowledge of the ini-

tial state, they are not longer valid and a real-time method to obtain the optimal

switching times is needed.

This chapter establishes a real-time optimal control framework (in terms of al-

gorithms) that uses an observer to measure the state of the autonomous switched

system. Besides observers, this framework can also be applied to any other state esti-

mation techniques. As such, we do not concern with the details of the state observer

for one particular system, but only assume that one exists for the switched system at

hand.

Another contributions of this chapter is that we propose a suitable framework to

analyze the convergence properties of the proposed algorithms. The need for such

a framework is due to the real-time nature of the algorithms, which implies that

they can compute only a finite number of iterations during a finite time horizon.

Consequently, the usual notion of asymptotic convergence, which is characterized by

limits of infinite sequences, cannot be applied. In this case, the convergence analysis is
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stated in terms of convergence rate. The analysis shows that the performances of the

proposed algorithms are characterized by the state estimation error and the time-step

of the algorithm, and the analysis can be applied to any estimation techniques. It can

even be applied to observers that are not convergent, and we can see the effect of the

estimation error on the performances of the proposed algorithms through numerical

examples.

This chapter begins by discussing the work of Azuma, Egerstedt and Wardi [11,

37]. They presented the first results on observer-based optimal control of autonomous

switched systems by considering the solution point of the optimization problem as

a function of the state estimate. Since the state estimate is a function of time,

the optimal switching time vector is a function of time as well. The authors then

presented a continuous process in the form of a differential equation for the optimal

switching time vector. However, this continuous process is not implementable. This

chapter then shifts to the original work of this thesis, by extending this approach into

an implementable algorithmic framework. Moreover, we provide a framework for the

convergence analysis of the proposed algorithms.

3.1 Continuous Process

In [11, 37], the following optimal timing control problem was considered. Given an

autonomous switched system in the form of

ẋ = fi(x), t ∈ [τi−1, τi), i = 1, . . . , N + 1, (15)

where {fi : R
n → R

n} is a collection of functions with the notation τ0 = t and

τN+1 = T . Suppose that this switched system starts at time t, with initial condition

x(t) = x̂. The optimal control problem is formulated as

min
τ̄
J(t, x̂, τ̄) =

∫ T

t

L(x(t))dt, (16)
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with the switching time vector τ̄ defined as τ̄ = [τ1, τ2, ..., τN ]T . Now, let x̂ to be the

output of the state observer x̂(t), then one can make the following definition for the

optimal switching time process

τ̄ ⋆(t) = arg min
τ̄

J(t, x̂(t), τ̄). (17)

From this definition, τ̄ ⋆(t) is optimal at time t given the state estimate x̂(t). If the

state estimate x̂(t) converges to the “true” state x(t) of the switched system (observer

is convergent), then the optimal switching time for the system is obtained if τ̄ ⋆(t) is

computed. In [11, 37], the authors proposed a method to obtain the evolution τ̄ ⋆(t)

by a differential equation, so that there is no need to solve Problem (17) for all time t.

The differential equation for the switching time evolution of the system was obtained

in the following form:

˙̄τ ⋆(t) = −

(

∂2J

∂τ̄ 2
(t, x(t), τ̄ ⋆(t))

)−1
(

∂2J

∂t∂τ̄
(t, x(t), τ̄ ⋆(t)) +

∂2J

∂x∂τ̄
(t, x(t), τ̄ ⋆(t)) ˙̂x(t)

)

,

(18)

with the initial condition τ̄ ⋆(0) = arg minτ̄ J(0, x̂(0), τ̄).

However, differential equation (18) can not be used directly to obtain the optimal

switching time evolution. The reason is that, the trajectory τ̄ ⋆(t), by definition, is

optimal with respect to a time-varying cost functional for all time. Once τ̄ ⋆(t) departs

from the optimal trajectory (not optimal at one time instant t), there is no guarantee

that it will return to it, and the remaining trajectory is no longer optimal. Hence,

solving (18) requires the switching times updates to be done in an error free way,

which is unfeasible to achieve. In a numerical algorithm point of view, to ensure that

τ̄ ⋆(t) is obtained as the optimal switching time evolution, the time-step ∆t must be 0,

and the algorithm requires infinite number of iterations. Hence, this approach is not

implementable on any computer hardware. This leads to our contribution, which is

extending this approach to an algorithmic framework that can be implemented. Also,

note that the goal of the optimal control task is to obtain a local optimal solution
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for the “true” state of the system, i.e. τ̄ ⋆ = arg minτ̄ J(0, x(0), τ̄). We show how our

algorithms update the switching times towards this solution through the analysis of

their convergence rates.

3.2 Numerical Algorithms

Consider an autonomous switched system in the form of

ẋ = fi(x), t ∈ [τi−1, τi), i = 1, . . . , N + 1, (19)

where {fi : R
n → R

n} is a collection of modal functions, with the notation τ0 = 0,

τN+1 = T . x(t) ∈ R
n represents the “true” state of the switched system. Suppose

that the initial condition x(0) = x0 is not known, and it is estimated by a suitable

state observer with the initial condition x̂0. Final time T is given and fixed. For now,

the mode sequence q̄ = {1, 2, ..., N + 1} is assumed to be fixed (we consider mode

scheduling later in this section).

In order to formulate the problem in a conceptually clean way, it is necessary

to reformulate the cost functional of the optimal control problem as a cost-to-go

performance functional. First, let t ∈ [0, T ] denote a time point during operation of

the system where one step of the proposed algorithm is executed. We denote q(t) to be

current mode of operation at time t. we denote the switching times (control variables)

of the autonomous switched system at time t as τ̄ (t) = [τq(t)(t), τq(t)+1(t), . . . , τN (t)]T .

The switching times τ̄ (t) are expected to be updated at each iteration of the algorithm,

hence the dependence on t. For simplicity of notation, define τq(t)−1 = t. At time t,

we define the the time-varying feasible set

Λ(t) = {τ̄(t) : t = τq(t)−1(t) ≤ τq(t)(t) ≤ . . . ,≤ τN(t) ≤ τN+1(t) = T}, (20)

as the input constraint for the switched system (τ̄ (t) ∈ Λ(t)). The real-time frame-

work dictates that, when t ≥ τq(t)(t), we trigger the mode transition from q(t) to

q(t) + 1, and the dimension of τ̄(t) is reduced by 1. It should be noted that due to
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the nature of a real time algorithm, once a switching time τi(t) is surpassed by the

time t, it retains its value thereafter.

This switching time vector is assumed to be updated as a discrete process {τ̄(t)}

τ̄(t+ ∆t) = τ̄ (t) + h(t), (21)

by a suitable decent vector h(t). ∆t is assumed to be the time-step of the proposed al-

gorithms. h(t) is comprised of a step taken during a single iteration of an optimization

algorithm.

Now, we are ready to define the cost-to-go functional. We denote this cost-to-go

functional J(t, x̂(t), τ̄(t)) to emphasize its dependence on the current system time

index t and the state estimator x̂(t). It is defined as follows

J(t, x̂(t), τ̄(t)) =

∫ T

t

L(x̃(s))ds, (22)

where L : R
n → R is a continuously differentiable function and x̃(s) denotes a simu-

lated state trajectory with the initial condition x̃(t) = x̂(t). The dynamical equation

of x̃(s) is defined as:

˙̃x(s) = fi(x̃(s)), s ∈ [τi−1(t), τi(t)), i = q(t), . . . , N + 1,

with the initial condition x̃(t) = x̂(t). (23)

Note that the dynamical equation of the simulated trajectory is the same as the

switched system, but the initial condition of the simulated trajectory is the state

estimate x̂(t). Furthermore, note that the simulated state trajectory is indexed by

a different time index s to avoid confusion. Hence, at time t, there exist three tra-

jectories that are related to each other. The true state trajectory x(ξ), ξ ∈ [0, t], is

the state of the switched system operated since the initial time ξ = 0. The observer

output state trajectory x̂(ξ), ξ ∈ [0, t], is obtained via the observer. The simulated

state trajectory obtained at time t, x̃(s), s ∈ [t, T ], is simulated at each step of the
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x(t)

x̃(s)

x

x0

e(t)

x̂

x̂0

s

x̂(t)

Figure 12: Observer-based on-line timing optimal control. At time t, x(·) is the
state trajectory, x̂(·) is the observer output trajectory, and x̃(s) is future simulated
state trajectory indexed by future time index s. The initial condition of x̃(s) is x̂(t).
In this graph, there is only 1 switch, so the control variable is τ(t).

algorithm. The three trajectories are illustrated in Figure 12. The observer error at

time t is defined as e(t) = x̂(t) − x(t).

The eventual goal of the problem is to obtain the optimal switching time with

respect to the true state trajectory x(·), and not the observer output x̂(·). In that

regard, consider the optimal control problem

min
τ̄(t)∈Λ(t)

J(t, x(t), τ̄ (t)) =

∫ T

t

L(x̃(s))ds, (24)

where x̃(s) is defined by (23) with the initial condition x̃(t) = x(t) such as

˙̃x(s) = fi(x̃(s)), s ∈ [τi−1(t), τi(t)), i = q(t), . . . , N + 1,

with the initial condition x̃(t) = x(t). (25)

This problem, which is optimizing the switching time vector at time t for the remain-

ing state trajectory, represents the real-time control task that we wish to achieve.

Denote a locally optimal solution to Problem (24) at time t as τ̄ ⋆. The dimension of

τ̄ ⋆ is the same as τ̄(t). We should note that, τ̄ ⋆ is stationary, despite the fact that

J(t, x(t), τ̄ (t)) depends on time t. This observation is made concrete by the following

lemma.
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Lemma 3.1 At time t = t0, if τ̄ ⋆ = [τ ⋆q(t0), τ
⋆
q(t0)+1, ..., τ

⋆
N ]T locally minimizes

J(t0, x(t0), τ̄ (t0)), then if the system switches according to τ̄ ⋆ for the remaining state

trajectory x(t), t ∈ [t0, T ], then [τ ⋆q(t), τ
⋆
q(t)+1, ..., τ

⋆
N ]T locally minimizes J(t, x(t), τ̄ (t))

for every t ∈ [t0, T ].

Proof 3.1 Since the system switches according to τ̄ ⋆, then the simulated state trajec-

tory obtained at t0, x̃(s), s ∈ [t0, T ], is identical to the state trajectory x(t), t ∈ [t0, T ].

Then, by Bellman’s Optimality Principle (see [13]), [τ ⋆q(t), τ
⋆
q(t)+1, ..., τ

⋆
N ]T locally min-

imizes J(t, x(t), τ̄ (t)) for every t ∈ [t0, T ].

τ̄ ⋆ must satisfy the necessary optimality condition (see [57])

∂J

∂τ̄
(t, x(t), τ̄ ⋆) = 0, (26)

and H = ∂2J
∂τ̄2 (t, x(t), τ̄ ⋆) must be positive definite. The algorithms presented in this

section compute, at time t, an estimate of the optimal solution τ̄ ⋆. However, since

state information is not known, at each time step of the algorithms, we have to use the

cost-to-go functional J(t, x̂(t), τ̄ (t)) defined by the state observer x̂(t). In each step

of our algorithms, ∂J
∂τ̄

(t, x̂(t), τ̄(t)) is computed, using gradient formula we discussed

in Chapter 2 (13). Hence τ̄(t) is updated according to information that is available

at that time, which is x̂(t), and their dependence on that information defines their

real-time nature.

If the system does not switch according to τ̄ ⋆ at time t, then naturally τ̄ ⋆ is

no longer optimal for the remaining trajectory. In this case, the best the system

could do is to switch according to a new locally optimal switching time vector

arg minτ̄(t)∈Λ(t) J(t, x(t), τ̄ (t). However, the resultant state trajectory generally ad-

mits a higher total cost (defined over the entire state trajectory from 0 to T ) since

the system switched at a non-optimal time. This can be avoided if our algorithms

perform good enough so that τ̄(t) converges to τ̄ ⋆ before a wrong (premature) switch-

ing has occurred (hence if it converges before t = τ ⋆1 ). This stems from the real-time
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nature of the problem, and requires our algorithm to allow fast convergence. Fur-

thermore, if a premature switching has occurred, then our algorithm should continue

to converge towards the new local optimal, which is the best control action to do at

that time. The premature switchings are likely to happen when there are not enough

steps taken for the algorithm (large ∆t) or there is large observer error. To counter

this potential problem, one can perform mode insertion to improve the current mode

sequence and restart the algorithms. This aspect will be examined in more detail.

Now we propose two algorithms based on two natural choices for the descent

direction h(t), one is based on The Newton-Raphson method and the other is based

on gradient descent method.

3.2.1 Newton-Raphson Algorithm

For the Newton-Raphson like method, the Hessian of the cost-to-go functional needs

to be computed. The Hessian matrix H(t) is defined by

H(t) =
∂2J

∂τ̄ 2

(

t, x̂(t), τ̄(t)
)

, (27)

and assume that H(t) is positive definite. Furthermore, let h̃(t) be the projection

of −H(t)−1 ∂J
∂τ̄

(t + ∆t, x̂(t + ∆t), τ̄ (t)) onto the feasible set Λ(t), and define the step

size γ(t) by γ(t) = max{γ ≤ 1 | τ̄(t) + γh̃(t) ∈ Λ(t)}. Finally, we define h(t) by

h(t) = γ(t)h̃(t). Note the choice of γ(t) ensures that (21) does not overshoot the

feasible set and hence the point τ̄ (t+ ∆t) is feasible.

The algorithm is described below.

Algorithm 3.1 Given time-step ∆t:

Step 1. Obtain the observer output x̂(t + ∆t). Obtain the simulated state trajectory

x̃(s), s ∈ [t + ∆t, T ]. Compute ∂J
∂τ̄

(t + ∆t, x̂(t + ∆t), τ̄ (t)) via the gradient formula

(13).

Step 2. Compute h̃(t), defined as the projection of −H(t)−1 ∂J
∂τ̄

(t+∆t, x̂(t+∆t), τ̄(t))
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onto the feasible set Λ(t) at τ̄(t).

Step 3. Compute γ(t) = max{γ ≤ 1 | τ̄ (t) + γh̃(t) ∈ Λ(t)}.

Step 4. Define h(t) = γ(t)h̃(t), and set

τ̄ (t+ ∆t) = τ̄(t) + h(t). (28)

Step 5. Set time t = t+ ∆t.

If t ≥ τ1(t), the system is switched from mode q(t) to q(t) + 1. τ̄(t) is set to

[τq(t)+1(t), ..., τN(t)]. q(t) is increased by 1.

The algorithm stops when all switchings have occurred. If not then let the system

evolve until time is at t+∆t, while computing H(t) during this time. Go back to Step

1 when time is t+ ∆t.

The above algorithm starts with an arbitrary condition τ̄(0) ∈ Λ(0).

To show that this algorithm indeed converges to a local optimal solution τ̄ ⋆ when

a set of conditions are met, the convergence result of this algorithm is addressed next.

Asymptotic convergence is a minimal requirement of an algorithm, and typically it

means that every accumulation point of an iteration-sequence computed by the algo-

rithm satisfies a suitable optimality condition, like being stationary or a Kuhn-Tucker

point. However, Algorithm 3.1 does not compute an infinite sequence of iteration

points because ∆t > 0 and T < ∞. For this reason we characterize convergence of

the algorithm not in an asymptotic sense, but rather in terms of convergence rate.

Consider the Newton-Raphson method for minimizing a twice-continuously dif-

ferentiable function f : R
n → R:

xk+1 = xk −H(xk)
−1∇f(xk), k = 1, 2, . . . , (29)

where H(x) = d2f

dx2 (x) is the Hessian. Then, if limk→∞ xk = x⋆ for some x⋆ ∈ R
n, and

if H(x⋆) is positive definite, then x⋆ is a local minimum for f ; moreover, there exist

δ > 0 and K > 0 such that, if ||xk− x⋆|| < δ, then ||xk+1 − x⋆|| ≤ K||xk −x⋆||2. This
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means that the algorithm has a quadratic convergence rate (see [57]). Throughout

this thesis, || · || denotes the l2 norm.

The convergence rate that we establish is not quadratic due to the state estimate

error e(t) and ∆t. In fact, the error term e(t) implies a non-zero offset. Even if

e(t) = 0, the convergence rate is first-order due to the fact that ∆t > 0. Only if

e(t) = 0 and ∆t→ 0, will the resulting convergence rate be quadratic.

Theorem 3.1 Assume that fi and L are three-times continuously differentiable. Sup-

pose that τ̄ ⋆ satisfies the necessary optimality condition (26) lying in the interior of

the feasible set Λ(t), and that H(t) is positive definite. Assume that the system do

not undergo mode transition between the time interval [t, t + ∆t]. Then there exist

constants δ > 0 and K > 0 such that, if ||τ̄(t) − τ̄ ⋆|| < δ; ∆t < δ; ||e(t)|| < δ and

||e(t+ ∆t)|| < δ; γ(t) = 1 in Step 4; and τ1(t) + ∆t > t, then

||τ̄(t+ ∆t) − τ̄ ⋆|| ≤ K
(

||τ̄(t) − τ̄ ⋆||2 + ∆t||τ̄ (t) − τ̄ ⋆|| + ||e(t+ ∆t)||
)

. (30)

Proof 3.2 Since τ̄ ⋆ lies in the interior of the feasible set, there exists δ1 > 0 such

that if ||τ̄(t) − τ̄ ⋆|| < δ1, ∆t < δ1, γ(t) = 1, and switching does not occur at time t,

then

τ̄(t+ ∆t) = τ̄(t) −H(t)−1∂J

∂τ̄
(t+ ∆t, x̂(t+ ∆t), τ̄ (t)); (31)

this is evident by following Steps 1 – 4 of the algorithm 3.1. Hence, we have that

τ̄(t+ ∆t) − τ̄ ⋆ = τ̄(t) − τ̄ ⋆ −H(t)−1∂J

∂τ̄

(

t+ ∆t, x̂(t+ ∆t), τ̄(t)
)

. (32)

By assumption τ̄ ⋆ satisfies the necessary optimality condition (26). Therefore, and by

Bellman’s Principle of Optimality, τ̄ ⋆ is a local minimum for J(t+ ∆t, x(t + ∆t), τ̄ )

as well, and hence

∂J

∂τ̄

(

t+ ∆t, x(t+ ∆t), τ̄ ⋆
)

= 0. (33)
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Consequently, and by (32)

τ̄(t+∆t)−τ̄ ⋆ = τ̄(t)−τ̄ ⋆−H(t)−1
(∂J

∂τ̄

(

t+∆t, x̂(t+∆t), τ̄ (t)
)

−
∂J

∂τ̄

(

t+∆t, x(t+∆t), τ̄ ⋆
)

)

.

(34)

By the continuity assumption of fi and L, The function J(t, x̂(t), τ̄(t)) is twice con-

tinuously differentiable and its second derivatives are locally Lipschitz continuous. the

last difference term in the right-hand side of (34) can be written as

∂J

∂τ̄

(

t+ ∆t, x̂(t+ ∆t), τ̄(t)
)

−
∂J

∂τ̄

(

t+ ∆t, x(t+ ∆t), τ̄ ⋆
)

=
∂2J

∂τ̄∂x

(

t+ ∆t, x(t+ ∆t), τ̄ ⋆
)

e(t+ ∆t) +O
(

||e(t+ ∆t)||2
)

+
∂2J

∂τ̄ 2

(

t+ ∆t, x(t+ ∆t), τ̄ ⋆
)

(τ̄ (t) − τ̄ ⋆) +O
(

||τ̄(t) − τ̄ ⋆||2
)

, (35)

where lim supη→0
O(η2)
η2

<∞.

Next, recall that H(t) = ∂2J
∂τ̄2 (t, x̂(t), τ̄(t)) is positive definite by assumption. There-

fore, there exists δ2 ∈ (0, δ1) and K1 > 0 such that, if ∆t < δ2, ||e(t)|| < δ2, and

||τ̄(t) − τ̄ ⋆|| < δ2, then

||H(t)−1 −
(∂2J

∂τ̄ 2

(

t+ ∆t, x(t+ ∆t), τ̄ ⋆
)

)−1

|| ≤ K1

(

∆t+ ||e(t+ ∆t)||+ ||τ̄(t)− τ̄ ⋆||
)

.

(36)

Now plug the right-hand side of (35) in (34) to obtain,

τ̄ (t+ ∆t) − τ̄ ⋆

= τ̄ (t) − τ̄ ⋆ −H(t)−1
( ∂2J

∂τ∂x

(

t+ ∆t, x(t+ ∆t), τ̄ ⋆
)

e(t+ ∆t) +O
(

||e(t+ ∆t)||2
)

+
∂2J

∂τ̄ 2

(

t+ ∆t, x(t+ ∆t), τ̄ ⋆
)

(τ̄(t) − τ̄ ⋆) +O
(

||τ̄(t) − τ̄ ⋆||2
)

)

. (37)
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Subtracting and adding the term
(

∂2J
∂τ̄2 (t+ ∆t, x(t+ ∆t), τ̄ ⋆)

)−1

from H(t)−1 in (37):

τ̄(t+ ∆t) − τ̄ ⋆ = τ̄ (t) − τ̄ ⋆ −
(

H(t)−1 −
(∂2J

∂τ̄ 2
(t+ ∆t, x(t+ ∆t), τ̄ ⋆)

)−1
)

( ∂2J

∂τ∂x

(

t+ ∆t, x(t+ ∆t), τ̄ ⋆
)

e(t+ ∆t) +O
(

||e(t+ ∆t)||2
)

+
∂2J

∂τ̄ 2

(

t+ ∆t, x(t+ ∆t), τ̄ ⋆
)

(τ̄ (t) − τ̄ ⋆) +O
(

||τ̄(t) − τ̄ ⋆||2
)

)

−
(∂2J

∂τ̄ 2
(t+ ∆t, x(t+ ∆t), τ̄ ⋆)

)−1

( ∂2J

∂τ∂x

(

t+ ∆t, x(t+ ∆t), τ̄ ⋆
)

e(t+ ∆t) +O
(

||e(t+ ∆t)||2
)

+
∂2J

∂τ̄ 2

(

t+ ∆t, x(t+ ∆t), τ̄ ⋆
)

(τ̄ (t) − τ̄ ⋆) +O
(

||τ̄(t) − τ̄ ⋆||2
)

)

,(38)

and after a bit of algebra, the right-hand side of (38) can be seen to have the form

τ̄ (t+ ∆t) − τ̄ ⋆ = −
(

H(t)−1 −
(∂2J

∂τ̄ 2
(t+ ∆t, x(t+ ∆t), τ̄ ⋆)

)−1
)

( ∂2J

∂τ∂x

(

t+ ∆t, x(t+ ∆t), τ̄ ⋆
)

e(t+ ∆t) +O
(

||e(t+ ∆t)||2
)

+
∂2J

∂τ̄ 2

(

t+ ∆t, x(t+ ∆t), τ̄ ⋆
)

(τ̄(t) − τ̄ ⋆) +O
(

||τ̄(t) − τ̄ ⋆||2
)

)

−
(∂2J

∂τ̄ 2
(t+ ∆t, x(t+ ∆t), τ̄ ⋆)

)−1

×
( ∂2J

∂τ∂x

(

t+ ∆t, x(t+ ∆t), τ̄ ⋆
)

e(t+ ∆t) +O
(

||e(t+ ∆t)||2
)

+O
(

||τ̄(t) − τ̄ ⋆||2
)

)

.

(39)

Consequently, using (39) and (36), there exist K2 > 0 and δ3 ∈ (0, δ2) such that, if

∆t < δ3, ||e(t)|| < δ3, ||e(t+ ∆t)|| < δ3, and ||τ̄(t) − τ̄ ⋆|| < δ3, then

||τ̄(t+ ∆t) − τ̄ ⋆|| < K2

(

∆t+ ||e(t+ ∆t)|| + ||τ̄(t) − τ̄ ⋆||
)(

||e(t+ ∆t)||

+||τ̄(t) − τ̄ ⋆||
)

+ K2

(

||e(t+ ∆t)|| + ||τ̄(t) − τ̄ ⋆||2
)

. (40)

Finally, by reducing K2 and δ2 if necessary, there exist K > 0 and δ > 0 such that,

if the assumptions of the lemma are satisfied, then Equation (30) is in force.

It is important to make an observation for Algorithm 3.1, and explain why we use

the descent direction −H(t)−1 ∂J
∂τ̄

(t + ∆t, x̂(t + ∆t), τ̄ (t)). The reason is that, when
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∆t → 0, and if the current switching time τ̄ (t) is optimal with respect to the state

observer output x̂(t), Algorithm 3.1 becomes the same as the continuous process

outlined in the previous section. Namely, we can derive the following equation by

using Taylor Expansion on equation (18)

˙̄τ ⋆(t) = −

(

∂2J

∂τ 2
(t, x(t), τ̄ ⋆(t))

)−1(
∂2J

∂t∂τ̄
(t, x(t), τ̄ ⋆(t)) +

∂2J

∂x∂τ̄
(t, x(t), τ̄ ⋆(t)) ˙̂x(t)

)

= −

(

∂2J

∂τ 2
(t, x(t), τ̄ ⋆(t))

)−1(

lim
∆t→0

1

∆t

∂J

∂τ̄
(t+ ∆t, x̂(t+ ∆t), τ̄ ⋆(t))

)

. (41)

This means that, if τ̄(t) is optimal with respect to the state observer output

x̂(t), and ∆t is very small, then Algorithm 3.1 preserves optimality in a sense that

τ̄(t+ ∆t) = τ̄ (t)−H(t)−1 ∂J
∂τ̄

(t+ ∆t, x̂(t+ ∆t), τ̄(t)) is a very good approximation as

a local optimal with respect to the state observer output x̂(t + ∆t), and is exactly

optimal as ∆t → 0. This property is unique to Algorithm 3.1, and is absent in the

gradient descent algorithm which we will introduce in the next section.

We should also make an observation on the computation load.. At each iteration

time t + ∆t, when the observer estimate x̂(t + ∆t) is available, the Hessian matrix

H(t) is assumed to be already computed, and the computation required is the forward

simulation for the gradient ∂J
∂τ̄

(t+ ∆t, x̂(t+ ∆t), τ̄ (t)). After the switching times are

updated, between time t+∆t to t+2∆t, the Hessian matrix H(t+∆t) is computed.

Hence, this algorithm balances computation load quite well. This is an important

feature, since not all computations for the algorithm is performed at the time when

updated information is available. This feature is desirable for a real-time algorithm.

However, there are two drawbacks for this algorithm. First, like all Newton-like

algorithms, if current iterate of τ̄(t) is not sufficiently close to the optimal solution

τ̄ ⋆, then the algorithm may not converge or even progress towards τ̄ ⋆. Second, the

Hessian H(t) may be ill-conditioned or singular and thus not positive definite. These

two drawbacks can be avoided in the slower converging but globally stable gradient

descent-based algorithm. Before we move on, let us first examine the effects of the
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convergence analysis through a numerical example.

3.2.2 Numerical Example to Illustrate Convergence Properties

As we can see from (30), the time-step ∆t and the observer plays an important role

in convergence property of the algorithm.

Consider the two-dimensional, linear system defined by ẋ = Aix, y = cix, i = 1, 2,

where

A1 =







−1 0

0 1






, A2 =







1 0

1 −1






, and c1 = c2 =

[

1, 1

]T

,

and let the cost functional be J =
∫ T

0
||x(t)||2dt. We use the Luenberger observer

so that the equation for the state estimator is ˙̂x = Aix̂ − ℓici(x − x̂). The initial

conditions are x0 = [0.55, 0.55]T and x̂0 = [0.3, 0.7]T , and we choose T = 5. We

start at mode 1, namely ẋ = A1x, and consider a single switching to mode 2 at a

time τ ∈ [0, T ], where τ serves as the variable for the optimization problem (we drop

the vector notation since τ is a scalar). The initial value for τ , where the algorithm

starts, is at τ = 2.5, and the optimal point, denoted by τ ⋆, computed analytically, is

τ ⋆ = 1.71.

We made four runs of Algorithm 3.1, with two values of ∆t and two sets of

observer matrices ℓi, and the results are shown in Figure 13. In part A of the figure,

∆t = 0.05, and the observer matrices are ℓ1 = [−1, 5]T and ℓ2 = [3.333, 0.667]T so

that the eigenvalues of the observer subsystems are at −2±j for both i = 1 and i = 2.

The graph in the figure is of the variable τ computed by the algorithm, as a function

of time t, while the horizontal line indicates the optimal value τ = τ ⋆ = 1.71. The

dashed diagonal line is the graph of t, and the vertical line indicates the time t where

τ = t. Prior to that time τ > t, namely the switching time is in the future (with

respect to t) and hence τ can be modified by the algorithm. After that time τ < t,

the switching has already occurred and hence τ cannot be changed by the algorithm.
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This is apparent from the figure, where τ approaches the value of (about) 1.6, and it

remains a constant once the switching has occurred and become part of the past.

The algorithm’s convergence can be sped up by reducing ∆t or choosing a more

aggressive observer. First, we kept ∆t at 0.05 (as in part A) and changed the observer

matrices t, ℓ1 = [−37, 53]T and ℓ2 = [35.333,−19.333]T , so that the eigenvalues of the

matrices Ai − ℓici are at −8 ± 5j for both i = 1 and i = 2. The results are shown

in part B of the figure, and they indicate better convergence than in part A. Next,

we reduced ∆t from 0.05 to 0.005 and used the same observer as in part A, and the

results, shown in part C of the figure, also indicate an improvement over those in part

A. For best results, shown in part D, we used the observer of part B and ∆t of part

C.
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Figure 13: Real time optimal control of autonomous switched system using the
Newton-Raphson Algorithm for one switching case. The switching time evolution
τ(t) as a function of time with different ∆t and observers are plotted in four graphs
for comparison to show the effects of these parameters on the convergence of the
algorithm. The red solid straight line is the optimal switching time for the system,
and the blue solid curve is the switching time evolution τ(t).

It is evident from Figure 13 that the use of a more aggressive observer yields
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faster convergence of the algorithm. Less pronounced but also evident is the fact that

smaller ∆t yields faster convergence. To further test this point, we set the estimation

error to 0 (by setting x̂(0) = x(0)), and ran the algorithm with three values of ∆t:

0.1, 0.01, and 0.001. Starting at τ(0) = 2.5, Table 1 shows the quantities ln(|τk− τ ⋆|)

for the first 7 iterations of the algorithm and for all three values of ∆t, where τk is the

switching time at the start of the kth iteration. Recall that ∆t is not the integration

interval (in all three runs the integration interval was 0.001), but the time between two

consecutive iterations of the algorithm. As mentioned earlier, if the estimation error

can be neglected, then with a small ∆t the right-hand side of (30) would be dominated

by the term ||τ̄(t)− τ̄ ||2 and hence indicate a quadratic convergence rate, while if ∆t is

large then the right-hand side of (30) would be dominated by ∆t||τ̄(t)− τ̄ ||, indicating

a linear convergence rate. The results of Table 1 clearly show faster convergence for

smaller ∆t.

k 0 1 2 3 4 5 6
∆t = 0.1 -0.2307 -1.4002 -2.4229 -2.8109 -2.9854 -3.0477 -3.0679
∆t = 0.01 -0.2307 -1.2050 -3.9477 -5.4536 -5.1579 -5.0772 -5.7839
∆t = 0.001 -0.2307 -1.1899 -4.3522 -7.6708 -8.6631 -9.4915 -10.0498

Table 1: ln(|τk − τ ⋆|) for k = 0, . . . , 6

3.2.3 Gradient Descent Algorithm

The algorithm presented in this sub-section is based on the process {τ̄(t)} as defined

in (21) using the gradient descent direction. The algorithm has the following form.

Algorithm 3.2 Given time-step ∆t:

Step 1. Obtain the observer output x̂(t + ∆t). Obtain the simulated state trajectory

x̃(s), s ∈ [t + ∆t, T ]. Compute ∂J
∂τ̄

(t + ∆t, x̂(t + ∆t), τ̄ (t)) via the gradient formula

(13).

Step 2. Compute h̃(t), defined as the projection of −∂J
∂τ̄

(t + ∆t, x̂(t + ∆t), τ̄ (t)) onto
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the feasible set Λ(t) at τ̄ (t).

Step 3. Compute γ(t) = max{γ ≤ 1 | τ̄ (t) + γh̃(t) ∈ Λ(t)}.

Step 4. Define h(t) = γ(t)h̃(t), and set

τ̄ (t+ ∆t) = τ̄(t) + h(t). (42)

Step 5. Set time t = t+ ∆t.

If t ≥ τ1(t), the system is switched from mode q(t) to q(t) + 1. τ̄(t) is set to

[τq(t)+1(t), ..., τN(t)]. q(t) is increased by 1.

The algorithm stops when all switchings have occurred. If not then let the system

evolve until time is at t+∆t, while computing H(t) during this time. Go back to Step

1 when time is t+ ∆t.

The above algorithm starts with an arbitrary condition τ̄(0) ∈ Λ(0).

This algorithm utilizes gradient decent direction as opposed to Newton-Raphson

decent direction. Such algorithms are known to converge globally to Kuhn-Tucker

points. They also have linear convergence rate. The convergence result for Algorithm

3.2 is again based on the notion of linear convergence, and it is described in the next

theorem.

Theorem 3.2 Suppose that τ̄ ⋆ satisfies the necessary optimality condition (26) lying

in the interior of the feasible set Λ(t), and that the Hessian H = ∂2J
∂τ̄2

(

t, x(t), τ̄ ⋆
)

is

positive definite. Assume that the system do not undergo mode transition between the

time interval [t, t+∆t]. Then there exist constants δ > 0, K1 ∈ (0, 1), K2 > 0, η1 > 0,

and η2 > η1, such that, if ||τ̄(t) − τ̄ ⋆|| < δ; ∆t < δ; ||e(t)|| < δ and ||e(t+ ∆t)|| < δ,

τ1(t) + ∆t > t, and if η1 < γ(t) < η2, then

||τ̄(t+ ∆t) − τ̄ ⋆|| ≤ K1||τ̄(t) − τ̄ ⋆|| +K2η2||e(t+ ∆t)||. (43)

Proof 3.3 Since τ̄ lies in the interior of the feasible set, there exists δ1 > 0 such
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that, if ||τ̄(t) − τ̄ ⋆|| < δ1, then

τ̄(t+ ∆t) = τ̄ (t) − γ(t)
∂J

∂τ̄
(t+ ∆t, x̂(t+ ∆t), τ̄ (t)). (44)

Since τ̄ ⋆ is a stationary point for the switching time optimization problem, we have

that ∂J
∂τ̄

(t, x(t), τ̄ ⋆) = 0, and moreover Bellman’s Principle of Optimality Principle, τ̄ ⋆

is also a local minimum for J(t+ ∆t, x(t+ ∆t), τ̄ ⋆), and hence

∂J

∂τ̄

(

t+ ∆t, x(t+ ∆t), τ̄ ⋆
)

= 0. (45)

By the continuity assumption of fi and L, The function J(t, x̂(t), τ̄(t)) is twice contin-

uously differentiable and its second derivatives are locally Lipschitz continuous. Thus,

we have the following equation

τ̄(t+ ∆t) − τ̄ ⋆ = τ̄(t) − τ̄ ⋆ − γ(t)
∂J

∂τ̄
(t+ ∆t, x̂(t+ ∆t), τ̄ (t))

= τ̄(t) − τ̄ ⋆ − γ(t)
(∂J

∂τ
(t+ ∆t, x̂(t+ ∆t), τ̄(t)) −

∂J

∂τ̄
(t+ ∆t, x(t+ ∆t), τ̄ ⋆)

)

= τ̄(t) − τ̄ ⋆ − γ(t)

(

∂2J

∂τ̄∂x
(t+ ∆t, x(t+ ∆t), τ̄ ⋆)e(t+ ∆t) +O(||e(t+ ∆t)||2)

+
∂2J

∂τ 2
(t+ ∆t, x(t+ ∆t), τ̄ ⋆)(τ̄ (t) − τ̄ ⋆) +O(||τ̄(t) − τ̄ ⋆||2)

)

=
(

I − γ(t)
∂2J

∂τ 2
(t+ ∆t, x(t+ ∆t), τ̄ ⋆)

)

(τ̄ (t) − τ̄ ⋆)

−γ(t)
∂2J

∂τ̄∂x
(t+ ∆t, x(t+ ∆t), τ̄ ⋆)e(t+ ∆t)

−γ(t)
(

O(||τ̄(t) − τ̄ ⋆||2) +O(||e(t+ ∆t)||2)
)

, (46)

where I is the identity matrix whose dimension is that of the Hessian H. Next,

let λmax and λmin denote the largest eigenvalue and the smallest eigenvalue of H,

respectively. Fix η2 > 0 such that 1 − η2λmax >
1
2
η2λmax, and fix η1 ∈ (0, η2). For

every γ(t) ∈ (η1, η2), the matrix I − γ(t)H is symmetric and positive definite, and its

matrix norm satisfies the inequality

||I − γ(t)H|| ≤ 1 − η1λmin. (47)
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Fix K1 ∈ (1 − η1λmin, 1). By (46), there exist constants δ ∈ (0, δ1) and K2 > 0 such

that, if the conditions of the proposition’s assertion are satisfied, then Equation (43)

is in force. This completes the proof.

From the convergence properties of both algorithms presented, it is clear that the

time-step ∆t and the observer error e(t) dictate the performance of the algorithms.

In fact, if the observer error is large, none of the proposed algorithm guarantees to

converge to the optimal solution τ̄ ⋆ due to the offset caused by e(t) in the convergence

analysis. This is to be expected, since the state information is most important in

determining the optimal control.

3.2.4 Combined Algorithm and On-line Mode Scheduling

Comparing the convergence analysis (30) of Algorithm 3.1 and the one (43) for Algo-

rithm 3.2, one can see that these two algorithms can be used in conjunction. Specifi-

cally, one can use gradient descent version (Algorithm 3.2) at beginning, until the gra-

dient ∂J
∂τ̄

(t+∆t, x̂(t+∆t), τ̄ (t)) is below a threshold, then switch to Newton-Raphson

version (Algorithm 3.1). This combined algorithm achieves better convergence result

for a few reasons. First, at the beginning of operation of the switched system, the

initial guess of switching times may not be close to the optimal solution. In this

case, the Hessian matrix may be ill conditioned. Furthermore, Algorithm 3.2 guar-

antees to converge towards τ̄ ⋆, provided that the state estimate error e(t) is 0. The

Newton-Raphson version does not have this property. Lastly, Algorithm 3.2 requires

significantly less computation (Hessian matrix is not needed) than Algorithm 3.1, but

it has slower convergence speed (in terms of convergence rate). In the other hand,

due to the special property we pointed out in Section 3.2.1, the Newton-Raphson al-

gorithm should be used when the gradient ∂J
∂τ̄

(t, x̂(t), τ̄(t)) is close to zero to maintain

the optimality of the switching time evolution.

Due to observer error or higher ∆t, it is possible that a switching time “freezes”
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before it converges to the optimal value. This problem can be alleviated by the

operations of mode insertion defined in Chapter 2. After all switchings occurred

at time t, insertion gradient can be computed using equation (14) over a time-grid

[t, T ], and the lowest insertion point are selected and an mode insertion operation

can be performed. We emphasize that we are in no way trying to obtain a optimal

mode sequence, as optimal mode scheduling problem is in general infeasible to be

solved on-line. However, we do on-line mode scheduling by mode insertions if the

cost functional goes down when a mode insertion is made. Note that, after a mode

insertion, the convergence process of the algorithm starts afresh, and possibly under

the condition that the state estimation process has had some time to settle closer to

the state variable. This will be demonstrated by a numerical example in the next

sub-section.

Finally, it should be noted that the algorithms developed in this chapter apply

perfectly well to the case where state information is known exactly. In this case, the

convergence analysis is the same except e(t) = 0 for all time t. Hence, the results

presented in this chapter may be useful for applications in which the observers are

not needed, but on-line computations of the optimal switching times are required.

3.2.5 Tracking Example with Mode Insertion

To illustrate the combined algorithm and how mode insertions improve the overall

cost, we look at another numerical example, this time involving tracking. Consider

the two-dimensional system having the modes ẋ = Ax or ẋ = Ax + b (denoted by

Mode 1 and Mode 2, respectively), where

A =







−1 1

−1 −1







and b = [1, 1]T . The problem under study is to track the linear curve r(t), t ∈ [0, 10],

defined by r(t) = [0.1t, 0.025t]T , by the state trajectory x(·). Thus, we attempt to
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minimize the cost functional J = 1
2

∫ T

0
||x(t) − r(t)||2dt, with T = 10, as a function

of the switching times. The number of the switchings is not fixed a priori, and it

is modified in the manner described below. The system starts at Mode 1 and then

alternates between the two modes. The output equation of the system is y = cx

with c = [1, 1], and the (Luenberger) observer matrix is ℓ = [0.5,−0.5]T , so that the

eigenvalues of the observer’s system matrix A− ℓc are both at -1. The initial state is

x(0) = [0.55, 0.55]T , and the initial state estimator is x̂(0) = [0, 2]T .

It is not unlikely that the optimal tracking would involve a sliding-mode switching

control policy requiring infinite switchings between Mode 1 and Mode 2. However,

as is the case in many applications, the number of switchings has to be limited for

practical reasons, and therefore we restrict it, somewhat arbitrarily, to 5. Thus,

starting at a pre-specified initial point τ̄(0), the algorithm computes iteration-points

τ̄(t) = [τ1(t), . . . , τ5(t)]
T at times k∆t, k = 1, 2, . . .. However, if at some point t1 < T

it happens that τ1(t1) ≤ t1, then ahead of this point the first switching time is a part

of the past and cannot be modified; we say that the switching time τ1 freezes and

it is no longer a part of the variable parameter whose dimension is reduced to 4. If

τ2 later freezes at a future time t2 ∈ (t1, T ], then the variable parameter becomes

3-dimensional. Continuing in this way, all of the switching times may freeze, and this

can happen prematurely before the algorithm computes an adequate approximation

to the optimal schedule.

To get around this problem we insert two switching times when the dimension of

the variable becomes 3. It is done in the following way. Given a time t ∈ (0, T ) which

is not a switching time, consider inserting the complementary mode to the mode that

is active at time t, over the interval [t−λ, t+λ), for some λ > 0. If λ is small enough

then this insertion results in adding two switching times, at the two end-points of the

interval, to the schedule. Denoting the cost functional J as a function of λ by J̃(λ),

let us define D(t) = dJ̃
dλ+ (0, t), where dJ̃

dλ+ (0, t) is computed via the insertion gradient
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formula (14). Thus, if D(t) < 0 then such an insertion at a small-enough interval

would reduce the value of the cost functional J . We choose the point t to be the point

τ where D(τ) obtained its minimum value over a suitable grid of the interval [0, T ],

as long as this minimum was negative (which it was, in our case). We then inserted

the complementary mode at time t for an interval of duration λ = 0, namely both

new switching times are at t, and the fact that D(t) < 0 ensures that the algorithm

will act to separate them.

0 2 4 6 8 10
0

2

4

6

8

10

t

τ

0 2 4 6 8 10

0

0.5

1

1.5

2

t

x

Figure 14: Real-time optimal control of autonomous switched system using gradient
descent Algorithm first, then switch to Newton-Raphson method. The top graph plots
the switching times τ(t) vs. t, where the red solid curve is the switching time evolution
τ(t) and blue solid straight lines indicate the optimal switching times based on perfect
state information, computed initially and every time when switchings occurred. The
bottom graph plots the state (in blue solid curves) and observer (in black dotted
curves) trajectories, as well as the curve set to be tracked (in purple solid straight
lines).

The results of the algorithm run are shown in Figure 2. The upper graph shows

the evolution of the vector τ̄ (t) as a function of time t. Starting at
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τ̄(0) = [1.7, 3.3, 5.0, 6.7, 8.3]T , the switching times are drawn by the thick curves.

The piecewise-horizontal lines show the optimal switching times for a given schedule,

computed off line as points of reference. τ1 freezes at time t1 = 2.93; at this time

the problem is changed, its dimension reduced to 4, and its solution point and the

horizontal lines that mark it are changed as well. τ2 later freezes at time t2 = 3.59,

and at this point we perform a mode-insertion at the time t = 5.75. Now the number

of variables is restored to 5, and the algorithm continues its course until the switching

times freeze one-at-a-time, and this happens at the time-points 4.55, 5.24, 5.68, 6.49,

and 6.86. The graph indicates that these points are close to the optimal points

as indicated by the horizontal lines, and therefore we do not insert any more new

modes. Note that computing the optimal solution (marked by the horizontal lines)

is done only to gauge the algorithm’s performance. The lower graph of the figure

shows the evolution of the two components of the state trajectory (thick curves), the

two components of the state estimator (dashed curves), and the two co-ordinates of

the line that has to be tracked (diagonal lines). We clearly discern a trend toward

improving the tracking objective.

3.3 Conclusions

This chapter presents an algorithmic framework for observer-based optimal control

of autonomous switched systems. The need for on-line algorithms arises in situations

where the state variable cannot be measured, and it is estimated by a suitable state

observer. However, the framework is applicable to a broader setting with any state

estimator. Each iteration of the proposed algorithms attempts to reduce the cost-

to-go based on the value of the state estimator at that time. Once a switching time

is reached by the (real) computing time, it moves into the past can not be modified

by the algorithm. If the algorithm has not converged at that time, then the system

switches prematurely. This can be cause by large step-size ∆t and observer error. To
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counter this, we propose to improve the mode sequence on-line using mode insertion.

The main contribution of this chapter are the proposed algorithms and char-

acterizations of the algorithms’ convergence behaviors via upper bounds on their

convergence rates. Two specific algorithms are presented: a Newton-Raphson based

algorithm, and a gradient descent based algorithm. For these algorithms we derive

respective convergence-rate bounds in terms of the distance of a computed switching

time sequence from an optimal one, the time-step ∆t, and the estimation error. The

derived results extend well-known results on convergence rates from the standard

setting of nonlinear programming to the present setting of real-time optimization of

switching systems. Numerical examples support the theoretical results.
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CHAPTER IV

ROBUST OPTIMAL TIMING CONTROL OF SWITCHED

SYSTEMS

This chapter addresses the problem of designing a state-feedback optimal controller

for autonomous switched systems that are subject to noise and disturbances. Hence,

the goal of this chapter is to present a real-time optimal control algorithm which

is robust under disturbances. Throughout this chapter, we assume that the mode

sequence q̄ is fixed.

We should first note that, the real-time control framework established in Chapter

3, although designed for an observer, can also be used to cope with disturbances that

have large amplitude but low frequency, since we can consider the state measurement

error as an one-time disturbance of a large amplitude. However, due to time required

for computation, when the system is operating under a noisy environment where

disturbances have low amplitude but high frequency, corrections for deviations from

the optimal trajectory with this framework may not feasible.

In this chapter, we propose a robust controller that incorporates a new approach

into the previous framework of feedback control of switched systems, by using the

optimal switching planes located at the optimal switching times. We use the state

update to check for intersection of the state trajectory with the switching plane.

These intersections trigger mode transitions, and their detections require very little

computational effort, since no forward simulation of the state trajectory is necessary.

When the switching planes are optimal, they implement a neighboring optimal con-

trol scheme, which is capable of compensating small amplitude deviations from the

optimal path. Slowly-varying deviations of large amplitude, on the other hand, are
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taken care of by real-time adjustments of the planes.

An important contribution of this chapter is the identification of the class of prob-

lems for which this optimal switching plane controller is applicable. We show in this

chapter that, a stationary optimal switching surface and its tangential approximation

(an optimal switching plane) exists for individual switching times, only if the optimal

control problem at hand is a free final-time problem. Hence, the switching plane

controller proposed in this chapter cannot be used for fixed final-time problems. We

show in this chapter that, if applicable, the proposed optimal plane controller is more

robust in a noisy environment than the real-time frameworks established in Chapter

3.

We begin the discussion with our definitions of implicit and explicit state-feedback

control and state their differences. Then, we establish a result on stationary switching

manifolds, which are necessary to justify the optimal switching plane controller. Fi-

nally, we describe our control approach, which unifies both state-feedback approaches,

and present the algorithm, as well as its performance analysis, that supports this

framework.

4.1 Implicit and Explicit State-feedback Control

In the past literature, there have been a number of approaches in optimal control of

hybrid systems, that use switching manifolds as event generators. They generate a

switching event when the state of the hybrid system x(t) satisfies a switching inequal-

ity condition Φ(x(t)) ≤ 0 or a switching equality condition Φ(x(t)) = 0, defined by

an event function Φ(x(t)). We call this control approach as an explicit state-feedback

control. With an explicit state-feedback control, the switching events can be checked

reliably with negligible computational effort. Example of explicit state-feedback con-

trol is a hybrid system controlled by a switching manifold (mode transitions are

triggered when the state intersects with this manifold), which is defined as a compact
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set {x : Φ(x) = 0}.

Note that, based on the definition of an autonomous switching hybrid system

(ASHS), switching transitions in an ASHS are generated by switching manifolds. In

the case of ASHS, the switching manifolds are fixed a priori or parametrized by a set of

parameters. In both cases, the switching manifolds are not computed or updated on-

line, and they only serve to provide switching events for the hybrid system. Thus, the

optimal control problems considered in the past literature using this control approach

are either to optimize the state trajectory over an external control input (see [62, 63])

or to optimize over the parameter values (see [9, 18]). As these manifolds are designed

with respect to one specific optimal trajectory, the system is generally not optimal in

the presence of disturbances.

Instead of pre-determined switching manifolds, we are interested in the station-

ary optimal switching manifolds of a switched system. The switching manifolds are

optimal in a region of state-space if all switchings on the manifolds correspond to

optimal switchings of an optimal control problem. Hence, this explicit state-feedback

controller, if exists, is very robust since the switching events generated by the optimal

switching manifolds are always optimal. However, the optimal switching manifolds,

being a set of states at the optimal switching times, are typically computational infea-

sible to be obtained on-line. We instead aim for the tangential approximation of these

surfaces, which we call the optimal switching planes. We shall see that the optimal

switching planes implement a neighboring optimal control scheme, which is capable

of compensating small amplitude deviations from the nominal path. Slowly-varying

deviations of large amplitude, on the other hand, are taken care of by real-time ad-

justments of the planes.

Stationarity of the optimal switching manifolds is important (otherwise they no

longer comprise a state-feedback controller), and we shall see that stationarity holds

if the corresponding optimal control problem is a free final-time problem.
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We consider the real-time framework established in Chapter 3 as an example of

implicit state-feedback control, for which at each time-step, one iteration of an opti-

mization algorithm is executed using state measurements. In this chapter, we merge

implicit and explicit feedback control into a unified framework. As a core feature,

the state-dependent switching policy is expressed in terms of time-varying switching

planes, which triggers mode transitions when being intersected by the state trajectory.

These switching planes are updated in real time using the state measurements.

4.2 Stationarity of Locally Optimal Switching Planes

In this section we show the existence of the stationary optimal switching manifolds

for an optimal control problem with no constraint on the final time. To capture the

salient point of the argument, we show this property for a bi-modal, single-switch

system of the form

ẋ =











f0(x), t ∈ [0, τ)

f1(x), t ∈ [τ, T ]
, (48)

with smooth modal functions fi : R
n → R

n. x(t) ∈ R
n is the state variable. The

initial condition x(0) = x0 is assumed to belong to a set X0. We assume that the

final time T is not fixed and it is part of the control variable τ̄ = [τ, T ]T with the

constraint 0 ≤ τ ≤ T . We denote T = τ2 and 0 = τ0 for simplicity of notation.

We denote xk = x(τk) and they are called switch points. We introduce the notion

of activation duration δ0 = τ , and δ1 = T − τ . The time span δk represents the

duration of activation for mode k. We call the sequence δ̄ = [δ0, δ1]
T the activation

duration sequence. Note that the activation duration vector δ̄ = [δ0, δ1]
T is completely

equivalent (related with a simple equivalence relation) to the switching time vector

τ̄ = [τ, T ]T , and either can be used as the control variable. We denote the state

trajectory under the dynamics (48) with initial condition x0, activation duration δ̄ as

x(·, x0, δ̄, 0, T ).
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We define a switching manifold to be a compact set

Mk,k−1 = {x : Φk,k−1(x) = 0} , (49)

in the state space of co-dimension-one, which is implicitly defined through an event

function Φk,k−1, for k = 1, 2. A trajectory starting at x0 triggers the mode transition

0 → 1 at the time τ(M10, x0), at which it first intersects M10, i.e. Φ10(x(τ(M10, x0))) =

0 and Φ10(x(t)) 6= 0, ∀t ∈ [t0, τ). All subsequent intersections with M10 do not effect

the system. Similar to the above, the union of all terminal points x2 forms the

terminal manifold M21.

Assume that we use the switching manifolds as an explicit state-feedback con-

troller, then under closed-loop operation, the switching times, the switch points and

the activation duration are all functions of the x0 and the switching manifolds (note

that M10 only affects τ and δ0, and M21 only affects T and δ1) . We call switching

manifolds M10 and M21 optimal, if the resultant activation duration δ̄(M10,M21) is a

local optimal solution for a standard optimal control problem defined as

min
δ̄
J(δ̄, x0) =

∫ τ(M10)

0

L0(x(t))dt+

∫ T (M21)

τ(M10)

L0(x(t))dt+ φ1(x1(M10) + φ2(x2(M21)),

(50)

for the entire set of initial conditions x0 ∈ X0. Hence, optimal switching manifolds

M⋆
10 and M⋆

21 characterize a family of optimal trajectories x⋆(·, x0, δ̄
⋆, 0, T ⋆), x0 ∈ X0,

where ⋆ denotes optimal entities with respect to the optimal control Problem (50).

The implicit representation (49) of the optimal surface by means of a switching

condition is clearly not unique. One particular insightful representation of M⋆
k,k−1

employs the event function

δ⋆k (x) = Φ⋆
k+1,k (x) , (51)

which returns the optimal activation duration δ⋆k (x) for any current state x. If Φ⋆
k+1,k

exists, it constitutes a time-invariant optimal feedback law for the optimal activation

durations, which leads to the following lemma.
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Lemma 4.1 Stationary optimal manifolds M⋆
k+1,k defined in (51), which solves the

optimal control Problem (50), exist, if and only if there is a time-invariant state-

feedback law for the optimal activation duration δ̄⋆.

Proof 4.1 First consider k = 0. Suppose that the optimal state-feedback law (51) for

the first activation duration δ⋆0 is time-varying. Then there exists a time t′0 6= t0 and

a state x0, so that the event function Φ⋆
10 (x, t′0) 6= Φ⋆

10 (x, t0) > 0 returns two different

optimal activation durations for the first mode. Due to autonomy and time-invariance

of the mode dynamics (48), both optimal trajectories x⋆(t, x0, τ, 0, T ), x
′⋆(t, x0, τ

′, 0, T )

must switch at two different points x1 6= x′1, which contradicts stationarity of the

optimal surface M⋆
10.

The other direction of the proof follows from inverting the arguments of the pre-

vious paragraph. The case for k = 1 is exactly the same.

Clearly, not all optimal control problems admit time-invariant optimal feedback laws.

We now show that, time-invariant controller exists for a free final-time problem.

Theorem 4.1 The optimal control Problem (50) admits stationary optimal switching

manifolds M⋆
10 and M⋆

21, if the final time T is unspecified and the cost and constraint

components Li and φi are smooth, time-invariant functions.

Proof 4.2 First consider M⋆
10. By Bellman’s Optimality Principle, an optimal tra-

jectory x⋆(t, x0, δ̄
⋆, 0, T ) can be arbitrarily subdivided into two parts for some δ′, where

the trailing section x⋆(t, x⋆(δ′), (δ⋆0 − δ′), [δ⋆0 − δ′, δ⋆1]
T , δ′, T ) minimizes the costs-to-go

J⋆([δ⋆0 − δ′, δ⋆1]
T , x⋆(δ′)). Given δ′ ≤ δ⋆0 the performance index

J⋆(δ̄⋆, x0) =

∫ δ′

0

L0(x(t))dt+

∫ δ⋆
0

δ′
L0(x(t))dt+

∫ δ⋆
0+δ⋆

1

δ⋆
0

L1(x(t))dt+ φ1(x
⋆
1) + φ2(x

⋆
2)

(52)

can be split up into two parts. If Li and φi are time-invariant, it is possible to shift

the integration bounds of the cost-to-go term by −δ′, which yields

J⋆(δ̄′⋆, x′0) =

∫ δ⋆
0−δ

′

0

L0(x(t+δ
′))dt+

∫ δ⋆
0−δ

′+δ⋆
1

δ⋆
0−δ

′

L1(x(t+δ
′))dt+φ1(x

⋆
1)+φ2(x

⋆
2). (53)
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This expression obviously corresponds to the optimal costs incurred by the trajectory

x⋆(t, x′0, τ
⋆− δ′, 0, T − δ′) that starts at x′0. As it took exactly δ′ time units to get from

x0 to x′0, the system switches its mode at the same switch point x⋆1 and x⋆2 for both

trajectories x⋆(t, x0, τ
⋆, 0, T ) and x⋆(t, x′0, τ

⋆− δ′, 0, T − δ′). Moreover, δ′ is arbitrary,

so that the optimal feedback law for δ⋆0 must be time-invariant and Lemma 4.1 ensures

stationarity of M⋆
10. The case for k = 1 is exactly the same.

Clearly, for an optimal control problem with fixed final time, the cost functional

defined in (50) is generally not constant when the activation durations are time-

shifted. Thus, fixed final-time problems generally do not admit stationary optimal

manifolds. Rather, the optimal switching manifolds and the switching planes are

time-varying. Thus, henceforth in this chapter, we only consider fixed final-time

problems.

In reference [61], we provided an algorithm for obtaining polytonal approximations

of the often complex surfaces by off-line computations for a small set X0. However,

the switching surfaces around a nominal trajectory for switched system with even

small number of states require very large computational resources and is not feasible

on-line. Hence, for a real-time controller, the switching surfaces are not used. Instead,

we use the tangential approximations of the optimal switching surfaces, assuming that

they are smooth, which they may not be in some cases. The switching planes are

characterized by their normal direction vectors, which are also normal to the surfaces,

and an offset vector. These planes are stationary since the switching surfaces are

stationary. This approach therefore applies to systems with a much higher number

of states and can be operated in a much large region of the state space.

4.3 State-feedback Control with Optimal Switching Planes

We now present our real-time robust state-feedback control algorithm for a free final-

time optimal control problem. As mentioned before, we aim to use both explicit and
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implicit feedback control approaches. As a result, the control approach we propose

is of a cascaded structure. We first propose the cascaded control approach with a

switching plane controller, then we describe how we obtain the switching planes (in

terms of the normal and the offset vectors) that are optimal with respect to an optimal

control problem.

Note that since the problems we consider in this chapter are in the class of free

final-time problems, while the rest of thesis mostly address fixed final-time problems,

we sometimes have to introduce new notations and change the definitions of some

notations used in previous chapters. They will be provided along the way.

4.3.1 Cascaded Control Approach

Consider the autonomous switched system

ẋ(t) = fq(t)(x(t)) + w(t), (54)

with initial condition x(0) = x0, subject to unknown disturbances w(t), where q(t)

denotes the operation mode of the switched system at time t, which is assumed to fol-

low a predetermined finite sequence q̄ = {0, 1, . . . , N−1}. Our switching law involves

two basic components that operate on different time scales. The first component is a

continuous-time mode selector, which implements a parametrized event function

Φ(x(t), n(t), d(t)) = d(t) − nT (t)x(t), (55)

that can be evaluated with negligible computational effort. The mode selector gen-

erates a piecewise constant mode signal q(t) by triggering a mode switch when

Φ(x(t), n(t), d(t)) ≤ 0 and activating the next mode in the sequence q̄. Suitable

parameter trajectories {d(t)} and {n(t)} are provided by the second component,

the switching plane controller






nT (t)

d(t)






= hc (x(t), q(t)) . (56)
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plantmode
selector

On-line switching
plane controller

q(t)

inner control loop

{n(t), d(t)}

x(t)

w(t)

Figure 15: Cascaded control loop structure.

The switching plane controller consists of two discrete processes {n(t)} and {d(t)},

which are updated every ∆t time units, similar to {τ̄(t)} in Chapter 3. At each

sampling time t, this component computes adequate parameter values n(t) (normal

vector) and d(t) (offset vector) based on the hybrid state (x(t), q(t)). Hence, the

proposed control loop employs a real-time switching plane controller that is updated

on-line.

Now we can propose a cascaded control loop, as shown in Figure 15. The inner

loop operates in continuous time and consists of the plant and the mode selector.

The inner loop and the switching plane controller form the outer loop, whose central

task it is to ensures that the overall system meets user-defined specifications. The

working principle of the real time switching plane controller and the overall control

loop is illustrated in Figure 16 and can be described as follows: After the activation of

the k-th mode, the state x(t) evolves uncontrolled (and with noise w(·)) according to

the k-th modal function fk and the disturbance w(t). This evolution continues until

satisfaction of the switching condition Φ(x(t), n(t), d(t)) ≤ 0 is detected. The exact

switching time τk+1 = mint≥τk t : d(t)−nT (t) x(t) = 0 indicates the first intersection

of the state trajectory x(·) and the time-varying switching plane

T (t) = {x : d(t) − nT (t)x = 0} (57)

in the state space, upon which a transition from q(t) to q(t) + 1 is initiated, except
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if q(t) = N − 1. Subsequently, the same procedure is repeated for all remaining

modes. If q(t) = N − 1, then the operation of the switched system is terminated.

Provided a sufficiently high update frequency and under reasonable assumptions, the

switching plane controller incrementally shifts and rotates T (t) in state space during

operation of the plant. By the nature of the real-time problem we propose, we often

only consider the trajectory starting at time t and ending at time τN .

x

txk

T (ts + ∆t)

x(·)

xk+1 = x(τk+1)

T (ts)

x(ts)

x(ts + ∆t)

ts ts + ∆t ts + 2∆t

Figure 16: Working principle of the real-time switching plane controller. At a
sample time t, the switching plane T (t), parameterized by the normal n(t) and the
offset vector d(t), is updated. Similarly at the time t+ ∆t. A mode transition occurs
whenever the state trajectory intersects with the time-varying switching plane T (t).
In this case, this intersection occurred during the time interval [t+ ∆t, t+ 2∆t].

For compactness, let τ̄ = {τk}
N
k=1 and x̄ = {xk}

N

k=1 denote the switching time

sequence and the switching point sequence, which contains all switching points xk =

x(τk). Moreover, we call δk = τk+1−τk the activation duration of mode qk and δ̄ =

{δk}
N−1
k=0 the corresponding activation duration sequence.

4.3.2 Real-time Optimal Control Problem

The cascaded control loop proposed can use any switching planes, but we want to

use switching planes that are optimal with respect to the optimal control problem

at hand. One may first formulate a standard optimal control problem. Given an

autonomous switched system (54) and a finite mode sequence q̄, we aim to determine

a switching plane controller (56), such that the closed-loop generates a switching time
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vector τ̄ = [τ1, τ2, ..., τN ]T , which solves the following problem

min
τ̄
Jq̄(x0, τ̄) =

N−1
∑

k=0

(
∫ τk+1

τk

Lk(x(t))dt+ φk(xk)

)

+ φN(xN ) (58)

subject to the dynamics (54) without noise (w(t) = 0, ∀t) and

0 ≤ τ1, ...,≤ τN , (59)

for any initial state x0 ∈ X0. Functions Lk encode instantaneous costs, which assess

the transient behavior, φk accounts for potential switching cost and φN represents

terminal costs. Trajectory cost functions Lk are required but switching cost functions

φk can be zero. Since we only consider fixed final-time problems, we denote the final

time T as τN throughout this chapter.

A trajectory x⋆(·), associated to a local minimizer τ̄ ⋆ of (58), is denoted as the

associated nominal trajectory. The proposed problem without disturbances w(t)

is a standard real-time optimal control problem solved in Chapter 3. Our optimal-

control based maps and (56), however, are explicitly designed to provide a robust loop

behavior under disturbances, and go beyond solving Problem (58) without noise. Our

controller provides correction responses for systems under disturbances, and guides

the system back to an optimal trajectory with respect to Problem (58). Hence, we

consider to solve this problem over a set of initial conditions, which corresponds

to a family of trajectories in the neighborhood of a nominal trajectory. Hence, we

shall reformulate the problem into a real-time problem, where the state trajectory is

assumed to be effected by the noise w(·), and the control task at time t is to regulate

the remaining state trajectory for the remaining modes of operation.

For the subsequent presentation of the controller design procedure, we need to

explicitly distinguish between elapsed trajectories, i.e. signals that have been imple-

mented by the system in the past, and predicted trajectories over a finite interval into

the future. We thus define a set of new notations.

Let us first introduce a relative time frame r, which slides along the absolute
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time axis and indicates the time difference to current time t. Given the hybrid

state (x(t), q(t) = j), with j being the index of the currently activated mode, and

a sequence of fixed predicted switching times ρ̄(t) = [ρ1(t), ρ2(t), ..., ρN(t)(t)]
T for the

remaining predicted mode sequence θ̄(t) = {j, j+1, ..., N −1} of length N(t) = N − j

to be implemented in the future, we can generate a corresponding predicted mode

signal θ(r|t) and use the disturbance-free state space model

ξ̇(r|t) = fθ(r|t)(ξ(r|t)) , ξ(0|t) = x(t) (60)

to simulate the predicted state trajectory ξ(r|t) over a finite duration into the future.

Denote ρ0(t) = t. Define χ̄(t) such that χk(t) = ρk+1(t)− ρk(t), k = 0, 1, ..., N(t)− 1.

For consistency, we call χ̄(t) the predicted activation duration sequence, which is dual

to ρ̄(t) and refer to ξ̄(t) as the predicted switching point sequence. Additionally,

let us introduce the shifted sequence χ̄(∆t|t), where the first activation duration

χ̄0(∆t|t) = χ0(t) − ∆t is shifted by ∆t time units, whereas the remaining duration

χ̄k(∆t|t)=χk(t) for all k = 1 . . . (N(t)− 1). An example of an elapsed trajectory x(·)

and the attached prediction ξ(·|t) for a sample time t = ts is shown in Figure 17.

x(·)

τ0

x0

r

x(ts)

χ5(ts)χ4(ts)χ3(ts)χ2(ts)χ1(ts)χ0(ts)

ρ1(ts) ρ2(ts) ρ3(ts) ρ4(ts) ρ5(ts) ρ6(ts)

ξ(·|ts)

Figure 17: Example of an elapsed state trajectory x(·) and its prediction ξ(·|t)
(dotted line) at time t = ts.

Thus, all predicted signals and variables are explicitly associated to the time t and

the corresponding hybrid state (x(t), q(t)). In contrast to their elapsed counterparts

τk (δk), all ρk(t) (all χk(t)) are considered to be independent of the past state and

disturbance history and only dependent on the current state x(t). Furthermore, we
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define the feasible set Λρ(t) = {ρ̄(t) : t = ρ0(t) ≤ ρ1(t) ≤ . . . ,≤ ρN(t)−1(t) ≤ ρN(t)(t)}

and equivalently, Λχ(t) = {λ̄(t) : λk(t) ≥ 0, k = 0, 1, ..., N(t) − 1}. Finally, we

denote n(·) and d(·) as trajectories of the switching plane parameters. Thus, nk(t) =

n(ρk+1(t)) and dk = d(ρk+1(t)) constitute sequences n̄(t) and d̄(t). Note that, If we

have the trajectories n(·) and d(·), then we can freely integrate the simulated state

trajectory forward and obtain the activation duration χ̄(t, n̄(t), d̄(t)).

With these definitions, we are in the position to formulate our desired real-time

optimal control problem, which is

min
ρ̄(t)∈Λρ(t)

Jθ̄(t)(x(t), ρ̄(t))=

N(t)−1
∑

j=0

(

∫ ρk+1(t)

ρk(t)

Lk(ξ(r|t))dr+φk(ξk(t))

)

+ φN(ξN(t)(t)), (61)

subject to the dynamics (60),

where Lk, φk, φN are all identical to the functions of the original Problem (58). The

foundation for the determination of suitable values n(t) and d(t) at time t is the

knowledge of the triple
(

x(t), ρ̄(t), θ̄(t)
)

. In particular, since the optimal switching

planes are anchored at the optimal switching points, we see that the optimal values

n⋆(t) and d⋆(t) are obtained, if and only if ρ̄(t) constitutes a local minimizer for

Problem (61).To ensure well-posedness of the problem and to simplify notations, we

make the following assumptions throughout the remaining sections of this chapter:

4.1 We assume that the state information is obtained without measurement error.

Measurement noise can be treated as process disturbances.

4.2 The modal functions fk are all three-times continuously differentiable.

4.3 Lqk , φqk, φN are three-times continuously differentiable.

4.3.3 Exact Discretization of the Optimal Control Problem

Now we are ready to design a real-time algorithmic framework and summarize our

procedure for incrementally adapting the parametrized switching plane T (t). The
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key for obtaining the optimal switching plane orientation n(t) and offset d(t), is to

apply a novel approach, transforming the optimization problem into an equivalent

well-known discrete-time optimal control problem via an exact discretization process.

This process reformulate Problem (61) into the following discrete-time optimal control

problem

min
χ̄(t)∈Λχ(t)

J̃θ̄(t)(x(t), χ̄(t)) =

N(t)
∑

k=0

gk(ξk(t), χk(t)) subject to (62)

ξk+1(t) = hk(ξk(t), χk(t)), ξ0(t) = x(t), (63)

in terms of the predicted activation duration sequence χ̄(t) with discretized dynamics

and costs

hk(ξk(t), χk(t)) = ξk +

∫ χk(t)

0

fθk(t)(ξ(r|t))dr (64)

gk(ξk(t), χk(t)) =

∫ χk(t)

0

Lθk(t)(ξ(r|t))dr + φθk(t)(ξk(t)) (65)

gN(t)(ξk(t), χk(t)) = φN(ξN(t)(t)). (66)

Note that closed-form expressions of (64), (65) can generally not be derived, but

both functions can always be evaluated via simulation. In contrast to its continuous-

time counterpart, the transformed Problem (62), which we will simply refer to as

Ψ(x(t), θ̄(t), t), constitutes a standard nonlinear optimization problem. Hence, it can

be efficiently solved by one of numerous existing iterative procedures such as Sequen-

tial Quadratic Programming (SQP) [28]. Most importantly, the concept of neighbor-

ing extremal solutions by a perturbation feedback controller is well-defined for such a

problem setting [42].

However, it should be noted that, although the problem is transformed to a non-

linear optimal control problem, the results involving nonlinear optimal control with

respect to the control input have to be re-interpreted in terms of a switched system,

since the control input χ̄(t) in this case are time durations, not control input in the
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standard sense. The actual control action is not applied until the time duration be-

comes 0. Hence, we must interpret the results in light of this important structure

of the switched system. Hence, one central novelty of this chapter is that we apply

perturbation feedback control from nonlinear optimal control to a switched system

timing optimal control problem, and interpret the resultant controller as the optimal

switching plane controller.

To exploit both above mentioned aspects in our controller design procedure, we

need closed-form expressions of the first and second order partial derivatives of (64)

and (65). Therefore, let us introduce the Hamiltonian

Hk(ξk(t), χk(t), pk+1(t))=pT
k+1(t)hk(ξk(t), χk(t)) + gk(ξk(t), χk(t)), (67)

and the costate pk(t) at time t determined via backward iteration

pT
k (t)=pT

k+1(t)Ak(t)+ak(t), pN (t)=0. (68)

Aj and aj are obtained from forward integration required for the predicted state

trajectory ξ(r|t).

Ak(t)=
∂hk

∂ξ
(ξk(t), χk(t)) = Zk(χk(t)), (69)

ak(t)=
∂gk

∂ξ
(ξk(t), χk(t))=

∫ χk(t)

0

∂Lk

∂ξ
(ζ(r|t))Zk(r|t)dr+

∂φk

∂x
(ξk(t)) (70)

where the state transition matrix Zk(r|t) and ζ(r|t) follows from simultaneous inte-

gration of

ζ̇(r|t) = fk(ζ(r|t)), ζ(0) = ξk(t) (71)

Żk(r|t) =
∂fk

∂ζ
(ζ(r|t))Zk(r|t), Z(0) = I. (72)
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Moreover, let us introduce the abbreviations

Bk(t)=
∂hk

∂χ
(ξk(t), χk(t)), bk(t)=

∂gk

∂χ
(ξk(t), χk(t)) (73)

Qk(t)=
∂2Hk

∂ξ2
(ξk(t), χk(t), pk+1(t)) (74)

Mk(t)=
∂H2

k

∂ξ∂χ
(ξk(t), χk(t), pk+1(t)) (75)

Rk(t)=
∂H2

k

∂χ2
(ξk(t), χk(t), pk+1(t))=Mk(t)A

−1
k (t)Bk(t), (76)

k = 0, 1, ..., N(t) − 1

where the relation (76) between Mk and Rk plays a crucial role later on. It results

from the structure of the optimization problem and can be verified by differentiations.

Finally, let us also introduce the augmented performance index

J̃ ′
θ̄(t)(x(t), χ̄(t)) = φN(t)(ξN(t)(t)) − pTN(t)(t)ξN(t) +H0(ξ0(t), χ0(t), p1(t))

+

N(t)−1
∑

k=1

(Hk(ξk(t), χk(t), pk+1(t)) − pTk (t)ξk(t)), (77)

which is obtained by adjoining the constraints (63) to (62). As known in nonlinear

optimal control, this augmentation transforms the constrained optimization problem

into an equivalent unconstrained one.

4.3.4 Robust State-feedback Optimal Control Algorithm

Now we are ready to present the method to apply a neighboring extremal control

scheme for the discretized Problem (62), and see that they can be constructed by the

optimal switching planes. Furthermore, we are able to obtain the normal n(t) and

offset vector d(t).

The previous exact discretization process comprises two central benefits: First,

due to [28, 36] Sequential Quadratic Programming (SQP) provides the means for

obtaining the Newton direction ∆χ̄(t) (which is equivalent to the Newton direction

for ∆ρ̄(t)), namely by solving a constrained discrete-time LQR problem. Second,
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x1

x2

ξ(∆t|ts)
x(ts)

x(ts+1)

e(ts + ∆t)

x(·)

Figure 18: Prediction error e(t) at a sample time time t = ts in a noisy environment.
It represents the noise accumulated during the time interval [ts, ts + ∆t].

this standard optimal control problem yields a well-defined notion of a neighboring

extremal solution (see [42]), which can be exploited for the determination of a suitable

plane normal n(t). To see both aspects, denote the prediction error (due to noise)

at time t + ∆t by e(t + ∆t) = x(t + ∆t) − ξ(∆t|t). This term represents the noise

accumulated during the time interval [t, t+ ∆t] (refer to Figure 18).

A second order Taylor expansion of the augmented cost functional (77) around the

current prediction χ̄(∆t|t) for the next sampling time t + ∆t and the corresponding

state prediction ξ(∆t|t) yields

J̃ ′
θ̄(t)(ξ(∆t|t) + e(t+ ∆t), χ̄(∆t|t)+∆χ̄′(t+ ∆t))

= J̃ ′
θ̄(t)(ξ(∆t|t), χ̄(∆t|t)) +

∂J̃ ′
θ̄(t)

∂χ̄
(ξ(∆t|t), χ̄(∆t|t))∆χ̄′(t+ ∆t)

+
∂J̃ ′

θ̄(t)

∂ξ
(ξ(∆t|t), χ̄(∆t|t))e(t+ ∆t) +

1

2
[eT(t+ ∆t) ∆χ̄′(t+ ∆t)T]







∂2J̃ ′

θ̄(t)

∂ξ2
(ξ(∆t|t), χ(∆t|t))

∂2J̃ ′

θ̄(t)

∂χ̄∂ξ
(ξ(∆t|t), χ(∆t|t))

(

∂2J̃ ′

θ̄(t)

∂χ̄∂ξ
(ξ(∆t|t), χ(∆t|t))

)T
∂2J̃ ′

θ̄(t)

∂χ̄2 (ξ(∆t|t), χ(∆t|t))
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. (78)

The subsequent Newton direction ∆χ̄(t+∆t) associated with the pair (ξ(∆t|t), χ̄(∆t|t)),

which explicitly accounts for the disturbance effects at the next instant t+ ∆t, is the

66



solution to

min
∆χ̄′(t+∆t)∈Λχ(t+∆t)

J̃ ′
θ̄(t)(ξ(∆t|t) + e(t+ ∆t), χ̄(∆t|t)+∆χ̄′(t+ ∆t)). (79)

This is the central idea of SQP, namely reducing the nonlinear optimal control problem

into a LQR problem (see [28])

min
∆χ̄∈Λχ(t)

(

N(t)−1
∑

k=0

(1

2
∆ξT

k Qk(t)∆ξk+a
T
k (t)∆ξk

+∆χT
kMk(t)∆ξk+

1

2
∆χT

kRk(t)∆χk+b
T
k (t)∆χk

)

+(
1

2
ξT
N(t+∆t)QN(t)(t)+a

T
N(t)(t))∆ξN(t+∆t)

)

(80)

subject to

∆ξk+1 =Ak(t)∆ξk+Bk(t)∆χk, ∆ξ0 =e(t+ ∆t), (81)

where Ak(t), Bk(t), ak(t), bk(t), Qk(t), Mk(t), Rk(t) are all defined in the last section

as partial derivatives of the Hamiltonian (67). Henceforth we refer to this prob-

lem as LQR (x(t+ ∆t), χ̄(t)). Using the perturbation feedback controller presented

in [36, 42], we can use the LQR state-feedback gain kTk (t) obtained from solving

LQR (x(t+ ∆t), χ̄(t)) to determine a sequence of the normal vector nk(t) and a se-

quence of the offset dk(t)

nTk (t) = kTk (t)A−1
k (t), dk(t) = nTk (t)ξk+1(t). (82)

The effect of state intersection with the switching plane with the normal and offset

vectors defined above can be seen as a perturbation feedback control

χ̄(t, n̄(t), d̄(t)) = χ̄(t) +H−1(t)
∂2J̃ ′

θ̄(t)

∂ξ∂χ̄
(ξ(t), χ̄(t))e(t+ ∆t), (83)

due to the following fact from [42]

uTkH
−1(t)

∂2J̃ ′
θ̄(t)

∂ξ∂χ̄
(ξ(t), χ̄(t))e(t+ ∆t) = kTk (t)∆ξk, (84)
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where uk denotes the k-th unit vector. This allows for evaluating the perturbation

control law (83) at time t + ∆t simply by means of an event-driven forward-in-time

simulation of the plant dynamics with initial state x(t+ ∆t). Thus, compared to the

feedback approach in Chapter 3, the determination of switching plane parameters

and the evaluation of the perturbation controller (83) only causes marginal additional

effort, whereas the potential for improving the loop performance is significant. The

set of planes defined by n̄(t) and d̄(t) perform a Newton step correction on the error

e(t+∆t). This correction is done for every iteration as long as one uses the switching

plane controller, which mounts to better performance.

When the activation duration vector χ̄⋆(t) is optimal, the vector n⋆k(t) is normal

to the optimal switching surface. This is resulted by re-interpreting the perturbation

feedback control corrections in the setting of the activation durations. After the se-

quences n̄(t) and d̄(t) are obtained, we always use the first upcoming plane parameters

for n(t) and d(t). Thus n(t) = n0(t) and d(t) = d0(t).

With the above results for the normal n̄(t) and offset vector d̄(t), we can propose

the overall real-time algorithm.

Algorithm 4.1 Step 0: Set t = 0, θ̄(0) = q̄, specify tolerance ε > 0 and step size

∆t. Determine a feasible initial sequence χ̄(0) for given x0.

Iterate until mode N gets deactivated at t > τN = T

Step 1: At current time t, obtain new measurement x(t).

Step 2: If χ0(t) > ∆t, then

Step 3.1: Simulate and obtain ξ(r|t) by forward integration and the switching point

sequence ξk(t), using the switching planes parameters n̄(t) and d̄(t). During this event-

triggered forward integration, the sequence χ̄(t − ∆t) = χ̄(t, n̄(t), d̄(t)) is obtained,

which includes the corrective effects of the perturbation feedback controller (83).

Step 3.2 Compute matrix sequences Qk(t), Mk(t), Rk(t), Ak(t), k = 0, 1, ..., N(t)−

1. Solve LQR(x(t), χ̄(t− ∆t)) to obtain the intermediate update ∆χ̄(t+ ∆t), update

68



n̄(t), d̄(t) from (82). Substitute n(t) = n0(t) and d(t) = d0(t) into the event func-

tion (55).

Step 3.3:While executing steps 3.1-2, check for collision of x(·) with T (t), i.e. for

d(t)−nT (t)x(t)<−ε. If so, interrupt all computations, set ∆χ(t+ ∆t)=0 and jump

to (4.1).

Step 3.4: Wait until ∆t time units have elapsed and return.

else

Step 4.1: Wait until the collision of x(·) with T (t) is detected at time τq(t)+1 ≥ t.

Set t+ ∆t=τq(t)+1 and ∆χ(t+ ∆t)=∆χ(t).

Step 4.2: Set N(t+∆t)=N(t)−1, shrink mode sequence θ̄(t+∆t)={θk(t)}
N(t+∆t)
k=1 ,

and trigger mode transition q(t) → q(t) + 1.

The main difference between this algorithm and Algorithm 3.1 proposed in Chap-

ter 3 is that, for Algorithm 4.1, there are two Newton corrections (one on the state de-

viation, one on the activation duration deviation) done for each step of this algorithm.

The extra Newton correction on the state deviation is achieved by the neighboring

extremal solutions obtained with the implementation of the optimal switching plane

controller. This algorithm thus provides a more robust controller than Algorithm 3.1

in terms of minimizing the cost functional (61). Note that the computation load of

each step of the algorithm is similar to that of Algorithm 3.1, since one step of the

Newton direction must be computed.

However, this controller is more suitable for small deviations from the optimal tra-

jectory, since Newton methods are not globally convergent, although they admit very

fast convergence rate (quadratic) when the state trajectory is close to the nominal

optimal trajectory. Performance of Algorithm 4.1 depends on the frequency and am-

plitude of the disturbances, and it also depends on the number of iterations executed

by this real-time algorithm. The performance analysis of this algorithm is addressed

in the next sub-section.

69



4.3.5 Convergence Analysis

In this section, we present convergence analysis of the proposed algorithm. Similar

to Chapter 3, we characterize the performance of the algorithm not in an asymptotic

sense, but rather in the sense of convergence rate, due to the real-time nature of the

algorithm.

We first note a stationarity property follows from Bellman’s Principle of Opti-

mality. If χ̄(t) is locally optimal at a time t, then the update of step 1.4 conserves

optimality for all future times if there is no noise. This property follows from station-

arity of the optimal switching points in the absence of disturbances.

Lemma 4.2 Let χ̄⋆(t0) be a local minimizer of Ψ(x(t0), q̄(t0), t0), then χ̄⋆(t) with

χ⋆0(t) = χ⋆j(t0)− (t−ρj(t0)) and χ⋆k(t) = χ⋆k+j(t0), k = 1 . . . N(t) constitutes a local

minimizer of the cost-to-go problem Ψ(ξ(t − t0|t0), θ̄(t), t) for any t0 and any t ∈

[ρj(t0), ρj+1(t0)] with N(t)=N−j and θ̄(t)={j, j + 1, ...N − 1}.

Proof 4.3 The result of Lemma 4.2 follows directly from Bellman’s Principle of Op-

timality and the assumed time invariance of Lqk , φqk and ψ.

Consequently, the overall undisturbed loop behaves as specified in Problem (58).

Now let us investigate central properties of the real-time approach in the presence of

disturbances. Suppose that at time t, a local minimizer χ̄⋆(t) corresponding to x(t) is

known. If disturbances perturb the execution over [t, t+∆t], then the predicted local

minimizer χ̄⋆(∆t|t) is no longer a minimizer with respect to x(t+ ∆t) at time t+ ∆t.

Nevertheless, the difference between χ̄⋆(∆t|t) and the true minimizer χ̄⋆(t + ∆t) is

bounded. Recall the prediction error (due to noise) at time t is obtained by e(t+∆t) =

x(t+ ∆t) − ξ(∆t|t) (see Figure 18), we can derive the following relation.

Theorem 4.2 If no mode transition occurs between t and t + ∆t and the gradient

∂J̃ ′

θ̄(t)

∂χ̄
(x, χ̄) is differentiable at points (ξ(∆t|t), χ̄⋆(∆t|t)) and (ξ(∆t|t), χ̄⋆(t + ∆t)),
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then there exists a bounded K > 0, such that

||χ̄⋆(t+ ∆t) − χ̄⋆(∆t|t)|| ≤ K||e(t+ ∆t)|| . (85)

Proof 4.4 Since no mode transition is triggered during time interval [t, t+ ∆t] and

because of Lemma 4.2, we know that θ̄(t)= θ̄(t+ ∆t) and that the augmented perfor-

mance index (77) satisfies

∂J̃ ′
θ̄(t)

∂χ̄
(x(t), χ̄⋆(t)) = 0,

∂J̃ ′
θ̄(t)

∂χ̄
(ξ⋆(∆t|t), χ̄⋆(∆t|t)) = 0

∂J̃ ′
θ̄(t)

∂χ̄
(x(t+ ∆t), χ̄⋆(t+ ∆t)) = 0 . (86)

A Taylor expansion for the latter term (86) yields

∂J̃ ′
θ̄(t)

∂χ̄
(x(t+ ∆t), χ̄⋆(t+ ∆t))

=
∂J̃ ′

θ̄(t)

∂χ̄
(ξ⋆(∆t|t), χ̄⋆(t+ ∆t))

+
∂2J̃ ′

θ̄(t)

∂ξ∂χ̄
(ξ⋆(∆t|t), χ̄⋆(t+ ∆t))e(t+ ∆t)+O(||e(t+ ∆t)||2)

=
∂2J̃ ′

θ̄(t)

∂χ̄2
(ξ⋆(∆t|t), χ̄⋆(∆t|t))(χ̄⋆(t+ ∆t) − χ̄⋆(∆t|t))

+
∂3J̃ ′

θ̄(t)

∂ξ∂χ̄2
(. . .) e(t+ ∆t)(χ̄⋆(t+ ∆t) − χ̄⋆(∆t|t))

+
∂2J̃ ′

θ̄(t)

∂ξ∂χ̄
(ξ⋆(∆t|t), χ̄⋆(∆t|t))e(t+ ∆t)

+O(||e(t+ ∆t)||2) +O(||χ̄⋆(t+ ∆t) − χ̄⋆(∆t|t)||2) = 0. (87)

From positive definiteness of the Hessian

H⋆(t)=
∂2J̃θ̄(t)

∂χ̄2
(ξ⋆(∆t|t), χ̄⋆(∆t|t))=

∂2J̃θ̄(t)

∂χ̄2
(ξ⋆(t), χ̄⋆(t)), (88)

and the assumption that ‖e(t+∆t)‖ ≪ 1 we get invertibility of H⋆(t)+
∂3J̃θ̄(t)

∂ξ∂χ̄2 (. . .)e(t+
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∆t). Therefore,

χ̄⋆(t+ ∆t) − χ̄⋆(∆t|t)

= −

(

H⋆(t) +
∂3J̃ ′

θ̄(t)

∂ξ∂χ̄2
(. . .)e(t+ ∆t)

)−1(
∂2J̃ ′

θ̄(t)

∂ξ∂χ̄
(ξ⋆(∆t|t), χ̄⋆(∆t|t)) e(t+ ∆t)

+O(||e(t+ ∆t)||2) +O(||χ̄⋆(t+ ∆t) − χ̄⋆(∆t|t)||2)

)

, (89)

which after application of the perturbation lemma for inverse matrices ([16], Fact

9.9.43) yields

χ̄⋆(t+ ∆t) − χ̄⋆(∆t|t) = − (H⋆(t))−1
∂2J̃ ′

θ̄(t)

∂ξ∂χ̄
(ξ⋆(∆t|t), χ̄⋆(∆t|t)) e(t+ ∆t)

+O(||e(t+ ∆t)||2) +O(||χ̄⋆(t+ ∆t) − χ̄⋆(∆t|t)||2).

(90)

This completes the proof.

Theorem 4.2 quantifies the degradation of χ̄(t) in between two consecutive update

steps, if we skip the Newton correction. Executing this correction and again as-

suming that the deviation from the predicted path ‖e(t)‖ ≪ 1, we can examine the

convergence rate of Algorithm 4.1 by the following theorem.

Theorem 4.3 Suppose that no mode transition occurs between t and t+∆t and that

the gradient
∂J̃ ′

θ̄(t)

∂χ̄
(x, χ̄) is differentiable at points (ξ(∆t|t), χ̄⋆(∆t|t)) and (ξ(∆t|t), χ̄⋆(t+

∆t)). If the Hessian H(t) =
∂2J̃ ′

θ̄(t)

∂χ̄2 (x(t), χ̄(t)) is positive definite at time t+ ∆t, then

there exists a bounded constant K > 0 such that

||χ̄(t+ ∆t) − χ̄⋆(t+ ∆t)|| ≤ K
(

‖χ̄(t) − χ̄⋆(t)‖2 + ‖e(t+ ∆t)‖
)

(91)

Proof 4.5 Suppose that no mode transition is initiated in between [t, t+ ∆t] so that

θ̄(t) = θ̄(t+∆t) and that the previously predicted optimal activation duration sequence

is updated at time t+ ∆t according to

χ̄(t+ ∆t) = χ̄(∆t|t)−

(

∂2J̃ ′
θ̄(t)

∂χ̄2
(ξ(∆|t), χ̄(∆t|t))

)−1
∂J̃ ′

θ̄(t)

∂χ̄
(x(t+ ∆t), χ̄(∆t|t)). (92)
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For convenience

H(t) =
∂2J̃ ′

θ̄(t)

∂χ̄2
(ξ(∆t|t), χ̄(∆t|t), (93)

and ∇J̃ ′(t) =
∂J̃ ′

θ̄(t)

∂χ̄
(x(t), χ̄(∆t|t−∆t)) denote the Hessian and the gradient evaluated

for the predicted activation duration sequence χ̄(∆t|t−∆t) of the previous update step

and let ∆χ̄(t) = χ̄(t) − χ̄⋆(t). Moreover, assume that the latest prediction χ̄(∆t|t) is

contained in the region of attraction of χ̄⋆(t+ ∆t). Then we get:

∆χ̄(t+ ∆t) = ∆χ̄(∆t|t) −H−1(t)∇J̃(t+ ∆t) − (χ̄⋆(t+ ∆t) − χ̄⋆(∆t|t))

= ∆χ̄(t) −H−1(t)

(

∇J̃ ′(t+ ∆t) −
∂J̃ ′

θ̄(t)

∂χ̄
(ξ(∆t|t), χ̄⋆(∆t|t))

)

+O(‖e(t+ ∆t)‖), (94)

where lim supη→0
O(η2)
η2

< ∞, χ̄⋆(∆t|t) is a local minimizer associated with ξ(∆t|t)

and ∆χ̄(∆t|t) = ∆χ̄(t). The extension of the right-hand side in the second step is

feasible as we add zero. Due to Theorem 4.2, we can also overbound the difference

(χ̄⋆(t+ ∆t) − χ̄⋆(∆t|t)).

Now we use the fact that J̃ ′
θ̄(t)

(x(t), χ̄(t)) is twice continuously differentiable and

its partial derivatives are locally Lipschitz continuous in order to arrive at

∇J̃ ′(t+ ∆t) −
∂J̃ ′

θ̄(t)

∂χ̄
(ξ(∆t|t), χ̄⋆(∆t|t))

=
∂2J̃ ′

θ̄(t)

∂χ̄2
(ξ(∆t|t), χ̄⋆(∆t|t))∆χ̄(∆t|t) +

∂2J̃ ′
θ̄(t)

∂χ̄∂ξ
(ξ(∆t|t), χ̄⋆(∆t|t))e(t+ ∆t)

+O(||e(t+ ∆t)||2) +O(‖e(t+ ∆t)‖‖∆χ̄(∆t|t)‖) +O(‖∆χ̄(∆t|t)‖2). (95)

Plugging (95) into (94) yields

∆χ̄(t+ ∆t) = −H−1(t)
∂2J̃ ′

θ̄(t)

∂χ̄∂ξ
(ξ(∆t|t), χ̄⋆(∆t|t))e(t+ ∆t)

+O(‖e(t+ ∆t)‖) +O(‖e(t+ ∆t)‖‖∆χ̄(∆t|t)‖) +O(‖∆χ̄(∆t|t)‖2),

(96)

and thus there exists a bounded constant K > 0 such that

||χ̄(t+ ∆t) − χ̄⋆(t+ ∆t|| ≤ K
(

||∆χ̄(t)||2 + ||e(t+ ∆t)||
)

,
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which finishes the proof.

The convergence rate of Algorithm 4.1 is linear in ‖e(t)‖ and quadratic in the differ-

ence ‖χ̄(t)− χ̄⋆(t)‖ from a local optimizer. This result is not too surprising, since we

are updating the activation durations with the Newton direction. One can compare

this convergence analysis with the one we obtained for Algorithm 3.1 (equation (30)).

4.4 Conclusions

We introduced in this chapter a novel optimal adaptive feedback control scheme for

nonlinear autonomous switched systems under the influence of unknown disturbances.

Mode transitions are triggered by the controller at the intersections of the state tra-

jectory with a time-varying switching plane. The plane itself is adjusted in real-time

by a switching plane controller to produce an overall loop behavior, which is optimal

with respect to a user-defined performance metric.

A central benefit of the proposed cascaded loop structure concerns the fact that

as the first of its kind, it unifies two feedback concepts for this class of systems. As

a direct consequence of the latter, this optimal adaptive feedback control strategy

produces a behavior, which is more robust in presence of small and fast disturbances

than other approaches proposed in this thesis. However, we also showed this class

of explicit feedback control approaches can only be applied to free final-time optimal

control problems.
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CHAPTER V

OPTIMAL TIMING CONTROL WITH CHANGING COST

FUNCTION

In many applications that operate in real-time, the environment of the system changes

in the form of the cost function, meaning that the cost function may be a function of

the current system time t. To be precise, the instantaneous trajectory cost function

L(x, t) may not be known a priori, but rather the system learns about it incrementally

as time advances (here, t denotes the time index for the real-time operation). This is

for instance the case when the system is tracking a target with unknown dynamics. In

this case, we consider the problem of optimizing a cost-to-go performance functional

defined by a time varying cost function, where the cost function is updated on-line.

This problem represents a new class of real-time optimal control problems, where

new information is injected into the problem on-line, and we do not know a priori

how the cost function varies when the switched system is in operation. We show that

the information required to update the switching times is the ‘rate of change’ of the

instantaneous cost, which is in the form of the partial derivative of the instantaneous

cost function. This rate of change is not known before operation of the plant, thus a

real-time framework must be used to adopt to these new information.

In this chapter, we first obtain update differential equation for the optimal switch-

ing times, using the real-time information. This differential equation provides a con-

tinuous process to update the switching times. Then, based on the continuous process,

we propose real-time algorithms that adaptively adjusts the estimated value of the

optimal switching time vector as new information about the cost function becomes

available. In other words, it attempts to track the solution point of the optimal
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cost-to-go problem as it learns about changes in the cost function.

5.1 Continuous Process

Similar to Chapter 3, we first propose a continuous process, which corresponds to a

differential equation that describes the evolution of the optimal switching time vector.

The differential equation describes how the optimal switching time vector evolves with

respect to the varying cost function.

Again, consider an autonomous switched system

ẋ = fi(x), t ∈ [τi−1, τi), i = 1, 2, ..., N + 1, (97)

where x(t) ∈ R
n is the state variable, initial condition x(0) = x0 and final time

T are given. Modal functions fi : R
n → R

n correspond to a fixed mode sequence

q̄ = {0, 1, ..., N}} and the notations τ0 = 0, τN+1 = T are used. We assume that the

state of the system is known (the real-time optimal control problem with an observer

was addressed in Chapter 3). The control input of this system is the switching time

vector τ̄ = [τ1, τ2, ..., τN ]T , where it must satisfy the constraint τ̄ ∈ Λ and

Λ := {τ̄ = [τ1, ..., τN ]T : 0 = τ0 ≤ τ1 ≤ ... ≤ τN ≤ τN+1 = T}. (98)

5.1.1 The Single-switch Case

To capture the essence of our method, let us first focus on the case where there is

only one switching, hence N = 1. Therefore, we can simplify the notation by deleting

the subscript from τ1, and denote the switching time by τ . In this case, according

to (97), ẋ = f1(x) for t ∈ [0, τ), and ẋ = f2(x) for t ∈ [τ, T ]. However, we have

to be careful about notation here, since t is used as the time index for the real-time

execution of the system. In light of this, a simple translation of Equation (97) (with

N = 1) that emphasizes the dependence of the switching time on t may not be well

defined, and we have to carefully define the state trajectory x(t) and the switching

time τ(t) simultaneously.
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Since we consider dynamic computations of the switching time, we denote the

switching time vector by τ(t) to emphasize its dependence on t. Furthermore, we

start by defining τ(t) to be a minimum point of the cost-to-go (defined below), and

since this may vary continuously with t, we first describe {τ(t)}Tt=0 as a continuous

process; our algorithms will be based on it and they will perform their computations at

a discrete set of times. To this end, it is convenient to first define the state trajectory

of the dynamics associated with the cost-to-go performance measure.

Given x ∈ R
n, τ ∈ [0, T ], and t ∈ [0, T ], define x̃(s, t, x, τ), s ≥ t, to be the state

trajectory simulated forward from t, as a function of s, with the initial condition of

x at the time s = t; that is, x̃(s, t, x, τ) is defined via the equation

∂x̃

∂s
=











f1(x̃), if s ≤ τ

f2(x̃), if s > τ,

with the initial condition x̃(t, t, x, τ) = x. We denote x̃ as the predicted (or simulated)

state trajectory starting at time s = t and it evolves until s = T .

Given t ∈ [0, T ], let L(x, s, t) be a cost function of x ∈ R
n and future times s ≥ t.

It has the following meaning: At time t the system has “learned” about the cost

function of the state variable x and the future times s, and this function is L(x, s, t).

For example, if it is desired to track a moving target whose position and velocity

are known at time t, L(x, s, t) may indicate the square-distance of the state (x) from

the goal’s projected position at future times (s) based on its position and velocity

at time t. Generally, the cost-to-go performance measure consists of the function

L(x, s, t), and we assume that it is continuous, continuously differentiable in x for

every t ∈ [0, T ] and s ∈ [t, T ], and piecewise continuously differentiable in t and s

for every x ∈ R
n. Lastly, we assume that ∂L

∂x
(x, s, t) to be differentiable in t (we will

show that this partial derivative represent the required rate of change information).

These assumptions are required for the continuous process, but not for the discrete

algorithms.
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For every τ ∈ [0, T ], t ∈ [0, T ], and x ∈ R
n, we define the cost-to-go performance

functional, J(t, x, τ), by

J(t, x, τ) =

∫ T

t

L
(

x̃(s, t, x, τ), s, t
)

ds. (99)

We define τ(t) as a local minimum point of the cost-to-go (99) from time t and the

initial state x(t) at that time, where x(t) is the trajectory of the system. As mentioned

earlier, we have to formally define the processes {τ(t)} and {x(t)} simultaneously, and

this is done in the following way: x(t) satisfies the differential equation

dx

dt
=











f1(x(t)), if t ≤ τ(t)

f2(x(t)), if t > τ(t)

with a given boundary condition x(0) = x0; and as for τ(t), as long as t < τ(t) then

τ(t) is defined as a function that satisfies

∂J

∂τ

(

t, x(t), τ(t)
)

= 0, (100)

with a given boundary condition τ(0) = τ0 ∈ [0, T ] such that ∂J
∂τ

(

0, x(0), τ0
)

= 0.

If t ≥ τ(t), we define τ̇(t) = 0. The condition τ̇(t) = 0 when τ(t) ≥ t reflects the

fact that once the switching time has occurred it become a part of the past and

cannot be modified, in other words, once t ≥ τ(t), τ(ξ) has a constant value ∀ ξ ≥ t.

Similarly, after the switching, the gradient ∂J
∂τ

(

t, x(t), τ(t)
)

is set to 0 simply because

the switching time can no longer be modified.

To help clarify the setting and analysis of this problem, refer to Figure 19 where

the state x and projected state x̃ are shown for time t and t + ∆t. The goal of

this section is to obtain a differential equation for τ(t) so that τ is locally optimal

with respect to the cost-to-go defined in (99) and thus (100) is satisfied. We aim to

provide a method that is more computationally feasible than solving a sequence of

optimization problem for the cost-to-go functional (99).

Throughout this section, we assume that the processes {x(t)} and {τ(t)} are well

defined in the above manner and τ(t) is continuous in t. We should note that, this
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τ (t) Tt

x(t)

x̃(s, t + ∆t, x(t + ∆t), τ (t + ∆t))

x

x0

τ (t + ∆t) Tt + ∆t

x̃(s, t, x(t), τ (t))

x

x0

x(t + ∆t)

∆t

∂J
∂τ (t, x(t), τ (t)) = 0,∀t ∈ [0, T ]

Figure 19: The state x, projected state x̃ are shown at time t and time t+ ∆t. The
goal is to provide an update differential equation for τ(t) so that it stays optimal with
respect to the cost-to-go (99).

assumption may not always hold for all problems, since extrema are known to not

always be continuous across varying parameters of the optimization problem. How-

ever, again this assumption is no longer required when we implement this continuous

process in the form of a discrete algorithm, because the switching times are updated

in a discrete manner.

Consider a time-point t such that t < τ(t). Since ∂J
∂τ

(t, x(t), τ) = 0, taking the

total derivative with respect to t, it follows that

d

dt

∂J

∂τ

(

t, x(t), τ(t)
)

= 0

as well. This total derivative has the following form,

∂2J

∂t∂τ

(

t, x(t), τ(t)
)

+
∂2J

∂x∂τ

(

t, x(t), τ(t)
)

ẋ(t) +
∂2J

∂τ 2

(

t, x(t), τ(t)
)

τ̇(t) = 0,
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and hence,

τ̇ (t) = −
(∂2J

∂τ 2

(

t, x(t), τ(t)
)

)−1( ∂2J

∂t∂τ

(

t, x(t), τ(t)
)

+
∂2J

∂x∂τ

(

t, x(t), τ(t)
)

ẋ(t)
)

.

(101)

By the assumption that τ(t) is well defined and continuous, the second derivative

∂2J
∂τ2

(

t, x(t), τ(t)
)

is positive. We next simplify the right-hand side of Equation (101).

Define the function φt(ξ), ξ ≥ t, by

φt(ξ) =
∂J

∂τ

(

ξ, x(ξ), τ(t)
)

.

Then

dφt

dξ
(ξ) =

∂2J

∂t∂τ

(

ξ, x(ξ), τ(t)
)

+
∂2J

∂x∂τ

(

ξ, x(ξ), τ(t)
)

ẋ(ξ), (102)

and at ξ = t,

dφt

dξ
(t) =

∂2J

∂t∂τ

(

t, x(t), τ(t)
)

+
∂2J

∂x∂τ

(

t, x(t), τ(t)
)

ẋ(t). (103)

Plug this in (101) to obtain,

τ̇(t) = −
(∂2J

∂τ 2

(

t, x(t), τ(t)
)

)−1dφt

dξ
(t). (104)

Let us next derive an expression for dφt

dξ
(t).

Given t ∈ [0, T ] and x ∈ R
n, denote by Φt,x(s, s0) the state transition matrix

associated with the matrix-valued function (of s) −∂f2
∂x

(

x̃(s, t, x, τ)
)T

. Thus,

∂

∂s
Φt,x(s, s0) = −

∂f2

∂x

(

x̃(s, t, x, τ)
)T

Φt,x(s, s0), (105)

with Φt,x(s0, s0) = I (the n× n identity matrix).

Given t ∈ [0, T ) and ∆T > 0 such that t+ ∆t ≤ T .

Lemma 5.1 For all s ≥ t+ ∆t and for all s0 ≥ t+ ∆t,

Φt+∆t,x̃(t+∆t,t,x,τ)(s, s0) = Φt,x(s, s0). (106)
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Proof 5.1 Fix t ∈ [0, T ) and ∆t > 0 such that t + ∆t ≤ T . ∀ s ∈ [t + ∆t, T ] and

∀ s0 ∈ [t+ ∆t, T ], equation (105) is in force. Moreover, the same equation holds with

t+ ∆t and x̃(t+ ∆t, t, x, τ) in lieu of t and x, respectively, meaning that

∂

∂s
Φt+∆t,x̃(t+∆t,t,x,τ)(s, s0) = −

(∂f2

∂x

(

x̃(s, t+ ∆t, x̃(t+ ∆t, t, x, τ), τ
)

)T

Φt+∆t,x̃(t+∆t,t,x,τ)(s, s0). (107)

Now ∀ s ≥ t+ ∆t,

∂x̃

∂s
(s, t, x, τ) =











f1(x̃), if s ≤ τ

f2(x̃), if s > τ

with the boundary condition x̃(t, t, x, τ) = x, and

∂x̃

∂s

(

s, t+ ∆t, x̃(t+ ∆t, t, x, τ), τ
)

=











f1(x̃), if s ≤ τ

f2(x̃), if s ≥ τ

with the boundary condition x̃(t+ ∆t, t+ ∆t, x̃(t+ ∆t, t, x, τ), τ) = x̃(t+ ∆t, t, x, τ).

We see that x̃(s, t, x, τ) and x̃(s, t+∆t, x̃(t+∆t, t, x, τ), τ) satisfy the same differential

equation (in s) ∀ s ≥ t+∆t, and these two functions have the same value at s = t+∆t;

consequently

x̃(s, t, x, τ) = x̃(s, t+ ∆t, x̃(t+ ∆t, t, x, τ), τ) (108)

for all s ∈ [t + ∆t, T ]. Therefore, by (105) and (107), Φt+∆t,x̃(t+∆t,t,x,τ)(s, s0) and

Φt,x(s, s0) satisfy the same differential equation (in s), with the same value at s = s0

(i.e., I), and this implies (106).

We now can characterize the rightmost term in the right-hand side of (104), and

hence obtain a computable expression for τ̇ (t).

Theorem 5.1 Suppose that t < τ(t). Then the derivative term dφt

dξ
(ξ) at ξ = t has

the following form,

dφt

dξ
(t) =

∫ T

τ(t)

∂2L

∂t∂x

(

x̃(s, t, x(t), τ(t)), s, t
) (

Φt,x(t)(τ(t), s)
)T
ds

(

f1

(

x̃(τ(t), t, x(t), τ(t))
)

− f2

(

x̃(τ(t), t, x(t), τ(t))
)

)

. (109)
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Proof 5.2 Fix t ∈ [0, T ) and x ∈ R
n, and consider J(x, t, τ) as a function of τ > t.

Define the costate p(s) ∈ R
n, s ∈ [τ, T ], via the following differential equation,

ṗ(s) = −
(∂f2

∂x

(

x̃(s, t, x, τ)
)

)T

p(s) −
(∂L

∂x

(

x̃(s, t, x, τ), s, t
)

)T

with the boundary condition p(T ) = 0. By Equation (105),

p(s) =

∫ T

s

Φt,x(s, ξ)
∂L

∂x

(

x̃(ξ, t, x, τ), ξ, t
)T
dξ, (110)

and at s = τ , and replacing ξ by s in (110), we obtain,

p(τ) =

∫ T

τ

Φt,x(τ, s)
∂L

∂x

(

x̃(s, t, x, τ), s, t
)T
ds. (111)

Next, by using the gradient formula established in Chapter 2 (see equation (13))

∂J

∂τ
(t, x, τ) = p(τ)T

(

f1

(

x̃(τ, t, x, τ)
)

− f2

(

x̃(τ, t, x, τ)
)

)

, (112)

and hence, and by (111),

∂J

∂τ
(t, x, τ) =

∫ T

τ

∂L

∂x

(

x̃(s, t, x, τ), s, t
)

(

Φt,x(τ, s)
)T

ds

(

f1

(

x̃(τ, t, x, τ)
)

− f2

(

x̃(τ, t, x, τ)
)

)

. (113)

Use (113) with two specific values: (t, x(t), τ(t)), and (t + ∆t, x(t + ∆t), τ(t)), to

obtain the following two equations,

∂J

∂τ
(t, x(t), τ(t)) =

∫ T

τ(t)

∂L

∂x

(

x̃(s, t, x(t), τ(t)), s, t
)

(

Φt,x(t)(τ(t), s)
)T

ds

×
(

f1

(

x̃(τ(t), t, x(t), τ(t))
)

− f2

(

x̃(τ(t), t, x(t), τ(t))
)

)

,(114)

and

∂J

∂τ
(t+ ∆t, x(t+ ∆t, τ(t))

=

∫ T

τ(t)

∂L

∂x

(

x̃(s, t+ ∆t, x(t+ ∆t), τ(t)), s, t+ ∆t
)

(

Φt+∆t,x(t+∆t)(τ(t), s)
)T

ds

(

f1

(

x̃(τ(t), t+ ∆t, x(t+ ∆t), τ(t))
)

− f2

(

x̃(τ(t), t+ ∆t, x(t+ ∆t), τ(t))
)

)

.

(115)
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Now suppose that t+∆t < τ(t). Then ∀ξ ∈ [t, t+∆t], dx
dξ

= f1(x(ξ)) and ∂x̃
∂ξ

(

ξ, t, x(t), τ(t)
)

=

f1

(

x̃(ξ, t, x(t), τ(t))
)

with x̃(t, t, x(t), τ(t)) = x(t), and hence, ∀ξ ∈ [t, t+ ∆t],

x̃(ξ, t, x(t), τ(t)) = x(ξ).

In particular, for ξ = t+ ∆t,

x̃(t+ ∆t, t, x(t), τ(t)) = x(t+ ∆t). (116)

By Lemma 5.1 and Equation (116), ∀ s ≥ t+ ∆t and ∀ s0 ≥ t+ ∆t,

Φt+∆t,x(t+∆t)(s, s0) = Φt,x(t)(s, s0).

Therefore, and by (115),

∂J

∂τ
(t+ ∆t, x(t+ ∆t), τ(t)

)

=

∫ T

τ(t)

∂L

∂x

(

x̃(x, t+ ∆t, x(t+ ∆t), τ(t)
)

, s, t+ ∆t
)

(

Φt,x(t)(τ(t), s)
)T

ds

(

f1

(

x̃(τ(t), t+ ∆t, x(t+ ∆t), τ(t))
)

− f2

(

x̃(τ(t), t+ ∆t, x(t+ ∆t), τ(t)
)

)

.

(117)

Moreover, ∀s ∈ [t + ∆t, τ(t)], ∂
∂s
x̃(s, t + ∆t, x(t + ∆t), τ(t)) = f1

(

x̃(s, t + ∆t, x(t +

∆t), τ(t)
)

and ∂
∂s
x̃(s, t, x(t), τ(t)) = f1

(

x̃(s, t, x(t), τ(t))
)

; while the initial conditions

of the respective terms in these two differentiable equations are x̃(t+∆t, t+∆t, x(t+

∆t), τ(t)) = x(t+∆t) by definition, and x̃(t+∆t, t, x(t), τ(t)) = x(t+∆t) by Equation

(114). Consequently, ∀s ∈ [t+ ∆t, τ(t)],

x̃(s, t+ ∆t, x(t+ ∆t), τ(t)) = x̃(s, t, x(t), τ(t)).

Using this in (117) we obtain,

∂J

∂τ

(

t+ ∆t, x(t+ ∆t), τ(t)
)

=
∫ T

τ(t)

∂L

∂x

(

x̃(s, t, x(t), τ(t)), s, t+ ∆t
)

(

Φt,x(t)(τ(t), s)
)T

ds

(

f1

(

x̃(τ(t), t, x(t), τ(t))
)

− f2

(

x̃(τ(t), t, x(t), τ(t))
)

)

. (118)
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By (118) and (114),

∂J

∂τ

(

t+ ∆t, x(t+ ∆t), τ(t)
)

−
∂J

∂τ

(

t, x(t), τ(t)
)

=

∫ T

τ(t)

[(∂L

∂x

(

x̃(s, t, x(t), τ(t)), s, t+ ∆t
)

−
∂L

∂x

(

x̃(s, t, x(t), τ(t))s, t
)

)

(

Φt,x(t)(τ(t), s)
)T]

ds
(

f1

(

x̃(τ(t), t, x(t), τ(t)
)

− f2

(

x̃(τ(t), t, x(t), τ(t))
)

)

.

(119)

Dividing both sides of (119) by ∆t, taking the limit ∆t→ 0, and recalling the definition

of φt(ξ), equation (109) follows.

Finally, we obtain an expression for τ̇(t).

Theorem 5.2 For every t ∈ [0, T ) such that t < τ(t), we have that

τ̇ (t)

= −
(∂2J

∂τ 2

(

t, x(t), τ(t)
)

)−1
∫ T

τ(t)

∂2L

∂t∂x

(

x̃(s, t, x(t), τ(t)), s, t
)

(

Φt,x(t)(τ(t), s)
)T

ds

(

f1

(

x̃(τ(t), t, x(t), τ(t))
)

− f2

(

x̃(τ(t), t, x(t), τ(t))
)

)

. (120)

Proof 5.3 Follows directly from (103), (104) and Theorem 5.1.

Some remarks are in order. First, the term ∂2L
∂t∂x

(

x̃(s, t, x(t), τ(t)), s, t
)

should be

interpreted as the rate of change of the instantaneous cost function. This information

is required to update the switching time optimally.

Second, if the rate of change ∂2L
∂t∂x

(

x̃(s, t, x(t), τ(t)), s, t
)

does not depend on s,

then the computation of the gradient is much easier since ∂2L
∂t∂x

(

x̃(s, t, x(t), τ(t)), s, t
)

can be pulled outside of the integration. Notice that in this case, the integration can

be completely performed off-line. This simplification can be done in many cases, for

example when one attempts to drive the trajectory of the switched system towards a

time-varying signal xc(t) (L = ||x̃(s) − xc(t)||
2).
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Third, instead of solving a sequence of optimization problem to minimize the

cost-to-go functional (99), the iteration process presented in this chapter requires

obtaining the second derivative and integration forward only once.

Last, the switching time evolution τ̇(t) is only valid for time t ∈ [0, τ(t)], and

the mode transition is triggered at time τ(t). After this time, i.e. t ∈ (τ(t), T ], the

switching time is considered “frozen” since the switch has already happened.

5.1.2 The Case of Multiple Switching Times

Consider the case where there are N switching times, τi, i = 1, . . . , T , denoted col-

lectively by the vector τ̄ := [τ1, . . . , τN ]T ∈ R
N . We assume that τ̄ ∈ Λ. For a fixed

vector τ̄ , the state equation is given via (97), but since τ̄ is a function of time, it is

denoted by τ̄ (t), and we define it together with the state trajectory as it was done

for the single-switching case.

Given a switching vector τ̄ ∈ Λ, x ∈ R
n, t ∈ [τ0, T ], and s ∈ [t, T ], define

x̃(s, t, x, τ̄ ), s ≥ t in a piecewise manner, via the following equations:

∂x̃

∂s
= fi(x̃(s)), s ∈ (τi, τi+1], i = 1, 2, .., N + 1, (121)

where f1 are modal functions in the corresponding mode sequence and with initial

condition x̃(t, t, x, τ̄) = x.

Similar to the previous section, let L(x, s, t) be a cost function, s ≥ t. Define

J(t, x, τ) by

J(t, x, τ̄) =

∫ T

t

L
(

x̃(s, t, x, τ̄), s, t
)

ds. (122)

Define x(t) and τ̄(t) = [τ1(t), ..., τN (t)] simultaneously in the following way: x(t)

satisfies the differential equation

dx

dt
= fi(x(t)), t ∈ (τi(t), τi+1(t)], i = 1, 2, .., N, (123)

with a given boundary condition x(0) = x0; and as for τ̄(t), as long as t < τ1(t) then

∂J

∂τ̄

(

t, x(t), τ̄(t)
)

= 0 (124)
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with a given boundary condition τ̄ (0) = τ̄0. Furthermore, we assume that τ̄ (t) is

continuous in t.

Define the function φt(ξ), ξ ≥ t, by

φi,t(ξ) =



















φ1,t(ξ)

φ2,t(ξ)

...

φN,t(ξ)



















, (125)

where φi,t(ξ) is defined as

φi,t(ξ) =
∂J

∂τi

(

ξ, x(ξ), τ̄(t)
)

(126)

With the exact same mathematical equations, if τ̄(t) ∈ Λ, then the evolution of

τ̄(t) is

˙̄τ(t) = −
(∂2J

∂τ 2

(

t, x(t), τ̄(t)
)

)−1( ∂2J

∂t∂τ

(

t, x(t), τ̄ (t)
)

+
∂2J

∂x∂τ

(

t, x(t), τ̄ (t)
)

ẋ(t)
)

,(127)

for t < τ1(t), and

˙̄τ(t) = −
(∂2J

∂τ̄ 2

(

t, x(t), τ̄(t)
)

)−1dφt

dξ
(t). (128)

Note that dφt

dξ
(t) is now a vector in R

N .

Given t and x ∈ Rn, denote by Φi,t,x(s, s0) the state transition matrix associated

with the matrix-valued function (of s) −∂fi

∂x

(

x̃(s, t, x, τ̄)
)T

. Thus,

∂

∂s
Φi,t,x(s, s0) = −

∂fi

∂x

(

x̃(s, t, x, τ̄)
)T

Φi,t,x(s, s0), i = 2, ..., N. (129)

with Φi,t,x(s0, s0) = I (the identity matrix).

Given t ∈ [0, T ) and ∆t > 0 such that t+ ∆t ≤ T .

Lemma 5.2 ∀ s ≥ t+ ∆t and ∀ s0 ≥ t+ ∆t,

Φi,t+∆t,x̃(t+∆t,t,x,τ̄)(s, s0) = Φi,t,x(s, s0), ∀i = 1, 2, ..., N. (130)

Furthermore, ∀s ∈ [t+ ∆t, T ],

x̃(s, t+ ∆t, x(t+ ∆t), τ̄ (t)) = x̃(s, t, x(t), τ̄(t)). (131)
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Proof 5.4 Follows using the exact same argument as in Lemma 5.1.

Next we derive the equations to obtain dφt

dξ
(t). Before this results in presented,

define the costate trajectory p(s, t, x, τ̄), s ∈ [τ1, T ] corresponding to the trajectory

x̃(s, t, x, τ̄ ) via the following differential equation

∂p

∂s
(s, t, x, τ̄) = −

(∂fi

∂x

(

x̃(s, t, x, τ̄)
)

)T

p(s) −
(∂L

∂x

(

x̃(s, t, x, τ̄ ), s, t
)

)T

, (132)

for s ∈ [τi−1, τi), i = 2, ..., N and the boundary condition p(T, t, x, τ̄ ) = 0. Using

the state transition matrices, the costate trajectory can be obtained (in a backward

direction) as

p(τi, t, x, τ̄ ) = Φi,t,x(τi, τi+1)p(τi+1, t, x, τ) +

∫ τi+1

τi

Φi,t,x(τ, s)
∂L

∂x

(

x̃(s, t, x, τ̄ ), s, t
)T
ds,

i = 1, ..., N. (133)

Notice that p(τN+1, t, x, τ̄) = 0. Lastly, if we plug-in ξ, x(ξ) and τ̄ (t) in places of t

and x and τ̄ in the definition of x̃, we have x̃(s, ξ, x(ξ), τ̄(t)) and its corresponding

costate p(s, ξ, x(ξ), τ̄(t)). Define

ψi,t(ξ) = p(τi(t), ξ, x(ξ), τ̄(t)), (134)

then we can show the following theorem.

Theorem 5.3 Suppose that t < τ1(t). Then the derivative term

dφt

dξ
(ξ) = [dφ1,t

dξ
(ξ), ...,

dφN,t

dξ
(ξ)]T at ξ = t has the following form

dφi,t

dξ
(t) =

(

(

dψi+1,t

dξ
(t)

)T
(

Φi,t,x(t)(τi(t), τi+1(t))
)T

+

∫ τi+1(t)

τi(t)

∂2L

∂t∂x

(

x̃(s, t, x(t), τ̄(t)), s, t
) (

Φi,t,x(t)(τi+1(t), s)
)T
ds

)

(

fi
(

x̃(τi(t), t, x(t), τ̄(t))
)

− fi+1

(

x̃(τi(t), t, x(t), τ̄(t))
)

)

. (135)
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dψi,t

dξ
(t) is obtained in a backwards recursive manner as follows:

dψi,t

dξ
(t) = Φi,t,x(t)(τi(t), τi+1(t))

dψi+1

dξ
(t))

+

∫ τi+1(t)

τi(t)

Φi,t,x(t)(τi+1(t), s)

(

∂2L

∂t∂x

(

x̃(s, t, x(t), τ̄(t)), s, t
)

)T

ds,

(136)

for i = N − 1, N − 2, ..., 1, and

dψN,t

dξ
(t) =

∫ T

τN (t)

Φi,t,x(t)(τN+1(t), s)

(

∂2L

∂t∂x

(

x̃(s, t, x(t), τ̄(t)), s, t
)

)T

ds. (137)

Proof 5.5 Again, from Chapter 2, equation (13), we have

∂J

∂τi
(t, x, τ) = p(τi, t, x, τ̄)

T
(

fi
(

x̃(τi, t, x, τ̄ )
)

− fi+1

(

x̃(τi, t, x, τ̄)
)

)

,

Plug the above equation into equation (133), we have

∂J

∂τi
(t, x, τ)

=
(

Φi,t,x(τi, τi+1)p(τi+1, t, x, τ) +

∫ τi+1

τi

Φi,t,x(τ, s)
∂L

∂x

(

x̃(s, t, x, τ̄ ), s, t
)T
ds
)T

(

fi
(

x̃(τi, t, x, τ̄ )
)

− fi+1

(

x̃(τi, t, x, τ̄)
)

)

(138)

Similar to the case for single switching, use Lemma 5.2 and (138) with two specific

values: (t, x(t), τ̄ (t)), and (t+ ∆t, x(t+ ∆t), τ̄ (t)), to obtain
dφi,t

dξ
(t):

dφi,t

dξ
(t) = lim

∆t→0

1

∆t

(

∂J

∂τi
(t+ ∆t, x(t+ ∆t), τ̄ (t)) −

∂J

∂τi
(t, x(t), τ̄(t))

)

=

(

(

lim
∆t→0

1

∆t
p(τi+1, t+ ∆t, x(t+ ∆t), τ̄ (t)) − p(τi+1, t, x(t), τ̄(t))

)T

(

Φi,t,x(t)(τi(t), τi+1(t))
)T

+

∫ τi+1(t)

τi(t)

∂2L

∂t∂x

(

x̃(s, t, x(t), τ̄(t)), s, t
) (

Φi,t,x(t)(τi+1(t), s)
)T
ds

)

(

fi
(

x̃(τi(t), t, x(t), τ̄(t))
)

− fi+1

(

x̃(τi(t), t, x(t), τ̄(t))
)

)

.
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After some simplification

dφi,t

dξ
(t) =

(

(

dψi+1,t

dξ
(t)

)T
(

Φi,t,x(t)(τi(t), τi+1(t))
)T

+

∫ τi+1(t)

τi(t)

∂2L

∂t∂x

(

x̃(s, t, x(t), τ̄ (t)), s, t
) (

Φi,t,x(t)(τi+1(t), s)
)T
ds

)

(

fi
(

x̃(τi(t), t, x(t), τ̄ (t))
)

− fi+1

(

x̃(τi(t), t, x(t), τ̄ (t))
)

)

. (139)

Notice that the above equation used the definition of ψi,t(ξ) defined in (134). Fur-

thermore, plug (t, x(t), τ̄ (t)) and (t + ∆t, x(t + ∆t), τ̄ (t)) into (133), the derivative

dψi,t

dξ
(t) can be obtained

dψi,t

dξ
(t) = Φi,t,x(t)(τi(t), τi+1(t))

dψi+1

dξ
(t))

+

∫ τi+1(t)

τi(t)

Φi,t,x(t)(τi+1(t), s)

(

∂2L

∂t∂x

(

x̃(s, t, x(t), τ̄(t)), s, t
)

)T

ds.

Observe that since p(τi+1(t), t, x(t), τ̄(t) = 0, then

dψN,t

dξ
(t) =

∫ T

τN (t)

Φi,t,x(t)(τN+1(t), s)

(

∂2L

∂t∂x

(

x̃(s, t, x(t), τ̄(t)), s, t
)

)T

ds.

Thus the proof is completed.

Using Theorem 5.3 and (133), the switching evolution ˙̄τ(t) is obtained for t ∈ [τ0, τ1(t)).

When t = τ1(t), we “freeze” τ1(t), switch the mode from q1 to q2, set τ0 = τ1(t),

τ̄(t) = [τ2(t), τ3(t), ..., τN (t)]T , N = N − 1 and restart the continuous process. This

process is repeated until all switchings are triggered and the entire evolution is ob-

tained.

5.2 Numerical Algorithms

Similar to the observer-based real-time optimal control, we now propose numerical

algorithms that are based on the continuous process. A few remarks should be made.

First, note that, as an discrete algorithm, it is no longer possible to track the cost

function for all time. Rather, one can only hope to update the switching times so
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that they are optimal with respect to the cost function sampled at some frequency.

Hence, the continuous update of the cost function L is now a discrete update with a

sampling period ∆T , which is assumed to be much larger than the time-step ∆t to

ensure convergence of the switching times. Second, we can use the gradient formula

(120) and (128) developed in the continuous process in the discrete algorithms. Third,

the algorithms are similar in spirit to the algorithms proposed in Chapter 2, and their

convergence analysis are similar. The difference is that for this class of problems, we

can use the explicit gradient formula derived. This gradient formula is expressed

explicitly in terms of the rate of change of the cost function.

At time t, we use the notation ts to denote the time when the cost function

is last updated. Note that t − ts ≤ ∆T . We denote q(t) to be current mode

of operation at time t. Then, the control variable at time t is denoted as τ̄ (t) =

[τq(t)(t), τq(t)+1(t), . . . , τN(t)]T . Note that this switching time vector is merely the con-

trol variable at time t, and it may or may not be optimal with respect to the cost-to-go

(as opposed to the case for the continuous process, τ̄ (t) was formulated to be always

optimal). Finally, we define the the time-varying feasible set: Λ(t) = {τ̄(t) : t =

τq(t)(t) ≤ τq(t)+1(t) ≤ . . . ,≤ τN(t) ≤ τN+1(t) = T}.

We first propose the Newton-Raphson like algorithm.

Algorithm 5.1 Assume that fi and L are three-times continuously differentiable.

At time t ∈ [ts, ts + ∆T ]), the cost-to-go performance measure is J(t, x(t), τ̄ (t)) =
∫ T

t
L(x̃(s, ts, x(t), τ̄ (t)), s, ts)ds.

Step 1: Compute h̃(t), defined as the projection of −∂2J
∂τ̄2

(

t, x(t), τ̄ (t)
)−1 ∂J

∂τ̄
(t+∆t, x(t+

∆t), τ̄ (t)) onto the feasible set Λ(t) at τ̄(t). ∂J
∂τ̄

(t + ∆t, x(t + ∆t), τ̄ (t)) = dφt

dξ
(t)∆t +

O(∆t2) is computed by equation (135) using Theorem 5.3.

Step 2: Compute γ(t) := max{γ ≤ 1 | τ̄(t) + γh̃(t) ∈ Λ(t)}.

Step 3. Define h(t) := γ(t)h̃(t), and set

τ̄(t+ ∆t) := τ̄ (t) + h(t). (140)
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When t > τq(t), the switching transition is triggered and the mode of the system is

switched from q(t) to q(t) + 1. τ̄(t) is set to [τq(t)+1(t), ..., τN (t)]. From this point on,

the switching time τq(t) is considered frozen, since the switching has already occurred.

The algorithm stops when all switchings have occurred, otherwise, set t = t+ ∆t. If

t ≥ ts + ∆T , set ts = ts + ∆T and update L(x̃, s, ts). Go to Step 1.

At time t, this algorithm updates the switching times τ̄ (t) towards a local optimal

solution for the cost-to-go performance measure J =
∫ T

t
L(x̃(s, ts, x(t), τ̄(t)), s, ts)ds.

Note that this local optimal solution is function of the current sample (ts) of the time-

varying instantaneous cost function L, and we denote it by τ̄ ⋆(ts). Due to Bellman’s

Optimality Principle, τ̄ ⋆(ts) is constant during the interval [ts, ts+∆T ). Hence, τ̄ ⋆(ts)

satisfies the necessary optimality conditions

∂J

∂τ̄
(t, x(t), τ̄ ⋆(ts)) = 0, (141)

and ∂2J
∂τ̄2 (t, x(t), τ̄ ⋆(ts)) is positive definite. Now, we present the convergence analysis of

this algorithm, which follows directly from the proof of Theorem 3.1, the difference is

that this convergence analysis is stated with respect to τ̄ ⋆(ts). It should be noted that,

since each execution of Algorithm 5.1 obtains the same Newton step as Algorithm

3.1, the convergence analysis of Algorithm 5.1 is similar to Algorithm 3.1. However,

note that in this algorithm, we perform the Newton step with the explicit gradient

formula.

The convergence analysis is again presented in the form of convergence rate instead

of in an asymptotic sense.

Theorem 5.4 At time t ∈ [ts, ts + ∆T ), suppose that τ̄ ⋆(ts) satisfies the necessary

optimality condition (100) lying in the interior of the feasible set Λ(t), and that H(t) =

∂2J
∂τ̄2

(

t, x(t), τ̄ (t)
)

is positive definite. Then there exist constants δ > 0 and K > 0 such

that, if ||τ̄(t) − τ̄ ⋆(ts)|| < δ; ∆t < δ; γ(t) = 1; and τq(t) + ∆t > t, then

||τ̄(t+ ∆t) − τ̄ ⋆(ts)|| ≤ K
(

||τ̄(t) − τ̄ ⋆(ts)||
2 + ∆t||τ̄ (t) − τ̄ ⋆(ts)||

)

. (142)
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Proof 5.6 Follows from Theorem 3.1, by setting e(t) = 0.

The convergence analysis shows that the speed of Algorithm 5.1 is close to quadratic,

if ∆t is small. Furthermore, to have good performance for the algorithm, ∆t needs

to be much smaller than ∆T to ensure enough Newton steps are taken.

There are two drawbacks for this algorithm. First, like all Newton-like algorithms,

if current iterate of τ̄ (t) is not close to the optimal solution τ̄ ⋆(ts), then the algorithm

may not converge or even progress towards τ̄ ⋆(ts). Second, the Hessian H(t) may not

be positive definite. These two drawbacks can be avoided in the slower converging

gradient descent-based algorithm, which is presented below.

Algorithm 5.2 Assume that fi and L are three-times continuously differentiable.

At time t ∈ [ts, ts + ∆T ]), the cost-to-go performance measure is J(t, x(t), τ̄ (t)) =
∫ T

t
L(x̃(s, ts, x(t), τ̄ (t)), s, ts)ds.

Step 1: Compute h̃(t), defined as the projection of ∂J
∂τ̄

(t+∆t, x(t+∆t), τ̄ (t)) onto the

feasible set Λ(t) at τ̄ (t). ∂J
∂τ̄

(t+ ∆t, x(t+ ∆t), τ̄(t)) = dφt

dξ
(t)∆t+O(∆t2) is computed

by equation (135) using Theorem 5.3.

Step 2: Compute γ(t) := max{γ ≤ 1 | τ̄(t) + γh̃(t) ∈ Λ(t)}.

Step 3. Define h(t) := γ(t)h̃(t), and set

τ̄(t+ ∆t) := τ̄ (t) + h(t). (143)

When t > τq(t), the switching transition is triggered and the mode of the system is

switched from q(t) to q(t) + 1. τ̄(t) is set to [τq(t)+1(t), ..., τN (t)]. From this point on,

the switching time τq(t) is considered frozen, since the switching has already occurred.

The algorithm stops when all switchings have occurred, otherwise, set t = t+ ∆t. If

t ≥ ts + ∆T , set ts = ts + ∆T and update L(x̃, s, ts). Go to Step 1.

This algorithm utilizes gradient decent direction as opposed to Newton-Raphson

decent direction. Such algorithms are known to converge globally to Kuhn-Tucker
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stationary points. They also have linear convergence rate, which is shown by the

following convergence rate analysis.

Theorem 5.5 At time t, suppose that τ̄ ⋆(ts) is a stationary point lying in the interior

of the feasible set Λ(t), which is the target of our algorithm. There exist constant

δ > 0, and K1 ∈ (0, 1) such that, if ||τ̄(t) − τ̄ ⋆(ts)|| < δ; ∆t < δ and τq(t) + ∆t > t;

then

||τ̄(t+ ∆t) − τ̄ ⋆(ts)|| ≤ K1||τ̄(t) − τ̄ ⋆(ts)|| (144)

Proof 5.7 Follows from Theorem 3.2, by setting e(t) = 0.

A few conclusions can be drawn from the above convergence analysis. First, γ(t)

determines the constant K1, which dictates the speed of convergence. This algorithm

converges faster when K1 becomes closer to 0. Furthermore, without the calculations

of the Hessian, this algorithm is computationally much faster than the Algorithm 5.1.

Hence, the gradient descent algorithm complements the Newton-Raphson algorithm

since it addresses the drawbacks of using the Newton update direction as mentioned

previously, with the trade-off of slower convergence rate. Therefore, one can use a

hybrid algorithm that switches from the gradient descent algorithm to the Newton-

Raphson algorithm when the gradient ∂J
∂τ̄

(t, x(t), τ̄ (t)) is smaller than a pre-defined

threshold.

5.3 Adaptive Double-tank Example

In this section we show the effect of the results presented in this chapter through a

simple but non-linear problem. We consider the problem of controlling the fluid levels

in a double-tank system, as shown in Figure 20. This problem was initial studied as a

switching-time optimization example in [8], but we re-frame this problem in a different

setting.
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x1

x2

Figure 20: The double-tank process

The goal of this numerical example is to control the fluid level of the second tank so

that it minimizes the integral over the distance between the trajectory to a reference

point. Furthermore, instead of assuming that the reference point is static and given a

priori (as in the case of [8]), we assume that the desired fluid level of the second tank

(the reference point) is provided and updated during the operation of the system.

Hence the reference point evolves continuously with an unknown dynamics. As seen

in Figure 20, fluid flows from a valve to the first tank, and then from the first tank

to the second tank. For this example, fluid in the second tank is always discharging.

Similar to many chemical processes, the valve can only be open or closed. As such,

this system is inherently a switched system.

We denote the fluid level of the first tank at time t by x1(t) and the second tank

by x2(t). The state of this system is denoted by x(t) = [x1(t), x2(t)]
T . Based on

Torricelli’s Principle, the fluid in the tank is discharging at a rate proportional to the

square root of the current fluid level. Hence the dynamics of this switched system

can be described by the following equations:

ẋ(t) = f1(x(t)) =







−α1

√

x1(t)

α1

√

x1(t) − α2

√

x2(t)






, (145)
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or

ẋ(t) = f2(x(t)) =







−α1

√

x1(t) + u

α1

√

x1(t) − α2

√

x2(t)






, (146)

where f1 corresponds to the mode (mode 1) when the valve is closed, and f2 corre-

sponds to the mode (mode 2) when the valve is open. In (145) and (146), α1 and α2

denotes the flow rate of the tank, and u denotes the inflow rate. For this example, we

assume that we start with mode 2 and switch once during the execution of the system

to mode 1. τ(t) is the optimal switching time at time t and r(t) is the reference point

at time t.

Since the objective of this problem is to control the average water level of the

second tank to a reference point only available on-line, we define the time-varying

instantaneous cost function as L(t, x̃(s, t, x(t), τ(t)), s) = 1
2
(x̃2(s, t, x(t), τ(t))− r(t))2.

Hence the cost-to-go functional is as follows:

J(t, x(t), τ(t)) =
1

2

∫ T

t

(x̃2(s, t, x(t), τ(t)) − r(t))2ds. (147)

For this example, since ∂2L
∂t∂x

= [0,−ṙ(t)], the evolution of the optimal switching

time can be simplified using equation (120) as:

τ̇(t) = −
(∂2J

∂τ 2

(

t, x(t), τ(t)
)

)−1

[0,−ṙ(t)]

∫ T

τ(t)

(

Φt,x(t)(τ(t), s)
)T

ds

(

f1(x̃(τ(t), t, x(t), τ(t))) − f2(x̃(τ(t), t, x(t), τ(t)))
)

. (148)

As we can see from (148), in order to update the switching time so that it is always

optimal with respect to the cost-to-go (147), we need to obtain the derivative of the

reference point. This information is the rate of change of the cost function for this

particular problem. Furthermore, note that if the rate of change of the cost function

is 0, then the switching time should not be updated (τ̇(t) = 0), since it is already

optimal and it should remain optimal because of the Bellman’s Principle.
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Figure 21: Plot of the gradient dJ
dτ

(t, x(t), τ(t)) as a function of time t. The vertical
dotted line corresponds to the time when mode switch occurred. After the mode
switch, the gradient is set to 0.

In this example, we set α1 = α2 = 1 and u = 2. The time horizon T is set to 10.

To implement the continuous process, we use the discrete algorithm (Algorithm 5.1)

and sample the reference point r(t) with step-size ∆T = 0.05. For the time-step of

the algorithm, we use a smaller step-size (∆t = 0.005) to update the switching time

and the system. The reference point evolution supplied for the purpose of evaluation

is a parabola r(t) = −1
9
(t− 3)2 + 1.7.

Using the method outlined in this chapter, the resultant gradient dJ
dτ

(t, x(t), τ(t))

for the cost-to-go (147) is shown in the Figure 21. The gradient is close to 0 for all time

which is the expected and desired result. The final state trajectories x1(t) and x2(t)

of the system and the continuous varying reference signal r(t) as a function of time

is shown in Figure 22. For this example, the reference signal started at r(0) = 0.7.

When the switching takes place at time t = τ(t) = 4.8, the final reference point is

1.3. As a result, the final state trajectory x2(t) minimizes the the square tracking

error with respect to the final reference point r(4.8), which is 1.3.

Starting at optimal initial condition τ(0) = 1.86 (corresponds to r(0) = 0.7),

the evolution of the optimal switching time using (148) is shown in Figure 23. The

diagonal line represents τ(t) = t and mode switch takes place when τ(t) hits this line.
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Figure 22: Plot of the final state trajectory and the reference point evolution of
the system. The vertical dotted line corresponds to the time when the mode switch
occurred and the horizon line is the final desired reference point 1.3.

At this point, the system switches from mode 2 to mode 1 and the system is no longer

controlled.

5.4 Conclusions

In this chapter we address the problem of adapting the optimal switching times of a

switched system in an on-line environment where the instantaneous cost function is

assumed to be continuously varying. We proposed an approach to obtain the trajec-

tory of the optimal switching times with respect to the on-line cost-to-go function.

We found that to maintain this optimal switching time evolution, on-line information

in the form of rate of change of the instantaneous cost is required. We proposed a

continuous process and numerical algorithms to update the switching times so that

they remain optimal with respect to the time-varying cost function.
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Figure 23: Plot of the switching time evolution τ(t) as function of time. The
diagonal line is the line τ(t) = t and mode switch takes place if τ(t) hits this line.
The switching time does not change after this point since the mode switch has already
occurred.
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CHAPTER VI

RECEDING HORIZON OPTIMAL TIMING CONTROL

Optimal control of switched systems requires frequent computations of the state tra-

jectory as a function of the control variables. However, when the switched system is

required to operate for a long time, it may be no longer feasible to compute the op-

timal solution due to the length of the simulated state trajectory. Motivated by this

idea, in this chapter we propose a receding horizon techniques to provide sub-optimal

control laws for the switched system by using a much smaller time horizon.

Given an autonomous switched system

ẋ = fi(x), t ∈ [τi−1, τi), i = 1, 2, ..., N + 1, (149)

where x(t) ∈ R
n is the state variable, initial condition x(0) = x0 and final time

T are given. Modal functions fi : R
n → R

n correspond to a fixed mode sequence

q̄ = {1, 2, ..., N + 1} and the notations τ0 = 0, τN+1 = T are used. The control input

of this system is the switching time vector τ̄ = [τ1, τ2, ..., τN ]T , where it must satisfy

the constraint τ̄ ∈ Λ(t) and

Λ := {τ̄ = [τ1, ..., τN ]T : 0 = τ0 ≤ τ1 ≤ ... ≤ τN ≤ τN+1 = T}. (150)

We again consider the timing optimization problem

min
τ̄∈Λ

J =

∫ T

0

L(x(t))dt, (151)

with a given trajectory cost function L : R
n → R.

There are many situations where one may desire not to use a fixed time horizon

T . In many applications, it may not be feasible to compute the optimal switching

times for a long time horizon. The terminal time may not be known exactly, or it

can be changed during operation of the plant.
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Therefore, we adopt an approach in which a smaller sliding window is selected,

and the switching times are optimized over this window. The goal is to preserve the

optimality of the switching times as the window slides. In other words, we wish to

provide a method to update the switching times so that they are always optimal with

respect to the sliding window. Due to the real time constraint, the computation for

this algorithm must be computationally feasible.

Similar to the previous chapters of this thesis, we first propose a continuous process

that defines a differential equation for the evolution of the optimal switching time

vector when the the sliding window progress in real-time. Then we turn the continuous

process into a discrete algorithm.

6.1 Continuous Process

To address this problem, first note that the cost functional that we wish to optimize

over is no longer fixed. Instead, we use a cost-to-go functional that is defined by

the sliding window. Let Ts denotes the length of the sliding window, the cost-to-go

functional is defined as :

J(t, x(t), τ̄ ) =

∫ t+Ts

t

L(x̃(s))ds. (152)

The instantaneous cost L is evaluated over the future state trajectory, denoted by

x̃(s), which is defined as follows:

˙̃x(s) = F (x̃, s), s ∈ [t, t+ Ts], (153)

with the initial condition x̃(t) = x(t) and given τ̄ , where F (x, t) is defined as F (x, t) :=

fi(x) for all t ∈ [τi−1, τi), i = 1, . . . , N + 1.

The current and future trajectory is illustrated in Figure 24, where the solid

curve represents the past trajectory and the dotted curve represents the future (or

projected) trajectory.
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∂J
∂τ (t, x(t), τ (t)) = 0,∀t ∈ [0, T ]

Figure 24: Current state and the state simulated into the future.

In this section we denote the problem of optimizing the cost-to-go functional

(152) at time t by Πt. The approach of this chapter allows the means to compute

the trajectory of the switching time vector, such that it is an approximation of a

local optimal solution for the cost-to-go functional at each time instant t. This local

optimal switching time vector is a function of time t as well, and is defined as:

τ̄(t) = min
τ̄
J(t, x(t), τ̄ ), t ≥ t0, (154)

for an initial time t0. To compute trajectory τ̄(t), we develop an iterative process

which is characterized by a differential equation. By following this differential equa-

tion, the switching times are updated so that they remain locally optimal to the

sliding window at each time instant t. In the continuous problem perspective, the

goal is to establish the time derivative of the optimal switching time vector τ̄ (t) at

time t, namely ˙̄τ(t), so that optimality is conserved with respect to the sliding win-

dow. In other words, we aim to compute ˙̄τ(t), so that if τ̄ (t) is a solution point for

101



Πt, then τ̄(t+ dt) computed by this continuous process

τ̄ (t+ dt) = τ̄ (t) + ˙̄τ(t)dt (155)

is a solution point for Πt+dt, and ∂J
∂τ̄

(t+ dt, x(t+ dt), τ̄(t+ dt)) = 0.

Note that if we obtain the optimal switching time vector τ̄(t) and substitute it in

(152), then J(t, x(t), τ̄ (t)) is locally optimal and

∂J

∂τ̄
(t, x(t), τ̄(t)) = 0, (156)

Since we wish to preserve optimality, it follows that the optimal switching time tra-

jectory τ̄ (t) also satisfies:

d

dt

(∂J

∂τ
(t, x(t), τ̄(t))

)

= 0. (157)

With (157), we present the following theorem.

Theorem 6.1 Given τ̄(t) as a local minimum for Πt. The second derivative of J with

respect to τ̄ is strictly positive. Then the time derivative of τ̄(t) can be determined

by:

˙̄τ(t) = −

(

∂2J

∂τ̄ 2
(t, x(t), τ̄ (t))

)−1
∂2J

∂t∂τ̄
(t, x(t), τ̄(t)) +

∂2J

∂x∂τ̄
(t, x(t), τ̄ (t))ẋ(t). (158)

Proof 6.1 Directly from (157),

d

dt

(∂J

∂τ
(t, x(t), τ̄ (t))

)

=
∂2J

∂t∂τ̄
(t, x(t), τ̄ (t)) +

∂2J

∂x∂τ̄
(t, x(t), τ̄(t))ẋ(t) +

∂2J

∂τ̄ 2
(t, x(t), τ̄(t)) ˙̄τ(t) = 0.

(159)

Rearranging the terms in (159) brings (158).

Furthermore, as a result of Taylor expansion, we can obtain an alternative equation

for the terms ∂2J
∂t∂τ̄

(t, x(t), τ̄ (t)) + ∂2J
∂x∂τ̄

(t, x(t), τ̄(t))ẋ(t) as:

∂2J

∂t∂τ̄
(t, x(t), τ̄ (t))+

∂2J

∂x∂τ̄
(t, x(t), τ̄(t))ẋ(t) = lim

dt→0

1

dt

∂J

∂τ̄
(t+dt, x(t+dt), τ̄(t)). (160)
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Plug (160) in (155), we obtain the equation to compute τ̄(t+ dt) based on τ̄ (t).

τ̄(t+ dt) = τ̄(t) − lim
dt→0

(

∂2J

∂τ̄ 2
(t, x(t), τ̄ (t))

)−1
∂J

∂τ
(t+ dt, x(t+ dt), τ̄(t)). (161)

Note that equation (161) defines a continuous process, which can be turn into

a discrete algorithm. However, due the fact that the continuous process is turned

into a discrete algorithm by using a finite time-step ∆t instead of dt, the resultant

algorithm only produces sub-optimal switching time evolutions. This is detailed in

the next section.

6.2 Numerical Algorithm

In this section, we extend the approach from a continuous process to an implemented

algorithm. The real-time algorithm is divided into two phases. The first phase of

the algorithm is to re-compute the optimal switching times so that τ̄ (t0) is a local

minimum for the problem Πt0 , for a given time horizon T . This is needed since the con-

tinuous process requires a locally optimal starting point τ̄(t0) = minτ̄ J(t0, x(t0), τ̄).

Furthermore, this computation must be performed on-line, whenever the algorithm

is required to be restarted.

The time horizon T is selected so that it is large enough to enable the convergence

of the on-line algorithm. Once it converges, we set the current time to be t0, as

well as picking a sliding window length Ts = T − t0, and the second phase of the

algorithm starts. The second phase updates τ̄(t) so that it becomes an estimate of

local minimum for the next time-step.

The first phase of the algorithm uses the on-line algorithm proposed in the Chapter

3 of this thesis. For self-containment of this chapter, we re-iterate the algorithm here.

First define the Hessian

H(t) =
∂2J

∂τ̄ 2
(t, x̃(t), τ̄(t)). (162)

Denote the mode at time t as q(t), then the feasible set can be defined as: Λ(t) =
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{τ̄(t) : t = τq(t)−1(t) ≤ τq(t)(t) ≤ . . . ,≤ τN(t) ≤ τN+1(t) = T}. The first-phase of the

algorithm is presented below.

Algorithm 6.1 (First Phase) At time t, do the following steps:

Step 1. Compute h̃(t), defined as the projection of −H(t))−1 ∂J
∂τ

(t+∆t, x̃(t+∆t), τ̄(t))

onto the feasible set Λ(t).

Step 2. Compute γ(t) := max{c ≤ 1 | τ̄ (t) + ch̃(t) ∈ Λ(t)}.

Step 3. Define h(t) := γ(t)h̃(t), and set τ̄(t+ ∆t) = τ̄ (t) + h(t).

The gradient ∂J
∂τ

(t + ∆t, x̃(t + ∆t), τ̄ (t)) is computed as follows. First the pro-

jected state trajectory x̃(s) is computed by (153) over the time interval s ∈ [t+∆t, T ]

with the switching time vector τ̄(t). Then a projected costate trajectory is com-

puted backward using the costate equation introduced in (9) with the initial condition

p(τN+1) = 0. The gradient is then computed by (13).

The above algorithm is executed at each time-step until the projection of the

gradient ∂J
∂τ

(t + ∆t, x̃(t + ∆t), τ̄ (t)) onto the feasible set Λ(t) is below a predefined

bound, at which point we obtain a local minimum for Πt0 . This concludes the first

phase of the iterative process.

Now, we extend the continuous process described in the previous section into a

discrete algorithm, by changing the infinitesimal time interval dt to be a finite interval

∆t. The resultant discrete algorithm is an estimate of the continuous process (155).

The second phase of the algorithm is presented below.

Algorithm 6.2 (Second Phase) At time t, do the following steps:

Step 1. Compute h̃(t), defined as the projection of −H(t)−1 ∂J
∂τ

(t+∆t, x̃(t+∆t), τ̄(t))

onto the feasible set Λ(t).

Note that the gradient is computed using the same equation as (13), however the state

and costate trajectories are computed over the time interval [t+ ∆t, t+ ∆t+ Ts].

Step 2. Compute γ(t) := max{γ ≤ 1 | τ̄(t) + γh̃(t) ∈ Λ(t)}.
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Step 3. Define h(t) := γ(t)h̃(t), and set τ̄(t+ ∆t) = τ̄ (t) + h(t).

The difference between Algorithm 6.1 and Algorithm 6.2 is the time horizon used

to compute the gradients and the Hessians ([t+ ∆t, T ] versus [t+ ∆t, t + ∆t + Ts]).

The combined algorithm produces an approximation of the continuous process (155),

hence the switching time evolution τ̄ (t) is not always optimal, but only considered to

be sub-optimal. This algorithm will be used in the next chapter, where we present a

realistic application that requires a receding-horizon optimal control framework.

6.3 Conclusions

In this chapter we present a receding-horizon algorithm for optimal timing control

of switched system. We propose to define the time horizon of the optimal control

problem to be a sliding window, and we obtain a continuous process that produces

an evolution of optimal switching times that is always optimal as the window slides.

Then we present a numerical algorithm that approximate this process, resulting in a

sub-optimal switching times. The results of this chapter will be used for an application

that requires a receding-horizon optimal control framework.
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CHAPTER VII

APPLICATION OF ON-LINE OPTIMAL CONTROL OF

SWITCHED SYSTEMS: PILOT DECISION SUPPORT

FRAMEWORK

In this chapter we aim to demonstrate the use of the real-time algorithms proposed

by this thesis through an application of optimal formation and coverage control of a

networked system. This application is demonstrated through a realistic simulation

framework consisting of a number of Unmanned Aerial Vehicles (UAVs) that interact

in a virtual 3D world. The receding horizon real-time optimal control algorithms

proposed in Chapter 6 will be employed in the framework. Through this application,

we see an example of using autonomous switched system to model and solve a multi-

agent network control problem. We also see the needs for the real-time algorithms

established in this thesis and how they can be used in a non-abstract setting. More

importantly, in this chapter we have established a novel optimization-based pilot

decision support framework that is useful for the robotics and multi-agent network

control community.

For this application, we aim to provide a framework, so that a multi-agent net-

work can be controlled by a single human operator (a pilot in a remote location).

The framework is designed to send useful information (computed by real-time opti-

mal control algorithms) to the pilot, hence the name “decision support”. However,

the framework is specifically designed to only suggest the decision support and not

force them. Furthermore, we design the framework to provide the pilot with critical

information and total command over the network of agents, but without overloading

the pilot with data. Hence, through this work, we also explore the problem of the
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balance of interaction between human and computers. A number of features useful

for the proposed surveillance mission scenario are also developed, including threat

detection and avoidance.

In this application, we produced software for the pilot to interact with the network

and control the network remotely, as well providing optimization-based feedback to

the pilot. All of these interactions take place in a user-friendly Graphic User Interface

(GUI). A third party open-source (Player/Gazebo) simulation environment is used to

generate a 3D environment where physical interactions of the UAVs can be simulated

realistically. Furthermore, this simulation environment allows for a seamless transi-

tion from simulation to robotic hardware so that the system may be implemented on

real UAVs in the future.

We first introduce the motivation for this application, and show how a multi-

agent network can be modelled as an autonomous switched system. We then detail

the software we developed to realize the proposed pilot decision support framework.

7.1 Introduction

One challenge facing coordination and deployment of unmanned aerial vehicles (UAVs)

today is the amount of human involvement needed to carry out a successful mission.

Currently, control and coordination of UAVs typically involves multiple operators to

control a single agent. The aim of this chapter is to invert this relationship, enabling

a single pilot to control and coordinate a group of UAVs. Furthermore, decision

support is provided to the pilot to facilitate effective control of the UAV team. In

the scenario envisioned in this chapter, the human operator (the pilot) is operating

along-side a team of UAVs. The pilot communicates with the UAV team remotely

and controls the UAV team to execute a surveillance mission.

An important aspect of this is the question of how much the pilot should interact

with the UAV team and how much aid should be provided to the pilot without
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overloading the pilot with data and support. We address this issue by allowing two

major modes of operations, namely autonomous mode and pilot controlled mode. In

both of these modes, the UAV team is controlled in a leader-follower manner, and the

leader UAV is assigned by the pilot, where the followers are positioning themselves

with respect to the other UAVs in the network. In the autonomous mode, the leader

UAV executes the mission without intervention of the pilot. At any time, the pilot

is allowed to take over and directly control the leader vehicle. Hence, the pilot can

interrupt the mission to investigate an area or avoid certain threats. The pilot can also

release control of the UAV, and the UAV team automatically resumes the execution

of the given mission.

The problem of controlling multiple agents in a coordinated fashion to achieve a

set of goals such as maintaining desired formations, ensuring coverage of an area, or

selection of the best leader for a group of agents, has received considerable attention

during the last decade. In particular, multiple approaches have been developed to

allow the inclusion of a human operator in the multi-agent system. In [1],[2],[3], and

[4], the human operator provides commands to all the agents in the network by either

total control of the robot, or supervisory control which modifies the behaviors of the

robots. In either case, the same commands are provided to all the agents in the

network simultaneously. Another work ([51]) developed a central interface to display

the information of a swarm of mobile robots. In [26], the effect of information and

decision aids provided to a human operator is examined in an abstract setting to

address the question of how much interaction with the human should be provided.

The main novelty of the work in this chapter lies in the decision support aid

provided to the pilot in the form of leader selection mechanisms. During operation

of the system, the pilot can reconfigure the UAV network topology by assigning a

different leader vehicle. When the system is in autonomous mode of operation, a

desired leader selection is provided to the pilot. This selection is computed by a
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receding horizon, real-time optimal control algorithm that evaluates relative merits

of different leader selections towards execution of the mission. It should be noted that

we always insist on including the human operator in the loop for making high-level

control decisions.

The support system developed here is designed with the philosophy in mind that

the aid and support is provided but not forced. The mission implemented to demon-

strate the pilot decision support system is a surveillance mission, and an a priori

mission plan is generated at configuration time using pilot input. Once the mission

is planned, it is executed autonomously. The pilot can take control at any time,

during which the mission is paused. This is expected since the pilot may choose to

investigate an area of interest or avoid certain threats. The overview of the pilot

decision support platform is shown in Figure 25. The arrows represents information

and interactions between different components of the framework.

Information and support is designed to be delivered to the pilot in a visually

appealing way so that data can be understood and acted upon quickly. Hence, the

central component of the system is a graphical user interface (GUI). An example of the

GUI during operation of a mission is shown in Figure 26. All data and information

are congregated and exchanged at the GUI, including local information about the

individual UAV agents and decision support computed by the optimal control module.

This interface also provides the mean of interaction between the pilot and UAV agents.

The pilot selects and controls the leader vehicle by interacting with the GUI. In

addition, the GUI displays data (location, altitude, etc.) of the network graphically

so that information can be easily absorbed by the pilot. The background map shown

on the GUI corresponds to the environment of the UAVs, which is a virtual 3D world

constructed in a Player/Gazebo simulation environment, as shown in Figure 27. This

simulation environment is described more in detail in the next section.

Even though this chapter focuses on a single-leader, multiple-followers scenario,
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Figure 25: Pilot decision support platform architecture and different modes of op-
eration

the platform introduced in this chapter can be generalized to a system with multiple

leaders and groups. A multi-leader framework may create additional challenge for a

single pilot to control at same time. The logistical challenge the pilot may face in

terms of attention span for multiple groups is a different issue that is not addressed

in this chapter. This is the reason why this chapter is focused on a single-leader

framework. In terms of scalability, the computation effort involved for making op-

timal leader selections scales linearly with increasing number of agents. However,

the communication required for the network may scale up to quadratically with the

number of agents.

The platform supports autonomous mode and pilot control mode of operation.
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Figure 26: GUI of the pilot decision support framework.

Figure 27: UAVs in Player/Gazebo 3D Simulation Environment.

The pilot can switch the system between these two modes at any time. For the ma-

jority of time in autonomous mode, the autonomous controller is designed to execute

the surveillance mission. This mode of autonomous operation is referred to as the
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mission execution mode. There may be situations when an imminent threat is de-

tected by local sensors on the UAVs, in which case the system switches to the threat

avoidance mode, in which threat avoidance is carried out in higher priority. Further-

more, the optimal timing control module is designed to provide decision aid based

on state information when the system is in mission execution mode. Every time the

system switches to the mission execution mode, the decision aid is recomputed in a

real time fashion. These modes of operations and the optimal control module are

detailed in the following sections.

7.1.1 Autonomous Mode

One important goal of the proposed platform is to provide autonomous operation of

the UAV team for a given mission. In autonomous operation, it is vital to choose a

proper formation and topology for the multi-agent network in response to changes in

the environment or human intervention. For example, reference [27] suggests using a

spread out formation in open space, and a closely grouped formation in tight area.

In the proposed framework, the UAV team is designed to be controlled in a leader-

follower fashion. This has been an increasingly important approach to control multi-

agent network systems and it is proven to be successful for many tasks (see [47] for

example). Using the leader-follower control approach, the topologies of the network

depends on the identity of the leader agent. After the pilot releases control, it may

be necessary to re-evaluate the network topology so that a better candidate vehicle

may be chosen as the leader. To this end, it is natural to characterize the network as

a hybrid system that switches among a number of topologies (see [10] for a similar

idea).

For the clarity of presentation, we consider a UAV team consisting of three indi-

vidual UAVs. One of the UAVs is designated as the leader vehicle. The remaining

UAVs act as followers, and each follower maintains a proper distance with respect to
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the leader and the other follower. Thus, in this UAV network, it is possible for the

pilot to switch between 3 distinct subsystems, each defined by designating a different

agent as the leader. At the planning level, the UAVs will be modelled as holonomic

robots, and the state of the system can then be defined as x = [xT1 , x
T
2 , x

T
3 ]T , where

xi ∈ R
3 is the position of ith robot in the network. Since the mission will be specified

as evolving on the plane, it is useful to defined the operator Pxi = [xi1, xi2]
T .

For the sake of implementation, the mission of the UAV network is defined as a

surveillance task, and the goal of the mission is to provide coverage for an area. One

way to achieve this task is to create a plan at configuration time using either a path

planner or input from the pilot. The controller of the UAV network is designed to

navigate through this path. This path is denoted as p(t) ∈ R
2. We let the path to

be generated by first laying down a set of way-points on the map of the area, then

computing a smoothing spline curve based on the way-points. The smoothing spline

guarantees the continuity of p(t), while balancing the curvature of the path and the

distance from the path to the given way-points.

Let the identity of the leader be l, where l ∈ {1, 2, 3}. We let the dynamics of the

networked system in autonomous and mission execution mode be given by:

ẋl(t) =







γ(p(t) − Pxl(t))

0







ẋi(t) = α
∑

j 6=i

(||xi(t) − xj(t)|| − k)(xj(t) − xi(t)),

i = {1, 2, 3}\{l}. (163)

The leader controller is thus a simple proportional compensator with gain γ that

drives the leader agent to the desired path. Note that the ẋi3(t) = 0, i = 1, 2, 3,

because we assume that the UAVs fly in a constant altitude. We ensure the success

of the surveillance task by designing the controller for the leader UAV so that it

follows the path. This way, at least one UAV in the network is regularly covering the
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area over the given path. Note that the dynamics (163) represents an autonomous

switched system, where there are three sub-systems and each sub-system employs a

different leader.

The followers execute a weighted consensus dynamics with a predefined gain α.

This controller is designed to maintain a fixed distance k from the follower to the

other two UAVs, driving the UAV network to a triangular formation. The vertical

component is moreover kept constant, to be used only when directly controlled by

the pilot, or when avoiding threats. An example of the UAV network in formation

with the leader tracking a path is shown in Figure 26. In the autonomous mode, the

leader vehicle is colored red, and the followers are colored green.

In addition to mission execution, the proposed platform also provides threat de-

tection capabilities. When an external threat is perceived by sensors, the UAVs must

work to avoid the threat while navigating nominally along the defined path. This

mode of operation within autonomous mode is referred to as the threat avoidance

mode. Within the threat avoidance mode, the dynamics of the agents are determined

by the behavior arbitrator of each agent. The behavior arbitrator generates the ap-

propriate behavior so that each agent moves away from the threat while performing its

individual role in a weighted fashion. Once the threat is perceived to be out of range,

then the system returns to the mission execution mode. This switching behavior is

illustrated in the autonomous mode module in Figure 25.

7.1.2 Optimal Timing Control

The objective of the optimal control module is to compute optimal switching times

that minimize a cost function, which is formulated as a measure of the progress of

the surveillance task. As a result, this decision aid is only provided when the pilot

decision support system is in autonomous and mission execution mode. The switching

times information is then fed-back to the pilot, and it is up to the discretion of the
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pilot on whether or not to switch according to the decision aid. For the pilot decision

support framework, the network is reconfigured constantly during system run-time,

and the switching times need to be constantly re-computed on-line and updated.

Furthermore, since the final mission time can be long and optimal control requires

simulation of the state trajectory, we use the receding horizon approach established

in Chapter 6, in which a look-ahead window is selected, and the merits of switching

to different leaders are evaluated over this horizon.

Consider the system in autonomous mode, where it can be represented by a

switched system via (163). Define a switching sequence q̄ = {1, 2, 3}, where in mode i

agent i is the leader. This mode sequence is assumed to be updated on-line by either

switching (reducing the number of modes) and mode insertion (inserting a mode at

the end of the time horizon). Hence, q0 = {1, 2, 3} serves as an initial condition to

the algorithm. The mode insertion procedure is described in Chapter 2 and an online

mode scheduling algorithm was discussed in Chapter 3. The control variable of the

system is the switching time vector τ̄(t) that is updated by the receding horizon algo-

rithm (Algorithm 6.1 and 6.2). The task of the optimal control model is to minimize

a time-dependent cost-to-go functional over a short time window of length Ts.

Since we define the surveillance task in terms of tracking a given path, the instan-

taneous measure of task progress can be formulated as the average distance of the

UAV network to the path. This average distance is the distance between the centroid

of the network to the path, and we use centroid(x(t)) to denote the centroid of the

network. Hence, the real time optimal control problem is that of minimizing the cen-

troid of the UAV team to the given path over the sliding window. This is a cost-to-go

functional since it depends on the true time t, and is evaluated over a state trajectory

over the time interval [t, t + Ts]. This state trajectory has to be simulated since it

happens in the future. This future trajectory is denoted by x̃(s), where s ∈ [t, t+ Ts]

denotes the simulated time. The dynamics of the simulated trajectory is identical to
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the real system (defined in (163)), with the initial condition x̃(t) = x(t).

As such, the cost-to-go functional is given by

J(t, x(t), τ̄ (t)) =

∫ t+Ts

t

L(||centroid(x̃(s)) − p(s)||22)ds.

This performance measure ensures that we select the UAV that minimizes the average

distance between the UAV network to the given path. Let q(t) denote the current

mode at time t. As the algorithm updates the switching time on-line, when τq(t) = t,

we send a mode transition suggestion to the pilot (from q(t) to the next mode in

the sequence). Since the pilot may or may not abide to this suggestion, the real-time

algorithm continues to run according to pilot’s command. If the pilot make any mode

transitions, then we update q̄ and τ̄ (t) accordingly. If all modes are switched, then

we insert a mode based on the insertion gradient computed by the insertion gradient

formula (14) for the modes q = 1, 2, 3. The Algorithm 6.1 and 6.2 is then restarted.

7.1.3 Pilot Control Mode

As previously mentioned, at any time during the mission, the pilot may take control

of the leader vehicle. In this mode of operation, the dynamics ẋ = fl(x) of the sub-

system corresponding to l-th UAV being the leader of the UAV network becomes:

ẋl(t) = u(t),

where u(t) is the control input (direction and speed) supplied by the pilot. The

followers in this mode use the exact same dynamics as the mission execution mode

(maintaining a distance k from each other), but the leader is controlled directly by

the pilot.

The pilot enters the mode by clicking on the pilot virtual joystick as shown in the

lower-right corner in Figure 28. The mouse click is used to generate the direction,

and the speed of the vehicle can be adjusted by the virtual dial on the joystick panel.

When the pilot is in control of a UAV, the vehicle is colored blue. If the pilot wishes

to release control to autonomous mode, the pilot needs to click on the Clear button.
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Figure 28: GUI when in pilot control mode of operation

7.1.4 System Logic

Since all the components of the system architecture are described, we are ready to

explain the logic flow of the pilot decision support system for a surveillance mission.

At every cycle (time-step), the system goes through a decision tree as shown in Figure

29, and switches to a different mode if necessary. The human pilot always have total

control in decision making, including leader selection and movement of the UAV team.

Furthermore, in autonomous mode, threat avoidance has higher priority than mission

execution. Therefore the system switches to mission execution only when there is

no threat perceived. It is moreover only during mission execution that the decision

support will be computed and deliver to the pilot. This ensures that computational

resources are not wasted. When the decision support is provided, it is up to the

discretion of the pilot on whether or not to abide by the computed suggestion.
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ẋ = f(x, u)

Pilot Control
Mode Pilot take over?

No

ẋ = f(x)

Autonomous
Mode

Pilot Decision Support System

Mission
Execution

Threat
Avoidance

YesNo
Threat Detected?

Yes

Figure 29: Logic of the pilot decision support system at each cycle.

7.2 Implementation

The pilot decision support system is implemented in a modular and extensible way. A

third party open-source (Player/Gazebo) simulation environment is used to generate

a 3D environment where physical interactions can be simulated realistically. Further-

more, this simulation environment allows for a seamless transition from simulation to

robotic hardware so that the system may be implemented on real UAVs in the future.

7.2.1 Agent Implementation

The UAV agents are implemented using a modular, behavior-based design. Primitive

and integrated perceptual information from a variety of sources are directed through

a set of behaviors which calculate output preferences for control set-points in 3 dimen-

sions: translational curvature within the x-y plane (κ), translational velocity within
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the x-y plane (v), and altitude (z). The output from the individual behaviors is com-

bined in a behavioral arbitration layer, resulting in final κ, v and z set-points for the

vehicle’s low-level controllers. Figure 30 depicts the overall internal information flow

within each agent.

Figure 30: Data flow architecture for each UAV agent.

7.2.1.1 Perceptual Sources

Each robot in the simulation is implemented as an independent agent, acting either

as a leader robot or a follower robot, according to input from the pilot. The robots

act on information from several sources. These sources include:

• A priori plan - As described in Section 7.1.1, a plan is generated at configuration

time for the UAVs to follow, which leads them through the simulated environ-

ment. The plan is represented by a time-parameterized smoothing spline curve

based on a set of way-points provided by the pilot.

• External Perception - Via an interface with the simulation, the robots are able

to observe their own relative and global positions. Additionally, they are aware
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of features within the environment, including external threats, that must be

avoided.

• Inter-robot communication - The robots are able to communicate their internal

states, including whether they are currently acting as a leader or follower robot,

with each other. The robots are also able to communicate their global positions

to aid in the formation maintenance.

• Pilot input - The human pilot may communicate to the robots, choosing one

to act as leader within the group, and, optionally, taking remote control of the

leader.

7.2.1.2 Behavioral Control

The UAVs navigate using a behavior-based control system based on the DAMN ar-

chitecture [60] and expanded upon in [65] and [69]. In this architecture, each behavior

represents a particular interest of the agent (e.g. avoid threats, follow the plan, fol-

low the pilot’s input). The behaviors’ output is expressed as preferences, or votes,

across a set of discrete options for the next control set-point. Arbitration between

these behaviors is performed by finding the option with the highest preference from

a weighted sum of all behaviors.

In addition to expressing preferences across a set of possible κ values, each behavior

may set a maximum allowable v and a minimum allowable z, given each κ value.

Once a κ value is chosen by the arbiter, the minimum of the maximum allowable v’s

associated with the chosen κ is set as the translational velocity set-point. Likewise,

the maximum of the minimum allowable z’s associated with the chosen κ is set as the

altitude set-point. The κ, v and z set-points are passed on to low-level controllers,

which control the actuation of the vehicle to achieve the commanded set-points.

The set of available behaviors is made up of four distinct behaviors:
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• Leader Behavior - At any given time, only one robot may act as a leader.

The leader’s task is to follow the a priori plan, using a simple proportional

compensator, as described in Section 7.1.1.

• Follower Behavior - The follower robots act to maintain an appropriate distance

from the leader and from each other by weighted consensus, as described in

Section 7.1.1.

• Threat Avoidance Behavior - All robots work individually to avoid detected

external threats. Threat detection is implemented using a local sensor model.

The threat avoidance behavior only expresses a preference if an external threat

is detected by the local sensor model.

• Pilot Guidance Behavior - The pilot may choose to take remote control of the

leader robot. The pilot guidance behavior follows the input given by the pilot

and described in Section 7.1.3.

7.2.2 Pilot Interface

The graphical user interface (shown in Figure 26) is implemented separately from the

simulation environment, and it communicates with each agents via TCP/IP. It also

communicates with the optimal control module to send state information and receive

decision support. The GUI retains a copy of the mission (seen as the black curve in

Figure 26), as well as initial way-points set by the pilot to generate the mission plan

(yellow dots in Figure 26). The roles of the UAV agents are distinguished by color. In

autonomous mode, the leader UAV is red. In pilot control mode, it is blue. Followers

are always green, unless one is suggested as leader, in which case it becomes black.

Known threat locations are displayed on the GUI as black dots in red circles.
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7.2.3 System Implementation

Since each robot is implemented as an independent agent, system-wide organization

and communication must be defined. Figure 31 depicts this system organization. At

the top is the pilot interface. Through this module the pilot may monitor the state

of the robots, select a leader robot, and, if he chooses, control the motion of the

leader robot. The pilot input is communicated to each robot. Each robot takes this

information in consideration, along with state information communicated from the

other robots. Control commands are calculated and communicated via Player to the

Gazebo simulation. State information is communicated from the simulation to the

robots, which, in turn, communicate their state information to the pilot interface.

Because each module is implemented as its own process, and communication imple-

mented via TCP/IP, the system can be distributed over multiple computers, just as

it would be in physical implementation.

Figure 31: Data flow architecture for the experimental system.

7.3 Results

Demonstrations of the above described system are organized to highlight 4 features.

Note that in all of the figures, background images are removed to show the results
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more clearly.

(a) The formation of UAVs follow the planned
path.

(b) The pilot chooses a new leader.

(c) The new leader takes its position at the front
of the formation.

Figure 32: Demonstration of the pilot designating a new leader for the formation
of UAVs.

Figure 32 demonstrates the pilot’s ability to designate a leader UAV from the

team of UAVs. Figure 32(a), depicts the pilot interface showing a team of 3 UAVs
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navigating along a predefined route. The designated leader is in front (colored red),

while the other two UAVs follow behind (colored green). In Figure 32(b), the pilot

selects one of the two follower UAVs to become the new leader. Immediately, the

selected UAV moves to take its place at the front of the formation, while the former

leader moves to take its new place as a follower in the formation. Figure 32(c) shows

the new steady state behavior with the newly designated leader in the front of the

formation.

(a) The formation of UAVs is off the planned
path. The pilot decision support system sug-
gests a new leader to get back to the path
faster.

(b) The pilot takes the suggestion of the de-
cision support system, selecting the suggested
UAV to be the new leader.

(c) The formation moves back to the planned
path.

Figure 33: Demonstration of the decision support system aiding the pilot by sug-
gesting a new leader

Figure 33 shows the pilot decision support system in action. In Figure 33(a), the
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UAVs are in formation but offset from their commanded route. In this state, the UAV

lowest in the screen would make the best leader, as evaluated by the pilot decision

support system. This is communicated by coloring the center of the UAV in question

black. Figure 33(b) shows state of the UAVs immediately after the pilot has selected

the suggested UAV to be the new leader. The new leader moves to lead the other

UAVs toward commanded route. Finally, Figure 33(c) shows the UAVs in steady

state formation shortly thereafter.

(a) The UAVs move along the planned
path. An area of interest to the pilot lies
to the northwest of the formation.

(b) The pilot remote controls the leader
to the area of interest.

(c) The pilot returns the leader to au-
tonomous control. The formation moves
back to the planned path.

Figure 34: Demonstration of the pilot exploring an area of interest by remote
controlling the leader UAV.

The affordance for the pilot to manually navigate the leader UAV is demonstrated

by Figure 34. Figure 34(a) shows the formation of UAVs following their commanded

route. An area of interest to the pilot (marked by the red polygon) is to the northwest

of the formation. To explore the area of interest, the pilot uses the virtual joystick

125



(shown in the bottom right corner of the interface) to pilot the leader UAV, as shown

in Figure 34(b). The UAV under the pilot’s control is marked blue. The other

two UAVs continue to operate autonomously, albeit as followers. In this manner, the

pilot is essentially in remote control of the entire formation. Once the pilot is satisfied

with the exploration achieved, the leader UAV is returned to autonomous operation.

Figure 34(c) shows the fully autonomous formation returning to it mission.

The threat avoidance behavior is highlighted in Figure 35. Figure 35(a) shows the

formation of UAVs following their commanded route. An external threat, marked by

the solid circle, is to the southwest of the formation, just off-screen. The threat range

is modeled as a spherical region around the center. The range of the threat in the x-y

plane at ground level is shown by the open circle around the threat. As the UAVs

approach the threat, each UAV independently detects the threat. The detection is

shown in Figure 35(b) by the open circles connected to each UAV. The radius of these

circles represents the range of the threat in the x-y plane at the current altitude of

each UAV. Figure 35(c) shows the UAVs navigating around the threat. The UAVs

not only steer around the threat within the x-y plane, but also gain altitude to reduce

the deviation needed within the x-y plane.
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(a) The formation of UAVs navigating along the
prescribed plan. An (as yet undetected) ex-
ternal threat is shown to the southwest of the
formation, represented by a closed circle, just
off-screen. The range of the external threat is
modeled as a spherical region. The threat range
within the x-y plane at ground level is shown as
an open circle around the threat.

(b) The UAVs detect the threat. The open cir-
cles connected to each UAV represent the range
of the threat within the x-y plane at the UAV’s
current altitude.

(c) The UAVs avoid the threat by both steering
around it within the x-y plane, and gaining alti-
tude to reduce the required deviation within the
x-y plane.

Figure 35: Demonstration of the external threat avoidance capability of the UAV
agents.
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