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Sonic boom modelling is multidisciplinary involving aerodynamic and aero-acoustics analy-

ses. The near field pressure signature is first obtained using either linearized or non-linear

methods. This is then converted into a F-function, which is then propagated to the ground

using aero-acoustic routines. Existing linearized methods operate on simple approximations

of true geometry. Using improved linearized tools that operate on unstructured water-tight

geometries, the accuracy and efficacy of shape optimization can be greatly improved. The

sonic boom minimization technique is reformulated as an optimization problem and boom

propagation is carried out in a probabilistic fashion. A bi-level reverse optimization is

conducted to design aircraft to meet low sonic boom requirements under atmospheric un-

certainty.

Nomenclature

αy Non-linear advance of acoustic rays
A2 Anderson-Darling test statistic
B Rise slope in F-function
b1 Input layer bias vector
b2 Output layer bias vector
H, C, D, λ, yr Parameters associated with F-function
pr/pf Ratio of rear to front shock strength
S Slope of balancing line in F-function
V Hidden layer network weights
W Output layer network weights
yf Bluntness parameter

I. Introduction and Motivation

I
n any design environment, simple theories are initially applied to the proposed concept and advanced
computational aerodynamic packages are utilized later in the design stages. Most of the advanced anal-

yses are multidisciplinary in nature with iterations between aerodynamics, structures, flight mechanics and
propulsion. Multidisciplinary analysis is computationally very intensive and is dependent upon the concept
provided from the initial stages. Thus, one cannot overlook the role played by the conceptual design. Con-
ceptual design is also important from another perspective. The designer has a lot of design freedom in the
conceptual stages as shown in Figure 1. This figure from Mavris and Delaurentis,1 shows the comparison of
design freedom and knowledge available at various stages of design between today’s framework and a notional
future framework. As the design proceeds through various stages, the design space shrinks to eventually
become the final design. The designer has to take advantage of the huge design space upfront to avoid serious
and costly alterations in design during the later stages.
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Figure 1. Different stages of design.

According to market studies conducted by various organizations,2 there is a need for an efficient, low noise
commercial airplane that could travel at supersonic speeds over land. To achieve this, numerous technical
challenges have to be overcome. The most important of these challenges are sonic boom minimization, engine
emissions and airport noise.3 Since smaller aircraft have lesser weight and thus produce lower sonic boom
levels, recent research has concentrated on designing small supersonic business jets. A successful design for
such a small aircraft would then serve as a stepping stone for future commercial supersonic research. With
increased importance being given to the conceptual design, better aerodynamic analysis in the early phases of
design could lead to significant improvements in the overall design cycle of the aircraft. Better aerodynamic
analyses usually trickles down to better geometry representation and discretization as these are the primary
prerequisites to run high fidelity aerodynamic analysis.

II. Geometry generation and discretization

An efficient shape parameterization strategy is a prerequisite for performing aerodynamic shape optimiza-
tion. Geometry generation is a key issue in shape optimization studies. Various techniques have been
introduced in the past to create efficient parametric geometries. Bloor and Wilson4 introduced a partial
differential equation approach to obtain arbitrary aircraft configurations by solving a bi-harmonic partial
differential equation (PDE). Smith et.al.5 extended the PDE approach to generate arbitrary configurations
along with volume grid generation and grid sensitivity. Various geometry generation tools and their impor-
tant features were presented by Kerr et.al.6 Samareh7, 8 provides an excellent compilation of different shape
parameterization techniques.

The above techniques, though very useful to create mathematically closed surfaces in further stages of
design, consume a significant set-up and computational time. What is needed in conceptual design is a
technique by which many geometries can be analyzed in a quick and efficient manner to obtain the same
level of fidelity achieved by the tools mentioned in the previous paragraph. Importance has to be given to
automation and computational time. A MATLAB based geometry generation and discretization method has
been demonstrated by the authors9 to create water-tight geometries quickly and efficiently.

The idea is to use variables to control the shape as well as the configuration of the aircraft. The
configuration variables are discrete and different values for these produce different types of components as
shown in table 1. As can be seen from this table, various shapes are already programmed into the geometric
tool and this results in a wide variety of configurations that can be generated. For example, depending on
the value of discrete wing parameter, the wing geometry can be a conventional, delta, double-delta, multi-
section or a swing-wing design. Canard, conventional or T-tail geometries and configurations with various
engine configurations can also be generated. From table 1, if all components have to exist, there could be
5 × 6 × 3 × 1 × 4 = 360 discrete types of configurations. In addition, within each configuration, there are
various continuous parameters to define the shape of each component.

Table 2 presents some of the important continuous parameters that determine the shape of the aircraft.
Included here are various planform parameters, control points for NURBS surfaces and bezier curves. Fuse-
lage shapes produced by the formulation include axisymmetric and non-axisymmetric fuselages which are
pointed or blunt or area-ruled. Wing shape parameters include twist, camber, control points for leading edge
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Component Component type parameter

0 1 2 3 4 5 6

Fuselage No Fuselage Nose specified Full Fuselage NURBS nose, Fuselage in Area ruled

-bezier curve - bezier curves rest-bezier curves cross-sections Fuselage

Wing No wing Conventional Delta Double delta Concorde like Swing-wing Raytheon like

wing wing wing multi-section wing multi-section wing

H-Tail No H-Tail Canard Conventional T-tail

V-Tail No V-Tail Conventional

Engine No Engines Wing mounted, Fuselage Wing mounted, Wing mounted,

2 below wing mounted 2 above wing 4 below wing

Table 1. Discrete parameters

bezier curve and various other parameters. Other parameters are simply dimensions and planform locations
of components. The maximum number of parameters used to create a single configuration is 75.

Component Important continuous parameters

Fuselage Length, Maximum diameter, Max. diameter location, bezier control points for nose, mid-section and aft region,

Camber, Camber location, blunt-ness parameter, parameters for non-axisymmetric nose section

Wing Wing location, t/c, camber, camber location, twist distribution, dihedral,

Bezier control points for leading edge,sweep, span

H-Tail Aspect ratio, taper ratio, sweep, t/c, longitudinal location, vertical location

V-Tail Aspect ratio, taper ratio, sweep, t/c, longitudinal location

Engine Engine location, radius, hub to tip ratio, engine length

Table 2. Important continuous parameters

With this parameterization strategy a wide design space of geometries can be generated. Once a geometry
has been created, it should be discretized for numerical analysis. The shapes obtained by the design process
are of not much use for further analysis if these shapes cannot be translated into a CAD definition for
manufacturing. Ability to manufacture should be induced into the design process right from the conceptual
level. This could reduce the time during design iteration and thus reduce the total life cycle cost of the final
end product. It is therefore essential to create an integrated design procedure, where generated configurations
are easily and automatically translated into water-tight CAD geometries. Apart from manufacturing, a CAD
definition provides a common geometry format for various analyses and disciplines.

III. Traditional and improved near field prediction tools

It is known that the main components of sonic boom prediction are near field aerodynamic analysis involving
estimation of equivalent area due to volume and lift10 and far field acoustic analysis involving pressure
propagation through the atmosphere. In the conceptual design stages, the equivalent area due to volume
and wave drag are obtained using AWAVE.11 ALIFT12 has been traditionally used for area due to lift
estimation. The limitations of these tools have been previously discussed by the authors.9

After the geometry has been created and discretized, modified linearized analysis tools are required
which accept the new geometry definition to produce required aerodynamic output. In this work, linearized
analysis is used, although the geometry discretization is amenable to run CFD analysis. An improvement
to the conceptual tools for sonic boom analysis could be accomplished either by using high fidelity analysis
or by providing an improved geometry definition to the analyses. While using better geometry input with
low fidelity analyses is not as accurate as using high fidelity analysis, it is certainly superior to using low
fidelity analyses over a poor geometric description. Based on the limitations of the existing linearized codes,
improved linearized tools that operate on the unstructured geometries from section II have been developed
and demonstrated.9 For the equivalent area due to volume contribution, proposed method uses efficient
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geometric algorithms to obtain the true Mach-plane intercepted area. The results have been thoroughly
validated. The equivalent area due to lift estimation routines have been modified to run on the geometry
created. The designer could replace the lift analysis by a generalized vortex lattice method, panel method
or a full blown computational fluid dynamics simulation depending on the level of fidelity desired.

Using the discretized geometry format, the wave drag of the aircraft can be computed by performing
surface boolean operations.13 Table 3 presents the wave drag numbers associated with a simple wing-body-
canard geometry at Mach number of 1.4. As can be seen from this table, AWAVE highly over-predicts the
wave drag values whereas the improved tool produces wave drag numbers closer to the CFD analysis result.

Using Improved tools Using AWAVE AWAVE with wing truncation Using CFD

Dw

q
= 3.0798 Dw

q
= 5.1879 Dw

q
= 4.8039 Dw

q
= 2.76

Table 3. Wave drag comparison using various methods

IV. Probabilistic propagation

A propagation model is needed to propagate the aerodynamic near field pressure signature to the ground.
Traditional propagation models assume standard atmospheric properties to obtain the pressure and tem-
perature values at different altitudes which are then used to obtain the sonic boom pressure signature on
the ground. Linearized propagation models like ARAP14 are approximations of the true pressure propaga-
tion. Effects like atmospheric absorption, molecular relaxation, turbulence and anomalies in temperature
and wind profiles influence the ground pressure signature. Unfortunately, none of these effects are modelled
in a conceptual propagation tool like ARAP. An improved propagation code, PCBOOM,15 performs a three
dimensional propagation of the near field pressure signature and includes the effect of molecular relaxation
to a certain extent. There is a need, at the conceptual level, to include the effect of anomalies present in
temperature and wind profiles. Atmospheric fluctuations could cause variations in the pressure signature on
the ground. PCBOOM can inherently model user input atmospheric profiles. To complement that, ARAP
code has also been modified to account for these variations in the atmospheric parameters. In order to
model the temperature fluctuations, normal distributions are placed around selected parameters like lapse
rates and the heights which separate the atmospheric layers to yield varying temperature profiles. The effect
of atmospheric fluctuations is performed in the following way. Given the area distribution or the F-function,
the propagation analysis is run for a fixed number of times with varying temperature profiles. The perceived
loudness values for these cases are then used to fit a distribution using Anderson-Darling test statistic as
explained below.

A. Anderson-Darling test statistic

The Anderson-Darling test is one of the most powerful and important goodness-of-fit tests in the statistical
literature especially for small sample sizes. This test is a modification of the Kolmogorov-Smirnov test in that
it weighs the tails more heavily and utilizes a hypothesized distribution resulting in a better goodness-of-fit
test. Using the sample points, the parameters of the hypothesized distribution are estimated. Then a critical
value of the test statistic corresponding to the hypothesized distribution is determined. Depending on the
values of the test statistic and the critical values, the hypothesized distribution is accepted or rejected. The
Anderson-Darling test statistic is defined in equations 1 and 2 for a normal distribution.

A2 = −n − S (1)

where

S =
N

∑

i=1

(2i − 1)

N
[ln(F0(xi)) + ln(1− F0(xn+1−i))] (2)

If the mean and variance have to be estimated using the same data used for the test, then the test statistic
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is modified according to the equation 3

A2 = A2 × (1 +
4

N
+

25

N2
) (3)

The critical value for a normal distribution is given by equation 4.

CV = 0.752/(1 +
0.75

N
+

2.25

N2
) (4)

Now if A2 > CV , then the hypothesized distribution is rejected as not fitting the sample points. The critical
and test statistic values are different for various distributions and is explained in detail in the RAC16 paper.
In this study, Anderson-Darling test has been used to accept or reject 4 distributions, normal, log-normal,
weibull and exponential, due to their frequent occurrence in many reliability studies.

After the distribution of the perceived loudness level has been obtained using the Anderson-Darling test, a
cumulative probability function for that distribution is obtained. A value corresponding to the 95% probable
value is then used as the perceived loudness level, PLdB, as shown in figure 2. The designer could choose
the number of samples to use in the Anderson-Darling test. The higher the number of samples, the closer
one can get to the actual CDF.
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Figure 2. The perceived loudness level from CDF

V. Method for Sonic Boom minimization

Sonic boom minimization is one of the core issues of research at many academic institutions and government
organizations. The most important issue in minimization studies is to choose a criteria to minimize the ground
signature. There is no single standard objective that is used for boom optimization. Various researchers
have used one or more of the important quantities associated with a ground pressure signature. A few of
these quantities are initial shock pressure rise, maximum overpressure, the time taken to reach the maximum
overpressure and the impulse or energy contained in the signature. Boom minimization theory of Seebass-
George17 and extension by Darden,18 henceforth referred to as SGD, develops expressions for the near field
signature which minimize one or more of the above parameters. This theory provides low boom constraints
which are then used as guidelines to drive the optimizer to achieve those near field values by changing the
shape of the aircraft.

Recent research shows that, perhaps, the most important parameter that should be used for minimization
is the loudness level of the pressure signature that is perceived by humans and structures. Supersonic flight
over land would be possible if the noise generated does not have a significant effect on humans and does not
cause damage to buildings. The existing minimization theory does not provide lower bounds for perceived
loudness, rather it just provides lower bounds for pressure perturbations. Minimizing overpressure or shock
pressure rise does not necessarily minimize the perceived loudness and therefore the near field signature
predicted by the existing theory may not yield a signature of minimum loudness. Asymmetry of the signature
also has an effect on the loudness as studied by Leatherwood19 and is implemented in this study. In this
section, the SGD theory equations are simplified and recast as a set of two simultaneous equations and an
efficient solution strategy is suggested.
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In SGD theory, the coefficients of the F-function are obtained to satisfy certain conditions imposed on
the signature. This theory obtains the equivalent area distribution that minimizes the overpressure or the
initial shock pressure rise. An efficient and automated solution of SGD theory equations required for aircraft
conceptual design is presented here. The F-function is assumed to be of the form shown in equation 5.

F (y) =























2yH
yf

0 ≤ y ≤ yf/2

C( 2y
yf

− 1) − H( 2y
yf

− 2) yf/2 ≤ y ≤ yf

B(y − yf ) + C yf ≤ y ≤ λ

B(y − yf ) − D λ ≤ y ≤ l

(5)

The known parameters are yf , l, M, W and pr/pf . Based on the Seebass-George-Darden 17, 18 relations, the
following equations can be written.

∫ yr

l

F (y)dy =
−2

π

∫ l

0

F (x) tan−1(

√

yr − l

l − x
)dx =

1

2
[B(l − yf ) − D + F (yr)](yr − l) (6)

pf

pr
=

C

D − B(l − yf ) + F (yr)
(7)

F (yr) = S(yr − l) + B(l − yf ) − D (8)

∫ yf

0

F (y)dy =
αyf

2
C (9)

∫ yr

l

F (y)dy =
1

2
[B(l − yf ) − D + F (yr)](yr − l) (10)

F (y) = −
1

π(y − l)1/2

∫ l

0

(l − ξ)1/2

(y − ξ)
F (ξ)dξ (11)

The purpose of this exercise is to determine the unknowns C,D,H, λ and yr given the Mach number, altitude,
length and gross weight. Using the geometric acoustics techniques, closed form expressions involving integrals
can be used to calculate the value of S as shown in equation 12

S = −
√

2β

ΓM3
h

∫ h

0

ph

p

√

ρah

ρha

√

Ah

zhA
M
β dz

(12)

where,

Ah

zhA
= [Mh

√

(1 −
1

M2
z

)

∫ z

0

1
√

(M2
z − 1)

dz]−1 (13)

The non-linear advance can be calculated from equation 14 by performing numerical integration.

αy = −
ΓM3

hF (y)
√

2β

∫ z

0

ph

p

√

ρah

ρha

√

Ah

zhA

M

β
dz (14)

Using the supplied values of h, M, l and GW , the slope of the balancing can be calculated using equations
12 through 14. The slope of the front balancing line, S, is proportional to the reciprocal of the non-linear
advance at any point of the signal. Therefore, equation 12 can also be casted as shown in equation 15.
Equation 16 gives the value of the non-linear advance at yf in the near field signature using equations 7 and
8.

S =
F (y)

αy
=

C

αyf

(15)
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αyf
= (yr − l)

Pr

Pf
(16)

Equation 17 is then obtained as a function of αyf
which in turn is a function of yf .

C =
2Hyf

(2αyf
− yf )

(17)

Using equations 15 and 17, a quadratic equation in αyf
can be obtained. The negative root is extraneous

and the positive root is taken to be actual advance because the advance cannot be negative. The quadratic
can be solved for αyf

in terms of yf , S and H . The solution is shown in equation 18.

αyf
=

yfS +
√

y2
fS2 + 16HyfS

4S
= (yr − l)

Pr

Pf
(18)

From equation 18, H can be solved in terms of the unknown parameter yr and is given in equation 19.

H =
S(yr − l)2(

Pf

Pr
)2

yf
−

S(yr − l)
Pf

Pr

2
(19)

With H, αyf
known in terms of the unknown yr, equation 19 can now be used to obtain C in terms of yr by

substituting in equation 17 and is given in equation 20.

C =
2S(yr − l)2(

Pf

Pr
)2 − Syf (yr − l)

Pf

Pr

2(yr − l)
Pf

Pr
− yf

(20)

The first step is the assumption that minimum pressure disturbances on the ground are theoretically achieved
when the volume contribution is absent. In other words, only lift contribution needs to be considered. In
such a case, the equivalent area due to lift is as given in equation 21.

Ae(l) =
βW

ρU2
= 4

∫ l

0

F (y)
√

(l − y)dy (21)

The above integral can be split into 4 different intervals and carry out the integration. Let l − ξ = x2. The
above integral reduces to

Ae(l) =
4H

yf

∫

q

l−
yf
2

√

l

x2(x2 − l)dx +
4C

yf

∫

√
l−yf

q

l−
yf
2

x2(4(x2 − l) + 2yf )dx −
4H

yf

∫

√
l−yf

q

l−
yf
2

x2(4(x2 − l) + 4yf )dx

+ 4

∫

√

l−λ

√
l−yf

2x2(B(x2 + yf − l) − C)dx + 4

∫ 0

√

l−λ

2x2(B(x2 + yf − l) + D)dx (22)

The following relations are assumed to simplify the equations.

β =
√

l, α =

√

l −
yf

2
, γ =

√

l − yf , δ =
√

l − λ (23)

Carrying out the integration, the expression for the equivalent area due to lift with the assumed form of the
F-function is given equation 24. This equation can then be used to solve for D in terms of yr and λ and the
expression is shown in equation 25.

Ae(l) =
−16H

yf
[
l

3
(α3 − β3) −

1

5
(α5 − β5)] +

4C

yf
[
2yf

3
(γ3 − α3) − 4(

l

3
(γ3 − α3) −

1

5
(γ5 − α5))]

−4H

yf
[
4yf

3
(γ3 − α3) − 4(

l

3
(γ3 − α3) −

1

5
(γ5 − α5))] + 4[

2B

5
(δ5 − γ5) −

2(B(l − yf ) + C)

3
(δ3 − γ3)]

+ 4[
−2B

5
δ5 +

2(B(l − yf ) − D)

3
δ3] (24)
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D =
3

8(l − λ)
3
2

[
4(yr − l)

yf
(h1(yr − l)− h2)A1 +

c1(yr − l) − c2

c3(yr − l) − yf
(yr − l)(A2−

8

3
((l − λ)

3
2 − k1))−

βW

ρU2
] (25)

where functions h1, h2, A1, A2, c1, c2, c3, k1 are functions of known values and have been clumped together for
equation simplification. Similarly, integral equations 6 and 11 can be split into four intervals and integration
can be performed. Specifically, equation 11 would yield equation 26 using the symbols specified in equation
23.

xp − tan−1(xp) =
1

(2C + 2D)(
√

yr − l)
[
4H

yf
[
1

3
(α3 − β3) − yr(

√
α −

√

β) + yr

√

yr − l(tan−1(
α

√
yr − l

)

− tan−1(
β

√
yr − l

))] +
4C

yf
[
1

3
(γ3 − α3) − yr(

√
γ −

√
α) + yr

√

yr − l(tan−1(
γ

√
yr − l

) − tan−1(
α

√
yr − l

))]

+ 2C[(
√

γ −
√

α) −
√

yr − l(tan−1(
γ

√
yr − l

) − tan−1(
α

√
yr − l

))] −
4H

yf
[
1

3
(γ3 − α3) − yr(

√
γ −

√
α)

+ yr

√

yr − l(tan−1(
γ

√
yr − l

) − tan−1(
α

√
yr − l

))] − 4H [(
√

γ −
√

α) −
√

yr − l(tan−1(
γ

√
yr − l

)

− tan−1(
α

√
yr − l

))] + (2Byf − 2C)
√

yr − l(tan−1(

√
γ

√
yr − l

) −
√

γ) + 2B(yr
√

γ −
γ3

3

− yr

√

yr − ltan−1(

√
γ

√
yr − l

)) + π
√

yr − l(S(yr − l) + B(l − yf ) − D)] (26)

where

xp =

√

l − λ

yr − l
(27)

Equation 6 would result in equation 29 based on the symbols provided in equation 28.

β =

√

yr − l

l
, α =

√

yr − l

l − yf

2

, γ =

√

yr − l

l − yf
, δ =

√

yr − l

l − λ
(28)

tan−1(
1

xp
)(1 + x2

p) + xp =
1

(C + D)(yr − l)
[
4H(yr − l)

yf
(
l

2
(tan−1(β)(1 +

1

β2
) +

1

β
− tan−1(α)(1 +

1

α2
) −

1

α
)

−
(yr − l)

4
(tan−1(α)(1 −

1

α4
) +

1

α
(1 −

1

3α2
) − tan−1(β)(1 −

1

β4
) −

1

β
(1 −

1

3β2
))

+
C

yf
((2l − yf )(yr − l)(tan−1(α)(1 +

1

α2
) +

1

α
− tan−1(γ)(1 +

1

γ2
) −

1

γ
)

− (yr − l)(yr − l)(tan−1(γ)(1 −
1

γ4
) +

1

γ
(1 −

1

3γ2
) − tan−1(α)(1 −

1

α4
) −

1

α
(1 −

1

3α2
)))

−
H

yf
((2l − 2yf )(yr − l)(tan−1(α)(1 +

1

α2
) +

1

α
− tan−1(γ)(1 +

1

γ2
) −

1

γ
) − (yr − l)(yr − l)(tan−1(γ)(1 −

1

γ4
)

+
1

γ
(1 −

1

3γ2
) − tan−1(α)(1 −

1

α4
) −

1

α
(1 −

1

3α2
))) + (yr − l)(B(l − yf) + C)(tan−1(β)(1 +

1

β2
) +

1

β
)

+
B

2
(yr − l)(yr − l)(tan−1(γ)(1 −

1

γ4
) +

1

γ
(1 −

1

3γ2
)) −

πB

4
(yr − l)(yr − l)

−
π

2
(yr − l)(B(l − yf ) − D) +

π

4
(yr − l)(2B(l − yf ) − 2D + S(yr − l))] (29)

There are two unknowns, λ and yr and two equations 26 and 29. In order to do this, the optimization
problem is recast such that the squared difference of the right hand side and left hand side of the equation
26 is minimized while equation 29 is used as an equality constraint.
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VI. Meta-model estimation of minimum area distribution

An approximate analysis is sought for the solution of the SGD equations. The procedure laid out in the
previous section can be used effectively to estimate the area distributions for minimum boom footprints.
However, it has been observed that once in a while the optimization terminates prematurely. Even if it
does converge to the right solution, the numerical integration and optimization routines could take about
2-3 seconds. That time is a lot if the analysis has to be run multiple times as in an optimization study.
Therefore, a non-linear approximation to the SGD solution procedure is pursued. Since the responses are
non-linear with respect to the inputs, a neural network meta-model has been used.
An artificial neural network with a single hidden layer is a universal approximator to any function provided
the right number of neurons are chosen in the hidden layer.20 For a single hidden layer neural network, the
outputs can be specified in terms of the inputs by an equation such as the one shown in equation 30. The σ
in this equation represents a non-linear sigmoidal transfer function, usually with activation 1.0.

y = W T σ(V T X + b1) + b2 (30)

Supervised networks with batch training are used in this study. Supervised neural networks have two stages.
The first is the training stage where the actual analysis is run to record the input-output combinations.
This data is then fed to the network which changes the weight matrices and bias vectors to fit the data
in the best possible way. There are various algorithms to fit the data. In this study, bayesian regression
learning algorithm available in the MATLAB neural network21 toolbox is used. Once the optimum weight
and bias vectors are obtained, the model has to be tested for performance. A test data of input-output
pairs is generated using the actual analysis and it is compared with the output from neural network meta-
model. If the neural network predicts the test data set satisfactorily, one can assume that the neural network
has successfully approximated the analysis function. A training and test data for using the SGD solution
procedure has been created with the ranges for the variables provided in table 4.

Variable Lower bound Upper bound

B (Slope in F-function) 0.0 0.0004

Mach Number 1.4 1.8

Length 100.0 ft 200.0 ft

Gross Weight 80000.0 lbs 130000.0 lbs

Altitude 50000.0 ft 80000.0 ft

yf (Bluntness parameter) 2.0 30.0

Table 4. Ranges for SGD input variables

A network with 18 hidden layers was chosen. This number was chosen by trial and error to obtain the best
possible fit. Figure 3 compares the actual training data with those obtained from the neural network. It
can be seen from this figure that the neural network was able to successfully track the actual responses
by modifying the weights and biases. A good match with training data is only half the story. The most
important thing is that the network has to perform well for the test data. Figure 4 compares the actual test
data with the output from the neural network. From this figure, it can be concluded that the trained neural
network can be used as a viable replacement to the SGD analysis.

VII. Coarse-grained parallel genetic algorithm

Most computational simulations these days are being run simultaneously on multiple computers. This would
enable most computationally intensive tasks like CFD simulations or genetic algorithm shape optimization
runs to be completed much faster, provided enough computers are present in the cluster and computational
decomposition and communication between processors is handled well. Parallelization is used in this study
to expedite the turn around time of the analyses.

Genetic algorithms have a few important advantages over gradient based optimization schemes. Firstly,
they achieve a global optimum instead of getting stuck in a local optimum. Secondly, since they operate on
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Figure 3. Neural Network training for SGD equations
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Figure 4. Neural Network testing for SGD equations
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population of candidates, a Pareto-optimal front can be obtained in a multi-dimensional space with many
conflicting objective functions. Furthermore, since these do not require any gradient information, they can
be applied to problems which may be discontinuous. In spite of these advantages, genetic algorithms have
been the subject of criticism for various reasons. They are very computationally intensive as they lack the
elegance of reaching the optimum as in the case of gradient based optimization. Secondly, as the algorithm
continues, some individuals with high fitness values may dominate the population. This causes premature
convergence of the population and should be avoided.

Premature convergence is avoided in most genetic algorithms using a technique called niching ,22 which
tries to include a diverse population after every generation or epoch. A niching genetic algorithm has the
ability to include a diverse population at each generation. However, an efficient parallel implementation of
the genetic algorithm could obtain the results in far less computational time. Various parallelization schemes
have been proposed including those by Gondra 23 and de Toro .24 In this study, a parallel genetic algorithm
is attempted along the lines suggested by Gondra. The basic genetic algorithm is the Non-dominated sorting
genetic algorithm (NSGA2) proposed by Deb.25

A coarse grained genetic algorithm is based on the principle of punctuated equilibria, which is based
on allopatric speciation and stasis. Any population initially undergoes rapid evolution to new population.
However, as the number of generations increase, the rate of evolution decreases and the changes to the
population are gradual and slow. In that sense, the population attains stability or stasis and could end
up in a local optimum or prematurely converged. Punctuated equilibrium principle states that in order to
continue the evolution to the best population, new population members have to be thrust into the existing
stable population to increase the evolution rate. Allopatric speciation involves the introduction of stabilized
individuals into different populations. The implementation of this is shown in the final results.

VIII. Shape Optimization results

To numerically minimize sonic boom loudness, a ’bi-level reverse’ optimization is performed. The analysis
is split into two optimization routines. Firstly, using probabilistic propagation techniques, the optimum
area distribution, aircraft length, Gross Weight, Mach number and altitude which minimize the perceived
loudness level on the ground are determined . This optimum distribution is then fed to the next optimization
level, where optimum shape parameters, described in section II, are obtained to match the area distribution.
The following sections briefly explain these steps and provide the shape optimization results.

A. Optimum area distribution

The design variables in this step are the Mach number, gross weight, length, altitude, bluntness parameter
yf and slope of the rise in F-function, B. Using the neural network meta-model, optimum values for these
variables are obtained by simultaneously minimizing the probabilistic estimate of the perceived loudness and
maximizing the figure of merit26 as defined in equation 31. The reason for providing the second conflicting
objective is to obtain a Pareto-front of area distributions. The best compromised area distribution can then
be chosen according to the requirements of the design.

FoM =
βW

Pgl
3
2

√
h

e
h

2H 103 (31)

where H is the atmospheric scale height.
The ranges of the design variables are shown in table 5. Note that these ranges are a subset of the

ranges utilized for the neural network and can be safely used as a replacement to the actual analysis. The
results for the first step of optimization are shown in figures 5 and 6. Figure 5 shows the Pareto-front of the
probabilistic perceived loudness level against the inverse of figure of merit. The genetic algorithm was run
for 30 generations.

Figure 6 shows the target equivalent area distribution to be used for the second optimization step.
The final values chosen for the second step of optimization are M = 1.44, GW = 113401.76 lbs, Altitude
= 59501.73 ft, length = 149.54 ft.
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Design Variable Lower bound Upper bound

B (Slope in F-function) 0.0 0.0004

Mach Number 1.4 1.8

Length 100.0 ft 150.0 ft

Gross Weight 100000.0 lbs 130000.0 lbs

Altitude 50000.0 ft 60000.0 ft

yf (Bluntness parameter) 2.0 30.0

Table 5. Ranges of design variables for step 1
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Figure 5. Pareto-front for the first step of optimization
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B. Estimation of optimum aircraft shape

The design variables in this step are the shape parameters of the aircraft. Suitable care is taken to include
a vast design space for the aircraft shapes to achieve a proper final shape. A parallel genetic algorithm is
utilized to minimize the normalized squared difference between the total equivalent area from the aircraft
and the target area distribution. After about 20 generations, figure 7 depicts the comparison of the total
equivalent areas. As can be observed from the figure, a close match is obtained for most of the longitudinal
locations. The comparison is not as good for the tail regions. The reason for this could be that there is not
sufficient shape control in the tail sections of the aircraft.
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Figure 7. Comparison of total equivalent areas

Figure 8 depicts the Pareto-front for the optimization run. The trade-off between boom minimization and
aircraft performance is seen in this figure, although the measure for boom minimization has been mapped
from the usual loudness level to the matching of the total equivalent areas. The dashed rectangle provides
the best candidates which offer a fair compromise between sonic boom and performance constraints. One
such candidate configuration is provided in figure 9.
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Figure 8. Pareto-front for the second step of optimization
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Figure 9. One of the best candidate configurations

It is important to measure the performance of the parallel genetic algorithm. Figure 10 depicts the super-
position of a linear speed-up and the speed-up achieved by the proposed genetic algorithm. As can be seen
from the figure, a sub-linear speed-up is achieved. It might be possible to improve the speed-up by better
communication calls between processors.
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Figure 10. Speed-up of the Parallel GA

IX. Conclusions

A new design methodology has been introduced for sonic boom minimization based on linearized methods.
The geometry generation and discretization procedure enables an efficient and automatic way to combine
linearized and non-linear analysis. The unique shape optimization procedure in conjunction with parallel
genetic algorithms allows the designer the explore vast design spaces efficiently and accurately. The proba-
bilistic propagation provides a strategy to include atmospheric fluctuations into the aircraft design process.
The bi-level procedure not only serves as a pseudo-inverse technique but also induces design flexibility by
separating the near and far field analysis.
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